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Problem 1. Let f : R2 Ñ R be a function such that

f(x, y) + f(y, z) + f(z, x) = 0 @x, y, z P R .

Show that there exists g : R Ñ R such that

f(x, y) = g(x) ´ g(y) @x, y P R .

Problem 2. In the following sub-problems, find the limit if it exists or explain why it does not exist.

(1) lim
(x,y)Ñ(0,0)

x+ y

x2 + y
(2) lim

(x,y)Ñ(0,0)

x

x2 ´ y2
(3) lim

(x,y)Ñ(0,0)

x2y

x4 + y2

(4) lim
(x,y)Ñ(0,0)

xy

x2 + y2
(5) lim

(x,y)Ñ(0,0)

x3 ´ y3

x2 + y2
(6) lim

(x,y)Ñ(0,0)
(x2 + y2) ln(x2 + y2)

(7) lim
(x,y)Ñ(0,0)

xy4

x4 + y4
(8) lim

(x,y)Ñ(0,0)
y sin 1

x
(9) lim

(x,y)Ñ(0,0)
x cos 1

y

(10) lim
(x,y)Ñ(0,0)

x2 + y2
a

x2 + y2 + 1 ´ 1
(11) lim

(x,y,z)Ñ(0,0,0)

xy + yz + zx

x2 + y2 + z2

(12) lim
(x,y,z)Ñ(0,0,0)

xy + yz2 + xz2

x2 + y2 + z2
13) lim

(x,y,z)Ñ(0,0,0)
arctan 1

x2 + y2 + z2

Problem 3. Discuss the continuity of the functions given below.

1. f(x, y) =

$

&

%

sin(xy)
xy

if xy ‰ 0 ,

1 if xy = 0 .

2. f(x, y) =

$

&

%

e´x2´y2 ´ 1

x2 + y2
if (x, y) ‰ (0, 0) ,

1 if (x, y) = (0, 0) .

3. f(x, y) =

$

&

%

sin(x3 + y4)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Problem 4. Let f(x, y) =

"

0 if y ď 0 or y ě x4 ,

1 if 0 ă y ă x4 .

1. Show that f(x, y) Ñ 0 as (x, y) Ñ (0, 0) along any path through (0, 0) of the form y = mxα

with 0 ă α ă 4.

2. Show that f is discontinuous on two entire curves.



Problem 5. Find B

Bx

ˇ

ˇ

ˇ

(x,y,z)=(ln 4,ln 9,2)

8
ř

n=0

(x+ y)n

n!zn
. Do not write the answer in terms of an infinite

sum.

Problem 6. Let f(x, y) = (x2 + y2)
2
3 . Find the partial derivative Bf

Bx
.

Problem 7. Let f(x, y, z) = xy2z3 + arcsin(x
?
z). Find fxzy in the region

␣

(x, y, z)
ˇ

ˇ |x2z| ă 1
(

.

Problem 8. Let áa = (a1, a2, ¨ ¨ ¨ , an) be a unit vector, áx = (x1, x2, ¨ ¨ ¨ , xn), and f(x1, x2, ¨ ¨ ¨ , xn) =

exp(áa ¨ áx). Show that
B 2f

Bx21
+

B 2f

Bx22
+ ¨ ¨ ¨ +

B 2f

Bx2n
= f .

Problem 9. Let f(x, y) = x(x2 + y2)´ 3
2 esin(x2y). Find fx(1, 0).

Problem 10. Let f(x, y) =
ż y

1

dt
?
1 ´ x3t3

. Show that

fx(x, y) =

ż y

1

( B

Bx

1
?
1 ´ x3t3

)
dt

in the region
␣

(x, y)
ˇ

ˇx ă 1, y ą 1 and xy ă 1
(

.

Problem 11. The gas law for a fixed mass m of an ideal gas at absolute temperature T , pressure
P , and volume V is PV = mRT , where R is the gas constant. Show that

BP

BV

BV

BT

BT

BP
= ´1 .

Problem 12. The total resistance R produced by three conductors with resistances R1, R2, R3

connected in a parallel electrical circuit is given by the formula
1

R
=

1

R1

+
1

R2

+
1

R3

.

Find BR

BR1
by directly taking the partial derivative of the equation above.

