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Mar. 04. 2025

Problem 1. The second Taylor polynomial for a twice-differentiable function f at x = c is called the
quadratic approximation of f at x = c. Find the quadratic approximate of the following functions
at x = 0.

(1) f(x) = ln cos x (2) f(x) = esinx (3) f(x) = tanx (4) f(x) = 1
?
1 ´ x2

(5) f(x) = ex sin2 x (6) f(x) = ex ln(1 + x) (7) f(x) = (arctanx)2

Problem 2. Let f have derivatives through order n at x = c. Show that the n-th Taylor polynomial
for f at c and its first n derivatives have the same values that f and its first n derivatives have at
x = c.

Problem 3. Complete the following.

(1) Let f, g : [a, b] Ñ R be continuous and g is sign-definite; that is, g(x) ě 0 for all x P [a, b] or
g(x) ď 0 for all x P [a, b]. Show that there exists c P [a, b] such that

f(c)

ż b

a

g(x) dx =

ż b

a

f(x)g(x) dx. (0.1)

(2) Let f : [a, b] Ñ R be a function, and c P [a, b]. Prove (by induction) that if f is (n + 1)-times
continuously differentiable on [a, b], then for all x P [a, b],

f(x) = f(c) + f 1(c)(x ´ c) +
f 11(c)

2!
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n

+ (´1)n
ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt

=
n

ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)n

ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt.

(3) Use (0.1) to show that if f is (n + 1)-times continuously differentiable on [a, b] and c P [a, b],
then for all x P [a, b] there exists a point ξ between x and c such that

f(x) =
n

ÿ

k=0

f (k)(c)

k!
(x ´ c)k +

f (n+1)(ξ)

(n+ 1)!
(x ´ c)n+1 .

(4) Find and explain the difference between the conclusion above and Taylor’s Theorem.

Problem 4. Suppose that f is differentiable on an interval centered at x = c and that g(x) =

b0 + b1(x´ c) + ¨ ¨ ¨ + bn(x´ c)n is a polynomial of degree n with constant coefficients b0, b1, ¨ ¨ ¨ , bn.
Let E(x) = f(x) ´ g(x). Show that if we impose on g the conditions

1. E(c) = 0 (which means “the approximation error is zero at x = c”);



2. lim
xÑc

E(x)

(x ´ c)n
= 0 (which means “the error is negligible when compared to (x ´ c)n),

then g is the n-th Taylor polynomial for f at c. Thus, the Taylor polynomial Pn is the only
polynomial of degree less than or equal to n whose error is both zero at x = c and
negligible when compared with (x ´ c)n.

Problem 5. Show that if p is an polynomial of degree n, then

p(x+ 1) =
n

ÿ

k=0

p(k)(x)

k!
.

Problem 6. In class we briefly talked about Newton’s method for approximating a root/zero r of
the equation f(x) = 0, and from an initial approximation x1 we obtained successive approximations
x2, x3, ¨ ¨ ¨ , where

xn+1 = xn ´
f(xn)

f 1(xn)
@n ě 1 .

Show that if f 11 exists on an interval I containing r, xn, and xn+1, and
ˇ

ˇf 11(x)
ˇ

ˇ ď M and
ˇ

ˇf 1(x)
ˇ

ˇ ě K

for all x P I, then
|xn+1 ´ r| ď

M

2K
|xn ´ r|2

This means that if xn is accurate to d decimal places, then xn+1 is accurate to about 2d

decimal places. More precisely, if the error at stage n is at most 10´m, then the error

at stage n+ 1 is at most M

2K
10´2m.

Hint: Apply Taylor’s Theorem to write f(r) = P2(r) + R2(r), where P2 is the second Taylor
polynomial for f at xn.

Problem 7. Consider a function f with continuous first and second derivatives at x = c. Prove that
if f has a relative maximum at x = c, then the second Taylor polynomial centered at x = c also has
a relative maximum at x = c.

Problem 8. Let f : (a, b) Ñ R be (n+1)-times differentiable, and c P (a, b). In this problem you are
ask to derive the remaind associated with the n-th Taylor polynomial for f at c in Schlomilch-Roche
form:

Rn(x) =
f (n+1)(ξ)

n!p
(x ´ c)p(x ´ ξ)n+1´p . (0.2)

Suppose that f : (a, b) Ñ R is (n+ 1)-times differentiable. For a fixed x P (a, b), define

φ(z) = f(x) ´

n
ÿ

k=0

f (k)(z)

k!
(x ´ z)k .

