Exercise Problem Sets 11
May 10. 2024

Problem 1. Evaluate the following iterated integrals.
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Problem 2. Evaluate the double integral f f(z,y) dA with the following f and R.
(1) f(z,y) = y*e*, and R is the region bounded by y = x, y = 4 and x = 0.
(2) f(z,y) = zy, and R is the region bounded by the line y = x — 1 and parabola y* = 2z + 6.
(3) f(z,y) = 2%+ 2%y> — y?sinz, and R = {(x,y) ‘ |z + |y| < 1}.
(4) fz.y) = |z[+yl, and R = {(z,y) [ |2] + |y| < 1}.

(5) f(x,y) = zy, and R is the region in the first quadrant bounded by curves x?+y? = 4, 224+y* = 9,
22 —y?=1and 2% —y? = 4.

(6) f(z,y) = =z, and R is the region in the first quadrant bounded by curves 4z? — y? = 4,
42* —y* = 16, y = x and the z-axis.

(1) F(2.y) = exp(—a? — 4y?), and R = {(z,9) | 2* + 492 < 1}

(8) f(z,y) =exp (;‘le), and R is the trapezoid with vertices (0, 2), (1,0), (4,0) and (0, 8).
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Problem 3. Evaluate the integral f [aretan(mc) — arctan x} dx by converting the integral into a
0

double integral and evaluating the double integral by changing the order of integration.



b — 2

] dx, where 0 < a < b are constants, by converting the
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Problem 4. Evaluate the integral J
0

integral into a double integral and evaluating the double integral by changing the order of integration.

Problem 5. Evaluate the integral dx by converting the integral into a double integral
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x
and evaluating the double integral by changing the order of integration.

Problem 6. Let a,b be positive constants. Evaluate the integral

fa (Jb exp (max{b?z?, a%y?}) dy) dz .
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Problem 7. Show that if A > %, there does not exist a real-valued continuous function u such that
for all z in the closed interval [0, 1],
1

u(z) =1+ )\f u(y)u(y —x) dy.

T

Hint: Assume the contrary that there exists such a function u. Integrate the equation above on the
interval [0, 1].



