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Chapter 0O

Introduction

What is mathematical modeling (or simply modeling)? Modeling is a process that uses
math to represent, analyze, make predictions, or otherwise provide insight into

real-world phenomena.

1. Define the problem statement:
(a) A concise statement of the problem will tell you what your model will measure
or predict.
(b) Focus and define subjective words (so that they are quantifiable)
(c¢) Explore with research and brainstorming.
(d) Brainstorm like you have access to any and all data.
(e) Assign a team member to record every idea.

(f) Visual diagrams can be a powerful tool to help structure.
)

(g) Keep an open mind.

2. Making assumptions: After defining the problem statement, you probably will find
that your problem is still too complicated. Sharpen your focus by making assumptions.
These basic conjectures allow you to reduce the number of factors affecting your model

helping you decide what is important.
(a) Assumptions come from brainstorming.

(b) Preliminary research will help you make assumptions.

(¢) In the absence of relevant data, it is reasonable to make (and justify) your as-

sumptions.
(d) Assumptions develop as you move through the modeling process.
3. Defining variables: The variables you need to develop your solution come from the

perspective of the problem statement. Dependent variables are often called outputs

that represent the information you seek. Independent variables, also known as inputs,



represent quantities you know the value of but may change. Fixed model parameters
represent constants that remain the same.
(a) Your problem statement will define the output.

(b) Initial brainstorming should give clues to independent, dependent, and fixed

model parameters.

(c) Keep track of the units of measurement you are using (because they can reveal

relationship between variables - dimensional analysis)

(d) You may need to do additional research or make new assumptions to find values

of parameters.

(e) Sub models or multiple models may be needed to reveal certain model input.

4. Getting a solution: use any math tools and softwares to find a answer to the model

proposed in the previous steps.

5. Analysis: When one gets a solution of a proposed model, one needs to check the

following:

(a) Is the magnitude of the answer reasonable?
(b) Does the model behave as expected?

(c) Can one validate the model?
You may also determine if the model is acceptable by doing the following:

(a) List the model’s strengths and weaknesses/limitations.
(b) Determine your model’s sensitivity to parameters and assumptions.

(c¢) Consider potential improvements.

1



Chapter 1

Dimensional Analysis ( & % /%)=t & 47 )

One of the basic techniques useful in the early stage of modeling problems is the analysis
of the relevant quantities and how they relate to each other in a dimensional way. The
relationship among the variables must have dimensional homogeneity which simply
says that variables with different dimensions cannot be identical (or in short, apples cannot

equal oranges). These observations form the basis of the subject known as dimensional

analysts.
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Remark 1.1. We distinguish the word unit ( # =) from the word dimension (& % /%]
=X ) . By units we mean specific physical units like seconds, hours, days, and years; all of
these units have dimensions of time. Similarly, grams, kilograms, pounds, and so on are
units of the dimension mass.
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For a given physical quantity ¢, we use [q] to denote the dimension of ¢, and use L, M,
T to denote the dimension of length, mass, and time, respectively. A quantity which does

not change after changing unit of every fundamental dimension is called dimensionless.



1.1 Dimensional Methods

The cornerstone result in dimensional analysis is known as the Pi theorem which states
that if there is a physical law which provides a relation among several dimensioned physical
quantities, then there is an equivalent law that can be expressed as a relation among certain

dimensionless quantities.

Question: What does it mean by a relation among several dimensioned physical quantities?

Example 1.2. The air resistance F' a biker encounters appears to be related to the speed

v and the cross-sectional area A, as well as the air density p. Therefore,

F = ¢(:07 Aa U)

or equivalently,

f(vaaAav) :F_¢(p7A7U) =0.

Example 1.3. Suppose that we want to compute the yield of the first atomic explosion
after viewing photographs of the spread of the fireball. In such an explosion a large amount
of energy FE is released in a short time in a region small enough to be considered a point.
From the center of the explosion a strong shock wave spreads outwards; the pressure behind
the shock is on the order of hundreds of thousands of atmospheres, far greater than the
ambient air pressure whose magnitude can be accordingly neglected in the early stages of
the explosion. It is plausible that there is a relation between the radius of the blast wave
front r, time ¢, the initial air density p, and the energy released E. Hence, we assume there
is a physical law

f(t77a7p7E>:O

which provides a relationship among these quantities.

Suppose that m quantities ¢q, ga, - - - , ¢, are dimensioned quantities that are expressed
in terms of certain selected fundamental dimensions Lq, Lo, --- , L,, where n < m. The

dimensions of ¢;, denoted by [¢;], can be written in terms of the fundamental dimensions as
[Qi] — L(llliLg% . Lng

for some exponents ay;, ag;, - -+, an;. If [¢;] = 1, then ¢; is said to be dimensionless. The

n X m matrix

aix - Aim
a1 - A2m

(1.1)
(0775 B Anm

containing the exponents is called the dimension matrixz. The entries in the i-th column

give the exponents for ¢; in terms of the powers of Ly, -, L,.



Any fundamental dimension L; has the property that its units can be changed upon
multiplication by the appropriate conversion factor A; > 0 to obtain L; in a new system of
units. We write L; = M\;L;. The units of derived quantities ¢ can be changed in a similar
fashion. If

lq) = LY LS - Ly (1.2)
then
q= AR Mg (1.3)

gives ¢ in the new system of units.

Definition 1.4. Let ¢1,¢o, - , ¢ be dimensioned quantities. The physical law

f(Q17Q27"' 7(]m) =0 (14)

is said to be unit free if for all choices of real numbers A\, ---, A, with A\; > 0 for all
1 <i<n, we have f(q1, -+ ,qn) = 0 if and only if f(q, - ,Gn) = 0, where ¢; and g, are
related by (1.3) if ¢; obeys (1.2).

Theorem 1.5 (Pi Theorem). Let

fla, g2, 5 qm) =0 (1.5)

be a unit free physical law that relates the dimensioned quantities q1,qo, -+ ,qm. Let Ly, Lo,

-+, Ly, where n < m, be fundamental dimensions with
@) = LLg L, =1 m,

and let v = rank(D), where D is the dimension matriz given by (1.1). Then there exist (m—r)
independent dimensionless quantities my, mo, -+ , Ty, that can be formed fromq1,- - , ¢ and

the physical law (1.5) is equivalent to an equation
F(ﬂ-la"' 77Tm—7") =0

expressed only in terms of the dimensionless quantities.

Proof. Let D = [a;j]nxm be the dimension matrix and m = ¢7"' ¢35 - - - g5 be a dimensionless
quantities. Then with a denoting the vector (aq, -+, a,,)T, we have

Da=0,

where 0 denotes the zero vector in R"™. Since rank(D) = r, without loss of generality we
can assume that the first » column of D is linearly independent; thus aq,- - ,a, can be

expressed in terms of (@41, Qpya, -+, Q). In fact,
D, 1:r)a(l:r)=—-D(,r+1:m)a(r+1:m),

3



where D(:,i : j) denotes the matrix formed by the i-th to j-th columns of D, and a(i : j)
denotes the (column) vector formed by the i-th to j-th components of a. Assume that the

vector a(1 : r) is given by

(€3] bii bz - bl(m—r) Qi1
Qg _ bor bay - b2(m—r) Qg2
Ay brl br? co br(mfr) Am

Then 7;, 1 < j < m —r, defined by (with o,y = dy; for 1 <€ <m —r)

b1y by by
T =41 G 4" Gryj

are dimensionless quantities (so change of units will not change the value of 7;). Define

G(Qla e, T, 77rm—r)

—br1 —b12 —bra “bim—r)

— 7b'r'm,77‘
= flq, qa, s Gy MGy g g R g Ty =y

. qr
Then G(q1, - ,qr, 1, Tm—r) = 0 if and only if f(q1, - ,¢n) = 0. Moreover, since
flar,q2, - @) = 0 is unit free, G(q1,- -+ ,Gr, 71, -+ , Tm—r) = 0 is unit free.

Now, since G(q1, " ,qr,T1,"* ,Tm—r) = 0 is unit free, for any choice of conversion

factors A\q,--- , A, > 0 and

— ai;\ a2, i .
G=A"N7 N, 1<j<r,

we must have G(q1,- -+ , G, T, ,Tm—r) = 0. Since D(:,1 : r) consists of r linearly inde-
pendent column vectors and n = r, there exist Ay, -+, A\, (might not be unique if n > r)
such that
aipr Q21 " QApl log Ay —log ¢
Qiz Q22 - Qp2 log Az —log ¢
. . = . (1.6)
a1, Qop <+ Qpy log A\, —log g,

Choosing Ay, - -+, A, satisfying (1.6). Then in the new system of units g; = 1; thus in the
new system of units,
F(ﬂ-lf"77Tmfr>EG(17"'7177T17"'77Tm77"):0' t

Example 1.6 (Example 1.2 - revisit). Since
[F]:MLT72, [p]:ML%S, [A]:Lz, v=LT",

the dimension matrix (with the order of dimension 7', L, M) is

-2 0 0 -1
1 -3 2 1
1 1 0 0



The rank of the dimension matrix above is 3; thus there is only one dimensionless quantity
that can be formed from F,p, A,v. Suppose that 7 = F® p*A®y* is a dimensionless

quantity. Then
aq

2 0 0 -1 0

1 =32 1|1* =lo

1 1 0 0| 0
Oy

2. Therefore, an equivalent physical

which gives a dimensionless quantity @ = Fp~tA~to~
law is given by g(7) = 0 which shows that 7 = k (or equivalently, F' = kpAv?) for some

(dimensionless) constant k.

Example 1.7 (Example 1.3 - revisit). Since

t]=T, [l=L, [pl=ML", E=MLT",

The rank of the dimension matrix above is clearly 3; thus there is only one dimensionless
quantity that can be formed from r,r, p, E. Suppose that m = t*1r®2p® F* is a dimension-

less quantity. Then

10 0 -2 31 0

01—32a2:0

00 1 1 3 0
Oy

which gives a dimensionless quantity © = t>r~°p~!E. Therefore, an equivalent physical
law is given by F(w) = 0 which shows that 7 = k (or equivalently, t*E = kpr®) for some

(dimensionless) constant k.

Example 1.8. At time ¢t = 0 an amount of heat energy e, concentrated at a point in space,
is allowed to diffuse outward into a region with temperature zero. If r denotes the radial
distance from the source and t is time, the problem is to determine the temperature u as a
function of r and t.

Clearly the temperature u depends on ¢, r and e. Moreover, it is “reasonable” that the
“thermal diffusivity” k with dimension length-squared per time and the “heat capacity” ¢
of the region, with dimension energy per degree per volume, play a role. Therefore, the
physical law is given by

flt,ryu,e k,c)=0.

