Extra Exercise Problem Sets 2

Mar. 04. 2025

Problem 1. The second Taylor polynomial for a twice-differentiable function f at x = c is called the quadratic approximation of f at x = c. Find the quadratic approximate of the following functions at x = 0.

(1) $f(x) = \ln \cos x$ (2) $f(x) = e^{\sin x}$ (3) $f(x) = \tan x$ (4) $f(x) = \frac{1}{\sqrt{1 - x^2}}$

(5) $f(x) = e^x \sin^2 x$ (6) $f(x) = e^x \ln(1+x)$ (7) $f(x) = (\arctan x)^2$

Problem 2. Let f have derivatives through order n at x = c. Show that the *n*-th Taylor polynomial for f at c and its first n derivatives have the same values that f and its first n derivatives have at x = c.

Problem 3. Complete the following.

(1) Let $f, g: [a, b] \to \mathbb{R}$ be continuous and g is sign-definite; that is, $g(x) \ge 0$ for all $x \in [a, b]$ or $g(x) \le 0$ for all $x \in [a, b]$. Show that there exists $c \in [a, b]$ such that

$$f(c) \int_{a}^{b} g(x) \, dx = \int_{a}^{b} f(x)g(x) \, dx.$$
 (0.1)

(2) Let $f : [a, b] \to \mathbb{R}$ be a function, and $c \in [a, b]$. Prove (by induction) that if f is (n + 1)-times continuously differentiable on [a, b], then for all $x \in [a, b]$,

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + (-1)^n \int_c^x f^{(n+1)}(t) \frac{(t - x)^n}{n!} dt = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!}(x - c)^k + (-1)^n \int_c^x f^{(n+1)}(t) \frac{(t - x)^n}{n!} dt.$$

(3) Use (0.1) to show that if f is (n + 1)-times continuously differentiable on [a, b] and $c \in [a, b]$, then for all $x \in [a, b]$ there exists a point ξ between x and c such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k} + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}.$$

(4) Find and explain the difference between the conclusion above and Taylor's Theorem.

Problem 4. Suppose that f is differentiable on an interval centered at x = c and that $g(x) = b_0 + b_1(x-c) + \cdots + b_n(x-c)^n$ is a polynomial of degree n with constant coefficients b_0, b_1, \cdots, b_n . Let E(x) = f(x) - g(x). Show that if we impose on g the conditions

1. E(c) = 0 (which means "the approximation error is zero at x = c");

2. $\lim_{x \to c} \frac{E(x)}{(x-c)^n} = 0$ (which means "the error is negligible when compared to $(x-c)^n$),

then g is the n-th Taylor polynomial for f at c. Thus, the Taylor polynomial P_n is the only polynomial of degree less than or equal to n whose error is both zero at x = c and negligible when compared with $(x - c)^n$.

Problem 5. Show that if p is an polynomial of degree n, then

$$p(x+1) = \sum_{k=0}^{n} \frac{p^{(k)}(x)}{k!}$$

Problem 6. In class we briefly talked about Newton's method for approximating a root/zero r of the equation f(x) = 0, and from an initial approximation x_1 we obtained successive approximations x_2, x_3, \dots , where

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \qquad \forall n \ge 1$$

Show that if f'' exists on an interval I containing r, x_n , and x_{n+1} , and $|f''(x)| \leq M$ and $|f'(x)| \geq K$ for all $x \in I$, then

$$|x_{n+1} - r| \leq \frac{M}{2K}|x_n - r|^2$$

This means that if x_n is accurate to d decimal places, then x_{n+1} is accurate to about 2d decimal places. More precisely, if the error at stage n is at most 10^{-m} , then the error at stage n + 1 is at most $\frac{M}{2K}10^{-2m}$.

Hint: Apply Taylor's Theorem to write $f(r) = P_2(r) + R_2(r)$, where P_2 is the second Taylor polynomial for f at x_n .

Problem 7. Consider a function f with continuous first and second derivatives at x = c. Prove that if f has a relative maximum at x = c, then the second Taylor polynomial centered at x = c also has a relative maximum at x = c.

Problem 8. Let $f : (a, b) \to \mathbb{R}$ be (n+1)-times differentiable, and $c \in (a, b)$. In this problem you are ask to derive the remaind associated with the *n*-th Taylor polynomial for f at c in Schlomilch-Roche form:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{n!p} (x-c)^p (x-\xi)^{n+1-p}.$$
(0.2)

Suppose that $f:(a,b) \to \mathbb{R}$ is (n+1)-times differentiable. For a fixed $x \in (a,b)$, define

$$\varphi(z) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(z)}{k!} (x-z)^{k}.$$

Note that $\varphi(c) = R_n(x)$. Complete the following.

