Fourier Analysis MA3019 Midterm Exam 1

National Central University, 2016

Problem 1. Use the Fourier series to show that $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} = \frac{\pi^2}{12}.$

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a 2L-periodic function, and $\hat{f}_k = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-i\frac{k\pi x}{L}} dx$ be the associated Fourier coefficients. Show that

$$\frac{1}{2L} \int_{-L}^{L} \left| f(x) \right|^2 dx = \sum_{k=-\infty}^{\infty} \left| \hat{f}_k \right|^2.$$

Problem 3. Let $f \in \mathcal{C}(\mathbb{T})$ and $\{\hat{f}_k\}_{k=-\infty}^{\infty}$ be the Fourier coefficients. Show that if $\sum_{k=-\infty}^{\infty} |\hat{f}_k| < \infty$, then $s_n(f,\cdot) \to f$ uniformly on \mathbb{T} , where $s_n(f,x) = \sum_{k=-n}^n \hat{f}_k e^{ikx}$.

Problem 4. This problem contributes to another proof of showing that the *n*-th partial sum of the Fourier series representation $s_n(f,\cdot)$ converges uniformly to f on \mathbb{T} if $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$ for $\frac{1}{2} < \alpha \leq 1$. Complete the following.

1. Let $f: \mathbb{R} \to \mathbb{R}$ be 2π -periodic such that f is bounded, Riemann integrable over $[-\pi, \pi]$. Show that

$$\widehat{f}_k = -\frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(x + \frac{\pi}{k}\right) e^{-ikx} dx$$

and hence

$$\widehat{f}_k = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[f(x) - f\left(x + \frac{\pi}{k}\right) \right] e^{-ikx} dx.$$

Therefore, if $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$, the Fourier coefficients \hat{f}_k satisfies $|\hat{f}_k| \leq \frac{\pi^{\alpha} ||f||_{\mathscr{C}^{0,\alpha}(\mathbb{T})}}{2k^{\alpha}}$.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be 2π -periodic such that f is bounded, Riemann integrable over $[-\pi, \pi]$. Show that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x+h) - f(x-h)|^2 dx = \sum_{k=-\infty}^{\infty} 4\sin^2(kh) |\hat{f}_k|^2.$$

Therefore, if $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$, the Fourier coefficients \hat{f}_k satisfies

$$\sum_{k=-\infty}^{\infty} \sin^2(kh) |\hat{f}_k|^2 \le ||f||_{\mathscr{C}^{0,\alpha}(\mathbb{T})}^2 2^{2(\alpha-1)} |h|^{2\alpha}$$
(0.1)

3. Let $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$, and $p \in \mathbb{N}$. Show that

$$\sum_{2^{p-1} \le |k| < 2^p} |\widehat{f}_k|^2 \le \frac{\|f\|_{\mathscr{C}^{0,\alpha}(\mathbb{T})}^2 \pi^{2\alpha}}{2^{2\alpha p + 1}}.$$

Hint: Let $h = \frac{\pi}{2^{p+1}}$ in (0.1).

4. Show that if $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$ for some $\frac{1}{2} < \alpha \le 1$, then $\sum_{k=-\infty}^{\infty} |\widehat{f}_k| < \infty$; thus Problem 3 implies that $s_n(f,\cdot) \to f$ uniformly on \mathbb{T} .

