A Concise Lecture Note on Fourier Analysis

1 Review on Analysis/Advanced Calculus

1.1 Pointwise and Uniform Convergence (% BLiTac¥ 53 JTit)

Definition 1.1. Let I < R be an interval, and f;, f : I — R be functions for £k = 1,2,---. The
sequence of functions {f;};, is said to converge pointwise if { fk(a)}zozl converges for all a € 1.
In other words, {fi}7, converges pointwise if there exists a function f : I — R such that

lim |fy(z) — f(z)| =0 Vaxel.

k—o0
In this case, {f}72, is said to converge pointwise to f and is denoted by fi, — f p.w..
The sequence of functions {f;}7~; is said to converge uniformly on I if there exists f : I - R
such that
lim sup | fi(z) — f(z)] = 0.

k—o0 ger

In this case, {fix}r; is said to converge uniformly to f on I. In other words, {fi}{_, converges

uniformly to f on [ if for every € > 0, 3 N > 0 such that
‘fk(m)—f(fﬂ)‘<€ Vk>Nandzel.

Proposition 1.2. Let I < R be an interval, and fi, f : I — R be functions for k = 1,2,---. If

{fr}, converges uniformly to f on I, then {fx}, converges pointwise to I.

Proposition 1.3 (Cauchy criterion for uniform convergence). Let I < R be an interval, and f :
I — R be a sequence of functions. Then {fi}72, converges uniformly (to some function f) on I if

and only if for every e >0, 3N > 0 such that
| fe(z) = fo(z)] < e Vk{>=Nandzxel.

Theorem 1.4. Let I < R be an interval, and fi : I — R be a sequence of continuous functions

converging to f : I — R uniformly on I. Then f is continuous on I; that is,

lim f(z) = lim lim fi(z) = lim lim fi(z) = f(a).

T—a r—a k—oo k—o0 z—a

Theorem 1.5. Let I < R be a finite interval, fi : I — R be a sequence of differentiable functions,
and g : I — R be a function. Suppose that {fk(a)}zozl converges for some a € I, and {f,};°, converges

uniformly to g on I. Then
1. {fx}{, converges uniformly to some function f on I.

2. The limit function f is differentiable on I, and f'(x) = g(x) for all x € I; that is,

lim, () = Jim () = - im fi(x) = 7'(e).

k—o0 k—oo dx



Theorem 1.6. Let fi : [a,b] — R be a sequence of Riemann integrable functions which converges

uniformly to f on |a,b]. Then f is Riemann integrable, and

k—o0

lim J: Folz)dz = Lb lim fi(a)da = Lbf(x)dx. (1.1)

Definition 1.7. Let I < R be an interval. The collection of bounded continuous real-valued functions

defined on I is denoted by %,(I;R). The sup-norm of %,(I;R), denoted by | - ||, is defined by
Il =sup|f(2)] VY feG(IR).
xe

If I = [a,b] < R is a closed interval (so that every continuous function on I is bounded), we simply
use € ([a,b]; R) to denote 6,([a, b]; R).

Having the definition above, we can rephrase Proposition @ and Theorem as follows.

Theorem 1.8. Let I < R be an interval. Then (‘Kb([; R), || - lso) is a complete norm space; that is,
every Cauchy sequence in (6,(I;R), | - |) converges uniformly (to some limit) in €,(I;R).

1.2 Series of Functions and The Weierstrass M-Test

Definition 1.9. Let I < R be an interval, and g : I — R (or C) be a sequence of functions. We

a0
say that the series . gx converges pointwise if the sequence of partitial sum {s,}>; given by

k=1
n
Sn = Z gk
k=1
0
converges pointwise. We say that > g converges uniformly on I if {s,}r_; converges uniformly on
k=1

1.

The following two corollaries are direct consequences of Proposition and Theorem @

e}

Corollary 1.10. Let I < R be an interval, and gr : I — R be functions. Then Y. gr converges
k=1

uniformly on I if and only if

V5>0,3N>09‘ ng(x)‘<€ Vn>mz>=N andxe A.

k=m+1

Corollary 1.11. Let I < R be an interval, and gi,g : I — R be functions. If gp : I — R are
0

continuous and Y, gr(x) converges to g uniformly on I, then g is continuous.
k=1

Theorem 1.12 (Weierstrass M-test). Let I < R be an interval, and g, : I — R be a sequence of
0

functions. Suppose that 3 My, > 0 such that sup |gr(z)| < My for all k € N and ) M) converges.
k=1

zel

a0 00]
Then > gr and Y. |gk| both converge uniformly on I.
k=1 k=1



Corollary 1.13. Let I < R be an interval, and g : I — R be a sequence of continuous functions.
0 o0

Suppose that 3 My, > 0 such that sup |gx(z)| < My, for all k € N and >, My converges. Then ), g
wel k=1 k=1
s continuous on 1.

The following two theorems are direct consequences of Theorem and @

e}
Theorem 1.14. Let g : [a,b] — R be a sequence of Riemann integrable functions. If Y g converges

L;gk dm—ZJQk

a0
Theorem 1.15. Let gy : (a,b) — R be a sequence of differentiable functions. Suppose that > gx(c)
k=1

0

converges for some c € (a,b), and ), g, converges uniformly on (a,b). Then
k=1

0] . _i 0
;gk(x) T iz ;;gk T

uniformly on [a,b], then

1.3 Analytic functions and the Stone-Weierstrass theorem

Theorem 1.16. Let f : (a,b) — R be an infinitely differentiable functions; that is, f*)(x) exists for
all k € N and x € (a,b). Let c € (a,b) and suppose that for some 0 < h < oo, |f®(z)| < M for all

ze€ (c—h,c+h) < (a,b). Then
f(x)—if(k)(c)(x—c)k Vze(c—h,c+h)
- ' , ,
k=0

k!

Moreover, the convergence is uniform.

Proof. First, we claim that
T) = Z
k=0

By the fundamental theorem or Calculus it is clear that (@) holds for n = 0. Suppose that ()
holds for n = m. Then

O (o) + (<1) fxwf(”“)(y)dy Ve (a,b). (1.2)

n!

— Z f k'( )(x . C)k + (_1>m[(3ém +>1)! f(erl)(y)’y:C _L (sz +)1)! f(m+2)<y)dy]
m+1 k _— T (y o .%‘) e2)
Z | eyt [T YT ey

which implies that (@) also holds for n = m + 1. By induction ([L.9) holds for all n e N
Letting s, (z) = >, fkl(c)(x —¢)¥, then if z € (¢ — h,c+ h),
k=0 :

r pr hn—l—l
\Sn(w)—f(af)quc HMdy‘< M.

n+1

n+1

M = 0, 4N > 0 such that

Let ¢ > 0 be given. Since lim ‘M <ecifn > N. Asa

n—ow 1!
consequence, if n > N,

!sn(x) - f(x)| < ¢ whenevern > N. D



Definition 1.17. Let I < R be an interval. A function f : I — R is said to be real analytic at

o r(k)
aeint(]) if f(z) = 3] ! k'(a) (z — a)* in a neighborhood of a.
k=0 I

Theorem 1.18 (Weierstrass). For every given f € €([0,1];R) there exists a sequence of polynomials
{pn}y such that {p,}r_, converges uniformly to f on [0,1]. In other words, the collection of all
polynomials is dense in the space (Cf([ LER), - Hoo).

Proof. Let r(z) = C,?xk( — 2)" %, By looking at the partial derivatives with respect to x of the

identity (z +y)" = Z Crakyn=* we find that
k=0

L Y r(z)=1; 2. 3 krp(x) =nz; 3. ) k(k— Dre(z) = n(n — 1)z
k=0 k=0
As a consequence,
Z(/{;—nx Z + (1 = 2na)k + n*2*|ry(z) = nz(l — ).
k=0 k=0

Let ¢ > 0 be given. Since f : [0,1] — R is continuous on a compact set [0,1], f is uniformly

continuous on [0, 1]; thus

35>09\f(x)—f(y)\<g if v —y| <8, 2,y€0,1].

0

Consider the Bernstein polynomial p,(z) = >, f(%)rk(x) Note that

) =] = | 3 (10) — 1(5))rto)] < [0 = ()t
Mo+ 3 )@ - G

|k—nz|<dn  |k—nz|=dn

<ol Y

2
|k—nz|=dn (

8 QHfHOO Z —n:v ) <= € 2HfHOO (1 _ l’) < HfHOO

n242 2 + nd2 2n(52 '
Choose N large enough such that 2’{\;; < —. Then for all n > N,
|f =Dl = sup |f(z) = pa(2)| <e. o
z€[0,1]

Remark 1.19. A polynomial of the form p,(x) = Z Brri(x) is called a Bernstein polynomial
of degree n, and the coefficients ) are called Bernsteln coefficients.
Corollary 1.20. The collection of polynomials on [a,b] is dense in (€([a,b;R), | - |»); that is,

for every f € €(|a,b];R) there exists a sequence of polynomials {px}i2, such that {pg}, converges

uniformly to f on [a,b].
Proof. We note that g € €([a,b];R) if and only if f(z) = g(z(b—a) + a) € €([0, 1]; R); thus

|[f(z) —p(z)| <e Vo e[0,1] < |g(z) — p(

iL‘—CL

b—

‘<€VIE[ab] D



1.4 Trigonometric polynomials and the space of 27-periodic continuous
functions

In this section, we focus on the approximations of a special class of functions, the collection of
27-periodic continuous function. Let €’(T) denote the collection of 2m-periodic continuous function
(defined on R):

¢(T)={fe€¢(R;R)|f(z+27m) = f(z) VzeR}.

The sup-norm on € (T) is denoted by | - ||Lo(r); that is, | f| e = sup|f(x)| if f e €(T).
eR

T
We note that € (T) can be treated as the collection of continuous functions defined on the unit

circle S' in the sense that every f € €(T) corresponds to a unique F € €(S';R) such that
f(z) = F(cosz,sinx) VreR (1.3)
and vice versa.

Definition 1.21. A family of functions {¢, € €(T)|n € N} is said to be an approzimation of
the identity if

(1) wn(z) = 0;

(2) J ©n(x)dz =1 for every n € N, here we identify T with the interval [—m, 7];
T

(3) lim on(x) dz = 0 for every § > 0.

=% Js< o<
Definition 1.22 (Convolutions on T). The convolution of two (continuous) function f,¢g: T — R is
the function f x g : T — C defined by the integral

- J f(x - y)g(y) dy

Theorem 1.23. If {¢,}_, is an approximation of the identity and f € € (T), then v, *x f converges

uniformly to f as n — oo.

Proof. Without loss of generality, we may assume that f % 0. By the definition of the convolution,
(oo s D)= 1@ = | onle =) dy = f1a)
— | eule =) (1)~ ).

where we use (2) of Definition to obtain the last equality. Now given ¢ > 0. Since f € €(T),
there exists d > 0 such that |f(z) — f(y)| < % whenever |x — y| < §. Therefore,

(o * f)(x) = f()]
<J enlz —y)|f(2) (y)‘dy+f (e —y)|f(z) = fy)|dy
lz—y|<6 5<|z—y|

3
S| el wdyrzmaxil [ ae)de.

~
2 Jr s<|zl<n



By (3) of Definition , there exists N > 0 such that if n > N,

€
n(2)der < ——M— .
J;QASﬂgp( ) 4InaXT|f|

Therefore, for n = N, |(¢, * f)(z) — f(z)| < forall z € T. o

Definition 1.24. A trigonometric polynomial p(x) of degree n is a finite sum of the form
c n
p(a:):§O+Z(ckc0sk’x+sksink@") relR.
k=1

The collection of all trigonometric polynomial of degree n is denoted by Z,(T), and the collection

Q0
of all trigonometric polynomials is denoted by Z?(T); that is, Z(T) = |J Z,.(T).
n=0

On account of the Euler identity e? = cos + isin 6, a trigonometric polynomial of degree n can

also be written as
n

p(z) = Z are™  with ay =

k=—n

Clk| — U5]k|

2 Y
where sq is taken to be 0. Therefore, every trigonometric polynomial of degree n is associated to a
ikx

n
unique function of the form »] aie™™ and vice versa.

k=—n
Having defined trigonometric polynomials, we can show that every 2m-periodic function can be

approximated by a sequence of trigonometric polynomials in the sense of uniform convergence.

Theorem 1.25. The collection of all trigonometric polynomials & (T) is dense in € (T) with respect
to the sup-norm; that is, for every f € €(T) there exists a sequence {p,}*_; < P(T) such that

{pn}, converges uniformly to f on T.

Proof. Let ¢, (z) = ¢,(14cos )", where ¢, is chosen so that f ©n(x) dzr = 1. By the residue theorem,

T
2 +1ndz 1 [ (z+1) T (2n
1 ’I’Ld — 1 _— = — d — .
L( + cosa)tdr il( T ) iz a2n Jgoo 2ttt : 2”1(71)’
B 2n—1 0102
thus ¢, = 7(271)!'

Now {¢,}*_; is clearly non-negative and satisfies (2) of Definition for all n e N. Let § > 0

be given.

1+ COS(S)n (n!)?

n(x)dr < cn1+cos5"d:p<22”< .
L<|x<ﬂg0 (@) L<|w<w ( ) 2 (2n)!

n!
By Stirling’s f la lim — =1,
y Stirling’s formu nl—I}c}c Y e
2
1 O\ 2mnnte™ "
lim on(z) dz < lim 22”< o8 ) ( )
=% Jo<e|<n n—w 2 27(2n)(2n)?ne=2n
1 o\
= lim \/7m<$> =0.
n—0o0

So {@n}2_, is an approximation of the identity. By Theorem , r * [ converges uniformly to f

if f e ¥(T), while ¢, * f is a trigonometric function. D



Remark 1.26. Theorem can also be proved using the abstract version of the Stone-Weierstrass
Theorem and the identification () See Theorem 7.32 in “Principles of Mathematics Analysis” by
W. Rudin or Theorem 5.8.2 in Elementary Classical Analysis by J. Marsden and M. Hoffman for the

Stone-Weierstrass Theorem.

2 Fourier Series
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2.1 Basic properties of the Fourier series

Let f € €(T) be given. We first assume that the trigonometric polynomials used to approximate f
can be chosen in such a way that the coefficients does not depend on the degree of approximation;
that is, c,(gn) = ¢, and s,(cn) = si. In this case, if p, — f uniformy on [—n, 7|, by Theorem [.§ we must

have
iy vy

lim pn(T) cos kx dx = f f(z)cos kx dx Vke{0,1,--- ,n}
n—a0

—Tr —T



and

s s

lim |  pp(x)sinkedr = f f(z) sin kx dx

n—o J_

™ —T

Vke{l, - n}.

Since i i
f cos kx coslx dx = f sin kx sin {x dx = 7wl VEk,/eN

and i

J sin kz cos bz dx = 0 VkeN,leNu {0},
we find that v v

ck=—| f(x)coskrdr and sp=—| f(x)sinkzxdz. (2.1)

). ) .
This induces the following
Definition 2.1. For a Riemann integrable function f : [—7, 7] — R, the Fourier series repre-

sentation of f, denoted by s(f,-), is given by

o0
s(f,z) = % + Z(Ck cos kx + sy sin kx)
k=1

whenever the sum makes sense, where sequences {c;}72, and {s;};", given by (@) are called the

Fourier coefficients associated with f. The n-th partial sum of the Fourier series representation

to f, denoted by s,(f,-), is given by

sn(f,x) = %0 + Z(ck coskx + spsinkzx) .
k=1

We note that for the Fourier series s(f, x) to be defined, f is not necessary continuous. Our goal

is to establish the convergence of Fourier series in various senses.

Remark 2.2. Because of the Euler identity e = cosf + isin 6, we can write

thus

1 ™ . .
— f(y)(elky—i-eﬂky)dy and s

B 1
=5 =

2

—T

Sn( ,ZE): CO+Z(01€ 9 + Sk ;Z )

2 4
1T - ,
=5 + ,; ((c;€ —i83,)e™ + (¢, 4 isp)e Zkz)]
I L
= 5| + Z ((ck — sy )e* 4 Z (c g + @s_k)e“”}
k=1 k=—n
If 1 (7 1 @ (7
=5 + = f(y)e " dye**s + = Z f(y)e~™dye*e| |
L ™ =1 Y- ™ k=—n YT

[:f@ﬂéw—eiwwy



Define f'k = ;ﬂf f(y)e=*¥dy. Then

-7
n ~
_ Z fkeik$.
k=—n

The sequence {ﬁc},;‘o:_ is also called the Fourier coefficients associated with f, and one can write

o]

O oA
the Foruier series representation of f as > fre'®.
k=—0o0

. . . . . L .
Remark 2.3. Given a continuous function g with period 2L, let f(z) = g(—x) Then f is a
7T
continuous function with period 27, and the Fourier series representation of f is given by

Co .
s( —5 gckcoskx—i-sksmkx),

where ¢;, and s, are given by (@) Now, define the Fourier series representation of g by s(g,x) =

s( f, L;) Then the Fourier series representation of g is given by

0
¢ k .k
s(g,x) = 504—2 (ckcos$+sksm$),
kri

where {c;}{, and {sx}, is also called the Fourier coefficients associated with ¢g and are given by

1 (" 1 (" 1 (" k
= B f(x)coskrdr = = fﬂg(lf) coskx dx = 17 fL g(x) cos %x dx
- 1 (F . kmx
and similarly, s, = f g(x)sin —— dx.
L), L

Example 2.4. Consider the periodic function f : R — R defined by

) =1

and f(x + 2m) = f(z) for all z € R. To find the Fourier representation of f, we compute the Fourier

r if0<z<m,
—x if mt<x<0,

coefficients by

(" . L™ "o
Sk = — f(x)smk:xd:z::—(f xsmkxdx—f xsmkxdw) =0
T J-n m 0 —T
and
1 (™ 1 T 0 2 (7
cp = — f(x)cosk‘xdxz—( xcoskx dr — zcosk‘xdx)z— xcoskxdr.
T™Jx ™ 0 - ™ Jo

If | = 0, thenc():Qf vdz = 7, while if k € N,
0

™

2 xsinkx ™ f” sin kx 2coskz|m  2((—=1)F—1)
cr = —< - dm) ~° - .
T ko lo Jo kK T k% o k?
Therefore, ¢y, = 0 and o1 = —(2]{;41)2 for all £ € N. Therefore, the Fourier series representation
(2% —

of f is given by

cos(2k — 1)z
s(f: :___Z (2k — 1)



Example 2.5. Consider the periodic function f : R — R defined by

s v
1 if ——<zx< =,
173 2

. T T
0 1f—ﬁ<x<—§or§<x<7r,

and f(x 4 2m) = f(x) for all z € R. We compute the Fourier coefficients of f and find that s, = 0

for all ke N and ¢y = 1, as well as

fz) =

1 (2 2 (2 2sin &2
L= — coskxdr = — coskx dr =
™) x T Jo k
2 _1>k+1
Therefore, cop, = 0 and cop_1 = @k —1) for all £ € N; thus the Fourier series representation of f is

given by

cos (2k —1)x.

Example 2.6. Consider the periodic function f R — R defined by
flx)==z if —7m<z<nw

and f(z + 27) = f(z) for all z € R. Then the Fourier coefficients of f are computed as follows:

¢, =0 for all k € N u {0} since f is (more or less) an odd function, and

]_ ™ 2 us 2 kf e T kf 2 _1 k+1
SkI—J xsinkxdx:—J xsinkxdwz—(—xcos * —l—J o8 xdx) :L.
0 T Jo s E o ok k

—Tr

Therefore, the Fourier series representation of f is given by

33)222(_

k+1

sin kx .

2.2 Uniform Convergence of the Fourier Series

Before proceeding, we note that Remark @ implies that

n 1 U ] B ™ n b
D= o | sy = [ ) 3 ey,
k=-n -

=7 k=—n
By defining
1 n ' 1 e—inx [ei(2n+1)x _ 1}
Dn - ikx - :
(%) 2m k;ne 2m e —1
1 ei(n—i—l/?)x _ 6—i(n+1/2)x sin(n + %)ZL‘
o eiz/2 — g—ix/2 - 2msin%

we obtain that
salf.0)= | F@)Duw — vy = (D= F)(0).

where we recall that the * operation is the convolution on the circle defined by

(Fea)@) = | f@otz-y)dy.



Definition 2.7. The function
(2.2)

is called the Dirichlet kernel.

In the following, we first consider an easier case f € €!(T); that is, f is 2mr-periodic continuously

differentiable on R. We note that integration-by-parts formula provides that

| 1@ ) do = 90|~

The identity above allows us to prove the uniform convergence much more easily. We have the

- f f@)g(e)de Y fgeEN(T).

following

Theorem 2.8. For any f € €Y(T), s,(f, ) = D, * f converges to f uniformly as n — 0.

Proof. Since f Dy(x—y)dy=1forall z €T,
T

Sulfo) = F(2) = (Do x f — )z fDm— (v) — f(2))dy
JD ))dy.

