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Chapter 14

Multiple Integration

14.1 Double Integrals and Volume

Let R be a closed and bounded region in the plane, and f : R — R be a non-negative

continuous function. We are interested in the volume of the solid in space

D= {(x,y,z)‘(x,y)eR,Oézéf(:r;,y)}.

First we assume that R = [a,b] x [¢,b] = {(z,y)|a <z < b,c <y < d} be a rectangle. Let
Po={a=ap<z1 <2< <z,=bfand Py={c=y <y < - < ymn = d} be
partitions of [a, b] and [c, d], respectively, R;; denote the rectangle [z;_1, x;] x [y;_1,y;], and
{(ai,ﬁj)}KKnKjgm be a collection of points such that «; € [x;—1,2;] and 5; € [y;_1,y;].

XN,

Then as before, we consider an approximation of the volume of D given by
Z Z flai, Bi) (@i — xima) (y; — yj-1) -
i=1j=1

Then the limit of the sum above, as |P,|, |P,| approaches zero, is the volume of D. The

collection of rectangles P = {R;; }1<i<n.1<j<m is called a partition of R.

’ =

i

Figure 14.1: The volume of D can be obtained by making |P.|,||P,| — 0.
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In general, by relabeling the rectangles as Ry, Ra, -+, Ry (thus P = {R |1 < k <
nm}), and letting {(&, nk)}zzl be a collection of point in R such that (&, nx) € Rg, we can

consider an approximation of the volume of the solid given by
> F (&) Ak
k=1

where A;, is the area of the rectangle R;. The sum above is called a Riemann sum of f
for partition P. With |P|, called the norm of P, denoting the maximum length of the
diagonal of Ry; that is,

|P| = max {¢ | ¢4 is the length of the diagonal of Ry,1 <k < nm},

then the volume of D is the “limit”

lim Zf ke, i) A

IP—0

as long as “the limit exists”. Similar to the discussion of the limit of Riemann sums in the
case of functions of one variable, we can remove the restrictions that f is continuous and
non-negative on R and still consider the limit of the Riemann sums. We have the following
Let R = [a,b] x [c,d] be a rectangle in the plane, and f : R — R be a function. f is

said to be Riemann integrable on R if there exists a real number V' such that for every

e > 0, there exists ¢ > 0 such that if P is partition of R satisfying |P| < J, then any
Riemann sums of f for the partition P belongs to the interval (V — e,V +¢). Such

a number V' (is unique if it exists and) is called the Riemann integral or double

integral of f on R and is denoted by fff(x,y) dA or simply f f(z,y)d(z,y).
R
R

How about the case that the base R of the solid is not a closed and bounded rectangle?
In this case we choose 7 > 0 large enough such that R < [—r,r]? = [-r,7] x [-r, 7] and then
for a function f: R — R, define [ : [—r,7]? > R by

~ o [ fle) ifzeR,
f(x)_{ 0 ifz¢R.

We define JJ flx,y)dA as Jf f x,y) dA (when the latter double integral exists).

[—r,r]?



Before proceeding, let us talk about a special class of regions.

Definition 14.2

A region R is said to be have area if the constant function 1 is Riemann integrable on

R. If R has area, then the area of R is defined as the integral Jf 1dA.

The following theorem is an analogy of Theorem 4.10.

Theorem 14.3
Let R be a closed and bounded region in the plane, and f : R — R be a function. If

R has area and f is continuous on R, then f is Riemann integrable on R.

Similar to the properties for integrals of functions of one variable, we have the following

Theorem 14.4: Properties of double integrals

Let R be a closed and bounded region in the plane, f,g : R — R be functions that

are Riemann integrable on R, and ¢ be a real number.

1. ¢f is Riemann integrable on R, and

|[enemar=c|[ s aa

2. f £ g are Riemann integrable on R, and

H(f +g)(z,y)dA = J f(z,y)dA £ Ug(m,y) dA

3. If f(x,y) = g(x,y) for all (z,y) € R, then

f flz,y)d >g9(9€,y)dz4

4. |f| is Riemann integrable, and

‘Hf(x,y)dA‘ <J f(z,y)|dA.




Definition 14.5

Two bounded regions R; and Ry in the plane are said to be non-overlapping if Ry N R»

has zero area.

Theorem 14.6

Let Ry and R, be non-overlapping regions in the plane, R = Ry U Ry, and f: R - R

be such that f is Riemann integrable on R; and Rs. Then f is Riemann integrable

£ff(a:,y)dA= ilff@’y)dAjLLfﬂx’y)dA'

on R and

14.2 The Iterated Integrals and Fubini’s Theorem

Let R be a bounded region with area, and f : R — R be a non-negative continuous function.

As explained in the previous section, the volume of the solid
D ={(z,y,2)|(x,y) € R,0 < 2 < f(x,y)}

is given by fj f(z,y)dA. We are concerned with computing this double integral in this

. R
section.

Recall from Section 7.2 that if D is a solid lies between two planes * = a and x = b
(a < b), and the area of the cross section of D taken perpendicular to the z-axis is A(z),

then
b

the volume of D = J Ax)dzx .

a

Therefore, if the region R is given by
R={(zy)|a<z<bg(r) <y<g)}

for some continuous functions ¢y, g» : [a,b] — R, then the area of the cross section of D

taken perpendicular to the z axis is

g2(x)
Ax) = j f( ) dy

g1(x)



92(z)
f f(z,y) dy) dx. Therefore, in this

b
which shows that the volume of D is given by f (
a ~Jgi(z)

special case we find that

g2 ()

Hf(g;,y) dA = Lb (L() £z, y) dy) dz | (14.2.1)

Similarly, recall that if D lies between y = ¢ and y = d (¢ < d), and the area of the cross
section of D taken perpendicular to the y-axis is A(y), then

d
the volume of D = f A(y) dy;

C

thus similar argument shows that

H fla,y)dA = fd (fi(i) F(z,) dm) dy . (14.2.2)
). "y

c

b 1 1
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Figure 14.2: Finding the volume of D using the method of cross section

g2(x)
We note that in formulas (14.2.1), we have to compute the integral f(z,y)dy
g1(x)
for each fixed z € [a,b] which gives the area of the cross section A(z), then compute the
b
integral f A(x) dx to obtain the volume of D. This way of computing double integrals is

called iterated integrals, and sometime we omit the parentheses and write it as

femaa=[ [ fe g,
- L[

Similarly, the iterated integral appearing in (14.2.2) can also be written as

ﬂ}mwmzfﬂtﬁwwmw.
. 1



The evaluation of the double integral jj f(x,y) dA can be generalized for a more general
R

class of functions, and it is called the Fubini Theorem.

Theorem 14.7: Fubini’s Theorem

Let R be a region in the plane, and f : R — R be continuous (but no necessary

non-negative).

1. If Ris given by R = {(z,y)|a <z < b,g1(z) <y < go(x)}, then

[[#mar={"([ 92(9:) (o) dy) dr

g1 (J»‘

2. If R is given by R = {(z,y) | c<y<d gi(zr) <y<gsr)}, then

[[remar=[(] h(()) (o) dr) dy.

C

Example 14.8. Find the volume of the solid region bounded by the paraboloid z = 4 —
22 — 2y% and the zy-plane. By the definition of double integrals, the volume of this solid is

given by ff (4 — 2% — 2y?) dA, where R is the region {(ZE, Y) ‘x2 +29% < 4}. Writing R as
R

.2 )
Rz{(m,y))—2<$<2,—\/?<y<\/42x}

R={(z,y)| —V2<y<v2,-/1-22 <z <~/4-2y},

the Fubini Theorem then implies that

or

ffu-st-mria= [ ([ o)
R 2

NN ey
£ﬁ<£¢HM

1. Integrating in y first then integrating in x: for fixed x € [—2,2],

(4 — 2% — 2¢%) d:v) dy .