This physical law has 6 dimensioned quantities



The dimension matrix (with the order of dimension 7', L, ©, F) is

1000 -1 O
0100 2 =3
0010 0 -1
0001 0 1

It is easy to see that the dimension matrix has rank 4; thus by the Pi theorem there
are 2 dimensionless quantities that can be formed from ¢,r,u,e,c, k. To see how we form

dimensionless quantities, we assume that the combination
[t“lro‘zu"“eo“‘ko%c%} =1.

In other words,

aq
1000 -1 0 oy 0
0100 2 =3f|ag| |O
0010 0 —=1|lagl 1|0
0001 0 1 o 0
which shows that a; = a5, a3 = —ay = ag, and ay = —2a5 + 3ag. Therefore, two
dimensionless quantities can be formed (using (a5, 6) = (—%, 0) or (g, 1)) as
T = L and Ty = E(kzt)%

Vkt e

and an equivalent physical law is given by F'(m,m) = 0 which “implies” that m = g(m)

for some function g. Therefore, the temperature u can be expressed by

‘e c(k:t)%g()'

Example 1.9. In this example we determine the relation between the power P that must
be applied to keep a ship of length ¢ moving at a constant speed V. Assume that P depends
on the density of water g, the acceleration due to gravity g, and the viscosity of water v (in

length-squared per time), as well as ¢ and V. The physical law is given by
f(P7 97971/76"/) = 0'

Suppose that the fundamental dimension is the time 7', the length L, and the mass M.
Then

[P]= ML*T3, [o)= ML, [g)=LT?, v]=L*T", {]=L and [V]=LT".

Therefore, the dimension matrix (in the order T, L, M) is

-3 0 -2 -1
D=2 -3 1 2
11 0 0



which has rank 3. By the II Theorem, there are three dimensionless quantities 7, mo and 73
and the physical law f(P, 0,q,v,¢,V) = 0 is equivalent to F'(m,m,m3) = 0 (or sometimes
™ = F(7T2,7T3)).

If m = P p*2 g3V is dimensionless, then

aq
3 0 -2 —1 0 —17| ™ 0
2 -3 1 2 1 1 33 —1o0
1 1 0 0 0 0 4 0
0%
_a6_
Three choices of (aq,--- ,ag) are

(1,-1,0,0,-2, —3), (0,0,—%,0,—%,1) and  (0,0,0,—1,1,1)

which implies that the physical law is equivalent to
P p(
o2V T \\g' v )

The two dimensionless quantities Lg and v are called the Froude number Fr and is the
v

Reynolds number Re, respectively, so that the equality above can be rewritten as

P
W - F(FI‘, Re) .
Example 1.10. Suppose that at time ¢ = 0 an object of mass m is given a vertical upward
velocity V' from the surface of a spherical planet (with mass M and radius R). The height

h of the object is a function of ¢ that obeys
d?*h GMm

m = -

dt? (R+h)?>

M
The gravitational acceleration g on the surface of the planet is given by g = C;%Q; thus
including the initial data,

d*h R

@ - mepp  MO=0 HO=V. (17)

The physical law of the system above can be written as
ft,h,R,V,g) =0,
where the five dimensioned quantities have dimension
t]=T, [h]=L, [Rl=L, [V]=LT' and [¢g]=LT?,
and the dimension matrix (with the order of dimension T', L) is given by

100 -1 -2
011 1 1



If 7 =t h*2 RV ¢* is a dimensionless quantity, then

Qg
100 —1 =212 o
011 1 1 1o
Oy
Qs
or equivalently, ay = a4 + 2a5 and as = —(a3 + a4 + a5). Since the rank of the dimen-
sion matrix is 2 there are three dimensionless quantities that can be formed: we choose
(g, ay, a5) = (—1,0,0),(—1,1,0) and ( 3 ,—%) to form
h tV V
==, Ty = —, My = —F—.
1= 3 2= 3 ViR

Therefore, the Pi theorem “implies” that there exists a function F' such that m = F(my, 73)

. h VoV
t
= F( )

R ‘R’ \gR’"
Suppose that at ¢ = t,,.x the object reaches its maximum height. Intuitively #,,., should
depends on three dimensional quantities g, R, V. On the other hand, we have h'(tyax) = 0;
thus

, . WV oV GOF eV V
0= h'(tmax) = R% t:tmaxF(E’ \/gR) N Vaﬂ'Q( R’ \/gR) '
t \%4
The above relation “implies” that ——— is a function of —; thus
p GR
tmaXV V
=G(—).
R <\/gR)

1.2 Characteristic Scales and Scaling

The use of “characteristic scales” helps us reduce mathematical model into dimensionless

form.

Example 1.11 (Example 1.10 - revisit). In this example we choose characteristic time scale
t. and length scale /. to recast the ODE (1.7)
d?h o R%g
dt2  (R+h)?’

h(0)=0, R'(0)=V. (1.7)

We note that with dimensionless time ¢ = ¢/t. and dimensionless height h = h/(, (so that
h(t) = ﬂ) ODE (1.7) is equivalent to the dimensionless ODE

d*h 2 1 . . tV
Tz €9T7 h(0)=0, £A'(0)= 0 (1.8)
c Z€h)2 c
(14 2h)
Three dimensioned quantities in (1.7) are

(Rl =L, g =LT* and [V]=LT"'.



Therefore, three relevant time scales are t. = R/V, t. = /R/g or t. = V /g, and two

relevant length scales are ¢, = R or {, = V?/g.
. . . & . e
Define a dimensionless quantity € = = Using these characteristic scales, we reach at

the following dimensionless problems:

1. Let t. = R/V and ¢, = R. Then (1.8) implies that

d*h 1 _ _
— = h(0)=0, h'(0)=1.

2. Let t. = R/V and ¢, = V?/g. Then (1.8) implies that

d?h 1 _ _ 1
QT:—— hO:O h/O:—.
< (1+€h)?’ (0)=0, w(0)=2

3. Let t. = +/R/g and ¢, = R. Then (1.8) implies that

d?h 1 B o
- e M0=0 KO =ve

4. Let t. = +/R/g and . = V?/g. Then (1.8) implies that

d?h 1 1 _
= _ h(0)=0, R'(0)=
7 arap  MO=0. M)

5. Let t.=V /g and {. = R. Then (1.8) implies that
d*h 1

6. Let t. =V /g and ¢, = V?/g. Then (1.8) implies that
d*h 1

iz~ (1t eh)?’ h(0)=0, R'(0)=1.

Suppose that € « 1; that is, V2 is much smaller than gR. In such a case, we are tempted
to delete the terms involving e (or simply setting e = 0) in the scaled problem. Then
only case 3, 5, 6 provide meaningful models; however, only case 6 can provide a reasonable
interpretation of the real phenomena. Therefore, one needs to be very careful about choosing
characteristic scales.

The reason why t. =V /g and (. = V?/g is the correct characteristic scale when

e« 1?

M
When the gravity acceleration is always g (instead of (RGiI—h)Q)’ the rocket takes V/g
2

time to reach its maximum height ‘2/—; thus t. = — is a good choice of the characteristic
g 9

V2, . .
time scale and ¢, = — is a good choice of the characteristic length scale.
g



Example 1.12. Let p = p(t) denote the population of an animal species located in a fixed
region at time ¢. The simplest model of population growth is the classic Malthus model

: . dp . . .
which states that the rate of change of the population dit) is proportional to the population

p, or equivalently
dp
dt

where r is the growth rate, given in dimensions of inverse-time. A more reasonable model,

rp.

called the logistics model, is given by

dp_ D
%—rp(l K)’

where K > 0 is called the carring capacity (with dimension of population). Let 7 = rt, and

% = P. Then 7 and P are dimensionless variables that satisfy

dP
— =P(1-P).
dr ( )
The above ODE is a relation between two dimensionless quantities.
Suppose that an initial condition p(0) = py is imposed on this ODE. Then using P and

7 we have the following dimensionless model

% =P(1-P), P(0)=e, (1.9)

where € = %. On the other hand, there is another way of rewriting

— = 1—- = 0) =
0 rp( K) , p(0)=po
. . . ~ P
into dimensionless form. Let P = p— and 7 = rt. Then we have
0
AP ~ ~ ~
d—:P(l—eP), P(0)=1. (1.10)
-

We note that if € « 1, we tend to let € = 0 and find that (1.10) provides a more reasonable

approximation.

Example 1.13. The Navier-Stokes equation (which we will derive much later) is used to
described the dynamics of fluids such as the air or liquids. Consider incompressible fluids
(which means the density of the fluid under consideration is a constant). Let w(xq, 2, 23,t) =
(u1 (21, T2, w3, 1), ug(x1, T2, T3, 1), ug(z1, T2, T3, t)) and p(z1, z9, x3,t) denote the velocity and
the pressure of the fluid at point (z1,xs,z3) and time ¢, respectively. Then u and p obeys

a system of PDEs; called the incompressible Navier-Stokes equations:

plu + u-Vou) + Vop = pAu, (1.11a)
dive = 0, (1.11b)

10



where p is the density of the fluid, w; denotes the partial derivative of uw w.r.t. ¢, V,p is the

gradient of the pressure function p, p is the dynamical viscosity with dimension of mass per

length per time , and

3
ou ou ou ou
u qu_jzl%a j ul&x1+u26x2+u36x3’
2 0%2u  0%u  0%u 0w
Agu= 2 = A2 2 2
— dr; Jdxy  Jdxy  Jag

Let ¢. denote the characteristic length, and u. denote the characteristic speed (which implies
X

. C . t
that ¢, = £./u, is the characteristic time). Define 7 = o Yy = 7 and
C C

u
(Y1, Y2, Y3, T) = ;(gcyla Leyo, Leys, teT),

c

p
q(y1,y2, Y3, 7) = %(gcyla Ceyo, Leys, teT) .

c

Then with v = ¥ denoting the kinetic viscosity, we have
0

v
v, +v-V,u+Vyq= ﬁAyv,

divyv =0,

eC C
where v- Vv, Ay v and div,v are defined similarly. The dimensionless number Re = :

is called the Reynolds number, and the equations above read

1
v, +v-V,v+V,q= ﬁAyv,

divyv =10.

1.3 Scaling Arguments

In mathematics there are lots of inequalities that involve comparison of integrals of functions
and their derivatives. For example, let 4, (R) denote the collection of all continuously

differentiable functions defined on R that vanish at infinity; that is, if f € % (R), then
fe € (R) and lirp f(x) =0. Then if f € 65 (R) and z € R,

[ rwa=sw  wa [T pwa= s,

—00

Therefore,

|f'(t)] dt = foo If'(t)|dt ¥ febiR),zeR.