Problem 13. Find the value of Bz

Bx
at the point (1, 1, 1) if the equation

xy + z3x ´ 2yz = 0

defines z as a function of the two independent variables x and y and the partial derivative exists.

Problem 14. Find the value of Bx

Bz
at the point (1,´1,´3) if the equation

xz + y lnx ´ x2 + 4 = 0

defines x as a function of the two independent variables y and z and the partial derivative exists.

Problem 15. Define

f(x, y) =

#

x2 arctan y

x
´ y2 arctan x

y
if x, y ‰ 0 ,

0 if x = 0 or y = 0 .

Find fxy(0, 0) and fyx(0, 0).



Problem 16. Show that each of the following functions is not differentiable at the origin.

(1) f(x, y) = 3
?
x cos y (2) f(x, y) =

a

|xy|

Problem 17. In the following, show that both fx(0, 0) and fy(0, 0) both exist but that f is not
differentiable at (0, 0).

(1) f(x, y) =

$

&

%

5x2y

x3 + y3
if x3 + y3 ‰ 0 ,

0 if x3 + y3 = 0 .

(2) f(x, y) =

$

&

%

2xy
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

(3) f(x, y) =

$

&

%

3x2y

x4 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

(4) f(x, y) =

$

&

%

sin(x3 + y4)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Problem 18. Let f, g : (a, b) Ñ R be real-valued function, h(x, y) = f(x)g(y), and c, d P (a, b).
Show that if f is differentiable at c and g is differentiable at d, then h is differentiable at (c, d).

Problem 19. Show that the function f(x, y) =
a

x2 + y2 sin
a

x2 + y2 is differentiable at (0, 0).

Problem 20. Investigate the differentiability of the following functions at the point (0, 0).

(1) f(x, y) =

$

&

%

xy
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0)
(2) f(x, y) =

# xy

x+ y2
if x+ y2 ‰ 0 ,

0 if x+ y2 = 0

(3) f(x, y) =

$

&

%

(x2 + y2) sin 1
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Problem 21. Assume that f is a continuous function of two variable satisfying that

lim
(x,y)Ñ(π,´1)

f(x, y) + y2 sinx

(x ´ π)2 + (y + 1)2
= 0 .

Note that the equality above does NOT imply that f(x, y) = ´y2 sinx.

1. Find fx(π,´1) and fy(π,´1).

2. Prove or disprove that f is differentiable at (π,´1).

Problem 22. Use the chain rule for functions of several variables to compute dz

dt
or dw

dt
.

(1) z =
?
1 + xy, x = tan t, y = arctan t.



(2) w = x exp
(y
z

)
, x = t2, y = 1 ´ t, z = 1 + 2t.

(3) w = ln
a

x2 + y2 + z2, x = sin t, y = cos t, z = tan t.

(4) w = xy cos z, x = t, y = t2, z = arccos t.

(5) w = 2yex ´ ln z, x = ln(t2 + 1), y = arctan t, z = et.

Problem 23. Use the chain rule for functions of several variables to compute Bz

Bs
and Bz

B t
.

(1) z = arctan(x2 + y2), x = s ln t, y = tes.

(2) z = arctan x

y
, x = s cos t, y = s sin t.

(3) z = ex cos y, x = st, y = s2 + t2.

Problem 24. Assume that z = f
(
ts2,

s

t

)
, Bf

Bx
(x, y) = xy, Bf

By
(x, y) =

x2

2
. Find Bz

Bs
and Bz

B t
.

Problem 25. Find the partial derivatives Bz

Bx
and Bz

By
at given points.

(1) sin(x+ y) + sin(y + z) + sin(x+ z) = 0, (x, y, z) = (π, π, π).

(2) xey + yez + 2 lnx ´ 2 ´ 3 ln 2 = 0, (x, y, z) = (1, ln 2, ln 3).

(3) z = ex cos(y + z), (x, y, z) = (0,´1, 1).

Problem 26. Let f be differentiable, and z =
1

y

[
f(ax+ y) + g(ax ´ y)

]
. Show that

B 2z

Bx2
=

a2

y2
B

By

(
y2

Bz

By

)
.

Problem 27. Suppose that we substitute polar coordinates x = r cos θ and y = r sin θ in a differen-
tiable function z = f(x, y).

(1) Show that Bz

Br
= fx cos θ + fy sin θ and 1

r

Br

Bθ
= ´fx sin θ + fy cos θ.