4—22

J 42;2(4—:162—23; dy_fr dy—QJF

VB - - () - 2

[N

Therefore, by the substitution x = 2sinf (so that dx = 2 cos df),

2 212 2
ff —2® —2yh)dA = == V2 ( x2)gdx:\TFJ 8 cos® 0 - 2 cos 0df
5

3 Joo
N2 (3 442 (2
_ 322 V2 [ cos49d9:ﬁj200849d9
3 J— g
_ 64[ : (M) do
3 Jo 2
PE
_ 16v2 e <1+2cos29+1+C—OS49> a9
3 JO 2
16[ 3 T 1 . T
B [5 g o (2g) + goin (1:5)] = 4var.

2. Integrating in z first then integrating in y: for fixed y € [—v/2,v/2],

4292 4292 4292
f (4—x2—2y2)dxzf (4 —2y)dx—f 2? dw

4292 4—2y2

—a(-2)t - -2t = -2l

thus by the substitution of variable y = v/2sin (so that dy = v/2 cos 6 df),

4 (V2 4 (2
Jf(4—x2—2y2)dA:§f (4—2y2)§dy:§f 8cos® - /2 cos b df
). _

V3

s
2

32{[ os*0do =

4 3
MJ cos* 0 db = 4v2r .
0

Example 14.9. Find the volume of the solid region bounded above by the paraboloid
2z =1— 2% —y? and below by the plane z =1 — y.

Let R be the region in the plane whose boundary points (z, y) satisfies 1 —2?—y?> = 1—y
or equivalently, 22 + 4> — y = 0. Then the volume of the solid described above is given by



Jf [(1—2?—y?) — (1 —y)] dA. Note that the region R is a disk centered at (0, %) with
R
1

radius 3 and can be written as

R={(z,)[0<y<1,-y—y> <z <~y—y?}.

Therefore,

H [(1—2?—y*) —(1—y)]dA= Ll (J o (y -2~ y) da:)dy
R
= fol (Q(y — )t - %(y - yQ)%) dy = %Jl(y —y?)7 dy = gfol [i ~(y- %ﬁgdy.

1
Making the substitution of variable y — % = ésin@ (so that dy = 5 cos 0 dé)),

4 (7 cos’f 1 1 (2
ff [(1—2"—y) = (1—y)] dA=§J7r COZ -écosecw:éfo cos40d0:3%.
R

2

1, pl
Example 14.10. Find the iterated integral J (f e da/:) dy.
0 y

Let R = {(z,y)|0
{(z,v) ‘ 0<z<1,0<y<uz}, by the Fubini Theorem we find that

Ll <L1 e das) dy = [J e dA = Ll <J: e~ dy) dr = Ll ze " d

<y<l,y<uz< 1}. Since R can also be expressed as R =

14.3 Surface Area

14.3.1 Surface area of graph of functions

Let R = [a,b] x [¢,d] be a rectangle in the plane, and f : R — R be a continuously

differentiable function. We are interested in the area of the surface

S:{(:E,y,z)‘(a:,y)ER,z:f(a:,y)}.

Let P = {Rij ‘ l1<i1<n,1 <j< m} be a partition of R. Partition each rectangle

R;; = [xi—1, %] x [yj—1,y;] into two triangles Az-lj and A,?j, where A}j has vertices (2,1, y;-1),



(%i,yj-1), (wi—1,y;) and A?j has vertices (z;,9;), (i—1,Y;), (i, yj—1). Then intuitively, the
area of the surface f(A}) can be approximated by the area of the triangle T} with ver-
tices (a:i,l,yj,l,f(a:i,l,yj,l)), (xi,yj,l,f(xi,yj,l)) and (:Ul',yj,f(xi,yj)), while the area
of the surface f (A?j) can be approximated by the area of the triangle Tg with vertices
(a:i,yj, f(x,;,yj)), (xz-_l,yj, f(xi_l,yj)) and (xz-,yj_l, f(xi,yj_l)). Therefore, the area of the
surface f(R;;) can be approximated by the sum of area of triangles T1 and Té, and the area

of the surface S can be approximated by the sum of the area of the triangles T} and Té,

where is sum is taken over all 1 <t <nand 1 <7 <m.
Now we compute the area of the triangles 75 and T};. We remark that for a triangle T
with vertices Py, P, P, letting u = PP, = P, — P, and v = P, P; = Py — P;, the area of

1
T can be computed by §||u x v|. Therefore, the area of T,é is given by

1
\Tzlj’ = 2 H (1’1 — -1, 0, f(zi, yj—l) - f(a:i—lyyj—l)) X
< (0,45 — yj—1, f(@ic1, y5) — f@im1,yj-1)) H :
By the mean value theorem, there exist £ € (2,1, 2;) and 77 € (y;-1,%;) such that
f(@iyi—1) = f(@ic1,y5-1) = fo(& yi—1) (@i — i),
f(wiy, yj) — f(wi-a, yj71> = fy(iUzeh 77;)(?/3‘ - yjfl) ;

thus we obtain that
1
T3l = 5 110, £o(&F y5-1)) (0.1, fyis, ) |
:—H( fo (& yj-1), = fy (i1, 1)), )G = i) (y; = yj1)

= 5\/1 + [ yi—1)? + fy(wio,nf)2 (@ — wima) (Y5 — Y1) -

Similarly, there exist £* € (x;_1,%;) and n7* € (y;_1,¥;) such that the area of the triangle

T is given by

1721 = 5T+ Fu€ )+ Fy (e 3Pl — i) 05— yy).

Let M = (mz)xx (Ifo(z,9)| + |fy(@,9)]), |R] = (b—a)(d—¢), and € > 0 be a given (but
z,y)ER
arbitrary) number. Suppose that

‘fm(aaﬁ) - fx(fa”)‘ + ’fy(@7ﬁ> - fy(fan)‘ < m v (avﬂ)a (5777) € Rij : (1431)



Then

‘\/1+fx(a, )2+ f,(a*, B \/1+fx (&m)%+ fy(€,n)? ‘

_ fx(a>ﬁ) + fy( >ﬁ ) — f2(&, 77) — fy(§, 77)
\/1+frr(0‘a B)? +fy(04* \/1+fa: §,m)? "‘fy(g n)?

<5 [0 - fm(&n)Hfm(%B) - h(ém)!
1100, 8%) = F&mlfa®, 8 + £ (&)

v Me €
—[!fx(oe, — fo(&m)| + | £y (0, B7) = [, (&, 77)!] SIR|(1+ M) ~ 2R

Therefore, if (14.3.1) holds for all 1 <7 < n and 1 < j < m, then for (;,7;;) € R;;, we have

‘|Tz§'| + T3 \/1 + ful&jsmig)? + fy(&ijymig)* (s — @ima) (yy — yj,l)‘
1
< ‘%\/1 + fz(gz?k?yjfl)Q + fy(xiflan;")2 + 5\/1 + fx( i >yj) + fy(l’iaﬁf*)Q
- \/1 + fz(gija nz‘j)Q + fy(&ja 77@'3’)2‘(1’1‘ - xi—l)(yj - yj—l)

3
= 3[R

thus if (14.3.1) holds for all 1 <4 < n and 1 < j < m, then for (&;,n;;) € Rij,

(T = i) (Y — Y1)

ZZ (| ’+| ZZ\/1+JC:B (&> i) + Sy &gy mig)* (@i — 2im1) (y; — Y1)
i—1j=1 i—1j=1
<22‘|1—%|+|E§‘|_\/1+fx(§ij:77ij)2+fy(£ij’77ij>2( — i) (Yj — Yj- 1)‘
i=1j=1

< DX g ) — ) = 5

Finally, we state as a fact that there exists §; > 0 such that (14.3.1) holds as long as

|P| < é;. This property is called the uniform continuity of continuous functions on

closed and bounded sets.
On the other hand, since the function z = /1 + f.(z,y)? + f,(z,y)? is continuous on R