—00

T Q0

\f'(@\dﬁf

xT

2f(a)| < |

—00

11



The above inequality then shows that

max | f(z)] < _foo |/ (z)] dx Vfe%) (R). (1.12)

zeR 2

The scaling arguments sometimes is useful to determined what kind of integrals can be

compared.

Example 1.14. Suppose that we have the following inequality (which can be thought as a
generalization of (1.12))

zeR

max | (z)| < c(ﬁo /(@) dm)r Y feGR), (1.13)

where C' is a constant independent of the choice of f. Find the relation between p, g, 7, s.
Let f € €} (R) be given. For given constants M, L > 0, define

u(z) = M f(Lz) .

Then clearly u € € (R); thus (1.13) (which is assumed to be valid) implies that

zeR

max |u(z)| < C’(fo; |u' ()] dm>’”.

Since max u(z)| = M max | ()| and the substitution of variables implies that
e xe

o0

[ Wi [ astpine o e

—00

we have

0 T
max | f(z)] < CMpr_lL(p_l)T(J |f' (@) d:r) :
zeR —0

If pr # 1 or (p—1)r # 0, we can let M, L approach 0 or oo to make the right-hand side
approach zero which shows f = 0, an impossible situation. Therefore, we must have pr =1

and (p — 1)r = 0 which implies that p = r = 1 is the only possible case for (1.13) to hold.

Example 1.15 (Holder’s inequality). Suppose that one knows that for some p, ¢, 7, s € R,

we have the following inequality

) Tn)
< ( Rn’f(xl,... y )| d(@y, - ’x”))T<JRn|9($1"" )| d(ay, - 7%))3 (1.14)

for all f € LP(R") and g € LY(R™), where that a function h belongs to class L"(R™) means
that h : R” — R and

h(z1, - x| d(zy, - 2) < 0.
Rn

We would like to know the relation between p, q, r, s.

12



Let f,g : R" — R be such that f € L?(R") and g € LY(R™). For M, My, L > 0, define
w(xy, - ,xy) = Myf(Lay, -+, Lx,) and  v(xq, - ,x,) = Mog(Lay, -+, Lx,) .
Then u,v : R — R. Moreover, the change of variables formula implies that

’u(xla' o 7$n)‘pd(xla T 71'71) = M{?Lin |f(371,‘ o ,$n>’pd<l‘1, T wrn)a
e o (1.15)
‘U(xla"' 7xn)‘qd(xl7"' 7xn) = MgL_n |g(l‘17 axn)|q d('rla"' 7xn)7
RTL

Rn
thus u e LP(R") and v € L(R™). Since (1.14) is assumed to be known, we must have
Rn‘u(xl,... (e, )| d@, )
< ( u(ay, - ,:z:n)|p d(xq, - ,azn))T<J v(zy, - - ,xn)‘qd(:cl, e ,a:n)>s :
Rn Rn
By the fact that
Rn’u(xb... (T, )| d(@y, )
= MMyL~ ‘f Ty, Tn)g(Ty, - ,xn)|d(x1,---  Tn)
(1.15) further implies that
M, M,yL~ !f 1, X)) (T, ,xn)‘d(xl,-‘- . Tp)
= ’u Ty, Tn)0(2q, ‘d(:z:l, Cee Tp)

J ‘u Ty, 0, Ty \ d(xq, - ,xn))r(JRn‘v(xl,--- ,xn)‘qd(x1,~~ ,a:n)>s

<]\4ip7"]\4gsL—m~—ns J ‘f(xb 7$n)‘pd(l'1,"' ’xn)>rx
R?’L

X (J}Rn‘g(xl,--- ,xn)‘qd(xl,--- ,xn)>s.

Therefore, the same reason in Example 1.14 shows that pr =1, ¢s = 1 and —n = —nr —ns;
thus r = 1 5= ! and we have
p’ q
‘f(xla"' ,I’n)g<l'1, }dxlv ; n)
R . (1.16)
J ‘f Xy, xn)‘pd(xlf" L J |9 Ty, xn){qd<x17"' 7xn)>q7
Where - + - =1
p q
Remark 1.16. Later on we will simply write flzy, - xp)d(xy, -+ x,) as f(z)dx

with = (21, -+ ,x,) in mind.

13



Remark 1.17. Inequality (1.16) in fact holds for 1 < p,q < o and 1 + . 1. In general,
p q

suppose that 2 € R"™ is a region on which two functions u,v are defined so that u € LP(2)

and v € L9(Q) for some 1 < p,q < oo and 1 -+ 1o 1, where that a function h belongs to
p q
class L"(€2) means that h: Q — R and

J ‘h(x)rdxzf h(21, - 2| Az, @) < 0.
Q Q

Letting f = 1gu and g = 1gv in (1.14), where 1q is the indicator function of €2 given by
1 ifxe,

0 otherwise,

J\u( )| dx < J\u \pdx J\v yqu . (1.17)

The inequality above is called the (general) Holder inequality.

1o(z) = {

we find that

Example 1.18 (Sobolev’s inequalities). The simplest Sobolev’s inequalities is of the form

<f Mr@ar) <c (JRJ(W)@)V’MY Vfe R, (1.18)

where C' is a generic constant independent of f, and %}(R") denotes the collection of
continuously differentiable functions that vanish outside certain balls. In this example we

determine the relation among n, p, q,r, s.
Let f : R® — R be such that f € €}(R"). For given constants M, L > 0, define
u(x) = M f(Lz). Then u € €}(R"™); thus u also satisfies

(J u(@)[" dz) " < C(J (Vu)(@)"dz)" (1.19)

On the other hand, the change of variables formula implies that
|u(z)|* dz = MqL_"J |f(2)|" d, J [(Vu)(2)]" do = M”Lp_”f (Vf)()] dx;
Rr Rr Rn Rn
thus (1.19) implies that

MqSL-m( f | f@)]%)s < C’M”’”L(p‘")’"< J v f)(a:)}pdmy.

Since (1.18) holds for all M,L > 0, we must have pr = ¢s and (p — n)r = —ns. If
pr = qs = «, we find that (1.19) becomes

(Jn !u(m)‘qu>3 < C’(fn ‘(Vu)(a:)‘pda:>z

and n, p, g must satisfy




Chapter 2

Ordinary Differential Equations

Definition 2.1. A differential equation is a mathematical equation that relates some un-
known function with its derivatives. The unknown functions in a differential equations are
sometimes called dependent wvariables, and the variables which the derivatives of the
unknown functions are taken with respect to are sometimes called the independent vari-
ables. A differential equation is called an ordinary differential equation (ODE) if it
contains an unknown function of one independent variable and its derivatives. A differ-
ential equation is called a partial differential equation (PDE) if it contains unknown

multi-variable functions and their partial derivatives.

We note that in most of the mathematical ODE models, the independent variable is the

time variable ¢ or the spatial variable x.

Definition 2.2. The order of a differential equation is the order of the highest-order
derivatives present in the equation. A differential equation of order 1 is called first order,

order 2 second order, etc.

Definition 2.3. The ordinary differential equation
F(t7 Y, ylv e ’y(n—l)’ y(n)) = y(n)(t) - f(t7 Y, y/a T ’y(n—Q)’ y(n—l)) =0 (21)

is said to be linear if
F(t7 cy, Cy/7 e ch(n—l), Cy(n)) - F(tv 07 07 e 70)

. VceR. (2.2)
= c[F(t,y,y',- -,y D, y™) = F(¢,0,0,--- ,0)]

The ODE (2.1) is said to be nonlinear if it is not linear.

2.1 Initial Value Problems

Definition 2.4. An initial value problem (IVP) is a (system of) differential equation
y W) = ftyy gy Y). (2.3a)
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equipped with an initial condition

y(to) =vo, y'(to)=v1. ¥'(to)) =v2, - Y V(to) = Y, (2.3b)

where tg is a given point/time, and yo, 41, - ,y,_1 are given numbers. A solution to the
IVP (2.3) is a function y defined on an open interval I so that ¢y € I and (2.3) is satisfied.

Remark 2.5. It is commonly assumed that an ordinary differential equation of order n
F(t,y,y' -, ym™ D y™) =0 (if the independent variable is t)

can be written as

y (&) =ty oy Py ).
Moreover, given a differential equation above, we can define a vector-valued function z =
(v, v y", ,y(”’l))T and write the ODE above as

_ . - — 2 -
d 29 Z3
") = = : = . = f(t 2.4
Z(t) == | : f(t, 2) (2.4)
Zn—1 Zn
i Zn i _f(t721a227"' ,Zn)_

which is a first order ODE with a vector-valued unknown.

Example 2.6. In Example 1.12 we have talked about the Malthus model

dp

=D p(0) = po

for the growth of population. In this model, the growth rate is assumed to be positive.
However, the same differential equation can be used to model the decay of radioactive
substance such as plutonium (4%). If p(¢) is the total amount of such kind of substance at

. . dp . .
time t, the rate of change of the amount of the plutonium ditj is proportional to the total

amount p, except that the “growth” rate r is negative. In such a case, r is called the decay
rate.

The model has linear ODE and usually is called linear model.

Example 2.7 (Spring-mass system with or without Friction). Consider an object of mass
m attached to a spring with Hook’s constant k. Let z(¢) denote the signed distance between
the object and the equilibrium position at time t. If there is no friction, by the Newton

second law of motion we find that x obeys the ODE
mi = —kx .

When the friction is under consideration, by the fact that the friction is proportional to the
velocity, we find that

mi = —kx —1rz.

16



If in addition some external force f(t) are exerted on the mass, the model becomes

mi =—kx—ri+ f.

