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Problem 1. Evaluate the following limits. Use L’Ho6pital’s Rule where appropriate. If ’Hopital’s

Rule does not apply, explain why.
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Problem 2. Evaluate the following limits:
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Solution. 1. Let f(z) = (1+ %)x —e and g(z) = % Then xh_% flz) = gﬁlglgog(x) =0 and
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which, by L’Hopital’s rule again, implies that
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6. Let f(x)=1—xIn Lte and g(x) = 1 Then x—xQIHH—J _ @) for all x > 0. It is clear
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Now we compute f’ and ¢’ and obtain that
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The case a > 1: In this case, we have lim In|a* — 1| = lim 2 = c0. Moreover,
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The case 0 < a < 1: In this case we have lim In|a” — 1| = 0 and lim x = oo; thus
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Therefore, lim [% : “x_l] T = exp(0) = 1.
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As a consequence,
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Problem 3. In L’Hopital’s 1696 calculus textbook, he illustrated his rule using the limit of the

f(z) V2a3x — 24 — av/a’x
l‘ =
a — vax3

as x approaches a, a > 0. Find this limit.
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Problem 4. For what values of a and b is the following equations true?
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Proof. 2. Using the limit lim ST 0, we find that hH(l) sinbr_ b. Therefore,
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Since tan32x + % = w, if a = —2, then the facts that lim(tan 2z — 2z) = lim z® = 0
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where we have used the limit 1111(1) —2 —3 to conclude that last equality. L’Hopital’s Rule
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then implies that
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On the other hand, if a # —2, by the computation above we have
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which does not exists, a contradiction to (**). Therefore, a = —2 and b = —3 a

Problem 5. Show that lim 2% " = 1 for every positive integer n.
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Problem 6. Let f(z) = { 0 it 0
ifx=0.

1. Find f’(0). Is f continuously differentiable?

2. Show that f has derivatives of all orders on R; that is, f is infinitely many times differentiable
on R.

Hint: First show by induction that there is a polynomial p,(z) and a non-negative integer k, such

that £ (z) = sz(gﬂi])c{(l“) for x # 0.



Proof. 1. By the definition of the derivative,
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On the other hand, if x # 0, we can apply the chain rule to find that
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=0 so that f'(0) = 0.

Therefore,
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To see if f is continuously differentiable, it suffices to check if lil% f'(z) = f'(0) since it is
obviously that f’ is continuous on R\{0}. Nevertheless, by the facts that lirp Y3 = +oo,
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where the last equality is concluded from (xx*), L’Hopital’s Rule implies that
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Therefore, lir% f'(x) =0 = f'(0) which shows that f is continuously differentiable.

2. Clearly f is infinitely many times differentiable on R\{0}. It suffices to show that f*)(0) exists
for all k € N. In fact, in the following we prove that f™(0) = 0 for all n € N. We prove by

claiming that

for each n € N there exist a polynomial p,, satisfying p,(0) # 0 and a natural number k,

such that f™(z) = W for x # 0.




Nevertheless, from part 1 we have p;(z) = 2 and k; = 2. Now suppose that f™ (z) = —Fn

for x # 0 for some polynomial p,, satisfying p,(0) # 0 and natural number k,. Then for x # 0,
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where p,.1(z) = 2%p) (x) + 2p,(z) — k,2%p, () is a polynomial satisfying p,11(0) = 2p,(0) # 0,
and k1 = k, + 3.

Next we claim that 1
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for all m € N. Clearly (¢) holds for m = 1. Suppose that (¢) holds for m = n. Then for
m = n + 1, by the fact that
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where the last equality follows from the induction hypothesis. Therefore, L’Hopital’s Rule
implies that

which shows that (o) holds for m = n + 1. By induction, we find that (¢) holds for all m € N.

Finally we prove f™(0) = 0 for all n € N by induction. From part 1 we find that f’(0) = 0.
Suppose that f™(0) = 0. Then
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Similar to part 1, we consider two one-sided limits lim pn(#ﬁx) and lim ]%(#ﬂx) Suppose
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Similarly, lim = 0; thus f"*Y(0) = 0. By induction we conclude that f™(0) =0
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