
NECESSARY DENSITY CONDITIONS FOR SAMPLING AND 
INTERPOLATION OF CERTAIN ENTIRE FUNCTIONS 

BY 

H. J. L A N D A U  

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey, U.S.A. 

Introduction 

In  a series of seminar lectures given in 1959-60 at  the Inst i tute  for Advanced Study 

in Princeton, Professor Arne Beurling posed and discussed the following two problems, 

in Euclidean spaces: 

A. Balayage. Let G be a locally compact abelian group, A a closed subset of G, and S 

a given collection of characters. Let  M(G) and M(A) denote the sets of all finite Radon 

measures having support in G and A, respectively. Balayage was said to be possible for 

S and A if corresponding to every ~EM(G) there exists flEM(A) such tha t  

f d =fwdfi, for all qES.  

Choice  of this te rm was prompted by  analogy with its original usage, in which S was a 

set of potential-theoretic kernels. 

The set S, viewed as a subset of the dual group of G, was restricted from the outset 

to be compact, and to satisfy the regularity conditions (a) and (fl) below. 

(a) For each soES and each neighborhood r of So, there exists a positive Radon 

measure having support in co N S, with Fourier transform approaching zero at  

infinity (i.e., outside compact subsets of G). 

Let  C(G) be the space of bounded continuous functions on G with the uniform norm. 

Let  the weak closure of a set P c  C(G) consist of those functions of C(G) which are anni- 

hilated by  every measure in M(G) annihilating P.  Let  the spectral set E~ of ~v EC(G) consist 

of the characters contained in the weak closure of the set of all translates of ~, and let 

C(G, S) denote the collection of all ~ E C(G) with Z ~  S. 
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(fi) Spectral synthesis is possible on S (i.e., C(G, S) is contained in the weak closure 

of the characters in S). 

Under these hypotheses, a number  of general results were proved regarding balayage, 

including the following, which establishes a connection with a class of problems in function 

theory. 

THE OREM. Balayage is possible/or S and A i/and only i/there exists a constant K ( S, A) 

such that/or all q~ e C(G, S) 

sup Iv(x) I < g ( s ,  A) sup I (x) l. 
�9 e G  x e A  

Attention was then focused on the case tha t  G is the real line and S a single interval, 

and an explicit solution to the problem of balayage was given. A subset A 0 of the reals 

was termed uniformly discrete if the distance between any two distinct points of A o ex- 

ceeds some positive quantity. For such A0, let n+(r), n-(r) denote respectively the largest 

and smallest number  of points of A 0 to be found in an interval of length r; the limits 

D+(A0) = lim n+(r)/r and D-(Ao) = lim n-(r)/r, 
r - ~ o o  r - - > ~  

which always exist, were called the upper and lower uniform densities Of Ao. 

THEOREm A. When S is a single interval o/the real line, balayage is possible/or S and 

A if and only i/ A contains a uni/ormly discrete subset A o with D-(A0)>measure(S)/2~.  

B. Interpolation. Interpolation was said to be possible for S and A if for every /E C(G) 

there exists ~ E C(G, S) such tha t  ~(x) =/(x) ,  for x E A. This problem was introduced as a 

dual of the problem of balayage. Once again, after some preliminary general results, the 

discussion was specialized to the case that  S is an interval of the real line, and the following 

solution was given. 

THEOREM B. When S is a single interval o/the real line, interpolation is possible/or S 

and A i] and only i / A  is uni/ormly discrete and D+(A) < measure (S)/2z. 

Theorems A and B were proved by  complex-variable methods. 

These striking characterizations cannot be expected to persist when the interval S 

is replaced by  a more complicated set, since arithmetic relations among the points of A 

then play an important  role. Nevertheless, Beurling conjectured tha t  the density condi- 

tion of Theorem A remains necessary for balayage. One of the main objects of this paper  

is to establish tha t  conjecture in R N. 

We proceed by  considering, in R N, L~ versions of the above problems. Thus with S 
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a measurable set in R ~, we let B(S) denote the subspace of L~(R ~) consisting of those 

functions whose Fourier transform is supported on S, and let II/ll denote the L ~ norm of / .  

We say tha t  a subset A of R N is uniformly discrete if the distance between any  two distinct 

points of A exceeds some positive quantity, which we term the separation of A. We call 

a uniformly discrete A a set o/sampling/or B(S) if there exists a constant K such tha t  

II111 ~<K for every I e S(S), and a set o/interpolation/or B(S) if, Corresponding 

to each square-summable Collection of complex numbers {az}x~A, there exists 1 E B(S) with 

/(2)=ax,  2EA; similar sets were considered in [1] and [6] under the names of "frames" 

and "Riesz-Fischer sequences", respectively. For bounded S, the members of B(S) are 

restrictions to R N of certain entire functions of N complex variables. When S is a single 

interval in R 1, B(S) has been extensively studied, mainly by  function-theoretic methods. 