. x=0
If the initial position and the initial velocity of the object is z(0) = zo and z'(0) = x4,
then x(t) satisfies the IVP
mi = —kxr —ri+ f, z(0) =x9, z'(0)=1p. (2.5)
The ODE in (2.5) is linear since the function
F(t,z,&,%) = m&+ri + kx — f(t)
satisfies (2.2).

a—

Example 2.8. An electric current (7 7i¢) is the rate of flow of electric charge (% J&
_

Codt

A capacitor (% %) consists of two conductors separated by a non-conductive region

) past

a point or region:

1(t)

which can either be a vacuum or an electrical insulator material known as a dielectric. From
Coulomb’s law a charge on one conductor will exert a force on the charge carriers within
the other conductor, attracting opposite polarity charge and repelling like polarity charges,
thus an opposite polarity charge will be induced on the surface of the other conductor. The
conductors thus hold equal and opposite charges on their facing surfaces, and the dielectric
develops an electric field. An ideal capacitor is characterized by a constant capacitance C

which is defined as the ratio of the positive or negative charge () on each conductor to the
voltage V' between them: C' = Q or ) = CV; thus

b
_dQ _ v

I(t) = =(C—.
(®) dt dt

If the current

is increasing
- Inductance

/

Charge —“S2523
+Q =

L
P —]
+ then a voltage +
@ opposing that change Z 5

is created by the
Electric =8 Plate - magnetic field <
; of the coil. P
field E area A -
D>

————

Inductor

-
Plate separation d

Figure 2.1: Left: capacitor, Right: inductance
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Inductance (& ) is the tendency of an electrical conductor to oppose a change in the
electric current flowing through it, and is defined as the ratio of the induced voltage to the
rate of change of current causing it:

dl
V(t) = La .
The design of inductance is based on Lenz’s law (/4 =t #_{&) which states that “the current
induced in a circuit due to a change in a magnetic field is directed to oppose the change in
flux and to exert a mechanical force which opposes the motion” (#ii € e m & 4

Be@it o B3 % 5 FuERL £ et ).

Lenz’s Law

The induced B field in a loop of wire will oppose the
change in magnetic flux through the loop.

If you try to increase the flux If you try to decrease the flux
through a loop, the induced through a loop, the induced
field will oppose that increase! field will replace that decrease!

4 -
R
- -
= G ==

. B
B induced

Bindu-\'cd

In a closed circuit (a circuit without interruption, providing a continuous path through

which a current can flow) shown in Figure 2.2, one has
V@—I@R+ﬂﬂ+ljw(m (2.6)
= i T, T)dt, .

where V' is the voltage source powering the circuit, [ is the current admitted through the
circuit, R is the effective resistance of the combined load, source, and components, L is the

inductance of the inductor component, and C' the capacitance of the capacitor component.

R

L

v©
T

Figure 2.2: A closed circuit

Differentiating (2.6) in ¢, we find that I satisfies

I dl 1. dv
P P S
i tel T
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Example 2.9 (Oscillating pendulum). A simple pendulum consists of a mass m hanging
from a string of length L and fixed at a pivot point P. When displaced to an initial angle

and released, the pendulum will swing back and forth with periodic motion.

Figure 2.3: A simple pendulum system

Let 6(t) denote the angle, measured from the vertical dashed line (see Figure 2.3), at

time t. By Newton’s second law,
mLH = —mgsinf 6(0) =6y, 6'(0) =wp.
The ODE above is a nonlinear ODE.

Example 2.10 (Lotka-Volterra or Prey-Predator model). Suppose that two different species
of animals interact within the same environment or ecosystem, and suppose further that the
first species eats only vegetation and the second eats only the first species. In other words,
one species is a predator (3 & ) and the other is a prey (#+).

Let p(t) and ¢(t) denote, respectively, the populations of the prey and the predator. If
there is no prey, then the population of the predator should decrease/decay and follows

Yo pa, B0

When preys are present in the environment, it seems reasonable that the number of encoun-
ters or interactions between these two species per unit time is jointly proportional to their
populations p and ¢; that is, proportional to the product pq. Thus when preys are present,
the predator are added to the system at a rate bpg, b > 0. In other words, the population

of ¢ should follows

%:—Bq%—épq, 8,6 >0.
On the other hand, if there is no predator, the population of the prey should follow the
Malthus model (assuming that the supply of food is always sufficient); however, the popu-
lation of the prey will decrease by the rate at which the preys are consumed during their
encounters with the predator; thus

d

P
— =ap— ) a,y>0.
di P — g v
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Therefore, we reach at the predator-prey model (or the Lotka- Volterra model):

d

d—]t) =ap —pq = pla —q), (2.7a)
d

d_;] = —fBq+ 0pq = q(—B + dp) . (2.7b)

An initial condition p(0) = po, ¢(0) = go can be imposed so that it becomes an IVP.
The ODE (2.7) is nonlinear since by letting z = [p, ¢|T, we can write (2.7) as
. _|la 0 —Y21%9
z-f(t,z)—[o _B}z~l—[ }

(52122
which shows that F(¢,cz,cz) — F(t,0,0) # ¢[F(t, z,2) — F(t,0,0)] if ¢ # 1.

Example 2.11. Now we consider another spring-mass system in which there are two objects,
of mass m; and ms, moving on a frictionless surface under the influence of external forces
Fi(t) and Fy(t), and they are also constrained by the three springs whose Hooke’s constants

are ki, ko and ks, respectively (see Figure 2.4).

F,(t)

-

| | )
| E
k, | k, i b,
WM‘“ ”111 RAAAAAA A A ”I‘z ’QN\’M
| : |
| i

F,(t

-

X5

X

- -

Figure 2.4: A two-mass, three-spring system

Then the equations for the coordinate x; and x5, measured from the equilibrium positions

of mass m; and my respectively, are given by

dQQZ'l

mlW = —k’ll‘l + kQ(CL’Q — ZEl) + F1 s (28&)
d2

™Mo dtx; = —]{52(1‘2 — .171) — ]{531‘2 + FQ . (28b)

Reason: Let Ly, Ly, L3 be the length of the unconstrained springs, and {1, {5, {3 be the

increment of the springs in equilibrium. Then
kily = koly = ksl . (2.9)

Let z(t) and y(t) be the position of mass m; and my, measured from the left end, respectively.
Then z(t) and y(t) satisfy

d?x

e = —ki(x — L1) + kao(y — 2 — Ly) + F1, (2.10a)
d2

mzﬁy:—k2(y—:v—Lz)+k3(L1+L2+L3+el+£2+£3—y—L3)+F2

= —kg(y — T — Lg) + k‘g(Ll —+ L2 + 51 + 62 +€3 — y) + F2 . (210b)
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Let x1, o be the position of masses m; and my measured from the equilibrium position;
that is, ;1 = — L1 — {1 and 29 = y — L1 — {1 — Ly — {5. Then (2.8) follows from using (2.9)
in (2.10).

Example 2.12 (Kepler's laws of planetary motion). Kepler’s laws of planetary motion

describe the motion of planets around the Sun and state that
1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal

intervals of time.

3. The square of the orbital period of a planet is directly proportional to the cube of the

semi-major axis of its orbit.

Suppose that planet under consideration is Earth. Since Earth moves on the plane of the
ecliptic (& i ® ) , we can treat the orbit of Earth as a plane curve. Now we introduce a

polar coordinate system and a Cartesian coordinate system on this plane as follows:

1. Let the sun be the pole of the polar coordinate system, and fixed a polar axis on this

plane.

2. Let % be the unit vector in the direction of the polar axis, and j be the corresponding

unit vector obtained by rotating ¢ counterclockwise by g

Suppose the position of the planet on the planet at time ¢ € I is given by r(t) = x(t)i+y(t)j.
For each t € I, let (r(t),0(t)) be the polar representation of (x(t),y(t)) in the trajectory.
We would like to determine the relation that r(¢) and 6(t) satisfy.

Define two vectors 7(t) = cos6(t)i + sin6(t)j and 6(t) = —sinf(t)i + cosA(t)j. Then
r = r7. Moreover, let M and m be the mass of the sun and the planet, respectively. Then

Newton’s second law of motion implies that

GMm . (2.11)

72

By the fact that
7 = (—sinf,cos0)0’ =60’  and 0 = —(cosf,sin0)0’ = —0'7,
we find that
r’ = %(r'?+ 7“9’5) — P00+ 100 + 10" — r(0")*F
(" —r(0")*]7 + [2r'0" + 7“9”]5.

Therefore, (2.11) implies that



Since 7 and @ are linearly independent, we must have

_GM r" —r(0")?, (2.12a)

r2

2r'0" + 16" =0. (2.12Db)

Kepler’s second law: Note that (2.12b) implies that (r?0’)’ = 0; thus r%0’ is a constant.

Since mr26’

is the angular momentum, (2.12b) implies that the angular momentum is a
constant, so-called the conservation of angular momentum ( 4% & < |2) .

Let ¢ be the constant angular momentum so that
0 =mr?0’ = mrovo, (2.13)

where 7y and vy denote the initial values of  and r0’, respectively. Note that (2.13) shows
that 0’ is sign-definite (unless £ = 0), so 0 : I — R is one-to-one.

Let t1,t3 € I and t; < t5. The area swept out in the time interval [tq, 5] is given by

t t
21 2 ’ o 2y . g(tz—tl) . ToVo _ .
L S8 (t)dt_Ldet_ = Lt — 1) (2.14)

1

thus we conclude that

A line joining a planet and the Sun sweeps out equal areas during equal intervals

of time.

This is Kepler’s second law of planetary motion.
Planet

Equal areas /
in equal times

T
",
\

SUN

Figure 2.5: Kepler’s second law of planetary motion

Kepler’s first law: Since 6 : [ — R is one-to-one, the inverse function of  exists. Write

t = t(0), and every function of ¢ can be viewed as a function of 6 for t € I. For a function

. . 2 .
f of t, we let f(6) denote d%f(t(@)) and f(#) denote %f(t(@)). In other words, f denotes

the derivative (in 6) of the composite function f o¢. By the chain rule,

4 dod d ¢ d ‘.
a_wea _gpd L9 ivalentl ot g
G ards Va9 T mag O eaquivalently,  fr=—rs )
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thus r’ = L Let u = e Then @ = —% which implies that r’ = —
T

5 1. Therefore,
mr

m
iz Iz

= ———=U=——Fuu";
m2r? m ’

"

thus (2.12a) and (2.13) together show that

2 0 \2 2 2
~GMu® = —%{mf - r<—2> LA B 5.
mr

or equivalently,

i = GMm?2 _ GM
Yz _rgv%'

The general solution to the ODE above is

u = Crcost + Cysinf + —5— GM _ = Ccos(f — 6y) + G—]\g

0"0 7”0"0

Choose the polar axis so that the initial angular variable 8y = 0. Using that u = 1, we find
T
that

1
= (C'cos b + G]\g
r 0V0
thus C' = — — % = i(1 — GA{) Therefore,
To TOVO To ToVO
(1 + e)’f’o
= 7 2.15
" 14+ ecosf’ ( )

where e = TGO—X/I — 1 is the eccentricity (&t~ ). (2.15) is the polar presentation of a conic

section, and this proves Kepler’s first law of planetary motion:

The orbit of every planet is an ellipse with the Sun at one of the two foci.

