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Proof 1: In this proof we prove (x) by induction.

(i) Case n = 0: In this case f : (a,b) is differentiable. Therefore, the mean value theorem

shows that there exists £ between ¢ and x such that
fz) = f(c)
xr—c

which shows that (%) holds for n = 0.

= f'(¢)

(ii) Case n = m — 1: Assume that (x) holds for the case n = m — 1 for some m € N.

(iii) Case n = m: Suppose that f : (a,b) — R is (m + 1)-times differentiable. Then f’ is

m-times differentiable on (a,b); thus (ii) implies that

for all ¢,z € (a, b) satisfying ¢ # x there exists £ such that
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(x — ¢)* and G(x) = (z — ¢)™"!. By Cauchy MVT, there
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by (**) there exists £ between ¢ and x; such that
oy S T
Py T T BT g 02
G'(z1) (m+1)(z1 —c)™ (m+ 1) '

Combining (@) and (@), we conclude that () holds for n = m.



By induction, (*) holds for all n € N u {0}.

Proof 2: In this proof we establish (x) by treating c as a variable but viewing x is a fixed number.
Define

Z x—zk and G(z) = (z —2)".
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and
G'(z) =—(n+1)(z—2)".

Let I = (min{c,z}, max{c,z}) and I = [min{c, 2}, max{c,z}]. Then F,G : [ — R are contin-
uous and F,G : I — R are differentiable. Moreover, G'(z) # 0 for all z € I. Therefore, the
Cauchy MVT implies that there exists £ between ¢ and x such that

F(z) = F(c) _F'(§) _ f"(©)

G(r)—G(c) G'(& (n+1)!°
We then conclude () from the fact that F'(z) = G(x) = 0 and F(c) = R,(z). O
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» dx = 2*pi/100000;
» x = dx:dx:2*pi-dx;
» y = zeros(1,length(x));

» N = 100;

» for k=1:N

» y =y + sin(k*x)/k;
» end

» plot(x,y,’b’);

< RF e N 2 5 7 e ihpartial sum ¢ L E RS % -

)