We break the integral into two parts: one is the integral over |y| < 0 and the other is the integral

over § < |y| < m. Since f € ¢(T),

f@—y) = f@)] < |f lemlyl;

thus using the fact that <Tfro<a<?™ 5 e obtain that

sinz 2
(& —y) = f@))dy

5 R oo 0
< j e =Ty e [0y < e, (23)

_5 27| sin 4| 27 _ssin}

‘ \y|<5

Now we take care of the integral over 0 < |y| < 7 by first looking at the integral over § < y < .

Integrating by parts,

™ 1 1, flz—y) = f(z)
| D rte =9 = ) dy= - | o+ 2)y 2 LAy,
:_icos(n—i—%)yf(x— y) — f(z)|y=" " cos ( Z/df(if— )—f(@")d
2r  n+ % sin § 2 s dy sin § v
For the first term on the right-hand side,
v=m 20 ey _ [y

‘icos (n+3)y flz—y) — f(2)

2 n—l—% sin §

VrelR.

_ 5 X -
y=4 TN sin 5 nsin 5



For the second term on the right-hand side,

‘zﬂf cos (n é)yif(x—y)—f(w)dy‘

n—l—% dy sin ¥
1 ‘ Tcos(n+ %)y f/(xz —y) ‘ "cos (n+ 3)ycos L(f(z y)—f(:z:))d H
S oor 1 sin & —}—% 81n232/ y

m—9 2(m —9) } |fller(m)
29

o= (1 ey oy 1]
2w O G s g O G e g S e g

Similarly,

-d
[ Dawa-v - )| < Lo Hen,

’I’lSlIl§ n sin 5

thus for all z € R,

satr) sl <| ([ + [+ J_:)Dn(y)(f(a: ~4) - f(@) dy\

2| floecr T) €L(T
< fpogmd + 2D T oo —fﬁ%l
T S11 T S1n 5

5 n sin

Let ¢ > 0 be given. Choose a fixed § > 0 such that | f'|=md < g For this fixed §, choose N > 0
such that

£1(T)

— <
Nsingg

€
5
Then if n > N and z € R, we have

e £1(T 3
[sn(f,2) = f@)] < 5+ —5F <o+

nsin® § 2 Nsin? g
This implies the uniform convergence of the sequence {s,(f, -)}le to f on T. D

After showing the uniform convergence of the Fourier series representation of ¢'-functions, we
next consider the convergence of the Fourier series representation of less regular functions. The
functions of which we prove the convergence of the Fourier series representation belong to the so-

called Hoélder class continuous functions.

Definition 2.9. A function f € €'(T) is said to be Hélder continuous with exponent « € (0, 1],

denoted by f e €%%(T), if sup W < 0. Let || -
Z:l,:y#ey
J(@) = fly
| flgocr) = sup[f(z)] + sup ’()_—iﬂ
zeT z,y€eR |x y|

TF#Y

Then | - |%o.0(r) is a norm on €%*(T), and
¢%*(T) = {f € €(T)| | flo.ccmy < 0}

In particular, when o = 1, a function in ¢%!(T) is said to be Lipschitz continuous on T; thus

€"1(T) consists of Lipschitz continuous functions on T.



The uniform convergence of s,(f, ) to f for f € €%%(T) with a € (0,1) requires a lot more

work. The idea is to estimate |f — s,(f, )

- HLOO(T) in terms of the quantity Gglf |f = p|le(r). Since
sn(f,) € Z,(T), it is obvious that

mf Hf P||L°°(T Hf — sn(/f, ')HL@(T)
The goal is to show the inverse inequality

Hf - Sn(f7 ')HLOO(']T) < Cn lIlf ”f pHLOO(T (24)

for some constant C,,, and pick a suitable p € &,(T) which gives a good upper bound for H f-

sn(f . The inverse inequality is established via the following

7')HL°0(T)

Proposition 2.10. The Dirichlet kernel D,, satisfies that for all n € N,

f ‘ |d$ 2+ logn. (2.5)
Proof. The validity of (@) for the case n =1 is left to the reader, and we provide the proof for the
roehtsin(n+ 3w

case n > 2 here. Recall that D, (z) = ]

= —Z
ey 2T 27 sin 5

[ bl =2 ool [ fpuofan |

. Therefore,

sin(n + 3z
7TS]1’1§

Since | D, (z)] < hrqr |D,(t)] = nt1 forall 0 <z < l the first integral can be estimated by
t—0
" 120+ 1
f 2| Do(a)]dr < 2201 (2.6)
0 T n

: 2 . . .
Since ¥ <sinz for 0 <z < g, the second integral can be estimated by
i

us
Jl
n

We then conclude (@) from (@) and (@) by noting that log 7 +

in(n + 5 ™1
w‘dng —dx =logm+logn. (2.7)
msin § 1

2n +1
nmw

< 2foralln > 2. o

Remark 2.11. A more subtle estimate can be done to show that

J D, (2)|dx = 1 + c2logn VneN

for some positive constants ¢; and co. Therefore, the integral of | D,,| over [—m, 7] blows up as n — co.

With the help of Proposition , we are able to prove the inverse inequality (@) The following

theorem is a direct consequence of Proposition .

Theorem 2.12. Let f € €(T); that is, [ is a continuous function with period 2m. Then

Hf—sn(f,')Hoo<(3+10gn) ot Hf Pl (2.8)



Proof. Forne N and x € T,

™

lsu(fo2)] < j D) f(@ — )|y < 2+ logn)| e .

—T

Given € > 0, let p € &,(T) such that

— |, < inf _ .
Lf = Pl peg,}me Pl +¢

Then by the fact that s,(p,z) = p(z) if p € £,(T), we obtain that

|f = sulf )l < IF =Pl + o = sn(F e < IF =2l + snlf =2
|f=p|, + ©2+logn)|f — ple
<(3+logn)| il [f—ple+e],

“n

N

and (@) is obtained by passing ¢ — 0. o

Having established Theorem , the study of the uniform convergence of s,(f,-) to f then

amounts to the study of the quantity glf( . |f —plleo. In Exercise Problem a, the reader is asked to
PEPn
show that Lol
. + 2Z2logn
£ f =Pl < ——2 flgourm ;
et Nf =Pl o I fle0rem
thus by Theorem , su(f,-) converges to f uniformly as n — oo if f e €%Y(T).

The estimate of Li)pfm |f —plew for fe €% (T), where a € (0, 1), is more difficult, and requires
PEPn

a clever choice of p. We begin with the following

Lemma 2.13. If f is a continuous function on [a,b], then for all 61,55 > 0,

s [7(@)— )] < (1 5) swp |@) ~ S,

lz—y|<d1 52 lz—y[<d2
The proof of Lemma is not very difficult, and is left to the readers.

Now we are in position to prove the theorem due to D. Jackson.

Theorem 2.14 (Jackson). There exists a constant C' > 0 such that

inf |f=plrem <C sup |f(z) = fly)] VYV [feE(T).

pePn(T) le—y|<t
n

Proof. Let p(x) =14 ¢ cosx+ -+ + ¢, cosnz be a positive trigonometric function of degree n with

coefficients {c¢;}_; determined later. Define an operator K on ¢ (T) by

Kf() = - j " b f(a—y)dy.

=0 )
Then Kf € #2,(T). Lemma then implies
Kf@) ~ 1) < o= | s)lrte —9) - 7o)y
< % i p(y)(L+nly]) sup |f(z) — fy)|dy

- lz—y|<z

(e 5= [ ] sw 1@ - s

lz—y|<E



2

Since y* < —(1 — cosy) for y € [—m, 7|, by Holder’s inequality we find that

2
L[ v [ [ o] '[ [ o]

-7 ™

<[5 [ a-cosmmt a]' =Ty,

—Tr

Therefore,

K= flo < (142502 =c1) sup |f(2) = f(y)].

2 1
le—yl<

To conclude the theorem, we need to show that the number nv/2 — ¢; can be made bounded by
choosing p properly. Nevertheless, let

(k+ 1) < (k+1)rm (+Dm
= c‘ Z sm i o i 5 sin( a ;Te’(k_ﬁ)”
=i n + n +
< (k = (+1
=c Z sin? i 2> + 2c¢ k;() sin - 27T sin (n—:— ;W cos(k — 0)x
>t

and choose ¢ so that p(z) =1+ ¢y cosz + -+ + ¢, cosnx. Then

A (I P ”[ 2(k + 1)r
- _ = 1—
_n+1 s EEOT oGt n42
2 4sin T 2
and
= (k+ )7 km < s (2k+1)
c1 c’;sm —— o ckZ::l cos 5 s o
. (2TL+2)7T . 2T
sin sin =%
:c[ncos T nt2 — "Jrﬂ
n -+ 2 QSmn—Jr2
: 27
sin 2%
:c[ncos T -+ nH}
n+2 san

= c(n + 2) cos T
n

As a consequence,

1
TL\/2—01 :n(Q—ZCOSnﬂ- 2>2 = 2nsinﬁ
s s
=2 2)sin ———— — 4sin ———
(n+ )sm2(n+2) Sln2(n+2)
2(n+2) . T : 4
=7 sin —4s8in ——
7r 2(n+2) 2(n+2)
which is bounded by 7; thus
2
. e
inf || f = ploey < |[Kf = fleem < (1+ 7) sup | f(x) = f(y)]- o

pen(T) ja—yl<2
n



Finally, since lim n=%logn = 0 for all a € (0, 1], we conclude the following
n—aoo

Theorem 2.15. For all f € €%*(T) with a € (0,1], s,(f,) = D, » f converges to f uniformly as

n — o0.

Remark 2.16. The converse of Theorem is the Bernstein theorem which states that if f is a

27-periodic function such that for some constant C' (independent of n) and « € (0, 1),

et Hf Pl < (2.9)

for all n € N, then f € €%*(T). In other words, (@) is an equivalent condition to the Holder
continuity with exponent «a of 27-periodic continuous functions. One way of proving the Bernstein

theorem can be found in Exercise Problem @

2.3 Cesaro Mean of Fourier Series

While Theorem shows that the collection of trigonometric polynomials

n
{62—0 + ;]l(ck cos kx + spsinkx) | {ck i, {Sk}trey S R}
is dense in € (T), Theorem only implies the uniform convergence of the Fourier series repre-
sentation of Holder continuous functions. Since the Fourier coefficients {c;}}_, and {sy}p_, are
independent of the order of approximation n, as we discussed in the beginning of this chapter we do
not expect that s,(f,-) uniformly to f on [—m, 7] for general f € € (T). To approximate continuous
functions uniformly, the coefficients of the trigonometric polynomials should depend on the order of
approximation.

The motivation of the discussion below is due to the following observation. Let {ax}, be a

sequence. Define a new sequence {b,}>_,, called the Cesdro mean of the sequence {ax},, by
al _|_ e _|_ an 1 n
bn = = — ag .
n n Z g

If {ax}72, converges to a, then {b,}° ; converges to a as well. Even though the convergence of a
sequence cannot be guaranteed by the convergence of its Cesaro mean, it is worthwhile investigating
the convergence behavior of the Cesaro mean.

Let 0,(f,-) denote the Cesaro mean of the Fourier series representation of f given by

1 < 1

We note that the coefficients of the Cesaro mean o, (f, ) depend on the order of approximation n

since

c - 1—k 1—k
on(f, ) = 50 + Z (%q cos kx + %Sk sin kx) )
k=1 “—— — | ——

=" =5y



sin(k + 3)z

Recall that Dy(x) = . By the product-to-sum (4% i* f=£ ) formula, we find that

2 Sin%
EDk ism k+ ;i2sm£sin(/{:+l)x
27r sm 4drsin® 2 2 2
2 k=0 2 k=0
cos(k — 1)x — cos(k +
47r sin 2% 1;) ( Dz )
1 gin2 ntl

iy
=——(1- 1 2 )
47 sin? ( cos(n + 1) ) 27 sin %

(V]

This induces the following

Definition 2.17. The Fejér kernel is the Cesaro mean of the Dirichlet kernel given by

.92 (nt+1l)zx

1 < 1 sin
Fo(z) = Dy(x) = 2
)= ];) ) = ) s

We note that o,(f, ) = F, » f, where F,, > 0 and has the property that J F,(x)dz =1 (since
the integral of the Dirichlet kernel is 1). Moreover, for any ¢ > 0, )

1
lim supJ F,(z)dx < lim supj ~dr =0, (2.10)
0<|z|<m o<|z|<m 27T(

n—w n—o n+1)sin® 3
Therefore, {F,}>_, is an approximation of the identity, and Theorem implies the following

Theorem 2.18. For any f € €(T), the Cesaro mean {Jn(f, ')}:):1 of the Fourier series representa-

tion of f converges uniformly to f.

2.4 Convergence of Fourier Series for Functions with Jump Discontinu-
ity

In previous sections we discussed the convergence of the Fourier series representation of continuous

functions. However, since the Fourier series can be defined for bounded Riemann integrable functions,

it is natural to ask what happen if the function under consideration is not continuous. We note that

in this case we cannot apply Theorem at all so no uniform convergence is expected.

In this section, we focus on the convergence behavior of Fourier series representation of functions

with only jump discontinuities.
Definition 2.19. A function f : [—7, 7] — R is said to have jump discontinuity at a € (—m, ) if

1. hm f(z) and lim f(z) both exist.

2. lim f(z) # lim f(z).

Now suppose that f : [—7, 7] — R is piecewise Holder continuous with exponent « and the
discontinuities of f are all jump discontinuities. In other words, f has finitely many jump disconti-
nuities {a1, - ,an,} in (—m, ), and f € €%((a;,a;41)) for all j € {0,--- ,m}, where ay = —7 and
mi1 = 7. Let f(a]) = xlim+ f(z), f(a;) = lim f(z), and define ¢ : R — R by

. Zﬂ(l
J



1

() = %(x — ) Ve l0,2n) (2.11)
and ¢(z + 27m) = ¢(x) for all x € R. Since f has jump discontinuities at {ay,--- ,a,}, with a;
denoting a,,,, the function g : [-m,m) — R defined by
flz)+ Z(f(a;r) — f(aj’))qﬁ(:t — a;) if © # a;, for all k,
=0
@)= e (2.12)
+ _ .
f(ak)zf(ak) + Z (f(a]) = f(a;))plax — a;) if = ay for some k,

osjsm
e
is Holder continuous with exponent a and g(ag) = g(ag). Let G be the 2m-periodic extension of g;
that is, G = g on [—7,7) and G(z + 27) = G(z) for all x € R. Then G € €*(T); thus Theorem
implies that s,(G, ) — G uniformly on R. In particular, s,(g,-) — ¢ uniformly on [—m, 7).
Using the identity
J ¢(SU _ a)efikx dr = eikaj (b(x)efikz dr = (;Ekefika ’

we obtain that .

sa(0(—a),2) = Y e = 5,(p, 2 — a); (2.13)

k=—n

thus () implies that the Fourier series representation of f is given by

NgE

sa(fx) = sulg, ) = ), (f(a]) = f(a;))su(d( — a;), )

<.
I
o

M-

<
I
o

= Sn(g>$) - (f(CL;_) - f(a]_))sn<¢>x - aj) : (214)
Therefore, to understand the convergence of the Fourier series representation of f, without loss of

generality it suffices to consider the convergence of s, (¢,-).

2.4.1 Uniform convergence on compact subsets

In this sub-section, we show that the Fourier series representation of a piecewise Holder continuous
function whose discontinuities are all jump discontinuities converges uniformly on each compact
subset containing no jump discontinuities.

Based on the discussion above, we first study the convergence of s,(¢,-). Since ¢ is an odd

function, for k € N,

1 (" ) 1 (" )
Sk = B o(z) sinkx dx = ﬁfo (x — m)sinkx dz
1 1—(z —7) cos kx |z=n ™ cos kx 1
S d ] -
2 [ k 2=0 +L T k

Therefore, the Fourier series representation of ¢ is given by

1 < sinkx
sn(gzﬁ,x):—%z - (2.15)
k=1



sin kx

T converges uniformly on [—m, —6] U [0, 7] for all0 <6 < .

0
Lemma 2.20. The series Y,
k=1

Proof. Let S,(x) denote the sum )] sin kx. Using the identity
k=1

n N, z
Zsmkx:cos(”*?)x 22 yrel-m -5 uls ],
k=1

: X
281115

we find that |S,,| < M < oo for some fixed constant M. For m > n,

« 1.1 1 1
k;ﬂ F ST = (S = Sm1) + o (St = Smz) - (Shir = S)
Sm Sn 1 1 1 '
T m n+1 +m(m—1)5m*1+ (m—l)(m—z)sm*2+"'m5”+“
thus . -~

1 . 1 1 1 1 1

| X peinke < M(Dw g D ) <2M ()

k=n-+1 k=n+1

Since the right-hand side converges to 0 as n,m — oo, the Cauchy criteria implies that the series

i sin kx
k=1 k

converges uniformly on [—7, —d] U [d, 7]. o

Lemma provides the uniform convergence of s,(¢,-) in [—m, —0] U [§, 7]. To see the limit is

exactly ¢, we consider an anti-derivative ® of ¢ and establish that ®" = s(¢, -).

2
Let ¥ : R — R be 2r-periodic and ¥ (z) = Z— for x € [—~m,7]. Then ¥ € €%(T) is an even
m

function and the Fourier coefficients of W is

~ 1 (7 2?
S Zodr = —
T ) T 12
and for k£ # 0,
o R (N R (K . _(—1)F
\Dk—% _Wﬂe dx—w _Wa: (coskx +isinkx)dx = e

Therefore, using () we find that the Fourier series representation of ® = W(- — 1) is

T N T 1 ek 1 & coskx
PSRN WS U L S )
12 keZ k20 122 2n keZk#0 k 12 m&= k

Since ® € €% (T), s,(®,) converges uniformly to ® on R. Moreover, s,(®,-) = s,(¢,-) which
converges uniformly on [—m, —d] U [0, 7]. Therefore, Theorem @ implies that s(¢, ), the uniform
limit of s, (¢, -), must equal ®’ on [—m, —d] U [0, 7]. Finally, we note that ¢ = &’ on [—m, —6] U [J, 7],
so we establish that s,(¢, ) — ¢ uniformly on [—m, —d] U [, 7].

The uniform convergence of s, (¢, ) to ¢ on [—m, =] U [0, 7] for all 0 < & < 7 implies the following



Theorem 2.21. Let [ : (—7m,m) — R be piecewise Holder continuous with exponent « € (0, 1] such
that its set of discontinuities consists of only jump discontinuities. If f is continuous on (a,b), then

sn(f,+) = f uniformly on any compact subsets of (a,b).
By Remark @, we can also conclude the following

Corollary 2.22. Let f : (—L,L) — R be piecewise Hélder continuous with exponent o € (0, 1]
such that f has only jump discontinuities. If f is continuous on (a,b), then s,(f,-) — f uniformly
on any compact subsets of (a,b) (where the Fourier series representation of f is given in Remark
@) In particular, s,(f,xo) — f(xo) if [ is continuous at xy. In other words, the Fourier series

representation of f converges pointwise to f except the jump discontinuities.

2.4.2 Gibbs phenomenon

In this sub-section, we show that the Fourier series evaluated at the jump discontinuity converges
to the average of the limits from the left and the right. Moreover, the convergence of the Fourier
series is never uniform in the domain including these jump discontinuities due to the famous Gibbs
phenomenon: near the jump discontinuity the maximum difference between the limit of the Fourier

series and the function itself is at least 8% of the jump. To be more precise, we have the following

Theorem 2.23. Let f : R — R be a 2L-periodic piecewise Hélder continuous function with exponent
a € (0,1] such that its set of discontinuities consists of only jump discontinuities. Suppose that at
some point xq the limit from the left f(xy) and the limit from the right f(xJ) of the function f exist

and differ by a non-zero gap a :

flag) = flag) =a#0,

then there ezists a constant ¢ > 0, independent of f, xo and L (in fact, ¢ = 1f Slzxdm—% ~
T Jo
0.089490), such that
. L
lim sn(f> x0 + ﬁ) = f(zg) + ca, (2.16a)
. L _
Jgrgosn(f,xo—z) = f(zg) —ca. (2.16Db)
Moreover,
+ —
lim s, (f, o) = 250) ! f(xy) (2.17)
n—0o0
Proof. By Remark @, W.L.O.G. we can assume that L = w. Let {a1,- - ,a,} € (—n,7) be the
collection of jump discontinuities of f, ay = —m7, a,,41 = 7, and define g by (), where a, is

used to denote a,,, ;. Then g € €%*(T). Since zy is a jump discontinuity of f, xg = a; for some
ke {0,1,--- ,m}. Therefore, by the fact that ¢ is continuous at xy — a; if j # k and s,,(¢,0) = 0 for
all n e N, Corollary implies that
2. (flaf) = f(a;) lim s,(6,20 — ay)
=0
= 3 (F@) — (@) I su(d.x0—a)) = ) (faf) — Fla;))olao —ay).

