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Problem 1. Find the following integrals.

1.
ż

x ´ 1

x2 ´ 4x ´ 5
dx 2.

ż

x ´ 1

x2 ´ 4x+ 5
dx 3.

ż

1

x
?
4x+ 1

dx 4.
ż

1

x+ 4 + 4
?
x+ 1

dx

5.
ż

1

3 ´ 2 sinx
dx 6.

ż

1

1 + sin θ + cos θ dθ 7.
ż

4

tanx ´ secx dx 8.
ż

1 + 4 cotx
4 ´ cotx dx

Solution. 7. Note that the integrand is identical to 4 cosx
sinx ´ 1

.

ż

4

tanx ´ secx dx =

ż

4 cosx
sinx ´ 1

dx =

ż

4

u
du = 4 ln |u| + C = 4 ln | sinx ´ 1| + C

= 4 ln(1 ´ sinx) + C . ˝

Problem 2. Show that the following functions are decreasing on (0,8).

1. y =
(
1 +

1

2x

)x+0.5. 2. y =
(
1 +

1

x

)x+0.5.

Proof. 1. Let f(x) =
(
1 +

1

2x

)x+0.5. Then

f 1(x) =
d

dx
exp

(
(x+ 0.5) ln

(
1 +

1

2x

))
= exp

(
(x+ 0.5) ln

(
1 +

1

2x

))[
ln
(
1 +

1

2x

)
+ (x+ 0.5)

1

1 + 1
x

´1

2x2

]
= f(x)

[
ln
(
1 +

1

2x

)
´

1

2(x+ 1)
´

1

4

1

x2 + x

]
.

Let g(x) = ln
(
1 +

1

2x

)
´

1

2(x+ 1)
´

1

4

1

x2 + x
. Then

g 1(x) =
1

1 + 1
2x

´1

2x2
+

1

2(1 + x)2
+

1

4

2x+ 1

(x2 + x)2
=

´1

2x(x+ 1)
+

1

2(1 + x)2
+

1

4

2x+ 1

x2(x+ 1)2

=
´2x(x+ 1) + 2x2 + 2x+ 1

4x2(x+ 1)2
=

1

4x2(x+ 1)2
ą 0 .

Therefore, g is strictly increasing on (0,8); thus

g(x) ď lim
xÑ8

g(x) = lim
xÑ8

[
ln
(
1 +

1

2x

)
´

1

2(x+ 1)
´

1

4

1

x2 + x

]
= ln 1 = 0 .

Since f(x) ą 0 for all x ą 0, we conclude that f 1(x) ď 0 for all x ą 0; thus f is decreasing on
(0,8).



2. Let f(x) =
(
1 +

1

x

)x+0.5. Then

f 1(x) =
d

dx
exp

(
(x+ 0.5) ln

(
1 +

1

x

))
= exp

(
(x+ 0.5) ln

(
1 +

1

x

))[
ln
(
1 +

1

x

)
+ (x+ 0.5)

1

1 + 1
x

´1

x2

]
= f(x)

[
ln
(
1 +

1

x

)
´

1

x+ 1
´

1

2

1

x2 + x

]
.

Let g(x) = ln
(
1 +

1

x

)
´

1

x+ 1
´

1

2

1

x2 + x
. Then

g 1(x) =
1

1 + 1
x

´1

x2
+

1

(1 + x)2
+

1

2

2x+ 1

(x2 + x)2
=

´1

x(x+ 1)
+

1

(1 + x)2
+

1

2

2x+ 1

x2(x+ 1)2

=
´2x(x+ 1) + 2x2 + 2x+ 1

2x2(x+ 1)2
=

1

2x2(x+ 1)2
ą 0 .

Therefore, g is strictly increasing on (0,8); thus

g(x) ď lim
xÑ8

g(x) = lim
xÑ8

[
ln
(
1 +

1

x

)
´

1

x+ 1
´

1

2

1

x2 + x

]
= ln 1 = 0 .

Since f(x) ą 0 for all x ą 0, we conclude that f 1(x) ď 0 for all x ą 0; thus f is decreasing on
(0,8).

We note that the two functions given above are indeed strictly decreasing since for 0 ă x ă y ă z,
in both case we have

g(x) ă g(y) ă g(z) ;

thus passing to the limit as z Ñ 8 we obtain that g(x) ă g(y) ď 0 for all 0 ă x ă y. This shows
that g(x) ă 0 for all x ą 0; thus f 1(x) ă 0 for all x ą 0 which shows that f is strictly decreasing on
(0,8). ˝

Problem 3. In this example you are asked to compute the integral of y = xex by the Riemann sum.
Complete the following.

