
Chapter 15

Vector Analysis

15.1 Vector Fields
In Chapter 12 and 13 we have talked about vector-valued functions of one variable and
real-valued functions (also called scalar functions) of several variables, respectively. In this
chapter, we will focus on the properties a special type of vector-valued functions of several
variables (which is a correspondence which assigns to each (x1, ¨ ¨ ¨ , xn) in a certain region
a vector (y1, ¨ ¨ ¨ , yn) in Rn).

Definition 15.1
A (two-dimensional) vector field over a plane region R is a vector-valued function F

that assigns a vector F (x, y) P R2 to each point (x, y) in R. A (three-dimensional)
vector field over a solid region Q is a vector-valued function F that assigns a vector
F (x, y, z) P R3 to each point (x, y, z) in Q.

In general, an n-dimensional vector field over a region D Ď Rn is a vector-valued func-
tion F that assigns a vector F (x1, x2, ¨ ¨ ¨ , xn) P Rn to each point x = (x1, x2, ¨ ¨ ¨ , xn)

in D.

Definition 15.2: Conservative Vector Fields
A vector field F is called conservative if there exists a differentiable scalar function ϕ
such that F = ∇ϕ. In such a case, the function ϕ is called the potential function
for F .

Example 15.3. Let M and m be the mass of the earth and a satellite. Introduce a Cartesian
coordinate system whose origin is the center of mass of the earth. If the position of the
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satellite is x, then the gravity force acting on the satellite is

F (x) = ´
GMm

}x}2

x

}x}
= ´

GMm

}x}3
x

which is a conservative vector field since ϕ(x) = GMm

}x}
is a potential function for F .

We remark that when moving an object with mass m located at height h1 to some place
with height h2, the potential of that object differs by the amount
GMm

R+ h2
´

GMm

R+ h1
= m

GM

R

(
1

1 + h2/R
´

1

1 + h1/R

)
(h1,h2!R)

« m
GM

R

(
h1
R

´
h2
R

)
= mg(h1 ´ h2) ,

where g =
GM

R2
is the gravitational acceleration; thus we recover what we learn from high

school physics (but this is in fact an approximation).

Example 15.4. Find the potential function for the conservative vector field

F (x, y, z) = 2xy i + (x2 + z2) j + 2yzk .

Suppose that F = ∇ϕ. Then ϕx(x, y, z) = 2xy which implies that

ϕ(x, y, z) = x2y + f(y, z)

for some function f . Comparing the second component, we find that

x2 + z2 = ϕy(x, y, z) = x2 + fy(y, z) ;

thus fy(y, z) = z2 or f(y, z) = yz2 + g(z). Finally, to determine g we compare the third
component and obtain that

2yz = ϕz(x, y, z) = fz(y, z) = 2yz + g 1(z) ;

thus g(z) = K for some constant K. Therefore, ϕ(x, y, z) = x2y + yz2 +K.

Definition 15.5: 旋度
Let Q be an open region in space, and F : Q Ñ R3 be a vector field given by
F (x, y, z) = M(x, y, z)i + N(x, y, z) j + P (x, y, z)k. The curl of F , also called the
vorticity of F , is a vector field given by

curlF =
(

BP

By
´

BN

Bz

)
i ´

(
BP

Bx
´

BM

Bz

)
j +

(
BN

Bx
´

BM

By

)
k .

If curlF = 0, then F is said to be irrotational.



Symbolically, the curl of F is given by

curlF = ∇ ˆ F =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k
B

Bx

B

By

B

Bz

M N P

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Remark 15.6. Let F be a three-dimensional vector field, and Fi be the i-th component of
F ; that is,

F = F1 i + F2 j + F3k =
3
ÿ

i=1

Fiei .

Then using the permutation symbol εijk, we have

(curlF )i ” the i-th component of curlF =
3
ÿ

j,k=1

εijk
BFk

Bxj
. (15.1.1)

Remark 15.7. Let F be a two dimensional vector field given by F (x, y) = M(x, y)i +
N(x, y)k. We can also define the curl of F by treating F as a three-dimensional vector field

rF (x, y, z) =M(x, y)i +N(x, y) j + 0k

(which is a three-dimensional vector field independent of z) and define curlF as the third
component of curlrF (for the first two components of curlrF are zero). Therefore, the curl of
a two dimensional vector field F =M i +N j is a scalar function given by

curlF =
BN

Bx
´

BM

By
.

Moreover, by defining the differential operator ∇K =
(

´
B

By
,

B

Bx

)
on plane we have the

symbolic representation
curlF = ∇K ¨ F .

Theorem 15.8
If F is a continuously differentiable conservative three-dimensional vector field (which
means each component of F has continuous first partial derivative), then curlF = 0.

Proof. Suppose that F = (F1, F2, F3) = ∇ϕ for some differentiable potential function ϕ.

Then Fk =
Bϕ

Bxk
. Moreover, since F is continuously differentiable, ϕx1 , ϕx2 and ϕx3 are con-

tinuously differentiable so that ϕ has continuous mixed second partial derivatives. Therefore,



B 2ϕ

BxjBxk
=

B 2ϕ

BxkBxj
which further implies that

(curlF )i =
3
ÿ

j,k=1

εijk
BFk

Bxj
=

3
ÿ

j,k=1

εijk
B 2ϕ

BxjBxk
=

3
ÿ

j,k=1

εijk
B 2ϕ

BxkBxj
=

3
ÿ

j,k=1

εikj
B 2ϕ

BxjBxk
,

where the last equality is obtained by switching k, j indices in the former expression. There-
fore, by the fact that εikj = ´εijk, we conclude that (curlF )i = 0 for all 1 ď i ď 3.

Definition 15.9: 散度
Let R be an open region in the plane, and F : R Ñ R2 be a vector field given by
F (x, y) =M(x, y)i +N(x, y) j. The divergence of F is a scalar function given by

divF =
BM

Bx
+

BN

By
.

Let Q be an open region in space, and F : Q Ñ R3 be a vector field given by
F (x, y, z) = M(x, y, z)i + N(x, y, z) j + P (x, y, z)k. The divergence of F is a scalar
function given by

curlF =
(

BP

By
´

BN

Bz

)
i ´

(
BP

Bx
´

BM

Bz

)
j +

(
BN

Bx
´

BM

By

)
k .

