Problem 1. Let m > n be natural numbers, and A be an $m \times n$ real matrix, $\boldsymbol{b} \in \mathbb{R}^m$ be a vector.

- (1) Show that if the minimum of the function $f(x_1, \dots, x_n) = ||A\mathbf{x} \mathbf{b}||$ occurs at the point $\mathbf{c} = (c_1, \dots, c_n)$, then \mathbf{c} satisfies $A^{\mathrm{T}}A\mathbf{c} = A^{\mathrm{T}}\mathbf{b}$.
- (2) Find the relation between the linear regression and (1).

Problem 2. Let $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ be n points with $x_i \neq x_j$ if $i \neq j$. Use the Second Partials Test to verify that the formulas for a and b given by

$$a = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \quad \text{and} \quad b = \frac{1}{n} \left(\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i\right)$$

indeed minimize the function $S(a,b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2$.

Proof. We compute the Hessian matrix of S and obtain that

$$\begin{bmatrix} S_{aa}(a,b) & S_{ab}(a,b) \\ S_{ba}(a,b) & S_{bb}(a,b) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} 2x_i^2 & \sum_{i=1}^{n} 2x_i \\ \sum_{i=1}^{n} 2x_i & \sum_{i=1}^{n} 2 \end{bmatrix} = 2 \begin{bmatrix} \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & n \end{bmatrix}.$$

As long as $\{(x_i, y_i) \mid 1 \le i \le n\}$ is not collinear, the Cauchy inequality implies that

$$\begin{vmatrix} S_{aa}(a,b) & S_{ab}(a,b) \\ S_{ba}(a,b) & S_{bb}(a,b) \end{vmatrix} = 4 \left[n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i \right)^2 \right] > 0.$$

The fact that $S_{aa}(a,b) > 0$ shows that S attains a relative minimum at (a,b). Since S is differentiable on \mathbb{R}^2 and $S \ge 0$ and $\lim_{b\to\infty} S(a,b) = \infty$, if S attains its extrema at some points, the absolute extremum must be an absolute minimum. Since an absolute minimum is also a relative minimum, we conclude that (a,b) given by the formula indeed minimizes S.

Problem 3. The Shannon index (sometimes called the Shannon-Wiener index or Shannon-Weaver index) is a measure of diversity in an ecosystem. For the case of three species, it is defined as

$$H = -p_1 \ln p_1 - p_2 \ln p_2 - p_3 \ln p_3,$$

where p_i is the proportion of species i in the ecosystem.

- (1) Express H as a function of two variables using the fact that $p_1 + p_2 + p_3 = 1$.
- (2) What is the domain of H?

(3) Find the maximum value of H. For what values of p_1, p_2, p_3 does it occur?

Problem 4. Three alleles (alternative versions of a gene) A, B, and O determine the four blood types A (AA or AO), B (BB or BO), O (OO), and AB. The Hardy-Weinberg Law states that the proportion of individuals in a population who carry two different alleles is

$$P = 2pq + 2pr + 2rq,$$

where p, q, and r are the proportions of A, B, and O in the population. Use the fact that p+q+r=1 to show that P is at most $\frac{2}{3}$.

Problem 5. Find an equation of the plane that passes through the point (1, 2, 3) and cuts off the smallest volume in the first octant.

Problem 6. Use the method of Lagrange multipliers to complete the following.

- (1) Maximize $f(x,y) = \sqrt{6-x^2-y^2}$ subject to the constraint x+y-2=0.
- (2) Minimize $f(x,y) = 3x^2 y^2$ subject to the constraint 2x 2y + 5 = 0.
- (3) Minimize $f(x,y) = x^2 + y^2$ subject to the constraint $xy^2 = 54$.
- (4) Maximize $f(x, y, z) = e^{xyz}$ subject to the constraint $2x^2 + y^2 + z^2 = 24$.
- (5) Maximize $f(x, y, z) = \ln(x^2 + 1) + \ln(y^2 + 1) + \ln(z^2 + 1)$ subject to the constraint $x^2 + y^2 + z^2 = 12$.
- (6) Maximize f(x, y, z) = x + y + z subject to the constraint $x^2 + y^2 + z^2 = 1$.
- (7) Maximize f(x, y, z, t) = x + y + z + t subject to the constraint $x^2 + y^2 + z^2 + t^2 = 1$.
- (8) Minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints x + 2z = 6 and x + y = 12.
- (9) Maximize f(x, y, z) = z subject to the constraints $x^2 + y^2 + z^2 = 36$ and 2x + y z = 2.
- (10) Maximize f(x, y, z) = yz + xy subject to the constraint xy = 1 and $y^2 + z^2 = 1$.

