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Chapter 13

Functions of Several Variables

13.1 Introduction to Functions of Several Variables
Definition 13.1

Let D be a set of ordered pairs of real numbers. If to each ordered pair (x, y) in D

there corresponds a unique real number f(x, y), then f is a real-valued function of
(two variables) x and y. The set D is the domain of f , and the corresponding set of
values for f(x, y) is the range of f . For the function z = f(x, y), x and y are called
the independent variables and z is called the dependent variable.

Definition 13.2
Let f, g be real-valued functions of two variables with domain D.

1. The sum of f and g, the difference of f and g and the product of f and g,
denoted by f + g, f ´ g and fg, are functions defined on D given by

(f + g)(x, y) = f(x, y) + g(x, y) @ (x, y) P D ,

(f ´ g)(x, y) = f(x, y) ´ g(x, y) @ (x, y) P D ,

(fg)(x, y) = f(x, y)g(x, y) @ (x, y) P D .

2. The quotient of f and g, denoted by f

g
, is a function defined on Dz

␣

(x, y) P

D
ˇ

ˇ g(x, y) = 0
(

given by

f

g
(x, y) =

f(x, y)

g(x, y)
@ (x, y) P D such that g(x, y) ‰ 0 .
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Remark 13.3. A function f of two variables should be given along with its domain. When
the domain of a function is not specified, as before the domain should be treated as the
collection of all (x, y) such that f(x, y) is meaningful.

Definition 13.4
Let h be a real-valued function of two variables with domain D, and g : I Ñ R be a
real-valued function (of one variable) on an interval I. The composite function of g
and h, denoted by g ˝ h, is a function defined on D X

␣

(x, y) P D
ˇ

ˇh(x, y) P I
(

given
by

(g ˝ h)(x, y) = g
(
h(x, y)

)
@ (x, y) P D such that h(x, y) P I .

Similar concepts such as real-valued functions of three variables, the sum, different,
product, quotient and composition of functions of three variables can be defined accordingly.
Definition 13.5

Let D be a set of ordered pairs of real numbers, and f : D Ñ R be a real-valued
function of two variables. The graph of f is the set of all points (x, y, z) for which
z = f(x, y) and (x, y) P D.

Example 13.6. Let r ą 0 be a real number. The graph of the function z = f(x, y) =
a

r2 ´ x2 ´ y2 is the upper hemi-sphere of the sphere centered at the origin with radius r.
On the other hand, the graph of the function z = g(x, y) = ´

a

r2 ´ x2 ´ y2 is the lower
hemi-sphere of the sphere.

Definition 13.7: Level Curves
Let D be a set of ordered pairs of real numbers, and f : D Ñ R be a function of two
variables. A level curve (or contour curve) of f is a collection of points (x, y) in D

along which the value of f(x, y) is constant.

Definition 13.8: Level Surfaces
Let D be a set of ordered pairs of real numbers, and f : D Ñ R be a function of three
variables. A level surface of f is a collection of points (x, y, z) in D along which the
value of f(x, y, z) is constant.



Example 13.9. A level curve of the function z =
a

r2 ´ x2 ´ y2 is a circle centered at the
origin, and a level surface of the function w = g(x, y, z) = x2 + y2 + z2 ´ r2 is a sphere
centered at the origin.

Example 13.10. The graph of f(x, y) = y2 ´ x2 is called a hyperbolic paraboloid. A
level curve of a hyperbolic paraboloid is a hyperbola (or degenerated hyperbola), and each
plane perpendicular to the xy-plane intersects the graph of z = f(x, y) along a parabola (or
degenerated parabola).

13.2 Limits and Continuity
Definition 13.11

Let δ ą 0 be given. The δ-neighborhood about a point (x0, y0) in the plane is the
open disk centered at (x0, y0) with radius δ given by

D
(
(x0, y0), δ

)
”
␣

(x, y)
ˇ

ˇ

a

(x ´ x0)2 + (y ´ y0)2 ă δ
(

.

Definition 13.12
Let R be a collection of points in the plane. A point (x0, y0) (in R) is called an
interior point of R if there exists δ ą 0 such that the δ-neighborhood about (x0, y0)

lies entirely in R. If every point in R is an interior point of R, then R is called an
open region. A point (x0, y0) is called a boundary point of R if every δ-neighborhood
about (x0, y0) containing points inside R and point outsides R. In other words, (x0, y0)

is a boundary point of R if

@ δ ą 0, D
(
(x0, y0), δ) X R ‰ H and D

(
(x0, y0), δ) X RA ‰ H .

If R contains all its boundary points, then R is called a closed region.



Remark 13.13. For x P R and δ ą 0, let D(x, δ) denote the interval (x ´ δ, x + δ) (and
called the interval centered at x with radius r). Then for each x P (a, b), there exists δ ą 0

such that D(x, r) Ď (a, b); thus (a, b) is called an open interval. The end-points a, b of the
interval are boundary points of the interval, and [a, b] is a closed interval since it contains
all its boundary points.

Definition 13.14
Let f be a real-valued function of two variables defined, except possibly at (x0, y0),
on an open disk centered at (x0, y0), and let L be a real number. Then

lim
(x,y)Ñ(x0,y0)

f(x, y) = L

if for every ε ą 0 there exists δ ą 0 such that
ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever 0 ă
a

(x ´ x0)2 + (y ´ y0)2 ă δ .

Remark 13.15. If lim
(x,y)Ñ(x0,y0)

f(x, y) = L1 and lim
(x,y)Ñ(x0,y0)

f(x, y) = L2, then L1 = L2. In
other words, the limit is unique when it exists.

The proof of the following is almost identical to the one of Theorem 1.14.

Theorem 13.16: Properties of Limits of Functions of Two Variables

Let (a, b) P R2. Suppose that the limits

lim
(x,y)Ñ(a,b)

f(x, y) = L and lim
(x,y)Ñ(a,b)

g(x, y) = K .

both exist, and c is a constant.

1. lim
(x,y)Ñ(a,b)

c = c, lim
(x,y)Ñ(a,b)

x = a and lim
(x,y)Ñ(a,b)

y = b.

2. lim
(x,y)Ñ(a,b)

[
f(x, y) ˘ g(x, y)

]
= L+K;

3. lim
(x,y)Ñ(a,b)

[
f(x, y)g(x, y)

]
= LK;

4. lim
(x,y)Ñ(a,b)

f(x, y

g(x, y)
=

L

K
if K ‰ 0.



Theorem 13.17: Squeeze

Let (x0, y0) P R2. Suppose that f, g, h are functions of two variables such that

g(x, y) ď f(x, y) ď h(x, y)

except possible at (x0, y0), and lim
(x,y)Ñ(x0,y0)

g(x, y) = lim
(x,y)Ñ(x0,y0)

h(x, y) = L, then

lim
(x,y)Ñ(x0,y0)

f(x, y) = L .

Example 13.18. For (a, b) P R2, find the limit lim
(x,y)Ñ(a,b)

5x2y

x2 + y2
.

First we note that 1-3 of Theorem 13.16 implies that the function f(x, y) = 5x2y and
g(x, y) = x2 + y2 has the property that

lim
(x,y)Ñ(a,b)

f(x, y) = 5a2b and lim
(x,y)Ñ(a,b)

g(x, y) = a2 + b2 .

Therefore, Theorem 13.16 again shows the following:

1. If (a, b) ‰ (0, 0), then 4 of Theorem 13.16 implies that

lim
(x,y)Ñ(a,b)

5x2y

x2 + y2
= lim

(x,y)Ñ(a,b)

f(x, y)

g(x, y)
=

5a2b

a2 + b2
.

2. If (a, b) = (0, 0), then we cannot apply 4 of Theorem 13.16 to compute the limit.
Nevertheless, since

ˇ

ˇ

ˇ

5x2y

x2 + y2
´ 0

ˇ

ˇ

ˇ
ď 5|y| @ (x, y) ‰ (0, 0) ,

the Squeeze Theorem implies that

lim
(x,y)Ñ(0,0)

5x2y

x2 + y2
= 0 .

Example 13.19. Show that the limit lim
(x,y)Ñ(0,0)

(
x2 ´ y2

x2 + y2

)2

does not exist.

Let f(x, y) =
(
x2 ´ y2

x2 + y2

)2

. By the definition of limits, if lim
(x,y)Ñ(0,0)

f(x, y) = L exists, then
there exists δ ą 0 such that

ˇ

ˇf(x, y) ´ L
ˇ

ˇ ă
1

2
whenever 0 ă

a

x2 + y2 ă δ



which implies that

L ´
1

2
ă f(x, y) ă L+

1

2
whenever 0 ă

a

x2 + y2 ă δ . (13.2.1)

However, when (x, y) satisfies 0 ă
a

x2 + y2 ă δ and x = y, then f(x, y) = 0 while on the
other hand, when (x, y) satisfies 0 ă

a

x2 + y2 ă δ and y = 0, then f(x, y) = 1. This is a
contradiction because of (13.2.1).
‚ Another way of looking at this limit: When (x, y) approaches (0, 0) along the line x = y

(we use the notation lim
(x,y)Ñ(0,0)

x=y

to denote this limit process), we find that

lim
(x,y)Ñ(0,0)

x=y

f(x, y) = 0

and when (x, y) approaches (0, 0) along the x-axis (we use the notation lim
(x,y)Ñ(0,0)

y=0

to denote

this limit process), we find that

lim
(x,y)Ñ(0,0)

y=0

f(x, y) = 1 .

The uniqueness of the limit implies that the limit of f at (0, 0) does not exist.

13.2.1 Continuity of functions of two variables
Definition 13.20

A function f of two variables is continuous at a point (x0, y0) in an open region R

if f(x0, y0) is defined and is equal to the limit of f(x, y) as (x, y) approaches (x0, y0);
that is,

lim
(x,y)Ñ(x0,y0)

f(x, y) = f(x0, y0) .

In other words, f is continuous at (x0, y0) if for every ε ą 0 there exists δ ą 0 such
that

ˇ

ˇf(x, y) ´ f(x0, y0)
ˇ

ˇ ă ε whenever
a

(x ´ x0)2 + (y ´ y0)2 ă δ .

The function f is continuous in the open region R if it is continuous at every
point in R.

Remark 13.21. 1. Unlike the case that f does not have to be defined at (x0, y0) in order
to consider the limit of f at (x0, y0), for f to be continuous at a point (x0, y0) f has
to be defined at (x0, y0).



2. A point (x0, y0) is called a discontinuity of f if f is not continuous at (x0, y0). (x0, y0)

is called a removable discontinuity of f if lim
(x,y)Ñ(x0,y0)

f(x, y) exists.

Theorem 13.22
Let f and g be functions of two variables such that f and g are continuous at (x0, y0).

1. f ˘ g is continuous at (x0, y0).

2. fg is continuous at (x0, y0).

3. f

g
is continuous at (x0, y0) if g(x0, y0) ‰ 0.

Theorem 13.23
If h is continuous at (x0, y0) and g is continuous at h(x0, y0), then the composite
function g ˝ h is continuous at (x0, y0); that is,

lim
(x,y)Ñ(x0,y0)

(g ˝ h)(x, y) = g
(
h(x0, y0)

)
.

13.3 Partial Derivatives
Definition 13.24

Let f be a function of two variable. The first partial derivative of f with respect to
x at (x0, y0), denoted by fx(x0, y0), is defined by

fx(x0, y0) = lim
∆xÑ0

f(x0 +∆x, y0) ´ f(x0, y0)

∆x

provided the limit exists. The first partial derivative of f with respect to y at (x0, y0),
denoted by fy(x0, y0), is defined by

fy(x0, y0) = lim
∆yÑ0

f(x0, y0 +∆y) ´ f(x0, y0)

∆y

provided the limit exists. When fx and fy exist for all (x0, y0) (in a certain open
region), fx and fy are simply called the first partial derivative of f with respect to x

and y, respectively.