These methods largely fail already when S is replaced by  the union of several intervals, 

and possess no counterparts at all in more than  one dimension. Here we will connect sets 

of sampling and interpolation with an eigenvalue problem which is tractable independently 

of the dimension, and by  exploiting the relationship will obtain information about  each. 

In  particular, in R 1 this approach will show: 

TH]~OREM 1. I t  S is the union o / a  linite number o I intervals o/total measure m(S), 

and A is a set o/ sampling /or ~(S), 

n-(r) >~ (2~r) -1 re(S) r - A log + r - B, 

with constants A and B independent o] r. 

T ~ E O R ] ~  2. I] S is as in Theorem 1, and A is a set o[ interpolation/or B(S), 

n+(r) ~ (2~) -1 m(S) r + A log + r + B, 

with constants A and B independent o/r.  

With S an arbi trary bounded and measurable set in R ~, our conclusions will be some- 

what less precise, in tha t  the above bounds are replaced by  asymptotic  versions; neverthe- 

less they will be sufficient to establish sharp density-measure theorems for sets of sampling 

or interpolation, and to prove Beurling's conjecture regarding balayage. They also show 

tha t  sets of sampling for B(S) differ greatly from sets of uniqueness, whose density need 

bear no relation to the measure of S [2]. 
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Preliminaries 

Let  R ~ be N-dimensional Euclidean space. We denote by  x a point (xl, ..., XN) of R N 

and by  dx the Lebesgue product measure dxl, ..., dxN. I f  S is a subset of R ~, 7 a point of 

R ~, and r a positive scalar, we denote by S +7 the translate of S by  7, i.e., the set of points 

of/ON of the form x + z  with xES,  and by  rS the scaling of S by  r, i.e., the set of points of 

R ~ of the form rx with xES.  Let m represent Lebesgue measure in RN; then for measurable 

sets S, m(rS)=rVm(S). I f  x=(x l ,  ..., xN) and Y=(Yl .... .  YN) are two points of R ~, we let 

Ixl' =(x~ + ... +x~) ~ and xy : X l Y l §  ... §  N. 

Henceforth we will use the te rm "set"  to mean "measurable set".  

The square-integrable functions on R N form a Hilbert  space with scalar product 

(/,g) = f /(x) g(x) dx; 

we shall write/_Lg if (/, g)=0. In  this space the l~ourier transform T, defined by  

= (2~)-Nl~f~ ](y) e -~xy dy, T /  

is a unitary operator with inverse 

T-~ / = (2~)- ~'2 f , f l (y)  e ~- dy. 

I f  P is a set in R N, we will denote by XP both the characteristic function of P,  i.e., the 

function whose values are 1 on P and 0 elsewhere, and the operator in L2(R N) defined by  

x~/= zAx)/(x). 

An eigenvalue problem 

With Q and S two sets in R N, let O(Q) be the subspace of L2(R ~) consisting of those 

functions supported on Q, and B(S) be as previously defined. Let  DQ and Bs denote the 

orthogonal projections of L2(R N) onto D(S) and B(Q), respectively; they are given expli- 

citly by  

B~ = T-~Z~ T, (I) 

z)Q =zQ. (2) 

In  the following lemma we collect some elementary properties of the operator BzDQBs, 

which takes B(S) into itself. 
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LEM~A 1. 1/ the sets S and Q have finite measure, the bounded sel/-ad]oint positive 

operator Bs DQ Bs is completely continuous. Denoting its eigenvalues, arranged in nonincreas- 

ing order, by ,~k(S, Q), k = O, 1 .... , we find/or all k 

(i))~k(S, Q) =2k(S+a, Q+z) =~k(~S, ~-IQ), for any a, z e R  N and ~>0,  

(fi) 2k(S, Q)=2k(Q, S), 

(iii) ~ 2k(S, Q) = (2z)-~m(S)m(Q), 

(iv) ~ ~(S,  Q)~> ~k 2~(S, Q1)+~k 2~(S, Q~), i /Q =Q1 u Q2 with QI and Q2 disjoint, 

(v) ~ ~(S,  Q) ~> {(2~)-~sq -~-~ log+sq-  1} N, i / S  and Q are cubes with edges parallel to 

the coordinate axes, o/volumes s ~ and qN respectively, 

(vi) ~tk(S, Qi)~)~k( S, Q~), i /Q~Q2,  
(vii) 2k(S,Q)< sup IlDdll2/llfil 2, 

fe ~(S), f •  r 

(viii) ~k_~(S, Q)~> inf HDQ/II~/H/H 2, i /Ck  is any k-dimensional subspace o/L~(RN). 
f ~B(S),f  eClr 

Proo/. Since projections are bounded by 1, self-adjoint, and idempotent, 

(BsDaSsf  ,/) = [[DaBs/l[2~< li/ll 2, (a) 

so that  BsDaBs is bounded by 1, self-adjoint, and positive. Using (1) and (2), DaB s may 

