Extra Exercise Problem Sets 3

Apr. 28. 2025

Problem 1. Let C be a curve parameterized by the vector-valued function $\boldsymbol{r}: [0,1] \to \mathbb{R}^2$,

$$\mathbf{r}(t) = \left(\frac{e^t - e^{-t}}{e^t + e^{-t}}, \frac{2}{e^t + e^{-t}}\right), \quad 0 \le t \le 1.$$

- (1) Show that C is part of the unit circle centered at the origin.
- (2) Plot the curve C. (The plot does not have to be very precise. You only need to specify the starting and end points as well as the orientation.)
- (3) Find the length of the curve C.

Problem 2. Let C be the curve given by the parametric equations

$$x(t) = \frac{3+t^2}{1+t^2}, \qquad y(t) = \frac{2t}{1+t^2}$$

on the interval $t \in [0, 1]$.

- (1) In fact C is the graph of a function y = f(x). Find f.
- (2) Find the arc length of the curve C.
- (3) Find the area of the surface formed by revolving the curve C about the y-axis.

Problem 3. In class we talked about how to find the total distance that you travel when you walk along a path according to the position vector $\boldsymbol{r} : [a, b] \to \mathbb{R}^2$. The total distance travelled can be computed by

$$\int_a^b \|\boldsymbol{r}'(t)\|\,dt$$

when r is continuously differentiable. Complete the following.

- 1. Let $\boldsymbol{r}: [0, 4\pi] \to \mathbb{R}^2$ be given by $\boldsymbol{r}(t) = 3\cos t \boldsymbol{i} + 3\sin t \boldsymbol{j}$. Find the image of $[0, 4\pi]$ under \boldsymbol{r} .
- 2. Compute the integral $\int_0^{4\pi} \| \boldsymbol{r}'(t) \| dt$. Does it agree with the length of the curve $C \equiv \boldsymbol{r}([0, 4\pi])$?

Problem 4. To illustrate that the length of a smooth space curve does not depend on the parametrization you use to compute it, calculate the length of one turn of the helix in Example 1 with the following parametrizations.

1. $\boldsymbol{r}(t) = \cos(4t)\boldsymbol{i} + \sin(4t)\boldsymbol{j} + 4t\boldsymbol{k}, t \in \left[0, \frac{\pi}{2}\right].$

2.
$$\boldsymbol{r}(t) = \cos \frac{t}{2} \boldsymbol{i} + \sin \frac{t}{2} \boldsymbol{j} + \frac{t}{2} \boldsymbol{k}, t \in [0, 4\pi]$$

3. $r(t) = \cos t i - \sin t j - t k, t \in [-2\pi, 0].$

Problem 5. Parametrize the curve

$$\mathbf{r} = \mathbf{r}(t) = \arctan \frac{t}{\sqrt{1 - t^2}} \mathbf{i} + \arcsin t \mathbf{j} + \arccos t \mathbf{k}, \quad t \in \left[-1, 0.5 \right],$$

in the same orientation in terms of arc-length measured from the point where t = 0.

Problem 6. Parametrize the curve

$$\mathbf{r} = \mathbf{r}(t) = \arcsin \frac{t}{\sqrt{1+t^2}} \mathbf{i} + \arctan t \mathbf{j} + \arccos \frac{1}{\sqrt{1+t^2}} \mathbf{k}, \quad t \in [-1, 1]$$

in the same orientation in terms of arc-length measured from the point where t = 0.

Problem 7. Let C_1 be the polar graph of the polar function $r = 1 + \cos \theta$ (which is a cardioid), and C_2 be the polar graph of the polar function $r = 3 \cos \theta$ (which is a circle). See the following figure for reference.

Figure 1: The polar graphs of the polar equations $r = 1 + \cos \theta$ and $r = 3 \cos \theta$

- (1) Find the intersection points of C_1 and C_2 .
- (2) Find the line L passing through the lowest intersection point and tangent to the curve C_2 .
- (3) Identify the curve marked by \star on the θr -plane for $0 \leq \theta \leq 2\pi$.
- (4) Find the area of the shaded region.