1. Show that if r ‰ 1, then
n
ř

k=1

krk =
r(1 ´ rn)

(1 ´ r)2
´

nrn+1

1 ´ r
.

2. Compute
ż a

0
xex dx by the limit the Riemann sum of y = xex for regular partition using the

right end-point rule.

3. Find an anti-derivative of y = xex.

Problem 4 (Integrating Factor).

1. Let f, g : [a, b] Ñ R be a continuous function, F be an anti-derivative of f , and y : [a, b] Ñ R
satisfies that

y 1 + f(x)y = g(x) . (‹)

Find an expression of y.



2. Find the function y satisfying y 1 + x2y = 2x2 and y(0) = 1.

Solution. 1. Let F be an anti-derivative of f . Then F 1 = f so that

d

dx

[
eF (x)y(x)

]
= eF (x)F 1(x)y(x) + eF (x)y 1(x) = eF (x)

[
y 1(x) + f(x)y(x)

]
= eF (x)g(x) .

Therefore, eFy is an anti-derivative of eFg which shows that

y(x) = e´F (x)

ż

eF (x)g(x) dx .

2. Let F (x) =
x3

3
. Then F 1(x) = x2; thus

d

dx

[
ex

3/3y(x)
]
= 2x2

which shows that

ex
3/3y(x) =

ż

2x2ex
3/3 dx

u=x3/3
=

ż

2eu du = 2eu + C = 2ex
3/3 + C .

Therefore,
y(x) = 2 + Ce´x3/3 .

Since y(0) = 1, we conclude that C = ´1 so that y(x) = 2 ´ e´x3/3. ˝

Hint: Multiply both sides of (‹) by exp(F (x)) and observe that the left-hand side is the derivative
of a certain function, where F is an anti-derivative of f .

Problem 5. 1. Show that for 0 ă a ă b,

e
ln a+ln b

2 ¨ (ln b ´ ln a) ă

ż ln b

ln a

ex dx ă
eln a + eln b

2
¨ (ln b ´ ln a) .

2. Using the result above to show that for 0 ă a ă b,
?
ab ă

b ´ a

ln b ´ ln a
ă

a+ b

2
.



Problem 6. Prove the following inequalities.

1. ex ą 1 + ln(1 + x) for all x ą 0.

2. ex ą 1 + (1 + x) ln(1 + x) for all x ą 0.

3. ex ě 1 + x+
x2

2!
+

x3

3!
+ ¨ ¨ ¨ +

xn

n!
for all x ě 0 and n P N.

Problem 7. Let a, b be two positive numbers, p, q any nonzero numbers, and p ă q. Prove that[
θap + (1 ´ θ)bp

] 1
p ď

[
θaq + (1 ´ θ)bq

] 1
q @ θ P (0, 1) .

Hint: Show that the function f(p) =
[
θap + (1 ´ θ)bp

] 1
p is an increasing function of p.

Proof. Let θ P (0, 1) be given, and define f(p) =
[
θap + (1 ´ θ)bp

] 1
p . Then

f 1(p) =
d

dp

[
θap + (1 ´ θ)bp

] 1
p =

d

dp
exp

( ln
[
θap + (1 ´ θ)bp

]
p

)
= exp

( ln
[
θap + (1 ´ θ)bp

]
p

) θap ln a+(1´θ)bp ln b
θap+(1´θ)bp

p ´ ln
[
θap + (1 ´ θ)bp

]
p2

= f(p)
θap ln(ap) + (1 ´ θ)bp ln(bp) ´

[
θap + (1 ´ θ)bp

]
ln
[
θap + (1 ´ θ)bp

]
p2
[
θap + (1 ´ θ)bp

]
= f(p)

(1 ´ θ)bp
[

ln(bp) ´ ln(ap)
]

´
[
θap + (1 ´ θ)bp

]
ln
[
θ + (1 ´ θ)(b/a)p

]
p2
[
θap + (1 ´ θ)bp

]
=

apf(p)

p2
[
θap + (1 ´ θ)bp

][(1 ´ θ)(b/a)p ln(b/a)p ´
[
θ + (1 ´ θ)(b/a)p

]
ln
[
θ + (1 ´ θ)(b/a)p

]]
Let g(x) = (1 ´ θ)x lnx ´

[
θ + (1 ´ θ)x

]
ln
[
θ + (1 ´ θ)x

]
. Then the above identity shows that

f 1(p) =
apf(p)

p2
[
θap + (1 ´ θ)bp

]g((b/a)p) ;
thus to show that f is increasing on (0,8) it suffices to shows that g(x) ě 0 for x ą 0. Compute the
first and the second derivative of g, we find that

g 1(x) = (1 ´ θ)(lnx+ 1) ´ (1 ´ θ) ln
[
θ + (1 ´ θ)x

]
´

θ + (1 ´ θ)x

θ + (1 ´ θ)x
¨ (1 ´ θ)