(and R has area), it is Riemann integrable on R. Let

- £ |V £+ an




Then there exists d > 0 such that if P is a partition of R satisfying ||P|| < 9, then any
Riemann sum of f for the partition P belongs to (I — %, I+ %) Therefore,

n m E

> \/1 + fol&igymig)? + Fy(&go mig)* (i — 2ima) (s — yj-0) =1 < 5

i=1 j=1
Let 6 = min{él,ég} Then 6 > () and if P = {RL‘J‘ = [IL‘ 1;£é] [UJ 1, Ul} 1 <1<
n,1 < j < m} is a partition of R satisfying |P| <6, then by choosing a collection of points

cicn.1<jem Such that (&, ;) € Rij, we conclude that

{(gl]a 772] }1\ ,

ZZ\ il +HIT50) 1

=1 j=1

< Z 2 (1751 + 172 — Z Z \/1 + fa(&ijsmig)* + Fy (i i) * (T3 — i) (Y5 — Y1)

i=1j=1 1=175=1
0 21+ el + ol )P — )y — 350) —
i=1j=1

This means that the approximation of the area of the surface S can be made arbitrarily

closed to I; thus the area of the surface S must be I. In general, we have the following

Theorem 14.11

Let R be a closed region in the plane, and f : R — R be a continuously differentiable

function. Then the area of the surface S = {(z,y,2)|(z,y) € R,z = f(z,y)} is given
by

[[viFT@neir = [[\i+ s+ iepras

Example 14.12. Find the surface area of the sphere with radius r.
Let f(z,y) = /r* —2? —y*> and R = {(z,y)|2? + y* < r?}. Then the surface area of

the sphere with radius r is given by

zﬂ\ﬁ+fx(x,y)2+fy(x,y)2d/1 _ zrg md/x

Since R can also be expressed as R = {(x,y) ’ —r<e<r,—Vr2—ax2<y<r?— x2},
the Fubini Theorem then implies that

VrZ—z?

H\/T—ycm L Jﬁ\/T_y )




By Theorem 5.63, we find that for each —r < x <,

N y =z
f dy = arcsin —— = arcsin 1 — arcsin(—1) = 7.
VT2 / 7“2 _ 172 y=—/r2—z2

Therefore,

r R .
J <J dy)d:r:f mdr = 2nr
Nemr- RV —r
which implies that the surface area of a sphere with radius r is 4772,

Example 14.13. In this example we consider the surface area of the upper hemi-sphere

2z = 4/1? — 22 — y? that lies above the disk R = { x,y) }:(:2—1—1/2 < 02}, where 0 < o < r.
Let f(x,y) = +/r? — 22 — y2. Since R can also be expressed by

R:{(x,y)} —ragxéa,—\/UQ—xz<y<\/02—x2},

the Fubini Theorem implies that the surface area of interest is given by

H \/1 + fula,y)? + fy(z,y)2dA
' Vo=

ﬂﬁf {———

By Theorem 5.63, we find that

o} o“—x o y y:m
J ( f — ) J ( arcsin ——— )d:v
m\/ — 2?2 —y? —o 78— x® ly=—Vo?—a?

Vo? — 12 o Vo? — 12

=2 arcsin ——— dr =2 arctan ——— dx
Y r2—z e 2 —o

2 _ 2 |z=0 o d 2 _ .2

= ofwarctan Y22 f v aretan Y2 o]
Vr2 —o?le=—0 J_, dx r2 — o2

:_QUxmmd QMJ N i

14 2= 2 — 22)y/o? — 12

—0 r2_g2

= —2Vr?2 — o271 + 24/r2 —UQJ dx .

—LU2) o2 — 12

. o .0
Using the substitution z = o sin 50 e find that

o T2 T 7,.2 ™ 7,.2
f 2 22\ /52 — de:f 2 20 dG:f 2 _ 52(] — 9d9
o (r2—a?)\o? —x —x 2(r? — 0%sin® 3) 5 2r2 —o02(1 — cosf)

T 1
=7’ db
" J,r (2r2 — 0?) + 02 cos 0



0
and further substitution tan 3= t implies that

JU r2 dr — [~ r2 2dt
_o (M2 —22)y/o? — 22 Jowo (212 — 02) + 02 ig 1+¢2
. [~ 272 di
) 221+ 82) = 21+ 12) + 02(1 - 12)
(0 2
r
= 2 2 57z dt
J_or?H(r2=o?)t
= ! arctan ( rt-o t) ” = il
r? — o2 T t=—o0 r? — o2

Therefore, the surface area of interest is given by

dAZQT\/W[—W—I——WT }:271'7“(7“— TZ—UQ).

r2 — g2

[

Example 14.14. Find the surface area of the paraboloid z = 1 + 2% + y? that lies above
the unit disk.

Let f(z,y) =1+ 2?4+ y* and R = {(a:,y)! —1<z<1,—V/1-22<y< M}, the
Fubini Theorem implies that the surface area of interest is given by

Nier

lj¢r+n@yv+@@umdA:J:(IV:;VG+4ﬁ+Qﬂ@%m.

2 rhun/a2 + b2
Using (8.3.1),Weﬁndthatj a2+b2u2du:%[w+ln(bu+ a2+62u2)}+0
a
if a,b > 0; thus
Vica? Via?
V1+4x? 4+ 4y dy = 2 1+ 4x? 4+ 4y? dy
Via? 0
1+ 42? [2y/1 4 42% + 4y? Nigwrawy: } y=vi-a?
= [ a2 +ln(2y+ 144z +4y) o
2 — 2
VBT gE 4 LA VT2t
2 V1 + 422
Therefore,
1 2
1+422 . /5 +2y1 — a2
Jf\/1+fx($,y)2+fy($>y)2dfl:f_l [\/5V1—a:2+ ;—In N dx
R
1 NS
:\/gﬂ—i—lf (1+4x2)1n\/5+2 L e
2 2 -1 \/1—|—4IE2



Integrating by parts,

1 1 — 42
J (1—1—4x2)ln\/5+2 Sl
—1 \/1+4$2

4 v B2V — 2=t ! 4 5 d . AB+2V1— 22
:(:c—l—f:z:)ln — (:c—i—fa: )—1n dx

3 V14+4z?2  la=—1 1 3 Jdx V1 + 42

—2x 4x
VI+4r2 — ————(v/5+ 21 — 22
[y VS Nzl o
1 3 V5421 —a? 1+ 422

__Jl (x_’_éxg) —2z 5"‘2\/5\/1—%‘2 dx

1 3 VB +2V1 — 22 (1 + 422)V/1 — 22
VB[N 22(3n + 44 C VB [T 14 3(1+ 4a?) — 21 — 2?)(1 + 4a?) "
3 ) (A 44e)vi—22 T 3 ), (14 42?)vV1 — 22

_\/g 1 1 1 1 2\/5 1
= dr +V5 | ——de— 22| V1—22d
3 -1 (1+4$2)\/1*LE2 v —1 \/1*.172 o 3 -1 o o
—ﬁf 1 2v/5
= dx + .
3 )1 (1+42?)v1—2? 3

By the substitution of variable x = sin 6, we find that

1 Ed ™
1 2 1 2 1
dr = ——df = de
fl (1 + 422)4/1 — 22 * fg 1 +4sin?6 J 1+ 2(1 — cos20)

™

2 1 1 (" 1
_f 3—200529d0—2jﬂ3—2605¢5d¢'

_T —
2

Wl

¢

By the substitution of variable tan 5= t, we further obtain that

Jl 1 dx—lfo 1 2dt _f‘” 1
1 (1 +422)v/1 — 22 2) 3221442 _ oo 1+ 5¢t2

1412

= \}5 arctan(+/5t)

t=00

t=—00

5

Therefore,

ff\/1+f:c($,y)2+fy(x,y)2dA: \fwjté[—\éa\;%ﬂL Q?W] = %(5\/3—1).
R



14.3.2 Surface area of parametric surfaces

Definition 14.15: Parametric Surfaces

Let X, Y and Z be functions of v and v that are continuous on a domain D in the

uv-plane. The collection of points
Y= {re R3 ‘ r=X(u,v)i+Y(u,v)j+ Z(u,v)k for some (u,v) € D}

is called a parametric surface. The equations z = X(u,v), y = Y(u,v), and z =
Z(u,v) are the parametric equations for the surface, and » : D — R? given by
r(u,v) = X(u,v)i+ Y (u,v)j+ Z(u,v)k is called a parametrization of X.