In general, if D is an open region in Rn and F : D Ñ Rn be a vector field given by
F (x) =

(
F1(x), F2(x), ¨ ¨ ¨ , Fn(x)

)
, the divergence of F is a scalar function given by

divF =
n
ÿ

i=1

BFi

Bxi
.

Theorem 15.10
Let F be a three-dimensional vector field given by F (x, y, z) = M(x, y, z)i +
N(x, y, z) j + P (x, y, z)k. If M,N,P have continuous second partial derivatives, then

div(curlF ) = 0 .

Proof. Let F1 = M , F2 = N and F3 = P so that we can write F =
3
ř

i=1

Fiei. Then the fact

that M,N,P have continuous second partial derivatives implies that B 2Fk

BxiBxj
=

B 2Fk

BxjBxi
for



each 1 ď k ď 3; thus

div(curlF ) =
3
ÿ

i=1

B (curlF )i
Bxi

=
3
ÿ

i=1

B

Bxi

( 3
ÿ

j,k=1

εijk
BFk

Bxj

)
=

3
ÿ

i,j,k=1

εijk
B 2Fk

BxiBxj

=
3
ÿ

i,j,k=1

εijk
B 2Fk

BxjBxi
=

3
ÿ

i,j,k=1

εjik
B 2Fk

BxiBxj
,

where the last equality is obtained by switching k, j indices in the former expression. There-
fore, by the fact that εjik = ´εijk, we conclude that div(curlF ) = 0.

15.2 Line Integrals
15.2.1 Line integrals of scalar functions

In this section, we are concerned with the “integral” of a real-valued function f defined on
a curve C. It is motivated by calculating the total mass of a wire lying along a curve in
space when the density of the wire at each point is given, or to find the work done by a
given (variable) force acting along such a curve. We begin with the following

Definition 15.11
Let C be a curve in space. A partition of C is a collection of curves

␣

C1, C2, ¨ ¨ ¨ , Cn

(

satisfying

1. C =
n
Ť

i=1

Ci (so that Ci Ď C);

2. If i ‰ j, then Ci X Cj contains at most two points.

Let P =
␣

C1, C2, ¨ ¨ ¨ , Cn

(

be a partition of C. The norm of P , denoted by }P}, is
the number

}P} = max
␣

ℓ(C1), ℓ(C2), ¨ ¨ ¨ , ℓ(Cn)
(

,

where ℓ(Cj) denotes the length of curve Cj. If f : C Ñ R is a real-valued function
defined on C, a Riemann sum of f for partition P is a sum of the form

n
ÿ

i=1

f(qi)ℓ(Ci) ,

where tq1, q2, ¨ ¨ ¨ , qnu is a collection of points on C satisfying qj P Cj for all 1 ď j ď n.



We note that in order to define the norm of partitions, it is required that every
sub-curve Cj of C has length. This kind of curves is called rectifiable curves, and we
can only consider line integrals along rectifiable curves.

Similar to the Riemann integral, we consider the limit of Riemann sums

lim
}P}Ñ0

n
ÿ

j=1

f(qj)ℓ(Cj) .

The line integral of f along C is the limit above if the limit indeed exists. The precise
definition of the limit is similar to those given in Definition 4.7, 14.1 and 14.28 and is given
below.

Definition 15.12
Let C be a rectifiable curve, and f : C Ñ R be a scalar function. The line integral of
f along C is a real number L such that for every ε ą 0 there exists δ ą 0 such that if
P = tC1, C2, ¨ ¨ ¨ , Cnu is a partition of C satisfying }P} ă δ, then any Riemann sum
of f for P belongs to the interval (L ´ ε, L+ ε).

Whenever such an L exists, it must be unique, and the number L is denoted by
ż

C
f ds(

and when C is a closed curve, we use
¿

C
f ds to emphasize that the curve is closed

)
.

To discuss the existence of line integrals, we first define the continuity of f on C.

Definition 15.13
Let C be a curve, and f : C Ñ R be a scalar function. f is said to be continuous at
a point p P C if for every ε ą 0 there exists δ ą 0 such that

}f(q) ´ f(p)} ă ε whenever }p ´ q} ă δ and q P C .

If f is continuous at every point of C, then f is said to be continuous on C.

Remark 15.14. Let C be a curve. If f is continuous in an open region containing C, then
f is continuous on C.

Similar to Theorem 4.10 and 4.17, we have the following two theorems.



Theorem 15.15
Let C be a rectifiable curve, and f : C Ñ R be a bounded continuous function. Then
the line integral of f along C exists.

Theorem 15.16
Let C be a rectifiable curve, and f : C Ñ R be a real-valued function such that the
line integral of f along C exists. If P =

␣

C1, C2, ¨ ¨ ¨ , Cn

(

is a partition of C, then
ż

C

f ds =
n
ÿ

j=1

ż

Ci

f ds .

To compute the length of curves, we rely on Theorem 12.35; thus in the following we
assume that the curve C under consideration has an injective continuous differentiable
parametrization r : [a, b] Ñ R3. If P = tC1, C2, ¨ ¨ ¨ , Cnu is a partition of C, there exists
a partition Q =

␣

a = t0 ă t1 ă ¨ ¨ ¨ ă tn = b
(

of [a, b] such that for each 1 ď j ď n,
Cj = r([tk´1, tk]) for some 1 ď k ď n. By relabelling the curves in the partition, W.L.O.G.
we can always assume that Cj = r([tj´1, tj]) for all 1 ď j ď n so that we can alternatively
define partitions of a curve C by

A collection of curves P =
␣

C1, C2, ¨ ¨ ¨ , Cn

(

is a partition of curve C if there exists a
partition Q = ta = t0 ă t1 ă ¨ ¨ ¨ ă tn = bu of [a, b] satisfying that Cj = r([tj´1, tj]).

Moreover, Theorem 12.35 implies that

ℓ(Cj) =

ż tj

tj´1

}r 1(t)} dt =
›

›r 1(dj)
›

›(tj ´ tj´1) , (15.2.1)

where the mean value theorem for integrals is used to obtain the last equality. We also
observe that by assuming that r 1(t) ‰ 0 for all t P [a, b],

}P} Ñ 0 if and only if }Q} Ñ 0 . (15.2.2)

Suppose that f be a bounded scalar function defined on C (so that one can think of the
function f ˝ r : [a, b] Ñ R), and

n
ř

j=1

f(qj)ℓ(Cj) is a Riemann sum of f for partition P . For

each 1 ď j ď n, qj P Cj = r([tj´1, tj]); thus there exists

qj = r(cj) for some cj P [tj´1, tj] . (15.2.3)



Therefore, with the help of (15.2.1) and (15.2.3),
n
ÿ

j=1

f(qj)ℓ(Cj) =
n
ÿ

j=1

(f ˝ r)(cj)
›

›r 1(dj)
›

›(tj ´ tj´1) .