Problem 8. Let R be the region bounded by the lemniscate $r^2 = 2\cos 2\theta$ and is outside the circle r = 1 (see the shaded region in the graph).

Figure 2: The polar graphs of the polar equations $r^2 = 2\cos 2\theta$ and r = 1

- (1) Find the area of R.
- (2) Find the slope of the tangent line passing thought the point on the lemniscate corresponding to $\theta = \frac{\pi}{6}$.
- (3) Find the volume of the solid of revolution obtained by rotating R about the x-axis by complete the following:
 - (a) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

$$y^4 + a(x)y^2 + b(x) = 0 (0.1)$$

for some functions a(x) and b(x). Find a(x) and b(x).

(b) Solving (0.1), we find that $y^2 = c(x)$, where $c(x) = c_1 x^2 + c_2 + c_3 \sqrt{1 + 4x^2}$ for some constants c_1 , c_2 and c_3 . Then the volume of interests can be computed by

$$I = 2 \times \left[\pi \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} c(x) dx - \pi \int_{\frac{\sqrt{3}}{2}}^{1} d(x) dx \right].$$

Compute $\int_{\frac{\sqrt{3}}{2}}^{1} \left[d(x) - (1 - x^2) \right] dx.$

- (c) Evaluate I by first computing the integral $\int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4x^2} \, dx$, and then find I.
- (4) Find the surface area of the surface of revolution obtained by rotating the boundary of R about the x-axis.

Problem 9. Let R be the region bounded by the circle r = 1 and outside the lemniscate $r^2 = -2\cos 2\theta$, and is located on the right half plane (see the shaded region in the graph).

Figure 3: The polar graphs of the polar equations r = 1 and $r^2 = -2\cos 2\theta$ (1) Find the points of intersection of the circle r = 1 and the lemniscate $r^2 = -2\cos 2\theta$.

- (2) Show that the straight line $x = \frac{1}{2}$ is tangent to the lemniscate at the points of intersection on the right half plane.
- (3) Find the area of R.
- (4) Find the volume of the solid of revolution obtained by rotating R about the x-axis by complete the following:
 - (a) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

$$y^4 + a(x)y^2 + b(x) = 0 (0.2)$$

for some functions a(x) and b(x). Find a(x) and b(x).

(b) Solving (0.2), we find that $y^2 = c(x)$, where $c(x) = c_1 x^2 + c_2 + c_3 \sqrt{1 - 4x^2}$ for some constants c_1 , c_2 and c_3 . Then the volume of interests can be computed by

$$I = \pi \int_0^{\frac{1}{2}} c(x) dx + \pi \int_{\frac{1}{2}}^1 d(x) dx.$$

Compute $\int_{\frac{1}{2}}^{1} \left[d(x) - (1 - x^2) \right] dx.$

- (c) Evaluate I by first computing the integral $\int_0^{\frac{1}{2}} \sqrt{1 4x^2} dx$, and then find I.
- (5) Find the area of the surface of revolution obtained by rotating the boundary of R about the x-axis.

Problem 10. Let C_1 , C_2 be the curves given by polar coordinate $r = 1 - 2\sin\theta$ and $r = 4 + 4\sin\theta$, respectively, and the graphs of C_1 and C_2 are given in Figure 4.

Figure 4: The polar graphs of the polar equations $r = 1 - 2\sin\theta$ and $r = 4 + 4\sin\theta$

- (1) Let P_1, \dots, P_4 be four points of intersection of curves C_1 and C_2 as shown in Figure 4 (the fifth one is the origin). What are the Cartesian coordinates of P_1 and P_2 ?
- (2) Let L_1 and L_2 be two straight lines passing P_1 and tangent to C_1 , C_2 , respectively. Find the cosine value of the acute/smaller angle between L_1 and L_2 .
- (3) Compute the area of the shaded region.