Example 14.16. Let R be an open region in the plane, and f : R — R be a continuous

function. Then the graph of f is a parametric surface. In fact,
the graph of f = {r eR? ‘ r = (z,y, f(z,y)) for some (z,y) € R} .

Therefore, a parametric surface can be viewed as a generalization of surfaces being graphs

of functions.

Example 14.17. Let S* = {(z,y,2) € R®|2? + 4> + 22 = 1} be the unit sphere in R®.

Consider
r(0,¢) = (cosfsing,sinfsing,cosg), (6,¢) € D =10,27] x [0,7].
Then r: D — S? is a continuous bijection; thus S? is a parametric surface.

Example 14.18. Consider the torus shown below

Figure 14.3: Torus with parametrization r(u,v). (temporary picture)



Note that the torus has a parametrization
r(u,v) = ((a+ beosv) cosu, (a + beosv)sinu, bsinv), (u,v) € [0, 2] x [0, 27].
Therefore, the torus is a parametric surface.

Remark 14.19. Similar to the case of curves, it is not required that the parametrization
r is one-to-one; thus self-intersection of surface is allowed for defining parametric surface.
However, we always assume that the “area” of the part of intersection is zero. This require-
ment is similar to the case that the parametrization of a curve that we discussed in Chapter

12 has non-overlapping property (see page 281).

Definition 14.20

A parametric surface

Y= {'r’e R? ‘ r=X(u,v)i+ Y (u,v)j+ Z(u,v)k for some (u,v) € D} :
is said to be regular if X, Y, Z are differentiable funcitons and
7y (u,v) x ry(u,v) # 0 V(u,v) € D,

where r, = X,i+ Y,j+ Z,k and 7, = X,i+ Y, j+ Z, k.

Remark 14.21. Let V be an open region in the plane. A vector-valued function ¢ : ¥V — R3
is differentiable if each component of 1 is differentiable, and the derivative of v, denoted by

D, is defined by
T (1) T (4, 0)

ou ov

0 0
[Dy(v)] = | 2 (w,0) F2(u,0)

03 03

%(%U) W(U, U)

Therefore, a parametric surface
Y= {re R3 ‘ r=X(u,v)i+Y(u,v)j+ Z(u,v)k for some (u,v) e D} :
is regular if for each (u,v) € D the derivative Dt (u,v)] has full rank.

Question: What does it mean by that a parametric surface is regular?



Suppose that
Y= {’PER3‘7’:X(U,U)i-i-Y(u,’U)j—i—Z(u,U)k for some (u,v) € D}_

is regular. Then at each point p = 7(ug, vo), Tu(uo, vo) and 7, (ug, vy) are tangent vectors to
Y. so that 7, (ug,vg) X r,(ug, Vo) is normal to the tangent plane of ¥ at p. In other words, a

parametric surface is regular if every point p € ¥ has a tangent plane (denoted by 7,,X).

Example 14.22. Let S? be the unit sphere given in Example 14.17. Then

r9(0,0) = (— sin 6 sin ¢, cos 0 sin ¢, O) ,
ry(0,0) = (cos@cos ¢, sin 0 cos ¢, — sin (b)

so that

(ry x 1)(6, ¢) = (— cosOsin® ¢, —sin sin® @, — sin ¢ cos ¢)
= —sin gzﬁ( cos 6 sin ¢, sin @ sin ¢, cos ng)

which is non-zero if ¢ # 0 and 7. Therefore, S*\{the north and the south poles} is a regular

parametric surface (with the same parametrization except that the domain becomes [0, 27] x
(0, 7).

Example 14.23. Let the torus be given in Example 14.18. Then

ro(u,v) = (= (a4 beosv)sinwu, (a+ beosv) cosu,0)

ry(u, v) (— bsin v cos u, —bsin v sin u, b cos v)

so that

(ry x ) (u,v) = (b(a + beosv) cosucosv, b(a + beosv) cosvsinu, b(a + beosv) sinv)

= b(a+ bcosv)(cosucosv,sinucosv,sinv) .

Since r, x 1, # 0, we find that the torus is a regular parametric surface.

Question: How to compute the surface area of a regular parametric surface?

Let p = r(ug, v9) be a point in X, and we consider the surface area of the region 'r’([uo, Ug+
h] x v, vo + k]), where h,k are very small. This area can be approximated by the sum
of the area of two triangles, one with vertices 7r(ug,vg), ™(ug + h, vg), 7(ug, vo + k) and the
other with vertices r(ug + h,vo), 7(ug, vo + k), 7(ug + h,vo + k).



The area of the triangle with vertices r(ug,vg), T(uo + h,vo), 7(ug, vo + k) is

= —H( r(ug + h,v) — r(uo,vo)) X (r(uo,vo + k) — r(uo,vo))HR3 )

By the mean value theorem,

r(ug+h,vo) — r(ug, vo)
= [X(UO + h, U()) — X(Ug, U0>:| i+ [Y(UO + h, ’Uo) — Y('Ll,o, Ug)]j
+ [Z(uo +h,vo) — Z(uy, UO)}k
= h[Xu(uo —|— th, ’Uo) —f- Y (’LLO —|— Qgh ’Uo) + Z (UO —|— 93h Uo)k}
for some 6,605,053 € (0,1). Suppose that 7 is continuously differentiable; that is, X, Y, Z
are continuously differentiable, then
Xu(ug + 01h,vo) = Xy (uo, vo) + E1(uo, vo, h),
Yu(uo + O2h,v9) = Yy, (uo, vo) + Ea(ug, vo, h) ,
Zu(ug + O3h,v0) = Z,(uo, vo) + E3(uo, vo, h),
where F, Es, E5 approach zero as h — 0. Therefore,

r(uo + h, vo) — 7(uo, vo) = h[ry(uo, vo) + Ei(uo, vo, h)]

where E| = Eyi+ Eyj + Esk satisfying that }llin%) E(ug,vo; h) = 0. Similarly,

r(ug, vo + k) — m(ug, vo) = k[ru(u(),vo) + E5(ug, vo, h)} ,

where lim F;(ug, vo; h) = 0. The discussion above shows that

—

lim (7 (uo + P, vo) — (w0, v0)) X (1(uo,vo + k) — r(uo, v0))
(hk)—(0,0) hk

— 1u(Uo, Vo) X Tu(Uo, Vo) =0



which further implies that

Ay = 2o, 10) % 7t to) [+ (o, b B

for some function £; which is bounded and converges to 0 as (h, k) — (0,0). Similarly, the

area of the triangle with vertices r(ug + h, vo), r(uo, vo + k), r(ug + h,vo + k) is

1
Ay = |7, vo) x 7o (0, v0) [k + Exluo, vo, b k) ok

for some function & which is bounded and converges to 0 as (h,k) — (0,0). The two

formulas for A; and A, shows that

the surface area of 7([ug, uo + h] x [vg, vo + k]) (14.3.2)
= |[ru(uo, vo) x 7y (o, vo)|hk + E(uo, vo, b, k)hk o
for some bounded function £ which converges to 0 as the last two variables h, k approach 0.
Now consider the surface area of r([a,a + L] x [b,b+ W]). Let £ > 0 be given. Choose
N > 0 such that
E(u, v, k)| < = VO < h < Lock<® ana (u,v) € [a,a + L] x [b,b+ W].
2LW N N
Denote |7, x | by /g. Then

‘ZZ\/g(Hi_nlL,Hj;blM)iZ— \/gdA’<g if n,m = N.
j=1li=1 [a,a+L]x[b,b+W]

Then for n,m > N, with (h, k) denoting (%7 d

E) (14.3.2) implies that

‘the surface area of r([a,a + L] x [b,b+ W]) — J
[a,a+L]x [b,b+ V]

VEdA |

= ‘ Z Z the surface area of r([a + (i — 1)h,a + ih| x [b+ ( — 1)k, b+ jk])
j=li=1

\/gdA‘

ﬁa,a#»L} x [b,b+W]

<‘i \/g(a+(i—1)h,b+(j—1)/~c)hk—J JEdA
1

j:l 1= [a7a+L} X [b7b+W]

n

+’iif(‘“L(i—l)habJr(j—l)k;h,k)hk‘

j=11i=1




The discussion above verifies the following

Theorem 14.24

Let D be an open region in the plane, and

Y= {re]R3‘r:X(U,v)i—i-Y(u,v)j—i—Z(u,v)k for some (u,v) eD}_

be a regular parametric surface so that r is continuously differentiable; that is,
Xu, X0, Y, Yy, 2y, Z, are continuous. Then

the surface area of ¥ = J |7u(u, v) x 7y (u,0)| d(u,v) .