= (1 ´ θ) lnx ´ (1 ´ θ) ln
[
θ + (1 ´ θ)x

]
= (1 ´ θ) ln x

θ + (1 ´ θ)x

and
g 11(x) = (1 ´ θ)

(1
x

´
1 ´ θ

θ + (1 ´ θ)x

)
=

θ(1 ´ θ)

x
[
θ + (1 ´ θ)x

] .
Therefore, g 1(x) = 0 if and only if x

θ + (1 ´ θ)x
= 1 or equivalently, x = 1. This shows that x = 1 is

the only critical point of g, and the second derivative test implies that g attains its absolute minimum
at x = 1. Therefore, for x ą 0 we have

g(x) ě g(1) = (1 ´ θ) ln 1 ´
[
θ + (1 ´ θ)

]
ln
[
θ + (1 ´ θ)

]
= 0

which concludes that f is increasing on (0,8). ˝



Problem 8. 1. Find an equation for the line through the origin tangent to the graph of y = lnx.

2. Show that ln x ă
x

e
for all x ‰ e.

3. Show that xe ă ex for all x ‰ e.

4. Show that if e ď A ă B, then AB ą BA.

Proof. 1. Suppose that the tangent point is (a, ln a). Then the tangent line of the graph of y = lnx

passing through (a, ln a) is given by

y =
1

a
(x ´ a) + ln a .

Since the tangent line passing through (0, 0), we must have 0 = ´1 + ln a which shows that
a = e. Therefore, the tangent line of the graph of y = lnx passing through (0, 0) is given by

y =
1

e
(x ´ e) + ln e =

x

e
.

2. Graphically speaking, since the graph of y = lnx is (strictly) concave downward, any tangent
line of the graph of y = lnx lies above the graph of y = lnx; thus we have ln x ď x

e
for all

x ą 0, and the strictly concavity of the graph of f shows that lnx ă
x

e
for all x ą 0 and x ‰ e.

To see this analytically, let f(x) = lnx´
x

e
. Then f 1(x) =

1

x
´

1

e
; thus x = e is the only critical

point of f and

f 1(x) ą 0 if 0 ă x ă e and f 1(x) ă 0 if x ą e .

The first derivative test shows that f attains its absolute minimum at e. Moreover, f is strictly
increasing on (0, e) and is strictly decreasing on (e,8). Therefore,

f(x) ă f(e) = 0 on (0, e) and f(x) ă f(e) = 0 on (e,8)

so we conclude that ln x ă
x

e
for all x ą 0 and x ‰ e.

3. Note that part 2 shows that

ln(xe) = e lnx ă x = x ln e = ln(ex) @x ą 0 and x ‰ e .

Therefore, since ln is strictly increasing on (0,8), we have

xe ă ex @x ą 0 and x ‰ e .

4. Here we present two ways of proving part 4.



(a) From part 2 and the logarithmic properties of ln, we have

ln e+ lnx ln(ex) ă
ex

e
= x @x ą 0 and x ‰ 1 .

Therefore,
lnx ă x ´ 1 @x ą 0 and x ‰ 1 .

Let e ě A ă B. Then B

A
ą 1; thus the inequality above shows that

ln B

A
ă

B

A
´ 1 ă

(B
A

´ 1
)

lnA ,

where the last inequality follows from the fact that lnA ą 1 and B

A
´ 1 ą 0. Therefore,

lnB ´ lnA ă
B

A
lnA ´ lnA

which shows that A lnB ă B lnA. Therefore,

ln(BA) = A lnB ă B lnA = ln(AB)

and the fact that ln is strictly increasing implies that BA ă AB.

(b) Let A ě e be given, and let f(x) = A lnx ´ x lnA on [A,8). Then

f 1(x) =
A

x
´ lnA =

lnA

x

( A

lnA
´ x

)
.

Since A ě e, we have A

lnA
ă A; thus f 1(x) ă 0 if x P [A,8). This shows that f is strictly

decreasing on [A,8); thus if B ą A, we have f(A) ą f(B) which implies that

0 = A lnA ´ A lnA = f(A) ą f(B) = A lnB ´ B lnA

Therefore, B lnA ą A lnB which gives the desired result. ˝

Problem 9 (Implicit Differentiation).

1. Find y 1 if e
x
y = x ´ y.

2. Find an equation of the tangent line to the curve xey + yex = 1 at the point (0, 1).

3. Find an equation of the tangent line to the curve 1 + lnxy = ex´y at the point (1, 1)