Kepler’s third law: The third law of Kepler captures the relationship between the distance
of planets from the Sun, and their orbital periods. Let a,b be the semi-major axis and semi-
minor axis of the orbit of a planet moving around the Sun, and T be the orbital period.
Using (2.14),

T

1 T

Tab = f —r20" dt = rovo )
. 2 2

Therefore, by the fact that b = av/1 — e2,

2mab 472t 4772(14 2GM — rov?2
T2 = ( ) - 1- 0 2.1
ToVvVo T%VO ( ¢ ) GM T‘()GM ( 6)
On the other hand, using (2.15) we find that ry.x = T‘GZW = roi +e ; thus using the expres-
sion of e,
70 + Tmax . To B T()GM
B 2 S l—e 2GM —rgv3’
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Using the identity above in (2.16), we conclude that

2
drs o

T =
oM

which shows the third law of Kepler:

The square of the orbital period of a planet is directly proportional to the cube of

the semi-major axis of its orbit.

Example 2.13. Suppose that f : R — R is a differentiable function. To find a relative
minimum of f, we first look for critical points of f. In general, it may not be easy to solve
for zeros of f’. In this example we provide a way to “find” possible local minimum of f.

Suppose that xq is given. If f/'(z9) < 0, we expect that the value of f(z) will be smaller
than f(x¢) when z is close but on the right-hand side of z,. Similarly, if f’(zo) > 0, then
the value of f(x) will be smaller than f(xy) when x is close but on the left-hand side of
xo. Therefore, for a given point xy, we can localize the position of the nearest critical point
where f attains a local minimum by “moving” the position of xy to the right or to the left
based on the sign of f’. This motivates the following IVP

' =—f'(x), z(0) = xp .
In general, for a differentiable function f : R®™ — R, we use
' =—(Vf)(x), z(0) = o,
where € = (z1, 22, -+ ,x,), to find a critical point near .

Theorem 2.14 (Existence and Uniqueness of Solution/Fundamental theorem of ODE).

Consider the initial value problem

v =ftyy )L ylte) =wo. yte) =y o YTV (b)) = ge s (217)

If f and the first partial derivatives of f with respect to all its variables, possibly except t,
are continuous functions in some rectangular domain R = [a,b] x [co,do] x [c1,dy] x -+ x
[n_1,dn_1] that contains the point (to, Yo, Y1, "+ ,Yn_1) in the interior, then the initial value
problem has a unique solution ¢(t) in some interval I = (ty — h,ty + h) for some positive

number h.

2.2 Solving IVP Using Mablab

We can use the command “ode45” in Matlab to solve for the IVP (2.3). Suppose that we
want to solve the IVP

y W =ftyy ") w(0) =0, ¥ (0) =p o yTY(0) = g

numerically using matlab.
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Step 1: Write the IVP in the vector form y’ = f(¢,y) (form (2.4)) with initial condition
y(0) = y,. Note that usually you need to write the IVP in a dimensionless form and

then transform
Step 2: Write (and save) the function f in matlab.

Step 3: Once the function f is saved, use the command “ode45” (based on the adaptive
Runge-Kutta method) to solve the IVP: the format is

[t,y] = ode45(@name of the function,[starting time, terminal time], initial data)

where the output of this command has two pieces t and y (whose names can also be

changed and does not have to agree with the names you use in writing the function):

(a) t is a column vector whose components are the samples of time at which the

numerical solution evaluates.

(b) y is a m x n matrix, where m is the total number of time samples, and n is the

dimension of the vector y.

To illustrate how these steps are carried out, we look at the following example.

Example 2.15. In this example we solve for the IVP (from the Lotka-Volterra model)

d

d—f — —0.16p + 0.08pq, (2.18)

d

d—z — 4.5¢ — 0.9pq, (2.18b)
p(0) =5, ¢q(0)=3. (2.18¢)

—0.16p + 0.08pq
Let y = [p,q|*, and f(t,y) =
et y = [p.q]", and f(t, y) { 150 — 0.9p

function f can be given by the following m-file:

} numerically using matlab. In matlab, the

function yp = ODE_RHS(t,y)
yp(1,1) = =0.16*y(1,1) + 0.08*y(1,1)*y(2,1); (2.19)
yp(2,1) = 4.5%y(2,1) = 0.9%y(1,1)*y(2,1);

where

1. the word “function” in the first line indicates that this m-file will be a function that

you can use in matlab.

2. yp is the name of the output variable, and t, y are the names of the input variables
(and the names can be changed); however, you should keep t (time) as the first input/
variable and y (the unknowns in the ODE) as the second input/variable in order to

use the built-in matlab ODE solver.
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3. ODE_RHS is the name of the function (and also the name of the file so that matlab
can see it) that will be used/recognized in matlab. The name can be changed but you

need to have this name different from built-in functions such as sin, exp, and etc.

4. In this example, the input y is a 2-d column vector. y(1,1) and y(2,1) denote the
first and second component of y, respectively. Similarly, the output yp is also a 2-d
column vector, and yp(1,1) and yp(2,1) denote the first and second component of yp,

respectively.

Once the function is saved, you can check if matlab is able to use this function by
assigning the value of ¢ and y (remember, y has to be a 2-d column vector) and see if it

outputs the correct value. For example, in the main window of matlab you can type

ODE_RHS(L,[2;5))

where [2; 5] is the column vector [2,5]T, and it should output something like this

>> ODE_RHS(1,[2:5])
ans =

0.4800
13.5000

which means the first component of the output (in our code it is yp(1,1)) is 0.48 while the
second component of the output (in our code it is yp(2,1)) is 13.5.
For the readability of codes, we recommender the reader to have (2.19) written, at least,

as

function yp = ODE_RHS(t,y)
p = y(1,1);

q=y(21);

yp(1,1) = —0.16*p + 0.08*p*q;
yp(2,1) = 4.5%q — 0.9*p*q;

As long as the function f (named ODE_RHS) is saved, we can use the matlab built-in
ODE solver “ode45” to solve for the IVP (2.18). In the main window of matlab, type

[t.y] = ode45(QODE_RHS,[0,10],[5:3));

to solve (numerically) for the IVP in the time interval [0, 10] and initial data [5,3]T. In this
case, the solution y is an m x 2 matrix: the first column is the value of p (at those sampled

time t) and the second column is the value of q (at those sampled time t).
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e Visualization of the numerical solution: In the following we provide two codes

figure(1)

title("The population of fox and rabbit versus time’)

hold on;

plot(t,y(:,1),’b);

plot(t,y(:,2),r7);

legend("The population of fox’,"The population of rabbit’)
xlabel(’time’)

ylabel("population’)

which outputs

The population of fox and rabbit versus time
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time
and
figure(2)
title("The phase portrait’)
hold on;

plot(y(:,1),y(:,2),’b);
xlabel("population of fox’)
ylabel("population of rabbit’)

which outputs
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The phase portrait

ha na
ra i

population of rabbit
ra

4.6 4.7 4.8 4.9 5 5.1 5.2 53 5.4 b.b
population of fox
for the visualization of the numerical solution. The figures themselves should explain the

codes clearly.

Example 2.16. In this example we solve for the IVP (from the study of Kepler’s laws of

planetary motion)

GMm .
er =mr", r(0) =7y, 7(0)=1mry,

r

under the settings: GM = 1, ro = [1;0] and r; = [0;0.6]. We note that the IVP above can

be written as
NG el R i) R )

In order to make use of the command “ode45”, one needs to rewrite the equation into

the first order form. Let z = [z1; 29; 23; 24] = [x; y; 2";y']. Then z satisfies

z3
21 24 1
d 29 . 21 o 0
dt |z | | (22 + 23)15 ’ 2(0) = 0
24 B 22 0.6
L (o 4+ 29)' ]

Therefore, we execute the following codes

ODE_RHS = Q(t,y) [y(3:4); -1/(norm(y(1:2)) A3)*y(1:2)];
[t,y] = oded5(Q(t,y) ODE_RHS(t,y), [0,3], [1;0;0;0.6]);
plot(y(:,1),y(:,2),’p’);

axis equal;

to produce the trajectory of the planet in the following figure.
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Figure 2.6: The trajectory of a planet is an ellipse in this example

Explanation of the codes:

1. If the right-hand side function is simple, sometimes we do not write a separate file for

the function and can put it directly into the main file. The format is

name of the function = @(list of variables) the output based on given variables

This function can only be seen and used in this main file.

2. When using local function, in order to use “ode45” one needs to use

[t.y] = ode45(@Q(t,y) function(t,y),[starting time, terminal time], initial data)

instead of

[t,y] = ode4b(@name of the function,[starting time, terminal time], initial data)

In fact, the new way of using “ode45” will be better because it allows that we have other

parameters in the forcing function. For example, the original code can be modified as

ODE_RHS = Q(t,y,G,M) [y(3:4); -G*M/(norm(y(1:2)) A3)*y(1:2)];
G=1M=1;

[t,y] = oded5(Q(t,y) ODE_RHS(t,y,G,M), [0,3], [1;0;0;0.6]);
plot(y(:,1),y(:,2),b");

axis equal;

so that we can easily change the value of G and M. Here we emphasize that in order
to use “ode4b”; even if the right-hand side function has several input variables, you
still have to use “Q(t,y)” like the red part in the third line.

29



3. There is an even easier way of making use of “ode45” when the right-hand side function

is simple.

G=1M=1,
[t,y] = odedb(Q(t,y) [y(3:4); -G*M/(norm(y(1:2))A3)*y(1:2)], [0,3], [1;0;0;0.6]);
plot(y(:,1),y(:,2),’b’);

axis equal;

Example 2.17. In this example we look for the minimum of the function f(z,y) = ze=* ~¥*
using gradient flows. First we provide the graph of f so that we have some information about

this function. To do this, do the following:

[x,y] = meshgrid(-2:0.1:2,-2:0.1:2);

7 = x.¥exp(—x.A2-y.A2);

surf(z);

and this will produce the following figure

Figure 2.7: The graph of the function f(z,y) = ze * %"

From the graph of f, we find that there is a minimum and a maximum for f.
Now we try to find the minimum using the gradient flow. We compute the first partial

derivative of f and obtain that

2 2

folz,y) = (1 = 22%)e™™ and  fy(x,y) = —2azye V.
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Therefore, we will focus on the following ODE

(222 — 1)6‘”2_92]

deyesiit | = F(t [z,y]') .