D

Example 14.25. Let R be an open region in the plane, and f : R — R is continuously
differentiable. Then Theorem 14.24 implies that the surface area of the graph of f is given
by

[[ 1< e ae,

where the parametrization r is given by r(z,y) = (:U,y, f(x,y)), (z,y) € R. This formula

agrees with what Theorem 14.11 provides.

Example 14.26. With the parametrization of the unit sphere S? given in Example 14.22,
by Theorem 14.24 the surface area of S? is given by

[ terax oot = [[([ smoan)as = sm.
[0,27] X [0,7]

Example 14.27. With the parametrization of the torus given in Example 14.23, by Theo-

rem 14.24 the surface area of the torus is given by

Jf b(a + bcosv) d(u,v) = JQW (J%(ab + b? cos v) du) dv = 472ab.

0 0
[0,27] x[0,27]

14.4 'Triple Integrals and Applications

Let @ be a bounded region in space, and f :  — R be a non-negative function which

described the point density of the region. We are interested in the mass of Q).



We start with the simple case that @ = [a,b] x [c,d] x [r, s] is a cube. Let

P.={a=xg<m < - <x, =0},
Py={c=yw <y < <ym=d},

P.={r=2<zn<-<z,=s},

be partitions of [a,b], [c,d], [r,s], respectively, and P be a collection of non-overlapping

cubes given by
P = {Riji| Riji = [mi—1, @] % [yj—1,y;] ¥ [ze-1, 26, 1 <i<n,1<j<m,1<k<p}.

Such a collection P is called a partition of (), and the norm of P is the maximum of the
length of the diagonals of all R;;i; that is

HPH = max{\/(xi — $i71)2 + (y] — yj,1)2 + (Zk — Zk,1)2 1<i<n,l <7< m, 1<k< p} .

A Riemann sum of f for this partition P is given by
n m P
Z Z Z F(Eiges Miges Gigre) (i — Tim1) (Y5 — yj—1) (2% — 20-1) -

The mass of @ then should be the “limit” of Riemann sums as ||P| approaches zero. In
general, we can remove the restrictions that f is non-negative on R and still consider the
limit of the Riemann sums. We have the following

Let @ = [a,b] x [¢,d] x [r,s] be a cube in space, and f : Q@ — R be a function. f is

said to be Riemann integrable on ) if there exists a real number I such that for every

e > 0, there exists 0 > 0 such that if P is a partition of @) satisfying |P| < J, then
any Riemann sum of f for P belongs to (I — €, + ¢). Such a number [ (is unique if

it exists and) is called the Riemann integral or triple integral of f on () and is

denoted by ijf(x, y,z)dV.
Q

For general bounded region @ in space, let 7 > 0 be such that @ < [—r,7]3, and we

define Jff f(z,y,2)dV as JJJ f(x, y,z)dV, where £ is the zero extension of f given by
Q [—r,r]3
7 f([L‘,y,Z) if({L‘,y,Z)ER,
f(z,y,2) = .
0 if (z,y,2) ¢ R



Some of the properties of double integrals in Theorem 14.4 can be restated in terms of

triple integrals.

L. Jff(cf)(x,y,z) dV:cJJ flz,y,2)dV
Q Q
2. H (f +9)(z,y,2)dV = H f(@,y,2)dV + Hfg(w, y,z)dv
fff flz,y,2z)dV = ffff x,y,z)dV + ffff x,y, z)dV for all “non-overlapping”

Q1uQ2
solid regions () and Qg

Similar to Fubini’s Theorem for the evaluation of double integrals, we have the following

Theorem 14.29: Fubini’s Theorem

Let (@ be a region in space, and f :  — R be continuous. If ) is given by @) =

{(z,y,2)|(z,y) € R, gi(z,y) < z < g2(w,y)} for some region R in the zy-plane, then

Hfmy, )dV = H ngy :vy,z)dz)dA.

In particular, if R is expressed by R = { (z,y !a <z <bh(x)<y< hg(y)}, then

H Fz,y,2)dV = Lb [ L h(()) ( J e F(a,y,2) dz) dy] dz .
Q

gl(x,y)

Example 14.30. Find the volume of the region ) bounded below by the paraboloid z =
22 + 9% and above by the sphere 22 4 32 + 2% = 6.
Suppose @ is a solid region in space with uniform density 1 (or say, this region is occupied

by water). Then the volume of @ is identical to the mass (in terms of its numerical value);

thus we find that the volume of @) is given by f f 1dV. To apply the Fubini Theorem, we

Q
need to express () as {(:c, Y, 2) } (z,y) € R,g1(z,y) < 2z < go(x, y)} Nevertheless, if R is the
bounded region in the plane enclosed by the curve (z* + y*)? + 2% + y*> = 6 (which in fact
gives 72 + y? = 2), then

Q= {(x,y,2)| (v,y) € R,a® +y* < 2 < /6 — 22 — 2}



and the Fubini Theorem implies that

the volume of Q) = J (J 1 dz) dA .
R £B2+y2

Solving for R, we find that R = {(:L’,y) ‘ —V2<r<V2, V222 <y <2 - xQ}; thus
by the Fubini Theorem we find that

V2 V2—x? A/ 6—22—y2
the volume of ) = f [J f 1 dz) dy] dz .
-2

—A/2—x2 < :(:2+y2

w/2 w/2 3
Example 14.31. Evaluate f [J (J sin(yZ)dz> dy} dz.
0 T 1

Let R = {(z,y)]|0 < = < y/7/2,2 < y < 4/7/2}, then the domain of integration is
given by

Q={(z,y,2)|0<z</1/2,z<y</m/2,1<z<3}

and the iterated integral given above is the triple integral f f f sin(y?) dV.
Q

Since R can also be expressed as R = {(:E,y) ‘ 0<y<+/m/2,0<z< y}, by the Fubini
Theorem we find that

LW U:/m (f sin(yQ)dz)dy] do — Jcﬂsm(zf)dv

_ LW on (f sin(y?) dz ) de| dy = fm2ysin(y2)dy = —cos(y?)|

1 0

Example 14.32. Compute the iterated integrals

f: ”3 (de)dy}dwrf [L <L6_ydx)dy]dz,

then write the sum above as a single iterated integral in the order dydzdx and dzdydzx.

y=3
) dz
y=3

We compute the two integrals above as follows:

[l [ (oo [ (757

1 [ z 1 322 23
_2L (9—3z+Z)dZ—§<92—7+E>

2=6
=9 ,
z=0




and

1 6 y:12;z

== 12 — d
QL( y—y yZ) L, ®

1 f’ 144—24z+z2 (12 — 2)z

540 (12 — 2) 1 — 5 —36+9+3z)dz
1 {-6 2’2 2

=5 72 6z—36+6z—z—6z+——27+3z)d
Jo
1 6 3\ |2=6

—= | (9-3:+ )dz— (9z—?’i+z> ~9.
2.)0 z=0

Therefore, the sum of the two integrals is 18.
Let
Qi ={@ya|o<z<6<y<s i<y},
Q= {(@y|0<s<63<y< =5 <oy}

Then the Fubini Theorem implies that

f Uj (Edw)dy]dZZ Lﬂdv, f [Lu’; d;_ydx)dy]dz:g?fdv,

Let @ = Q1 U Q2. Since 1 and @), are non-overlapping solid regions (their intersection is
a subset of the plane y = 3). Then

[ﬂdmwdvzjﬂdv.

