Problem 1. Let θ be a real number such that $\sin \frac{\theta}{2} \neq 0$.

1. Show that
$$\sum_{k=1}^{n} \sin(k\theta) = \frac{\cos\frac{1}{2}\theta - \cos(n + \frac{1}{2})\theta}{2\sin\frac{\theta}{2}}.$$

2. Show that
$$\sum_{k=1}^{n} \cos(k\theta) = \frac{\sin(n+\frac{1}{2})\theta - \sin\frac{1}{2}\theta}{2\sin\frac{\theta}{2}}.$$

Problem 2. Let θ be a real number such that $\sin \theta \neq 0$. Show that

$$\cos^2\theta + \cos^2(2\theta) + \dots + \cos^2(n\theta) = \frac{n}{2} + \frac{\sin(n\theta)\cos(n+1)\theta}{2\sin\theta} \qquad \forall n \in \mathbb{N}.$$

Problem 3. Let θ be a real number and $\theta \neq k\pi$ for all $k \in \mathbb{Z}$ ($k \neq \pi$ of $n \neq k\pi$). Show that

$$\cos\theta \cdot \cos(2\theta) \cdot \dots \cdot \cos(2^n \theta) = \frac{\sin(2^{n+1} \theta)}{2^{n+1} \sin \theta} \qquad \forall n \in \mathbb{N} \cup \{0\}.$$

Problem 4. Let α, β, γ be real numbers. Suppose that

$$\cos \alpha + \cos \beta + \cos \gamma = 0,$$

$$\sin \alpha + \sin \beta + \sin \gamma = 0.$$

Show that

1.
$$\cos(\alpha - \beta) = -\frac{1}{2}.$$

2.
$$\cos(\alpha + \beta) = \cos(2\gamma)$$
.

3.
$$\sin(\alpha + \beta) = \sin(2\gamma)$$
.

4.
$$cos(2\alpha) + cos(2\beta) + cos(2\gamma) = 0$$
.

5.
$$\sin(2\alpha) + \sin(2\beta) + \sin(2\gamma) = 0.$$

Problem 5. Let θ be a real number such that $t = \tan \frac{\theta}{2}$ also be a real number. Show that

$$\sin \theta = \frac{2t}{1+t^2}$$
 and $\cos \theta = \frac{1-t^2}{1+t^2}$.

Note that the two identities above imply that $\tan \theta = \frac{2t}{1-t^2}$.

Problem 6. (這題雖不指定上臺講解,但請所有同學都能好好閱讀證明,了解整個流程為什麼就證明了 $\lim_{x\to c}f(x)=0$) Let $f:(0,\infty)\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{p} & \text{if } x = \frac{q}{p}, \, p, q \in \mathbb{N} \text{ and } (p, q) = 1, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Proof. Let $\varepsilon > 0$ be given. Then there exists a prime number p such that $\frac{1}{p} < \varepsilon$. Let q_1, q_2, \dots, q_n be rational numbers in $\left(\frac{c}{2}, \frac{3c}{2}\right)$ satisfying

$$q_j = \frac{s}{r}, (r, s) = 1, 1 \le r \le p,$$

and define $\delta = \frac{1}{2} \min \left(\left\{ |c - q_1|, |c - q_2|, \cdots, |c - q_n| \right\} \setminus \{0\} \right)$. Then $\delta > 0$. Suppose that x satisfies that $0 < |x - c| < \delta$.

- 1. If $x \in \mathbb{Q}^{\mathbb{C}}$, then f(x) = 0 which shows that $|f(x)| < \varepsilon$.
- 2. If $x \in \mathbb{Q}$, then $x = \frac{s}{r}$ for some natural numbers r, s satisfying (r, s) = 1. By the choice of δ , we find that r > p; thus

$$|f(x)| = \frac{1}{r} < \frac{1}{p} < \varepsilon$$
.

In either case, $|f(x)| < \varepsilon$; thus we establish that

$$|f(x) - 0| < \varepsilon$$
 whenever $0 < |x - c| < \delta$.

Therefore, $\lim_{x\to c} f(x) = 0$.

Problem 7. Let f be given in Problem 6 and $g: \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = \begin{cases} f(x) & \text{if } x > 0, \\ f(-x) & \text{if } x < 0, \\ 1 & \text{if } x = 0. \end{cases}$$

Find $\lim_{x\to 0} g(x)$.