4 o] == -

As in the previous example, we first name (and save) the function F' as ODE_RHS

(again, the name of the function can be changed) as follows:

function yp = ODE_RHS(t,INPUT)
x = INPUT(1,1);

y = INPUT(2,1);

yp(1,1) = (2*xA2-1)*exp(—xA2-yA2);
yp(2,1) = 2*x*y*exp(-—xA2-yA2);

Here we rename the second input of the function as “INPUT” in order to differentiate this
input from the real variable y in the equation. Maybe it is much clearer if we rewrite the

code as

function zp = ODE_RHS(t,2)

x = z(1,1);

y = 2(2,1);

zp(1,1) = (2*xA2-1)*exp(-—xA2-yA2);

zp(2,1) = 2*x*y*exp(—xA2-yA2);

Once we finish saving the function ODE_RHS, we can use

[t,y] = ode45(QODE_RHS,[0,10],[0.5;0.5]);

or

[t,y] = odedb(Q(t,y) ODE_RHS(t,y),[0,10],[0.5;0.5]);

t_there is a space here

to find the numerical solution of the gradient flow with initial condition [x(0),y(0)] =

[0.5,0.5]. We are only interested in the final destination of the flow; thus we use

y(end,:)

to find the last row of y (note that the unknown is a 2-d column vector, so the output y

using “ode45” will be an N x 2 matrix) and obtain that

>> y(end,:)
ans =

—-0.7071  0.0006
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From the computation of the gradient of f, we find that the critical points of f should be

(+ %, O). So, why does the gradient flow not produce the correct/approximated critical
point? This is because the time interval is too small so that the flow has not reach its final
destination yet. Let us replace the time interval as [0, 20] and rerun the whole process again,
one should obtain y(end,:) = [-0.7071 0.0000].

e Geometric point of view: The solution to the IVP

dt |y
ngﬂ N Bﬁ] (2.20D)

produces a curve (z(t),y(t)), where ¢t belongs to some time interval (for example [0, 10] or

AHEEA] (2.200)

[0,20] in our previous tests). This curve is called an integral curve of the direction field
—(Vf)(z,y), and the initial data (zo,yo) is the point where the integral curve starts and
is called the starting point of the curve (in the code above the starting point is (0.5,0.5)).
The ODE (2.20a) shows that the tangent direction of the integral curve should agree with
the direction field.

Let us visualize this by plotting first the vector field —(V f). To plots a vector u =
(x component, y component) at the point p = (x coordinate,y coordinate), we use the com-

mand “quiver” in the following way:

quiver(x coordinate, y coordinate, x component, y component)

For example, if you want to plot 4 vectors (1,1), (—1,—1), (1,—1) and (—1,1) at 4 points
(1,1), (0,0), (1,0) and (0, 1), respectively, you can do the following;:

L = [1,1;0,0;1,0;0,1];
VvV =[1,1;-1-1;1,-1;-1,1];
quiver(L(:,1),L(:,2),V(:,1),V(:,2));

and the following figure will be produced:

A
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Note that if you replace the last line of commands by “quiver(L,V)”, it will produce garbages.
You need to give “quiver” the x coordinate and y coordinate of base points, as well as the x
component and y component of vectors, separately, in order to have the correct plot. Now,

since we have build up a grid using “[x,y] = meshgrid(-2:.1:2,-2:.1:2);”, we can simply use

quiver(x,y,(2*x. A2-1).*exp(—x. A 2-y. A 2), 2%x ¥y *exp(—x. A2-y. A 2))

to produce the following figure of the vector field:

We can also add the level sets of f onto the plot by the following command

contour(x,y,z)

so that we obtain

Finally, we plot the integral curve (in red color) using

plot(y(:,1),y(:,2),17)

after the ode solver “[t,y] = ode45(QODE_RHS,[0,20],[0.5;0,5]);” is applied. You should be
able to obtain the following figure:
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f(x,y) = x exp(-x*-y?)

=vector field -(V )
_Dlevel sets of f
integral curve

,,,,,,,,,

2 | s L I L L 1 04
-2 -1.56 -1 056 0 0.5 1 15 2

We note that the tangent direction of the integral curve is indeed parallel to the vector
field —(V f), and the integral curve is perpendicular to the level set of f (which agrees with
what we learned in Calculus).

We summarize our codes in the following (in case you cannot reproduce the result):

[x,y] = meshgrid(—2:0.1:2,-2:0.1:2);

7 = x.¥exp(—x.A2-y.A2);

figure(1)

title("f(x,y) = x exp(-xA2-yA2))

hold on;

quiver(x,y,(2*x. A2-1).*exp(—x. A 2-y. A 2),2*x . *y. *exp(—x. A2-y. A 2))
contour(x,y,z)

[t.y] = oded5(QODE_RHS,[0,20],0.5:0.5));
plot(y(:,1),y(:,2),);

axis equal,

legend('vector field —(\nabla f)’,'level sets of f’,'integral curve’)

colorbar

2.3 Boundary Value Problems
In this section we only consider ODE of the form
y" + @)y’ +a(@)y = g(z), (2.21)
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where p, ¢ and g are given functions, and y = y(x) is the unknown function. Instead of
imposing the initial condition y(tg) = yo and y’(tg) = yi1, sometimes the following four kinds

of boundary condition can be imposed:
L y(a) = yo, y(B) = yi; 2. y(a) = yo, y'(B) = y1;
3. y'(a) = yo, y(B) = y; 4. y'(a) = yo, ¥'(B) =y,

where «, 3, yo and y; are given numbers. Such kind of combination of ODE and boundary
condition is called a (two-point) boundary value problem (BVP), and a solution y to a
BVP must be defined on the interval I = [« 3], as well as satisfy the ODE and the boundary

condition.
Example 2.18. In this example we reconsider the ODE in the spring-mass system
mi = —kx —ri+ f(t).
We explain the meaning of the different boundary condition as follows:
1. 2(0) = 29 and x(T") = 2;: the initial and the terminal position of the mass are given.

2. 2(0) = x¢ and z/(T) = v;: the initial position and the terminal velocity of the mass

are given.

3. 2/(0) = vg and z(T") = z;: the initial velocity and the terminal position of the mass

are given.
4. z'(0) = vg and z'(T") = vy: the initial and the terminal velocity of the mass are given.

Example 2.19. Again we consider the ODE

d*h GMm
m - _

a2~ (R+h)?

in Example 1.10. This time we do not require that initial height £(0) and the initial velocity
h'(0) are given but instead we want the object to reach certain height H at time ¢t = T.
Then the BVP is written as

d*h  GMm
" T wmeag  MO=00 M)

Similarly, if we want the object to reach certain velocity V at time ¢t = T', then we have the

BYP d*h GM
m

Consider the two-point boundary value problem

y" +p@)y +q(x)y =g(x),  yla)=w, y(B)=u. (2.22)
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r—« T —

Let z(x) = y(x) — s 10 Then z satisfies
2"+ p(x)z + q(x)z = G(x), z(a) = 2(8) =0, (2.23)
where G(x) = g(x) — p(x) oo q(a:)(:E 4+ 2 Byo). Therefore, in general we can
a—f f—a a—p

assume the homogeneous boundary condition yy = y; = 0 in (2.22). Similarly, ODE (2.21)
with the other three kinds of boundary conditions can also be rewritten as a BVP with

homogeneous boundary condition.
Remark 2.20. Even though the initial value problem

y"+pt)y" +at)y=9(t),  ylto) =w, y'(t)=un (2.24)
looks quite similar to the boundary value problem (2.22), they actually differ in some very
important ways. For example, if p,q, g are continuous, the initial value problem (2.24)

always have a unique solution, while the boundary value problem (2.22) might have no

solution or infinitely many solutions:
1. y" 4+ y = 0 with boundary condition y(0) = y(m) = 0 has infinite many solutions
Ye(x) = csinz.
2. y” + y = sinz with boundary condition y(0) = y(7) = 0 has no solution.

On the other hand, there are cases that (2.22) has a unique solution. For example, the

general solution to the boundary value problem
y// + 2y — O
is given by
y(z) = Cy cos V2 + Cysin /2 ;

thus to validate the boundary condition y(0) = 1 and y(7) = 0, we must have C; = 1 and
Cy = — cot /2. In other words, the solution y(z) = cos V2x — cot /27 sin /2.

Similar to Theorem 2.14, we have the following

Theorem 2.21. Let o, 8 be real numbers and o < 3. Suppose that the function f = f(t,y,p)

1s continuous on the set
D= {(z,y,p) |z €[a,B],y,p € R}

and the partial derivatives f, and f, are also continuous on D. If
L. f,(t,y,p) >0 for all (t,y,p) € D, and
2. there exists a constant M > 0 such that
|fot,y,p)| < M Y (t,y,p) €D,

then the boundary value problem

y" = f(ty,y")  VYze(a,f), yla)=y(B) =0

has a unique solution.
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Chapter 3

Partial Differential Equations

3.1 Models with One Temporal Variable and One Spa-
tial Variable

3.1.1 The 1-dimensional conservation laws

Suppose that a substance of interest lives in a 1-dimensional space such as a tube. Let

u(z,t) be the density or concentration of the substance at position x and time t. Then

T+Ax
J u(y,t)dt

T

is the total amount of the substance in the interval I = [z, z + Az] at time ¢; thus during
the time period [t,t + At], the change of the amount of the substance in the interval I in
the time period [t,t + At] is given by

r+Ax z+Ax z+Ax
f u(y,t + At) dt — J u(y,t)dt = f [u(y, t + At) —u(y,t)] dy .

x x x

On the other hand, there are two sources of changing the amount of the substance in the

interval I:

1. a flux that describes any effect that appears to pass or travel the substance through

points.
2. a source that will release or absorb the substance in this interval.

Let f denote the flux and ¢ denote the source. Then in the time interval [¢,¢ + At] the

amount of the substance flowing into I from the point x is given by

t+At
J Fot)
t

while amount of the substance flowing out of I from the point x + Ax is given by
t+At
J flx + Ax,t")dt".
t
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Moreover, the change of the amount of the substance in the interval I in the time period

[t,t + At] due to the source is given by

t+At pr+Ax
f f q(y,t') dydt’.
t x

Therefore, the change of amount of the substance in the interval I in the time period [¢, t4+At]

is given by

t+At t+At pr+Ax
J [f(z, ) = flz+ Az, t')]dt' + J J q(y,t') dydt’ .
t t T

As a consequence,

JH ' [u(y,t + At) — u(y, t)} dy

‘ t+At t+At prt+Azx
:f [f(a:,t')—f(x—l—Ax,t’)]dt/—l—f f q(y,t') dydt’ .
t t T

Dividing both sides through Ax and then passing to the limit as Az — 0, by the fundamental

theorem of Calculus we find that (without any rigorous verification)

0

t+AL
u(x,t—l-At)—u(x,t):—ft -

t+At
[z, t")dt' + J q(z,t")dt".
t

Similarly, dividing both sides of the equality above through At and then passing to the limit

as At — 0, the fundamental theorem of Calculus implies that

0 0
%u(x, t) + %f(x, t) =q(z,t).