1. Let R be the projection of ) onto the xz-plane. Then R = {(:c,z) ‘ 0<z<30<
2z < 2:16} (where z = 2x is the projection of the plane z = % onto the zz-plane), and

() can also be expressed as

Q={(z,y,2)|(z,2) e Ra <y<6—=z}.

Therefore, the volume of () is given by

fo 3 ”02 (LG_I dy) dz] dx = f: [ fo " (6 22) 4] da

3

= LS 20(6 — 2z) dx = <6x2 - 4%)

r=3
=54 — 36 =18.
=0




N

2. Let S be the projection of () onto the zy-plane. Then S = {(w,y) ‘ 0<zxr <3z

y<6— Jc}, and () can also be expressed as
Q={(z,y,2)|(z,y) € 5,0 <z <2z}

Therefore, the volume of @) is given by

3

f [Jﬁ—m(fx dz>dy}dx=f [L6_z2xdy] dx:L 22(6 — 2x) dx = 18.

xT

14.5 Change of Variables Formula

In this section, we consider the version of substitution of variables in multiple integrals. We
have used the technique of substitution of variable to evaluate the iterated integrals in, for
example, Example 14.13 and 14.14; however, these substitutions of variable always assume
that other variables are independent of the new variable introduced by the substitution of
variable. We would like to investigate the effect of making a change of variables such as

x =rcosf, y =rsinf in computing the double integrals.

14.5.1 Double integrals in polar coordinates

We start our discussion with double integrals in polar coordinates. Suppose that R is the

shaded region shown in Figure 14.4 and f : R — R is continuous.

P2

Pl |= ¥

> 1T
O pr cos 6, f pycos B P c0s 6

P2 c0s )y

Figure 14.3: Rectangle in polar coordinates

Then to compute the double integral ff f(z,y) dA using the Fubini theorem directly,
R



we need to divide R into three sub-regions R;, Ry, R3 given by

Rlz{(x,y) plcos@g<$<pgcos@2,q/pf—x2<y<xtan@2},
R2:{<Qf,y) pgcos@g<a:<plcos@1,q/p§—:v2<y<\/p%—:v2},
R3:{<l‘,y) plcos@l<$<p2@2,xtan@1<y<y/p§—x2},

and write

gf(x,y) dA = ﬂf(x,y) dA+gf(x,y) dA+gf(x,y) dA .

However, we know that the region R above is a rectangle in rf-plane, where (r,0) is the
polar coordinates on the plane. To be more precise, in polar coordinate the region R can be
expressed as R’ = {(r, 0) }pl <1 < p2, 01 < 0 < Oy}, which means that every point (x,y)

in R can be written as (rcosf,rsin@) for (r,0) € R’, and vice versa. One should expect

that it should be easier to write down the iterated integral for computing f f f(z,y)dA.
R

LetPr:{p1:r0<7"1<~-<rn:p2} andpgz{@1:90<91<~-<9m:@2}
be partitions of [p1, po] and [©1, O], respectively, R;; = [ri_1,7] % [8,-1,6,] be rectangles
in the rf-plane, S;; be the sub-region in the xy-plane corresponds to R;; under the polar

coordinate; that is,
Sij = {(rcos,rsin)|r e [ri_i,r],0€[0;_1,0,]}.

The collection P = {SZ-]- | 1<i<n1<j< m} is called a partition of rectangles in polar

coordinates, and the norm of P, denoted by [P/, is the maximum diameter of S;;.

Y

(0]

Figure 14.4: Rectangle in polar coordinates



A Riemann sum of f for partition P is of the form Z Z f(&j,mi)|Si5], where |S;;| is
i=1j=1

the area of S;; and {(&;, i) be collection of points satisfying (&;;,7:;) € S;;
J g2 1) 51 g0 Thij J

<isn,l<jsm

)

Then intuitively JJ f(z,y) dA is the limit of Riemann sums of f for P as ||P|| approaches

ZETO.
To see the limit of Riemann sums, we choose a particular partition P and collection

{(&j. mij }1<Z<n 1<J< . We equally partition [py, p2] and [©1, O] into n and m sub-intervals.

S BES

Let Ar = Land Af = O Land r; = py+iAr and 0; = ©,+jA0, and &; = r; cos 0,

n
and 7;; = r;sinf;. Noting that

1 1 1
1S5 = (7“ — 77 )0 —0,1) = 5(7“2 +7i_1)ArAf = r; ArAf — §Ar2A9,

we find that

n m

2 Z f (&> mij)|Sis| = 2 Z f(ricosO;,r;sinb;)r; ArAf

i=1j=1 i=1j=1

2 Z f(ricos;,r;sinf;)ArAg.

i=17=1

Let g(r,0) = rf(rcosf,rsinf) and h(r,0) = f(rcosf,rsinf), then

ZZf &gﬂh; |Szy| —ZZQ 7”2, ATAQ— 722h TZ, A’/’A@

i=1j5=1 i=1j5=1 i=1j5=1

As n,m approach oo, we find that

22 g(ri, 0 ATAO—>JJ (r,0)d(r,0) ffrcos& rsin@)rd(r,0),

i=17=1
ZZh(n, ArAG—»JJ (r,8)d(r,0) Jfrcos@rsm@)d(r@)

where the right-hand side integrals denotes the double integrals on the rectangle R’. There-

fore, the limit of Riemann sums of f for P as |P| approaches zero is

J f(rcos@,rsin@)rd(r,0);

thus
J flz,y)d(z,y) = J f(rcos@,rsin@)rd(r,0). (14.5.1)
R R



14.5.2 Jacobian

Recall the substitution of variables formula for the integral of functions of one variable:

b ) g(b)
| rlo@)g@ e = [ swyau.
a g(a)

Suppose that g : [a,b] — R is one-to-one. If ¢ is increasing, then ¢’ > 0 and g([a,b]) =

[9(a), g(b)]; thus the formula above can be rewritten as

| s fong@de= | o)y @) ds.
9([a,b]) [a,b] [a,b]
If g is decreasing, then g’ < 0 and g([a,b]) = [g(b), g(a)]; thus the formula above can be

written as

| twae=—| fe@g@de= | fo@l'@)]dr.
9([a,b]) [a,b]

[a,0]

Therefore, in either cases we have a rewritten version of the substitution of variable formula
|t sl o
9([a,b]) [a,]

In this section, we are concerned with the substitution of variable formula (usually called the
change of variables formula in the case of multiple integrals) for double and triple integrals,
here the substitution of variables is usually given by x = x(u,v),y = y(u,v) for the case
of double integrals and =z = z(u,v,w), y = y(u,v,w), z = z(u,v,w) for the case of triple

integrals.

Consider the double integral Jf f(z,y) dA. Suppose that we have the change of variables
R

r = z(u,v) and y = y(u,v), and the Fubini Theorem implies that the double integral can
be written as f (f f(z,y) dy) dx, here we do not write the upper limit and lower limit

explicitly. Note the inner integral in the iterated integral is computed by assuming that =
is fixed. When z is a fixed constant, the relation z = x(u, v) gives a relation between u and

v, and the implicit differentiation provides that

du zy(u,v)

dv oz (u,v)



if z,, # 0. Making the substitution of the variable y = y(u, v) with u, v satisfying the relation
x = z(u,v), we find that

Ay =y, 0)du + g, (0, 0)dv =y, 0) oo+ (u,v)do

_ xu(u, v)yU(U, U) - J7v(u7 U)yU(u7 U) dv -

zy(u,v)

thus

ff(:r,y) dy = ff(a:(u, o), y(u, o)) Tl 8w V) = 2w vy v))

Ty (u, v)
Therefore, the substitution of variable © = x(u,v), where “v is treated as a constant since

it has been integrated”, is

J (Jf(yc, y) dy) dx
- J <ff(l’(um),y(u7v))

= f <ff($(u, v),y(u, U))‘mu(u, V)Y (1, v) — x4 (u, v) Yy, (u, v)} dv) du . (14.5.2)

Loy (U, V)Y (U, V) — Ty (U, 0)Yu(u, v) ‘ dv) Ty (u, I’)’ du

Ty (u,v)

Example 14.33. Consider the change of variables using polar coordinate x = rcos#f,

y = rsinf (treat r, 0 as the u,v variables, respectively). Then
Ty Yy — TpYu| = | cos@ -7 cos@ — (—rsind) -sinf| = |r| =r;
thus (14.5.2) implies the change of variables formula for polar coordinates (14.5.1).

