1.7 The Precise Definition of a Limit

Definition 1.26. Let f be a function defined on some open interval that contains the number a, except possible at a itself. We say that the limit of f(x), as x approaches a, is L, and we write

$$\lim_{x \to a} f(x) = L,$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
 then $|f(x) - L| < \varepsilon$.

Remark 1.27. 為了解釋上述定義中關於「對所有…存在…」句型的意義,我們以一個比較簡單例子看起。「每個不是 2 的質數都是奇數」(Every prime number other than 2 is an odd number) 是一個大家都很清楚的數學描述。但是數學上這個敘述有以下的等價描述:

Every prime number other than 2 is an odd number

- \Leftrightarrow Every prime number other than 2 takes the form 2k+1 for some integer k
- \Leftrightarrow For all/every prime number $p \neq 2$ there exists $k \in \mathbb{Z}$ such that p = 2k + 1.

Explanation: 因為 $|f(x)-L|<\varepsilon$ 等價於 $f(x)\in (L-\varepsilon,L+\varepsilon)$,所以定義敘述中的 ε 可視為用來度量 f(x) 向 L 這個數集中的程度。定義所述是指對於任意給定的集中程度 $\varepsilon>0$,一定可以找到在 c 附近的一個範圍(以到 c 的距離小於 δ 來表示),滿足此範圍中的點之函數值落入想要其落入的集中區域 $(L-\varepsilon,L+\varepsilon)$ 之內。此即「當除 c 之外的點到 c 的距離愈來愈近時,其函數值向 L 集中」的意思。

Example 1.28. In this example we prove, using the definition of limits, that $\lim_{x\to 9} \sqrt{x} = 3$. Let $\varepsilon > 0$ be given.

1. The case $0 < \varepsilon \le 1$: Define $\delta = 6\varepsilon - \varepsilon^2$. Then $\delta > 0$. If $0 < |x - 9| < \delta$, then $9 - \delta < x < 9 + \delta$ which further implies that

$$9 - 6\varepsilon + \varepsilon^2 < x < 9 + 6\varepsilon + \varepsilon^2$$
 or equivalently, $(3 - \varepsilon)^2 < x < (3 + \varepsilon)^2$.

Therefore, we have $3 - \varepsilon < \sqrt{x} < 3 + \varepsilon$ whenever $0 < |x - 9| < \delta$. Therefore,

if
$$0 < |x - 9| < \delta$$
, then $|\sqrt{x} - 3| < \varepsilon$.

2. The case $\varepsilon > 1$: We pick $\delta = 5$ (by letting $\varepsilon = 1$ in the definition of δ given in the previous case). Then the computation above shows that

$$\left|\sqrt{x}-3\right|<1<\varepsilon$$
 whenever $0<\left|x-9\right|<\delta$.

In general, one can show that $\lim_{x\to a} x^{\frac{1}{n}} = a^{\frac{1}{n}}$ if a>0. In order to prove this, for a given $\varepsilon>0$ what δ you should choose in order to have

$$\left|x^{\frac{1}{n}} - a^{\frac{1}{n}}\right| < \varepsilon$$
 whenever $0 < |x - a| < \delta$?

Hint: Prove that if $\delta = \min \left\{ \frac{a}{2}, \frac{na^{\frac{n-1}{n}}\varepsilon}{2} \right\}$, then the statement above holds.

Proof of Part (5) of Theorem 1.11. Let $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = K$, and $\varepsilon > 0$ be given. Since $\lim_{x\to a} f(x) = L$, there exists $\delta_1 > 0$ such that

$$|f(x) - L| < \frac{\varepsilon}{2(|K| + 1)}$$
 whenever $0 < |x - a| < \delta_1$.

Since $\lim_{x\to a} g(x) = K$, there exists $\delta_2 > 0$ such that

$$|g(x) - K| < \min\left\{1, \frac{\varepsilon}{2(|L|+1)}\right\}$$
 whenever $0 < |x-a| < \delta_2$.

Define $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta > 0$. Moreover, if $0 < |x - a| < \delta$ (which implies that $0 < |x - a| < \delta_1$ and $0 < |x - a| < \delta_2$ simultaneously),

$$\begin{split} \left|f(x)g(x)-LK\right| &= \left|f(x)g(x)-Lg(x)+g(x)L-LK\right| \leqslant \left|g(x)\right| \left|f(x)-L\right| + |L| \left|g(x)-K\right| \\ &= \left|g(x)-K+K\right| \left|f(x)-L\right| + +|L| \left|g(x)-K\right| \\ &\leqslant \left(\left|g(x)-K\right|+|K|\right) \left|\left|f(x)-L\right| + +|L| \left|g(x)-K\right| \\ &\leqslant \left(1+|K|\right) \frac{\varepsilon}{2(|K|+1)} + |L| \frac{\varepsilon}{2(|L|+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Therefore, we establish that for every given $\varepsilon > 0$ there is $\delta > 0$ such that if $0 < |x - a| < \delta$ then we have $|f(x)g(x) - LK| < \varepsilon$. This shows that $\lim_{x \to a} [f(x)g(x)] = LK$.