‚ Notation: For z = f(x, y), the partial derivative fx and fy, can also be denoted by
B

Bx
f(x, y) = fx(x, y) = zx =

Bz

Bx
=

Bf

Bx
(x, y)

and
B

By
f(x, y) = fy(x, y) = zy =

Bz

By
=

Bf

By
(x, y) .

When evaluating the partial derivative at (x0, y0), we write

fx(x0, y0) =
Bf

Bx
(x0, y0) =

B

Bx

ˇ

ˇ

ˇ

(x,y)=(x0,y0)
f(x, y)

and
fy(x0, y0) =

Bf

By
(x0, y0) =

B

By

ˇ

ˇ

ˇ

(x,y)=(x0,y0)
f(x, y) .

Example 13.25. For f(x, y) = xex
2y, find fx and fy, and evaluate each at the point (1, ln 2).

Note that fx is obtained by treating y as a constant and differentiate f with respect to
x. Therefore, the product rule implies tat

fx(x, y) =
( B

Bx
x
)
ex

2y + x
( B

Bx
ex

2y
)
= ex

2y + x ¨ ex
2y ¨ 2xy = (1 + 2x2y)ex

2y ;

thus
fx(1, ln 2) = (1 + 2 ln 2)eln 2 = 2(1 + 2 ln 2) .

Similarly,
fy(x, y) =

( B

By
x
)
ex

2y + x
( B

By
ex

2y
)
= x3ex

2y ;

thus fy(1, ln 2) = eln 2 = 2.

Example 13.26. Let f : R2 Ñ R be defined by

f(x, y) =

$

&

%

xy(x2 ´ y2)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then if (x, y) ‰ (0, 0), we can apply the quotient rule (and product rule) to compute the
partial derivatives and obtain that

fx(x, y) =
(x2 + y2)

B

Bx

[
xy(x2 ´ y2)

]
´ xy(x2 ´ y2)

B

Bx
(x2 + y2)

(x2 + y2)2

=
(x2 + y2)

[
y(x2 ´ y2) + 2x2y

]
´ xy(x2 ´ y2) ¨ (2x)

(x2 + y2)2

=
x4y + 4x2y3 ´ y5

(x2 + y2)2
.



If (x, y) = (0, 0), we cannot use the quotient rule to compute the derivative since the
denominate is 0 (so that 4 of Theorem 13.16 cannot be applied), and we have to compute
fx(0, 0) using the definition. By definition,

fx(0, 0) = lim
∆xÑ0

f(∆x, 0) ´ f(0, 0)

∆x
= 0 .

Therefore,

fx(x, y) =

$

&

%

x4y + 4x2y3 ´ y5

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Similarly,

fy(x, y) =

$

&

%

x5 ´ 4x3y2 ´ xy4

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

‚ Geometric meaning of partial derivatives: Let f(x, y) be a function of two variable,
(x0, y0) be given, and z0 = f(x0, y0). Consider the graph of the function z = f(x, y0) (of one
variable) on the xz-plane. If the graph z = f(x, y0) has a tangent line at (x0, z0), then the
slope of the tangent line at (x0, z0) is given by

lim
hÑ0

f(x0 + h, y0) ´ f(x0, y0)

h

and this limit, if exists, is fx(x0, y0). This is called the slopes in the x-direction of the
surface z = f(x, y) at the point (x0, y0, z0). Similarly, the slope of the tangent line of the
graph of z = f(x0, y) at (y0, z0) is fy(x0, y0), and is called the slopes in the y-direction
of the surface z = f(x, y) at the point (x0, y0, z0).

‚ Partial derivatives of functions of three or more variables:

The concept of partial derivatives can be extended to functions of three or more variables.
For example, if w = f(x, y, z), then

Bw

Bx
= fx(x, y, z) = lim

∆xÑ0

f(x+∆x, y, z) ´ f(x, y, z)

∆x
,

Bw

By
= fy(x, y, z) = lim

∆yÑ0

f(x, y +∆y, z) ´ f(x, y, z)

∆y
,

Bw

Bz
= fz(x, y, z) = lim

∆zÑ0

f(x, y, z +∆z) ´ f(x, y, z)

∆z
.

In general, if w = f(x1, x2, ¨ ¨ ¨ , xn), then there are n first partial derivatives denoted by
Bw

Bxk

= fxk
(x1, x2, ¨ ¨ ¨ , xn) , k = 1, 2, ¨ ¨ ¨ , n .



‚ Higher-order partial derivatives:

We can also take higher-order partial derivatives of functions of several variables. For
example, for z = f(x, y),

1. Differentiate twice with respect to x:
B

Bx

(Bf

Bx

)
=

B 2f

Bx2
= fxx .

2. Differentiate twice with respect to y:
B

By

(Bf

By

)
=

B 2f

By2
= fyy .

3. Differentiate first with respect to x and then with respect to y:
B

By

(Bf

Bx

)
=

B 2f

ByBx
= fxy .

4. Differentiate first with respect to y and then with respect to x:
B

Bx

(Bf

By

)
=

B 2f

BxBy
= fyx .

The third and fourth cases are called mixed partial derivatives.

Example 13.27. In this example we compute the second partial derivatives of the function
given in 13.26. We have obtained that

fx(x, y) =

$

&

%

x4y + 4x2y3 ´ y5

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and

fy(x, y) =

$

&

%

x5 ´ 4x3y2 ´ xy4

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

If (x, y) ‰ (0, 0), the quotient rule, the product rule and the chain rule (for functions of one
variable) together show that

fxx(x, y) =
(x2 + y2)2

B

Bx
(x4y + 4x2y3 ´ y5) ´ (x4y + 4x2y3 ´ y5)

B

Bx
(x2 + y2)2

(x2 + y2)4

=
(x2 + y2)2(4x3y + 8xy3) ´ (x4y + 4x2y3 ´ y5) ¨

[
2(x2 + y2) ¨ (2x)

]
(x2 + y2)3

=
(x2 + y2)(4x3y + 8xy3) ´ 4x(x4y + 4x2y3 ´ y5)

(x2 + y2)3
=

´4x3y3 + 12xy5

(x2 + y2)3
.



Similarly, if (x, y) ‰ (0, 0),

fyy(x, y) =
(x2 + y2)2(´8x3y ´ 4xy3) ´ (x5 ´ 4x3y2 ´ xy4) ¨

[
2(x2 + y2) ¨ (2y)

]
(x2 + y2)2

=
´12x5y + 4x3y3

(x2 + y2)3
,

fxy(x, y) =
(x2 + y2)(x4 + 12x2y2 ´ 5y4) ´ 4y(x4y + 4x2y3 ´ y5)

(x2 + y2)3

=
x6 + 9x4y2 ´ 9x2y4 ´ y6

(x2 + y2)3

and

fyx(x, y) =
(x2 + y2)(5x4 ´ 12x2y2 ´ y4) ´ 4x(x5 ´ 4x3y2 ´ xy4)

(x2 + y2)3

=
x6 + 9x4y2 ´ 9x2y4 ´ y6

(x2 + y2)3
.

We note that when (x, y) ‰ (0, 0), fxy(x, y) = fyx(x, y).
Since fx(x, 0) = fy(0, y) = 0 for all x ‰ 0, we find that

fxx(0, 0) = lim
∆xÑ0

fx(∆x, 0) ´ fx(0, 0)

∆x
= 0

and
fyy(0, 0) = lim

∆yÑ0

fy(0,∆y) ´ fy(0, 0)

∆y
= 0 .

Finally, we compute fxy(0, 0) and fyx(0, 0). By definition,

fxy(0, 0) = lim
∆yÑ0

fx(0,∆y) ´ fx(0, 0)

∆y
= lim

∆yÑ0

´∆y5

∆y4

∆y
= ´1

and

fyx(0, 0) = lim
∆xÑ0

fy(∆x, 0) ´ fy(0, 0)

∆x
= lim

∆yÑ0

∆x5

∆x4

∆x
= 1 .

We note that fxy(0, 0) ‰ fyx(0, 0).

Theorem 13.28: Clairaut’s Theorem
If f is a function of x and y such that fxy and fyx are continuous on an open disk D,
then

fxy(x, y) = fyx(x, y) @ (x, y) P D .



In the following, we prove the following more general version:

If f is a function of x and y such that on an open disk D fxy is continuous and fyx

exists, then fxy(x, y) = fyx(x, y) for all (x, y) P D.

Proof. Let (a, b) P D be given. Then

fyx(a, b) = (fy)x(a, b) = lim
hÑ0

fy(a+ h, b) ´ fy(a, b)

h

= lim
hÑ0

lim
kÑ0

f(a+ h, b+ k) ´ f(a+ h, b)

k
´ lim

kÑ0

f(a, b+ k) ´ f(a, b)

k

h

= lim
hÑ0

lim
kÑ0

f(a+ h, b+ k) ´ f(a, b+ k) ´ f(a+ h, b) ´ f(a, b)

hk
.

Define
Q(h, k) ”

f(a+ h, b+ k) ´ f(a+ h, b) ´ f(a, b+ k) + f(a, b)

hk
.

Then the computation above shows that

lim
hÑ0

lim
kÑ0

Q(h, k) = fyx(a, b) . (13.3.1)

For h, k ‰ 0 such that (a + h, b + k) P D, define φ(x, y) = f(x, y + k) ´ f(x, y). Then

Q(h, k) =
φ(a+ h, b) ´ φ(a, b)

hk
. By the mean value theorem for functions of one variable

(Theorem 3.9),

Q(h, k) =
φx(a+ θ1h, b)h

hk
=

fx(a+ θ1h, b+ k) ´ fx(a+ θ1h, b)

k

for some functions θ1 = θ1(h) satisfying 0 ă θ1 ă 1. Applying the mean value theorem
again,

Q(h, k) =
fx(a+ θ1h, b+ k) ´ fx(a+ θ1h, b)

k
=

fxy(a+ θ1h, b+ θ2k)k

k
= fxy(a+ θ1h, b+ θ2k)

for some functions θ2 = θ2(h, k) satisfying 0 ă θ2 ă 1. Therefore, we establish that there
exist functions θ1 = θ1(h) and θ2 = θ2(h, k) such that

Q(h, k) = fxy(x+ θ1h, y + θ2k) .

Passing to the limit as k Ñ 0 first then h Ñ 0, using (13.3.1) and the continuity of fxy we
conclude that fxy(a, b) = fyx(a, b).



Example 13.29. Let f(x, y, z) = yex+x ln z. Then fx(x, y, z) = yex+ ln z, fy(x, y, z) = ex

and fz(x, y, z) =
x

z
. Therefore,

fxy(x, y, z) = ex = fyx(x, y, z) ,

fxz(x, y, z) =
1

z
= fzx(x, y, z) @ z ‰ 0 ,

fyz(x, y, z) = 0 = fzy(x, y, z) .

13.4 Differentiability of Functions of Several Variables

Recall that a function f : (a, b) Ñ R is said to be differentiable at a point c P (a, b) if the
limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x

exists. The differentiability of f at c can be rephrased as follows:

A function f : (a, b) Ñ R is said to be differentiable at c P (a, b) if there exists
m P R such that

lim
∆xÑ0

ˇ

ˇ

ˇ

f(c+∆x) ´ f(c) ´ m∆x

∆x

ˇ

ˇ

ˇ
= 0 .

or equivalently,

lim
xÑc

ˇ

ˇ

ˇ

f(x) ´ f(c) ´ m(x ´ c)

x ´ c

ˇ

ˇ

ˇ
= 0 .