Now we consider the possible change of variables formula for triple integrals. Suppose
that by the Fubini Theorem,

Jlff@a%z)dV——J[J‘<Jj(uywadz>@4dx7

where again we do not state explicitly the upper and the lower limit of each integral. For a
given change of variables x = z(u,v,w), y = y(u,v,w) and z = z(u,v,w), the first integral
that we need to evaluate is f f(z,y,2)dz, and this integral is computed by assuming that

x,y are fixed constants. When z and y are fixed constants, the relations = = x(u, v, w) and

y = y(u, v, w) give a relation among u, v, w. Suppose that these relations imply that u and v



are differentiable functions of w, then the implicit differentiation (when applicable) provides
that

0= xu(u,v,w)d—u + mv(u,v,w)@ + zy(u, v, w),

dw dw

du dv
0 = yu(u,v, w)% + yv(u,v,w)dw + Ywl(u, v, w) ;

thus if z,y, — z,y, # 0, we have

du Ty (Uy 0, W) Yoy (U, U, W) — Ty (w0, v, W)Yy (w, v, W)
dw — xy(u, v, W)y (u, v, w) — Ty (u, v, W)y (u, v, w)
dv Ty (U, U, W)Yy (Uy 0, W) — Xy (Uy U, W)Yy (W, v, W)
dw oy (u, v, W)Yy (U, v, w) — Ty (u, v, W)Y (u, v, w)

and these identities further imply that

dz = zy(u,v,w)du + z,(u, v, w)dv + z,(u, v, w)dw
. [ LTolYw — TwYv LTwlYu — Tulw
= [%u 2y
TulYv — TolYu TyYv — ToYu
_ [xvywzu — TwYviu + TwlYuiv — TuYw2e + ToulYviw — TolYuiw
TulYv — Tolu

+ 2w | (u, v, w)dw

] (u, v, w)dw .
Therefore,

| ez = [t 0.yt 0), 20, 0.0) 5

x xvywzu - xwyvzu+xwyu2v _xuywzv +xuyvzw _:Evyuzw (
ToulYv —TolYu

u,v,w) dw,

and (14.5.2), by treating w as a constant since it has been integrated, implies that

f”(Jf(:r,y,z) dz)dy}d;c

— J [J (Jf(x(uq /U, w), y(u, U’ w>7 Z(u7 /U’ w)) X
X TolYwiu — Twlvu T TwlYuv — TulwZe + TulvZw — ToluZw
TulYv — TolYu

X ‘:L'u(u, U, W)Yy (U, v, w) — 2, (u, v, W)y, (u, v, w)‘ d’U:| du

= J [J (Jf(x(u,v,w),y(u,v,w),Z(u,U,w))x

X |xvywzu — TwlYviu + LwYuRy — TyulYwiv + TyYviw — mvyuzw‘(uv v, w) dw) d?}] du .

’(u,v,w) dw) X

The naive (but wrong) computations above motivate the following



Definition 14.34

If x = z(u,v) and y = y(u,v), the Jacobian of x and y with respect to u and v,

o(x,y) .
denoted b d
enoted by a0’ is
o(z,y) | Tu Ty | _
8(’[1,’1}) - yu yv - xuyv :'E’Uyu .
If x = z(u,v,w), y = y(u,v,w) and z = z(u, v, w), the Jacobian of x, y and z with
0 .
respect to u, v and w, denoted by M, is
0 (u,v,w)
Ty Ty Ty
d(z,y,2)
5 | Yu Yo Yw | T TuYoRw T TwYuZe T Tolwiu — TwlYoZu — TolYuiw — Tulwy -
0(u,v,w)
Zu Zv Zw
In general, if g1, g2, - , g, are functions of n-variables (whose variables are denoted by
Uy, Ug, - -+ ,Uy), then the Jacobian of gy, ga, - - - , g, (With respect to uy, ug, - ,u,), denoted
ola. - .
by (gla agn) , is
0(ut, -+, un) o 0 g
(7u1 6uQ 6un
992 092 . Og2
0(91,--9n) _ | dur  Ouy duy,
a(ula , Up
(7U1 6uz 6un

Example 14.35. The Jacobian of the change of variables given by the polar coordinate

r=a+rcost,y=>b+rsinf is

cosf) —rsinf
sinf rcos@

-

The Jacobian of the change of variables given by the spherical coordinate x = pcos 8 sin ¢,

y = psinfsin ¢, z = pcos ¢ is

cosfsing —psinfsing pcosbcos
= | sinflsing pcosfsing psinfcos
cos ¢ 0 —psin ¢

d(x,y,2)
2(p,0,9)

= —p? cos® fsin® ¢ — p? sin” O sin ¢ cos? ¢ — p* cos? Osin ¢ cos® ¢ — p* sin? fsin® ¢

= —p?cos? fsin ¢ — p?sin’ fsinp = —p?sin .



The Jacobian of the change of variables given by the cylindrical coordinate x = rcos#,
y=rsinf, z =z is
cosf —rsinf 0

) — | sinf rcos® 0 |=r.
0 0 1

Even though the derivation of the change of variables is wrong; however, the conclusion

is in fact correct, and we have the following

Theorem 14.36

Let O < R? be an open set that has area, and g = (g1, g2) : O — R? be an one-to-one

continuously differentiable function such that ¢g=! is also continuously differentiable.
Assume that the Jacobian of gi, go (with respective to their variables) does not vanish
in O. If f: g(O) — R is integrable (on g(O)), then

“fgcydA Hfgluv gguv))‘ 9192‘@4’

9(0)
where the integral on the right-hand side is the double integral of the function

fg1(u,v), ga2(u,v) ’ 691 92)‘ (with variables u,v) on O.

Theorem 14.37

Let O < R? be an open set that has volume (that is, the constant function is Rie-
mann integrable on O), and g = (g1, g2, 93) : O — R3 be an one-to-one continuously
differentiable function such that ¢g~! is also continuously differentiable. Assume that
the Jacobian of ¢, go, g3 (With respective to their variables) does not vanish in O. If
f:9(0O) — R is integrable (on g(O)), then

Jf flz,y,2)dV = ijf g1(u, v, w), go(u, v, w), gguvw (91,92, 93) ’dV’

8 (u,v,w)
9(0)
where the integral on the right- hand side is the triple integral of the function
f(gl(u,v,w),gg(u,v,w),gg(u,v,w 5 (u v,w) (with variables u, v, w) on O.

Remark 14.38. Suppose that O is an open set in the plane such that the boundary of

O, denoted by 0O, has zero area. Under suitable assumptions (for example, if the set of



discontinuities of f has zero area and f is bounded above or below by a constant), we have

Hf(x,y) dA = f fla,y)dA. (14.5.3)
0 o)

Example 14.39. Let B = {(z,y) |#* + y* < R*} —[0,1) x {0}. Then the polar coordinate
x = x(r,0) = rcosf and y = y(r,0) = rcosf is an one-to-one continuously differentiable
function from O = (0, R) x (0,27) — R? and the inverse function r = r(z,y) = /22 + y?

and

Arccos —— ify>0,

$2+y2
0=0(x,y) = T ify=0,
I — arccos ———— if y <0,

Va2 +y?
is also continuously differentiable (which you proved in Quiz). Therefore, the change of

variables formula implies that
f f(z,y)d J f(rcosf,rsin@)rdA’.
(0,R) % (0,2)

Let D(R) = {(z,y)|2® + y* < R*}. Then D = B U dB and [0,R] x [0,27] = (0, R) X
(0,27) U A[(0, R) x (0,2m)]; thus (14.5.3) further implies that

ﬂfxydA_ H F(rcos6,rsind)rdA’.