(as below) be written explicitly as an integral operator whose kernel is square-integrable 

(by Parseval's theorem), hence [5, p. 158] DaBs, so also BsDQB s and DQBsDa, are com- 

pletely continuous. Let us write A ~ B if the completely continuous operators A and B 

have the same nonzero eigenvalues, including multiplicities. If BsDaBsq)=~q~ , and ~ r  

then ~ = B s ~  since B s is a projection, and HDQBsq~II :~0. An application of the projection 

D a to the equation now yields DQBsDQ(DaBscf)=,~DaBsq) , so that  2 is likewise an eigen- 

value of DaBsD Q. The same argument in the other direction shows 

BsDaBs~ DaBsD a. (4) 

Because the spectrum is real, DQBsDQ~CDQBzDQC where C denotes complex conjuga- 

tion, and since C commutes with Z and C T C = T - I ,  by (1) and (2) C D Q Bs D Q C -~ ga TZs T-1)Ca �9 

Finally, T is unitary, so that  ga TZs T-1ZQ"~ T-1)C~ TXs T-~Za T -~ B a D s B~. Combining 

these, we conclude BsD~Bs,,~BaDsBa, proving (ii). By (1) and (2) the operator DaBsD a 

may be written explicitly as 

Da Bs Da / = (2~)- ~ ~a(x) Za(Y) k(y - x)/(x) dx, 

where Tk coincides with gs(X). From (4) and a change of variable we obtain (i), and on 

further applying known results [5, p. 243-5] to this representation we find 



42 H.J .  LANDAU 

/ ,  
~k 2k(S, Q) = (2z)- ~t~Jn~v ZQ(x) k(O) dx = (2z)- Nm(S) m(Q), 

establishing (iii), and 

= (2~)-~ I I Ik(Y -x)12dxdy. (5) 
J JQ xQ 

Now if Q =Q1 u Q2 with Q1 and Q~ disjoint, the set Q • Q over which the integral in (5) is 

extended includes Qx • Q1 U Q2 • Q~, and since the integrand is nonnegative, (iv) follows. 

To estimate (5) for the case that  S and Q are cubes with edges parallel to the coordinate 

axes, of volumes s N and q~ respectively, we may assume by (i) that  the centers are at 

the origin, whereupon 
N 

k(y) = 1-~ (2/~)�89 -1 sin �89 
~=1 

with Yi the ith coordinate of y, and 

N 
7~ - 2  :k~t~(S'Q) { fJul<q/2 flvl<ql2sin2�89 ' 

where u and v are one-dimensional variables. Applying a change of variable, the identity 

f/ sin ~ t/t2dt = ~/2, 

and some manipulation, we obtain (v). Next we invoke the Weyl-Courant Lemma [5, p. 

238] to prove (vi), since Bs Da, Bs and BzDQ, B S differ b y  the positive operator BzD(Q2_Q,)Bs, 
and to establish the bounds 

~k(S, Q) ~< sup (BsDQBs/,/)/il/[I 2, (6) 
f •  

,~k_l(~, Q) ~ i n f  (BsD Q Bs], /)/ll/ll ( 7 )  
reck 

If Cg~ ~(S), the requirement ]eCk of (7) implies ]=Bs/, thus as in (3) we find (viii). 

The subspace BsC k of B(S) has dimension d<k, /J-BsCk if and only if Bs/J-C k, and 

][9[[*>~ [[Bsr *, so by (6) the right-hand side of (vii) is an upper bound for ha(S, Q), hence 

also for ~k(S, Q). This completes the proof of Lemma 1. 

In view of (iii) it is natural to inquire how the values of 2k(S, Q) are distributed. A 

qualitative description, at least when S and Q are sufficiently regular, is that  ~k(S, Q) 

is very close to 1, then very close to zero, the transition occurring in a relatively narrow 

range of k, centered at 2z~-Nm(S)m(Q). This fact ,  which we shall demonstrate more 

precisely, will play an important role in our argument. 



D E N S I T Y  CONDITIONS FOR SAlYI-PLING OF E N T I R E  F U N f f f I O N S  43 

Sets of sampling and interpolation 

With a uniformly discrete set A we may associate a counting function n, defined on 

compact subsets I or R N as the number of points Of A contained in I.  We proceed to 

establish a connection between the counting function of a set of sampling or interpolation 

and the behavior of certain of the eigenvalues introduced in the last section. We may 

perhaps account intuitively for this connection by viewing both the eigenvalues and 

the counting functions as describing the number of functions of ]~ (S) which are in a sense 

independent and well-concentrated on a given set. 

LE~MA 2. Let S be a bounded set and A a set o/ sampling /or B(S), with separation d 

and counting ]unction n. Let I be any compact set, and I + be the set o] points whose distance 

to I is less than d/2. Then ~n(i+)(S, I )<~ < 1, where ~ depends on S and A but not on I. 