0<jsm o<jsm
Jj#k Jj#k

<



On the other hand,

Ji oo, 0) = g(aw) = FELIEL B (st g0 )oten ),

Identity () is then concluded using ()
Now we focus on (a). Since g € €%%(T), s,(g,) — g uniformly on T; thus

T}l_{rolo Sn(gax(] + %) = g(xO) .
Similarly, since s, (¢, ) — ¢ uniformly on [—7,—0] U [0, 7] for all § > 0, if j # k,
. T
nlgrgo sn(gb, o + o aj) = ¢(zo — a;j) .

On the other hand,

As a consequence,

Tim s (f,20+ =) = lim [sa(g,20+2) = 3 (F(a]) = £(a))sa (6,00 + = — aj)|
=0
—glea) = Y (F@)) = F(@))olwo — ) + (4 3) (Flai) = fla7))
= f(ag) +e(f(ag) = f(20)) -
Identity (b) can be proved in the same fashion, and is left as an exercise. a

Remark 2.24. Let f be a function given in Theorem , xo be a jump discontinuity of f, and
I = (zg, ¢ + ) for some r > 0. By the definition of the right limit, there exists 0 < § < r such that

cla|

|f($)_f<$5r)‘< Ve (xg,z0+9).

Choose N > 0 such that % < 6. Then z¢ + % € (xg,z0+ d) for all n = N; thus if n > N,

sup|sa(f,) — ()] = salfr 0+ ) = Flao + )]

zel

> [sull 0+ )~ 1| - |12+ )~ 1)
clal

> [su(fom0+ 1) = fla)| - S

which implies that

- clal _ clal
im inf[s,(f, ) = f(2)] = cla| = == = =5

Therefore, {s,(f, -)}:):1 does not converge uniformly (to f) on I, while Corollary shows that
{ sn(f, ~)};O:1 converges pointwise to f. Similarly, if xg is a jump discontinuity of f and f is continuous

on (zo—7,zo) for some r > 0, then {s,(f, )}OO converge pointwise but not uniformly on (zo—r, zo).

n=1



For a function f given in Theorem , let f be defined by

- f(x) if f is continuous at
fle) =1 st +16)
2

Then sn(f, ) = $u(f,) for all n € N, and Corollary and Theorem together imply that

{sn(f, -)};O:l converges pointwise to f. However, the discussion above shows that {sn(f, -)};O:l cannot

if x is a jump discontinuity of f.

converge uniformly on I as long as I contains jump discontinuities of f.

2.5 The Inner-Product Point of View

FOORBERR At 9 foachE o B - B PR (F‘I*‘uﬁz? M5 ) SELEET L F kg Fourier
series o 4P T U T &K B [—m,w] 9¥7F Riemann integrable & #ic?ta) = gk & —Ffi - FeEF
BBt a Tax- Br ot - B7fis >l (» ARG - B v &) 9 Fourier series
representation ¥ 1/ 'ﬁ FiEPerE - BIIARTETRPEEL o

Let L*(T) denote the collection of Riemann measurable, square integrable function over [—m, 7]
modulo the relation that f ~ g if f — g = 0 except on a set of measure zero (or f = ¢ almost

everywhere). In other words,
LZ(T):{f: —m,T) C‘f dx<oo}/~.

Here again we abuse the use of notation L?(T) for that it indeed denotes a more general space.
We also note that the domain [—7,7) can be replaced by any intervals with —m, 7 as end-points
for we can easily modify functions defined on those domains to functions defined on [—m, 7) without
changing the Riemann measurability and the square integrability.

Define a bilinear function {-,-) on L?(T) x L?(T) by
1
=5 |t
T J[—m,m)

Then (-,-) is an inner product on L?(T). Indeed, if f,g belong to L?(T), then the product fg is
also Riemann measurable, and the Cauchy-Schwartz inequality as well as the monotone convergence

theorem imply that

‘<f79>‘< J_ (f Ak (@)||(g A k) (2)| d

kll_r)&%(ﬁ o f/\k)(ib‘)‘zdl');<f ‘(g/\k)(x)fdx)%

)

_ %(J{mﬂ)|f(x)‘2dx>é<f[m)‘ o)’ dm>2 “

thus the definition of the inner product {:,-) given above is well-defined. The norm induced by the
inner product above is denoted by | - |2y or | - |z2(—r.m)-
For k € Z, define ey, : [—m, 7] — C by ey (z) = e**. Then {e}}_

since

_, is an orthonormal set in L?(T)

1 T ke it 1 " itk—0)z 5. ) 1 ifk=1¢,
<ek,eg>—%f e dx—% _ﬂe dr = 0 ikl

—T



n
Let V,, = span(e_,,e_ 41, "+ ,€0,€1, " ,€,) = { > areg ‘ {ap}r__, < (C}. For each vector f €
k=—n

L*(T), the orthogonal projection of f onto V, is, conceptually, given by

i (f,erer = i <% fﬂ f(x)e e dx)ek = i Frex -
k=-n - k=-n

k=—n

By the definition of e, we obtain that the projection of f on V), is exactly s,(f, ). We also note
that V,, = Z,(T).
Now we prove that s,(f,-) is exactly the orthogonal projection of f onto V,, = Z,(T).

Proposition 2.25. Let f € L*(T). Then

Proof. Let pe &,(T). Then p = s,(p, -); thus

(= sulf,).0) =) = (salfo ) p) = (I, Z Prery — <Z frer,p)

k=—n k=—n
Zpk<fek>_ Z Filp.ery = Zﬁ_kfk— Z fibe=0. 0
k=—n k=—n k=—n k=—n
Theorem 2.26. Let f € L?(T). Then
If = ooy = If = sulf, Moy + Isalf ) = Pliem VP e Pu(T). (2.18)
Proof. By Proposition , if pe 22,(T),
| @) =P o= [ |re) = sa(t.0) i) = plo) o
= J_: }f(x) — su(f, ZL‘)‘Q dx + f—: ‘sn(f —p, :B)‘2 dx
which concludes the proposition. =
We note that () implies that
|f = s, M2y < [f = plrzery  Vpe Zu(T). (2.19)

Since s, (f, ) € Z.(T), we conclude that

If = sn(fi Moz < inf Hf plr2e
PEPn(

Moreover, letting p = 0 in () we establish the famous Bessel’s inequality.
Corollary 2.27. Let f € L*(T). Then for alln € N,
[sa(f, Mezery < f ]2y - (2.20)

In particular,

[ i (cz + s, ] Z ‘fk|2 Jﬂ }f(yc)‘2 dx . (Bessel’s inequality)

k=—o0 ”



Next, we prove that the Bessel inequality is in fact an equality, called the Parseval identity. It is

actually equivalent to that {sn( 1, -)}Zo:l converges to f in the sense of L2-norm; that is,
nh—{rolo Hsn(fa) _fHLQ(T) =0 vaLQ(T)

Before proceeding, we first prove that every f € L?*(T) can be approximated by a sequence {g,}%_, <

% (T) in the sense of L?*-norm.

Proposition 2.28. Let f € L*(T). Then for all ¢ > 0 there exists g € € (T) such that
|f = glrzm <e.

In other words, €(T) is dense in (L*(T), | - ||z2(m)-

Proof. W.L.O.G., we can assume that f is real-valued and non-zero. Let ¢ > 0 be given. Since

f € L3(T), the monotone convergence theorem implies that
J [ f = (=k) v (f A k) 72r) = kh_{{éj[ ) L) =k (2) | f () |? dz = 0;
thus there exists K > 0 such that

|f = (k) v (f ~k)lr2(r) < Vk> K.

N ™

Let h = (—K)v(fAK). Then h is bounded and Riemann measurable; thus A is Riemann integrable
over [—m, ). Therefore, there exists a partition P = {—7m =2y < 21 < --- < &, = 7} of [-7, 7) such

that U(h, P) — L(h,P) < ; Define

n—1 n—1

S@) =2, s fOlpan()  and  s@) =) inf F(OLpmn(@)

k=0 $E€[TH,TR11] oo SElzR TR
where 1,4 denotes the characteristic/indicator function of set A. Then
1. - K<s<h<S<Kon[-mr)\{z1, - ,Tn1};
o " S@@yde=UmP); 3. fr s(x) dz = L(h, P).
The properties above show that

T 62

f Ih(z) — s(2)| dx = f h(z) — s(z) de < J (S(x) — s(2) de < U(h P) ~ L(h P) <

—Tr —T —T

Now, for the step function s defined on [—m, 7), we can always find a continuous function g € €(T)
(for example, g can be a trapezoidal function) such that

™ 62
Lo gleem < K. 2. |s(z) — g(z)| doz < —.



—T=xy T1 To2 T3 T4 Tpn-2Tpn1Tpn=T
Figure 1: One way of constructing g € € (T) given step function s

Then that |g| =) < K follows from that ||s| o) < K, and
2

£
J[_mr) () = g(x)|dx < f[_mﬁ) |h(z) — s(x)| dx + f_mﬂ) |s(z) — g(a)|dz < Ve

Therefore,

JW \h(z) — ‘ dr < 2K |h(z) — g(z)| dz < %

-7 [—m,m)

which implies that |h — g||r2(r) < % The proposition is then concluded by the triangle inequality. o

Theorem 2.29. Let f : [—7, 7] — R be bounded Riemann integrable. Then

lim \sn fox) = f@)[ de =0 (2.21)
n—0oo
and . .
J ’f(x)|2 dx = Z |J?( [ Z c + 53 } . (Parseval’s identity) (2.22)
-7 k=—0o0 k=1

Proof. Let € > 0 be given. By Proposition there exists g € €(T) such that
" 2 g2

f(z) — g(ac)} dr < 3

By the denseness of the trigonometric polynomials in €'(T), there exists h € (T) such that

sup |g(z) — h(z)| < \/% Suppose that h € Zy(T). Using (),
zeR s

s T 2 2
LT l9(x) — sn(g,2)|" dx < L lg(2) — h(z)[* de < 27 - 1687 - %

Since sy(g,-) € Z,(T) if n = N, we must have

T T 2
| lo@) = sg.a)fdr< [ o) - sl de <G vn= N

€
o . 9

Therefore, for n = N, inequality () and the triangle inequality yield that

Lf = su(fs ez < If = 9lezy + 19 = 5n(g: ) |2y + [50(9 — £, )lle2em)
<2|f = gllezry + |9 = sn(g, )| 2m) < €



thus () is concluded. Finally, using () with p = 0 we obtain that

fﬁV@ﬁ¢“=f\%fw\dw+fﬂU@%wAﬁme_

—T

Using the fact that f s (f, @ | dx = 7T|: + Z (2 + sk)] and passing to the limit as n — o0, we
-7 =1

conclude () o

Example 2.30. Example @ provides that f 2?de =7 Z k:2 ; 2= G
—m k=1

2.6 The Discrete Fourier “Transform” and the Fast Fourier “Transform?”

Let f: R — R be 2L-periodic such that f is bounded Riemann integrable over [—L, L). Similar to
Remark @, the Fourier series representation of f, defined in Remark @, can be written as

o0
o~ imks
l’) = Z fke L,
k=—o0
. Due to the periodicity, fk can also be computed via the formula

~ L )
M%h—lff@eL

~ 1 in ~
fr = 3T f (y)e™ = dy; thus f; can be approximated by the Riemann sum

1 Nl 2L€ =2mikt 2L 2L€ 72771162
'zgﬂN Zf :

In other words, the values of f at N points can be used to determine an approximation of the Fourier

coefficients of f. This induces the following

Definition 2.31. The discrete Fourier transform, symbolized by DFT, of a sequence of N

complex numbers {zg, 1, -+ ,xy_1} is a sequence {Xj}xez defined by
N=l —2mikl
Xk:nge N VkelZ.
=0

We note that the sequence {Xj}rez is N-periodic; that is, Xy = X}, for all k € Z. Therefore,

often time we only focus on one of the following N consecutive terms of the DFT:
L. {X07 X17 T 7XN71};
2. {X_%, e ,X%_l} if N is even;

3. {X_Nfl ,Xb} if V is odd.
2

Example 2.32. The DFT of the sequence {zg, x1} is {xo + 21,20 — 21}.

Remark 2.33. Let = = [xg, %1, -, Zn_1] be a sequence of numbers. The matlab®command fft (x)
outputs the sequence
[Xo, X1, - ,X%_l,X_%, o X 9, X ] if N is even,
[Xo,Xl,"'7Xb7X_b,"',X,Q,X,l] lfNISOdd,
where {X_%,--- ,X%_l} and {X_%,--- ,X%} are the DFT of {zg,z1, -+ ,2y_1} when N is

even and odd, respectively.



2.6.1 The inversion formula

Let {Xj}5—; be the discrete Fourier transform of the sequence {z,})'. Then {z,}) ' can be

recovered given {X;}~ ' by the inversion formula

1S e
1=+ ;;) Xpe ~ . (2.23)

. N-1 ,N-1 —2mikj 2mikd .
To see this, we compute >, < xrje N )e ~ and obtain that

k=0 \ j=0
N—-1 N-1 N-1 N-1 N-1 N-1
—2mikj 2mikl 2mik(£—j) 2mik(£—j)
Z( xjeN)eN:Z<ije N ):N:Z:g—l—Z(:L‘jZe N >
k=0  j=0 i=0 k=0 3=0 k=0
I J e
N-1 (o—
6271'1([ j) 1
= Nz, + O R T = Nuxy
e~ —1

The map from {Xj}5 o to {z,}) " is called the discrete inverse Fourier transform.
We note that the inversion formula () is an analogy of

for all piecewise constant function f and x € R at which f is continuous.

2.6.2 The fast Fourier transform

Let M = [mye] be an N x N matrix with entry my, defined by

—2mikl
Mg =€ N 0<kl{<N-1,

and write £ = (2¢, 21, - ,2n_1)" and X = (Xo, -+, Xn_1)T. Then X = Mz and it requires N2
multiplications to compute X. The fast Fourier transform, symbolized by FFT, is a much faster

way to compute X. In the following, we show that when N = 27 for some v € N, then there is a way
to compute the DFT with at most NV log, N multiplications.
With N = 27, suppose that (zq,---,zx_1) is a given sequence, and {X;}r ' is the DFT of

{vp}o . Let w = e~ &, and

Toven = [To Tz Ty -+ ay-z] and Toqa = [1 T3 X5 -+ Tn_1]

Then

0<U<N-1 0<U<N-1
£ is even £ is odd

N-1
X = Z T’ = Z T’ + W Z 2wV
=0

= Toven - [0 ¥ WY o V] - [ WP WY IV



In particular, for 0 < j <

. N
5 b

0 25+ LAG+H) .. w(%ﬂ‘)(N—z)]
2

XN+j = Teven [w w
N s N | - N | N .
+ w?+]w0dd . |:w0 w2(7+.7) w4(7+]) ce w(?‘i’])(N*Q)]

0,27 45 ..

_ 0 25
= TLeven [W w

WD) gy [ W Wb V)]

where we have used the fact that w> = —1. We note that
{weven_ [wo W Y wj(N_Q)]}N/z
§=0
is exactly the DET of the sequence {xg, z3, -+ ,zn_o} and
P (N N/2
{ccodd W’ WP W w-’(“"l)}}
§=0

is exactly the DFT of the sequence {zq,x3, - ,2y_1}. In other words, to compute the DFT of

{xo, -+ ,xn_1}, where N = 27, it suffices to compute the DFTs of the sequence {zg, zs,- - ,xny_2} and

{1,253, ,xNy_1}. As long as the DFTs of the sequences {xg,xs, -+ ,zn_2} and {z1, 23, -+ ,xn_1}
. . N R

are known, it requires another 5 multiplications to compute the DFT of {x¢, 21, - ,zn_1}.

Now we compute the total multiplications it requires to compute the DFT of the sequence {xk}i;l
using the procedure above. Suppose that to compute the DFT of {xk}ilgl requires f(v) multiplica-

tions. Then
fo)=2f(y-1)+277".

It is easy to see that it requires no multiplication to compute the DFT of {xg,x;} since it is simply
{zo+x1, z9—x1}; thus f(1) = 0. Solving the iteration relation above, we obtain that f(y) = 277(y—1)

which implies the total multiplications requires to compute the DFT of {xk}kN:’Ol, where N = 27, is

N
E(log2 N —1).

Example 2.34. To compute the DFT of {z¢,xy,--- , 27}, we compute the DET of {z, o, x4, ¢} and
{x1, 3, x5, 27} first, and it requires another 4 multiplications (to compute the multiplication of w’
and the j-th term of the DFT of {z1,z3, x5, 27} for 0 < j < 3). Nevertheless, instead of computing
the DFT of {xg,x, 4,26} and {xy,z3, x5, 27} directly using matrix multiplication X = Mz, we
again divide the sequence of length 4 into further shorter sequence {xg, x4}, {r2, 26}, {r1,25} and
{x3,27}. Once the DFT of those sequence of length 2 are computed, it requires another 2 x 2 = 4
multiplications to compute the DFT of {xg,zs, 24,26} and {xy,z3,25,27}. By Example , it
does not require any multiplications to compute the DFT of sequences of length 2; thus the total

multiplications required to compute the DFT of {zg,x1, - , 27} is4+4 = 8.

2.7 Exercise

Problem 1. Let f € €(T) and { fk},;‘o:_oo be the Fourier coefficients (given in Remark @) Show
0 ~ noo.
that if ] ]fk‘ < o0, then s,(f,) — f uniformly on T, where s,(f,z) = > fpe®®.

k=—o0 k=—n



Problem 2. This problem contributes to another proof of showing that the n-th partial sum of the
1
Fourier series representation s, (f,-) converges uniformly to f on T if f € €%*(T) for 5 << 1.

Complete the following.

1. Let f: R — R be 2w-periodic such that f is bounded, Riemann integrable over [—m, 7|. Show

that ~ e
fr = —or J_W f(x + %)e_”” dx
and hence R 1
fk:E B [f(ﬂl?)—f(df—i-%)}e*imdaz.
Therefore, if f € €%%(T), the Fourier coefficients f, satisfies | fi| < W.

2. Let f : R — R be 2r-periodic such that f is bounded, Riemann integrable over [—m, w]. Show
that .
1 (" ‘ N
5 [fla+h) = fla—m'de="Y 4sin®(kh)|fil*.
- k=—o0

Therefore, if f € €%*(T), the Fourier coefficients fi satisfies

0

> s’ (k)| fel” < [ [on(ry 2”0 (2.24)

k=—00

3. Let f e €% (T), and p € N. Show that

2c¢

~ o G0y
2 > (T)
> S " oraprl

2r—lg|k|<2P
. m .
Hint: Let h = 271 0 ()
o0

4. Show that if f € €%%(T) for some % <a <1, then )] ]ﬁ] < 0; thus Problem m implies that

k=—00

sn(f,+) — f uniformly on T.

Problem 3. Let f be a 2m-periodic Lipchitz function. Show that for n > 2,

14 2logn
If = Frsr* floemy < —— == flworcm (2.25)
and 27(1 + logn)?
+ logn
[ = 0N ey < B . (2:26)
Hint: For (), apply the estimate
1
F,(x) <min{n+ , T }
21 ' 2(n+ 1)a?

in the following inequality:

10 Faes@l < [+ [ [T+ 0 - s@lRawa



with 6 = nL—H For (), use (@) and note that

inf — g < _Fn 0 :
peé%m”f Plrem < |f * fllzeem

Problem 4. In this problem, we are concerned with the following

Theorem 2.35 (Bernstein). Suppose that f is a 2w-periodic function such that for some constant C
and a € (0,1),
inf —plrem <Cn™@
ot If = pleem < Cn
for alln e N. Then f € €%*(T).

Complete the following to prove the theorem.

1. Suppose that there is p € &, (T) such that
Ip"|oery >, pleey <1, and p'(0) = [p'[l e ().

Choose v € [— %, %} such that sin(nvy) = —p(0) and cos(ny) > 0, and define o = v+ % (k+ %)
for —n < k < n. Show that the function r(z) = sinn(z — v) — p(x) has at least one zeros in

each interval (ay, agy1).

2. Let s € N be such that such that 0 € (s, as41). Show that r has at least 3 distinct zeros in
(ais, as11) by noting that 7/(0) < 0 and r(0) = 0.

3. Combining 1 and 2, show that
[Py < nlploeey  Vpe Pu(T). (2.27)

4. Choose p,, € Z,(T) such that | f —p,| < 2Cn~* for n € N. Define gy = p1, and ¢, = pan — pan-1
a0

for n € N. Show that >} ¢, = f and the convergence is uniform.
n=0

5. Show that [,z < 6C27"*. As a consequence, show that

|90(2) — gu(y)| < 6CN2"1" |z —y| and |g.(z) — gu(y)| < 12027,

6. For any x,y € T with |x —y| < 1, choose m € N such that 27™ < |z — y| < 2'™™. Then use the

inequality
‘f(l’) - f(y)‘ < Z ‘Qn(‘r) - Qn(y)‘ + Z |Qn(x) - Qn(y>’

to show that |f(z) — f(y)| < Blz — y|* for some constant B > 0.