Using (15.2.2), we find that

lim
}P}Ñ0

n
ÿ

j=1

f(qj)ℓ(Cj) = lim
}Q}Ñ0

n
ÿ

j=1

(f ˝ r)(cj)
›

›r 1(dj)
›

›(tj ´ tj´1) .

Since

lim
}P}Ñ0

n
ÿ

i=1

(f ˝ r)(ci)}r
1(ci)}(ti ´ ti´1) ´ lim

}P}Ñ0

n
ÿ

i=1

(f ˝ r)(ci)}r
1(di)}(ti ´ ti´1) = 0 ,

(here some rigorous argument involving the uniform continuity of }r 1} has to be made here),

lim
}P}Ñ0

n
ÿ

j=1

f(qj)ℓ(Cj) = lim
}Q}Ñ0

n
ÿ

j=1

(f ˝ r)(cj)
›

›r 1(cj)
›

›(tj ´ tj´1) .

We note that the sum in the right-hand side is the Riemann sum of a function g for partition
Q given by g(t) = (f ˝ r)(t)}r 1(t)}.

Theorem 15.17
Let C be a (piecewise) smooth curve with (piecewise) continuously differentiable in-
jective parametrization r : [a, b] Ñ R3, and f : C Ñ R be a continuous function.
Then the line integral of f along C exists and is given by

ż b

a

(f ˝ r)(t)
›

›r 1(t)
›

› dt .

Example 15.18. Evaluate
ż

C
(x2 ´ y+3z) ds, where C is the line segment connecting the

points (0, 0, 0) and (1, 2, 1).
First we note that the line segment can be parameterized by

r(t) = (1 ´ t)(0, 0, 0) + t(1, 2, 1) = (t, 2t, t) t P [0, 1] .

Therefore, Theorem 15.17 implies that
ż

C

(x2 ´ y + 3z) ds =

ż 1

0

(t2 ´ 2t+ 3t)}(1, 2, 1)} dt =
?
6

ż 1

0

(t2 + t) dt =
5
?
6

6
.



Example 15.19. Evaluate
ż

C
x ds, where C is the piecewise smooth curve starting from

(0, 0) to (1, 1) along y = x2 then from (1, 1) to (0, 0) along y = x.
Let C1 be the piece of the curve connecting (0, 0) and (1, 1) along y = x2, and C2 be

the piece of the curve connecting (1, 1) and (0, 0) along y = x. Then C1 and C2 can be
parameterized by

r1(t) = (t, t2) t P [0, 1] and r2(t) = (t, t) t P [0, 1] ,

respectively. Since C = C1 Y C2 and C1 X C2 has only two points,
ż

C

x ds =

ż

C1

x ds+

ż

C2

x ds =

ż 1

0

t}(1, 2t)} dt+

ż 1

0

t}(1, 1)} dt =

ż 1

0

[
t
?
1 + 4t2 +

?
2t
]
dt

=
[ 1

12
(1 + 4t2)

3
2 +

?
2t2

2

]ˇ
ˇ

ˇ

t=1

t=0
=

1

12
(5

?
5 ´ 1) +

?
2

2
.

Example 15.20. Let C be the upper half part of the circle centered at the origin with
radius R ą 0 in the xy-plane. Evaluate the line integral

ż

C
y ds.

First, we parameterize C by

r(t) = (R cos t, R sin t) t P [0, π] .

Then
ż

C

y ds =

ż π

0

R sin t
›

›(´R sin t, R cos t)
›

›

R2dt =

ż π

0

R2 sin t dt = 2R2 .

Example 15.21. Find the mass of a wire lying along the first octant part of the curve of
intersection of the elliptic paraboloid z = 2 ´ x2 ´ 2y2 and the parabolic cylinder z = x2

between (0, 1, 0) and (1, 0, 1) if the density of the wire at position (x, y, z) is ϱ(x, y, z) = xy.
Note that we can parameterize the curve C by

r(t) = (t,
?
1 ´ t2, t2) t P [0, 1] .

Therefore, the mass of the curve can be computed by
ż

C

ϱ ds =

ż 1

0

t
?
1 ´ t2

›

›(1,
´t

?
1 ´ t2

, 2t)
›

›

R3dt =

ż 1

0

t
?
1 ´ t2

a

1 ´ t2 + t2 + 4t2(1 ´ t2)
?
1 ´ t2

dt

=

ż 1

0

t
a

2 ´ (1 ´ 2t2)2 dt =
1

4

ż 1

´1

?
2 ´ u2du =

1

4

ż π
4

´π
4

2 cos2 θ dθ

=
1

4

[
θ +

sin(2θ)
2

]ˇ
ˇ

ˇ

θ=π
4

θ=´π
4

=
π

8
+

1

4
.



‚ Measurements of the circulation - the curl operator

We first talk about the rotation speed of a two-dimensional vector field. Imagine that on the
plane there is a cylinder centered at (a, b) with radius r and millions of people is walking on
this plane according to the velocity u(x, y) =M(x, y)i+N(x, y) j; that is, when a people is
at the location (x, y), then the people moves with the velocity M(x, y)i + N(x, y) j. When
a person contacts the cylinder, the cylinder will rotate with the speed of that person. Since
only the tangent speed contributes to the rotation of the cylinder, the “rotation speed”
contributed by a person at location (x, y) is (u ¨ T)(x, y), where T is the unit tangent
pointing in the counterclockwise direction (here a counterclockwise rotation is treated as
rotation with positive speed and a clockwise rotation is treated as rotation with negative
speed). A good way to measure the rotation speed is the angular velocity, so the angular

velocity contributed by a person at location (x, y) is (u ¨ T)(x, y)
r

. Therefore, the average
angular velocity of the cylinder is given by

1

2πr

¿

Cr

u ¨ T
r

ds .