This equivalent way of defining differentiability of functions of one variable motivate the
following
Definition 13.30

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. For (x0, y0) P R, f is said to be differentiable at (x0, y0) if there exist real
numbers A,B such that

lim
(x,y)Ñ(x0,y0)

ˇ

ˇf(x, y) ´ f(x0, y0) ´ (A,B) ¨ (x ´ x0, y ´ y0)
ˇ

ˇ

a

(x ´ x0)2 + (y ´ y0)2
= 0 .

Suppose that f is differentiable at (x0, y0). When (x, y) approaches (x0, y0) along the



line y = y0, we find that

0 = lim
(x,y)Ñ(x0,y0)

y=y0

ˇ

ˇf(x, y) ´ f(x0, y0) ´ A(x ´ x0) ´ B(y ´ y0)
ˇ

ˇ

a

(x ´ x0)2 + (y ´ y0)2

= lim
xÑx0

ˇ

ˇf(x, y0) ´ f(x0, y0) ´ A(x ´ x0)
ˇ

ˇ

|x ´ x0|
= lim

xÑx0

ˇ

ˇ

ˇ

f(x, y0) ´ f(x0, y0)

x ´ x0

´ A
ˇ

ˇ

ˇ

which implies that the number A must be fx(x0, y0). Similarly, B = fy(x0, y0), and we have
the following alternative
Definition 13.31

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. For (x0, y0) P R, f is said to be differentiable at (x0, y0) if (fx(x0, y0),
fy(x0, y0) both exist and)

lim
(x,y)Ñ(x0,y0)

ˇ

ˇf(x, y) ´ f(x0, y0) ´ fx(x0, y0)(x ´ x0) ´ fy(x0, y0)(y ´ y0)
ˇ

ˇ

a

(x ´ x0)2 + (y ´ y0)2
= 0 .

Remark 13.32. The ordered pair
(
fx(x0, y0), fy(x0, y0)

)
if called the derivative of f at

(x0, y0) if f is differentiable at (x0, y0) and is usually denoted by (Df)(x0, y0).

2. Using ε-δ notation, we find that f is differentiable at (x0, y0) if for every ε ą 0, there
exists δ ą 0 such that

ˇ

ˇf(x, y) ´ f(x0, y0) ´ fx(x0, y0)(x ´ x0) ´ fy(x0, y0)(y ´ y0)
ˇ

ˇ

ď ε
a

(x ´ x0)2 + (y ´ y0)2 whenever
a

(x ´ x0)2 + (y ´ y0)2 ă δ .

Now suppose that f is a function of two variables such that fx(x0, y0) and fy(x0, y0)

exist. Define

ε(x, y) =

$

&

%

f(x, y) ´ f(x0, y0) ´ fx(x0, y0)(x ´ x0) ´ fy(x0, y0)(y ´ y0)
a

(x ´ x0)2 + (y ´ y0)2
if (x, y) ‰ (x0, y0) ,

0 if (x, y) = (x0, y0) .

Let ∆x = x ´ x0, ∆y = y ´ y0 and ∆z = f(x, y) ´ f(x0, y0). Then

∆z = fx(x0, y0)∆x+ fy(x0, y0)∆y + ε(x, y)
a

∆x2 +∆y2 ,

and f is differentiable at (x0, y0) if and only if lim
(x,y)Ñ(x0,y0)

ε(x, y) = 0.



Finally, define

ε1(x, y) =

$

&

%

ε(x, y)∆x
a

∆x2 +∆y2
if (x, y) ‰ (x0, y0) ,

0 if (x, y) ‰ (x0, y0) ,

ε2(x, y) =

$

&

%

ε(x, y)∆y
a

∆x2 +∆y2
if (x, y) ‰ (x0, y0) ,

0 if (x, y) ‰ (x0, y0) ,

,

then
0 ď |ε1(x, y)|, |ε2(x, y)| ď |ε(x, y)| =

a

ε1(x, y)2 + ε2(x, y)2

thus the Squeeze Theorem shows that

lim
(x,y)Ñ(x0,y0)

ε(x, y) = 0 if and only if lim
(x,y)Ñ(x0,y0)

ε1(x, y) = lim
(x,y)Ñ(x0,y0)

ε2(x, y) = 0 .

By the fact that ε(x, y)
a

∆x2 +∆y2 = ε1(x, y)∆x + ε2(x, y)∆y, the alternative definition
above can be rewritten as

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. For (x0, y0) P R, f is said to be differentiable at (x0, y0) if (fx(x0, y0),
fy(x0, y0) both exist and) there exist functions ε1 and ε2 such that

∆z = fx(x0, y0)∆x+ fy(x0, y0)∆y + ε1∆x+ ε2∆y ,

where both ε1 and ε2 approaches 0 as (x, y) Ñ (x0, y0).

Example 13.33. Show that the function f(x, y) = x2 + 3y is differentiable at every point
in the plane.

Let (a, b) P R2 be given. Then fx(a, b) = 2a and fy(a, b) = 3. Therefore,

∆z ´ fx(a, b)∆x ´ fy(a, b)∆y = x2 + 3y ´ a2 ´ 3b ´ 2a(x ´ a) ´ 3(y ´ b)

= (x ´ a)2 = ε1(x, y)∆x+ ε2(x, y)∆y ,

where ε1(x, y) = x ´ a and ε2(x, y) = 0. Since

lim
(x,y)Ñ(a,b)

ε1(x, y) = 0 and lim
(x,y)Ñ(a,b)

ε2(x, y) = 0 ,

by the definition we find that f is differentiable at (a, b).



Example 13.34. The function f given in Example 13.26 is differentiable at (0, 0) since if
(x, y) ‰ (0, 0),

ˇ

ˇf(x, y) ´ f(0, 0) ´ fx(0, 0)x ´ fy(0, 0)y
ˇ

ˇ

a

x2 + y2
=

ˇ

ˇxy(x2 ´ y2)
ˇ

ˇ

(x2 + y2)
3
2

ď
|x2 ´ y2|
a

x2 + y2
ď |x| + |y|

and the Squeeze Theorem shows that

lim
(x,y)Ñ(0,0)

ˇ

ˇf(x, y) ´ f(0, 0) ´ fx(0, 0)(x ´ 0) ´ fy(0, 0)(y ´ 0)
ˇ

ˇ

a

x2 + y2
= 0 .

‚ Differentiability of functions of several variables

A real-valued function f of n variables is differentiable at (a1, a2, ¨ ¨ ¨ , an) if there exist n

real numbers A1, A2, ¨ ¨ ¨ , An such that

lim
(x1,¨¨¨ ,xn)Ñ(a1,¨¨¨ ,an)

ˇ

ˇf(x1, ¨ ¨ ¨ , xn) ´ f(a1, ¨ ¨ ¨ , an) ´ (A1, ¨ ¨ ¨ , An) ¨ (x1 ´ a1, ¨ ¨ ¨ , xn ´ an)
ˇ

ˇ

a

(x1 ´ a1)2 + ¨ ¨ ¨ + (xn ´ an)2
= 0 .

We also note that when f is differentiable at (a1, ¨ ¨ ¨ , an), then these numbers A1, A2, ¨ ¨ ¨ , An

must be fx1(a1, ¨ ¨ ¨ , an), fx2(a1, ¨ ¨ ¨ , an), ¨ ¨ ¨ , fxn(a1, ¨ ¨ ¨ , an), respectively.
It is usually easier to compute the partial derivatives of a function of several variables

than determine the differentiability of that function. Is there any connection between some
specific properties of partial derivatives and the differentiability? We have the following
Theorem 13.35

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. If fx and fy are continuous in a neighborhood of (x0, y0) P R, then f is
differentiable at (x0, y0). In particular, if fx and fy are continuous on R, then f is
differentiable on R; that is, f is said to be differentiable at every point in R.

Therefore, the differentiability of f in Example 13.26 at any point (x0, y0) ‰ (0, 0) can
be guaranteed since fx and fy are continuous on R2zt(0, 0)u.
Theorem 13.36

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. If f is differentiable at (x0, y0), then f is continuous at (x0, y0).



Proof. By the definition of differentiability, if f is differentiable at (x0, y0), then there exists
function ε1 and ε2 such that

lim
(x,y)Ñ(x0,y0)

ε1(x, y) = lim
(x,y)Ñ(x0,y0)

εw(x, y) = 0

and

f(x, y) = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0)

+ ε1(x, y)(x ´ x0) + ε2(x, y)(y ´ y0) .

Then lim
(x,y)Ñ(x0,y0)

f(x, y) = f(x0, y0).

Example 13.37. Consider the function

f(x, y) =

$

&

%

´3xy

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then f is not continuous at (0, 0) since

lim
(x,y)Ñ(0,0)

y=0

f(x, y) = 0 but lim
(x,y)Ñ(0,0)

x=y

f(x, y) = ´
3

2
.

However, we note that

fx(0, 0) = lim
∆xÑ0

f(∆x, 0) ´ f(0, 0)

∆x
= 0 and fy(0, 0) = lim

∆yÑ0

f(0,∆y) ´ f(0, 0)

∆y
= 0 .

Therefore, the existence of partial derivatives at a point in all directions does not even
imply the continuity.

13.5 Chain Rules for Functions of Several Variables
Recall the chain rule for functions of one variable:

Let I, J be open intervals, f : J Ñ R, g : I Ñ R be real-valued functions, and the
range of g is contained in J . If g is differentiable at c P I and f is differentiable at
g(c), then f ˝ g is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
(f ˝ g)(x) = f 1(g(c))g 1(c) .



For functions of two variables, we have the following
Theorem 13.37

Let z = f(x, y) be a differentiable function (of x and y). If x = g(t) and y = h(t) are
differentiable functions (of t), then z(t) = f

(
x(t), y(t)

)
is differentiable and

z 1(t) = fx
(
x(t), y(t)

)
x 1(t) + fy

(
x(t), y(t)

)
y 1(t) .

Let γ(t) =
(
x(t), y(t)

)
. Then γ 1(t) =

(
x 1(t), y 1(t)

)
, and the chain rule above can be

written as
d

dt
(f ˝ γ)(t) = (Df)(γ(t)) ¨ γ 1(t) .

A short-hand notation of the identity above

dz

dt
=

Bf

Bx

dx

dt
+

Bf

By

dy

dt
= (fx, fy) ¨ (x 1, y 1) .

Corollary 13.38

Let z = f(x, y) be a differentiable function (of x and y).

1. If x = u(s, t) and y = v(s, t) are such that Bu

Bs
and Bv

Bs
exist, then the first partial

derivative Bz

Bs
of the function z(s, t) = f

(
u(s, t), v(s, t)

)
exists and

zs(s, t) = fx
(
u(s, t), v(s, t)

)
us(s, t) + fy

(
u(s, t), v(s, t)

)
vs(s, t) .

2. If x = u(s, t) and y = v(s, t) are such that Bu

B t
and Bv

B t
exist, then the first partial

derivative Bz

B t
of the function z(s, t) = f

(
u(s, t), v(s, t)

)
exists and

zt(s, t) = fx
(
u(s, t), v(s, t)

)
ut(s, t) + fy

(
u(s, t), v(s, t)

)
vt(s, t) .

Example 13.39. Let f(x, y) = x2y ´ y2. Find dz

dt
, where z(t) = f(sin t, et).

1. Since z(t) = et sin2 t ´ e2t, by the product rule and the chain rule for functions of one
variable, we find that

z 1(t) =
det

dt
sin2 t+ et

d sin2 t

dt
´ 2e2t = et sin2 t+ 2et sin t cos t ´ 2e2t .



2. By the chain rule for functions of two variables,

z 1(t) =
(
fx(sin t, et), fy(sin t, et)

)
¨
d

dt
(sin t, et)

= (2xy, x2 ´ 2y)
ˇ

ˇ

ˇ

(x,y)=(sin t,et)
¨ (cos t, et)

= (2et sin t, sin2 t ´ 2et) ¨ (cos t, et)
= 2et sin t cos t+ et sin2 t ´ 2e2t .

