Extra Exercise Problem Sets 2
Mar. 04. 2025

Problem 1. The second Taylor polynomial for a twice-differentiable function f at x = c is called the
quadratic approximation of f at = ¢. Find the quadratic approximate of the following functions

at r = 0.

(1) J@) =mncoss @) S = @) f@) = e (@) o) = g
(5) f(x) =e*sin’x (6) f(z) =e"In(l+ ) (7) f(x) = (arctan x)?

Problem 2. Let f have derivatives through order n at x = ¢. Show that the n-th Taylor polynomial
for f at ¢ and its first n derivatives have the same values that f and its first n derivatives have at

T =c.
Problem 3. Complete the following.

(1) Let f,g : [a,b] — R be continuous and g is sign-definite; that is, g(z) = 0 for all x € [a, ] or
g(x) <0 for all x € [a,b]. Show that there exists ¢ € [a, b] such that

b b
f@jm@mzjfmmwm. (0.1)

(2) Let f :[a,b] = R be a function, and ¢ € [a,b]. Prove (by induction) that if f is (n + 1)-times

continuously differentiable on [a, b], then for all z € [a, b],

ue (n) c
f@) = 1)+ 1@ -+ Loy L gy
+(=1)" r f(”“)(t)—<t _n'@n dt
n (k) c T — )"
= 2 / k'( )(x—c)k+ (—1)”J f("“)(t)—(t p ) dt.

(3) Use (@) to show that if f is (n + 1)-times continuously differentiable on [a,b] and ¢ € [a, b],

then for all = € [a, b] there exists a point £ between x and ¢ such that

= R (e (n+1)
)= 2 e = o+ e o

(4) Find and explain the difference between the conclusion above and Taylor’s Theorem.

Problem 4. Suppose that f is differentiable on an interval centered at x = ¢ and that g(x) =
bo+bi(x —c¢)+ -+ by(x — )" is a polynomial of degree n with constant coefficients by, by, - -, by.

Let E(xz) = f(x) — g(z). Show that if we impose on g the conditions

1. E(c) =0 (which means “the approximation error is zero at x = ¢”);



2. lim (xE_(xc))n = 0 (which means “the error is negligible when compared to (z — ¢)"),

then g is the n-th Taylor polynomial for f at ¢. Thus, the Taylor polynomial P, is the only
polynomial of degree less than or equal to n whose error is both zero at + = ¢ and

negligible when compared with (z — ¢)".

Problem 5. Show that if p is an polynomial of degree n, then

Problem 6. In class we briefly talked about Newton’s method for approximating a root/zero r of
the equation f(z) = 0, and from an initial approximation z; we obtained successive approximations

X9, X3, - -, Where

S(@n)
f'(xn)
Show that if f” exists on an interval I containing r, x,,, and x,1, and ‘f”(x)‘ < M and ‘f’(x)‘ > K
for all x € I, then

Vn>=1

Tn41 = Tp —

|1 = 7| | —7[”

M
< R
2K
This means that if z, is accurate to d decimal places, then z,,; is accurate to about 2d

decimal places. More precisely, if the error at stage n is at most 107, then the error

M
at stage n + 1 is at most ﬁm—?m.

Hint: Apply Taylor’'s Theorem to write f(r) = Pa(r) + Ra(r), where P, is the second Taylor

polynomial for f at x,.

Problem 7. Consider a function f with continuous first and second derivatives at x = c¢. Prove that
if f has a relative maximum at x = ¢, then the second Taylor polynomial centered at x = ¢ also has

a relative maximum at z = c.

Problem 8. Let f : (a,b) — R be (n+1)-times differentiable, and ¢ € (a,b). In this problem you are

ask to derive the remaind associated with the n-th Taylor polynomial for f at ¢ in Schlomilch-Roche

form: ) g)
o f " g n+1—
Ry(z) = n—!p(ﬂﬂ — )Pz =&" " (0.2)
Suppose that f : (a,b) — R is (n + 1)-times differentiable. For a fixed x € (a,b), define
PAUG)
o) = @)= 3, e ="

Note that ¢(c) = R, (z). Complete the following.

ARIO)

n!

1. Show that ¢'(2) = — (x —2)"™



2. Apply the Cauchy mean value theorem to the two functions ¢(z) and ¥ (z) = (x — z)? for some
pe{l,2,--- ,n}; that is,

for some £ between ¢ and x,

to show (@)

3. Use (@) to show that

In(l+2x) = i <*1k)k1xk Vae (—1,1]. (?77?)