Since Cr can be parameterized by

r(t) = (a+ r cos t)i + (b+ r sin t) j , t P [0, 2π] ,

by Theorem 15.17 we find that
1

2πr

¿

Cr

u ¨ T
r

ds =
1

2πr2

ż 2π

0

(u ¨ T)
(
r(t)

)›
›r 1(t)

›

› dt =
1

2πr

ż 2π

0

u(r(t)) ¨ T(r(t)) dt

=
1

2πr

ż 2π

0

[
M(a+ r cos t, b+ r sin t)i +N(a+ r cos t, b+ r sin t) j

]
¨ (´ sin ti + cos t j

)
dt

=
1

2πr

ż 2π

0

[
N(a+ r cos t, b+ r sin t) cos t ´ M(a+ r cos t, b+ r sin t) sin t

]
dt .

We then consider the limit of the average angular velocity as r Ñ 0. This limit, if it exists,
is called the rotation speed of the velocity u at (a, b) which can be viewed as the angular
velocity of an axis perpendicular to the plane and passing through (a, b). Define

f(r) =

ż 2π

0

[
N(a+ r cos t, b+ r sin t) cos t ´ M(a+ r cos t, b+ r sin t) sin t

]
dt .

Then the rotation speed of the axis through (a, b) is lim
rÑ0

f(r)

2πr
. Note that ifM,N is continuous,

then
lim
rÑ0

f(r) =

ż 2π

0

[
N(a, b) cos t ´ M(a, b) sin t

]
dt = 0 ;



thus if in addition M,N are differentiable, we are able to apply L’Hôpital’s rule to find the
limit: since the chain rule shows that

f 1(0) =

ż 2π

0

B

Br

ˇ

ˇ

ˇ

r=0

[
N(a+ r cos t, b+ r sin t) cos t ´ M(a+ r cos t, b+ r sin t) sin t

]
dt

=

ż 2π

0

[(
Nx(a, b) cos t+Ny(a, b) sin t

)
cos t ´

(
Mx(a, b) cos t+My(a, b) sin t

)
sin t

]
dt

=

ż 2π

0

[
Nx(a, b) cos2 t+Ny(a, b) sin t cos t ´ Mx(a, b) sin t cos t ´ My(a, b) sin2 t

]
dt

= π
[
Nx(a, b) ´ My(a, b)

]
,

we conclude that the rotation speed of the velocity u at (a, b) is

lim
rÑ0

1

2πr

ż 2π

0

[
N(a+ r cos t, b+ r sin t) cos t ´ M(a+ r cos t, b+ r sin t) sin t

]
dt

=
1

2

[
BN

Bx
(a, b) ´

BM

By
(a, b)

]
=

1

2
(curlu)(a, b) .

We now consider the circulation or the speed of rotation of a three-dimension vector
field u about an axis in the direction N. Let P be a plane passing thorough a point a and
having normal N, and Cr be a circle on the plane P centered at a with radius r. Pick the
orientation of the unit tangent vector T which is compatible with the unit normal N (see
Figure 15.1 for reference).

T

P

T

r

T

N

T
a

Figure 15.1: the circulation about an axis in direction N

As illustrated above, the angular velocity of a vector field u along the circle Cr is mea-
sured by u ¨ T

r
, it is quite reasonable to measure the circulation of u along Cr by averaging

the angular velocity; that is, we consider the quantity
1

2πr

¿

Cr

u ¨ T
r

ds (15.2.4)

as a (constant multiple of) measurement of the speed of rotation. The limit of the quantity
above, as r Ñ 0, is then a good measurement of the rotation speed of u at the point a about
the axis in the direction N.



We start from the case that N = e3 so that P be parallel to the x1x2-plane. With
u1, u2, u3 denoting respectively the first, the second and the third components of u, by the
change of variable ds = rdθ and L’Hôpital’s rule (to obtain the second “=”) we find that

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds

= lim
rÑ0

1

2πr

ż 2π

0

[
u2
(
a+ (r cos t, r sin t, 0)

)
cos t ´ u1

(
a+(r cos t, r sin t, 0)

)
sin t

]
dt

=
1

2π

d

dr

ˇ

ˇ

ˇ

r=0

ż 2π

0

[
u2
(
a+ (r cos t, r sin t, 0)

)
cos t ´ u1

(
a+(r cos t, r sin t, 0)

)
sin t

]
dt

=
1

2π

ż 2π

0

B

Br

ˇ

ˇ

ˇ

r=0

[
u2
(
a+ (r cos t, r sin t, 0)

)
cos t ´ u1

(
a+(r cos t, r sin t, 0)

)
sin t

]
dt

=
1

2π

ż 2π

0

[
Bu2
Bx1

(a) cos2 t+ Bu2
Bx2

(a) cos t sin t ´
Bu1
Bx1

(a) cos t sin t ´
Bu1
Bx2

(a) sin2 t
]
dt

=
1

2

[
Bu2
Bx1

(a) ´
Bu1
Bx2

(a)
]
. (15.2.5)

Now suppose the general case that N ‰ e3. Let pe3 = N and choose pe1 and pe2 so that
␣

pe1,pe2,pe3
(

is an orthonormal basis following the right-hand rule (that is, pe1 ˆ pe2 = pe3).
Then the vector field u has two representations

u = u1e1 + u2e2 + u3e3 = v1pe1 + v2pe2 + v3pe3 , (15.2.6)

here we use e1, e2, e3 instead of i, j, k. Introduce a new Cartesian coordinate system y =

(y1, y2, y3) so that
y1pe1 + y2pe2 + y3pe3 = x1e1 + x2e2 + x3e3 .