3 Fourier Transforms

Before introducing the Fourier transform, let us “motivate” the idea a little bit. In Section @

we show that {ey} ., where ey(z) = €** is an orthonormal basis in L?(T). Similarly, with

L*([-K, K]) denoting the inner-product space
L*([-K,K]) ={f : [-K, K] — C| f is Riemann measurable and square integrable}/ ~

equipped with the inner product

9= 5 | f@a@d

o]
)} is an orthonormal basis of L*([—K, K]); that is, any functions f €
k=—0

ikmx

the set {exp( e
L*([-K, K]) can be expressed as

= Y flk)e"®, where f(k;):ﬁ _Kf(y)e_Tdy. (3.1)

Moreover, Z |f ( W= 5 Kf |f(x)|?dz. In other words, there is a one-to-one correspondence

k=—00

between f € L*([-K, K]) and f e t,. We look for a space X so that there is also a one-to-one
correspondence between the square integrable functions on R and X. Intuitively, we can check what
“might” happen by letting K — oo in (@)

Making use of the Riemann sum to approximate the integral (by partition [—K, K] into 2K?

intervals), we find that

Z J f 1k7r(1 y) ~ \f Zkﬂ'(L y) dy
K —

k— oe) -K?
S Zkﬂ'( + L)1
NQK Z 2,1 ad )%
—K2 (=1
1 5 14 ikm(x — =), 1 14 1
~ox 2, 4 JE)ee (g =g dv =)

) f(é.)exp@g(x—f))df— (6= A6 =7)

B 1 K K ) B
J J zé(m y)dfdy _ %J J f(y)e’g(‘r y)dydf
—-K J-Km

A \/—2? foo \/—2? foo f(y)e_igydy} erde .



Therefore, if we define f(f ) = \/; j f(y)e~™*¥dy, then the formal computation above suggests that
™ JR

1 ~ )
_ i€x
) = —— e~rde . 3.2
fla) = <= | Flepeeas 3:2)
In the rest of this section, we are going to verify the identity above rigorously (for functions f with
certain properties).
3.1 The definition and basic properties of the Fourier transform

For notational convenience, we abuse the following notion from real analysis.

Definition 3.1. The space L'(R") consists of all functions that are integrable over R and whose

integrals are absolute convergent. In other words,
LR ={f:R"~C| j F(@)]di < o0}
R"

that is, f € L*(R") if the limit lim |f(2)| dz exists.
R—© JB(0,R)

Remark 3.2. Even though we have not defined the integral for complex-valued function, the defini-
tion of L'(R™) should be clear: when f is complex-valued function, the absolute integrability of f is

equivalent to that the real part and the imaginary part of f are both absolutely integrable, and

Ja)de = | Re(f)a)d+i | In(r)e)ds

where f(x) is the complex conjugate of f(z).

Definition 3.3. For all f € L}(R"), the Fourier transform of f, denoted by .Z f or ]?, is defined by

- ey 1
FNE=FO= 7=

(z)e "™ 4dx VEeR™,
where x - £ = x1& + 2260 + - - - + 1,6,

3.2 Some Properties of the Fourier Transform

Proposition 3.4. . : L'(R") — €,(R";C), and
|7 flloo = sup (ZHEO] < If ey (3.3)
e n

Proof. First we show that .Z f is continuous if f € L'(R"). Let £ € R" and € > 0 be given. Since
f € L'(R"), there exists R > 0 such that



Moreover, there exists M > 0 such that

J‘ ‘dm <M< ow.

Since ¢(x,y) = e~ is uniformly continuous on A = B(0, R) x B(&, 1), there exists 0 < § < 1 such
that

|¢(x17y1> - ¢($2;y2) < whenever ‘(thJl) - (I27Z/2)| < d and (‘rlvyl)a <x27y2> eA.

5
3M
In particular, for all x € B(0, R) and n € B(&,0),

3

|efz'x-£ 77,1 r]’ - SM

Therefore, for n € B(&,9),

~

o) - 7e) mJ >He*”'"—e*‘“\dw

< —n ) dz + — f ) e~ — e~ da
V2 JB(O R)C | Vor" B(O,R ‘ ’ ‘
1 72
< — d:c] <e;
Nz [3 3Mf oR)‘f ‘
thus .Z f is continuous. The validity of (@) should be clear, and is left as an exercise. a

Definition 3.5. A function f on R™ is said to have rapid decrease/decay if for all integers N = 0,
there exists ay such that

\x]N]f( )| < ay, as r — o0.

Definition 3.6. The Schwartz space . (R"™) is the collection of all (complex-valued) smooth functions

f on R™ such that f and all of its derivatives have rapid decrease. In other words,
S (R") = {ue " (R")||- |V D*u is bounded for all k, N € N u {0}}.
Elements in . (R") are called Schwartz functions.

The prototype element of . (R") is e~ 1" which is not compactly supported, but has rapidly
decreasing derivatives.

The reader is encouraged to verify the following basic properties of .(R"):
1. .Z(R") is a vector space.

2. (R") is an algebra under the pointwise product of functions.

3. Pue Z(R") for all u e . (R") and all polynomial functions P.

4. Z(R") is closed under differentiation.

5. Z(R") is closed under translations and multiplication by complex exponentials €.



Remark 3.7. Let 2 € R” be an open set, and €°(2) denote the collection of all smooth functions
with compact support in {2; that is,

CEQ) = fue €7 ()| {z e Q| f(x) # 0} =0}
then €*(R") < .7 (R") . The set cl({z € Q| f(z) # 0}) is called the support of f.
The following lemma allows us to take the Fourier transform of Schwartz functions.
Lemma 3.8. If f € #(R"), then f e L'(R").

Proof. 1t f € /(R™), then (1 + |z|)"™!|f(z)| < C for some C' > 0. Therefore, with w,_; denoting

the the surface area of the (n — 1)—dimensional unit sphere,

n 1
Jn\f(x)‘dx\JRn (1—|—|:L‘| n+1 Ln 1J 1_’_rn+1 drds

< C’wn_lf (14 7)2dr = Cw,
0
which is a finite number. o

Now we check if f is differentiable if f € .7 (R™). Note that if f € .#(R™), then the function
y; = z; f(x) belongs to 7 (R") for all 1 < j < n.

~

Lemma 3.9. If f € /(R"), then ]? is differentiable, and for each j € {1,--- n}, gff exists is given
J

by

1

of f)eede = [, £()] (). (34)

— —ix;
0&; Vor" J n i)
Proof. Let g; be defined by g;(x) = —ix; f(x). Since f and g; are both Schwartz functions,

(&) =

lim |f(z)|dz =0 and lim |g;(x)|dz = 0.
k= Jp(0,k)c k= Jp(0,k)

Let x : Ry — R be a smooth decreasing function such that

(r) = 1 ifo<r<1,
X7V 0 ifr>2.

Define fi(z) = X(m)f(x) We first show that

k
0 f 1 x —ix-
9= o [ (g (35)

Too see this, we note that

ful€+hey) — (€)1 B
h _\/ﬂnﬁg X(

\/% .
—m JB(O%)X(|z|)f(x)e_m'5[—e - +@'xj] dz




—ihx; _

thus by the fact that eT +ix; — 0 uniformly on B(0,2k) as h — 0, Theorem @ implies that

iy SERes) — Ji(§) 1
h—0 h \/77'(‘
hence (@) is established. Therefore, for each k € N,

(@t —o;

8fk 1 f
< d < n ] d
% ‘ Norsd f )Hg] )| de < 7 Jnosr |g; ()| du

sup
£eRn

which converges to zero as k — co. In other words, g?“ — g; uniformly on R" as k — .
J

Similarly,
1
5853 fu(€ ‘ < \ﬁ f )Hf )| da < WJB(O,k)C |f(x)| dx

/\

which converges to zero as k — oo. Therefore, fk — f uniformly on R"™. By Theorem @ A f =7,
so the lemma is concluded. ’ =
Corollary 3.10. For f € ./ (R"), fe ¢*(R™) and
(03 Ny 1 a1 « N
DEFE) = g [a et f @] (©).
o o aal aan
where for a multi-index o = (a1, -+, ), o] = a1 + -+ + a, and D§ = ae A
1 n
ol

Q& .o

Lemma 3.11. If f € S (R"), then F (1 of )(g) — & f(6).

1 0wy,

Proof. Since f € Z(R"), f(z) — 0as |z| — o0; thus hm f(z) _”5‘% ~" = 0. Therefore, integrating

.’Ek*

by parts formula we find that

J(l af)(g) E limf 9 (et iy

10wy, 21" R0 [~R,R]" oxy,

1 1 —ix- rp=R . —ix-
— —‘—27T }%13;0 [f(:v)e 3 - + &, J[R’R]n f(l‘)e fdx]
=Gpn | e =6, :
Corollary 3.12. P(&1, -+, &) A(f) = ﬁ[?(i 621 cee 162 )f} (&) for all f e L(R™) and polyno-

mial P.

Corollary 3.13. .7 : Y (R") — S (R").



Proof. Let P be a polynomial and o be a multi-index. By Corollary and ,

N plol ¥
PODTIE) = Pler &) gt (©

- PG D e @) ()

" 0z,

thus PD* ]? is the Fourier transform of a Schwartz function. By Proposition @ and Lemma @,
PD°f is bounded. o

Remark 3.14. There exists a duality under A between differentiability and rapid decrease: the

more differentiability f possesses, the more rapid decrease f has and vice versa.

Definition 3.15. For all f € L'(R"), we define operator .Z#* by

1
N \/27Tn Rn

The function .#* f sometimes is also denoted by jY :

(F*f)(x) f(€)e'ede .

The operator .#*, indicated implicitly by the way it is written, is the formal adjoint of .%. To be

more precise, we have the following

Lemma 3.16. (Fu,v)2@n) = (U, F*0)2m@n) for all u,v € S (R"), where (-,-)p2mn) s an inner

product on . (R™) given by

(U, V) 2mny = J u(x)v(x)dx .

n

Proof. Since u,v € (R™), by Fubini’s Theorem,

(Fu,v)2mny = ﬁ J ) <J}Rn u(;g)efz':cédm)@dé

= ﬁ J ) Jn u(z)e™ v (§) d€ dx
= ﬁ f ) u(z) JRn ety () d§ dx = (u, F*v)r2mn) - D

3.3 The Fourier Inversion Formula

We remind the readers that our goal is to prove (@), while having introduced operators . and .#*,

it is the same as showing that .# and .#* are inverse to each other; that is, we want to show that
FF =F*F =1d on Z(R").

1 o2
For ¢t > 0 and x € R, let P,(z) = 7 e 2. Note that P, € . (R) and P, is normalized so that

\/%ﬁoa(x) de—1.



Now we compute the Fourier transform of P,. By Lemma @, we find that

dPt
Pi(z)e™ ™ dx = Pi(x d J Pi(x
d§ \/ﬁ xPy( T = \/7 xP,(x) cos(&x) \/7 xP,(x)sin(x) dx

Since the functions y = zP;(z) is absolutely integrable over R for each fixed ¢ > 0, the integral

f xPy(z) cos(éx) dr converges absolutely; thus by the fact that z cos(£x) are odd functions in x, we
R
have

f xP,(x) cos(éx) dr = lim JR xPy(x)cos(éx)dx = 0.
R R—w J_p

As a consequence,
dP, J
dé - V2rt

e~ 2 cos(x€)dr, and the integration by parts formula implies that

(&) =

re 7 sm (x€)dz

Similarly, Pt( \/27 J
g

dPt B
¢ m f PG Cos(f”f))df = m
— \/;77# }%i_r};o [ — tefé sin( - + J_R 515@*27 Cos(xg) dx}

R 2 R 2
__ ¢ lim e~ 2 cos(z€) do=— ¢t lim e~ 2 [ cos(x€) — isin(z€)] dx

v 2t R | g V2rmt R—w | _p

—— [ et = —aR©);
R

thus P,(&) = Ce~"T. By the fact that P,(0) = \/127 f P,(z)dx = 1, we must have
™ JR

J e~ % sin(z€)dz

P(g) =7 (3.6)
1

For x € R™, if we define Py(z) = [] Pi(zx) = (\—/z)ne_%, then (@) implies that P,(¢) = e~2!k”,
k=1

Therefore,
A~ 1 n
b0~ (1)
16 = (5) P20
which, together with the fact that f () = f(—ac), further shows that
X 1 \n~ 1 \? 1,012
B () Fit= (3 <.
(z) (o) = () (z)
Similarly, P,(€) = P,(€), so we establish that

FrFPy) = FF*(Py) =Py (3.7)
The proof of the following lemma is similar to that of Theorem .

Lemma 3.17. If g € /(R"), then Py;% g — g uniformly on R™ as t — 07, where the convolution

operator % is given by

(Pykg)(x) = ) Pi(r —y)g(y) dy = ! J Pi(y)g(z —y) dy. (3.8)

1
\/27Tn R \/27Tn R



Proof. Let ¢ > 0 be given. Since g € ./(R"), ¢ is uniformly continuous; thus there exists 6 > 0 such
that

9
l9(@) —gly)| <5 Ve -yl <.

Since \/21?” RnPt(x) dx =1, for all x € R" we have
(P g)(x) — g()] = \/21?1 f g(z —y)Pi(y) dy — J g(z)Py(y) dyl
= \/21—7#1 f ((9(z =) — 9(x))Pi(y) dy‘
< g\/;?n |y\<6P W(y) dy + f)%‘” W&P t(y) dy,
so we obtain that . QHQHOO
|(Prxg) =g, <5+ N ‘yNP «(y) dy .

Note that as t — 07,

1 2
Pi(y)dy = —= e%dy—f e” 2 dz —0;
L|>5 VT Jyiss jol> =

thus there exists A > 0 such that if 0 < [t| < h,

QHQHoo £
Py(y)dy < .
\/27‘(‘ ly|=5 2

Therefore, we conclude that
|(Pixg)—g|, <e VO<t<h

which shows that P, % g — ¢ uniformly as ¢t — 0. D

Before proceeding, we establish a special case of the Fubini theorem for improper integrals which

will be used in the following discussion.

Proposition 3.18 (Fubini theorem - special case). Let f : R" x R" — C be absolutely integrable,
and g,h & LNRY). I |f(z,)] < lg(@)|[h(y)] for all 2,y € R", then

f(z,y)d(x,y) = lim f(z,y)d(z,y)

R27 R— [—R,RP”

— Jn ( . f(x,y)dy)da: = Jn ( . f(x,y)dx)dy.

Proof. Let € > 0 be given. Since g, h € L'(R™), there exists Ry > 0 such that

£
lg(x)| + |h(2)|| dx < whenever R > Ry.
J([ R, : ) L+ glpi@ny + [ 7] 1@y




Therefore, the Fubini theorem for Riemann integral implies that

[ swmaa=[ ([ semaes [ ([ i)
N f[_RﬁR}n ( J[_R’R]n +£[_R’R}n)c ) (@,y) dy|de + f( [—R,R]”)C< ) dy)de
_ f[ 7R7R]2nf(x,y)d(x,y) +J[R7R}n( f( . flz,y) dy)dm+ J( [R’R]n)s( fa) dy>d;,;;
thus by the fact that | f(z.9)| < |g(x)||h(y)].
‘ f ( @) dy) dx — f{RiR]% fla,y)d(z, y)‘
< J{_R,R]n ( J([_Mn)c l9(@)[[h(y)] dy) dr + ﬁ[_R,R]n)c ( fRn l9(2)||h(y)| dy) dz

< Hng(Rn)J c]h(y)]der h|L1(Rn)f

l9()] dx
(-R.R)) (RR))

(lgl 1 @ny + 1A) 1))
L+ |lgllzr@ny + Al cr @ny

whenever R > Rj. o

Lemma 3.19. If f and g € ./ (R"™), then

(Fra)@) = === | &) 5( de.

Proof. By definition of f and convolution,

(Fro)(a) Fla=vaway = (52)" | (| s@e =% ac)ay.

1
B '\/27]'” R~ 27T

Since the function F(&,y) = f(€)g(y)e " @=¥)€ has the property that |F(£, )] < |f(¢)]lg(y)| for some
f,g € Z(R"), the Fubini theorem (Proposition ) implies that

(Fro@ = (52)" | (| s@e=<ersaty)ay)ae
Oz | e tawan)as = (32)" [ s@e g -

1 1
_\/27Tn R™ \/27Tn
Theorem 3.20 (Fourier Inversion Formula). If g € .Z(R™), then 5 = 3(5) = ¢g(&). In other words,
FFr=F*F =1d.

Proof. Apply Lemma with f(§) = I/D\t(f) = e_%th, using (@) we find that

7 1 -1 -
(Pixg)(@) = (Fx9)@) = = | e 2" e 4G(e) de .
Letting ¢ — 0", by Lemma it suffices to show that
lim | e 7% e eGe)de = | e*€Gde.

t—0t R™ R™



To see this, let ¢ > 0 be given. Since g € .(R"™), there exists R > 0 such that

| el <
B(0O,R)C

For this particular R, there exists 6 > 0 such that if 0 <t < 4,
tR? €

1l ey < 5

Therefore, if 0 <t < ¢, using the fact that 1 — e ™ < z for x > 0,

| g~ | e
n Rn

< =42 _ 1|15 d

= <JB(O,R)+JB(O,R)E>|6 1”9(5)‘ ¢
1, . .

X 5 d d .

<3| l@las | o)<

Therefore,

ole) = s |l Sde = o).

~

Let ™ denote the reflection operator given by f(x) = f(—z). Then the change of variable formula
implies that
1
n g
V21 Jre
(—z)e ™" tdx = g(¢).

g(&) = (z)e” D¢ dy

1 .

- z)e®dy =
o f _y(2)

1

or”

ﬁ

R"

On the other hand,

~

G f g(2)e O de = §(—€) = 3(6)

thus §(€) = 5(6) = §(€) = 9(). -
Corollary 3.21. .7 : S (R") — L (R") is a bijection.

Remark 3.22. In view of the Fourier Inversion Formula (Theorem ), F* sometimes is written

as .Z 1, and is called the inverse Fourier transform.

We have established the Fourier inversion formula for Schwartz class functions. Our goal next is
to show that the Fourier inversion formula holds (in certain sense) for absolutely integrable function
whose Fourier transform is also absolutely integrable. Motivated by the Fourier inversion formula,

we would like to show, if possible, that
Ff=f=f VfeLYR") such that fe L'(R").

The above assertion cannot be true since f and fare both continuous (by Proposition @) while
f € LY(R™) which is not necessary continuous. However, we will prove that the identity above holds
for points x at which f is continuous.

Before proceeding, let us discuss some properties concerning the Fourier transform the product

and the convolution of two Schwartz class functions.



Theorem 3.23. If f,g € /(R"), then F(f*g) = f3. In particular, f%g e L (R™) if f,g € L (R").

Proof. By the definition of the Fourier transform and the convolution,
Feale) = o= (| 16 =gt i) ©
= @) f [ N fz—v)g(y) dy} e "edr
~ (o | @) (= | ot riay)

which concludes the theorem. o

Corollary 3.24. 7*(f*g) = fi, ]/05 = F%§ and J\"B = %3 forall f,ge (R™).

Exercise: Show that ﬁ(f g) = fsle@ for all f, g e L (R").

Theorem 3.25 (Plancherel formula for .(R")). If f, g € .#(R"), then

~

(fs @) r2@ny = (f,9)r2®n)-

Proof. Recall that (f,g)r2m@n) = f f(z)g(z)dz. By the Fubini theorem (Proposition (B.1§)),

n

fRn [\/ﬂ ﬂé)e”ﬁd&]ﬁdm

e )e,m.gdx] € = (f,9)r2qen

[r

Therefore, (f, g)r2@n) = (ﬁ 9)r2mny = (f, 9) L2(rn).- o
Lemma 3.26. Let f € LY(R™) and g € #(R"). Then <f, g = {f,g9) and <f, gy = {f,9), where
9= | f@)@)da

Proof. We only prove <f, g = {f,g if f e L} R") and g € .¥(R"). By Proposition @, £ is

bounded and continuous on R"; thus f g is an absolutely integrable continuous function. By the
Fubini Theorem (Proposition ),

Fr=| (o | @ az)oepie =—— | (] s

_ ﬁ f (] f@atere <)o - f f@) (ﬁ f gl e )

which is exactly {f,g). D

2)g()e™ dr ) d

Remark 3.27. Even though in general an square integrable function might not be integrable, using
the Plancherel formula the Fourier transform of L2-functions can still be defined. Note that the

Plancherel formula provides that

|£lz2@n = flz@ny ¥ fe SR, (3.9)



If f € L?(R™); that is, | f] is square integrable, by the fact that ./(R™) is dense in L?(R"), there exists

a sequence {fr}r; < . (R") such that klim Ifk = fll2@ny = 0. Then {fy}}Z, is a Cauchy sequence
—00

in L?(R"); thus (@) implies that {f}?, is also a Cauchy sequence in L*(R"). By the completeness

of L*(R™), there exists g € L*(R™) such that

Jim I fr — gllL2mmy

We note that such a limit ¢ is independent of the choice of sequence {fi}72, used to approximate
f; thus we can denote this limit g as f. In other words, % : L*(R") — L%(R"™). Moreover, by that
fo — fand fr — fin L2(R") as k — o0, we find that

I flez@ny = | fl2@ny ¥ f € LA(R™),

and the parallelogram law further implies that (f, g)2mn) = (f, 9)r2@n for all f,g € L*(R™). Similar

argument applies to the case of inverse transform of L2-functions; thus we conclude that

(fa 9)L2(Rn) = (J?, @)B(Rn) = (JF, §)L2(Rn) Vfge LQ(RR)- (3-10)

Next, we shall establish some useful tools in analysis that can be applied in a wide range of
applications. Those tools are fundamental in real analysis; however, we assume only knowledge
of elementary analysis again to derive those results. We first define the class of locally integrable

functions.