Example 13.40. Let f(x, y) = 2xy. Find Bz

Bs
and Bz

B t
, where z(s, t) = f

(
s2 + t2,

s

t

)
.

1. Since z(s, t) = 2(s2 + t2)
s

t
=

2s3

t
+ 2st, by the product rule we find that

Bz

Bs
(s, t) =

6s2

t
+ 2t and Bz

B t
(s, t) = ´

2s3

t2
+ 2s .

2. By the chain rule for functions of two variables,
Bz

Bs
(s, t) =

(
fx(s

2 + t2, s/t), fy(s
2 + t2, s/t)

)
¨

B

Bs

(
s2 + t2,

s

t

)
=

(2s
t
, 2(s2 + t2)

)
¨
(
2s,

1

t

)
=

4s2

t
+

2s2 + 2t2

t
=

6s2

t
+ 2t

and
Bz

B t
(s, t) =

(
fx(s

2 + t2, s/t), fy(s
2 + t2, s/t)

)
¨

B

B t

(
s2 + t2,

s

t

)
=

(2s
t
, 2(s2 + t2)

)
¨
(
2t,´

s

t2

)
= 4s ´

2s3 + 2st2

t2
= ´

2s3

t2
+ 2s .

‚ The chain rule for functions of several variables

Suppose that w = f(x1, x2, ¨ ¨ ¨ , xn) be a differentiable function (of x1, x2, ¨ ¨ ¨ , xn). If each
xi is a differentiable function of m variables t1, t2, ¨ ¨ ¨ , tm, then

Bw

B t1
=

Bw

Bx1

Bx1

B t1
+

Bw

Bx2

Bx2

B t1
+ ¨ ¨ ¨ +

Bw

Bxn

Bxn

B t1
=

n
ÿ

j=1

Bw

Bxj

Bxj

B t1
,

Bw

B t2
=

Bw

Bx1

Bx1

B t2
+

Bw

Bx2

Bx2

B t2
+ ¨ ¨ ¨ +

Bw

Bxn

Bxn

B t2
=

n
ÿ

j=1

Bw

Bxj

Bxj

B t2
,

...
Bw

B tm
=

Bw

Bx1

Bx1

B tm
+

Bw

Bx2

Bx2

B tm
+ ¨ ¨ ¨ +

Bw

Bxn

Bxn

B tm
=

n
ÿ

j=1

Bw

Bxj

Bxj

B tm
.



Using the notation of the matrix multiplication,

[
Bw

B t1

Bw

B t2
¨ ¨ ¨

Bw

B tm

]
=

[
Bf

Bx1

Bf

Bx2
¨ ¨ ¨

Bf

Bxn

]


Bx1
B t1

Bx1
B t2

¨ ¨ ¨
Bx1
B tm

Bx2
B t1

Bx2
B t2

¨ ¨ ¨
Bx2
B tm

... ... . . . ...
Bxn
B t1

Bxn
B t2

¨ ¨ ¨
Bxn
B tm


.

‚ Differentiation of determinant functions

For an n ˆ n matrix A, let Cof(A) denote the cofactor matrix of A; that is, the (i, j)-th
entry of Cof(A) is the determinant of the matrix obtained by deleting the i-th row and j-th
column of A or

[
Cof(A)

]
ij
= (´1)i+j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 ¨ ¨ ¨ a1(j´1) a1(j+1) ¨ ¨ ¨ a1n
... . . . ... ... ...

a(i´1)1 a(i´1)2 ¨ ¨ ¨ a(i´1)(j´1) a(i´1)(j+1) ¨ ¨ ¨ a(i´1)n

a(i+1)1 a(i+1)2 ¨ ¨ ¨ a(i+1)(j´1) a(i+1)(j+1) ¨ ¨ ¨ a(i+1)n
... ... ... ... . . . ...

an1 an2 ¨ ¨ ¨ an(j´1) an(j+1) ¨ ¨ ¨ ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then the determinant of A, using the reductive algorithm, can be computed by

det(A) =
n
ÿ

k=1

aik
[
Cof(A)

]
ik

@ 1 ď i ď n . (13.5.1)

On the other hand, the determinant of an n ˆ n matrix A = [aij]1ďi,jďn can be viewed as a
real-valued function of n2 variable:

f(a11, a12, ¨ ¨ ¨ , a1n, a21, a22, ¨ ¨ ¨ , a2n, a31 ¨ ¨ ¨ , ann) = det([aij]) .

Since for each 1 ď i ď n the (i, k)-th entry of the cofactor matrix Cof(A)ik is independent

of aij for all 1 ď j, k ď n, we have Bf

Baij
=

[
Cof(A)

]
ij

; thus if aij = aij(t) is a function of t

for all 1 ď i, j ď n, with A = A(t) =
[
aij(t)

]
1ďi,jďn

in mind the chain rule implies that

d

dt
f
(
a11(t), a12(t), ¨ ¨ ¨ , ann(t)

)
=

n
ÿ

i,j=1

[
Cof(A)

]
ij

daij(t)

dt
. (13.5.2)



Let Adj(A) be the transpose of the cofactor matrix, called the adjoint matrix, of A, then
(13.5.2) implies that

d

dt
det(A) =

n
ÿ

i,j=1

[
Adj(A)

]
ji

daij
dt

= tr
(

Adj(A)dA
dt

)
, (13.5.3)

where tr(M) denotes the trace of a square matrix M and dA

dt
=

[
daij
dt

]
1ďi,jďn

. In particular,

if A is invertible, then A´1 =
1

det(A)
Adj(A); thus for invertible matrix A =

[
aij(t)

]
, we have

d

dt
det(A) = tr

(
det(A)A´1dA

dt

)
= det(A)tr

(
A´1dA

dt

)
(13.5.4)

or
d

dt
ln
ˇ

ˇ det(A)
ˇ

ˇ = tr
(
A´1dA

dt

)
.

Example 13.41. Let A(t) =

[
f(t) g(t)
h(t) k(t)

]
. Then

d

dt
det(A) = tr

([
k ´g

´h f

] [
f 1 g 1

h 1 k 1

])
= tr

([
kf 1 ´ gh 1 kg 1 ´ gk 1

´hf 1 + fh 1 ´hg 1 + fk 1

])
= kf 1 ´ gh 1 ´ hg 1 + fk 1 = (fk ´ gh) 1 .

‚ Taylor’s theorem for functions of two variables

Let R Ď R2 be an open region, and f : R Ñ R be a function of two variables. For
(x, y), (a, b) P R, define g(t) = f

(
a+ t(x´ a), b+ t(y ´ b)

)
. Suppose that all the k-th partial

derivatives of f are continuous for 0 ď k ď n + 1 (which, by Theorem 13.35, implies that
g is (n + 1)-times differentiable), then Taylor’s Theorem implies that there exists ξ P (0, 1)

such that
g(1) =

n
ÿ

k=0

g(k)(0)

k!
+

g(n+1)(ξ)

(n+ 1)!
.

Now we compute g(k)(0). First by the chain rule,

g 1(t) =
d

dt
f
(
a+ t(x ´ a), b+ t(y ´ b)

)
= fx

(
a+ t(x ´ a), b+ t(y ´ b)

)
(x ´ a) + fy

(
tx+ (1 ´ t)a, ty + (1 ´ t)b

)
(y ´ b) ;

thus g 1(0) = fx(a, b)(x ´ a) + fy(a, b)(y ´ b). In general, we can prove by induction that

g(k)(t) =
k
ÿ

j=0

Ck
j

B kf

Bxk´jByj
(
a+ t(x ´ a), b+ t(y ´ b)

)
(x ´ a)k´j(y ´ b)j (13.5.5)



under the assumption that the k-th partial derivatives are continuous (on an open region
containing the line segment connecting (x, y) and (a, b)). To see this, we first simplify the
notation by letting γ(t) =

(
a+ t(x´ a), b+ t(y ´ b)

)
. We note that (13.5.5) holds for k = 1.

Suppose that (13.5.5) holds for k = ℓ. Then by the chain rule and Theorem 13.28, we find
that

g(ℓ+1)(t) =
d

dt
g(ℓ)(t) =

d

dt

ℓ
ÿ

j=0

Cℓ
j

B ℓf

Bxℓ´jByj
(
γ(t)

)
(x ´ a)ℓ´j(y ´ b)j

=
ℓ
ÿ

j=0

Cℓ
j

[ B ℓ+1f

Bxℓ´j+1Byj
(
γ(t)

)
(x ´ a)ℓ´j+1(y ´ b)j

+
B ℓ+1f

Bxℓ´jByj+1

(
γ(t)

)
(x ´ a)ℓ´j(y ´ b)j+1

]
=

ℓ
ÿ

j=0

Cℓ
j

B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j

+
ℓ+1
ÿ

j=1

Cℓ
j´1

B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j

=
B ℓ+1f

Bxℓ+1

(
γ(t)

)
(x ´ a)ℓ+1 +

B ℓ+1f

Byℓ+1

(
γ(t)

)
(y ´ b)ℓ+1

+
ℓ
ÿ

j=1

(Cℓ
j + Cℓ

j´1)
B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j .

By Pascal’s Theorem,

g(ℓ+1)(t) =
B ℓ+1f

Bxℓ+1

(
γ(t)

)
(x ´ a)ℓ+1 +

B ℓ+1f

Byℓ+1

(
γ(t)

)
(y ´ b)ℓ+1

+
ℓ
ÿ

j=1

Cℓ+1
j

B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j

=
ℓ+1
ÿ

j=0

Cℓ+1
j

B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j ;

thus we establish (13.5.5) by induction. Therefore, by the fact that g(1) = f(x, y) and
g(0) = f(a, b),

f(x, y) =
n
ÿ

k=0

1

k!

k
ÿ

j=0

Ck
j

B kf

Bxk´jByj
(a, b)(x ´ a)k´j(y ´ b)j +Rn(x, y) , (13.5.6)



where

Rn(x, y) =
1

(n+ 1)!

n+1
ÿ

j=0

Cn+1
j

B kf

Bxk´jByj
(
a+ ξ(x ´ a), b+ ξ(y ´ b)

)
(x ´ a)n+1´j(y ´ b)j .

The “polynomial” of two variables

Pn(x, y) =
n
ÿ

k=0

1

k!

k
ÿ

j=0

Ck
j

B kf

Bxk´jByj
(a, b)(x ´ a)k´j(y ´ b)j

is called the n-th Taylor polynomial for f centered at (a, b), and the function Rn is the
remainder associated with Pn.

Expanding the sum, we find that

Pn(x, y) = f(a, b) + fx(a, b)(x ´ a) + fy(a, b)(y ´ b)

+
1

2!

[
fxx(a, b)(x ´ a)2 + 2fxy(a, b)(x ´ a)(y ´ b) + fyy(a, b)(y ´ b)2

]
+

1

3!

[
fxxx(a, b)(x ´ a)3 + 3fxxy(a, b)(x ´ a)2(y ´ b) + 3fxyy(x ´ a)(y ´ b)2

+ fyyy(a, b)(y ´ b)3
]
+ ¨ ¨ ¨+

+
1

n!

[
Bnf

Bxn
(a, b)(x ´ a)n + Cn

1

Bnf

Bxn´1By
(a, b)(x ´ a)n´1(y ´ b) + ¨ ¨ ¨ ¨ ¨ ¨+

+ Cn
n´1

Bnf

BxByn´1
(a, b)(x ´ a)(y ´ b)n´1 +

Bnf

Byn
(a, b)(y ´ b)n

]
.

Example 13.42. Find the third Taylor polynomial for the function f(x, y) = sin(xy) cen-
tered at (0, 0).

