Exercise Problem Sets 6
Apr. 06. 2024

Problem 1. In the following sub-problems, find the limit if it exists or explain why it does not exist.
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Problem 2. Discuss the continuity of the functions given below.
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Solution. 3. Since |sinz| < |z| for all z € R, we find that if (x,y) # (0,0),
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Since ( 1)1rr% : |z| + y* = 0, the Squeeze Theorem implies that
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which shows that f is continuous at (0,0). On the other hand, if (a,b) # (0,0), then the

continuity of the sine function and polynomials shows that
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thus f is continuous on R2. =
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Problem 3. Let f(z,y) = L ifo _
if0<y<at.

1. Show that f(z,y) — 0 as (x,y) — (0,0) along any path through (0,0) of the form y = ma®
with 0 < o < 4.

2. Show that f is discontinuous on two entire curves.
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Solution. Note that for each x,y € R and z # 0, we have

o0 o0
(z+y)" 1(w+y>" <m+y>
nZO nlzn Z n! z - P z )

=0

3

Therefore,
) 0 a
o Z (x+y)" o exp <$ + y>
0 (z,y,2)=(1n4,In9,2) v nlzn ox (2,y,2)=(In 4,In 9,2) z
(x—l—jg)l 1 (ln4+1n9>
= ex - =—exp|————
P z Z (z,y,2)=(In4,In9,2) 2 P 2
0 n
so the fact that 4+ _ = In 6 shows that 2 > @ty _ 3. o
2 ox (z,y,2)=(In4,In9,2) ;,—0 nlzn
2 2\ 2 . . . . 6f
Problem 5. Let f(z,y) = (z* 4+ y*)5. Find the partial derivative E
T

Problem 6. Let f(z,y,z) = 2y®2® + arcsin(z+/z). Find f,., in the region {(z,y, 2) | 2%z < 1}.

Problem 7. Let @ = (a1, as, - ,a,) be a unit vector, & = (x1, 2, -+ ,2,), and f(x1,x9, -+ ,2,) =
exp(a - ). Show that

o*f | 0%f o*f
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Problem 8. Let f(z,y) = z(22 + y?)~ 25 Find f,(1,0).

Problem 9. Let f(z,y) Show that
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in the region {(x,y)‘x <1l,y>1land zy < 1}.

Solution. By the substitution of variable s = xt, we find that
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Therefore, by the FTOC we obtain that
1 (™ dt Y 1
z\T, = T 5 + -
fo(@.y) sz V1—13 \/1—x3y3 V1 — 23
1 Jy dt N Yy 1
oz )y V18 V1—a3y3 V1—a3

On the other hand, since
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so that integrating by parts shows that
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which is identical to f,(z,y) computed above. D

Problem 10. The gas law for a fixed mass m of an ideal gas at absolute temperature T', pressure
P, and volume V is PV = mRT, where R is the gas constant. Show that
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which conclude the proof. O

Problem 11. The total resistance R produced by three conductors with resistances Ry, Ry, R3

connected in a parallel electrical circuit is given by the formula
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Solution. Taking the partial derivative of the equation w.r.t. R;, we obtain that

Find by directly taking the partial derivative of the equation above.
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thus the implicit differentiation shows that
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Problem 12. Find the value of Z; at the point (1,1, 1) if the equation
ry+ 22 — 292 =0

defines z as a function of the two independent variables  and y and the partial derivative exists.

Jdz

Problem 13. Find the value of 5
y4

at the point (1,—1,—3) if the equation
rz+ylne —22+4=0

defines x as a function of the two independent variables y and z and the partial derivative exists.

Problem 14. Let f : R? — R be a function such that f,(a,b) and f,(a,b) exists. Suppose that
¢ = f(a,b).

1. Using the geometric meaning of partial derivatives, explain what the vectors (1,0, f.(a,b)) and
(0,1, fy(a,b)) mean.

2. Suppose that you know that there is a tangent plane (which we have not talked about, but you
can roughly imagine what it is) of the graph of f at (a,b,c). What should the equation of the
tangent plane be?

Problem 15. Define

2?2 arctan 4 — y? arctan = if 2,y # 0,
flz,y) = v Y
0 ifr=0o0ry=0.

Find f,,(0,0) and f,.,(0,0).