Definition 3.28. The space L _(R") consists of all functions (defined on R") that are absolutely
integrable over all bounded open subsets of R” and whose integrals are absolute convergent. In other

words,

Li (R") = { fR"—>C ‘ L f(z) dx is absolutely convergent for all bounded open U < R”} .

Again, we emphasize that we abuse the notation L;. (R") which in fact stands for a larger class
of functions. We also note that L'(R") = L (R").

loc
Lemma 3.29. Let ¢ : R" — R be a smooth function with compact support, and f € L}, (R™). Then
0
J o(x —y) f(y) dy is smooth.
-0

Proof. 1t suffices to show that
0

mﬁflax—wﬂwdyzji¢%®—yﬁ@ﬁ@-

Since ¢ has compact support, ¢, is uniformly continuous on R; thus there exists 6 > 0 such that

3

v [ irwlay

—00

‘Qsl‘j (Zl) - ¢x](22)‘ <

V|z1 — 29| < 6.

Q0
Define g(x) = f ¢(x —y) f(y) dy. Then for some function ¥ : R — (0, 1),
—a0

P(x + he; —y) — d(z —y)
h

= ¢u,(x —y + 0(h)he;);



thus if |h| < 6,

R I
wam‘¢(x+he]_z)_¢( ) _%j(x_y)‘}f(y)‘dy

:f 60, (@ — y + O()he;) — b, (x — )| |F ()| dy < <.

This implies that g, ( f bu;(x —y) f(y) dy. o

A special class of functions will be used as the role of ¢ in Lemma . Let ( : R — R be a

smooth function defined by
exp ( ! ) iffz| <1,
C(I) = 132 -1

0 if |z > 1

For x € R", define n(x) = C((|x|), where C is chosen so that m(xz)d = 1. The change of
R’VL
variables formula then implies that n.(z) = e "n(z/¢) has integral 1.

Definition 3.30. The sequence {1.}.~ is called the standard mollifiers.

Example 3.31. Let f = 1,4, the characteristic/indicator function of the closed interval [a, b]. Then
for € « 1, the function 7. * f = +/27n.* f is smooth and has the property that

(nx 1)w) = |

1 ifzelateb—egl,
0 ifrxela—eb+el,

and 0 < f < 1. Therefore, n. % f converges pointwise to f on R\{a, b}.

Since 7. is supported in the closure of B(0, ¢), Lemma B.29 implies that for any f € L{ _(R™), n.* f

is smooth function. The following lemma shows that 7. * f converges to f at points of continuity of
f.
Lemma 3.32. Let f € LY(R™) and xq be a continuity of f. Then

(ne# f)(x0) = V27 (% f)(wo) — f(wo) as &—0.

Proof. Let € > 0 be given. Since f is continuous at z, there exists 6 > 0 such that
€
‘f(y)—f($0)|<§ Y|y — x| <0.

Therefore, by the fact that f Ne(zo —y)dy =1,if 0 <e < 4,
(=% f) (o) — (o \—” Ne(zo — y) f(y) dy — f Ne(zo — y) f (o) dy

\f (20— )| £ () — f(x0)| dy
B(a;o,s)

€

<2J ne(ro —y) dy < €
B(aco,s)

which implies (9. * f)(z¢) — f(z0) as € — 0. o



Lemma 3.33. Let f € LL (R™). If{f,g) =0 for all g € S (R"), then f(z) =0 for all z € {y €

loc

R™ ’ f s continuous at y}

Proof. W.L.O.G. we can assume that f is real-valued. Let {n.}.~¢ be the standard mollifiers, z( be
a point of continuity of f, and f. = n.* f = /27 (n.% f). Then Lemma shows that f. are
smooth for all € > 0.

Define g(z) = m(z — x¢) f-(x). Then g € L (R") since f.,nm are smooth and (- — o) vanishes
outside D(xg,1). Since 7., g € ¥ (R"), Theorem implies that 7.% g = /27 (n.% g) € S (R");
thus

{f,ne%*g)=10 Ve>0.

Since f € L}(R™) and g € (R"), the function F(x,y) = f(z)g(y) is absolutely integrable over
R™ x R™. Moreover, by the boundedness and continuity of 7., the comparison test implies that the

function G(z,y) = F(z,y)n-(z — y) is also absolutely integrable over R" x R™. Since |G(z,y)| <
C|f(z)||g(y)|, the Fubini theorem (Proposition ) implies that

(fin-*g) = IRnf(ffc)(f ns(x—y)g(y)dy>dx=Jng(y)(f ns(x—y)f(x)dx)dy;

n n

thus by the fact that n.(z —y) = n.(y—x) we conclude that {f,n.* g) = (n.* f,g). As a consequence,

0=Cfme®g)=m* fim(-—zo)n* )y = | m(x—z)|(ne* (@) de

R"

which implies that n.% f = 0 on B(xg,1). We then conclude from Lemma that (ne* f)(xo) —

f(zo) as € — 0. o
Now we state the Fourier inversion formula for functions of more general class.

Theorem 3.34 (Fourier Inversion Formula). Let f : R" — R be an absolutely integrable function

such that f is also absolutely integrable. Then
f(z) = f(x) Vae{yeR"|f is continuous at y} .

Proof. Let f : R™ — R be such that f, fe L'(R"™). By Lemma and the Fourier inversion formula
for Schwartz class functions (Theorem ),

Fo=FH=UH=fa VYge I RY.

In other words, if f, ]?6 LYR™),
(J~to=0 Vges®R").

Noting that Proposition @ implies that fe Li . (R™), Lemma shows that f— f =0 on the set
{y e R ‘ f— f is continuous at y}. The theorem is then concluded since f is continuous, again by

Proposition B.4. O



Remark 3.35. Since an integrable function f : R" — R must be continuous almost everywhere
on R", Theorem implies that if f : R” — R is a function such that f, fe L'(R™), then J?: f

almost everywhere.

Remark 3.36. In some occasions (especially in engineering applications), the Fourier transform and

inverse Fourier transform of a (Schwartz) function f are defined by

f© =| f@)e ™ de and flo) = | fE)e™™de. (3.11)
R™ R7
Using this definition, we still have

1. f=f=fforall fe.ZR");

2. if f e L'(R") and f € L'(R"), then f(z) = f(z) for all  at which f is continuous.

3.4 The Fourier Transform of Generalized Functions

It is often required to consider the Fourier transform of functions which do not belong to L'(R™).
For example, the normalized sinc function sinc : R — R defined by

sin(mzx) .
sinc(z) = e ifz -0, (3.12)

1 ifx=20,

does not belong to L'(R) but it is a very important function in the study of signal processing.
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Figure 2: The graphs of unnormalized and normalized sinc functions (from wiki)

Moreover, there are “functions” that are not even functions in the traditional sense. For example,
in physics and engineering applications the Dirac delta “function” ¢ is defined as the “function”

which validates the relation
| swowdr=o0)  voewm)

In fact, there is no function (in the traditional sense) satisfying the property given above. Can we
take the Fourier transform of those “functions” as well? To understand this topic better, it is required

to study the theory of distributions.



The fundamental idea of the theory of distributions (generalized functions) is to identify a function

v defined on R™ with the family of its integral averages
S f v(z)p(x) dx Voe € (R"),

where €°(R™) denotes the collection of €*-functions with compact support, and is often denoted by
D(R™) in the theory of distributions. Note that this makes sense for any locally integrable function
v, and D(R") < .(R").

To understand the meaning of distributions, let us turn to a situation in physics: measuring the
temperature. To measure the temperature T" at a point a, instead of outputting the exact value of
T'(a) the thermometer instead outputs the overall value of the temperature near a point. In other
words, the reading of the temperature is determined by a pairing of the temperature distribution
with the thermometer. The role of the test function ¢ is like the thermometer used to measure the
temperature.

The Fourier transform can be defined on the space of tempered distributions, a smaller class of
generalized functions. A tempered distribution on R"™ is a continuous linear functional on .#(R").

In other words, 7" is a tempered distribution if

T:R") - C, T(cp+ ) =cT(p)+T(¢) for all ce C and ¢,v € L (R"),
and lim T(5) = T(6) if {6,172, = #(R") and 6; — & in . (R").

The convergence in . (R") is described by semi-norms, and is given in the following

Definition 3.37 (Convergence in .#’(R")). For each k € N, define the semi-norm

pr(u) = sup  {@)"|D%(z)],

zeR™ |a|<k

where (x) = (14|z|2)2. A sequence {u; j72, < (R") is said to converge to u in . (R") if py (u;—u) —
0 as 7 — oo for all k € N.

We note that pg(u) < pryi(u), so {u;}52, < & (R™) converges to u in #(R") if py(u; —u) — 0
as j — oo for k » 1. We also note that if {u;}72, converge to u in .#(R"), then {u;}%, converges

uniformly to v on R".

Definition 3.38 (Tempered Distributions). A linear map 7" : .’(R™) — C is continuous if for each

k € N, there exists some constant C} such that
(T, wy| < Crpr(u) Yue S (R,

where (T, uy = T'(u) is the usual notation for the value of T" at u. The collection of continuous linear
functionals on .(R") is denoted by .#(R™)". Elements of .(R")" are called tempered distribu-

tions.



Remark 3.39. Every LP-function f : R® — C can be viewed as a tempered distribution for all

€ [1,00]. In fact, the tempered distribution T associated with f is defined by

Ty(¢)= | fpola)dr Vo SR, (3.13)

Since we have use (-, -) for the integral of product of functions, the value of the tempered distribution
of f at ¢ is exactly (f, ¢) for all ¢ € #(R™). This should explain the use of the notation (7' ¢).

Now we show that T’ given by () is indeed a tempered distribution. Let ¢ € ./ (R™) be given.
Then ||¢] o @n) < pe(¢) for all k € N, while for 1 < ¢ < o and k > g

1P arny = <fRn<x>—kq [<x>k‘¢(x)”qd:c>i < ( Rn<x>—kq dx) ipk(¢)

< (wn_lfo (1+r2)‘]3qrn‘1dr);pk(¢)-

0

Note that f (1+r )_77“” Ydr < o if k > g; thus for all ¢ € [1,00], there exists Cy 4, > 0 such
0
that

n
HQbHLq(Rn) < Ck7q,npk(¢) Vk > g (3.14)

Therefore, if f e LP(R™),

[<F | < [ f e |0l gy < Crnll flrv@eypr(@) Yk > 1
which shows that 7y € #(R™)" if f € LP(R").

0
Example 3.40. Let B > 0 be given. For each sequence {cy}rez € ¢F (that is, >, |alP < oo), we
k=—0
are interested in the function

o0
flz) = Z cpsinc(2Bx — k) .
k=—0
We note that if 1 < p < oo, the fact that

|sinc(2Bz — k)| < min {1, ;}
7r‘2B;1: — k|

0
implies that the series > ¢sinc(2Bx — k) converges pointwise on R. Therefore, f(z) is a well-
k=—0
defined function. We would like to know if f defines a tempered distribution.

Define T': .(R) — R (or C) by

0

(T, ¢)= % cx(sinc, ngT% ¢y (3.15)

We would like to show that T' € .(R)’. To see this, we note that if & # 0, using the Plancherel

formula and integrating by parts,

{(sinc, dopT-r k¢> <SH1C dopT—k k¢> = 2B, d1 7- k¢> <d23H o (&e m£>

2B 2B

wikE

= [ st ac= 2 o
B

:%U_l)k(@(B)—%(—B))— e 6]-



By the Cauchy-Schwarz inequality, the Plancherel formula and Corollary , we find that for £ € N,
B _ . R
[ 31075 | < VBIR sy = Y22 ([ Iriwotio ) )’

-B

< \/23( f 226(z)? d:zc) T o \/2B J (Y2242 () d:v) ?

R R
1
< V2B <p,g+1(¢)2 f (z)~? d:c) < Cipeyi(¢p)  VIEeN,
R

Therefore, by the fact that ‘|$HLOO(R) < | @] 11 (), using () we find that if k& # 0,

7r1k:§

B .
[Gsine, danr_g0)| < - 216l + | [ d(©)e #agl] < Cepz(qﬁ) Vs 1.
2B m|k| -B

On the other hand, using () again we have

|(sinc, dopT o ¢)| < 2B[6] 1wy < Cope(d) V> 1.

Therefore, if 1 < p < o0 and Zl) + (1] = 1, the Holder inequality shows that

|<T ¢>} ( Z |ck|p> ( Z ’<smc dopT—k k¢>‘ ) < Cope(@ Vi 1.

From now on, we identify f with the tempered distribution 7 if f € LP(R™). For example, if
T e (R") and f : R* — C is bounded or integrable, we say that 7" = f in A(R") if T = T},

where T} is the tempered distribution associated with the function f.

Remark 3.41. Let f(z) = e € L}

L (R™). Then (T}, e *") = 0. Therefore, being in L}, (R™) is not
good enough to generate elements in .%(R")’, and it requires that |f(x)| < C(1 + |z|V) for any N.

In such a case, Ty € 7 (R")" is well-defined.

Example 3.42 (Dirac delta function). Consider the map ¢ : €(R™) — R defined by d(¢) = ¢(0).
Since the convergence in . (R"™) implies pointwise convergence, we immediately conclude that § €
Z(R™).

As shown in the example above, a tempered distribution might not be defined in the pointwise
sense. Therefore, how to define usual operations such as translation, dilation, and reflection on gener-
alized functions should be answered prior to define the Fourier transform of tempered distributions.
For completeness, let us start from providing the definitions of translation, dilation and reflection

operators.
Definition 3.43 (Translation, dilation, and reflection). Let f : R" — C be a function.
1. For h € R™, the translation operator 7, maps f to 7, f given by (7,f)(x) = f(x — h).

2. For A > 0, the dilation operator d : .(R") — .(R") maps f to d,f given by (d\f)(z) =
FA ).



3. The Reflection operator =~ maps f to fgiven by f(x) = f(—x).

Now suppose that T' € .7 (R™)". We expect that 7,7, d\T and T are also tempered distributions,
so we need to provide the values of (1, T, #), (dxT,¢) and (T, ¢) for all ¢ € .S (R"). If T =T s
the tempered distribution associated with f € L'(R"), then for ¢ € .(R"), the change of variable

formula implies that
(tnf,9) = . f(z = h)g(x) dv = . f(@)g(x +h)de = (f,7ng),
fo=] fA T 2)g(x) dx = S @O0 da = (f, Xdy-1g)
(9= gy de= | flo)g(—x)dr = (f.9).

The computations above motivate the following

Definition 3.44. Let h € R", A > 0, and 7, and d) be the translation and dilation operator given
in Definition . For T e Z(R"), 7, T, d\T and T are the tempered distributions defined by

(T, 6y = (T, 700y, (d\T,¢) =(T,\'dyx-¢) and (T,¢)=(T.¢) VYoe S (R").

From the experience of defining the translation, dilation and reflection of tempered distribution,
now we can talk about how to defined Fourier transform of tempered distributions. Recall that in
Lemma we have established that

Frop=<{f5y and (Fgp=(f5  VfeL'(R"),ge .S (R").

Since the identities above hold for all L'-functions f (and L!-functions corresponds to tempered
distributions 7y through ()), we expect that the Fourier transform of tempered distributions has
to satisfy the identities above as well. Let T € .(R™)’ be given, and define T:5 (R™) — C by

T(¢)=(T,¢)=(T,¢) Voe L (R"). (3.16)
Since for k e N,

pe(@) = sup ©FDGE)] = sup (©F|ene(x)|(€)

EeR™ |a|<k £eRn |a|<k

<0 Y sw |FDE0@)]©[<C ¥ [D°E60) |,
|B|=k SER™ <k ol <k,|Bl=k

<C Y @ [ D (@6 (2)) | oy < CPasiia (6)
|l <k,|8|=k

for some constant C' > 0, by the fact that for each k € N there exists C}, > 0 such that ‘(T , qz5>‘ <
Cipr(¢) for all k € N, we find that

’<f7 ¢>} ’<T ¢>’ Crpr( ) CN'/Yd7/7c+n-;-1(425) VkeN

for some constant C, > 0. T herefore, T defined by () is a tempered distribution. Similarly,
T: (R™) — C defined by <T, ¢y = (T, @ for all ¢ € #(R™) is also a tempered distribution. The

discussion above leads to the following



Definition 3.45. Let 7' € .(R")’". The Fourier transform of 7" and the inverse Fourier transform of
T, denoted by T and T respectively, are tempered distributions satisfying

(T,¢)=(T, ¢y and (T,¢)=(T,4) Vpe.Z[R".

In other words, if T' € .(R™)’, then T.T e < (R™)" as well and the actions of T, Ton¢e < (R™)

are given in the relations above.

Example 3.46 (The Fourier transform of the Dirac delta function). Consider the Dirac delta function
J: L(R") — C defined in Example . Then for ¢ € /' (R"),

~ ~ 1 ; 1 1
6.6) = 3(0) = <= 0y = A = (o, )
GH =00 = 2 | ole)e e = 2 | ofa)dr = 0)
thus the Fourier transform of the Dirac delta function is a constant function and g(f) = 21n
\V 4T
Similarly, 5(¢) = \/217” 500 = 3.

One can also consider the Dirac delta function at point w, denoted by d,, or 0(- —w)(= 7,0), given
by
0u(0) = ow)  Voe S (R")
which is often written as d(x —w)é(x) de = {d,,¢). Then for ¢ € L (R"),

R”
~ ~ 1 . e—imw ~
(Swu = W)= —=m= T eim.w dZIf =7 = 50.)7 ;
G = 0 = < | 0l it =Gn0)
~ —i§w
thus the Fourier transform of the Dirac delta function at point w is the function d,,(§) = 3?”. The
T
- i&-w
inverse Fourier transform of 4, can be computed in the same fashion and we have §,,(§) = ;T"'
T

We note that 61 = 52, = 51

Symbolically, “assuming” that d,,(¢) = ¢(w) for all continuous function ¢,

~ (5) _ 1J ) (x)efim-é dr = #e*mf o @—iﬁ'w
’ a mn Rn ¢ B \/%n T=w a \/%n
d
- NS 1 i€ 1 i eif-w
6w(§) = \/ﬂn e 5w($)6 dr = \/ﬂne — = \/ﬂn

Example 3.47 (The Fourier transform of ). By “definition”, for ¢ € . (R"),

(e, $> = \/21?71 JR eiew < JR p(z)e ¢ dx) dé = \/21?” JR ( JR gzﬁ(ar;)e*i(””*“)'£ da:) d§ .

Noting that the Fourier inversion formula implies that

) = 0(w) = gors | ([ otare e ar) e

thus

(€7°,0) = V2r"d(w) = (Vo ", 0).



Therefore, the Fourier transform of the function s(z) = €% is /27 "d,,. where d,, is the Dirac delta

function at point w. We note that this result also implies that

5, =0, VweR".

Similarly, 5:, = 0, for all w € R™; thus the Fourier inversion formula is also valid for the Dirac ¢

function.

Example 3.48 (The Fourier Transform of the Sine function). Let s(z) = sinwz, where w denotes

T —iwx

the frequency of this sine wave. Since sinwzx = ¢ _2,6 , we conclude that the Fourier transform
i
of s(x) = sinwx is
\ 2T
i (00— 0)

~

Theorem 3.49. Let T € /(R"). ThenT =T =T.

Proof. To see that T’ and T are the same tempered distribution, we need to show that (T, ¢ = (T, ¢)
for all ¢ € #(R"). Nevertheless, by the defintion of the Fourier transform and the inverse Fourier

transform of tempered distributions,
T,¢)=T.6)={T,)=(T.¢) VeI R").
That T = T can be proved in the same fashion. O

Theorem 3.50. Let T'e /(R™)'. Then
(T8> = (T, (€)M (AT, ¢y = (F.drd) and (T.¢)=(T.¢) Ve 7®R".