(2) Solve the equations in part (1) to express fx and fy in terms of Bz

Br
and Bz

Bθ
.

(3) Show that (fx)
2 + (fy)

2 =
(

Bz

Br

)2

+
1

r2

(
Bz

Bθ

)2

.

(4) Suppose in addition that fx and fy are differentiable. Show that

fxx + fyy =
B 2z

Br2
+

1

r

Bz

Br
+

1

r2
B 2z

Bθ2
.

Problem 28. Let f be a twice continuously differentiable function. Suppose that we substitute
cylindrical coordinates x = r cos θ, y = r sin θ and z = z in w = f(x, y, z) to obtain W =

f(r cos θ, r sin θ, z) (so that W is a function of r, θ and z). Show that

B 2w

Bx2
+

B 2w

By2
+

B 2w

Bz2
=

1

r

B

Br

(
r

BW

Br

)
+

1

r2
B 2W

Bθ2
+

B 2W

Bz2
.



Problem 29. Let R be an open region in R2 and f : R Ñ R be a real-valued function. In class we
have talked about the differentiability of f . For k ě 2, the k-times differentiability of f is defined
inductively: for k P N, f is said to be (k+1)-times differentiable at (a, b) if the k-th partial derivative

B kf

Bxk´jByj
is differentiable at (a, b) for all 0 ď j ď k

(
note that in order to achieve this, B kf

Bxk´jByj

has to be defined in a neighborhood of (a, b) for all 0 ď j ď k
)
. f is said to be k-times differentiable

on R if f is k-times differentiable at (a, b) for all (a, b) P R. f is said to be k-times continuously

differentiable on R if the k-th partial derivative B kf

Bxk´jByj
is continuous at (a, b) for all 0 ď j ď k.

(1) Show that if f is (k+1)-times differentiable on R, then f is k-times continuously differentiable
on R.

(2) Show that if f is k-times continuously differentiable on R, then f is k-times differentiable on
R.

Hint: In this problem Theorem ?? is used (without proving yet).

Problem 30. Let f(x, ) = 3
?
xy.

(1) Show that f is continuous at (0, 0).

(2) Show that fx and fy exist at the origin but that the directional derivatives at the origin in all
other directions do not exist.

Problem 31. Let

f(x, y) =

$

&

%

x3y

x4 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

(1) Show that the directional derivative of f at the origin exists in all directions u, and

(Duf)(0, 0) =
(

Bf

Bx
(0, 0),

Bf

By
(0, 0)

)
¨ u .

(2) Determine whether f is differentiable at (0, 0) or not.

Problem 32. Let f : R3 Ñ R be defined by

f(x, y, z) =

# xyz

x2 + y2 + z2
if (x, y, z) ‰ (0, 0, 0) ,

0 if (x, y) = (0, 0) .

Find the direction (u, v, w) (satisfying u2 + v2 + w2 = 1) along which the value of the function f at
(0, 0, 0) increases most rapidly.

Problem 33. Let u = (a, b) be a unit vector and f be twice continuously differentiable. Show that

D2
uf = fxxa

2 + 2fxyab+ fyyb
2 ,

where D2
uf = Du(Duf).



Problem 34. Show that the operation of taking the gradient of a function has the given property.
Assume that u and v are differentiable functions of x and y and that a, b are constants.

(1) ∇(au+ bv) = a∇u+ b∇v. (2) ∇(uv) = u∇v + v∇u.

(3) ∇
(u
v

)
=

v∇u ´ u∇v

v2
. (4) ∇(un) = nun´1∇u.

Problem 35. Show that the equation of the tangent plane to the ellipsoid x2

a2
+

y2

b2
+

z2

c2
= 1 at the

point (x0, y0, z0) can be written as
xx0

a2
+

yy0
b2

+
zz0
c2

= 1 .

Problem 36. Show that the equation of the tangent plane to the elliptic paraboloid z

c
=

x2

a2
+

y2

b2
at the point (x0, y0, z0) can be written as

2xx0

a2
+

2yy0
b2

=
z + z0

c
.

Problem 37. Find all planes that pass through the points (0,´2,´1) and (2, 1, 1) and are tangent
to the paraboloid z = x2 + y2.

Problem 38. Let f be a differentiable function and consider the surface z = xf
(y
x

)
. Show that the

tangent plane at any point (x0, y0, z0) on the surface passes through the origin.