Problem 7. Use the method of Lagrange multipliers to find the extreme values of the function $f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$ subject to the constraint $x_1^2 + x_2^2 + \dots + x_n^2 = 1$.

Proof. Let $g(x_1, \dots, x_n) = x_1^2 + x_2^2 + \dots + x_n^2 - 1$. Suppose that f, under the constraint g = 0, attains its extrema at (a_1, \dots, a_n) . Since $(\nabla g)(x_1, \dots, x_n) = (x_1, \dots, x_n)$ so that $(\nabla g)(x_1, \dots, x_n) \neq 0$ if $g(x_1, \dots, x_n) = 0$, by the Lagrange Multiplier Theorem there exists $\lambda \in \mathbb{R}$ such that

$$(1,\cdots,1)=(\nabla f)(a_1,\cdots,a_n)=2\lambda(\nabla g)(a_1,\cdots,a_n)=2\lambda(a_1,\cdots,a_n);$$

that is, $2\lambda a_j = 1$ for all $1 \le j \le n$. Then $\lambda \ne 0$; thus $a_j = \frac{1}{2\lambda}$ for all $1 \le j \le n$. Since $g(a_1, \dots, a_n) = 0$, we find that

$$\frac{n}{4\lambda^2} = \sum_{i=1}^n a_i^2 = 1$$

which shows that $\lambda = \pm \frac{\sqrt{n}}{2}$ so that $a_j = \pm \frac{1}{\sqrt{n}}$ for all $1 \le j \le n$. At these two points, $f(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}) = \sqrt{n}$ and $f(-\frac{1}{\sqrt{n}}, \cdots, -\frac{1}{\sqrt{n}}) = -\sqrt{n}$. Since the constraint g = 0 defines a closed and bounded set, f attains its maximum and minimum of the level set g = 0. Therefore, f attains its maximum and minimum at $(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}})$ and $-(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}})$, respectively, and the maximum is \sqrt{n} and the minimum is $-\sqrt{n}$.

Problem 8. Find the extreme value of f(x, y, z) = z subject to the constraints $x^4 + y^4 - z^3 = 0$ and y = z.

Proof. Let $g(x, y, z) = x^4 + y^4 - z^3$ and h(x, y, z) = y - z. Then

$$(\nabla g)(x, y, z) = (4x^3, 4y^3, -3z^2)$$
 and $(\nabla h)(x, y, z) = (0, 1, -1)$

which implies that

$$(\nabla g)(x, y, z) \times (\nabla h)(x, y, z) = (3z^2 - 4y^3, 4x^3, 4x^3).$$

Suppose the extreme value of f, under the constraints g = h = 0, occurs at (x_0, y_0, z_0) .

- 1. If $(\nabla g)(x_0, y_0, z_0) \times (\nabla h)(x_0, y_0, z_0) = 0$, then $(x_0, y_0, z_0) = (0, 0, 0)$ and f(0, 0, 0) = 0.
- 2. If $(\nabla g)(x_0, y_0, z_0) \times (\nabla h)(x_0, y_0, z_0) \neq 0$, then the Lagrange Multiplier Theorem implies that there exist $\lambda, \mu \in \mathbb{R}$ such that

$$(\nabla f)(x_0, y_0, z_0) = \lambda(\nabla g)(x_0, y_0, z_0) + \mu(\nabla h)(x_0, y_0, z_0).$$

Therefore, (x_0, y_0, z_0) satisfies that

$$4\lambda x_0^3 = 0$$
, (0.1a)

$$4\lambda y_0^3 + \mu = 0\,, (0.1b)$$

$$-3\lambda z_0^2 - \mu = 1, (0.1c)$$

$$x_0^4 + y_0^4 - z_0^3 = 0, (0.1d)$$

$$y_0 - z_0 = 0$$
. (0.1e)

Then (0.1a) implies that $\lambda = 0$ or $x_0 = 0$.

