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Theorem 1.1. Let f : (a,b) — R be (n+ 1)-times differentiable. Then for all ¢, x € (a,b) satisfying

x # c, there exists & between ¢ and x such that
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Theorem 1.2. Let Q2 < R™ be an open set, and f : Q@ — R be (n+1)-times differentiable. Then for all

c= (e, ,¢n), x = (1, -, ) € Q satisfying x # ¢ and cx <, there exists & = (&1, -+ , &) €T
such that
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where for a given multi-index o = (aq, -+ , ),
al=aq!- oyt lal =a1+ -+ ay,

Qn

o (=t = ()™ (2 — )

= ? IR EP - B AP B F o second derivative test (0¥ — B (1F i i8¢

9 ST

i
g

Theorem 1.3. Let f : (a,b) — R be a twice differentiable function, c € (a,b), and f'(c) = 0. Suppose

that " is continuous at c.
1. If f"(c) > 0, then f attains its relative minimum at c.
2. If f"(c) <0, then f attains its relative mazimum at c.
Proof. 1. Since f’(c) > 0 and f” is continuous at ¢, there exists h > 0 such that
f"(x) >0 Vrze(c—h,c+h).
Let x € (¢ — h,c+ h) and x # ¢. By Taylor's Theorem, there exists £ between ¢ and x such

that .
f@) = £ + P~ + L .

Since € € (¢ — h,c+ h) if x € (¢ — h,c+ h), we have f”(£) > 0; thus the fact that f'(c) =0
shows that 16)
fa) = 7e)+

Therefore, f attains its relative minimum at c.

(x =) > f(0).

2. By changing > to <, we obtain the proof for the second case. O
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Theorem 1.4. Let R € R™ be an open region, f : R — R be a twice differentiable, (a,b) € R and
fz(a,b) = f,(a,b) = 0. Suppose that fiz, fuy, fye and fy, are continuous at (a,b).



1. If the matrizx [ Jza(a,b) f:cygav b)

fym(av b) Juy(a, b)

o) ey T ][ 0] =0 v 0o,

then f attains its relative minimum at (a,b).

} is positive definite; that is,

. fa:a:(a, b) [z (CL, b) ] . . . .
2. If the matriz Y s negative definite; that is,
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then f attains its relative mazimum at (a,b).
Proof. We mimic the proof of the previous theorem.

1. First, the continuity of f,, and f,, at (a,b) implies that f,,(a,b) = f,.(a,b). Note that the

f:c:c<aa b) fxy(aa b)

is positive definite if and only if
fua(a,0)  fyy(a,b) } P Y

matrix [

froa,b) >0 and ;yﬁgg; ZZEZ?; — Faal, ) fy (@) — fuyla,0)? > 0.

By the continuity of fi., fuy, fyz and fy, at (a,b), we find that there exists ¢ > 0 such that
foo(z,y) > 0 and  fou(,9) fyy(2,9) = fay(z,9)* > 0 ¥ (2,y) € D((a,b),6);
thus we obtain ¢ > 0 that

[ {f’”g’z; j}yg’zg } is positive definite for all (z,y) € D((a,b),0).
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Let (z,y) € D((a,b),d) and (z,y) # (a,b). Then the segment joining (a,b) and (z,y) is a
subset of D((a,b),d) (since D((a,b),d) is convex); thus by Taylor’s Theorem there exists (£,7)
on the segment joining (a,b) and (z,y) such that
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Since

DUOf =f,, DOVf=f, D®Vf=fo, DUVf=fo, DOVf=f,,



the fact that f,(a,b) = f,(a,b) = 0 shows that

f(xvy) = f(avb) + fac(aa b)(CL’ - a) + fy(a7b)(y - b)
3 el&n)@ = @+ L€M)~ @)y =)+ 3 Fnl€m)(y — b

~ b+ Le-a yb] [ fE e[0T

Since (x,y) # (a,b), (x —a,y — b) # (0,0); thus the fact that (£,n) € D((a,b),d) shows that

_ _ fzx(gan) fxy(gﬁn) r—a .

[x “ v b] { fy:e(&??) fyy(fyn) } { y—2> 1 > 0;

thus f(x,y) > f(a,b) for all (z,y) € D((a,b),0) satistying (x,y) # (a,b). Therefore, f attains
its relative minimum at (a, b).

2. Again by changing > to < (and positive to negative), we obtain the proof for the second case. [
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In general, (by almost the same proof of the theorem above) for a twice differentiable function f

of n-variables defined on an open set € with

0
&Efk(cl’ <, cn) =0 Vke{l,2,---  n},
. o%f . . )
where ¢ = (c1,- -+, ¢,) € Q at which f, ., = T ag 1S continuous for all 1 < 7,k < n, we have
ECLy

fora (€)oo faya,(€)

1. f attains its relative minimum at ¢ if the matrix : .. : is positive definite.

f:vn:m(c) fxnxn(c>
fore(€) o faya,(€)

2. f attains its relative maximum at c if the matrix : : is negative defi-

fxnx1 (C) e f:):n:pn (C>

nite.
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