We compute the first, the second and the third partial derivatives of f as follows:

fx(x, y) = y cos(xy) , fy(x, y) = x cos(xy) ,
fxx(x, y) = ´y2 sin(xy) , fxy(x, y) = cos(xy) ´ xy sin(xy) , fyy(x, y) = ´x2 sin(xy) ,
fxxx(x, y) = ´y3 cos(xy) , fxxy(x, y) = ´2y sin(xy) ´ xy2 cos(xy) ,
fxyy(x, y) = ´2x sin(xy) ´ x2y cos(xy) , fyyy(x, y) = ´x3 cos(xy) .

Therefore, the only non-vanishing term, when plugging (x, y) = (0, 0), is fxy(0, 0) = 1; thus

P3(x, y) =
1

2!
¨ 2fxy(0, 0)(x ´ 0)(y ´ 0) = xy .



Example 13.43. Find the second Taylor polynomial for the function f(x, y) = exp(x2+2y)

centered at (0, 0).
We compute the first and the second partial derivatives of f as follows:

fx(x, y) = 2x exp(x2 + 2y) , fy(x, y) = 2 exp(x2 + 2y) ,

fxx(x, y) = (2 + 4x2) exp(x2 + 2y) , fxy(x, y) = 4x exp(x2 + 2y) ,

fyy(x, y) = 4 exp(x2 + 2y) .

Therefore, fx(0, 0) = fxy(0, 0) = 0, fy(0, 0) = fxx(0, 0) = 2, fyy(0, 0) = 4; thus

P2(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
1

2!

[
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
]

= 1 + 2y + x2 + 2y2 .

‚ Implicit partial differentiation

In Section 2.4 we have talked about finding derivatives of a function y = f(x) which is defined
implicitly by F (x, y) = 0 (when F is giving explicitly). Now suppose that z = F (x, y) is a
differentiable function and the relation F (x, y) = 0 defines a differentiable function y = f(x)

implicitly (so that F (x, f(x)) = 0). By the chain rule,

0 =
d

dx
F (x, f(x)) = Fx(x, f(x)) + Fy(x, f(x))f

1(x)

which implies that

f 1(x) = ´
Fx(x, f(x))

Fy(x, f(x))
if Fy(x, f(x)) ‰ 0 .

Since f is in general unknown (but exists), we usually write the identity above as

dy

dx
= ´

Fx(x, y)

Fy(x, y)
if F (x, y) = 0 and Fy(x, y) ‰ 0 .

In fact, when Fx and Fy are continuous in an open region R, and F (a, b) = 0 and Fy(a, b) ‰ 0

at some point (a, b) P R, the relation F (x, y) = 0 defines a function y = f(x) implicitly near
(a, b) and f is continuously differentiable near x = a. This is the Implicit Function Theorem
and the precise statement is stated as follows.



Theorem 13.44: Implicit Function Theorem (Special case)

Let R Ď R2 be an open region in the plane, and F : R Ñ R be a function of
two variables such that Fx and Fy are continuous in a neighborhood of (a, b) P R.
If F (a, b) = 0 and Fy(a, b) = 0, then there exists δ ą 0 and a unique function
f : (a´ δ, a+ δ) Ñ R satisfying F (x, f(x)) = 0 for all x P (a´ δ, a+ δ), and b = f(a).
Moreover, f is differentiable on (a ´ δ, a+ δ), and

f 1(x) = ´
Fx(x, f(x))

Fy(x, f(x))
@x P (a ´ δ, a+ δ) .

In general, if F is a function of n variables (x1, x2, ¨ ¨ ¨ , xn) such that Fx1 , Fx2 , ¨ ¨ ¨ ,
Fxn are continuous in a neighborhood of (a1, a2, ¨ ¨ ¨ , an. If F (a1, a2, ¨ ¨ ¨ , an) = 0

and Fxn(a1, a2, ¨ ¨ ¨ , an) ‰ 0, then locally there exists a unique function f satisfying
F (x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1)) = 0 and an = f(a1, ¨ ¨ ¨ , an´1). Moreover, for 1 ď

j ď n ´ 1,
Bf

Bxj
(x1, ¨ ¨ ¨ , xn´1) = ´

Fxj
(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))

Fxn(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))
.

Example 13.45. Find dy

dx
if (x, y) satisfies y3 + y2 ´ 5y ´ x2 + 4 = 0.

Let F (x, y) = y3 + y2 ´ 5y ´ x2 + 4. Then Fx(x, y) = ´2x and Fy(x, y) = 3y2 + 2y ´ 5.
Therefore,

dy

dx
= ´

Fx(x, y)

Fy(x, y)
=

2x

3y2 + 2y ´ 5
.

Example 13.46. Find Bz

Bx
and Bz

By
if (x, y, z) satisfies 3x2z ´ x2y2 + 2z3 + 3yz ´ 5 = 0.

Let F (x, y, z) = 3x2z´x2y2+2z3+3yz´5. Then Fx(x, y, z) = 6xz´2xy2, Fy(x, y, z) =

´2x2y + 3z and Fz(x, y, z) = 3x2 + 6z2 + 3y. Therefore,

Bz

Bx
= ´

Fx(x, y, z)

Fz(x, y, z)
=

2xy2 ´ 6xz

3x2 + 6z2 + 3y

and
Bz

By
= ´

Fy(x, y, z)

Fz(x, y, z)
=

2x2y ´ 3z

3x2 + 6z2 + 3y
.



13.6 Directional Derivatives and Gradients
Let f be a function of two variables. From the discussion above we know that the existence
of fx and fy does not guarantee the differentiability of f . Since fx and fy are the rate of
change of the function f in two special directions (1, 0) and (0, 1), we can ask ourselves
whether f is differentiable if the rate of change of f exist in all direction.
Definition 13.47

Let f be a function of two variables x and y, and let u = cos θ i+sin θ j, where i = (1, 0)

and j = (0, 1), be a unit vector. The directional derivative of f in the direction of u
at (a, b), denoted by Duf(a, b), is the limit

Duf(a, b) = lim
hÑ0

f(a+ h cos θ, b+ h sin θ) ´ f(a, b)

h

provided this limit exists.

Example 13.48. Find the direction derivative of f(x, y) = x2 sin 2y at
(
1,

π

2

)
in the direc-

tion of v = 3i ´ 4 j.
We first normalize the vector v and find that u =

3

5
i ´

4

5
j is in the same direction of v

and has unit length. Therefore, for h ‰ 0,

f
(
1 +

3h

5
,
π

2
´

4h

5

)
´ f

(
1,

π

2

)
h

=
(1 +

3h

5
)2 sin

(
π ´

8h

5

)
´ 12 sin π

h
=

(
1 +

3h

5

)2 sin 8h

5

h
;

thus by the fact that lim
hÑ0

sinh

h
= 1, we find that

lim
hÑ0

f
(
1 +

3h

5
,
π

2
´

4h

5

)
´ f

(
1,

π

2

)
h

= lim
hÑ0

(
1 +

3h

5

)2 sin 8h

5

h
=

8

5
.

Theorem 13.49
Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. If f is differentiable at (x0, y0) P R, then for all unit vector v = cos θ i+sin θ j,

(Duf)(x0, y0) = fx(x0, y0) cos θ + fy(x0, y0) sin θ = (Df)(x0, y0) ¨ u .

Proof. Let g(t) = f(x0 + t cos θ, y0 + t sin θ). Then by the chain rule for functions of two
variables,



(Duf)(x0, y0) = lim
hÑ0

g(h) ´ g(0)

h
= g 1(0) = fx(x0, y0) cos θ + fy(x0, y0) sin θ .

Example 13.50. In this example we re-compute of the direction derivative in Example 13.48
using Theorem 13.49. Note that f(x, y) = x2 sin 2y is differentiable on R2 since fx(x, y) =

2x sin 2y and fy(x, y) = 2x2 cos 2y are continuous (so that Theorem 13.35) guarantees the
differentiability of f). Therefore, Theorem 13.49 implies that

(Duf)
(
1,

π

2

)
=

3

5
fx
(
1,

π

2

)
´

4

5
fy
(
1,

π

2

)
=

3

5
¨ 2 ¨ sinπ ´

4

5
¨ 2 ¨ 12 ¨ cos π =

8

5
.

Unfortunately, the existence of directional derivative of f in all directions does not imply
the differentiability of f .

Example 13.51. Let f : R2 Ñ R be given by

f(x, y) =

$

&

%

xy2

x2 + y4
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and u = (cos θ, sin θ) P R2 be a unit vector. Then if cos θ ‰ 0
(
or equivalently, θ ‰

π

2
,
3π

2

)
,

(Duf)(0, 0) = lim
hÑ0

f(h cos θ, h sin θ) ´ f(0, 0)

h
= lim

tÑ0

h3 cos θ sin θ2

h(h2 cos θ2 + h4 sin θ4)
=

sin θ2

cos θ
while if cos θ = 0,

(Duf)(0, 0) = lim
hÑ0

f(h cos θ, h sin θ) ´ f(0, 0)

h
= 0 .

Therefore, the directional derivative of f at (0, 0) exist in all directions. However, f is not
continuous at (0, 0) since if (x, y) approaches (0, 0) along the curve x = my2 with m ‰ 0,
we have

lim
(x,y)Ñ(0,0)

x=my2

f(x, y) = lim
yÑ0

f(my2, y) = lim
yÑ0

my4

m2y4 + y4
=

m

m2 + 1

which depends on m. Therefore, f is not continuous at (0, 0).

Definition 13.52
Let z = f(x, y) be a function of x and y such that fx(a, b) and fy(a, b) exists. Then
the gradient of f at (a, b), denoted by (∇f)(a, b) or (gradf)(a, b), is the vector
(fx(a, b), fy(a, b)); that is,

(∇f)(a, b) =
(
fx(a, b), fy(a, b)

)
= fx(a, b)i + fy(a, b) j .



‚ Functions of several variables
Definition 13.53

Let f be a function of n variables. The directional derivative of f at (a1, a2, ¨ ¨ ¨ , an)

in the direction u = (u1, u2, ¨ ¨ ¨ , un), where u2
1 + u2

2 + ¨ ¨ ¨ + u2
n = 1, is the limit

(Duf)(a1, a2, ¨ ¨ ¨ , an) = lim
hÑ0

f(a1 + hu1, a2 + hu2, ¨ ¨ ¨ , an + hun) ´ f(a1, a2, ¨ ¨ ¨ , an)

h

provided that the limit exists. The gradient of f at (a1, a2, ¨ ¨ ¨ , an), denoted by
(∇f)(a1, a2, ¨ ¨ ¨ , an), is the vector

(∇f)(a1, a2, ¨ ¨ ¨ , an) =
(
fx1(a1, ¨ ¨ ¨ , an), fx2(a1, ¨ ¨ ¨ , an), ¨ ¨ ¨ , fxn(a1, ¨ ¨ ¨ , an)

)
.

Theorem 13.54
Let f be a function of n variables. If f is differentiable at (a1, a2, ¨ ¨ ¨ , an) and u =

(u1, u2, ¨ ¨ ¨ , un) is a unit vector, then

(Duf)(a1, a2, ¨ ¨ ¨ , an) = (∇f)(a1, ¨ ¨ ¨ , an) ¨ u .

‚ Properties of the gradient

Theorem 13.55
Let f be a function of two variables. If f has continuous first partial derivatives
fx and fy in a neighborhood of (x0, y0) and (∇f)(x0, y0) ‰ 0, then (∇f)(x0, y0) is
perpendicular/normal to the level curve f(x, y) = f(x0, y0) at (x0, y0). Moreover,

the value of f at (x0, y0) increase most rapidly in the direction (∇f)(x0, y0)

}(∇f)(x0, y0)}
and

decreases most rapidly in the direction ´
(∇f)(x0, y0)

}(∇f)(x0, y0)}
, where } ¨ } denotes the length

of the vector.