Pro@ We choose h(y) ELS(R N) so that  h(y) vanishes for [y[ '  ~d/2 and its Fourier trans- 

form Th satisfies [ Th I ~> 1 for x E S. Such a choice is possible since Fourier transforms of 

functions supported on ly l '<d/2 are uniformly dense in continuous functions on any 

bounded set. Given / E B(S) we form 

g(x) = (2z) -Nj2 ~ / ( y ) h ( x - y ) d y =  (2ze) -N~s f / ( y )h ( x - y )dy ,  (8) 
J RN j ix-yl ,<d~! s 

whence Tg = (T/)(Th), so that  g E B(S). Since T] vanishes outside S, we find by Parseval's 

theorem and the definition of h 

Ilgll s = II Tgll s = II (T/)(Th)ii s 1> II TIlL s = II/ll ~, ( 9 )  

and by Schwarz's inequality applied to (8) 

I g(x) I s < (2~)-NIl h ll~f~=, ~a'< ~,s I / ( Y ) I S d Y  �9 (10) 

Finally, by definition of A, since gE B(S), 

Ilgl] s ~< K ~aeA Ig(2)I s. (11) 

Now let C be the subspace of L"~(R ~) spanned b y  the functions h(2 -x )  for 2EA N I + ;  

because these functions are all orthogonal, the dimension of C is n(I+) .  I f / E  B(S) and 

/J-C, we see from (8) that  g(2) =0  for 2EA N I + .  Thereupon, combining (9), (11), and (10), 

< K(2~) - ' i ihn l~  5: ,o~.~, ,§  ~ " I / (y l l 'dy  
J ly-).l'<d/2 



44 H.J .  LANDAU 

hence II D,/II ~/lllll ~ < 1 - (2=VK-1I IhI I -~ = ~  < 1. App ly ing  Lemma 1 (vii), we conclude tha t  

2~(z+)(S, I)~<2<1. The constant 7 depends on S and A since K and Ilhll do, but  does 

not depend on I.  Lemma 2 is established. 

L ~ . ~  3. Let S be a bounded set and A a set o/ interpolation /or B(S), with separation 

d and counting/unction n. Let I be any compact set, and I -  be the set o/points whose distance 

to the complement o / I  exceeds d/2. Then ~(~_)_~(S, I)~>5>0, where ~ depends on S and A 

but not on I. 

Proo/. Let  h be the function introduced in Lemma 2. If g E B(S), choosing / to be the 

function of B(S) whose Fourier transform is (Tg)/(Th) yields (8), whereupon from (10) 

and (9), ~ A  [g(~) [2 ~< (2~)-N[]h]]2]]/[]2 ~ (2~)-N]]hI[2[[g[]2. Consequently, whenever A is uni- 

formly discrete, the mapping M given by ]-~{/(Z)}~A is a bounded transformation of 

B(S) into 12. Now let ~~ be the subspace of B(S) consisting of all / E B(S) which vanish 

at the points of A. Schwarz's inequality and Parseval's theorem applied to the representa- 

tion of /E B(S) as the inverse transform of its Fourier transform show that  [ / ( y ) [ ~  

2z~-Nm(S)ll/[I 2, hence in B(S) convergence in norm implies nniform convergence, so that  

E~ is a closed subspace. We denote by E(S) the orthogonM complement in B(S) of 

E~ and observe that  A is a set of interpolation also for E(S); thus M effects a one-to-one 

linear mapping of E(S) onto 12. By a theorem of Banach [4, p. 18], this mapping has a 

bounded inverse, hence there exists a constant K satisfying 

[[g ][2 ~< K Z~A I g(~) ]e (12) 

for every g E E(S). 

For each ~EA, let q~x(x)E~(S) be the function whose value is I at ~ and 0 at every 

other point of A; these functions are linearly independent. As above, we construct ~va E B(S) 

so that  

~(x)  = (2~)-N/~ t" ~v~(y) h(x - y) dy; (13) 
jp~v 

the ~ are likewise linearly independent. We let C be the subspace of B(S) spanned by the 

functions y~ for ~EA N 1 - ;  the dimension of C is then n ( I - ) .  Now g iven /EC,  we form 

the function g of (8), whence by definition of I -  and (10), 

J lY-~l'<dl2 

But by (13), g is a linear combination of the ~ ,  hence is in E(S), so combining (14), (12), 

and (9) we find, f o r / E C ,  IiDz/I[2/IJ/ll2>~(2~)NK-~llhll-==&>o. Applying Lemma 1 (viii), 
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we conclude that  ~n(i_)_l(S, I)~(~)0. The constant ~ depends on S and A since K and 

Ilhll~ do, but  does not depend on 1. Lemma 3 is established. 

Taken together, Lemmas 2 and 3 may  be exploited in two ways. When applied to 

uniformly distributed sets A which are known to be sets of sampling or interpolation for 

B(S), they give bounds on certain eigenvalues of BsDzBs; some of these results were 

developed in [3]. With this information, they may  in turn be used to compare the behavior 

of arbi trary sets of sampling or interpolation with tha t  of known ones. 