1. Show that $\varphi'(z) = -\frac{f^{(n+1)}(z)}{n!}(x-z)^n$.

2. Apply the Cauchy mean value theorem to the two functions $\varphi(z)$ and $\psi(z) \equiv (x-z)^p$ for some $p \in \{1, 2, \dots, n\}$; that is,

$$\frac{\varphi(x) - \varphi(c)}{\psi(x) - \psi(c)} = \frac{\varphi'(\xi)}{\psi'(\xi)} \quad \text{for some } \xi \text{ between } c \text{ and } x,$$

to show (0.2).

3. Use (0.2) to show that

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k \qquad \forall x \in (-1,1].$$
(??)

Remark: The remainder in Schlomilch-Roche form with p = 1 is called Cauchy remainder, and Lagrange remainder is obtained by letting p = n + 1 in (0.2).

Problem 9. Suppose that $f : [a, b] \to \mathbb{R}$ is three times continuously differentiable, $h = \frac{b-a}{2}$ and $c = \frac{a+b}{2}$. Show that there exists $\xi \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{2h} - \frac{h^2}{6}f^{(3)}(\xi).$$

Hint: Find the difference f(b) - f(a) by write f as the sum of its third Taylor polynomial about c and the corresponding remainder. Apply the Intermediate Value Theorem to deal with the sum of the remainders. We note that the identity above implies that

$$\left| f'(c) - \frac{f(c+h) - f(c-h)}{2h} \right| \leq \frac{h^2}{6} \max_{x \in [c-h, c+h]} \left| f^{(3)}(x) \right|.$$

Problem 10. Suppose that $f : [a, b] \to \mathbb{R}$ is four times continuously differentiable, $h = \frac{b-a}{2}$ and $c = \frac{a+b}{2}$. Show that there exists $\xi \in (a, b)$ such that

$$f''(c) = \frac{f(a) - 2f(c) + f(b)}{h^2} - \frac{f^{(4)}(\xi)}{12}h^2.$$
 (0.3)

Hint: Find the sum f(a) + f(b) by write f as the sum of its third Taylor polynomial about c and the corresponding remainder. Apply the Intermediate Value Theorem to deal with the sum of the remainders. We note that the identity above implies that

$$\left| f''(c) - \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} \right| \le \frac{h^2}{12} \max_{x \in [c-h,c+h]} \left| f^{(4)}(x) \right|.$$

Problem 11. Suppose that $f : [a, b] \to \mathbb{R}$ is four times continuously differentiable. Show that

$$\left|\int_{a}^{b} f(x) \, dx - \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \right| \le \frac{2h^5}{45} \max_{x \in [a,b]} \left| f^{(4)}(x) \right| \tag{0.4}$$

through the following steps.

1. Let $c = \frac{a+b}{2}$ and $h = \frac{b-a}{2}$. Write f as the sum of its third Taylor polynomial about c and the corresponding remainder and conclude that

$$\int_{a}^{b} f(x) \, dx = 2hf(c) + \frac{h^{3}}{3}f''(c) + \int_{a}^{b} R_{3}(x) \, dx.$$

2. Show (by Intermediate Value Theorem) that there exists $\xi \in (a, b)$ such that

$$\int_{a}^{b} R_{3}(x) dx = \frac{f^{(4)}(\xi)}{24} \int_{a}^{b} (x-c)^{4} dx = \frac{f^{(4)}(\xi)}{60} h^{5}.$$
 (0.5)

3. Use (0.3) in (0.5) and conclude (0.4).

Problem 12. Find the interval of convergence of the following power series.

$$(1) \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n} x^{n} \quad (2) \sum_{n=1}^{\infty} (\ln n) x^{n} \quad (3) \sum_{n=1}^{\infty} \left(\sqrt{n+1} - \sqrt{n}\right) x^{n} \quad (4) \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^{2}} x^{n}$$

$$(5) \sum_{n=1}^{\infty} \frac{n!}{(2n)!} x^{n} \quad (6) \sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{3 \cdot 5 \cdot 7 \cdots (2n+1)} x^{2n+1} \quad (7) \sum_{n=1}^{\infty} \frac{(-1)^{n} 3 \cdot 7 \cdot 11 \cdots (4n-1)}{4^{n}} x^{n}$$

$$(8) \sum_{n=1}^{\infty} \frac{1}{2 \cdot 4 \cdot 6 \cdots (2n)} x^{n} \quad (10) \sum_{n=1}^{\infty} \frac{1}{1 \cdot 3 \cdot 5 \cdot 7 \cdots (2n-1)} x^{n} \quad (9) \sum_{n=1}^{\infty} \frac{n!}{3 \cdot 6 \cdot 9 \cdots (3n)} x^{n}$$