Remark 13.56. 1. Let f : (a, b) Ñ R be differentiable. The graph of the function y =

f(x) can be view as the level set F (x, y) = y ´ f(x) through point (c, f(c)) (that
is, F (x, y) = F (c, f(c))). We note that at the slope of the tangent line (c, f(c)) if
f 1(c) (so that (1, f 1(c)) is a tangent vector at (c, f(c))); thus the vector (´f 1(c), 1)

is perpendicular to the graph of f at (c, f(c)). The theorem above generalizes this
result.



2. The terminology “the value of f at (x0, y0) increase most rapidly in the direction u”,
where u is a unit vector, means that the directional derivative (Dvf)(x0, y0), treated
as a function of v, attains its maximum at v = u.

Example 13.57. Let f(x, y) =
x2

a2
+

y2

b2
. Then the level curve f(x, y) = 1 is an ellipse and

the normal vector of this level curve at point (a cos θ, b sin θ) is given by(
fx(a cos θ, b sin θ), fy(a cos θ, b sin θ)

)
=

(2 cos θ
a

,
2 sin θ

b

)
.

Example 13.58. A heat-seeking particle is located at the point (2,´3) on a metal plate
whose temperature at (x, y) is T (x, y) = 20 ´ 4x2 ´ y2. Find the path of the particle as it
continuously moves in the direction of maximum temperature increase.

Suppose the path of the particle is given by (x(t), y(t)). Then

(x 1(t), y 1(t))// (∇T )(x(t), y(t)) =
(

´ 8x(t),´2y(t)
)
.

Therefore, there exists a function k(t) such that ´8x = k
dx

dt
and ´ 2y = k

dy

dt
; thus

d

dt

(
ln |x| ´ 4 ln |y|

)
= 0 .

Then |x||y|´4 = C. Since (x(t), y(t)) passes through (2,´3), we find that C =
2

81
; thus

(x, y) satisfies x =
2

81
y4.

Theorem 13.59
Let f be a function of three variables. If f has continuous first partial deriva-
tives fx, fy, fz in a neighborhood of (x0, y0, z0) and (∇f)(x0, y0, z0) ‰ 0, then
(∇f)(x0, y0, z0) is perpendicular/normal to the level surface f(x, y, z) = f(x0, y0, z0)

at (x0, y0, z0). Moreover, the value of f at (x0, y0, z0) increase most rapidly in the direc-

tion (∇f)(x0, y0, z0)

}(∇f)(x0, y0, z0)}
and decreases most rapidly in the direction ´

(∇f)(x0, y0, z0)

}(∇f)(x0, y0, z0)}
,

where } ¨ } denotes the length of the vector.

Proof. We have shown that (∇F )(x0, y0, z0) is perpendicular to the level surface F (x, y, z) =

F (x0, y0, z0) in Theorem 13.63, so it suffices to show that (DvF )(x0, y0, z0) attains its maxi-
mum at v = u. Nevertheless, by Theorem 13.54, we find that

(DvF )(x0, y0, z0) = (∇F )(x0, y0, z0) ¨ v = }(∇F )(x0, y0, z0)} cos θ ,



where θ is the angle between (∇F )(x0, y0, z0) and v. Clearly (DvF )(x0, y0, z0) attains its
maximum when θ = 0 which shows that (DvF )(x0, y0, z0) attains its maximum at v =

(∇F )(x0, y0, z0)

}(∇F )(x0, y0, z0)}
.

Example 13.60 (Gradient method of finding local minimum of a function). Suppose that
you are looking for the minimum of a function f : R2 Ñ R. You do not know where the
minimum point of f is, so you start with (conjecturing a possible) point (a, b) and hope to
find a curve C that connects (a, b) and the minimum point. Suppose that C is parameterized
by r : [a, b] Ñ R2. By the fact that ´(∇f)(x) points to the direction to which f decreases
most rapidly, we expected that

r 1(t) // ´(∇f)(r(t)) .

In particular, we choose r 1(t) = ´(∇f)(r(t)) and hope that we can find r (so that we can

find C). We note that we can also choose r 1(t) = ´
(∇f)(r(t))

}(∇f)(r(t))} which implies that r 1 never

vanishes so that the tangent direction indeed points to the direction ´(∇f)(r(t)).
Sometimes it is very hard to find the solution r to the differential equationt, so instead

we choose a different strategy. Starting at the point (a, b), we move forward in the direction
´(∇f)(a, b) and stop temporally at (a1, b1) ” (a, b) ´ t0(∇f)(a, b) for some t ą 0. Then
we move forward in the direction ´(∇f)(a1, b1) and stop temporally at (a2, b2) ” (a1, b1) ´

t1(∇)(a1, b1). Continue this process, we obtain a sequence of stops t(ak, bk)u
8
k=1 given by

(ak+1, bk+1) = (ak, bk) ´ tk(∇f)(ak, bk) (13.6.1)

for some sequence ttku8
k=0 of non-negative numbers to be chosen. One way of choosing the

step-size tk, called the method of exact line search, is to choose tk so that

f
(
(ak, bk) ´ tk(∇f)(ak, bk)

)
= min

tą0
f
(
(ak, bk) ´ t(∇f)(ak, bk)

)
.

Such tk must satisfy that
d

dt

ˇ

ˇ

ˇ

t=tk
f
(
(ak, bk) ´ t(∇f)(ak, bk)

)
= 0

which implies that tk satisfies that (∇f)
(
(ak, bk)´ tk(∇f)(ak, bk)) ¨ (∇f)(ak, bk) = 0. There-

fore, (13.6.1) implies that

(∇f)(ak+1, bk+1) ¨ (∇f)(ak, bk) = 0 @ k P N Y t0u

which shows that the exact line search algorithm of constructing minimizing sequence pro-
duces a zigzag path connecting the starting point and the minimum point.



13.7 Tangent Planes and Normal Lines
‚ The tangent plane of surfaces

Any three points in space that are not collinear defines a plane. Suppose that S is a
“surface” (which we have not define yet, but please use the common sense to think about
it), and P0 = (x0, y0, z0) is a point on the plane. Given another two point P1 = (x1, y1, z1)

and P2 = (x2, y2, z2) on the surface such that P0, P1, P2 are not collinear, let TP1P2 denote
the plane determined by P0, P1 and P2. If the plane “approaches” a certain plane as P1, P2

approaches P0, the “limit” is called the tangent plane of S at P0.
Now suppose that the surface S is the graph of a function of two variables z = f(x, y).

Consider the tangent plane of S at P0 = (x0, y0, z0), where z0 = f(x0, y0). The plane TP1P2 ,
where P1 = (x0 + h, y0, f(x0 + h, y0)) and P2 = (x0, y0 + k, f(x0, y0 + k)), is given by[(
h, 0, f(x0+h, y0)´f(x0, y0)

)
ˆ
(
0, k, f(x0, y0+k)´f(x0, y0)

)]
¨ (x´x0, y´y0, z´z0) = 0 ,

where u ¨ v and u ˆ v are the inner product and the cross product of u and v, respectively.
For (h, k) ‰ (0, 0), divide both sides by hk and pass to the limit as (h, k) Ñ (0, 0), we find
that the limit is[(

1, 0, fx(x0, y0)
)

ˆ
(
0, 1, fy(x0, y0)

)]
¨ (x ´ x0, y ´ y0, z ´ z0) = 0 ,

provided that fx(x0, y0) and fy(x0, y0) exists. Computing the cross product, we find that(
1, 0, fx(x0, y0)

)
ˆ
(
0, 1, fy(x0, y0)

)
=

(
´fx(x0, y0),´fy(x0, y0), 1

)
;

thus if the tangent plane exists at (x0, y0, z0), the tangent plane must be(
´fx(x0, y0),´fy(x0, y0), 1

)
¨
(
x ´ x0, y ´ y0, z ´ f(x0, y0)

)
= 0

or equivalently,

z = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0) .

On the other hand, if f is differentiable at (x0, y0), then

f(x, y) = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0)

+ ε1(x, y)(x ´ x0) + ε2(x, y)(y ´ y0)



for some functions ε1, ε2 satisfying lim
(x,y)Ñ(x0,y0)

ε1(x, y) = lim
(x,y)Ñ(x0,y0)

ε2(x, y) = 0. This shows
that the rate of convergence of the quantity

ˇ

ˇf(x, y) ´ f(x0, y0) ´ fx(x0, y0)(x ´ x0) ´ fy(x0, y0)(y ´ y0)
ˇ

ˇ ,

as (x, y) approaches (x0, y0), is “faster than linear” and this is exactly what we have in mind
when talking about tangent planes. Therefore, we conclude that
Theorem 13.61

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two

variables. If f is differentiable at (x0, y0) P R, the tangent plane of the graph of f at
(x0, y0, f(x0, y0)) is given by

z = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0) ,

and the vector (fx(x0, y0), fy(x0, y0),´1) is a normal vector to the graph of f at
(x0, y0, f(x0, y0)).

Example 13.62. Find the equation of the normal line to the surface xyz = 12 at the point
(2,´2,´3).

Let F (x, y, z) = xyz ´ 12. Then (Fx, Fy, Fz)(2,´2,´3) = (6,´6,´4). Therefore, the
vector (6,´6,´4) is normal to the surface xyz = 12 at (2,´2,´3) and the normal line
passing through (2,´2,´3) is

x ´ 2

6
=

y + 2

´6
=

z + 3

´4
.

Now suppose that the function of three variables w = F (x, y, z) is continuously differen-
tiable; that is, Fx, Fy, Fz are continuous. Suppose that for some (x0, y0, z0) in the domain,
(Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)) ‰ 0. W.L.O.G., we assume that Fz(x0, y0, z0) ‰

0. Then the Implicit Function Theorem (Theorem 13.44) implies that there exists a unique
differentiable function z = f(x, y) such that

F (x, y, f(x, y)) = 0 and z0 = f(x0, y0) .

By the discussion above, the tangent plane of the graph of f at (x0, y0, z0) is given by

z = z0 + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0)



and the implicit partial differentiation further shows that the tangent plane above can be
rewritten as

z = z0 ´
Fx(x0, y0, z0)

Fz(x0, y0, z0)
(x ´ x0) ´

Fy(x0, y0, z0)

Fz(x0, y0, z0)
(y ´ y0) .

Therefore, the tangent plane of the graph of f at (x0, y0, z0) is given by

(
Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)

)
¨ (x ´ x0, y ´ y0, z ´ z0) = 0 .

On the other hand, note that the graph of f is the same as the level surface F (x, y, z) =

F (x0, y0, z0); thus we conclude that
Theorem 13.63

Let w = F (x, y, z) be a function of three variables such that Fx, Fy and Fz are
continuous. If

(
Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)

)
‰ 0, then the tangent plane

of the level surface F (x, y, z) = F (x0, y0, z0) at (x0, y0, z0) is given by(
Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)

)
¨ (x ´ x0, y ´ y0, z ´ z0) = 0 ,

and the vector
(
Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)

)
is a normal vector to the

level surface F (x, y, z) = F (x0, y0, z0).

Example 13.64. Find an equation of the normal line and the tangent plane to the paraboloid

z = 1 ´
1

10
(x2 + 4y2)

at the point
(
1, 1,

1

2

)
.

Let F (x, y, z) = z ´ 1 +
1

10
(x2 + 4y2). Then Fz

(
1, 1,

1

2

)
”

(1
5
,
4

5
, 1
)

‰ 0; thus Theorem

13.63 implies that the tangent plane of the given paraboloid at
(
1, 1,

1

2

)
is

z =
1

2
´

1

5
(x ´ 1) ´

4

5
(y ´ 1) =

3

2
´

1

5
x ´

4

5
y .