A special case 

T ~ E o n ~ M  1. Let S be the union o / a  finite number el intervals in R 1, and A be a set 

o/sampling/or ~( S). With I the unit interval centered at the origin, set n-(r) = m i n ~  n~ n( r I + ~). 

Then 
n-(r) >~ (2xl)-lm(S) r -- A log + r - B, 

where the constants A and B depend on S and A but not on r. 

Proo]. Let ~ be an interval of length r such tha t  n-(r) =n(5). Since 5 is a single interval, 

n(~ + ) ~  n(5)+ 2, hence by  Lemma 1 (i) and Lemma 2 

~n(~)+~(S, rI) < ~n(~+)(S, 5) ~< 7 < 1, (15) 

with 7 independent of r. 

Suppose S to consist of p disjoint intervals S 1 ... . .  S~; denoting by  li the length of St, 

we have ~l~=m(S). By Lemma 1 (ii) and (i), ,~k(S, rI)=~k(rI,  S)=2k(2x~I, 2~-1rS). ~ o w  

the value of a function /E B(2zI) at  an integer x = - k  coincides with the kth Fourier 

coefficient of T]; hence by  the Parseval and Riesz-Fischer theorems, the set A* consisting 

of the integers is a set both of sampling and interpolation for B(2zI).  The set 27f i r s  

consists of p disjoint intervals; it is not hard to see tha t  the number  of integers contained 

in {(2~-1rS) -} exceeds (2~) - l rm(S) -2p  [3, Lemma 1]. We may  now apply Lemma 3 

with A* to conclude 

~[2z-lrm(S)]_2p_l(S, rI)  = ~[2n-lrm(s)]_2p_l(2:7~I , 2 y C l r S )  ~ ~ > 0, (16) 

where 5 is independent of r, and [~] denotes the integer par t  of ~. 

To be able to compare the indices of the eigenvalues appearing in (15) and (16), we 

require an estimate of the number  of ~(S,  rI) which are not near 1 or near 0. Accordingly, 

we consider 
J(S, rI) = ~ 2 k ( S ,  rI){1--~k(S, rI)}. 

By Lemma 1 (iii) and (iv), 
p 

J(S, rI) <~ ( 2 z ) - l m ( S ) r -  ~ ~k~(S , ,  rI), 
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and  since S~ a n d  rI  are  in te rva l s  of lengths  l~ and  r we m a y  a p p l y  L e m m a  1 (v), wi th  

1V = 1, to  ob ta in  

J(S, rI) <~ (2g)- lm(S)  r - ~ ( 2 z ) - l r l ~  + g-~ ~ l o g  + rl~ + p < A ' l o g  + r + B ' ,  

where A '  a n d  B' are  cons tan t s  depending  only  on S. Now if n (5 )+  2 ~< [2n-lrm(S)]- 2 p -  1, 

t hen  for eve ry  k in the  range  n(5)+2<-~k<.[2~-lrm(S)]-2p-1, we see b y  (15) and  (16) 

t h a t  0 <0 <~k(S, rI)~<7 < 1, so t h a t  the  con t r ibu t ion  to  J f rom each of these e igenyalues  

is a t  leas t  ~ =min{~(1 - ~ ) ,  ~ ( 1 - 7 ) }  >O. Hence  

{[2~-lrm(S)] - 2p - n(5) - 2}~ ~< J(S, rI) <~ A'log + r + B ' ,  

o r  
' B '  

n(5) 1> (2g) - lm(S)  r - A '  log + r - - -  - 21o - 3. 

I f  n ( 5 ) + 2  >[2z - l rm(S ) ] -2p -1  the  above  inequa l i t y  holds a f o r t i o r i .  Se t t ing  A =A' /a  

and  B = B ' / a + 2 p + 3 ,  and  using the  def ini t ion of 5, we ob ta in  

n-(r) >~ (2xe)-lm(S) r - A log + r - B, 

wi th  cons tan ts  A and  B depending  on S and  A b u t  no t  on r. Theorem 1 is es tabl ished.  

TH]~OR~M 2. Let S be the union o] a/ ini te  number o/intervals in R 1, and A be a 

set o/ interpolation /or B(S). With I the unit interval centered at the origin, set n+(r)= 

m a x ~  n,n(rI +T). Then 

n+(r) <~ (2xe)-~m(S) r + Alog+ r + B, 

where the constants A and B depend on S and A but not on r. 

