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Problem 1. The second Taylor polynomial for a twice-differentiable function f at x = ¢ is called the
quadratic approximation of f at = ¢. Find the quadratic approximate of the following functions
at x = 0.

(1) f(z) =Incosz  (2) f(z) =e™” (3) f(z) =tanz  (4) f(z) =

(5) f(x) =e*sin’x (6) f(z) =e"In(l + 2) (7) f(x) = (arctan x)?

Problem 2. Let f have derivatives through order n at x = ¢. Show that the n-th Taylor polynomial
for f at ¢ and its first n derivatives have the same values that f and its first n derivatives have at

r = C.

Problem 3. Suppose that f is differentiable on an interval centered at z = ¢ and that g(x) =
bo+bi(x —¢)+ -+ b,(x — )" is a polynomial of degree n with constant coefficients by, by, - - -, by.

Let E(x) = f(x) — g(x). Show that if we impose on g the conditions
1. E(c) =0 (which means “the approximation error is zero at x = ¢”);

9. lim L&)

T—cC (x — C)n

= 0 (which means “the error is negligible when compared to (z — ¢)"),

then ¢ is the n-th Taylor polynomial for f at ¢. Thus, the Taylor polynomial P, is the only
polynomial of degree less than or equal to n whose error is both zero at + = ¢ and

negligible when compared with (z —¢)".

Problem 4. Show that if p is an polynomial of degree n, then

n ) (g
p($+1)zzpk§ )

k=0

Problem 5. In Chapter 3 we considered Newton’s method for approximating a root/zero r of the
equation f(x) = 0, and from an initial approximation z; we obtained successive approximations s,

x3, - - -, where

f(@n)
Tpy1 =T ) n
Show that if f” exists on an interval I containing r, ,,, and z,,11, and |f”(z)| < M and |f'(z)| = K

for all x € I, then
M

|$n+1 - 7“’ < ﬁmn - T|2

This means that if z, is accurate to d decimal places, then z,,; is accurate to about 2d

decimal places. More precisely, if the error at stage n is at most 107, then the error

M
at stage n + 1 is at most ﬁlo—%.

Hint: Apply Taylor’'s Theorem to write f(r) = Pa(r) + Ra(r), where P, is the second Taylor

polynomial for f at x,.



Proof. By Taylor’s theorem, there exists & between r and x,, such that

0= £(r) = flaa) + P~ 2) + T, -2,
Therefore, @) @
f/ Tn) fllf
O T B Bl
thus by the iterative relation we obtain that
/ n " M
|Zni1 =7 = |20 J;@)—T‘:‘f ) o = 1)°| < grelen =1l D

Problem 6. Consider a function f with continuous first and second derivatives at © = ¢. Prove that
if f has a relative maximum at x = ¢, then the second Taylor polynomial centered at x = ¢ also has

a relative maximum at z = c.

Problem 7. Let f : (a,b) — R be (n+ 1)-times differentiable, and ¢ € (a,b). In this problem you are
ask to derive the remaind associated with the n-th Taylor polynomial for f at ¢ in Schlomilch-Roche

form:

(n+1)
mo) = Lo po - g, 8

Suppose that f: (a,b) — R is (n + 1)-times differentiable. For a fixed z € (a, b), define

Z

Note that ¢(c) = R, (x). Complete the following.

(n+1)
1. Show that ¢'(z) = —fi(z)(x — )"

n!

I—Zk.

2. Apply the Cauchy mean value theorem to the two functions ¢(z) and ¢(z) = (z — 2)? for some
pe{l,2,--- ,n}; that is,

for some £ between ¢ and x,

to show (x).

3. Use () to show that

8
\

n(l+z) = Vree(—1,1]. (%)

Remark: The remainder in Schlomilch-Roche form with p = 1 is called Cauchy remainder, and

Lagrange remainder is obtained by letting p = n + 1 in ().



Proof. 1. We compute the derivative of ¢ as follows:

n k) (5 noe(l) *) (5
¢/<Z):_Zi|:f ( )<I—Z>ki|:—2|:f ( )(x_z)k+fk‘( )]C(‘I—Z)kil(—l)

— dz k! = k!
— _ i f(k:{:l')(z) (SL’ - Z)k 4 i f(]Z'(Z)k<$ - Z)k 1
— _kio f(k+1)<z) (l’ o Z)k _|_ki0 f(k)(z) (iIZ’ o z)kfl
k=0 k! k=1 (k - 1)'

2. Let I = (min{c, 2}, max{c,z}) and I = [min{c, z}, max{c,x}]. Then ¢,¢ : [ — R are continu-
ous and ¢, : I — R are differentiable. Moreover, 1'(z) = —p(z — 2)?~! so that ¥'(z) # 0 for
all z € I. Therefore, the Cauchy MVT implies that there exists £ between ¢ and x such that

(n+1)
o) ole) _ () _ T e e
(x) —Ple)  ¢(§) —plz — &t nlp '
Since p(z) = ¥ (x) = 0, we find that
(n+1) (n+1)
Ruw) = o) = 20 (o gy = L0 gpiore oy
nip n.p
3. Let f(x) =1In(1+ x). Then
Fr () = (=1)"nl(1 + z)~ D ()

(a) the case z € (0, 1]: using (x) (with ¢ =0 and p =n+ 1) and (¢) we find that
(D"l 4+~ (—1)”( x >”

R, = =
(@) nl(n+1) ‘ n+1\14¢&
Since 0 < £ < x < 1, we have + < 1; thus
1
|R,(x)] < —0 asn— .

n+1
Therefore, identity (xx) holds for x € (0, 1].

(b) the case z € (—1,0): using (%) (with ¢ =0 and p = 1) and (¢) we find that

(=1)"nl(1+ &)~ T (T E\"
-~ —n = (-1 .
Ful) n! rle =&t = (=) 1+§<1+§>
Since —1 <z < &£ <0, Wehave‘m_€’<|x\;thus
11¢
| R (x T ‘]x|”—>0 asn — 0.

Therefore, identity (%) holds for z € (—1,0).
(c) Clearly, identity (%) holds for z = 0.

Combining the three cases above, we conclude that identity (%) holds for z € (—1, 1]. a