$$(10) \sum_{n=1}^{\infty} \frac{k(k+1)(k+2) \cdots (k+n-1)}{n!} x^{n}, \text{ where } k \text{ is a positive integer;}$$

$$(11) \sum_{n=0}^{\infty} \frac{(n!)^{k}}{(kn)!} x^{n}, \text{ where } k \text{ is a positive integer;} \quad (12) \sum_{n=2}^{\infty} \frac{x^{n}}{n \ln n} \quad (13) \sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{2}}$$

(14)
$$\sum_{n=1}^{\infty} \left[2 + (-1)^n \right] (x+1)^{n-1}$$

Problem 13. The function J_0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

is called the Bessel function of the first kind of order 0. Find its domain (that is, the interval of convergence).

Problem 14. The function J_1 defined by

$$J_1(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(n+1)! 2^{2n+1}}$$

is called the Bessel function of the first kind of order 1. Find its domain (that is, the interval of convergence).

Problem 15. The function A defined by

$$A(x) = 1 + \frac{x^3}{2 \cdot 3} + \frac{x^6}{2 \cdot 3 \cdot 5 \cdot 6} + \frac{x^9}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9} + \cdots$$

is called an Airy function after the English mathematician and astronomer Sir George Airy (1801– 1892). Find the domain of the Airy function. **Problem 16.** A function f is defined by

$$f(x) = 1 + 2x + x^{2} + 2x^{3} + x^{4} + \cdots;$$

that is, its coefficients are $c_{2n} = 1$ and $c_{2n+1} = 2$ for all $n \ge 0$. Find the interval of convergence of the series and find an explicit formula for f(x).

Problem 17. Let $f: (-r, r) \to \mathbb{R}$ be *n*-times differentiable at 0, and $P_n(x)$ be the *n*-th Maclaurin polynomial for f.

- 1. Show that if $g(x) = x^{\ell} f(x^m)$ for some positive integers m and ℓ , then the $(mn+\ell)$ -th Maclaurin polynomial for g is $x^{\ell} P_n(x^m)$.
- 2. Show that if $h(x) = x^{\ell} f(-x^m)$ for some positive integers m and ℓ , then the $(mn + \ell)$ -th Maclaurin polynomial for h is $x^{\ell} P_n(-x^m)$.
- 3. Find the Maclaurin series for the following functions:

(1)
$$y = \frac{1}{1+x^2}$$
 (2) $y = x^2 \arctan(x^3)$ (3) $y = \ln(1+x^4)$ (4) $y = x \sin(x^3) \cos(x^3)$.

Hint for (1) and (2): See Exercise 3 Problem 4.

Problem 18. To find the sum of the series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$, express $\frac{1}{1-x}$ as a geometric series, differentiate both sides of the resulting equation with respect to x, multiply both sides of the result by x, differentiate again, multiply by x again, and set x equal to $\frac{1}{2}$. What do you get?

Problem 19. Complete the following.

(1) Use the power series of $y = \arctan x$ to show that

$$\pi = 2\sqrt{3} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^n}$$

(2) Using $x^3 + 1 = (x+1)(x^2 - x + 1)$, rewrite the integral $\int_0^{\frac{1}{2}} \frac{dx}{x^2 - x + 1}$ and then express $\frac{1}{1+x^3}$

as the sum of a power series to prove the following formula for π :

$$\pi = \frac{3\sqrt{3}}{4} \sum_{n=0}^{\infty} \frac{(-1)^n}{8^n} \left(\frac{2}{3n+1} + \frac{1}{3n+2}\right).$$

Problem 20. Show that the Bessel function of the first kind of order 0, denoted by J_0 and defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2},$$

satisfies the differential equation

$$x^{2}y''(x) + xy'(x) + x^{2}y(x) = 0, \qquad y(0) = 1, \ y'(0) = 0$$

Problem 21. Find the power series solution $y(x) = \sum_{k=0}^{\infty} a_k x^k$ to the differential equation

$$y''(x) + y(x) = x$$
, $y(0) = 0$, $y'(0) = 2$.