Proo/. W e  le t  5 be an  in te rva l  of l ength  r such t h a t  n+(r)=n(5), and  follow the  proof  

of Theorem 1, in te rchanging  the  roles of L e m m a s  2 and  3. Thus  since 5 is a single in terva l ,  

n ( 5 - )  >~n(5)-2 ,  so t h a t  ~=(~)-a(S, r l )>~ >0 .  Then since the  integers  are a set of sampl ing  

for B(2zI )  and  since the i r  n u m b e r  in { (2~-1rS)+}  can easi ly  be shown no t  to  exceed 

[ ( 2~)-lrm(S) ] + 2p we see t h a t  X~2~-,r m(s)~+2p(S, r I) ~<7 < 1. Then  if [2z-lrm(S) ] + 2p <~ n( 5) -: 3, 

we again  consider  t he  con t r ibu t ion  to  J(S, rI) of t he  i n t e rmed ia t e  eigenvalues,  ob ta in ing  

n(5) <~ (27e)-lrm(S) + A'/alog +r + B'/o~ + 2p + 2, an  inequa l i t y  which  holds a f o r t i o r i  if 

[2z-lrm(S)] + 2p > n(5) - 3. Le t t i ng  A = A'/cr and  B = B'/o~ + 2p + 1 we f ind  

n+(r) <~ (2~)-1m(S) r + A l o g  + r + B, 

wi th  cons tants  A and  B depending  on S and  A bu t  no t  on r. Theorem 2 is es tabl ished.  
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Upper and lower density 

In  R 1 we measured density of a uniformly discrete set A in terms of the functions 

n~-+(r) = n+-(rI), with I the unit interval. In  more than  one dimension, the choice of I presents 

an additional element of freedom: corresponding to each I of measure 1 we could consider 

n+(rI) and n-(rI),  defined as the largest and,smallest number  of points of A to be found 

in a translate of  rI, and, following Beurling, speak of upper and lower uniform densities 

of A, 

D+(I, h)=l imsupr_ , :cn+(r l ) / r  N and D-(I ,  A ) = l i m i n f r _ ~ n - ( r I ) / r  N. 

Our first aim is to show that,  under mild regularity conditions, these densities do not 

depend on I ;  this will entitle us to refer unambiguously to the upper and lower uniform 

densities of A, and to evaluate them by  means of cubes. 

LEM~A 4. In  R N, let A be a uni]ormly discrete set, and U be the closed unit cube with 

sides parallel to the coordinate axes, centered at the origin. I / I  is a compact set o/measure 1 

whose boundary has measure O, then 

D+(I, A) = D+(U, A) and D-( I ,  A) = D-(U, A). 

Proo/. Let I '  and U' denote the interiors of I and U, respectively; they are open 

sets of measure 1. Since re(I)=1, I may  be covered by  a countable union of scaled trans- 

lates of U', having measure arbitrarily close to 1. Because I is compact, there exists a 

finite subcovering, each cube of which may, at  the cost of another arbitrarily small in- 

crease of measure, be included in a cube similarly oriented but with edge of rational length 

and center with rational coordinates. Since any finite number  of rationals may  be written 

with a common denominator, the closure of this covering may  be expressed as the union 

of a finite number  of scaled translates of U, whose interiors are disjoint. The same con- 

struction applied to the complement, inside some large cube, of I' ,  followed by  comple- 

mentation, shows tha t  there exist in I '  finite collections of scaled translates of U having 

disjoint interiors and total  measure arbitrarily close to m ( I ' ) = l .  Contracting each of 

these cubes by  a sufficiently small amount  yields a disjoint union of scaled translates of 

U, contained in I ,  with measure arbitrarily close to 1. 

We may  similarly approximate U from inside and outside by finite unions of sealed 

translates of I .  ~or  since I is compact, there exists 9 > 0  such tha t  a translate of 9 I  may  

be contained in U'; the remainder R 1 of U' is an open set of measure 1 - 9  N, having 

compact closure -~1 and boundary of measure 0. With ~ <  1, by  the last construction we 
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may find in R I a finite union of disjoint scaled translates of U, of total measure ~(I _~N); 

taking from within each of these cubes the correspondingly scaled translate of ~I, we 

obtain a finite disjoint collection of the latter of total measure ~N~(l _~N), and a remaining 

open set R~ c U' of measure (1 - zioN) (1 __~N), with R 2 compact and m(R~) =m(R~). I terat-  

ing this construction, we find tha t  Rk, the subset of U' left uncovered at  the kth step, is 

an open set with compact closure Rk, and m(Rk)=m(Rk)=(1--~N)(1--zt~N) ~-1, which 

approaches 0 as k-~oo. Hence we m a y  find in U a finite union of disjoint scaled translates 

of I ,  with measure arbitrarily close to 1. To cover U, we cover Rk, as in the first par t  of 

the argument,  by a finite union of scaled translates of U, having disjoint interiors and 

total  measure m'  arbitrarily close to m(-~k). Let  a > 0  be such tha t  I '  contains a translate 

of aU; since m(I') = 1, the above union of cubes can be included in a finite union of scaled 

translates of I ,  the sum of whose measures is m'/o "v. Thus U is included in a finite union 

of scaled translates of I ,  the sum of whose measures is 1--m(Rk) +m'/o Jr, which can be 

made arbitrarily close to i by  taking m(Rk) and m'  sufficiently small. 