A short-hand notation for identities above are ;h?(f) = f(ﬁ)e’ig'h, ﬁ(f) = )\”f()\f), and T(&) =
T(©).

Proof. Let ¢ € Z(R"). For h € R*, define ¢p,(z) = ¢(x)e ", Then

—1x~(§+h) dr =

f IRE wl?

By the definition of the Fourier transform of tempered distribution and the translation operator,

(r-nB)(€) = (€ + 1) fw o(2)e =€ 4y — Gn(€)

(T 8) = (T.mad) = (T = D @). dla)e") = D(€), o(6)e").

On the other hand, for A > 0,

. 1
p(z)e ) dp = A\

(d)\*lgb)(g) = Qb()\g) \/ﬁ o mn o

(e de = N dB(E)

Therefore,
(T, ¢) =T, \N"dy-1¢) =T, drd) =T, dr¢) = N"dy1T, §).
The identity <f NOES <T, ¢) follows from that 6 = ¢, and the detail proof is left to the readers. o



~

Remark 3.51. One can check (using the change of variable formula) that nf (&) = f(€)e™*M and
drf(§) = A"f(AE) if f e LY(R™).
Example 3.52 (The Fourier Transform of the sinc function). The rect/rectangle function, also called

the gate function or windows function, is a function II : R — R defined by

() = 1 if x| <1,
Y00 it =1,

Since IT € L'(R), we can compute its (inverse) Fourier transform in the usual way, and we have

~ 1 . [ 1 e z=1 2 sin &
(¢ = — | I(x)e ™ dr = — e dy = ——— =A/— VE#0
(5) \ 2T JI\R ( ) \/ﬁ -1 V2T —Zf r=—1 s f S
sinz .
= 2 . . . . ite#0
and II(0) = 4/=. Define the unnormalized sinc function sinc(z) = x Then
T 1 ifz=0.

(&) = \/Esinc(f). Similar computation shows that 11(¢) = [1(¢) = \/Esinc(f).
T T
Even though the sinc function is not integrable, we can apply Theorem M and see that

sinc(€) = sinc(€) = \EH(&) VEER.

Next we define the convolution of a tempered distribution and a Schwartz function. Before
proceeding, we note that if f, g € . (R"™), then

1
(frg.0)= | ([*g)@)gl)dr=—7=z |

o | (] 3oty ) ) dy = 1.0,

The change of variable formula implies that

@) == [ (| dw)ots—o)de) ) dy

J

( AWz —y) dy)qb(:c) dz

Il
%
3
s
= il
S
/N
—
3
=
|
=
>
Neg
+
o
QL
S

n
2

_ (| ooy~ a)as

ﬁ

thus .
(J*g,0) = [, g%¢) ={f, 9% ) = ([, 9% ).
The identity above serves as the origin of the convolution of a tempered distribution and a Schwartz

function.

Definition 3.53 (Convolution). Let T' € .Z(R™)" and f € #(R"). The convolution of 7" and f,
denoted by T'* f, is the tempered distribution given by

(Txf,0)=(T.gx¢)=(T,fxd) VeI (R,
where 7T is the tempered distribution given in Definition .



Remark 3.54. 1. If S € . (R")’ satisfies that S*¢ € .7(R") for all ¢ € .#(R"), we can also define
the convolution of 7" and S by

(Tx8,¢)=(T,Sxdy Voe SR.
In other words, it is possible to define the convolution of two tempered distributions.

2. Suppose that S € . (R"™) satisfies that S*¢ € .7 (R") for all ¢ € .#(R™) so that T*S € .7 (R™)
is well-defined for all T'e .(R"™)". Then

(TH5,8) = (T%5,8) = (T Sy = (T, Sx > = (T, 5o

Similar to Theorem and Corollary , the product and the convolutions of functions are

related under Fourier transform.

Theorem 3.55. Let T'e ./ (R") and f e #(R"). Then

(Txf,0)=(T,f¢) and (T*f,¢)=(T,f¢) Ve SR,

and

JT.¢y=T*],¢) and (JT,¢)=T*[.6) Voe SR,
where fT € Z(R™) is defined by {fT,¢) = (T, f¢) for all p € S (R"). A short-hand notation for
the identities above are T/ea” = ff, m = T, ﬁ = f*f and ﬁ =Txfin Z(R™).

Proof. By Theorem B.23,
(T¥F.0) = T f,8) = T, fxoy = (T, fx3) = T, #(f %)y = (T o)
and by the definition of the convolution of tempered distributions and Schwartz functions,
GT.6) = (T, £8) = B, F*(§8)) = (T, Fxd) = (T, Fx 8y = (D% [ 6).

The counterpart for the inverse Fourier transform can be proved similarly. D

4 Application on Signal Processing

In the study of signal processing, the Fourier transform and the inverse Fourier transform are often
defined by

F&)=| f@yePsde and J@)= | Jee*tde Ve LR, (B.11).
R™ R”
Then for T € .(R")’, the Fourier transform of T is defined again by

(T,¢)=(T,¢) VYoe S (R".



We also note that the definitions of the translation, dilation, and reflection of tempered distributions

are independent of the Fourier transform, and are still defined by

(T, ) = (T, 7 49>, (T, ¢y = (T, N\"dy-1¢) and (T,¢)=(T,d) Ve .#(R").

Concerning the convolution, when the Fourier transform is given by (), we usually consider the

¥ convolution operator
(fo)@) = | Jwelr—wydy=] fl-yg)dy Vfgel(R").
instead of % convolution operators. The convolution of T and f € .(R") is defined by
(T#f.0)=(T,fxs)=(T.f*d) VoI R".
Then similar to Theorem B.49|, B.5d, and B.55|, we have

1. YE:%:T for all T'e Z(R")".
2. TT(€) = T(e)e2men, &T(€) = N"T(AE), and T(€) = T(€) for all T'e #(R"Y.
3. m =Tf and ﬁ = f*T forall fe Z(R") and T € L (R™)". Moreover, if S € .(R")" has
the property that S* ¢ € .7 (R") for all p € R”, then T* S =TS in ./ (R") for all T € . (R")".
Moreover,

1.d=4=1in < (R™)’, and 5;1(5) = 7;:5(5) = 6 p =T_p0 = e2mihE ip S (R™) for all h € R™.

— — 1

2. By Euler’s identity, cos(2rwx)(§) = %(&J +d_,) and sin(2rwz)(§) = 2—Z,(5w —0_y).

3. 0% =20, and 0, % 0, = 0,4 for all a,b e R™.
4. 0% ¢ = ¢ and (0,% ¢)(x) = ¢(x — a) for all p € S (R™).
5. Re-define the rect function II : R — R by

1 if |2] < =,
I(z) = 2 (4.1)

. 1
=z -
0 if |x] 5
Then T1(¢) = T1(¢) = sinc(€), where sinc is the normalized sinc function given by ()

6. Let A : R — R be the triangle function define by

1—|z| if|z] <1,
A p—
(@) { 0 iflz>1.

Then by the fact that A is an even function, if £ # 0,

A() = QL (1 — z) cos(2mz€) dz = 2 [(1 ~ x)%

_ 1—cos(2m§)  sin®mg
- 2m2£2 - 262

=0

z=1 Lsin(27x€)
+ | ———dv
Jo 2m€

while K(O) = 1. Therefore, K(f) = sinc?(¢). Using the property of convolution, we have
II*1I = A.



4.1 The Sampling Theorem and the Nyquist Rate

When a continuous function, z(¢), is sampled at a constant rate f; samples per second (12 # F) f;

=X P~#% ) , there is always an unlimited number of other continuous functions that fit the same set

1
of samples; however, only one of them is bandlimited to 5 fs cycles per second (hertz), which means

that its Fourier transform, X (f), is 0 for all | f| > %fs.

A~

Definition 4.1. Let f: R — R be a function. f is said to be a bandlimited function if supp(f) is
bounded. The bandwidth of a bandlimited function f is the number sup supp(f). f is said to be
timelimited if supp(f) is bounded.

Definition 4.2. In signal processing, the Nyquist rate is twice the bandwidth of a bandlimited

function or a bandlimited channel.

In the field of digital signal processing, the sampling theorem is a fundamental bridge between
continuous-time signals (often called ”"analog signals”) and discrete-time signals (often called ”digital
signals”). It establishes a sufficient condition for a sample rate ( B~#:#f & ) that permits a discrete
sequence of samples to capture all the information from a continuous-time signal of finite bandwidth.
To be more precise, Shannon’s version of the theorem states that “if a function z(¢) contains no

frequencies higher than B hertz, it is completely determined by giving its ordinates at a series of

] 1 7
points spaced 2B seconds apart.

Let us start from the following famous Poisson summation formula to demonstrate why countable

sampling is possible to reconstruct the full signal.

Lemma 4.3 (Poisson summation formula). Let the Fourier transform and the inverse Fourier trans-

form be defined by () Then

Mofatn)y= ) Jk)e™ W fe S(R). (4.2)

n——aoo —

The convergences on both sides are uniform.

Proof. Let f e .(R) be given. Then there exists C' > 0 such that

, c
Define F(x) = i f(z+n). Then for x € [0, 1],
\f(x+n)|+}f’(x+n)‘<1anVn>O and |f(x+n)|+}f’(x+n)‘<H(nCJrl)ZVn<O.

By the fact that

o0 —1

C C
— 5 <® d — = <®
Z:1+n2 an Z 1+ 1+nf? ’
n=0 n=-—0o



0 o0
the Weierstrass M-test implies that the series > f(x +n) and >, f’(z + n) both converge

n=—aoo n=—a

uniformly on [0,1]. Therefore, F' : [0, 1] is differentiable. Noting that F(z) = F(xz + 1), so F' has
period 1.
Since F € €'([0,1]) and is periodic with period 1, Theorem implies that

a0
= Z F ek VzeR, (4.3)

k=—00

where {F}72_, are the Fourier coefficients of F' defined by Fj, = j F(x)e~ ™2 dgz. By the uniform
0

0
convergence of Y, f(x +n) in [0,1], we find that

n=—oo
Fk — 2 J f x—l—n —2mikx dr = 2 J f —27rzk (z—n) dx _f f —27rzkz dr = f(k?)
n=—0a n=—ao
The Poisson summation formula (@) then follows from (@) and the identity above. D

Remark 4.4. Using Definition @ of the Fourier transform, for f € .#(R) one has

Z flz+2nm) = — Z f )en,

n=—ao n——OO
Corollary 4.5. Let the Fourier transform and the inverse Fourier transform be defined by ()
Then
© k 0 .
D, FE=2)=T >, f(nD)e ™™ ¥ fe s (R). (4.4)
=—00 n=—aoo
Proof. For a given g € .#(R), let h = d,g, where d, is a dilation operator. Then h is also a Schwartz

function, and
h(§) = (Adx-19)(§) = Ag(AL) ;
thus the Poisson summation formula (@) (with z = 0 and f = g) implies that

0 0 0

M ohmN = Y g = 3 gk =1 Y (). (45)

n=—0o n=—o k=—00 k=—00

Now let s = 7yh for some t € R, where 7; is a translation operator. Then s € .#(R), and
5(6) = h(&e .
Therefore, (@) implies that

0 0 k;

M sttt =1 3 8(3)e (4.6)

n=-—oo k=—0o0

Finally, for f € #(R), let s = f Then using f: f, A=
obtain that

1 . . .
T and t = —¢ in the identity above, we

0 ~ k 0 ~ k 0 - l{ 0 omikT:
Z f(g_f): 2_: f(§+f): Z_: (_S_f):TZ f(kT)e rre

k=—0o0 =— =—0 k=—0o0

which shows (@) : D



Remark 4.6. Identity (@) can be shown to hold for all continuous function f satisfying

for some C, 6 > 0. Therefore, if fhas compact support, as long as the decay rate of f is bigger than
1, (@) is a valid identity.

A direct consequence of the corollary above is the following sampling theorem. Suppose that
feZ(R) and supp(f) < |o, %} Then (@) implies that

i f(nT)e 2mTe Vée [O, %] )

n=—a

~ 1
This shows that if f has compact support in [O, T] , f can be reconstructed based on partial knowledge
of f, namely f(nT).
Recall that the Fourier transform of the sine wave with frequency w is “supported” in a sym-

metric domain {w, —w}. Therefore, in reality it is better to assume that the Fourier transform of a
bandlimited signal is supported in a symmetric domain [—B, B]. In such a case we need |§ — f‘ > B

for all k € Z\{0} and £ € [—B, B], where T is the sampling frequency, in order to make use of (@)

to gain all the information of the Fourier transform of the signal. Therefore, the sampling frequency

1 1 . . . . .
T has to obey T >2BorT < 5p B order to gain the Fourier transform of the bandlimited signal.

Theorem 4.7 (Sampling theorem). If a (Schwartz) function f contains no frequencies higher than

B hertz, it is completely determined by giving its ordinates at a series of points spaced 5B seconds

apart.

Alternative proof of Theorem @ By the Fourier inversion formula,

= f f(g)e%rm& de where f(g) = f F(x)e 2t gt
R R

By assumption, supp( f) [—B, BJ; thus f(z J f )e2™i2¢ d¢ which implies that

zwk{
o) = [,

Treating f as a function defined on [—B, B], the identity above implies that {2 5 f (2 B) } o, 18 the

Fourier coefficients of f and

:Z%f@ g Z% P Vee|-B, B (4.7)

which, together with the fact that f: 0 outside [— B, B], allows us to reconstruct f using the Fourier

inversion formula. o



Taking the Fourier inverse transform of f (&) obtained by (@), we find that

® B 0 B
= 35 g5t Gy [ o= 3 gt [[ o (g

k=—o0 k=—o0
B Z f smw sinm(2Bz — k)
N 2B m(2Bx — k)

k=—o0

Using the normalized sinc function defined by (), we recover the so-called Whittaker-Shannon

interpolation formula:

f@) = f(%)sinc(QBx—k) v f e #(R) with supp(f) < [~ B, B]. (4.8)

k=—o0

In the following, we examine the Whittaker - Shannon interpolation formula (@) for the case
that f ¢ .(R). In fact, since

fR sinc(2Bx — k)o(z) de = fR (d%sinc) (% — z)p(z) do = [(d; sinc) * o] (2];)

instead of (@) we show that

{f,d) = Z f(%)[ L sinc )* 9] ( Z <ka : 1sinc)*gz5>. (4.9)

k=—0 k=—0o0
Suppose that 1 < p < wand g : R — R is an LP-function (that is, J lg(z)]Pdr < wifl <p <o
R
or g is bounded if p = oo) supported in an open interval of length 2B (later we will let g be the Fourier

transform of a bandlimited signal f; so it is reasonable to assume that ¢ is compactly supported).

Define

0 ¢] 0

G(zr)= ) g(x+2Bn)= > (T_apng)(z). (4.10)

n=—a n=—a0

Let q satisfies 1 + 1 =1 and ¢ € /(R). The monotone convergence theorem shows that

(2n—1)B

f Y, [(r-ams)(@)otol| s = 3] | g )@ @ o) do

n=-—00 n=—o (2n+1)

Z J e 711 g(a + 2Bn)|[(x) ?pa(¢) dz = pa(¢ Z J (z)[{z — 2Bn)~*dx.

n=—aoo n=—aoo

If 1 < p < oo, Holder’s inequality implies that

f Z |(7—28n9)(2){x) 2| dz < 2 f (z)|¢x — 2Bn)~2dx

< nz_oo (J_B lg(2)[” dx) : ( J_B (1+ |z d—x2Bn|2)Q> E
- (2B)

<lglr@ Y. 1+ 2] —192B2 ="

n=—u



while if p =1,

e¢]
ZJ )|z — 2Bn) " dz < | gl ) Z 1+ ( 2|ny_1)232 =

n=—0o

thus if 1 < p < o0,

f S |(rapug) @)6(0)| dx < Colglimml@)  ¥E» 1 (4.11)

n=—aoo

for some constant Cy > 0. On the other hand, if p = oo,

j S (7 ) (@)6()| d < lglaldlire < Celglape(®)  ¥E> 1. (4.12)

n=—a

Therefore, G € .7 (R)’ since

(G, )| < f Z (T-28n9) (2)d(2)| dz < Cope(¢) Ve S(R)and > 1.

n=—0o

o0
Moreover, it follows from H and ﬂ) that >, [(7_28.9)¢| € L'(R). By the fact that

n=-—0o

| Y Famg)@é@)| < Y |(ramg)@)o(@)]  VacR,

n=—k n=-—o0

the dominated convergence theorem implies that

(G,¢) = J hm Z T_oBng)(x)o(x) dx = hmJ 2 T_9png)()o(x) dz

k—0o0
n—fk Ry=—k

= Y rapgd) Ve FR).
n=—oo
Suppose that supp(g) € (¢ — B,a + B). Then G = g on (a — B,a + B). In addition, if
€la+ (k—1)B,a+ (k+ 1)B], then G(z) = g(x — kB); thus G(z + 2B) = G(x) for all z € R. In
other words, GG can be viewed as the 2B-periodic extension of non-vanishing part of g.

Let ¢ € Z(R). By the definition of the inverse Fourier transform of tempered distributions,

<é7 ¢> = <G7 (\5> = 2 <T*2Bnga <\5> = Z <g7 T2Bn(\5> :

n=—a n=—0o
By the Poisson summation formula,

e¢] 0¢] o0

Z_OO(TQB"(E)(@ ~ Z_oo $(x — 2Bn) Z_Oocb v+ 2Bn) = Z_w(dﬁa)(w )
~

ds o(k)e™s = Z (o) H



and the convergence is uniform. Therefore,

o0

<é,¢>_ Z Tan¢> Z ¢(I€B)J g(x )em}gz dr = Z %¢(21€B) ng(x)eﬂ?z dx

n— ke —o0 supp(g) k

o0
k
::2 6(35)7(55) =

Z <n5¢>

~ 0 ~
Similarly, (G, ¢) = % . > §(%)<7’ 20, ¢) or one can use the formula that G = G to deduce that
=—®

R oo o ) 1 o
(G.d)y=(G.dy= )] —qs( = 2 35°(55 Z <ms¢>
k:—w k=—0o0 k=—0o0
Symbolically, we can write G = % k:iocﬁ(;;)r L8 and G = 2216:% §(2B)T r 0 in L (R)".

Remark 4.8. Let III denote the tempered distribution

L gy= Y 6(n) VoeS(R).

n=—0o

We note that the sum above makes sense if ¢ € . (R), and

> = 3 tatem < (Y a0 = Cunle) V> 2.

n=—oo n=—ao n=—a

Therefore, IIl is indeed a tempered distribution. Since ¢(n) = (7,0, ¢), symbolically we also write

Q0
m= >, 7.

n=—aw

By the definition of the Fourier transform of tempered distributions,
~ ~ CD ~
(Lg) =AM, 6y = >, ¢(n)  YoeS(R),
n=—o
and the Poisson summation formula implies that

Mgy = ¢(k)={L¢) VYoes(R).

k=—00

Therefore, Theorem implies that M=1I0=1Iin .7 (R)". Define IIl, = 1de]I, where d,, is a
p

dilation operator. Then

o0
M, ¢y = (ML, dyr gy = > (dym10))(n Z d(pn) Z (T, ®)  Voe L (R). (4.13)
n=—o0 n=—o0 n=—ao0
e} o~ ~—
Symbolically, Ill, = >, 7,,0. Moreover, Ill, = I, = d,-1Il = ]19]]1 1 which is the same as saying
n=—a P

that
(I, ¢y = {dyp1 1L, ) = p~ (WL, dyp) = Z (r20,6)  Voe S(R).

TL——QO



0

Symbolically, ]]\I/p _1 > Tad.
Dp=—ow 7

Formally speakmg, G given by () can be expressed as G = lll,g * g. Using this representation,

G =57 = % Z gr 6. Therefore, by the fact that g = (dopll)G in ' (R)’, we find that
n=—oo

) = (@l G) (o) = [(2Bd )% G (0) = 28 | Gl)TICB( — ) dy

= Z JR )72 (y)sinc(2B(x — y)) dy = Z Z](%)sinc(ZBx—n).

n=—a n=—0o

The Whittaker-Shannon interpolation formula (@) then follows from letting g = f in the identity

above.