Example 3.1 (Traffic flows). Consider the traffic on the highway (parameterized by R).
Let u denote the car density (given in the number of vehicles per unit length). Then the

flux f is a function of u with the property that
(a) f(u)=0ifu=0o0ru> L,
(b) f'(u) > 0if u € (0, Umax), and f'(u) < 0 if u € (Upax, L).
If f is differentiable, and f'(u) = ¢(u). Then the equation of continuity reads
ur(z,t) + c(u(z, t)u,(z,t) = q(x,t) VreR,teR
which can be abbreviated as
up + c(u)uy = q in RxR.
To complete the model, an initial condition
u(z,0) = ug(x) VreR (or simply u = ug on R x {t = 0})
has to be imposed.
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3.1.2 The 1-dimensional heat equations

Consider the heat distribution on a rod of length L: Parameterize the rod by [0, L], and
let t be the time variable. Let p(x), s(x), k(z) denote the density, specific heat, and the
thermal conductivity of the rod at position x € (0, L), respectively, and J(x,t) denote the

temperature at position x and time ¢t. For 0 < x < L, and Ax, At « 1,
z+Ax t+At

J p(9)s(y) [9(y, t+a8) — I(y, 1)) dy :f [i(e -+ Aa)d (4 Ac, ') — w(2)9.(z, )] dF’
x t

where the left-hand side denotes the change of the total heat in the small section (z, z+ Az),
and the right-hand side denotes the heat flows from outside. If there is a heat source @),

then the equation above can be modified as

T+Azx
f p(y)s(y) [Py, t+at) —I(y,t)] dy

xT

t+ At t+At pr+Ax
:J [k(z4A2)0,(z+ Az, ') — k(z)d, (2, )] dt’ + J J Q(y,t') dydt’.
t t T

Dividing both sides by At and passing to the limit as At — 0, by the Fundamental Theorem
of Calculus (assuming that all the functions appearing in the equation above are smooth

enough) we obtain that

T+Az T+Az
j p(y)s(y)0u(y, 1) dy = [ + Ax)d(x + A, ) — (), 8)] + f QUy.t)dy.

xT T

Dividing both sides of the equation above by Az and then passing to the limit to Az — 0,
we find that

p(2)s(x)dy(2,t) = [k(z)Iu(z, t)L& + Q(z,1) O<z<L, t>0. (3.1)
Assuming uniform rod; that is, p, s, k are constant, then (3.1) reduces to that
Ve(z,t) = &V (2, ) + q(z,1) O<z<L, t>0, (3.2a)
where o? = p% is called the thermal diffusivity.
To determine the state of the temperature, we need to impose that initial condition
Wz, 0) = Yo(z) O<z<lL (3.2b)
and a boundary condition.
(a) Temperature on the end-points of the rod is fixed: J(0,¢) = 77 and ¥(L,t) = Ts.
(b) Insulation on the end-points of the rod: 9,(0,t) = ¥,(L,t) = 0.

(¢) Mixed boundary conditions: ¥(0,t) = 77 and v,(L,t) = 0, or ¥(L,t) = Ty and
V.(0,t) = 0.
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3.1.3 The 1-dimensional wave equations

1. From Hooke’s law:

k k

WAV

imagine an array of little weights of mass m interconnected with massless springs of
length h, and the springs have a stiffness of k (see the figure). If u(z,t) measures the
distance from the equilibrium of the mass situated at position x and time ¢, then the

forces exerted on the mass m at the location x are

0%

FNewton =ma = m—([[’, t)

ot?
Fhiooke = k[u(z + h,t) — u(z,t)] — k[u(z,t) — u(z — h,t)]

= k[u(z + h,t) — 2u(z,t) + u(z — h,t)] .

If the array of weights consists of N weights spaced evenly over the length L = (N+1)h
of total mass M = Nm, and the total stiffness of the array K = k/N, then

@@ t):< N >2KL2u(x+h,t)—2u(x,t)—|—u(x—h,t)
o2’ N+1/) M h?

Taking the limit N — o0, h — 0 (and assuming smoothness) we obtain

Uy (2,1) = gy (2,1) . (3.3)

2. Equation of vibrating string: let u(z,t) measure the distance of a string from its

equilibrium, and T'(x,t) denote the tension of the string at position x and time ¢.

Assuming only motion in the vertical direction, the horizontal component of tensions
Ty =T(x,t) and Ty = T'(z + h,t) have to be the same; thus

Ty cosa = Tycos 3. (3.4)
Noting that
cosa = = ! = !
seca /1+tan?a  4/1+ug(z,t)?
1 1 1
cosff = ;

seccf \/1+tan2B  /1+ ug(x + hyt)?
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T(z,t)
1 + ugj(x, t)2
sary in t). Denote this constant as 7(¢). Then by the fact that the vertical component

identity (3.4) implies that the function is constant in x (but not neces-

of T} and T5 induce the vertical motion, we obtain that

v %y, )
f w(y) 6t2’ dy = Tysin f — Ty sinw = (Ty cos B) tan B — (17 cos a) tan «

T

= (1) [ta + b, t) — (2, 1)]

where 1 denotes the density of the string, and the integral on the left-hand side is the
total force due to the acceleration. Dividing both sides through by h and passing to
the limit as A — 0, we find that

p(x)ug(x,t) = 7(t) Uy (z, 1) . (3.5)
If there is an external forcing f acting on the string, then (3.5) becomes
p(x)ug(x,t) = 7(6)uge(z,t) + f(2,1). (3.6)

If 41 is constant in z and 7 is constant in ¢ (which is a reasonable assumption if the

vibration of the string is very small and uniform), then (3.6) reduces to

1
Uy (2,1) = gy (z,t) + ;f(x, t). (3.7)
. Lo u(z,0) = e(x) : .
Initial conditions: , where ¢ and 1 are given functions.
uy(2,0) = ¢(x)

Boundary conditions:
(a) Vibration string with fixed ends: u(0,t) = u(L,t) =0.
(b) Vibration string with free ends: u,(0,t) = u,(L,t) = 0.

(¢) Mixed boundary conditions: u(0,t) = u,(L,t) = 0 or u(L,t) = u,(0,t) = 0.

3.2 Solving PDE using matlab® - Part I

The PDEs in the models that we derived above are of the form
u = A(u) + f or uy = A(u) + f (3.8)

for some differential operator A; that is, for a given smooth function u, A(u) is some
functions of partial derivatives of u with respect to x. We are not going to talk about
numerical method of solving PDEs (which is a big topic), but instead try to make use of
the ODE solver (such as ode45 in matlab) which requires that we write A(u) in terms of

the value of u (so that the right-hand side of (3.8) can be expressed as ¢(z,t,u)). We note
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that computers view functions as a map whose values are known on just discrete points (of
interests), so to find a numerical solution u to the PDEs above is to find the “approximated”
values of u on a given set of discrete points. Therefore, in order to make use of the ODE
solver to solve the PDEs above, we only need to know how to compute the partial derivatives
of u w.r.t. x in terms of the values of v on discrete points.

Caution: Making A(u) in terms of values of u at discrete points does not always work to

solve PDEs numerically!!!

e Central differences

Recall the Taylor Theorem that if w is a (n + 1)-times differentiable function in z,

")
w(x+h) = Z d k!(x)hk +

k=0

w €)

n+1
(n+1)! N

where £ is a point between x and x + h. Now suppose that we are interested in the value of

the solution u on the set of discrete points which consists of a regular partition P = {O =
. L )
To < T < Ty < -+- <z, = L} of [0,L]. Write [P| = h = = and assume that the solution
n

w is four times continuously differentiable in z. Then for x being one of z}s,

w(z + h) =w(x) + hw'(x) + ?w”(x) + %w"’(x) + O(hY),
w(x —h) =w(x) — hw'(x) + %w”(m) — %w"’(x) + O(hY),

where the notation O(h*) means that it is a function of i and the quotient of this function

and h* is still bounded (when A is close to 0). More generally,

g(h) = O(h*) (as h — 0) if and only if ‘%‘ < M (when h is close to zero).

Therefore,

W' () = w(x—i—h)?—hw(x— h) L o),
" () = w(x +h) — 211}1(290) +w(x — h) L o).

In other words, if w is four times continuously differentiable in x, the first and second
derivatives of w at x can be made as accurate as possible using the values of w at x + h and
x by making h small enough. The finite difference scheme

w(x +h) —w(x —h) w(x + h) —2w(x) + w(x — h)

w'(z) ~ 57 and w”(z) ~ 2 (3.9)

of finding the approximated value of the first and second derivatives of w is called the central

difference scheme.
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Remark 3.2. If w is only three times continuously differentiable in x, then

wie) = PR WEZ) L o,
W' (z) = w(z + h) — 211;;%) +w(z — h) o).

Remark 3.3. Let Ay, be an operation defined by the following: if w is a function of x, then

Apw is a function given by

(Apw)(z) =

w(a:+h)—w(a:—h)‘

_ h - n _w(z+h) —2w() +wlx—h)

h h?
which shows that the central difference scheme of computing the second derivative is the

same as applying the central difference scheme of computing the first derivative twice (but

with difference mesh size).

3.2.1 The 1-dimensional heat equations

We first consider the 1-d heat equations with Dirichlet boundary condition

U — Kge = fla,1) in (0,L) x RT, (3.10a)
v =1 on (0,L) x {0}, (3.10b)
9(0,t) = a(t), I(L,t) = b(t) on {0,L} xR*. (3.10¢)

Let {0 =z <21 <+ < zp11 = L} be a regular partition of [0, L], and h = L/(n+1).
Define ¢;(t) = J(x;,t) and f;(t) = f(x;,t). Then (3.10) implies that

do;
CZZ — %(gpiﬂ —2p; + 1) = fi(t) + O(h?) foralll<i<mandt>0,
©i(0) = Yo(z;) forall 1 <i<n,
oo(t) = alt), prar(t) = b(2) for all ¢ > 0,

where v is a given function independent of ¢, and a, b are given constants. Therefore,

naively we look for the solution to the ODE

i ¢1(t) T —2 1 0 -+ e el 01T ¢1(t) T _a(t)_ B fl(t) T
¢2 (t) 1 =2 1 0 -+ o0 a 0 ¢2(t) 0 fg(t)
¢s(t) 0 1 =2 1 0 - - 01| ¢s() : :

d : L N (| | E Kol :

7 2l ol TR T
Pna(t) 0 0 1 =2 1 0| |duo2( : :
Pn-1(1) 0 -+ o o 01 =2 1| |dua(t) 0 fa—1(t)
| on(t) | [0 001 =2] [ onl®) | _b(t)_ i fult)



with initial condition

[61(0) 62(0) - 6,(0)]" = [Vo(w1) Dolws) -+ Volza)]"

and treat ¢;(t) as an approximated value of ¢;(t).