In other words, y is the coordinate with coordinate axis parallel to the basis
␣

pe1,pe2,pe3
(

;
thus y = OTx, where O =

[
pe1

...pe2
...pe3

]
. In this new Cartesian coordinate system, (15.2.5)

implies that
lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

[
Bv2
By1

(b) ´
Bv1
By2

(b)
]
,

where b = OTa.
Now we transform the result above back to the original coordinate system (so that the

limit is in terms of derivatives of uj w.r.t. xi). Note that (15.2.6) implies that v = OTu so
that vj = pej ¨ u. Moreover, with ejk denoting the k-th component (w.r.t. the ordered basis
te1, e2, e3u) of pej; that is, pej = ej1e1 + ej2e2 + ej3e3, the chain rule provides that

B

By1
= e11

B

Bx1
+ e12

B

Bx2
+ e13

B

Bx3
and B

By2
= e21

B

Bx1
+ e22

B

Bx2
+ e23

B

Bx3
;



thus

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

3
ÿ

j=1

[
e1j

B (u ¨ pe2)
Bxj

(a) ´ e2j
B (u ¨ pe1)

Bxj
(a)

]
=

1

2

3
ÿ

j,k=1

(e1je2k ´ e2je1k)
Buk
Bxj

(a) =
1

2

3
ÿ

j,k,r,s=1

(δjrδks ´ δjsδkr)e1re2s
Buk
Bxj

(a) ,

where δ¨¨’s are the Kronecker deltas. Using (10.2.2), we further conclude that

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

3
ÿ

i,j,k,r,s=1

εijkεirse1re2s
Buk
Bxj

(a) .

Since pe1 ˆ pe2 = pe3, we have e3i =
3
ř

r,s=1

εirse1re2s; thus the identity above shows that

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

3
ÿ

i,j,k=1

εijke3i
Buk
Bxj

(a) =
1

2

3
ÿ

i=1

( 3
ÿ

j,k=1

εijk
Buk
Bxj

(a)
)
e3i =

curlu ¨ N
2

.

Therefore, we conclude that

the rotation speed of a three-dimensional vector field u at point a about the axis

in the direction N is curlu ¨ N
2

.

15.2.2 Line integrals of vector fields

In the previous section we have seen the line integral
1

2πr

¿

C

u ¨ T
r

ds

which stands for the average angular velocity of the fluid velocity u. In many applications,
for a vector field F defined on a smooth curve C the line integral of the scalar function
F ¨ T along C, where T points to a given direction (there are two choices of directions if T
is continuous on C), is considered. The vector field F here is often considered as a force
field which acts on objects moving along C in the direction T so that the line integral

ż

C

F ¨ T ds

is the work done by the force field F . Every smooth curve admits two continuous tangent
vector, and each tangent direction gives an orientation of a curve. This induces the
following



Definition 15.22
An oriented curve is a curve on which a consistent tangent direction T is defined. In
other words, an oriented curve is a (piecewise) smooth curve with a given parametriza-

tion r : I Ñ R3 so that T =
r 1

}r 1}
is defined.

Definition 15.23
Let F be a continuous vector field defined on a smooth oriented curve C parameterized
by r(t) for t P [a, b]. The line integral of F along C is given by

ż

C

F ¨ T ds .

Note that since T ˝ r =
r 1

}r 1}
, by Theorem 15.17 we have

ż

C

F ¨ T ds =
ż b

a

(F ˝ r)(t) ¨
r 1(t)

}r 1(t)}
}r 1(t)} dt =

ż b

a

(F ˝ r)(t) ¨ r 1(t) dt .

Since r 1(t) dt = dr(t), sometimes we also use
ż

C
F ¨dr to denote the line integral of F along

the oriented curve C parameterized by r.

Remark 15.24. Given an oriented curve C and F : C Ñ R3, we sometimes use
ż

´C
F ¨ dr

to denote the line integral
ż

C
F ¨ (´T) ds, where ´T is the tangent direction opposite to

the orientation of C.

Example 15.25. Find the work done by the force field

F (x, y, z) = ´
1

2
xi ´

1

2
y j + 1

4
k

on a particle as it moves along the helix parameterized by

r(t) = cos ti + sin t j + tk

from the point (1, 0, 0) to the point (´1, 0, 3π). Note that such a helix is parameterized by
r(t) with t P [0, 3π]. Therefore,

ż

C

F ¨ dr =

ż 3π

0

(
´

1

2
cos ti ´

1

2
sin t j + 1

4
k
)

¨
(

´ sin ti + cos t j + k
)
dt

=

ż 3π

0

(1
2

sin t cos t ´
1

2
sin t cos t+ 1

4

)
dt =

3π

4
.



Example 15.26. Let F (x, y) = y2 i+ 2xy j. Evaluate the line integral
ż

C
F ¨ dr from (0, 0)

to (1, 1) along

1. the straight line y = x,

2. the curve y = x2, and

3. the piecewise smooth path consisting of the straight line segments from (0, 0) to (0, 1)

and from (0, 1) to (1, 1).

For the straight line case, we parameterize the path by r(t) = (t, t) for t P [0, 1]. Then
ż

C

F ¨ dr =

ż 1

0

(t2 i + 2t2 j) ¨ (i + j)dt =
ż 1

0

3t2dt = 1 .

For the case of parabola, we parameterize the path by r(t) = (t, t2) for t P [0, 1]. Then
ż

C

F ¨ dr =

ż 1

0

(t4 i + 2t3 j) ¨ (i + 2t j)dt =
ż 1

0

5t4dt = 1 .

For the piecewise linear case, we let C1 denote the line segment joining (0, 0) and (0, 1),
and let C2 denote the line segment joining (0, 1) and (1, 1). Note that we can parameterize
C1 and C2 by

r1(t) = t j t P [0, 1] and r2(t) = ti + j t P [0, 1] ,

respectively. Therefore,
ż

C

F ¨ dr =

ż

C1

F ¨ dr +

ż

C2

F ¨ dr =

ż 1

0

t2 i ¨ j dt+
ż 1

0

(i + 2t j) ¨ i dt = 1 .

We note that in this example the line integrals of F along three different paths joining (0, 0)

and (1, 1) are identical.

Example 15.27. Let F (x, y) = y i ´ x j. Evaluate the line integral
ż

C
F ¨ dr from (1, 0) to

(0,´1) along

1. the straight line segment joining these points, and

2. three-quarters of the circle of unit radius centered at the origin and traversed counter-
clockwise.



For the first case, we parameterize the path by r(t) = (1 ´ t,´t) for t P [0, 1]. Then
ż

C

F ¨ dr =

ż 1

0

[
´ ti + (t ´ 1) j

]
¨ (´i ´ j) dt =

ż 1

0

1 dt = 1 .

For the second case, we parameterize the path by r(t) = cos ti + sin t j for t P
[
0,

3π

2

]
.

Then
ż

C

F ¨ dr =

ż 3π
2

0

(sin ti ´ cos t j) ¨ (´ sin ti + cos t j) dt =
ż 3π

2

0

(´1) dt = ´
3π

2
.