Now given s >0,  let {~ U +T~} form a finite collection of disjoint subsets of I having 

total  measure ~ ~ > 1 - s. Then n-(rI) >~ ~ n - ( r ~  U), so tha t  

~-(r I )  r -~ >~ ~ - ( r e ,  ~Y) (~e~)-~e~, 

whence D-(I, A)>~D-(U, A ) ( 1 - e ) .  Since e is arbitrary, D-(I, A)~>D-(U, A), and the 

same argument with the roles of U and I interchanged shows the reverse inequality; 

thus D-(I, A ) =  D-(U, A). The analogous argument,  using coverings of I and U by  scaled 

translates of U and I ,  respectively, shows tha t  D+(I, A)=D+(U,  A). Lemma 4 is estab- 

lished. 

We remark tha t  for integral k and any r, n+(krU)<<.kNn+(rU) and n-(krU)>1 kNn-(rU); 

it follows tha t  the quantities ni(rU)r -N appearing in the definitions of D+(U, A) both 

have limits as r-*oo. We henceforth abbreviate these densities by  D+(A). 

The general case 

When S E R  • is the union of a finite number  of disjoint scaled translates of U, the 

proofs of Theorems 1 and 2 can be repeated without change to yield bounds of the form 

n-(r U) >i (2~)-Nm(S) r N-  A r  v-1 log + r - B 

and n+(rU) <<. (2~r)-Nm(S) r N + Ar ~-1 log + r + B 

for sets of sampling and interpolation, respectively. For more general sets S we apply a 

process of approximation to obtain asymptotic  versions of these bounds, which we express 

in terms of the upper and lower density. 
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T ~ O R E M  3. Let S be a set in R N and A be a set o/sampling ]or B(S). Then D-(A) >~ 

(2~)-~m(S). 

Proo[. I t  is sufficient to prove the theorem for compact sets S. For every S has com- 

pact subsets S= with m(S~) arbitrarily close to re(S) (arbitrarily large when m(S)= co), 

and A remains a set of sampling for B(S~). Applying the result to Sn we find D-(A)>i 

(2~)-Nm(S=), whence, letting n-+ co, D-(A)>~ (2z)-Nm(S). 

Let  ~ /be  a translate of rU such that  

n(ll) = n-(rU) = min, en~ n(rU +T). 

By Lemma 1 (i) and Lemma 2, 

~(u+)(S, rU) = ~(u+)(S, ll) <-y < 1, (17) 

with y independent of r. By Lemma 1 (ii) and (i), for all k, 

~k(S, rU) = ~k(rU, S) = ~k(2~U, 2~-1r3): (18) 

Let  A* be the lattice of points in R N all of whose coordinates are integers, and n* be 

the counting function of A*. Exact ly as in R 1, A* is a set of sampling and interpolation 

for B(2~U), but  we cannot obtain a serviceable lower bound for ,~k(S, rU) directly from 

Lemma 3, since (2z-itS) - may be empty. Instead, given e >0,  we cover S, as in the proof 

of Lemma 4, by a finite collection S~ of scaled translates of U, having disjoint interiors 

and m(S~) <re(S) +e. By  (18) and Lemma 3 applied to A* and B(2~U), 

~n*~(~-~rs~)-~-l(S~, rU) >~ 6 > 0 (19) 

with ~ independent of r. Let  J(S~, rU)=~Xk(S~,  rU){1-2k(Se, rU)}, and let M be the 

number of eigenvalues ~(S~, rU) which exceed (1 §  If ~he index of the eigenvalue of 

(19) exceeds M, then for every k between the two, the contribution to J(Sc, rU) of the 

corresponding 2k(S~, rU) is at least a=min{8(1 -(~), (1 -y)2/4} >0; thus 

n* {(2a~-lrS~) - } - M <~o:-lJ(S~, rU), (20) 

an inequality which holds afor t ior i  in the contrary case. Estimating J(S~, rU) as in the 

proof of Theorem 1, we find J(S~, rU) =o(r N) as r---> ~ .  Since the number of integer points 

in an interval differs by no more than 1 from the length of the interval, the estimate 

n*{(rQ)-}=rNm(Q)+o(r N) is valid when Q is one of the constituent cubes of S~, hence 

also for 2~r-lS~. Thus from (20), 

M ~> (2~)-NrNm(S~) -- o(rN). (21) 

4 -- 662903.  Acta  mathematica. 117. I m p r l m 6  le 7 f6vrier 1967. 
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:Now by Lemma 1 (vi) and (iii) 

2k(S~, rU)--2k(S, rU) >10 for all k, 

~k {~k(s~, r u)  - ~ ( s ,  r U) } = (2~)-~r~(~(S~) - re(S)) < (2~) -~r~ .  (22) 