- (a) If $\lambda = 0$, then (0.1b) shows $\mu = 0$; thus using (0.1c), we obtain a contradiction 0 = -1. Therefore, $\lambda \neq 0$.
- (b) If $x_0 = 0$ (and $\lambda \neq 0$), then (0.1d) implies that $y_0^4 z_0^3 = 0$. Together with (0.1e), we find that $y_0 = 0$ or $y_0 = 1$. However, if $y_0 = 0$, then (0.1b) shows that $\mu = 0$ which again implies a contradiction 0 = 1 from (0.1c). Therefore, $y_0 = z_0 = 1$ (and there are λ, μ satisfying (0.1b,c) for $y_0 = z_0 = 1$ but the values of λ and μ are not important).

Therefore, the Lagrange Multiplier Theorem only provides one possible $(x_0, y_0, z_0) = (0, 1, 1)$ where f attains its extreme value.

Since the intersection of the level surface g = 0 and h = 0 is closed and bounded, f must attains its maximum and minimum subject to the constraints g = h = 0. Since (0,0,0) and (0,1,1) are the only possible points where f attains its extrema, the maximum and minimum of f, subject to the constraint g = h = 0, is f(0,1,1) = 1 and f(0,0,0) = 0, respectively.

Problem 9. Let A be a full rank $m \times n$ real matrix, where m < n. and A have full rank. For a given $b \in \mathbb{R}^m$, show that the function f given by

$$f(x_1, \dots, x_n) = x_1^2 + x_2^2 + \dots + x_n^2$$

under the constraint Ax = b, where $x = [x_1, \dots, x_n]^T$, attains its minimum at the point $A^T(AA^T)^{-1}b$.

Solution. For $1 \le i \le m$, let a_i denote the *i*-th column of A^T and b_i denote the *i*-th component of b. Then Ax = b if and only if $a_i^T x = b_i$ for all $1 \le i \le m$.

Let $g_i(x) = a_i^{\mathrm{T}} x - b_i$. Suppose that the function f/2, under the constraint g = 0, attains its extrema at $x_* = [x_1^*, \dots, x_n^*]^{\mathrm{T}}$. Then by the fact that A has full rank, $\{\nabla g_i(x_*)\}_{i=1}^m = \{a_i\}_{i=1}^m$ is a linearly independent set. Therefore, there exist $\lambda_1, \dots, \lambda_m \in \mathbb{R}$ such that

$$x_* = \frac{1}{2} (\nabla f)(x_*) = \sum_{i=1}^m \lambda_i a_i = A^{\mathrm{T}} \lambda_*,$$

where $\lambda_* = [\lambda_1, \dots, \lambda_m]^T$. Since A has full rank, the $m \times m$ matrix AA^T is non-singular; thus

$$x_* = A^{\mathrm{T}} \lambda_* \quad \Rightarrow \quad (AA^{\mathrm{T}}) \lambda_* = Ax_* = b \quad \Rightarrow \quad \lambda_* = (AA^{\mathrm{T}})^{-1} b.$$

Therefore, $x_* = A^{\mathrm{T}} \lambda_* = A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} b$. Such x_* must be the point at which f attains its minimum since the maximum of f, subject to Ax = b, is ∞ since there are points far far away from the origin but satisfying Ax = b.

Problem 10. (1) Use the method of Lagrange multipliers to show that the product of three positive numbers x, y, and z, whose sum has the constant value S, is a maximum when the three numbers are equal. Use this result to show that

$$\frac{x+y+z}{3} \geqslant \sqrt[3]{xyz} \qquad \forall x, y, z > 0.$$

(2) Generalize the result of part (1) to prove that the product $x_1x_2x_3\cdots x_n$ is maximized, under the constraint that $\sum_{i=1}^n x_i = S$ and $x_i \ge 0$ for all $1 \le i \le n$, when

$$x_1 = x_2 = x_3 = \dots = x_n.$$

Then prove that

$$\sqrt[n]{x_1x_2\cdots x_n} \leqslant \frac{x_1+x_2+\cdots+x_n}{n} \qquad \forall x_1,x_2,\cdots,x_n \geqslant 0.$$

Problem 11. (1) Maximize $\sum_{i=1}^{n} x_i y_i$ subject to the constraints $\sum_{i=1}^{n} x_i^2 = 1$ and $\sum_{i=1}^{n} y_i^2 = 1$.