We note that in this example the line integrals of F along different paths joining (1, 0) and
(0,´1) can be different.

15.3 Conservative Vector Fields and Independence of
Path

In the previous section, we define the line integral of a force along a curve in a given
orientation. In Example 15.26, we see that the line integrals along three different paths
connecting two given points are the same, while in Example 15.27 the line integrals along
two different paths (connecting two given points) are different. In this section, we are
interested in the rule of judging whether the line integral is path independent or not.

Theorem 15.28: Fundamental Theorem of Line Integrals

Let C be a piecewise smooth curve in an open region D parameterized by r : [a, b] Ñ

R3. If F is a conservative vector field in D and ϕ is a continuous differentiable potential
for F , then

ż

C

F ¨ dr = ϕ
(
r(b)

)
´ ϕ

(
r(a)

)
.

Proof. Suppose that ta = t0 ă t1 ă ¨ ¨ ¨ ă tn = bu is a partition of [a, b] such that r is
continuously differentiable on [ti´1, ti] for each 1 ď i ď n. Then the chain rule implies that

ż

C

F ¨ dr =
n
ÿ

i=1

ż ti

ti´1

(∇ϕ)(r(t)) ¨ r 1(t) dt

=
n
ÿ

i=1

ż ti

ti´1

d

dt
(ϕ ˝ r)(t) dt =

n
ÿ

i=1

(ϕ ˝ r)(t)
ˇ

ˇ

ˇ

t=ti

t=ti´1

= ϕ(r(b)) ´ ϕ(r(a))

which concludes the theorem.



Remark 15.29. If F is a conservative vector field and ϕ is a potential for F , then the
Fundamental Theorem of Line Integrals indeed shows that

ż

C

F ¨ dr = ϕ(the end-point of C) ´ ϕ(the starting point of C) .

Moreover, in the proof of Theorem 15.28 the parametrization r : [a, b] Ñ R3 does not has
to be injective (so the image of r might have a lot of overlapping). It is only required that
the parametrization is piecewise smooth for the proof to work.

Example 15.30 (Revisit of Example 15.26). Suppose that F (x, y) = y2 i+2xy j and C is an
oriented piecewise smooth curve joining (0, 0) and (1, 1), where (0, 0) is the starting point
and (1, 1) is the end-point of the oriented curve. Since F is conservative with potential
ϕ(x, y) = xy2, by the Fundamental Theorem of Line Integrals we conclude that

ż

C

F ¨ dr = ϕ(1, 1) ´ ϕ(0, 0) = 1 .

Example 15.31. Evaluate
ż

C
F ¨ dr, where C is a piecewise smooth curve from (1, 1, 0) to

(0, 2, 3) and
F (x, y, z) = 2xy i + (x2 + z2) j + 2yzk

as given in Example 15.4. Recall that this F has a potential ϕ(x, y, z) = x2y + yz2 as
explained in Example 15.4. Therefore, the Fundamental Theorem of Line Integrals implies
that

ż

C

F ¨ dr = ϕ(0, 2, 3) ´ ϕ(1, 1, 0) = 17.

Theorem 15.32
Let D be an open, connected domain in R3, and let F be a smooth vector field defined
on D. Then the following three statements are equivalent:

(1) F is conservative in D.

(2)
¿

C
F ¨ dr = 0 for every piecewise smooth, closed curve C in D.

(3) Given any two point p0, p1 P D,
ż

C
F ¨ dr has the same value for all piecewise

smooth curves in D starting at p0 and ending at p1.



In the statement of the theorem, the (path) connectedness of a region means that any
two points in the region can be joined by a piecewise smooth curve lying entirely within the
region.

Proof of Theorem 15.32. (1) ñ (2): This is a direct consequence of the Fundamental The-
orem of Line Integrals.

(2) ñ (3): Let C1 and C2 be two piecewise smooth curves in D starting at p0 and ending
at p1 parameterized by r1 : [a, b] Ñ R3 and r2 : [c, d] Ñ R3, respectively. Define
r : [a, b+ d ´ c] Ñ R3 by

r(t) =

"

r1(t) if t P [a, b] ,

r2(b+ d ´ t) if t P [b, b+ d ´ c] .

Then C = r([a, b+ d ´ c]) is a piecewise smooth closed curve; thus

0 =

¿

C

F ¨ dr =

ż b

a

(F ˝ r1)(t) ¨ r 1
1(t) dt ´

ż b+d´c

b

(F ˝ r2)(b+ d ´ t)r 1
2(b+ d ´ t) dt

=

ż

C1

F ¨ dr ´

ż d

c

(F ˝ r2)(t)r
1
2(t)dt =

ż

C1

F ¨ dr ´

ż

C2

F ¨ dr .

(3) ñ (1): Let p0 P D. For x = (x1, x2, x3) P D, define ϕ(x) =
ż

C
F ¨ dr, where C is

any piecewise smooth curve starting at p0 and ending at x. Note that by assumption,
ϕ : D Ñ R is well-defined.

Choose δ ą 0 such that B(x, δ) Ď D, where B(x, δ) is the ball centered at x with
radius δ. Let C be a piecewise smooth curve joining p0, and L be the line segment
joining x and x+hej, where 0 ă h ă δ and ej is the unit vector whose j-th component
is 1. Then with the parametrization of L: r(t) = x + tej for t P [0, h] (or [h, 0] if
h ă 0), we have

ϕ(x+ hej) ´ ϕ(x)

h
=

1

h

ż

L

F ¨ dr =
1

h

ż h

0

F (x+ tej) ¨ ej dt ;

thus passing to the limit as h Ñ 0, we find that
Bϕ

Bxj
(x) = F (x) ¨ ej .

As a consequence, F = ∇ϕ. Moreover, since F is smooth, Theorem 13.35 implies that
ϕ is differentiable on D. Therefore, F is conservative.



Theorem 15.33: Law of Conservation of Energy
In a conservative force field, the sum of the potential and kinetic energies of an object
remains constant from point to point. Here

1. the potential energy is the negative of the potential function of the conservative
vector field;

2. the kinetic energy is 1

2
m}v}2, where m, v are the mass and the velocity of the

object, respectively.