Remark: The remainder in Schlomilch-Roche form with p = 1 is called Cauchy remainder, and

Lagrange remainder is obtained by letting p =n + 1 in (@)

Problem 9. Suppose that f : [a,b] — R is three times continuously differentiable, h = b
a+b

. Show that there exists £ € (a, b) such that

pey = LO T 1 g ey

Hint: Find the difference f(b) — f(a) by write f as the sum of its third Taylor polynomial about ¢
and the corresponding remainder. Apply the Intermediate Value Theorem to deal with the sum of

the remainders. We note that the identity above implies that
et )= fle—h)| _ W

"(¢) — < — @ (z)].
/() 2h 6 ;ve[?—li?i:(—&-h} ’f <x)’
Problem 10. Suppose that f : [a,b] — R is four times continuously differentiable, h = b—a and
_atb Show that there exists £ € (a, b) such that
fla) =2f(c) + f(b)  f()
f"(c) = 2 — h?. (0.3)

12
Hint: Find the sum f(a) + f(b) by write f as the sum of its third Taylor polynomial about ¢ and

the corresponding remainder. Apply the Intermediate Value Theorem to deal with the sum of the
remainders. We note that the identity above implies that

fle+h) = 2f(c) +f(c—h)‘ M
h? h

f"(e) =

(4)
12 xe[cn—lf?,};h] }f (I)} '

Problem 11. Suppose that f : [a,b] — R is four times continuously differentiable. Show that

[ e =2 1@+ 4550 + 0] < B |70 (0.4

through the following steps.



b b—
1. Let ¢ = % and h = Ta. Write f as the sum of its third Taylor polynomial about ¢ and

the corresponding remainder and conclude that

b 3 b
Jf(a:)dszhf(c)%—%f”(c)%—f Rs(x) dx.

a

2. Show (by Intermediate Value Theorem) that there exists £ € (a,b) such that

b (4) b (4)
J Rs(z) dx = ! Zig) f (x —c)*dr = f6—é§)h5. (0.5)

a

3. Use (@) in (@) and conclude (@)

Problem 12. Find the interval of convergence of the following power series.

a

(1) i (R ) iann)xn (3) i (VaT1—ym)a"  (4) i(nil)”%n
CET D246 (20) O (—1)"3 T 11 (dn—1)

(5) ngl @ (6) =357 2n + 1)552 ) n§1 in v
@ 1 . c3 | . c3 n! .

® 2srs e W Zigsr ot D X306

n=1 n!
1) 3 M n here k itive int 12) s 2 gy
(11) go (lm)!x , where k is a positive integer; ( )nz::innn ( )nz:jz o nn)?
e}
(14) ¥ 2+ (=1)"](z+ 1)~
n=1

Problem 13. The function Jy defined by
o0
(_1)nx2n
D@ = 2, iy
22 (pl)?
is called the Bessel function of the first kind of order 0. Find its domain (that is, the interval of
convergence).
Problem 14. The function J; defined by
0 (_1)711.2714—1

hx)= 2, nl(n + 1)122n+1

n=0

is called the Bessel function of the first kind of order 1. Find its domain (that is, the interval of

convergence).

Problem 15. The function A defined by

3 l’6 l‘g

23 2356 2356809
is called an Airy function after the English mathematician and astronomer Sir George Airy (1801~

1892). Find the domain of the Airy function.

Alx) =1+




Problem 16. A function f is defined by
fxy=1+20+2>+ 223 + 2+

that is, its coefficients are ¢o,, = 1 and ¢g,,7 = 2 for all n > 0. Find the interval of convergence of

the series and find an explicit formula for f(z).

Problem 17. Let f : (—r,7) — R be n-times differentiable at 0, and P, (z) be the n-th Maclaurin

polynomial for f.

1. Show that if g(x) = z*f(2™) for some positive integers m and ¢, then the (mn+¢)-th Maclaurin

polynomial for g is 2°P,(z™).

2. Show that if h(z) = 2'f(—a™) for some positive integers m and ¢, then the (mn + f)-th

Maclaurin polynomial for h is /P, (—a™).

3. Find the Maclaurin series for the following functions:

1
1 = -
1)y 14 22

Hint for (1) and (2): See Exercise 3 Problem 4.

(2) y = 2?arctan(z®) (3) y =In(1+2') (4) y = zsin(z?) cos(x?).