Example 4.9. Let f : R — R be a function supported in [0, 7] (thus one can view f as a signal
o0
recorded in the time interval [0,7]). Define F'(z) = >, f(z+nT). Then

n=—aoo

o]

1 >~k
=7 2 F(FE0)).

o0
On the other hand, the Fourier series of )] f(x 4 nT'), the T-periodic extension of f1jg 1y, is

n=—0o

~  2mika 27rzar ~ k
Z fre T ,Wherefk_ f f(z * :%f(f)

k=—00

2mikx

0 ~
Therefore, F' = Z fka(S and accordingly, F'(z) = >, fre T
k=— k=—00
Now suppose that the signal is sampled with sampling rate F; (times per second). Then in

in ./(R)".

total there are N = T'F, samples of the signal. Write these samples as {xg, 21, -+ ,zx_1}. Then
14
e =f (F) We remark that the set {xg,x1, -+ ,xy_1} resembles a digitalized version of the signal

and is usually called a digital signal. The DFT of the digital signal is given by

Nl —2mikl Nl ! —2mik ¢
Xp= Y me ¥ =) f(E)eT'FT VkeZ
=0 =0
and the inverse DFT of {Xj}kez is given by
1 ]VZ] 271'7,k£ 1 N_IX %FL v£ Z
_ Bl s €.
"N A TN A

4.1.1 The inner-product point of view

Let ex,(z) = sinc(x — k) = (7sinc)(x). Then e, € L*(R) since

<2 1 « 2
j sinc(z — k) dw = J sinc?xdr = J S0 T g = —f Sm;vda: < .
R R R

r T2 T x




By the Plancherel formula (),
(ex, €£)L2(R)S = (Tksinc, TgSiHC)LQ(R) = JRH(@ 27”’“51'[(5)6%165 d¢ = J ) e2mi(k—0)¢ dé

which is 0 if & # ¢ and is 1 is k = ¢. Therefore, we find that {ek}keZ is an orthonormal set in L?(RR).
Now suppose that f € L*(R) such that supp(f) c [ ; 2] Then

(f.ex)r2w = (f,7esinc) f FoMaeae = [* fleerseae

_1
2

- j Fe)mte de = F(k) = (k)

if f is continuous at k. In other words, if f € L*(R) n ¢ (R) such that supp(f) c [—%, %], then

oe]

Y, fR)sine(z —k) = Y (f,en)zmpen(x)

k=—00 k=—00

which, by the Whittaker-Shannon interpolation formula (@), further shows that

o]

[ = Z (f, er)r2mer in (R)".

k=—00

In other words, one can treat {ey}rez as an “orthonormal basis” in the space
RPN ~ 11
{f € L2(R)(F\%(R)) ‘supp( )< [—5, 5] }
4.1.2 Sampling periodic functions

A bandlimited signal cannot be timelimited; thus when applying the sampling theorem, it always
requires infinitely many sampling to construct the signal perfectly. On the other hand, it is possible
that to construct a bandlimited signal perfectly using finitely many sampling provided that the
bandlimited signal is periodic. In the following, we discuss why this is true.

Suppose that f is a g¢-periodic bandlimited signals such that supp(f) < [—B,B|. Then the

Whittaker-Shannon interpolation formula implies that

Z f )sinc(pz — k)

k=—00

as long as p > 2B. If pq € N, then by the fact that f( ) f(k e

can be re-grouped as

) for all m € Z, the sum above

flz) = Z_: Z f(“;nm)sinc(pa: — 0 —mpq)
(=0 m=—0
= Z_: f(g) Z sinc(pr — ¢ — mpq) ; (4.14)

p

=0 m=—a0

thus if we can find the sum )] sinc(pz — ¢ — mpq), f can be rewritten as finite sum.
m=—a0



Lemma 4.10. If p,q > 0 and pq is an odd number, then

0

Z sinc(pr — mpq) = sm.c(pf) VrxeR.
sincZ
m=—0a0 q
Proof. Note that
0 o0
Z sinc(pr — mpq) = Z (disinc)(x — mq) = (I, * disinc)(z) ,
m=—o0 m=—ao0

where I, = (lldq]]:[ is defined in Remark @ Taking the Fourier transform, we find that

(1, dysin)] (€) = (I, dysine) €) = - (LA (€) = ~- (&I D, (red)).

k=—

If pq is odd, then g # k for all k£ € N; thus by the fact that supp(d,II) < [—g, g}, we have
q

GOE Y (m)©= Y (m)©= 3 (n0)©
k=—o0 _%<§<% k pq;l
Therefore, i
ﬁ[([[[q*d;sinc)](f):piq S (m0)©.

Taking the inverse Fourier transform,

pg—1
o0 2 . .
1 wikx 1
Z sinc(pr — mpq) = F*F [(Il,* disinc)] (z) = — Z e = —81? Wéx - sm'c(p;:) ‘
m=—a P pq | pq sm- sinc,
By Lemma , () implies that
< sinc(p(z — ﬁ)) sinc(pz — 0)
2 sinc(pxr — £ — mpq) = —7 =—— 7
m=—w sinc—_* ST
thus we obtain that ,
Pa— :
¢, sinc(px — ()
x) = _— . 4.15
= X 1) (@.15)

pq

~

Example 4.11. Let f(x) = cos(2mzx). Then f is 1-periodic and supp(f) < [—1.2,1.2]. Letting p =3
in (), we find that

sinc(3z) 27 sinc(3z — 1) 47 sinc(3x — 2)
cos(2mr) = — tcos o S5
sincr 3 sinc=g 3 sinc¥=




4.2 Necessary Conditions for Sampling of Entire Functions

The sampling theorem provides a way of reconstructing signals based on sampled signals with sam-
pling frequency larger than twice of the bandwidth of bandlimited signals. It is natural to ask
whether we can reduce the sampling frequency for perfect reconstruction of bandlimited signals or
not. Moreover, it is also possible that the support of the Fourier transform of a signal (usually called
spectrum of the signal) is contained in a “small” portion of the interval [—B, B], and in this case we
hope to reduce the sampling frequency for the reconstruction of the signal.
Question: Is there a lower bound of the sampling frequency for perfect reconstruction of bandlimited
signals?

Generally speaking, the way of sampling does not have to be uniform as long as the samples from

a signal are enough to reconstruct the signal. A good choice of sampled set should obey

1. the signal is uniquely determined by the set of sampled signals - the uniqueness of the

reconstruction of signals;

2. each set of sampled signals should come from a possible bandlimited signal - the existence of

the reconstruction of signals.

These two requirements for sets on which the signals are sampled, together with the idea that the

sampled set is not necessary uniform, induce the following

Definition 4.12. Let S € R" be a measurable set in R™, and B(S) denote the subspace of L*(R™)
consisting of those functions whose Fourier transform (given by ()) is supported on S; that is,

B(S) = {f e L*(R") | supp(f) < S}

A subset A of R” is said to be uniformly discrete if the distance between any two distinct points
of A exceeds some positive quantity; that is, there exists Ag > 0 such that |z — y|g» = Ao for all
x,y € A and x # y. Such a )\ is called a separation number. A uniformly discrete set A is said
to be

1. a set of sampling for B(S) if there exists a constant K such that

|fZeny < K DT|FON) ¥ feB(S);

AEA

2. a set of interpolation for B(S) if for each square-summable collection of complex numbers
{ax}ren there exists f € B(S) with f(A) = ay for all A € A.

Example 4.13. Let I be an interval of length 1. Then Z is a set of sampling and interpolation for
B(I):

1. If f e B(I), then f has the following Fourier series representation

0
flz) = Z cpe?mhe for almost every z € I,

k=—00



where ¢, = j f(x)e*%ik‘” dx. By the fact that supp(A) c I, the Fourier inversion formula
I
implies that

_ Axeﬁmkz v = f(—Fk):
ck—iju dz = f(~F):

thus {f (—k)}zoz_oo is the Fourier coefficients of f. The Plancherel identity and the Parseval
identity then imply that

o0 a0
n 2 2
HfH%%R) = HfH%Q(]R) = HfH%m) = Z ‘Ck|2 = Z | f (k)

k=—00 k=—00

thus Z is a set of sampling for B(I).

2. Let {cx}7_, be a square-summable sequence. Define

Then the Parseval identity implies that
oe}
9132 = loliaay = D5 leel® < o0
k=—0

thus g € L*(R). Let f = §. Then f € L?*(R) and the Fourier inversion formula implies that for
all k e Z,

f f 27rzk£ df J 27rzk£ d€ f 27rzk§ d k= Chl

thus Z is a set of interpolation for B(I)

Remark 4.14. Suppose that f is an L?-signal satisfying supp(]?) c (B —1,B) for some B » 1.
Then certainly Supp(f) < (—B, B) and the sample theorem implies that to perfectly reconstruct the

. . . 1
signal one can consider sampling f every oY) seconds. On the other hand, Example shows that

one can reconstruct the signal by sampling the signal once per second. This is a huge amount of
reduction of sampling if B » 1. Therefore, the sampling rate provided by the sampling theorem
is only a sufficient condition for perfect reconstruction of bandlimited signals, but possibly can be

reduced for specific cases.

For n = 1, Landau in his paper “Necessary density conditions for sampling and interpolation of

certain entire functions” shows the following
Theorem 4.15. Let S be the union of a finite number of intervals of total measure |S)|.

1. If A is a set of sampling for B(S), then there exist generic constants A, B such that

n’(r)zzi/relﬂg#(Am[y,y—i-r]) > |S|r — Alogtr — B Vr>0. (4.16)



2. If A is a set of interpolation for B(S), then there exist generic constants A, B such that

nt(r)=sup#(Anly,y+r]) <[S|r+Alogtr+B  Vr>0.
yeR

In the following, we only focus on the proof of the first case in Theorem .

Before proceeding, we need to introduce some terminologies. Let @, S < R", and D(Q) be the
subspace of L*(R") consisting of functions supported on Q. Let Dg and Bg denote the orthogonal
projection of L*(R") onto D(S) and B(S), respectively. Then

Bg = F*xsF and Do =xq, (4.17)
where x4 denotes the operator defined by multiplying by the characteristic function of A.

Proposition 4.16. Let k : R" x R" — C be square integrable, K(x,y) = K(y,x) for all x,y € R",
and K : L*(R") — L*(R™) be an operator defined by

<fowz=f ke, y) ) dy

n

Then

Q0 J—
1. k(z,y) = X mewr(z)pr(y), where {oi} ., denotes the orthonormal sequence of eigenfunctions,
k=1
and {2, < R denotes the sequence of corresponding eigenvalues of K;
2 Y= [ kwwyds 3 = [ [ (k) dedy.
k=1 R" k=1 n Jrn
Theorem 4.17. Let Q,S < R" be bounded measurable sets, and D¢, Bg be the projection operators
of L*(R™) defined in () Denoting the eigenvalues of B¢DgBg, arranged in non-increasing order,
by M\e(S, Q), where k € N U {0}. Then
(1) Ak(S, Q) = A(@Q,5).

(i) M\e(S,Q) = M(S +0,Q +7) = M(aS, a7 tQ) for all 0,7 € R" and a > 0.

(i) 3 M(5.Q) = ISl

a0 e ¢]

(iv) 2 A(8,Q) = X (S, Q) + i A(S,Q) if Q=Q1U Q2 and Q1 N Qo = .

e}
(v) X2 A(S,Q) = (sq — % log*(sq) — %)n, where S and Q) are cubes with edges parallel to the
k=0

coordinate azes with |S| = s, |Q| = ¢, and log" x = max{0, log z}.
(vi) For any k-dimensional subspace Cy of L*(R"),

D f 22 n |D f 22 n
7“ AR and  XNg—1(S,Q) = inf 7’ CRATAIC

Ae(S, Q) <
(5 Q)< o T e reoi8hce T Bagany

S)
fLCk,f#0



Proof. For two (completely continuous) operators A and B, we write A ~ B if A and B has the
same nonzero eigenvalues, including multiplicities. Suppose that A # 0 is an eigenvalue of BgDgBs.

Then BsDgBgsy = Ap for some ¢ # 0. By the fact that Bg is a projection, we have
ABgyp = BsBsDgBsp = BsDgBsp = A\p

which implies that Bgy = ¢. Moreover, DgBsy # 0. Applying Dg to the equation above, we find
that
DQBsDQDQBSgO = DQBsDQBsgD = )\DQBSgO

which, by the fact that DgBgy # 0, implies that A is also a eigenvalue of DgBsDg. As a consequence,

BsDgBs ~ DgBsDy . (4.18)

Therefore, to study the nonzero eigenvalues of the operator BgDg By, it suffices to study the operator
DgBgsDy.

Let C denoted the complex conjugate operator; that is, Cf = f. Then C.ZC = F~! and

CF'C = 7. By the fact that . is unitary and DgBgDg is symmetric (so the eigenvalues are

real),
DgBsDq ~ CDgBsDoC = xoC.7 'COxsCFCxq = xoF XxsF 'Xaq
~ g‘—leg‘XSga—lega = BQDSBQ .

This proves (ii). Since S and ) are bounded, the Fubini theorem implies that
DABoD — 72m’y-§d 2m’x-£d
(DaBsDaf @) =xe(@)| | xs(@)( | (o) ¢ dy)em=s i
— —2mi(y—x)€ e\ g
| xeneso)( | s 3

= J xe@)xoW)xs(ly —z)f(y)dy.

Using (), the change of variables formula together with (i) shows (ii).
Let k(z,y) = xo(x)xo(y)Xs(y—z) and K be the operator defined by (K f)(z) = E(x,y)f(y) dy.
——— Rn
Then k(z,y) = k(y, z); thus Proposition implies that

YM(E.Q) = | M) = | 00 =150

which establishes (iii).
To prove (iv), we make use of Proposition and find that

Sous.@2= [ ([ enfas)as=[ [0y,

Since Q@ x Q < (Q1 x Q1) U (Q2 x Q2) and (Q1 x Q1) N (Q2 x Q2) = ¢, by the identity above we

conclude that

Ty — o) d(z,y) + fQ [t dey

S Me(S, Q)% =
Ynwsers [
= )\k(S, Q1) + )\k(sa QQ) :



Let S and () be cubes with volume s™ and ¢". Using (ii) we can assume that S and () are centered

at the origin; that is, S = [ 2 2] and @ = [ ]n Then

o=,

thus Prop081t10n - provides that

J f sm 27r|xZ y;|s) dx)dy
k: 2,9 NJ-g g 2|z — vl

2 sin? 7T|x—y]) n
<Jqfq 7'('2’56' y‘2 dl’dy) '

2 2

sinm(z; — y;
27r7,x y) fdf n (( yy)) ,

éé
22

sin?t
t2

2 . % ﬂ(%fy)s . Qt
[ a2 [ ([ St
g 2|z — vy mJ_a \J e t

2 (_5_?/)5

g 0 gin2¢ 0 in2t n(—2—y)s ¢
_ s J ( J Sln2 g — f sm2 d J Sln2 dt) dy
Vs 7% 0 t q t 0 t

(5-y)s -

25 (2 » t
B

0
By the fact that J dt =,

Note that

1 *o) i 2 *e) 1 .2 T 1 )
t t 1 t
L e [ (] S [
TJ1 N1y t Tl N1 T Jo 1-2 t
_ EJOO sin®(sqt) it + 2 (7 sin®(st) 5
T t2 w2 0
00 Sq 142
< zf ldt 2 sin®(7t) it
T ). t2 72 t

2 ! sin®(nt) *4 sin?(rrt) 2 n
<P[1+J " dt—i—f " dt}é—g[i’)—i-log (sq)],

0 1 T

so (v) is established.
For a given k-dimensional subspace Cj, the subspace BsC} has dimension d < k. Moreover,
f L BsCy, if and only if Bgf L Cj. By the fact that | Bsf|2@r) < | f|r2@n) and

BsDoB )
(S, Q) < sup (BsDq ifa f)L2(R)
JLCk, f#0 ||fHL2(Rn)

for any k-dimensional subspace Cj, of L*(R"), we conclude that

BsDoBsf, f)r2mn DoBsf, Bsf)2mn
)\k’(Sa Q) < )\d(Sa Q) < L Bao ( Qf| >L (R ) < Befle ( Q|B fH2 )L (R )
Fho o L2R") ST e SN2 (rm)
2
< sup (DQf f)L2(Rn) _ (DQf, DQf)L2(Rn) _ u ”DQf”L?(Rn)

2
g5, Ve e, Whey e, Wl



On the other hand, by the fact that

(BsDgBsf, f)r2mn
feCk f#0 ||fHL2 Rn)

Ae-1(5,Q) =

for any k-dimensional subspace of L?(R"), choosing Cy < B(S) we obtain that

Nea(S.Q) > inf (BsDgBsf, f)r2mn _ it (DgBsf,Bsf)r2
FeCiuf 40 11172 ey SeB(S)nC [ 1% gny
B (Do, frz@ _ nf (Dof, Dof)rz@y _ o Do fI72(m)
N R R A S 1]
thus (vi) is established. a

Lemma 4.18. For any bounded measurable set S < R™ and d > 0, there exists a Schwartz function
h:R" — C such that supp(h) < B(0,d) and |/ﬁ(§)’ =1 forall e S.

Proof. Since S is bounded, S < B(0, R) for some R > 0. Let f € .(R") be such that f > 2 on
B(0, R). Since f € .#(R"), there exists g € €°(R") such that | f — gl r@ny < 1. Choose r > d such
that supp(g) < B(0,7), and defined the function h by

,’,,TL

h(z) = d—ﬂg(%) )

Then h is supported in B(0,d). Moreover,

N ’r‘n TixT- d n
h(f):f ding(d>2 Sdo = (—5) Vée R,
Rn
and the Fourier inversion formula implies that

sup |f( ) ﬁ(f)‘ = Zﬁg ‘f(%) —?7(%)‘ = |If = gllze@n) < ”f_g”Ll(]R") <1.

£eR™

|§|

Therefore, if [{| < R, we must have < R; hence

~

d
Mol =15 -121 Vi <R
Since S < B(0, R), [h| =1 on S. !

Lemma 4.19. Let S € R be a bounded set and A be a uniformly discrete set of sampling for B(S)
with separation number d and counting function n. For a compact set I, I denotes the set of points

whose distance to I is less than g Then

for some v depending on S, A but not on I.



Proof. By Lemma , 8, there exists a Schwartz function h such that h vanishes outside B(0, ) and
|h] 1 on S. Let C be the subspace of L?(R) spanned by the functions k(X — -) for A € A NIt

Since

(W0 =0, A0 =) oy = f WOu—2)h(y —2)de =0 if A # Ay,

the dimension of C' is n(I7).

For a given f € B(S) be given, we define g = f % h; that is,
Jf dy—f f)h(z —y)dy.
ly—al<g

Then g = fﬁ which further implies that g € B(S). Therefore, by the fact that A is a set of sampling
for B(S),

2
972 < K ) lg(M)
AEA

Moreover, the Plancherel identity shows that

lglze®y = |9llz2®) = If | 2@l Pll 2wy = 1fll2®) = 1f | 2@®) (4.20)

and the Cauchy-Schwarz inequality shows that

mmf<m@®f SR,
y—x|<

d

Therefore, if f € B(S) and f L C, we have

1120w < lgl2om < K Y JgN[ =K

XeA AeA NI+
2
<Kple 3 |l
AeAgl+ VIy=AI<g

< Kl [ P o = Kbl (|11 — | 1D2 00 ]

As a consequence, letting vy =1 — %, we have
KB
| D172 1
P P v<l1.
N Bogy K772

Inequality () then follows from (vi) of Theorem . o

Lemma 4.20. Let S < R be a bounded set and A be a uniformly discrete set of interpolation for
B(S) with separation number d and counting function n. For a compact set I, I~ denotes the set of

points whose distance to I° exceeds g Then

for some § depending on S and A but not on I.



Proof. Again by Lemma , there exists a Schwartz function h such that h vanishes outside B(0, g)
and |/f\L| >1lonsS.

Define a bounded linear operator A on B(S) by Ag = {g }/\GA if g € B(S). To see the
boundedness of A, let g € B(S) be given, and let f € B(S) be such that g = f h; that is,

— @ 2mixé
fla) = | 28 o .

The same as () we have | f|.2) < |9]z2r), and the Cauchy-Schwarz inequality implies that

2
o) < [ty [ 1Py,
ly—z|<g
Since A is uniformly discrete with separation number d, by the fact that g = f* h, we have

2
Z |9()‘)‘ < ”h’H%?(R) ZJ | dy < ‘hHLQ(R Hf”LQ(R) Hh”L2(R H9HL2 . (4.21)
AeA AeA ly—kl<*

Therefore, A : B(S) — ¢* is bounded.
Define £(S) = {f € B(S)| f(A\) =0 for all A€ A}. For f e B(S), the Cauchy-Schwarz inequality
and the Plancherel identity imply that

~ 2 N
t< ([ wlas)” <187 = 1811610

so if {fi}72, < B(S) converges to f in L*(R) (that means | fx — f|r2@) — 0 as k — o), {fi};2, also
converges to f uniformly on S. In particular, if {f;.};°, < £(S) converges to f in L? sense, then for

A€EA,
[F)] = lim [£(0) = fuW)] < lim v/[ST|fx = flrz =0
which implies that f € £(S). In other words, £(5) is a closed subspace.