Proof. Let F be the conservative force field, p is the potential energy so that ´∇p = F ,
and k is the kinetic energy defined by k =

1

2
m|v|2 =

1

2
m|r 1|2. Suppose that the curve C is

parameterized by r : [a, b] Ñ R3 so that r(a) = A and r(b) = B. Then

1. the work done by F along a smooth curve C from point A to point B is

W =

ż

C

F ¨ dr = (´p)(B) ´ (´p)(A) = p(A) ´ p(B) .

2. by Newton’s second law of motion, F = mr 11; thus the work done by F is

W =

ż

C

F ¨ dr =

ż b

a

mr 11(t) ¨ r 1(t) dt =

ż b

a

m
1

2

d

dt

›

›r 1(t)
›

›

2
dt =

m

2

ż b

a

d

dt

›

›r 1(t)
›

›

2
dt

=
m

2

›

›r 1(t)
›

›

2
ˇ

ˇ

ˇ

t=b

t=a
=
m

2

›

›v(t)
›

›

2
ˇ

ˇ

ˇ

t=b

t=a
= k(B) ´ k(A) .

Therefore, p(A) ´ p(B) = k(B) ´ k(A) or equivalently, p(A) + k(A) = p(B) + k(B) which
shows that p+ k, the sum of the potential and kinetic energies, are constant from point to
point.

15.4 Green’s Theorem
Even though Theorem 15.32 provides several equivalence for conservative vector fields, none
of them is practically useful for determining whether a vector field is conservative since in
reality it is very hard to compute all possible line integrals. Some other criteria (sufficient
conditions) for determining conservative vector fields have to be developed.

We first look at the case of two-dimensional vector fields. Let D Ď R2, and F = (M,N) :

D Ñ R2. If F is conservative, then M = ϕx and N = ϕy for some scalar function ϕ : D Ñ R;



thus if ϕ is of class C 2, we must have My = Nx. In other words, if F : D Ñ R2 is a smooth
vector field, then it is necessary that My = Nx. The converse statement is not true in
general, and we have the following counter-example.

Example 15.34. Let D Ď R2 be the annular region D =
␣

(x, y)
ˇ

ˇ 1 ă x2 + y2 ă 4
(

, and
consider the vector field F (x, y) =

y

x2 + y2
i ´

x

x2 + y2
j. Then

B

By

y

x2 + y2
=

x2 ´ y2

(x2 + y2)2
=

B

Bx

´x

x2 + y2
;

however, if F = ∇ϕ for some differentiable scalar function ϕ : D Ñ R, we must have

ϕx(x, y) =
y

x2 + y2

which further implies that
ϕ(x, y) = arctan x

y
+ f(y) .

Using that ϕy(x, y) = ´
x

x2 + y2
, we conclude that f is a constant function; thus

ϕ(x, y) = arctan x
y
+ C .

Since ϕ is not differentiable on the positive x-axis, F ‰ ∇ϕ.
We can also consider the line integral

¿

C
F ¨ d r, where C is the oriented circle parame-

terized by
r(t) =

?
2 cos ti +

?
2 sin t j t P [0, 2π] .

Using the formula to compute the line integral, we find that
¿

C

F ¨ d r =

ż 2π

0

(?
2 sin t
2

i ´

?
2 cos t
2

j
)

¨
(

´
?
2 sin ti +

?
2 cos t j

)
dt

=

ż 2π

0

(´1) dt = ´2π ;

thus Theorem 15.32 implies that F cannot be conservative.

Let R Ď R2 be a region enclosed by a simply closed curve C and F = M i + N j be a
vector fields on (an open set containing) R, where C is oriented counterclockwise so
that

C is traversed once so that the region R always lies to the left.



The line integral of F along an oriented curve C sometimes is written as
ż

C

Mdx+Ndy

since symbolically we have dr = dxi + dy j so that

F ¨ dr = (M i +N j) ¨ (dxi + dy j) =Mdx+Ndy .

The right-hand side of the identity above is called a differential form.

Suppose that

1. Every vertical line intersects C at at most two points so that

R =
␣

(x, y)
ˇ

ˇx P [a, b], f1(x) ď y ď f2(x)
(

.

2. Every horizontal line intersects C at at most two points so that

R =
␣

(x, y)
ˇ

ˇ y P [c, d], g1(y) ď x ď g2(y)
(

.

In other words, the curve C is the union of

1. C1 and C2 parameterized respectively by

r1(t) = ti + f1(t) j , t P [a, b] , and r2(t) = ´ti + f2(´t) j , t P [´b,´a] .

2. C3 and C3 parameterized respectively by

r3(t) = g2(t)i + t j , t P [c, d] and r4(t) = g1(´t)i ´ t j , t P [´d,´c] .

We note that C1, C2, C3 and C4 are oriented curves. Then by the definition of the line
integrals,

¿

C

(F 1 + F 2) ¨ dr =

¿

C

F 1 ¨ dr +

¿

C

F 2 ¨ dr ;

thus
¿

C

Mdx+Ndy =

¿

C

(M i +N j) ¨ dr =

¿

C

M i ¨ dr +

¿

C

N j ¨ dr

=

ż

C1

M i ¨ dr +

ż

C2

M i ¨ dr +

ż

C3

N j ¨ dr +

ż

C4

N j ¨ dr .

Using the formula for computing the line integrals, we find that



1.
ż

C1

M i ¨ dr =
ż b

a
M(t, f1(t)) dt, and

ż

C3

N j ¨ dr =
ż d

c
N(g2(t), t) dt.

2.
ż

C2

M i ¨ dr = ´

ż ´a

´b
M(´t, f2(´t)) dt, and

ż

C4

N j ¨ dr = ´

ż ´c

´d
M(g1(´t),´t) dt; thus

the substitution of variable t ÞÑ ´t shows that
ż

C2

M i ¨ dr = ´

ż b

a

M(t, f2(t)) dt and
ż

C4

N j ¨ dr = ´

ż d

c
M(g1(t), t) dt .

Therefore, if My and Nx are continuous on R,
¿

C

Mdx+Ndy =

ż b

a

[
M(t, f1(t)) ´ M(t, f2(t))

]
dt+

ż d

c

[
N(g2(t), t) ´ N(g1(t), t))

]
dt

=

ż b

a

[
M(x, f1(x)) ´ M(x, f2(x))

]
dx+

ż d

c

[
N(g2(y), y) ´ N(g1(y), y))

]
dy

= ´

ż b

a

( ż f2(x)

f1(x)

My(x, y) dy
)
dx+

ż d

c

( ż g2(y)

g1(y)

Nx(x, y) dx
)
dy

and the Fubini Theorem further implies that
¿

C

Mdx+Ndy = ´

ĳ

R

My(x, y) dA+

ĳ

R

Nx(x, y) dA =

ĳ

R

(
Nx ´My

)
(x, y) dA . (15.4.1)

We note that (15.4.1) in particular implies (2) of Theorem 15.32 when C is a simply close
plane curve of the form given above.