An equation of the normal line at
(
1, 1,

1

2

)
is given by

x ´ 1

1/5
=

y ´ 1

4/5
=

z ´ 1/2

1
.



13.8 Extrema of Functions of Several Variables

13.8.1 Absolute extrema and relative extrema

Theorem 13.65: Extreme Value Theorem
Let f be a continuous function of two variables x and y defined on a closed bounded
region R in the plane.

1. There is at least one point in R at which f takes on a minimum value.

2. There is at least one point in R at which f takes on a maximum value.

A minimum is also called an absolute minimum and a maximum is also called an absolute
maximum. As in the case of functions of one variable, there are relative extrema defined as
follows.

Definition 13.66: Relative Extrema
Let f be a function defined on a region R containing (x0, y0).

1. The function f has a relative minimum at (x0, y0) if f(x, y) ě f(x0, y0) for all
(x, y) in an open disk containing (x0, y0).

2. The function f has a relative maximum at (x0, y0) if f(x, y) ď f(x0, y0) for all
(x, y) in an open disk containing (x0, y0).

Similar to the critical points for functions of one variable defined in Definition 3.4,we
have the following

Definition 13.67: Critical Points
Let f be defined on an open region R containing (x0, y0). The point (x0, y0) is a
critical point of f if one of the following is true.

1. fx(x0, y0) = 0 and fy(x0, y0) = 0;

2. fx(x0, y0) or fy(x0, y0) does not exist.

Similar to Theorem 3.5, we have the following necessary condition for points where f

attains its relative extrema.



Theorem 13.68
Let R be an open region in the plane, and f : R Ñ R be continuous. If f has a
relative extremum at (x0, y0) on an open region R, then (x0, y0) is a critical point of
f .

Example 13.69. Determine the relative extrema of the function

f(x, y) = ´x3 + 4xy ´ 2y2 + 1 .

First we find the critical points of f . Since f is differentiable, the critical points are
those points at which the gradient of f is the zero vector. Since fx(x, y) = ´3x2 + 4y and
fy(x, y) = 4x´ 4y, if (a, b) is a critical point of f , then ´3a2 +4b = 4a´ 4b = 0. Therefore,
(0, 0) and

(4
3
,
4

3

)
are the only critical points of f .

Note that (0, 0) is not a relative extremum of f since f(x, 0) does not attain its extremum
at x = 0. Near

(4
3
,
4

3

)
, we find that if |h|, |k| ! 1,

f
(4
3
+ h,

4

3
+ k

)
= ´

(
h+

4

3

)3
+ 4

(4
3
+ h

)(4
3
+ k

)
´ 2

(
k +

4

3

)2
+ 1

= ´h3 ´ 4h2 ´
16h

3
´

64

27
+ 4

(16
9

+
4

3
h+

4

3
k + hk

)
´ 2

(
k2 +

8

3
k +

16

9

)
+ 1

= ´h3 ´ 4h2 + 4hk ´ 2k2 + f
(4
3
,
4

3

)
= f

(4
3
,
4

3

)
´ 2(k ´ h)2 ´ h2(2 + h) ď f

(4
3
,
4

3

)
.

Therefore, f has a relative maximum at
(4
3
,
4

3

)
.

13.8.2 The second partials test

A critical point of a function of two variables do not always yield relative maxima or minima.

Definition 13.70
Let f be a function of two variables. A point (x0, y0) is a saddle point of f if (x0, y0)

is a critical point of f but f does not attain its extrema at (x0, y0).



Theorem 13.71
Suppose that a function f of two variables has continuous second partial derivatives
on an open region containing a point (a, b) for which fx(a, b) = fy(a, b) = 0. Let

D = fxx(a, b)fyy(a, b) ´ fxy(a, b)
2 =

ˇ

ˇ

ˇ

ˇ

fxx(a, b) fxy(a, b)

fyx(a, b) fyy(a, b)

ˇ

ˇ

ˇ

ˇ

.

1. If D ą 0 and fxx(a, b) ą 0, then f has a relative minimum at (a, b).

2. If D ą 0 and fxx(a, b) ă 0, then f has a relative maximum at (a, b).

3. If D ă 0, then (a, b, f(a, b)) is a saddle point.

4. The test is inconclusive if D = 0.

Example 13.72. Consider the relative extrema of the function given in Example 13.69.
We have computed that (0, 0) and

(4
3
,
4

3

)
are the only critical points of f .

1. The point (0, 0): we compute the second partial derivatives and obtain that

fxx(0, 0) = 0 , fxy(0, 0) = 4 and fyy(0, 0) = ´4 .

Therefore, D = ´16 ă 0 which implies that (0, 0) is a saddle point.

2. The point
(4
3
,
4

3

)
: we compute the second partial derivatives and obtain that

fxx
(4
3
,
4

3

)
= ´8 , fxy

(4
3
,
4

3

)
= 4 and fyy

(4
3
,
4

3

)
= ´4 .

Therefore, D = 16 ą 0. Since fxx
(4
3
,
4

3

)
ă 0, f has a relative maximum at

(4
3
,
4

3

)
.

Example 13.73. Find the absolute extrema of the function f(x, y) = sin(xy) on the closed
region given by 0 ď x ď π and 0 ď y ď 1.

From the partial derivatives

fx(x, y) = y cos(xy) and fy(x, y) = x cos(xy) ,

we find that each point on the hyperbola xy =
π

2
is a critical point of f . The value of f at

each of these points is sin π

2
= 1 which is the maximum of the sine function. Therefore, the

maximum of f is 1.
The minimum of f occurs at the boundary of the region.



1. x = 0 and 0 ď y ď 1: then f(x, y) = 0.

2. x = π and 0 ď y ď 1: then f(x, y) = sin(πy). The critical points of the function
g(y) = sin(πy) occurs at y =

1

2
since g 1

(1
2

)
= π cos

(π
2

)
= 0. Since g

(1
2

)
= 1 and

g(0) = g(1) = 0, we find that the minimum of g is 0.

3. y = 0 and 0 ď x ď π: then f(x, y) = 0.

4. y = 1 and 0 ď x ď π: then f(x, y) = sinx whose minimum on [0, π] is 0.

Therefore, the minimum of f is 0.

The concepts of relative extrema and critical points can be extended to functions of three
or more variables. On the other hand, the second derivative test for functions of three or
more variables are more tricky, and we will not talk about this until the course of Advance
Calculus.

13.9 Applications of Extrema
Theorem 13.74

The least squares regression line for n points
␣

(x1, y1), (x2, y2), ¨ ¨ ¨ , (xn, yn)
(

is given
by y = ax+ b, where

a =

n
n
ř

i=1

xiyi ´

( n
ř

i=1

xi

)( n
ř

i=1

yi

)
n

n
ř

i=1

x2
i ´

( n
ř

i=1

xi

)2
and b =

1

n

( n
ÿ

i=1

yi ´ a
n
ÿ

i=1

xi

)
. (13.9.1)

Proof. For a, b P R, define S(a, b) =
n
ř

i=1

(axi + b ´ yi)
2. Then

BS

Ba
(a, b) = 2

n
ÿ

i=1

(axi + b ´ yi)xi ,

BS

Bb
(a, b) = 2

n
ÿ

i=1

(axi + b ´ yi) .



The critical points (a, b) of S satisfies

a
n
ÿ

i=1

x2
i + b

n
ÿ

i=1

xi =
n
ÿ

i=1

xiyi , (13.9.2a)

a
n
ÿ

i=1

xi + b
n
ÿ

i=1

1 =
n
ÿ

i=1

yi (13.9.2b)

which implies that (a, b) are given by (13.9.1). Clearly such (a, b) minimizes S.

Remark 13.75. An easy way to memorize the equations (a, b) satisfies is given in this
remark. We assume (even though in general it is a false assumption) that the line y = ax+b

passes through (x1, y1), (x2, y2), ¨ ¨ ¨ , (xn, yn). Then yi = axi + b for all 1 ď i ď n; thus in
matrix form, we have 

x1 1
x2 1
... ...
xn 1


[
a
b

]
=


y1 1
y2 1
... ...
yn 1

 .

Therefore,

[
x1 x2 ¨ ¨ ¨ xn

1 1 ¨ ¨ ¨ 1

]
x1 1
x2 1
... ...
xn 1


[
a
b

]
=

[
x1 x2 ¨ ¨ ¨ xn

1 1 ¨ ¨ ¨ 1

]
y1 1
y2 1
... ...
yn 1


which implies (13.9.2).

13.10 Lagrange Multipliers

The concept of this section is to find the extrema of a function of several variables subject
to certain constraints:

Find extrema of the function w = f(x1, x2, ¨ ¨ ¨ , xn) when (x1, x2, ¨ ¨ ¨ , xn) satisfies
g1(x1, ¨ ¨ ¨ , xn) = g2(x1, ¨ ¨ ¨ , xn) = ¨ ¨ ¨ = gm(x1, ¨ ¨ ¨ , xn) = 0.



Theorem 13.76: Lagrange Multiplier Theorem
Let f and g be continuously differentiable functions of two variables. Suppose that
on the level curve g(x, y) = c the function f attains its extrema at (x0, y0). If
(∇g)(x0, y0) ‰ 0, then there is a real value λ such that

(∇f)(x0, y0) = λ(∇g)(x0, y0) .

Proof. First we note that (x0, y0) is on the level curve g(x, y) = c; thus c = g(x0, y0).
Define F (x, y) = g(x, y)´ g(x0, y0). Then F has continuous first partial derivatives, and

(∇F )(x0, y0) = (∇g)(x0, y0) ‰ 0. Then either Fx(x0, y0) ‰ 0 or Fy(x0, y0) ‰ 0. Suppose
that Fy(x0, y0) ‰ 0. Then the Implicit Function Theorem implies that there exists δ ą 0 a
unique differentiable function h : (x0 ´ δ, x0 + δ) Ñ R such that

F (x, h(x)) = 0 and y0 = h(x0) .

In other words, the set
␣

(x, h(x))
ˇ

ˇx0´δ ă x ă x0+δ
(

is a subset of the level curve g(x, y) =
g(x0, y0). Therefore, the function G : (x0 ´ δ, x0 + δ) Ñ R defined by G(x) = f(x, h(x))

attains its extrema at (an interior point) x0; thus

G 1(x0) = fx(x0, y0) + fy(x0, y0)h
1(x0) = 0 .

Since the implicit differentiation shows that

h 1(x0) = ´
Fx(x0, h(x0))

Fy(x0, h(x0))
= ´

gx(x0, y0)

gy(x0, y0)
,

we conclude that
fx(x0, y0) ´ fy(x0, y0)

gx(x0, y0)

gy(x0, y0)
= 0 .

If fy(x0, y0) = 0, then fx(x0, y0) = 0 which implies that (∇f)(x0, y0) = 0 = 0 ¨ (∇g)(x0, y0).
If fy(x0, y0) ‰ 0, then

fx(x0, y0)

fy(x0, y0)
=

gx(x0, y0)

gy(x0, y0)

which implies that (∇f)(x0, y0)// (∇g)(x0, y0); thus there exists λ such that

(∇f)(x0, y0) = λ(∇g)(x0, y0) .

Similar argument can be applied to the case Fx(x0, y0) ‰ 0, and we omit the proof for
this case.



Remark 13.77. The scalar λ in the theorem above is called a Lagrange multiplier.

Example 13.78. Find the extreme value of f(x, y) = 4xy subject to the constraint

x2

9
+

y2

16
= 1 .

Let g(x, y) =
x2

9
+

y2

16
´ 1. Suppose that on the level curve g(x, y) = 0 the function

f attains its extrema at (x0, y0). Note that then (∇g)(x0, y0) ‰ 0 (since (x0, y0) ‰ (0, 0));
thus the Lagrange Multiplier Theorem implies that there exists λ P R such that

(4y0, 4x0) = (∇f)(x0, y0) = λ(∇g)(x0, y0) = λ
(2x0

9
,
y0
8

)
.