Problem 39. Prove that the angle of inclination θ of the tangent plane to the surface z = f(x, y)

at the point (x0, y0, z0) satisfies

cos θ =
1

a

fx(x0, y0)2 + fy(x0, y0)2 + 1
.

Problem 40. In the following problems, find all relative extrema and saddle points of the function.
Use the Second Partials Test when applicable.

(1) f(x, y) = x2 ´ xy ´ y2 ´ 3x ´ y (2) f(x, y) = 2xy ´
1

2
(x4 + y4) + 1

(3) f(x, y) = xy ´ 2x ´ 2y ´ x2 ´ y2 (4) f(x, y) = x3 + y3 ´ 3x2 ´ 3y2 ´ 9x

(5) f(x, y) =
a

56x2 ´ 8y2 ´ 16x ´ 31 + 1 ´ 8x (6) f(x, y) =
1

x
+ xy +

1

y

(7) f(x, y) = ln(x+ y) + x2 ´ y (8) f(x, y) = 2 lnx+ ln y ´ 4x ´ y

(9) f(x, y) = xy exp
(

´
x2 + y2

2

)
(10) f(x, y) = xy + e´xy

(11) f(x, y) = (x2 + y2)e´x (12) f(x, y) =
(
1

2
´ x2 + y2

)
exp(1 ´ x2 ´ y2)

Problem 41. In the following problems, find the absolute extrema of the function over the region
R (which contains boundaries).

(1) f(x, y) = x2 + xy, and R =
␣

(x, y)
ˇ

ˇ |x| ď 2, |y| ď 1
(



(2) f(x, y) = 2x ´ 2xy + y2, and R is the region in the xy-plane bounded by the graphs of y = x2

and y = 1.

(3) f(x, y) =
4xy

(x2 + 1)(y2 + 1)
, and R =

␣

(x, y)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 1
(

.

(4) f(x, y) = xy2, and R =
␣

(x, y)
ˇ

ˇx ě 0, y ě 0, x2 + y2 ď 3
(

.

(5) f(x, y) = 2x3 + y4, and R =
␣

(x, y)
ˇ

ˇx2 + y2 ď 1
(

.

Problem 42. Show that f(x, y) = x2 + 4y2 ´ 4xy + 2 has an infinite number of critical points and
that the discriminant fxxfyy ´ f 2

xy = 0 at each one. Then show that f has a local (and absolute)
minimum at each critical point

Problem 43. Show that f(x, y) = x2ye´x2´y2 has maximum values at
(

˘1,
1

?
2

)
and minimum

values at
(
˘1,´

1
?
2

)
. Show also that f has infinitely many other critical points and the discriminant

fxxfyy ´ f 2
xy = 0 at each of them. Which of them give rise to maximum values? Minimum values?

Saddle points?

Problem 44. Find two numbers a and b with a ď b such that
ż b

a

3
?
24 ´ 2x ´ x2 dx

has its largest value.

Problem 45. Find a straight line such that the sum of the squared distances from the line to the
points (0, 0), (1, 0), and (0, 1) is minimized. Apply the second partials test if applicable.

Problem 46. Let m ą n be natural numbers, and A be an m ˆ n real matrix, b P Rm be a vector.

(1) Show that if the minimum of the function f(x1, ¨ ¨ ¨ , xn) = }Ax ´ b} occurs at the point
c = (c1, ¨ ¨ ¨ , cn), then c satisfies ATAc = ATb.

(2) Find the relation between the linear regression and (1).

Problem 47. Let
␣

(x1, y1), (x2, y2), ¨ ¨ ¨ , (xn, yn)
(

be n points with xi ‰ xj if i ‰ j. Use the Second
Partials Test to verify that the formulas for a and b given by

a =

n
n
ř

i=1

xiyi ´

( n
ř

i=1

xi

)( n
ř

i=1

yi

)
n

n
ř

i=1

x2
i ´

( n
ř

i=1

xi

)2
and b =

1

n

( n
ÿ

i=1

yi ´ a
n
ÿ

i=1

xi

)

indeed minimize the function S(a, b) =
n
ř

i=1

(axi + b ´ yi)
2.