Identity (15.4.1) is in fact true as long as C is a closed plane curve oriented counterclock-
wise, and we have the following

Theorem 15.35: Green’s Theorem
Let R be a plane region enclosed by a closed curve C oriented counterclockwise; that
is, C is traversed once so that the region R always lies to the left. If M and N have
continuous first partial derivatives in an open region containing R, then

¿

C

Mdx+Ndy =

ĳ

R

(
BN

Bx
´

BM

By

)
(x, y) dA . (15.4.1)

Remark 15.36. If F is a two-dimensional vector field given by F =M i +N j, then under
the assumption of Green’s Theorem,

¿

C

F ¨ T ds =
ĳ

R

(curlF )(x, y) dA .



This is sometimes called Green’s Theorem in Tangential Form. Moreover, by treating
F as a three-dimensional vector field, then under the assumption of Green’s Theorem,

¿

C

F ¨ dr =

ĳ

R

(curlF ¨ k)(x, y) dA .

Remark 15.37. Let R be a region enclosed by a smooth simply closed curve C with
outward-pointing unit normal N on C, and F be a smooth vector field defined on an
open region containing R. We are interested in

ż

C
F ¨ Nds, the line integral of F ¨ N along

C.
Suppose that F = M i + N j, and C is parameterized by r(t) = x(t)i + y(t) j, t P [a, b],

so that C is oriented counterclockwise. Define G = ´N i +M j. Then Green’s Theorem
implies that

¿

C

´ Ndx ´ Mdy =

¿

C

G ¨ dr =

ĳ

R

curlG dA =

ĳ

R

(
Mx +Ny

)
dA =

ĳ

R

divF dA .

On the other hand, if r is a counterclockwise parametrization of C, then

N(r(t)) =
y 1(t)

}r 1(t)}
i + x 1(t)

}r 1(t)}
j @ t P [a, b] ;

thus
¿

C

F ¨ N ds =

ż b

a

(F ¨ N)(r(t))}r 1(t)} dt =

ż b

a

F (r(t)) ¨ N(r(t))}r 1(t)} dt

=

ż b

a

[
M(x(t), y(t))i +N(x(t), y(t)) j

]
¨

[
y 1(t)

}r 1(t)}
i + x 1(t)

}r 1(t)}
j
]
}r 1(t)} dt

=

ż b

a

[
M(x(t), y(t))y 1(t) ´ N(x(t), y(t))x 1(t)

]
dt

=

¿

C

´ N dx ´ M dy =

¿

C

G ¨ dr =

ĳ

R

divF dA .

Therefore,
ż

C

F ¨ N ds =

ĳ

R

divF dA .

This is sometimes called Green’s Theorem in Normal Form or Divergence Form.

Example 15.38. Use Green＇s Theorem to evaluate the line integral
¿

C
y3dx+(x3+3xy2)dy,

where C is the path from (0, 0) to (1, 1) along the graph of y = x3 and from (1, 1) to (0, 0)

along the graph of y = x.



Let R =
␣

(x, y)
ˇ

ˇ 0 ď x ď 1, x3 ď y ď x
(

. Then Grenn’s Theorem implies that
¿

C

y3dx+ (x3 + 3xy2)dy =

ĳ

R

[
B

Bx
(x3 + 3xy2) ´

B

By
y3
]
dA =

ĳ

R

3x2 dA

=

ż 1

0

( ż x

x3

3x2 dy
)
dx =

ż 1

0

3x2(x ´ x3) dx =
(3
4
x4 ´

1

2
x6
)ˇ
ˇ

ˇ

x=1

x=0
=

1

4
.

Example 15.39. Let F and D be given in Example 15.34, and C Ď D be a simple closed
curve oriented counterclockwise so that the origin is inside the region enclosed by C. Find
¿

C
F ¨ dr.
Choose r ą 1 so that the circle centered at the origin with radius r lies in the region

enclosed by C. Let Cr denote this circle with clockwise orientation, and pick a line segment
B connecting C and Cr (with starting point on C and end-point on Cr. Define Γ as the
oriented curve B Y Cr Y (´B) Y C, where ´B denotes oriented curve B with opposite
orientation, and let R be the region enclosed by Γ. Then R Ď D and R is the region lies to
the left of Γ. Therefore, Green’s Theorem implies that

ż

Γ

ż

Cr

F ¨ dr =

ĳ

R

curlF dA = 0 .

On the other hand,
ż

Γ

F ¨ dr =

ż

B

F ¨ dr +

ż

Cr

F ¨ dr +

ż

´B

F ¨ dr +

ż

C

F ¨ dr ;

thus by the fact that
ż

´B
F ¨ dr = ´

ż

B
F ¨ dr, we conclude that

ż

C

F ¨ dr +

ż

Cr

F ¨ dr =

ż

Γ

ż

Cr

F ¨ dr = 0

or equivalently,
ż

C

F ¨ dr = ´

ż

Cr

F ¨ dr =

ż

´Cr

F ¨ dr .

In other words, the line integral of F along C is the same as the line integral of F along
the circle Cr with counterclockwise orientation. Since ´Cr can be parameterized by

r(t) = r cos ti + r sin t j t P [0, 2π] ,

we find that
ż

C

F ¨ dr =

ż 2π

0

(
r sin t
r2

i ´
r cos t
r2

j
)

¨
(

´ r sin ti + r cos t j
)
dt =

ż 2π

0

(´1) dt = ´2π .



Definition 15.40
A connected region D Ď R2 is said to be simply connected if every simple closed
curve can be continuously shrunk to a point in D without any part ever passing out
of D. In other words, D is simply connected if every simple closed curve encloses a
region which is a subset of D.

Theorem 15.41
Let D Ď R2 be simply connected, and M , N be functions defined on D with continuous
first partial derivatives. If My = Nx in D, then F =M i +N j is conservative in D.
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