I f  M exceeds the index of the eigenvalue of (17), then for every k between the two, the 

contribution of 2k(S~, rU)-2k(S, rU) to the left-hand side of (22) exceeds ( 1 - ~ ) / 2 > 0 ,  

hence from (22) 
M - n ( ~  + ) ~< (2~)-NrNe2 (1 -- 7)-1, 

an inequality which holds a for t ior i  in the contrary case. Finally, n ( ~  + )  and n(~)  differ 

by  the number  of points of A lying outside ~ but  within d/2 of ~ ;  spheres of radius d/2 

about each such point form a collection of disjoint spheres, each of fixed volume sa, all 

contained in the set of points within d of the boundary of ~ .  Denoting by Va(r) the volume 

of the lat ter  set, we see tha t  Ve(r)=o(r N) and tha t  Va(r)/se serves as an upper bound for 

n ( ~  §  - n ( ~ ) .  Thus from (21) and (23) 

n+(r U) = n(~) >~ (2:z)-lVrN {m(S~) -- 2e(1 _~)-1) _ o(rN), 

whence D-(A) >/(2u)-~{m(S,) -2e(I  -~)-1}, and since e > 0 is arbitrary, D-(A) ~> (2u)-~m(S). 

Theorem 3 is established. 

T~EOREM 4. Let S be a bounded set in R N and A a set o/ interpolation /or B(S). Then 

D+(A) < (2eO-Nm(S). 

Proo]. I t  is sufficient to prove this theorem for open sets S, since every bounded S 

may  be approximated in measure from the outside by  bounded open sets Sn and A remains 

a set of interpolation for B(Sn). Let ~ be a translate of rU such tha t  n ( ~ ) = n + ( r U ) =  

max~R~ n(rU§ By Lemma 1 (i) and Lemma 3, 

2~.~(U_)_I(S , rU) = 2n(N_)_I(S, r ~ '5 > 0 ,  

with (3 independent of r. Let  J(S, r U ) =  ~2~(S, rU){1-2k(S, rU)}. Given ~ < 1, let M =M(~)  

denote the number  of eigenvalues 2k(S, rU) which exceed ~. I f  the index of the eigenvalue 

of (24) exceeds M, then for every k between the two, the contribution to J(S, rU) of the 

corresponding 2k(S, rU) is at  least 7=min{~(1 -~) ,  ~(1 - ~ ) }  >0; thus 

n(~ - ) - M <~ ,-IJ(S,  r U), (25) 

an inequality which holds a fortiori in the contrary case. To estimate J(S, rU) for an open 

set S, given ~ > 0 we choose, as in the proof of Lemma 4, a finite collection S~ of disjoint 
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scaled translates of U with S ~  S and m(S~)>m(S)-e.  Evaluating J(S~, rU) as in the 

proof of Theorem 1, we find J(S~, rU) =o(r N) as r--> c~. Then by Lemma 1 (iv) and (iii) 

J(S, rU) = ~k~k(S, rU)-- ~k~(S ,  rU) < ~k~k(S, r U ) -  ~k~'(Se, rU) 

= ~k~k(S, rU)-- ~k~k(Se, rU) + J(S~, rU) 

= (re(S)--m(S~)}r2V§247 

hence, since ~ is arbitrary, J(S, rU)=o(rN). Now again by Lemma 1 (iii) 

M <~ ~u,~k(S, r U) = (2~)-Nm(S)r ~. 

Finally, as in the proof of Theorem 3, n ( ~ ) - n ( ~ - ) = o ( r N ) .  Introducing these estimates 

into (25), we find 
n+(r U) = n(~) < (27~)-Nm(S)~-lrN + o(rN), 

whence D+(A) < (2z)-Nm(S)~-I, and since ~] < 1 is arbitrary, D+(A) ~< (2z)-Nm(S). Theorem 

4 is established. 

The conjecture of Beurling 

We may now establish Beurling's conjecture regarding the density of sets of balayage. 

For this section, S will be assumed to be a compact set in R N, and to satisfy conditions 

(~) and (fl) stated in the introduction. We base ourselves on the following three fundamen- 

tal theorems, proved by Beurling in the course of his lectures. 

T H E O ~  C. Let Sd denote the set o/all points whose distance to S does not exceed d. 

1t/balayage is possible/or S and A, there exists d > 0 such that balayage is possible also/or 

Sd and A. 

THEOR]~M D. I/  balayage is possible /or S and A, there exists a uni/ormly discrete: 

subset A o o/ A such that balayage is possible also/or S and A o. 

TH~ OREM E. I /A0  is uni/ormly discrete and balayage is possible/or S and Ao, then Ao~ 

is a set o/ sampling /or B(S). 

Since m(Sd)> m(S), the next  result is an immediate consequence of Theorem 3. 

TH~ORWM 5. I] balayage is possible ]or S and A, then A contains a uni/ormly discrete 

subset Ao with D-(Ao) > (2z)-~m(S). 
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