Problem 48. Let A be a full rank m ˆ n real matrix, where m ă n. and A have full rank. For a
given b P Rm, show that the function f given by

f(x1, ¨ ¨ ¨ , xn) = x2
1 + x2

2 + ¨ ¨ ¨ + x2
n

under the constraint Ax = b, where x = [x1, ¨ ¨ ¨ , xn]
T, attains its minimum at the point AT(AAT)´1b.

Problem 49. The Shannon index (sometimes called the Shannon-Wiener index or Shannon-Weaver
index) is a measure of diversity in an ecosystem. For the case of three species, it is defined as

H = ´p1 ln p1 ´ p2 ln p2 ´ p3 ln p3 ,

where pi is the proportion of species i in the ecosystem.

(1) Express H as a function of two variables using the fact that p1 + p2 + p3 = 1.

(2) What is the domain of H?

(3) Find the maximum value of H. For what values of p1, p2, p3 does it occur?

Problem 50. Three alleles (alternative versions of a gene) A, B, and O determine the four blood
types A (AA or AO), B (BB or BO), O (OO), and AB. The Hardy-Weinberg Law states that the
proportion of individuals in a population who carry two different alleles is

P = 2pq + 2pr + 2rq ,

where p, q, and r are the proportions of A, B, and O in the population. Use the fact that p+q+r = 1

to show that P is at most 2

3
.

Problem 51. Find an equation of the plane that passes through the point (1, 2, 3) and cuts off the
smallest volume in the first octant.

Problem 52. Use the method of Lagrange multipliers to complete the following.

(1) Maximize f(x, y) =
a

6 ´ x2 ´ y2 subject to the constraint x+ y ´ 2 = 0.

(2) Minimize f(x, y) = 3x2 ´ y2 subject to the constraint 2x ´ 2y + 5 = 0.

(3) Minimize f(x, y) = x2 + y2 subject to the constraint xy2 = 54.

(4) Maximize f(x, y, z) = exyz subject to the constraint 2x2 + y2 + z2 = 24.

(5) Maximize f(x, y, z) = ln(x2+1)+ln(y2+1)+ln(z2+1) subject to the constraint x2+y2+z2 = 12.

(6) Maximize f(x, y, z) = x+ y + z subject to the constraint x2 + y2 + z2 = 1.

(7) Maximize f(x, y, z, t) = x+ y + z + t subject to the constraint x2 + y2 + z2 + t2 = 1.

(8) Minimize f(x, y, z) = x2 + y2 + z2 subject to the constraints x+ 2z = 6 and x+ y = 12.



(9) Maximize f(x, y, z) = z subject to the constraints x2 + y2 + z2 = 36 and 2x+ y ´ z = 2.

(10) Maximize f(x, y, z) = yz + xy subject to the constraint xy = 1 and y2 + z2 = 1.

Problem 53. Use the method of Lagrange multipliers to find the extreme value of the function
f(x, y, z) = x2 + y2 + (z ´ 2)2 on the set

R =
␣

(x, y, z)
ˇ

ˇ (x2 + y2)(1 ´ x2 ´ y2) ď z ď 1 ´ x2 ´ y2
(

.

Hint:

1. Note that for (x, y, z) P R, one must have x2 + y2 ď 1.

2. Suppose that g(x, y, z) = x2 + y2 + z ´ 1 and h(x, y, z) = (x2 + y2)(x2 + y2 ´ 1) + z. When
considering the case g(x, y, z) = h(x, y, z) = 0, first show that g(x, y, z) = h(x, y, z) = 0 if and
only if x2 + y2 = 1. It will be much easier to compute (∇g) ˆ (∇h) given g = h = 0 based on
this fact.

3. You may need the fact that the real root of the equation 2µ3 + 7µ2 + 1 = 0 is about ´3.5399.

Problem 54. Use the method of Lagrange multipliers to find the extreme values of the function
f(x1, x2, ¨ ¨ ¨ , xn) = x1 + x2 + ¨ ¨ ¨ + xn subject to the constraint x2

1 + x2
2 + ¨ ¨ ¨ + x2

n = 1.

Problem 55. (1) Use the method of Lagrange multipliers to show that the product of three positive
numbers x, y, and z, whose sum has the constant value S, is a maximum when the three
numbers are equal. Use this result to show that

x+ y + z

3
ě 3

?
xyz @x, y, z ą 0 .