D(R) x[0,27]

In general, if a region R, in polar coordinate, can be expressed as

R = {<T79)‘a < 0 < bvgl(g) ST S 92(0)}7

Hf(x,y) dA:Lb(fgi:)f(rcos@,rsin&)rdr) df
). 1

g

then

while if R, in polar coordinate, can be expressed as
R = {(T’,Q)‘C< r< d7h1(r) < 0 < h?(,r)}7

then

d ha(r)
f(z,y)dA = f(rcosf,rsin@)rdd) dr.
L xr,y J;(J T COS rsmdo)r ) T

hi(r)



Example 14.40. In this example we compute the double integral JJ\/l + 42?2 + 4y? dA

that appears in Example 14.14, where R = {(z,y) ’xQ +y? < 1}. f

Using the polar coordinate, R = {(r, 0) ‘ 0<r<1,0<6< 27r}; thus

21 1 2T 5
J 1+4x2+4y2dA—J (J \/1+4r2-rdr>d6—f [l(1+4r2)2]
0 0 12

0
R

r=1
de

r=0

- fﬁ@\@ ~1)df =27 (5V5 — 1).

0

dA that

r
T2—332—y2

appears in Example 14.13, where R = {(m, Y) ‘ 2?2 +y? < 02} with 0 <o <.

Example 14.41. In this example we compute the double integral ff
R

Using the polar coordinate (here we let p be the radial variable instead of r since r in
this integral is a fixed constant), R = {(p, 0) ’ 0<p<o,0<0< 27?}; thus

2 p=c

[deA:L%(LU\/%—pQ-pdp)d@:L (—m/ﬁ—p?)‘pzode
:f’r (12 — VT = o7) d = 2m (1 — /T = 7).

0

Example 14.42. Let S be the subset of the upper hemisphere z = /1 — 22 — y? enclosed

by the curve C' shown in the figure below

Hemisphere z

z2=1/1—x2—y>2 Curve C

Figure 14.5: Curve S on the upper hemisphere

where each point of C' corresponds to some point (costsint, sin?t, cos t) with t € [—g, g}
Find the surface of S.



7T7Ti|
3

Let (z,y) be a boundary point of R. The (x,y) = (costsint,sin?t) for some t € [—5, 5

thus

2%+ y* = cos’ tsin®t + sin*t = (cos?t + sin®t) sin? ¢t = sin’t = y.

Therefore, the boundary of R consists of points (z,y) satisfying x? + y* = y which shows
1 1
that R is a disk centered at (0, 5) with radius 3 Therefore,

R={(z,9)|0<y<l,—y—y? <z <~y—y*},

and by Theorem 14.11 the surface area of S is given by JJ
R

1
V1 —a2—92
Now we apply the change of variables using the polar coordinates to compute this double

integral. Since we have found the Jacobian of this change of variables, we only need to find

the corresponding region R’ of R in the rf-plane and the change of variables formula shows

that the surface area of S is jj " dA’.
R/

Vioe

By the fact that the boundary of R’ maps to the boundary of R under the change
of variables x = rcosf and y = rsinf, we find that if (r,0) is a boundary point of R/,
then (r, ) satisfies r> = rsin6; thus the boundary of R’ consists of points (r,6) satisfying

r =sinf or r = 0 in the rf-plane. Since R locates on the upper half plane, 0 < < 7, and

the center of the disk R corresponds to point (%, g) in the rf-plane, we conclude that
R'={(r,0)|0<6<7,0<r<sinb}.

Therefore,

gﬁdA/:f(Lwﬁrdr>d9:L[(_m)

:f(1—|cose|)d9:7r—2f

P o—z
20089d6:7r—2(sin9‘ >:7T—2.
0 0 =0

r=sin

| a0

r=0

Q0
Example 14.43. In this example we compute the improper integral f e dx. First
0

we note that this improper integral converges since 0 < e < e forall z = 1 and

0 0
f e *dr = e! < o0, the comparison test implies that f e dx converges.
1 1



o0 2 © 2
Let I = f e dx. Then I = j e Y dy; thus
0 0

0

I*= (LOO e dx) ( L e dy) = L@O (LOO eV dy) e dr
= JOOO <J000 e T ey dy) dr = LOO (LOO o~ (@ +?) dy) dr — [{[ o~ (@ +y?) A,

where R is the first quadrant of the plane. In polar coordinate, the first quadrant can be

expressed as 0 <r <ooand 0 <0 < g; thus using the polar coordinate we find that

I? = fog (J:O e_rzrdr)de = LQ (—%e‘r2>

By the fact that I > 0, we conclude that [ = \é%

Example 14.44. The Jacobian in the change of variable using spherical coordinate is
p?sin ¢ Let @ be a solid region in space, and f : Q — R be continuous. Suppose that @Q, in

spherical coordinate, can be expressed as
{(0797 (b) ‘ a < ¢ < bagl<¢) <0< 92(¢)7
Example 14.45. In this example we reconsider the volume of @) in Example 14.30, where

Q={(z,y,2) | (v,y) € R,a’ + 4> < 2 < /6 — 22 — y2},

and R is a disk centered at the origin with radius v/2.

Using the cylindrical coordinate, the region () can be expressed as
{(r6,2)[0<r<v2,0<6<2mr®<z<V6—12}.

Therefore, the volume of @) is given by

[ ar= 1L raardao= [T o=y oo
Q

:L [—%(6—7"2) —}Lr“] T:ﬁdezfﬁ(_

r=0 0

1

—1+2V6)df =27 (2v6 - ) .

[SIY)

w| oo




Example 14.46. Find the volume of the solid region () bounded below by the cone z =
A/22 + 42 and above by the sphere 2% 4+ y? + 22 = 9.
Using spherical coordinate, () can be expressed as

{(p,9,¢)‘0<p<3,0<9<27T,0<¢<

S

Therefore, the volume of @) is given by

gf dV = f ij (ij%inqsdp)de}dqs_ 187TJ1 sin ¢ dp = 18w (1 — *f),

0

Example 14.47. Find the double integral ff e~ 2 dA, where R is the region given in the
R

following figure.

h [
X y=—
"

Consider the following change of variables: = = \/? and y = y/uv. In order to apply

u
the change of variables formula to find the double integral, we need to know

1. What is the Jacobian of this change of variable?

2. What is the corresponding region of integration in the uv-plane?

We first note that for the change of variables to make sense, u,v have the same sign.

W.L.O.G., we assume that the corresponding region in the uv-plane lies in the first quadrant.
We compute the Jacobian and find that

}\/@.i} L1

Oz,y) _|2Ve w? 2Vo wf 1 -1 11 1

0(u,v) 1w L u 4 wu 4 u 2u
2 \/uv 2 y/uv

Now we find the corresponding region R’ in the uwv-plane. The rule of thumb is that a

one-to-one continuously differentiable function whose Jacobian does not vanish maps the



boundary of a region to the boundary of its image. Therefore, the boundary of R’ is given
by u = %, u=2and v =1, v = 4. Since the point (z,y) satisfying xy = 2 and % =1

corresponds to u = 1 and v = 2, we find that R’ = [%, 2] x [1,4]. Therefore, the change of

variable formula implies that

[forans J] cogor-f ([ 5o

R 12]x[1,4]
2 _e_%
- ﬁ =)
2

A more fundamental question is: why do we choose this change of coordinate? The

v=4

2
} du = (6_% — e_Q)J ldu = 31n2(6_% — 6_2) .

11U
2

v=1

general philosophy is to “straighten” the boundary so that in the new coordinate system

the corresponding region becomes a region bounded by straight lines. Observing that the

: . . 1 o
boundaries of the region R consists of four curves LA 7 LA 2, xy = 1 and zy = 4, it is
x T

quite intuitive that we choose u = Y and v = xy as our change of variables (in a reverse
x

order). Solving for x,y in terms of u,v, we find that x = \/g and y = Juv.
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