Note that φ(c) = Rn(x). Complete the following.

1. Show that φ 1(z) = ´
f (n+1)(z)

n!
(x ´ z)n.



2. Apply the Cauchy mean value theorem to the two functions φ(z) and ψ(z) ” (x´ z)p for some
p P t1, 2, ¨ ¨ ¨ , nu; that is,

φ(x) ´ φ(c)

ψ(x) ´ ψ(c)
=
φ 1(ξ)

ψ 1(ξ)
for some ξ between c and x,

to show (0.2).

3. Use (0.2) to show that

ln(1 + x) =
8
ÿ

k=1

(´1)k´1

k
xk @x P (´1, 1] . (??)

Remark: The remainder in Schlomilch-Roche form with p = 1 is called Cauchy remainder, and
Lagrange remainder is obtained by letting p = n+ 1 in (0.2).

Problem 9. Suppose that f : [a, b] Ñ R is three times continuously differentiable, h =
b ´ a

2
and

c =
a+ b

2
. Show that there exists ξ P (a, b) such that

f 1(c) =
f(b) ´ f(a)

2h
´
h2

6
f (3)(ξ) .

Hint: Find the difference f(b) ´ f(a) by write f as the sum of its third Taylor polynomial about c
and the corresponding remainder. Apply the Intermediate Value Theorem to deal with the sum of
the remainders. We note that the identity above implies that

ˇ

ˇ

ˇ
f 1(c) ´

f(c+ h) ´ f(c ´ h)

2h

ˇ

ˇ

ˇ
ď
h2

6
max

xP[c´h,c+h]

ˇ

ˇf (3)(x)
ˇ

ˇ .

Problem 10. Suppose that f : [a, b] Ñ R is four times continuously differentiable, h =
b ´ a

2
and

c =
a+ b

2
. Show that there exists ξ P (a, b) such that

f 11(c) =
f(a) ´ 2f(c) + f(b)

h2
´
f (4)(ξ)

12
h2 . (0.3)

Hint: Find the sum f(a) + f(b) by write f as the sum of its third Taylor polynomial about c and
the corresponding remainder. Apply the Intermediate Value Theorem to deal with the sum of the
remainders. We note that the identity above implies that

ˇ

ˇ

ˇ
f 11(c) ´

f(c+ h) ´ 2f(c) + f(c ´ h)

h2

ˇ

ˇ

ˇ
ď
h2

12
max

xP[c´h,c+h]

ˇ

ˇf (4)(x)
ˇ

ˇ .

Problem 11. Suppose that f : [a, b] Ñ R is four times continuously differentiable. Show that
ˇ

ˇ

ˇ

ż b

a

f(x) dx ´
b ´ a

6

[
f(a) + 4f

(a+ b

2

)
+ f(b)

]ˇ
ˇ

ˇ
ď

2h5

45
max
xP[a,b]

ˇ

ˇf (4)(x)
ˇ

ˇ (0.4)

through the following steps.



1. Let c = a+ b

2
and h =

b ´ a

2
. Write f as the sum of its third Taylor polynomial about c and

the corresponding remainder and conclude that
ż b

a

f(x) dx = 2hf(c) +
h3

3
f 11(c) +

ż b

a

R3(x) dx.

2. Show (by Intermediate Value Theorem) that there exists ξ P (a, b) such that
ż b

a

R3(x) dx =
f (4)(ξ)

24

ż b

a

(x ´ c)4 dx =
f (4)(ξ)

60
h5 . (0.5)

3. Use (0.3) in (0.5) and conclude (0.4).

Problem 12. Find the interval of convergence of the following power series.

(1)
8
ř

n=1

(
1 +

1

n

)n
xn (2)

8
ř

n=1

(lnn)xn (3)
8
ř

n=1

(?
n+ 1 ´

?
n
)
xn (4)

8
ř

n=1

( n

n+ 1

)n2

xn

(5)
8
ř

n=1

n!

(2n)!
xn (6)

8
ř

n=1

2 ¨ 4 ¨ 6 ¨ ¨ ¨ ¨ ¨ (2n)

3 ¨ 5 ¨ 7 ¨ ¨ ¨ ¨ ¨ (2n+ 1)
x2n+1 (7)

8
ř

n=1

(´1)n3 ¨ 7 ¨ 11 ¨ ¨ ¨ ¨ ¨ (4n ´ 1)

4n
xn

(8)
8
ř

n=1

1

2 ¨ 4 ¨ 6 ¨ ¨ ¨ ¨ ¨ (2n)
xn (10)

8
ř

n=1

1

1 ¨ 3 ¨ 5 ¨ 7 ¨ ¨ ¨ ¨ ¨ (2n ´ 1)
xn (9)

8
ř

n=1

n!