Problem 5. Let f be a 2π -periodic Lipschitz function. Show that for $n \ge 2$,

$$||f - F_{n+1} \star f||_{L^{\infty}(\mathbb{T})} \le \frac{1 + 2\log n}{2n} ||f||_{\mathscr{C}^{0,1}(\mathbb{T})}$$
(0.2)

and

$$||f - s_n(f, \cdot)||_{L^{\infty}(\mathbb{T})} \le \frac{2\pi (1 + \log n)^2}{n} ||f||_{\mathscr{C}^{0,1}(\mathbb{T})}.$$
 (0.3)

Hint: For (0.2), apply the estimate

$$F_n(x) \le \min\left\{\frac{n+1}{2\pi}, \frac{\pi}{2(n+1)x^2}\right\}$$

in the following inequality:

$$|f(x) - F_{n+1} \star f(x)| \le \left[\int_{-\delta}^{\delta} + \int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \right] |f(x+y) - f(x)| F_{n+1}(y) dy$$

with $\delta = \frac{\pi}{n+1}$. For (0.3), use (2.8) in the lecture note and note that

$$\inf_{p \in \mathscr{P}_n(\mathbb{T})} \|f - p\|_{L^{\infty}(\mathbb{T})} \leqslant \|f - F_n \star f\|_{L^{\infty}(\mathbb{T})}.$$

Problem 6. In this problem, we are concerned with the following

Theorem 0.1 (Bernstein). Suppose that f is a 2π -periodic function such that for some constant C and $\alpha \in (0,1)$,

$$\inf_{p \in \mathscr{P}_n(\mathbb{T})} \|f - p\|_{L^{\infty}(\mathbb{T})} \leqslant C n^{-\alpha}$$

for all $n \in \mathbb{N}$. Then $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$.

Complete the following to prove the theorem.

1. Suppose that there is $p \in \mathscr{P}_n(\mathbb{T})$ such that

$$||p'||_{L^{\infty}(\mathbb{T})} > n$$
, $||p||_{L^{\infty}(\mathbb{T})} < 1$, and $p'(0) = ||p'||_{L^{\infty}(\mathbb{T})}$.

Choose $\gamma \in \left[-\frac{\pi}{n}, \frac{\pi}{n}\right]$ such that $\sin(n\gamma) = -p(0)$ and $\cos(n\gamma) > 0$, and define $\alpha_k = \gamma + \frac{\pi}{n} \left(k + \frac{1}{2}\right)$ for $-n \le k \le n$. Show that the function $r(x) = \sin n(x - \gamma) - p(x)$ has at least one zeros in each interval (α_k, α_{k+1}) .

- 2. Let $s \in \mathbb{Z}$ be such that $0 \in (\alpha_s, \alpha_{s+1})$. Show that r has at least 3 distinct zeros in (α_s, α_{s+1}) by noting that r'(0) < 0 and r(0) = 0.
- 3. Combining 1 and 2, show that

$$||p'||_{L^{\infty}(\mathbb{T})} \le n||p||_{L^{\infty}(\mathbb{T})} \qquad \forall p \in \mathscr{P}_n(\mathbb{T}).$$
 (0.4)

- 4. Choose $p_n \in \mathscr{P}_n(\mathbb{T})$ such that $||f p_n|| \leq 2Cn^{-\alpha}$ for $n \in \mathbb{N}$. Define $q_0 = p_1$, and $q_n = p_{2^n} p_{2^{n-1}}$ for $n \in \mathbb{N}$. Show that $\sum_{n=0}^{\infty} q_n = f$ and the convergence is uniform.
- 5. Show that $||q_n||_{L^{\infty}(\mathbb{T})} \leq 6C2^{-n\alpha}$. As a consequence, show that

$$|q_n(x) - q_n(y)| \le 6Cn2^{n(1-\alpha)}|x - y|$$
 and $|q_n(x) - q_n(y)| \le 12C2^{-n\alpha}$.

6. For any $x, y \in \mathbb{T}$ with $|x - y| \le 1$, choose $m \in \mathbb{N}$ such that $2^{-m} \le |x - y| \le 2^{1-m}$. Then use the inequality

$$|f(x) - f(y)| \le \sum_{n=0}^{m-1} |q_n(x) - q_n(y)| + \sum_{n=m}^{\infty} |q_n(x) - q_n(y)|$$

to show that $|f(x) - f(y)| \le B|x - y|^{\alpha}$ for some constant B > 0.