2

o0
Problem 18. To find the sum of the series ), express -—— as a geometric series, differenti-
n=1 -

n

on’

ate both sides of the resulting equation with respect to x, multiply both sides of the result by =z,
1

differentiate again, multiply by = again, and set x equal to 7 What do you get?

Problem 19. Complete the following.

(1) Use the power series of y = arctanz to show that

B o (=)
= 2\/37;0 (2n + 1)3"

1
(2) Using 2 +1 = (x + 1)(2® — 2 + 1), rewrite the integral fQ #
0 72—

1 and then express 1

as the sum of a power series to prove the following formula for 7:

:3\/§i(—1)n< 2 1 )

4 = 8n 3n—|—1+3n—|—2

™

Problem 20. Show that the Bessel function of the first kind of order 0, denoted by J, and defined
by

satisfies the differential equation

2?y"(x) + xy'(z) + 2’y(z) =0, y(0) =1, y'(0) = 0.



Q0
Problem 21. Find the power series solution y(z) = > azz” to the differential equation
k=0

y"(r) +y(x) =2,  y(0)=0, y'(0)=2.

Problem 22. Show that the Bessel function of the first kind of order 1, denoted by J; and defined
by
© (_1)711.271—4—1

hie) = Z; al(n + 1)122n+1

satisfies the differential equation

2’y (@) +ay'(2) + (2" = Dy(z) =0, y(0) =0, y'(0) = 5.

where " denotes the derivatives with respect to t.

1. Assume that the function z;(t) and z5(¢) can be written as a power series (on a certain interval),
o0

o0
that is, z1(t) = > axt® and x5(t) = > bit*. Show that
k=0 k=0

(k+2)(k+ 1ags2 = ap and (k+2)(k + 1)bgio = by Vk=0.
2. Find a; and b, and conclude that x; and x5 are some functions that we have seen before.
3. Find a function z(t) satisfying
z"(t) —x(t) =0, z(0) =a, z'(0)=0.
Note that x can be written as the linear combination of x; and 2.
Problem 24. Find the series solution to the differential equation
y"(z) +ay(z) =0,  y(0)=1, y'(0)=0.
What is the radius of convergence of this series solution?

Problem 25. In this problem we try to establish the following theorem

8

Theorem 0.1. Let the radius of convergence of the power series f(x) = ar(z —c)* be r for some

k=0

r > 0.

0

1. If > apr® converges, then f is continuous at ¢ + r; that is l(im) flz) = flc+r).
k=0 T—(c+r)”



0
2. If 3 ap(—r)* converges, then f is continuous at ¢ —r; that is, lim f(x) = f(c—r).

k=0 z—(c—r)t

Prove case 1 of the theorem above through the following steps.

o0
(1) Let A= >} apr*, and define

k=0
0 0 0
g@) = flra+c)— A= -3 ak + S aprtah = 3 byat,
k=1 k=1 k=0
o0
where b, = axr* for each k € N and by = — > a,r®. Show that the radius of convergence of ¢
k=1
is 1 and i b, = 0. Moreover, show that f is continuous at ¢+ r if and only if ¢ is continuous
k=0

at 1.
(2) Let s, =by+0by +---+0b, and S, (z) = by + byx + - - - + b,z™. Show that
Sp(x) = (1 —2)(sg + 812+ + 512" 1) + 8,2
and conclude that .
g(x) = lim S,(z) = (1 —x) ) spa. (0.6)
k=0

n—oo

(3) Use (@) to show that ¢ is continuous at 1. Note that you might need to use e-§ argument.

Problem 26. Complete the following.

1. Find the n-th Maclaurin polynomial P,(x) of the function f(x) = T and express the
T

remainder term R, (z) = f(z) — P,(x) in Lagrange form.

2. Show that if |z| < %, then )

In(l1+z)— r— 1) < §|x|3
2 3

by first showing that |R;(z)| < 8z? for |z| <
Pi(t) + Ry(t) from 0 to = to obtain that

% and then integrating the identity f(t) =

U:Rl(t)dt‘ < §!x|3 Ve [_%%]

0
—1)k
3. (Use part 2 to) Justify whether the series Z In (1 + ( \/E) ) converges or not.
k=1

4. From part 1 we have
1

14 22

= P, (2*) + R,(2%).

Integrate the identity above on the interval [O, %} and find n such that

n

1 (—1)% ‘ -8
‘arctan2 ’;) 2k + 1)22 1 < 107°.