(2) Generalize the result of part (1) to prove that the product x1x2x3 ¨ ¨ ¨xn is maximized, under
the constraint that

n
ř

i=1

xi = S and xi ě 0 for all 1 ď i ď n, when

x1 = x2 = x3 = ¨ ¨ ¨ = xn .

Then prove that

n
?
x1x2 ¨ ¨ ¨xn ď

x1 + x2 + ¨ ¨ ¨ + xn
n

@x1, x2, ¨ ¨ ¨ , xn ě 0 .

Problem 56. (1) Maximize
n
ř

i=1

xiyi subject to the constraints
n
ř

i=1

x2
i = 1 and

n
ř

i=1

y2i = 1.

(2) Put xi =
ai

d

n
ř

j=1
a2j

and yi =
bi

d

n
ř

j=1
b2j

to show that

n
ÿ

i=1

aibi ď

g

f

f

e

n
ÿ

j=1

a2j

g

f

f

e

n
ÿ

j=1

b2j

for any numbers a1, a2, ¨ ¨ ¨ , an, b1, b2, ¨ ¨ ¨ , bn. This inequality is known as the Cauchy-Schwarz
Inequality.



Problem 57. Find the points on the curve x2 + xy+ y2 = 1 in the xy-plane that are nearest to and
farthest from the origin.

Problem 58. If the ellipse x2

a2
+

y2

b2
= 1 is to enclose the circle x2 + y2 = 2y, what values of a and b

minimize the area of the ellipse?

Problem 59. (1) Use the method of Lagrange multipliers to prove that the rectangle with maximum
area that has a given perimeter p is a square.

(2) Use the method of Lagrange multipliers to prove that the triangle with maximum area that
has a given perimeter p is equilateral.

Hint: Use Heron’s formula for the area:

A =
a

s(s ´ x)(s ´ y)(s ´ z) ,

where s =
p

2
and x, y, z are the lengths of the sides.

Problem 60. When light waves traveling in a transparent medium strike the surface of a second
transparent medium, they tend to “bend” in order to follow the path of minimum time. This tendency
is called refraction and is described by Snell＇s Law of Refraction,

sin θ1
v1

=
sin θ2

v2

,

where θ1 and θ2 are the magnitudes of the angles shown in the figure, and v1 and v2 are the velocities
of light in the two media. Use the method of Lagrange multipliers to derive this law using x+ y = a.

Problem 61. A set C Ď Rn is said to be convex if

tx + (1 ´ t)y P C @ x,y P C and t P [0, 1] .

（一個 Rn 中的集合 C 被稱為凸集合如果 C 中任兩點 x 與 y 之連線所形成的線段也在 C 中)。
Suppose that C Ď Rn is a convex set, and f : C Ñ R be a differentiable real-valued function.

Show that if f on C attains its minimum at a point x˚, then

(∇f)(x˚) ¨ (x ´ x˚) ě 0 @ x P C . (‹)

Hint: Recall that (∇f)(x˚) ¨ (x ´ x˚), when f is differentiable at x˚, is the directional derivative of
f at x˚ in the “direction” (x ´ x˚).
Remark: A point x˚ satisfying (‹) is sometimes called a stationary point of f in C.



Problem 62. Let B be the unit closed ball centered at the origin given by

B =
␣

x = (x1, x2, ¨ ¨ ¨ , xn) P Rn
ˇ

ˇ }x}2 = x2
1 + x2

2 + ¨ ¨ ¨ + x2
n ď 1

(

,

and f : B Ñ R be a differentiable real-valued function. Consider the minimization problem min
xPB

f(x).

(1) Show that if f attains its minimum at x˚ P B, then there exists λ ď 0 such that

(∇f)(x˚) = λx˚ .

(2) Find the minimum of the function f(x, y) = x2 + 2y2 ´ x on the unit closed disk centered at
the origin

␣

(x, y)
ˇ

ˇx2 + y2 ď 1
(

using (1).

Problem 63. Let a P R3 be a vector, b P R, and C be a half plane given by

C =
␣

x = (x1, x2, x3) P R3
ˇ

ˇa ¨ x ď b
(

,

and f : C Ñ R be a differentiable real-valued function. Consider the minimization problem min
xPC

f(x).
Show that if f attains its minimum at x˚ P C, then there exists λ ď 0 such that

(∇f)(x˚) = λa .