Let £4(S) denote the orthogonal complement of £(S), and {ay}xea € £? be given. Since A is a
set of interpolation for B(S), there exists f € B(S) such that

fA) =ay  VAeA.

By the fact that B(S) = £(S) @ EL(S), there exist (unique) f; € £(S) and f, € E(S) such that
f = fi+ fa. Therefore, since fi(A) =0 for all A € A, we have

fo(A) = filN) + fo(A) = fF(N) = an VYAeA.

Therefore, A is a set of interpolation for £+(S). This also implies that A : £X(S) — (2 is surjective.

Moreover, noting that A : £1(S) — ¢ is one-to-one, we find that A : £1(S) — ¢2 is a bounded
linear bijective operator. Therefore, the bounded inverse theorem (from functional analysis) implies
that A=!: (2 — £L(S) is also bounded linear; thus there exists K > 0 such that

2
lgl32m) < K D gV Vge&H(S). (4.22)
AEA



In other words, A is a set of sampling for £4(9) as well.

For each X\ € A, let ¢, € E4(S) be the function whose value is 1 at A and 0 at other point of A.
We remark that such a ¢y exists since A is a set of interpolation for £+(S). Clearly {px}aca is a set
of linear independent functions. Let 1, € B(S) be such that p) = @/b;ﬁ, that is,

_ w 2miz-§
Ua(z) = L o) e dg .

Then {1\}rea is also a set of linear independent functions. Let C' be the subspace of B(.S) spanned
by {¥x}reanr-- Then dim(C) = n(I7) = #(A n I7). For a given function f € C, f = > c iy

AeANT—
for some {c)}renns-; thus

frh=Fh= > ahh= ) @
AeANT— ANeANT—

which shows that f#* h is a linear combination of {¢)} eans—- This further implies that
fehe&X(S) and (f*h)(A\)=0 YA¢ANI"  whenever feC.

As a consequence, using () and (), we obtain that if f e C,

_ 2
K ffe@ < KN *h)Fem < Do (FR)N[ = D0 |(F*h)(V)
AEA ANeANT—
<Ihlfem D) f W[ dy < |h 2o | F1220) = 22| Drf 2o ;
NeAnT— y/\|<*

thus for f e C,
| Dr 2w 1

>
1172~ KlIAIZaw,
where we note that 6 depends only on S (due to the dependence on h) and A but not on I. The

=0>0,

lemma is then concluded by (vii) of Theorem . o
Proof of () Let d be a separation number of A, [ = [— % 2] be a unit interval, and J be an

interval of length r such that n=(r) = n(J) = #(A n J). Since J is a single interval, then J*, the
set of points whose distance to J is less than g, satisfies n(J*) < n(J)+2; thus (ii) of Theorem
and Lemma imply that

)\n(J)+2<S, 7“]) < )\n(]+)(5, J) <v<1 (4.23)

for some v independent of 7.
Suppose that S consists of p disjoint intervals Ji, ---, J,. By Example , the set of integers
Z is a uniformly discrete set of sampling and interpolation of B(I) with separation number 1. The
set (rS)~, the collection of points whose distance to (rS)" exceeds 2 consists of at most p disjoint
intervals, so
#((rS)” nZ) 2 |(rS)"| —p=r[S| - 2p.
By (i) and (ii) of Theorem and Lemma , we find that

)\T|5|,2p,1(8, ’I"I) = >\T|S‘,2p,1(1, ’I“S) = )\#((TS)—QZ)_I(],’I"S) >6>0 (424)



for some 9 independent of 7.

Let pu(S,r1) = Y Me(S,7I)(1 = Xe(S,71)). By (iii)-(v) of Theorem ,
k=0

w(S,rI) =7|S| — Z)\QSH r| S| — ZZAQJH

j=1 k=0
< 2. . 6
< o181 = Y (1]~ S log*(rl ) - )
=1
2 ¢ 6p
—Z og r|J|+— Alog™r+ B
ﬂ_ :

for some constants A, B depending only on S.

Now suppose that n(J) +2 < r|S| —2p — 1, then () and () imply that
0<d< (S r)<y<1 Vke[n(J)+2,7|S|—2p—1].
Therefore,
(r[S]=2p—1—=n(J) =2+ 1) min{6(1 — &), v(1 — )} < u(S,rI) < Alog*r + B

which shows that
n(J) =r|S| — Alogtr — B (4.25)

for some constants A, B depending on S and A but not . On the other hand, if n(J)+2 > r|S|—2p—1,
() holds automatically (for proper choices of A and B); thus () is established. D

We can measure the density of a uniformly discrete set A in terms of function n*(r).

Definition 4.21. The Beurling upper and lower uniform densities of a uniformly discrete
set A, denoted by DT (A) and D~ (A), respectively, are the numbers defined by

D*(A) = lim n(r)

r—00 'S

The Beurling density reduces to the usual concept of average sampling rate for uniform and

periodic non-uniform sampling.
Corollary 4.22. Let S € R be a bounded set with measure |S| and A be a uniformly discrete set.
1. If A is a set of sampling for B(S), then D~ (A) = |S]|.

2. If A is a set of interpolation for B(S), then D*(A) < |S].

5 Applications on Partial Differential Equations

5.1 Heat Conduction in a Rod

Consider the heat distribution on a rod of length L: Parameterize the rod by [0, L], and let ¢ be the
time variable. Let p(x), s(x), k(z) denote the density, specific heat, and the thermal conductivity



of the rod at position z € (0, L), respectively, and u(z,t) denote the temperature at position z and
time t. For 0 <z < L, and Az, At « 1,

JH xp(y)s(y) [u(y,t + At) — u(y, t)] dy = JH t[—/i(:ﬁ)ux(x, t') + k(x + Az)u,(z + Az, t’)] dt’

x t

where the left-hand side denotes the change of the total heat in the small section (z,z 4+ Ax), and
the right-hand side denotes the heat flows from outside. Divide both sides by AzAt and letting Ax
and At approach zero, if all the functions appearing in the equation above are smooth enough, we
find that

p(x)s(zyue(x,t) = [K(x)ug(2,t)] O<z<L, t>0. (5.1)

Assuming uniform rod; that is, p, s, k are constant, then (15:11) reduces to that
uy(2,t) = &Puge (1), O<z<L, t>0, (5.2a)

where o? = g is called the thermal diffusivity. By re-scaling the length scale, we can assume
that o = 1.

To determine the state of the temperature, we need to impose that initial condition

u(z,0) = up(x) O<z<lL (@b)

for some given function ug : [0, L] — R and a boundary condition. Usually one of the following four

types of boundary conditions is imposed:

1. Dirichlet boundary condition: The Dirichlet boundary condition is used to describe the
phenomena that the temperature at the end points of the rod is known/controable. Mathe-

matically, it is expressed by
uw(0,t) =a(t) and wu(L,t)="0b(t) Vt>0
for some given functions a(t) and b(t).

2. Neumann boundary condition: The Neumann boundary condition is used to describe the
phenomena of insulation; that is, there is no heat flow at the end points. Mathematically, it is
expressed by

uz(0,t) = u,(L,t) =0 Vit>0.

In general, we can consider the boundary condition
uz(0,t) = a(t) and wu,(L,t) =b(t) Vt>0
for some given functions a(t) and b(t).

3. Mized type boundary condition: We can also consider the case that at one end point the
temperature is known while there is no heat flow on the other end point. In general, this is
expressed by

uw(0,t) = a(t) and w.(L,t) = b(t) Vt>0



or

u.(0,t) = a(t) and w(L,t) =0b(t) Vt>0
for some given functions a(t) and b(t).

4. Periodic boundary condition: Suppose that instead of rods we consider modelling the
temperature distribution in a (big) ring (with perimeter L). Choosing a point on the ring as
the “left-end” point and parameterizing the point of the ring by arc-length, we then have the
“boundary” condition

u(0,t) = u(L,t) Vt>0.

This is called the periodic boundary condition.

5.1.1 The Dirichlet problem

In this sub-section we consider the heat equation with Dirichlet boundary condition:

U — Uz =0 in (0,L) x (0,00), (5.3a)
u=wuy on (0,L)x{t=0}, (5.3b)
u(0,t) =a, wu(L,t)="0 forallt >0, (5.3¢)
where a and b are given constants. Let v(z,t) = u(x,t) — b= ®2 — a. Then v satisfies
Vp — Uy =0 in (0,L) x (0,00), (5.4a)
v =1 on (0,L) x {t =0}, (5.4b)
v(0,t) =v(L,t) =0 forallt >0, (5.4c)
L b—a . .
where vy : [0, L] — R is given by vy(z) = ug(z) — 7T a As long as the solution v to (@) is

b—
7 Y+ a. Therefore, we

found, the solution u to (@) can be constructed using u(z,t) = v(z,t) +
focus on solving (pb.4) (using the Fourier series method).

The idea of using the Fourier series to solve (@) is that for each fixed ¢ > 0 we express v in terms
of its Fourier series representation (using proper “basis”). Recall that for a function f : [0, L] — R,

we have the Fourier representation

2 o
L L
where ¢, = EJ f(z) cos 27}{” dr and sj, = if f(z)sin 2mhr dx, so
0 0
)« 27k 27k
v(z,t) =" CO2< ) + ;ck(t) cos WLx + sx(t) sin WLx ze|0,L],

for some sequence of functions {ck(t)}zozo and {sk(t)}zo:l. However, this particular Fourier series

representation of v is not a good choice of solving (p.4)) since it is difficult to validate the boundary

condition (@c) :



Note that for f : [0, L] — R instead of the Fourier series representation above we can also consider
the “cosine” series or “sine” series that are obtained by treating f as the restriction of an even or
an odd function defined on [—L, L] to [0, L]. In other words, define f, f, : [-L, L] — R, called the

even and odd extension of f respectively, by

f(z) ifxel0,L], flz) ifxel0,L],

s ={ 15 en, ™ A0={ 30 i,

then f = f, = f. on [0, L]. Since

o]

0
k k
fe(yc)“:”c—0 + > cos and folz) =" sksing xel[-L,L],
2 L L
k=1 k=1
2 (" mkx
where ¢, = LJ f(z) cos L dx and s = f f(z)sin — 7 dx, we have
0
wkx = Tkx
“= +chcos— and f(x)“:”l;sksinT zel0,L].

Using the sine series, for each ¢t > 0 v(z,t) can be expressed as

mkx

sm— rel0,L].

||M8

for some sequence of function {dk(t)}zozl to be determined. We note that using this particular
representation of v the boundary condition (p.4c) automatically holds. Therefore, it suffices to find
(1)}, such that (5.4a,b) hold.

Assume that the differentiation of the series can be obtained by term-by-term differentiation;
that is,

0 - mkx 2 0 Wkl' wkx
&t;dk(t) SIHT = kzll %(dk sm— Z dk Sm—
and . . ;
M};dk(i) SIHT :kZl ) (dk<t> sSin T) = —kZ:lLQdk(t) SIHT.

As a consequence,
d; (t) + ?dk(t) =0 VkeN. (5.5a)

To determine d; uniquely, an initial condition for dj has to be imposed. Noting that (@b) implies
that

o0
Z sm— xel0,L];



thus
2 7k

a1 (0) = G = + f vo(x) sin " da. (6.9p)

0
Solving the initial value problem (@), we find that

EES
di(t) = ope” 22 VkeN;
thus the solution to (@) can be written as

k27 krx

® 2
~ - t .
v(z,t) = E Uoge ¥ sin——
k=1

Therefore, the solution to (@) can be written as

2 K2y kmr  b—a
u(z,t) = Z Uope BT sin —— 4 —
k=1

r+a. (5.6)

e the long time behavior: Suppose that the temperature at the left-end and right-end points are
fixed as a and b (as described in the boundary condition (@c)) Then we expect that no matter

what the temperature distribution is given initially, the temperature distribution approaches a linear
b—a

distribution; that is, we expect that u(x,t) — r+aast— oo forall z € [0, L]. This expectation
is in fact true, and we try to prove this here.

Using (@), we obtain that

b —a = ~ k27'r2t
u(z, t) — T al < Z |Gor|e” 7
k=1
By the fact that
_ 2 (* 2
‘Uok| < EL ‘Uo(l’)‘ dr = ZHUOHLl(O,L)a
we find that
b—a 2 & _ k242 2 & CK2R2 ., 0 k2x2
u@,t) - r—a| < EHUOHD(O,L) Y Fs ZHUOHU(O,L) Dlem e
k=1 k=1
9 2 0 2,2
< EHUOHLI(O@e*ﬁ@*” D e
k=1
92 L2 ® 6202
thus with C' denoting the constant Z||UOHL1(07L)eﬁ Y e 17, we have
k=1
b—a ,ﬁt
sup |u(z,t) — r—al < Ce 2. (5.7)
z€[0,L]

b—a

Since C' < w0, we conclude that the function u(-,¢) converges to the function x + a uniformly

on [0, L] as t — oo.



5.1.2 The Neumann problem

In this sub-section we consider the heat equation with Neumann boundary condition:

Up — Uy = 0 in (0,L) x (0,00), (5.8a)
u=ug on (0,L)x {t=0}, (5.8b)
uz(0,t) =a, wu,(L,t)=0b forallt >0, (5.8¢)

b—
La (22 4 2t) — ax. Then v satisfies

where a and b are given constants. Let v(z,t) = u(z,t) —

Vp — Vgy = 0 in (0,L) x (0,00), (5.9a)

v =1y on (0,L)x {t=0}, (5.9b)

v2(0,t) = v, (L,t) =0 forall t >0, (5.9¢)

where vy : [0, L] — R is given by vg(x) = ug(z) — b _Lax2 —ax. As long as the solution v to (@) is
found, the solution u to (@) can be constructed using u(z,t) = v(x,t) + b2—La$2 + ax. Therefore,

we focus on solving (@) (using the Fourier series method). We look for {dj(t)}{_, such that

mkx
1) = flhied
v(x,t) 7

d02(t) + gdk(t) cos

validates (@a,b).
Assume that the differentiation of the series can be obtained by term-by-term differentiation;
that is,

0 wkx o 0 wkx = wkx
_ _ /
ET, Z di(t) CoS —— = Z E(d’“(t) cos T) = Z dy.(t) cos I
k=1 k=1 k=1
d < tkr <o 0 rkz k rkz
3 Z di(t) cos —— = Z %(dk(t) oS T) =— Z fdk(t) sin——,
k=1 k=1 k=1
and
0?2 < do(t wkr SE 4o (4 whkry o k:27r2d ; rkx
727 20 (t) 0s T = 0, g (el con ) = = 3, Tty cos T

Then (@c) holds automatically, and (p.9a) implies that

dit) <A k272 ke
—5 T kZ:l [dk(t) + ?dk(t)} cos —— = 0.

Therefore, dy is a constant and d;, satisfies (@) as well. Moreover, expressing vy in terms of cosine
series, (@b) implies that
2

L
mkx
LJO vo(x)cosTda: VkeNu{0}.

dr(0) = oy,
Solving (@) with the initial condition above, we obtain that

di(t) = Gore ' YkeN;



thus the solution to (@) can be written as

1 (" - k22 krx
v(z,t) = Lfo vo(z) do + Z Oope L2 tcosT :
k=1

Therefore, the solution to (@) can be written as

t—lL d S o 5P cos b — (2% + 2t
u(x, )_f ) vo() x+Zv0ke leos = + 7 (° 4 2t) + ax .
e the long time behavior: Suppose that the rod is insulated at the end-points; that is, the temperature
u satisfies u,(0,t) = u,(L,t) = 0 for all £ > 0. Then vy = up and we expect that no matter what

the temperature distribution is given initially, the temperature distribution approaches the average
. 1 (* .
temperature; that is, we expect that u(x,t) — Lf uo(z) dx as t — oo for all x € [0, L]. Similar to

0
the derivation of (@),

]_ L 2 & _k 7r2t 2 L 271'2
u(a 1) - LL uo(ir) di| < Zlooluon YT < Sl Y€ 7
k=1 k=1
2 2 % 2.2
_HUOHLl (0,L)€ —rzl Z e ;
k=1
2 7r2 00] 2 2
thus with C' denoting the constant Z||UOHL1(0 e Y e E , we have
k=1
1 L 71_2
sup )u(x,t) — J ug () dx‘ < Ce 7', (5.10)
2e[0,1)] L Jo

L

1
Since C' < o0, we conclude that the function wu(-,t) converges to the function I J uo(z) dx uniformly
0
on [0, L] as t — co.

5.2 Heat Conduction on R*
Consider the heat equation on R”

u — Au =0 in R" x (0,00), (5.11a)
u = Uy on R" x {t =0}, (5.11b)

where A is the Laplace operator, called Laplacian, defined by

For a function f of x (and probably also t), let .Z#(f) = f denote the Fourier transform of f in
x; that is,

= divVu).

Q_)
??‘M

~ 1

F () 1) = (é,t>=\/ﬁn Rnf(x,t)e—mﬁdx.




Then by assuming that (-, ¢) exists for all £ > 0, Lemma implies that

F(Du)(6,1) = 9(2 Z )€ Y. (a‘ik;ﬁ) (&)
k=1

k=1
= iz’w( a“) )= Yl 1) = —[eate. 1
ox T
k=1 k=1
Assume further that
iﬂ(f t) = o1 u(z, t)e” " do = u(z, t)e” " do
ot > 0ty Jen \/ﬂ n&t
- \/21?" R ur(w, e dr = Gy(€, 1) .
Taking the Fourier transform of (a), we find that
0 ~ ~
S 0(& 1) + [ ) = F (uy — Au)(€,1) = 0. (5.12)

Since 4(£,0) = Z (u(-,0))(§) = Gp(§), solving the ODE () with this initial condition we obtain
that
(g, 1) = dn(§)e™ " = G (€)Pu(€)

|2
where P;(z) = \/;ne—lzlt. By Theorem , we conclude that
1 1 lo—yl? 1 lo—yl?
u(x,t) = (ug* Py )(x) = o —e~ At dy = nf e 4 oy dy . 5.13
( ) ( 0 215)( ) m B \/ﬂ O(y) Y \/m . O(y) Y ( )

This induces the following
o2
! ne_% is called the heat kernel.

vAamt
Having introduced the heat kernel, the solution to (), given by () can be expressed by

u(z,t) = (7—[(, t)* uo)(:z:) )

e Non-uniqueness of solutions: The Fourier transform method only picks up solutions whose Fourier
transform is defined, and it is possible that there are other solutions to () Consider the function

Definition 5.1. The function H(z,t) =

© (k) (¢
_ Z g k( ')m% (5‘14)
k=0 (2
where ¢ is given by
exp(—t~?) ift >0,
g(t) = e
0 ift=0.
Then there exists 6 > 0 such that
k! 1,
RIGIES Ok pexp(—5t7%) V>0 (5.15)
In fact, using the Cauchy integral formula,
g(k) £ — k! 9(2) d

2miJ ). yj—o (2 — £y



where 6 € (0,1) is chosen so small such that [g(z)| < exp (—%t‘Q) on |z —t| = #t. The choice of such

a @ is possible since by writing z = x + 1y,

2_ .2 9; 2 _ .2 2 2
N Y= — x* + 2ixy ’_ Yt —x 0°—(1-0) o . 1
‘g(x—i—@y)‘—‘exp( (x2+y2)2 ) —eXp((x2+y2)2) gexp(((1+9)2+92)2t ) it 6 < 9"
k! 1
By the fact that k) < o we find that

© (k) e 2% 2

9 (t) 2k‘ x 1 —9 1,z 1 _9

< —— = (= — =

ICZ;)‘ (Qk)!w \Zk"(@t)’feXp( 5t ) exp[t(e 5t )} Vt>0,zeR. (5.16)

Therefore, by comparison the series in (p.14) converges for all ¢ > 0, and trivially also converges for
t = 0. Moreover, () shows that for each t € R, () is a convergent power series; thus

2

ig(k)(t) 022k i g(k)(t) p2k2

0
Uge (2, 1) = —u(x, t) = = Vt>0,zeR.
0x? = (2k)! ox*  (2k —2)]
(k+1)! 1 . .
On the other hand, by the fact that < ; if & > 1, using () we find that for all

(2k)! (k—1)!
t>0and zreR,

< ’g(’““)(t)

= Wx%’ <lrol+ 2 5o 155!(9t)k+1 xp (~5¢7)

) o0 g(k+1)(t) . )
Therefore, the series )| 2%* converges uniformly on any bounded set of R; thus

=0 (2K)!
L qk+1) L (k)
. g (t) o o Z g (t)  op o _
Ut(I7t) _k:EOWCC —k:1 ml‘ —Uzw(l',t) Vi > O,IER.

This implies that u satisfies the heat equation

Up — Ugy = 0 in R x (0,00),

u=0 on R x {t=0}.

Note that using the Fourier transform method to solve the PDE above we obtain trivial solution.

The reason for not seeing the solution given by (p.14) using the Fourier transform method is that

the Fourier transform of the function u given by (5.14) does not exists.
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