3 ¨ 6 ¨ 9 ¨ ¨ ¨ ¨ ¨ (3n)
xn

(10)
8
ř

n=1

k(k + 1)(k + 2) ¨ ¨ ¨ (k + n ´ 1)

n!
xn, where k is a positive integer;

(11)
8
ř

n=0

(n!)k

(kn)!
xn, where k is a positive integer; (12)

8
ř

n=2

xn

n lnn
(13)

8
ř

n=2

xn

n(lnn)2

(14)
8
ř

n=1

[
2 + (´1)n

]
(x+ 1)n´1

Problem 13. The function J0 defined by

J0(x) =
8
ÿ

n=0

(´1)nx2n

22n(n!)2

is called the Bessel function of the first kind of order 0. Find its domain (that is, the interval of
convergence).

Problem 14. The function J1 defined by

J1(x) =
8
ÿ

n=0

(´1)nx2n+1

n!(n+ 1)!22n+1

is called the Bessel function of the first kind of order 1. Find its domain (that is, the interval of
convergence).

Problem 15. The function A defined by

A(x) = 1 +
x3

2 ¨ 3
+

x6

2 ¨ 3 ¨ 5 ¨ 6
+

x9

2 ¨ 3 ¨ 5 ¨ 6 ¨ 8 ¨ 9
+ ¨ ¨ ¨

is called an Airy function after the English mathematician and astronomer Sir George Airy (1801–
1892). Find the domain of the Airy function.



Problem 16. A function f is defined by

f(x) = 1 + 2x+ x2 + 2x3 + x4 + ¨ ¨ ¨ ;

that is, its coefficients are c2n = 1 and c2n+1 = 2 for all n ě 0. Find the interval of convergence of
the series and find an explicit formula for f(x).

Problem 17. Let f : (´r, r) Ñ R be n-times differentiable at 0, and Pn(x) be the n-th Maclaurin
polynomial for f .

1. Show that if g(x) = xℓf(xm) for some positive integers m and ℓ, then the (mn+ℓ)-th Maclaurin
polynomial for g is xℓPn(x

m).

2. Show that if h(x) = xℓf(´xm) for some positive integers m and ℓ, then the (mn + ℓ)-th
Maclaurin polynomial for h is xℓPn(´x

m).

3. Find the Maclaurin series for the following functions:

(1) y =
1

1 + x2
(2) y = x2 arctan(x3) (3) y = ln(1 + x4) (4) y = x sin(x3) cos(x3).

Hint for (1) and (2): See Exercise 3 Problem 4.

Problem 18. To find the sum of the series
8
ř

n=1

n2

2n
, express 1

1 ´ x
as a geometric series, differenti-

ate both sides of the resulting equation with respect to x, multiply both sides of the result by x,
differentiate again, multiply by x again, and set x equal to 1

2
. What do you get?

Problem 19. Complete the following.

(1) Use the power series of y = arctanx to show that

π = 2
?
3

8
ÿ

n=0

(´1)n

(2n+ 1)3n

(2) Using x3 + 1 = (x+ 1)(x2 ´ x+ 1), rewrite the integral
ż 1

2

0

dx

x2 ´ x+ 1
and then express 1

1 + x3

as the sum of a power series to prove the following formula for π:

π =
3
?
3

4

8
ÿ

n=0

(´1)n

8n

( 2

3n+ 1
+

1

3n+ 2

)
.

Problem 20. Show that the Bessel function of the first kind of order 0, denoted by J0 and defined
by

J0(x) =
8
ÿ

n=0

(´1)nx2n

22n(n!)2
,

satisfies the differential equation

x2y 11(x) + xy 1(x) + x2y(x) = 0 , y(0) = 1, y 1(0) = 0 .



Problem 21. Find the power series solution y(x) =
8
ř

k=0

akx
k to the differential equation

y 11(x) + y(x) = x, y(0) = 0, y 1(0) = 2 .