Problem 22. Show that the Bessel function of the first kind of order 1, denoted by J_1 and defined by

$$J_1(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(n+1)! 2^{2n+1}}$$

satisfies the differential equation

$$x^{2}y''(x) + xy'(x) + (x^{2} - 1)y(x) = 0, \qquad y(0) = 0, \ y'(0) = \frac{1}{2}.$$

Problem 23. Suppose that $x_1(t)$ and $x_2(t)$ are functions of t satisfying the following equations

$$x_1''(t) - x_1(t) = 0,$$
 $x_1(0) = 1,$ $x_1'(0) = 0,$
 $x_2''(t) - x_2(t) = 0,$ $x_2(0) = 0,$ $x_2'(0) = 1,$

where ' denotes the derivatives with respect to t.

- 1. Assume that the function $x_1(t)$ and $x_2(t)$ can be written as a power series (on a certain interval), that is, $x_1(t) = \sum_{k=0}^{\infty} a_k t^k$ and $x_2(t) = \sum_{k=0}^{\infty} b_k t^k$. Show that $(k+2)(k+1)a_{k+2} = a_k$ and $(k+2)(k+1)b_{k+2} = b_k \quad \forall k \ge 0$.
- 2. Find a_k and b_k , and conclude that x_1 and x_2 are some functions that we have seen before.
- 3. Find a function x(t) satisfying

$$x''(t) - x(t) = 0,$$
 $x(0) = a,$ $x'(0) = b$

Note that x can be written as the linear combination of x_1 and x_2 .

Problem 24. Find the series solution to the differential equation

$$y''(x) + x^2 y(x) = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

What is the radius of convergence of this series solution?

Problem 25. In this problem we try to establish the following theorem

Theorem 0.1. Let the radius of convergence of the power series $f(x) = \sum_{k=0}^{\infty} a_k (x-c)^k$ be r for some r > 0.

1. If
$$\sum_{k=0}^{\infty} a_k r^k$$
 converges, then f is continuous at $c+r$; that is $\lim_{x \to (c+r)^-} f(x) = f(c+r)$

2. If $\sum_{k=0}^{\infty} a_k(-r)^k$ converges, then f is continuous at c-r; that is, $\lim_{x \to (c-r)^+} f(x) = f(c-r)$.

Prove case 1 of the theorem above through the following steps.

(1) Let $A = \sum_{k=0}^{\infty} a_k r^k$, and define

$$g(x) = f(rx+c) - A = -\sum_{k=1}^{\infty} a_k r^k + \sum_{k=1}^{\infty} a_k r^k x^k = \sum_{k=0}^{\infty} b_k x^k$$

where $b_k = a_k r^k$ for each $k \in \mathbb{N}$ and $b_0 = -\sum_{k=1}^{\infty} a_k r^k$. Show that the radius of convergence of g is 1 and $\sum_{k=0}^{\infty} b_k = 0$. Moreover, show that f is continuous at c + r if and only if g is continuous at 1.

(2) Let $s_n = b_0 + b_1 + \dots + b_n$ and $S_n(x) = b_0 + b_1 x + \dots + b_n x^n$. Show that

$$S_n(x) = (1-x)(s_0 + s_1x + \dots + s_{n-1}x^{n-1}) + s_nx^n$$

and conclude that

$$g(x) = \lim_{n \to \infty} S_n(x) = (1 - x) \sum_{k=0}^{\infty} s_k x^k.$$
 (0.6)

(3) Use (0.6) to show that g is continuous at 1. Note that you might need to use ε - δ argument.

Problem 26. Complete the following.

- 1. Find the *n*-th Maclaurin polynomial $P_n(x)$ of the function $f(x) = \frac{1}{1+x}$ and express the remainder term $R_n(x) = f(x) P_n(x)$ in Lagrange form.
- 2. Show that if $|x| \leq \frac{1}{2}$, then

$$\left|\ln(1+x) - \left(x - \frac{x^2}{2}\right)\right| \le \frac{8}{3}|x|^3$$

by first showing that $|R_1(x)| \leq 8x^2$ for $|x| \leq \frac{1}{2}$ and then integrating the identity $f(t) = P_1(t) + R_1(t)$ from 0 to x to obtain that

$$\left|\int_{0}^{x} R_{1}(t) dt\right| \leq \frac{8}{3} |x|^{3} \qquad \forall x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

3. (Use part 2 to) Justify whether the series $\sum_{k=1}^{\infty} \ln\left(1 + \frac{(-1)^k}{\sqrt{k}}\right)$ converges or not.

4. From part 1 we have

$$\frac{1}{1+x^2} = P_n(x^2) + R_n(x^2).$$

Integrate the identity above on the interval $\left[0, \frac{1}{2}\right]$ and find n such that

$$\left|\arctan\frac{1}{2} - \sum_{k=0}^{n} \frac{(-1)^{k}}{(2k+1)2^{2k+1}}\right| < 10^{-8}$$