Therefore, (x0, y0) satisfies 4y0 =
2λx0
9

and 4x0 =
λy0
8

, as well as x20
9

+
y20
16

= 1. Therefore,
λ ‰ 0, and

4x0 =
λy0
8

=
λ

8
¨
λx0

18
=

λ2x0

144
.

The identity above implies that x0 = 0 or λ = ˘24.

1. If x0 = 0, then y0 = ˘4 which shows that λ = 0, a contradiction.

2. If λ = ˘24, then x0 = ˘
3y0
4

; thus

1 =
1

9
¨
9y20
16

+
y20
16

=
y20
8
.

Therefore, y0 = ˘2
?
2 which implies that x0 = ˘

3
?
2

2
. At these (x0, y0), f(x0, y0) =

˘24. Therefore, on the ellipse x2

9
+

y2

16
= 1 the maximum of f is 24

(
at (x0, y0) =(

˘ 2
?
2,˘

3
?
2

2

))
and the minimum of f is ´24

(
at (x0, y0) =

(
˘ 2

?
2,¯

3
?
2

2

))
.

Example 13.79. Find the extreme value of f(x, y) = 4xy, where x ą 0 and y ą 0, subject

to the constraint x2

9
+

y2

16
= 1. From the previous example we find that the maximum of

f is 24
(

at (x0, y0) =
(
2
?
2,

3
?
2

2

))
. The minimum of f occurs at the end-points (0, 4) or

(3, 0). In either points, the value of f is 0; thus the minimum of f is 0.



Example 13.80. Find the extreme value of f(x, y) = 4xy, where (x, y) satisfies x2

9
+

y2

16
ď 1.

We have find the extreme value of f , under the constraint x2

9
+

y2

16
= 1, is ˘24. Therefore,

it suffices to consider the extreme value of f in the interior x2

9
+

y2

16
ă 1.

Assume that f attains its extreme value at an interior point (x0, y0). Then (x0, y0) is a
critical point of f ; thus

fx(x0, y0) = fy(x0, y0) = 0

which implies that (x0, y0) = (0, 0). Since f(0, 0) = 0, f(0, 0) is not an extreme value of f .

Therefore, the extreme value of f on the region x2

9
+

y2

16
ď 1 is ˘24.

We note that (0, 0) in fact is a saddle point of f since fxx(0, 0)fyy(0, 0) ´ fxy(0, 0)
2 =

´16 ă 0.

Example 13.81. Find the extreme value of f(x, y) = x2 + 6(y2 + y + 1)2 subject to the
constraint x2 + (y3 ´ 1)2 = 1 (using the method of Lagrange multipliers).

Let g(x, y) = x2 + (y3 ´ 1)2. We first compute the gradient of f and g as follows:

(∇f)(x, y) =
(
2x, 12(2y + 1)(y2 + y + 1)

)
and (∇g)(x, y) =

(
2x, 6y2(y3 ´ 1)

)
.

Assume that f , under the constraint g = 1, attains its extrema at (x0, y0). Then

1. If (∇g)(x0, y0) ‰ 0, then the Lagrange multiplier theorem implies that there exists
λ P R such that(

2x0, 12(2y0 + 1)(y20 + y0 + 1)
)
= λ

(
2x0, 6y

2
0(y

3
0 ´ 1)

)
. (13.10.1)

Therefore, x0(λ ´ 1) = 0 and 2(2y0 + 1) = λy20(y0 ´ 1).

(a) x0 = 0, then g(x0, y0) = 1 implies that y0 =
3
?
2 (y0 = 0 cannot be true because

no λ will verify (13.10.1)); thus f(x0, y0) = 6( 3
?
4 + 3

?
2 + 1)2.

(b) λ = 1, then 4y0 + 2 = y20(y0 ´ 1) or equivalently, y30 ´ y20 ´ 2(2y0 + 1) = 0. Note
that

y30 ´ y20 ´ 4y0 ´ 2 = (y0 + 1)(y20 ´ 2y0 ´ 2) ;

thus y0 = ´1 (impossible since g(x0,´1) ‰ 1) or y0 = 1˘
?
3 (both are impossible

since g(x0, 1 ˘
?
3) ‰ 1).



2. If (∇g)(x0, y0) = 0, then (x0, y0) = (0, 0); thus f(x0, y0) = 1.

Therefore, the maximum of f , under the constraint g = 1, is f(0, 3
?
2) = 6( 3

?
4 + 3

?
2 + 1)2

and the minimum of f , under the constraint g = 1, is f(0, 0) = 1.

Similar argument of proving Theorem 13.76 can be used to show the following
Theorem 13.82

Let f and g be continuously differentiable functions of n variables. Suppose that on
the level curve g(x1, ¨ ¨ ¨ , xn) = c the function f attains its extrema at (a1, ¨ ¨ ¨ , an). If
(∇g)(a1, ¨ ¨ ¨ , an) ‰ 0, then there is a real value λ such that

(∇f)(a1, ¨ ¨ ¨ , an) = λ(∇g)(a1, ¨ ¨ ¨ , an) .

Example 13.83. Find the minimum value of f(x, y, z) = 2x2 + y2 + 3z2 subject to the
constraint 2x ´ 3y ´ 4z = 49.

Let g(x, y, z) = 2x ´ 3y ´ 4z ´ 49. Then (∇g) ‰ 0; thus if f attains its relative extrema
at (x0, y0, z0), there exists λ P R such that (∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0). Therefore,

(4x0, 2y0, 6z0) = λ(2,´3,´4)

or equivalently, λ = 2x0 = ´
2

3
y0 = ´

3

2
z0. Since 2x0 ´ 3y0 ´ 4z0 = 49, we find that λ = 6

which implies that
(x0, y0, z0) = (3,´9,´4) .

Since f grows beyond any bound as
a

x2 + y2 + z2 approaches 8, we find that f(3,´9,´4) =

147 is the minimum of f .

Next, we consider the optimization problem of finding the extreme value of a function
of three variables w = f(x, y, z) subject to two constraints g(x, y, z) = h(x, y, z) = 0.
Theorem 13.84: Lagrange Multiplier Theorem - More General Version

Let f , g and h be continuously differentiable functions of three variables. Suppose
that subject to the constraints g(x, y, z) = h(x, y, z) = c the function f attains its
extrema at (x0, y0, z0). If (∇g)(x0, y0, z0) ˆ (∇h)(x0, y0, z0) ‰ 0, then there are real
numbers λ and µ such that

(∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0) + µ(∇h)(x0, y0, z0) .



Example 13.85. Find the extreme value of the function f(x, y, z) = 20 + 2x + 2y + z2

subject to two constraints x2 + y2 + z2 = 11 and x+ y + z = 3.
Let g(x, y, z) = x2 + y2 + z2 ´ 11 and h(x, y, z) = x + y + z ´ 3. We first note that if

(x, y, z) satisfies g(x, y, z) = h(x, y, z) = 0, then (∇g)(x, y, z)ˆ (∇h)(x, y, z) ‰ 0. Moreover,
f attains its extrema on the intersection of the level surface g(x, y, z) = 0 and h(x, y, z) =

0 (since the intersection is closed and bounded). Suppose that f attains its extrema at
(x0, y0, z0). Then there exists λ, µ P R such that

(∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0) + µ(∇h)(x0, y0, z0) ,

g(x0, y0, z0) = h(x0, y0, z0) = 0 .

Therefore,

2λx0 + µ = 2 , (13.10.2a)
2λy0 + µ = 2 , (13.10.2b)

2(λ ´ 1)z0 + µ = 0 , (13.10.2c)
x2
0 + y20 + z20 = 11 , (13.10.2d)
x0 + y0 + z0 = 3 . (13.10.2e)

(13.10.2a,b) implies that λ(x0 ´ y0) = 0; thus λ = 0 or x0 = y0.

1. If λ = 0, then (13.10.2a) implies µ = 2 and (13.10.2c) implies µ = 2z0. Therefore,
z0 = 1 which further shows x2

0 + y20 = 10 and x0 + y0 = 2. Then (x0, y0) = (3,´1) or
(´1, 3). Therefore, when λ = 0,

(x0, y0, z0) = (3,´1, 1) or (x0, y0, z0) = (´1, 3, 1) .

2. If x0 = y0, then (13.10.2d,e) implies that 2x2
0 + z20 = 11 and 2x0 + z0 = 3. Therefore,

x0 = y0 =
3 ˘ 2

?
3

3
, z0 =

3 ¯ 4
?
3

3
.

Since f(3,´1, 1) = f(´1, 3, 1) = 25 and

f
(3 + 2

?
3

3
,
3 + 2

?
3

3
,
3 ´ 4

?
3

3
) = f

(3 ´ 2
?
3

3
,
3 ´ 2

?
3

3
,
3 + 4

?
3

3
) =

91

3
,

we conclude that the maximum and minimum value of f subject to g = h = 0 are 91

3
and

25, respectively.



Example 13.86. Find the extreme value of f(x, y, z) = z subject to the constraints x4 +

y4 ´ z3 = 0 and y = z.
Let g(x, y, z) = x4 + y4 ´ z3 and h(x, y, z) = y ´ z. Then

(∇g)(x, y, z) = (4x3, 4y3,´3z2) and (∇h)(x, y, z) = (0, 1,´1)

which implies that

(∇g)(x, y, z) ˆ (∇h)(x, y, z) = (3z2 ´ 4y3, 4x3, 4x3) .

Suppose the extreme value of f , under the constraints g = h = 0, occurs at (x0, y0, z0).

1. If (∇g)(x0, y0, z0) ˆ (∇h)(x0, y0, z0) = 0, then (x0, y0, z0) = (0, 0, 0) and f(0, 0, 0) = 0.

2. If (∇g)(x0, y0, z0)ˆ(∇h)(x0, y0, z0) ‰ 0, then the Lagrange Multiplier Theorem implies
that there exist λ, µ P R such that

(∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0) + µ(∇h)(x0, y0, z0) .

Therefore, (x0, y0, z0) satisfies that

4λx3
0 = 0 , (13.10.3a)

4λy30 + µ = 0 , (13.10.3b)
´3λz20 ´ µ = 1 , (13.10.3c)

x4
0 + y40 ´ z30 = 0 , (13.10.3d)

y0 ´ z0 = 0 . (13.10.3e)

Then (13.10.3a) implies that λ = 0 or x0 = 0.

(a) If λ = 0, then (13.10.3b) shows µ = 0; thus using (13.10.3c), we obtain a contra-
diction 0 = ´1. Therefore, λ ‰ 0.

(b) If x0 = 0 (and λ ‰ 0), then (13.10.3d) implies that y40 ´ z30 = 0. Together with
(13.10.3e), we find that y0 = 0 or y0 = 1. However, if y0 = 0, then (13.10.3b)
shows that µ = 0 which again implies a contradiction 0 = 1 from (13.10.3c).
Therefore, y0 = z0 = 1 (and there are λ, µ satisfying (13.10.3b,c) for y0 = z0 = 1

but the values of λ and µ are not important).



Therefore, the Lagrange Multiplier Theorem only provides one possible (x0, y0, z0) =

(0, 1, 1) where f attains its extreme value.

Since the intersection of the level surface g = 0 and h = 0 is closed and bounded, f must
attains its maximum and minimum subject to the constraints g = h = 0. Since (0, 0, 0)

and (0, 1, 1) are the only possible points where f attains its extrema, the maximum and
minimum of f , subject to the constraint g = h = 0, is f(0, 1, 1) = 1 and f(0, 0, 0) = 0,
respectively.
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