Problem 22. Show that the Bessel function of the first kind of order 1, denoted by J1 and defined
by

J1(x) =
8
ÿ

n=0

(´1)nx2n+1

n!(n+ 1)!22n+1
,

satisfies the differential equation

x2y 11(x) + xy 1(x) + (x2 ´ 1)y(x) = 0 , y(0) = 0, y 1(0) =
1

2
.

Problem 23. Suppose that x1(t) and x2(t) are functions of t satisfying the following equations

x 11
1 (t) ´ x1(t) = 0 , x1(0) = 1 , x 1

1(0) = 0 ,

x 11
2 (t) ´ x2(t) = 0 , x2(0) = 0 , x 1

2(0) = 1 ,

where 1 denotes the derivatives with respect to t.

1. Assume that the function x1(t) and x2(t) can be written as a power series (on a certain interval),

that is, x1(t) =
8
ř

k=0

akt
k and x2(t) =

8
ř

k=0

bkt
k. Show that

(k + 2)(k + 1)ak+2 = ak and (k + 2)(k + 1)bk+2 = bk @ k ě 0 .

2. Find ak and bk, and conclude that x1 and x2 are some functions that we have seen before.

3. Find a function x(t) satisfying

x 11(t) ´ x(t) = 0 , x(0) = a, x 1(0) = b.

Note that x can be written as the linear combination of x1 and x2.

Problem 24. Find the series solution to the differential equation

y 11(x) + x2y(x) = 0 , y(0) = 1 , y 1(0) = 0 .

What is the radius of convergence of this series solution?

Problem 25. In this problem we try to establish the following theorem

Theorem 0.1. Let the radius of convergence of the power series f(x) =
8
ř

k=0

ak(x´ c)k be r for some
r ą 0.

1. If
8
ř

k=0

akr
k converges, then f is continuous at c+ r; that is lim

xÑ(c+r)´
f(x) = f(c+ r).



2. If
8
ř

k=0

ak(´r)
k converges, then f is continuous at c ´ r; that is, lim

xÑ(c´r)+
f(x) = f(c ´ r).

Prove case 1 of the theorem above through the following steps.

(1) Let A =
8
ř

k=0

akr
k, and define

g(x) = f(rx+ c) ´ A = ´

8
ÿ

k=1

akr
k +

8
ÿ

k=1

akr
kxk =

8
ÿ

k=0

bkx
k ,

where bk = akr
k for each k P N and b0 = ´

8
ř

k=1

akr
k. Show that the radius of convergence of g

is 1 and
8
ř

k=0

bk = 0. Moreover, show that f is continuous at c+ r if and only if g is continuous

at 1.

(2) Let sn = b0 + b1 + ¨ ¨ ¨ + bn and Sn(x) = b0 + b1x+ ¨ ¨ ¨ + bnx
n. Show that

Sn(x) = (1 ´ x)(s0 + s1x+ ¨ ¨ ¨ + sn´1x
n´1) + snx

n

and conclude that
g(x) = lim

nÑ8
Sn(x) = (1 ´ x)

8
ÿ

k=0

skx
k . (0.6)

(3) Use (0.6) to show that g is continuous at 1. Note that you might need to use ε-δ argument.

Problem 26. Complete the following.

1. Find the n-th Maclaurin polynomial Pn(x) of the function f(x) =
1

1 + x
and express the

remainder term Rn(x) = f(x) ´ Pn(x) in Lagrange form.

2. Show that if |x| ď
1

2
, then

ˇ

ˇ

ˇ
ln(1 + x) ´

(
x ´

x2

2

)ˇ

ˇ

ˇ
ď

8

3
|x|3

by first showing that |R1(x)| ď 8x2 for |x| ď
1

2
and then integrating the identity f(t) =

P1(t) + R1(t) from 0 to x to obtain that
ˇ

ˇ

ˇ

ż x

0

R1(t) dt
ˇ

ˇ

ˇ
ď

8

3
|x|3 @x P

[
´

1

2
,
1

2

]
.

3. (Use part 2 to) Justify whether the series
8
ÿ

k=1

ln
(
1 +

(´1)k
?
k

)
converges or not.

4. From part 1 we have
1

1 + x2
= Pn(x

2) + Rn(x
2) .

Integrate the identity above on the interval
[
0,

1

2

]
and find n such that

ˇ

ˇ

ˇ
arctan 1

2
´

n
ÿ

k=0

(´1)k

(2k + 1)22k+1

ˇ

ˇ

ˇ
ă 10´8 .