(2) Put
$$x_i = \frac{a_i}{\sqrt{\sum_{j=1}^n a_j^2}}$$
 and $y_i = \frac{b_i}{\sqrt{\sum_{j=1}^n b_j^2}}$ to show that

$$\sum_{i=1}^{n} a_i b_i \leqslant \sqrt{\sum_{j=1}^{n} a_j^2} \sqrt{\sum_{j=1}^{n} b_j^2}$$

for any numbers $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$. This inequality is known as the Cauchy-Schwarz Inequality.

Problem 12. Find the points on the curve $x^2 + xy + y^2 = 1$ in the xy-plane that are nearest to and farthest from the origin.

Problem 13. If the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is to enclose the circle $x^2 + y^2 = 2y$, what values of a and b minimize the area of the ellipse?

Problem 14. (1) Use the method of Lagrange multipliers to prove that the rectangle with maximum area that has a given perimeter p is a square.

(2) Use the method of Lagrange multipliers to prove that the triangle with maximum area that has a given perimeter p is equilateral.

Hint: Use Heron's formula for the area:

$$A = \sqrt{s(s-x)(s-y)(s-z)},$$

where $s = \frac{p}{2}$ and x, y, z are the lengths of the sides.

Problem 15. When light waves traveling in a transparent medium strike the surface of a second transparent medium, they tend to "bend" in order to follow the path of minimum time. This tendency is called refraction and is described by Snell's Law of Refraction,

$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2} \,,$$

where θ_1 and θ_2 are the magnitudes of the angles shown in the figure, and v_1 and v_2 are the velocities of light in the two media. Use the method of Lagrange multipliers to derive this law using x + y = a.

Problem 16. A set $C \subseteq \mathbb{R}^n$ is said to be convex if

$$t\mathbf{x} + (1-t)\mathbf{y} \in C$$
 $\forall \mathbf{x}, \mathbf{y} \in C \text{ and } t \in [0,1].$

(一個 \mathbb{R}^n 中的集合 C 被稱為凸集合如果 C 中任兩點 x 與 y 之連線所形成的線段也在 C 中)。

Suppose that $C \subseteq \mathbb{R}^n$ is a convex set, and $f: C \to \mathbb{R}$ be a differentiable real-valued function. Show that if f on C attains its minimum at a point \boldsymbol{x}^* , then

$$(\nabla f)(\boldsymbol{x}^*)\cdot(\boldsymbol{x}-\boldsymbol{x}^*)\geqslant 0 \qquad \forall \, \boldsymbol{x}\in C.$$

Hint: Recall that $(\nabla f)(\mathbf{x}^*) \cdot (\mathbf{x} - \mathbf{x}^*)$, when f is differentiable at x^* , is the directional derivative of f at \mathbf{x}^* in the "direction" $(\mathbf{x} - \mathbf{x}^*)$.

Remark: A point x^* satisfying (\star) is sometimes called a **stationary point** of f in C.

Problem 17. Let B be the unit closed ball centered at the origin given by

$$B = \{ \boldsymbol{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid ||\boldsymbol{x}||^2 = x_1^2 + x_2^2 + \dots + x_n^2 \le 1 \},$$

and $f: B \to \mathbb{R}$ be a differentiable real-valued function. Consider the minimization problem $\min_{\boldsymbol{x} \in B} f(\boldsymbol{x})$.

(1) Show that if f attains its minimum at $x^* \in B$, then there exists $\lambda \leq 0$ such that

$$(\nabla f)(\boldsymbol{x}^*) = \lambda \boldsymbol{x}^*.$$

(2) Find the minimum of the function $f(x,y) = x^2 + 2y^2 - x$ on the unit closed disk centered at the origin $\{(x,y) \mid x^2 + y^2 \le 1\}$ using (1).

Problem 18. Let $a \in \mathbb{R}^3$ be a vector, $b \in \mathbb{R}$, and C be a half plane given by

$$C = \{ \boldsymbol{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 \mid \boldsymbol{a} \cdot \boldsymbol{x} \leqslant b \},$$

and $f: C \to \mathbb{R}$ be a differentiable real-valued function. Consider the minimization problem $\min_{\boldsymbol{x} \in C} f(\boldsymbol{x})$. Show that if f attains its minimum at $\boldsymbol{x}^* \in C$, then there exists $\lambda \leq 0$ such that

$$(\nabla f)(\boldsymbol{x}^*) = \lambda \boldsymbol{a}$$
.