Example 3.4. Now suppose that we look for the numerical solution of

Vy(z,1) — Vyp(z,t) = 2% sint foral 0 <z <landt >0,
¥(z,0) =1+ x + sin(mx) foral0 <z <1,
9(0,t) =1, 9(1,t) =2 forallt > 0.

We first input the function f(x,t), ¥o(x,t), a(t) and b(t) as follows:

function output = forcing(x,t) function output = theta_0(x)

output = x.A2%sin(t); output = 1 + x + sin(pi*x);
function output = a(t) function output = b(t)
output = 1*ones(size(t)); output = 2*ones(size(t));

Next we provide the function “heat. RHS” as “ODE_RHS” before. Here the values «, h,

R R R 0
1 =2 1 0 - ceeoenn 0
o 1 -2 1 0 - - 0

: 0 0 0 . .
and the matrix K = will be part of the inputs (so that

- 0
0 0 1 -2 1 0
0 0o 1 -2 1

0 e e 0 1 -2

we do not have to adjust them every time we modify the equations and the data).

function yp = heat_ RHS(t,y,kappa,h,K)

n = length(y);

x = [h:h:in*h]’;

yp = kappa/hA2*(K*y + [a(t);zeros(n-2,1);b(t)]) + forcing(x,t);
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Finally, we have the main code as follows:

L=1;

n = 10;
kappa = 1;

h =L/(n+1);
T end = 1;

x = [h:h:n*h]’;

K = —2*eye(n) + diag(ones(n-1,1),1) + diag(ones(n-1,1),-1);

[t,y] = oded5(Q(t,y) heat_ RHS(t,y,kappa,h,K),[0 T_end],theta_0(x));
y = [a(t),y,b(t)]; % adding the values of the solution at the end-points
x = 0:h:(n+1)*h;

plot(x,y(end,:),’b’);

Here we use the command “eye” and “diag” to produce the matrix K. We remark that
“eye(n)
produce an m x m matrix whose k-th diagonal is the vector V, where m = length(V') + k.

bM

will produce an n x n identity matrix, and for a given vector V' “diag(V k)” will

We also note that each row of y, obtained using the ODE solver in the penultimate (iF]# %
=) line of the codes, provides the approximated value of ¢ at xy,--- ,x, at each sampled
time, so the last line of the codes is to add ¥(0,¢) and ¥(L,t) into the solution (for the
purpose of plotting the solution).

If one wants to see the evolution of the solution, we can do the following:

x = 0:h:(n+1)*h;
figure(1)
for j=1:length(t)
plot(x,y(j.:),’b");
drawnow; % force matlab to run the for loop

end;

3.2.2 The 1-dimensional wave equations

Now we consider the 1-d wave equations with Neumann boundary condition

U — CUigy = f(2,1) in (0,L) x R™, (3.11a)
U= ug, U = Uy on (0,L) x {0}, (3.11b)
uz(0,t) = a(t), u.(L,t) = b(t) on {0,L} xR*. (3.11c)
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For an integer n > 2, define h = L : and z; = (i — 1)h for 1 < i < n. Let v;(t) = u(x;, 1)

for 1 <i < mn. Then (3.11a) and the central difference scheme (3.9) imply that

2
d*v; 2 Vit1 — 205 + Vi1

dt? h?

=fit) +O(h*) forall2<i<n—landt>0. (3.12)

where as in the previous section f;(t) = f(x;,t). Unlike the case of PDEs with Dirichlet

boundary condition, now vy (t) = u(0,t) and v, (t) = u(L, t) are also unknown, so to complete
d d
the system we need to know how to compute % and %

Let xg = —h and x,41 = L+ h. Using the central difference scheme (3.9), (3.11c) implies
that

(g, t) — u(zo, t) 5
o + O(h%),

b(t) = (i, 1) = 0t t);h“(l“"—l’ D4 om?).

a(t) = uz(xy,t) =

Therefore, even though u(—h,t) and u(L—+h,t) are meaningless objects (since u is a function
defined on [0, L]), it is reasonable to assume that u(xg,t) = u(xy, t)+O(h3) and u(x, 1, t) =
uw(x,_1,t) + O(h?). Using the central difference scheme (3.9), we obtain that

+ h,t)—2 1) + —h,t 2 2
Ugz (71, 1) = u(z: ) u(szl )+ ulm ) =73 [Ug(t) — v1(t)} — Ea(t) + O(h),
w(xy, + h,t) — 2u(x,, t) + u(z, — h,t) 2 2
Uz (T, ) = 72 =3 [Vn-1(t) — va ()] + Eb(t) +O(h);
thus
d?vy 262
e ﬁ(w —wv) = fi(t) + O(h),
d?v, 22
di2 — ﬁ(’l}v_l — Un) = fn(t) + O(h) .
Similar to the derivation in Section 3.2.1, naively we consider
BAGHE I R T | T 077 vi(t) T [—a(t)] [ fit) ]
Vo(t) 1 -2 1 0 - -0 0 Va(t) 0 fa(t)
v3(t) o 1 -2 1 0 - - 0 vs(t) : :
oA 0 e s 0 - 0 £+c_2 o
e N S T TR | : h? :
Vs (t) 0 - - 0 1 =21 0/ vt :
Vin-1(t) L VR S/ N I O () 0 Jn-a(t)
RAGH [0 e e e 002 =2] L va(d) | _b(t)_ _fn(t)_
with initial conditions
T T
[vi(0) v2(0) v (0)] " = [uo(z1) uo(a2) uo(zn)]
Vi) v3(0) - Vi) = [w(en) wles) o wlea)]



and treat v;(t) as an approximated value of v;(t). We note that in order to use the ODE

solver to solve the ODE above, we need to assign w = v’(t), where v = (vq,---,v,)T, and

“lstn] = [10 C;)K] o)+ Lsto] (313

hQ

write the system above as

t[o)-
il — |2
dt |w ﬁKfv

where I, is the n x n identity matrix and f = (f1, -+, fn)T.

Once (3.13) is obtained, it should be straight forward, as in the case of solving heat
equations, to solve the ODE system numerically using the ODE solver. Here we only

provide the code of the right-hand side function:

function yp = wave_RHS(t,y,c,h,K)
n = length(y);
x = [0:h:(n-1)*h]’;

yp = cA2/ha2*[eye(n), zeros(n,n); zeros(n,n),K|*y + [zeros(n,1);forcing(x,t)];

while K should be provided in the main code as

K = —2*eye(n) + diag([2;ones(n-2,1)],1) + diag([ones(n-2,1);2],-1);

We note that the first n rows of the solution y obtained using the ODE solver corresponds
to the approximated value of u at {zi, -, z,}, while the rest n rows of y corresponds to

the approximated value of u; at {z1, -, z,}.

3.2.3 The 1-dimensional conservation laws

We have to warn the readers that the usual central difference scheme (to approximate the
partial derivatives w.r.t. x) together with the ODE solver is not a useful tool of solving the
PDEs from conservation laws. In order to demonstrate this fact, we look at the numerical

solution of the equation

ur + uy = gz, t) in (0,L) x (0,7), (3.14a)
u(z,0) = ug(x) on (0,L) x {t =0}, (3.14b)
u(0,t) = u(L,t) =0 forall t > 0. (3.14c)

Let P={0=z9 <z < - < xpy1 = L} be a regular partition of [0, L], h = L/(n+ 1),
and define w;(t) = u(z;,t) for 0 <i < n+ 1. Then (3.14) implies that

du;

dt

Using the central difference scheme (3.9) to approximate u,(z;,t), we find that

du; + Uir1(t) — u—1(t)
dt 2h

+ ug(x;,t) = q(x;,t) forall 1 <i<mandt>0.

= q(x;,t) + O(h?) for all 1 <ilen and t > 0
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where uy(t) = u,41(t) = 0. The ODE above motivates the following ODE

U1 0 _]_ O O v ql(t)
U2 1 0 —1 0 .o oo U2 q2(t)
v . v, qs(t
’ 01 0 -1 0 .- ’ 3,( )
d T N
dt - 2h
: 0 1 0O -1 0 (t)
Up—2 . Up—2 gn—2
Un—1 ’ 0 1 0 —1 Up—1 Qn—l(t)
| v, | 0 - o e 0 1 0] [ va | _qn(?f)_

with initial condition

[01(0) ©v2(0) - Un(o)}TZ[Uo(ﬁl) up(zg) - Uo(l’n)}T

and treat v;(t) as approximated value of w;(t). So the main code is

L = 10;

n = 100;

h =L/(n+1);
T _end = 10;
x = [h:hi*h)’;

K = diag(ones(n-1,1),-1) - diag(ones(n-1,1),1);

[t,y] = oded5(Q(t,y) cl_RHS(t,y,h,K),[0 T_end],u_0(x));

y = [zeros(size(t)),y,zeros(size(t))]; Y0 adding the values at the end-points

where cl_RHS is given by

function yp = cl_RHS(t,y,h,K)

n = length(y);

x = [h:hin*h]’;

yp = 1/(2*h)*K*y + source_q(x,t)];

Example 3.5. We first consider the case L = 10, q(z,t) = (x— L) cos z sint +sin(x) sin(t) +
(x— L) sin(z) cost and uy = 0. We note that the solution is indeed u(z,t) = (x — L) *sin(z) »
sint (which is a smooth function so that the central difference scheme (3.9) provides good
approximation of the derivatives). Knowing the exact solution of the PDE enables us to

compare the numerical solution and the exact solution.
We still need

function output = source_q(x,t)
output = (x-10).*cos(x)*sin(t) + sin(x)*sin(t) + (x-10).*sin(x)*cos(t);
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and

function output = u_0(x)

output = zeros(size(x));

to run simulations. To see the outcome, we use

x = 0:h:(n+1)*h;

figure(1)

for j=1:length(t)
plot(L/2,30,”); % this is to fix the windows
hold on;
plot(L./2,-30,”); % this is to fix the windows
plot(x,(x-L).*sin(x)*sin(t(j)),r");
plot(x,y(j;),"b’);
hold off;
drawnow; % force matlab to run the for loop

end;

You should be able to see that the numerical solution is on top of the exact solution (which
should imply that there is no bug in our code).

We next consider the case L = 10, q(z,t) = x(x — L) cost + (2o — L) sint and uy = 0.
The exact solution is u(z,t) = x(z — L) sint. Now we modify the function source_q and the

exact solution in the comparison of the numerical solution and the exact solution as follows:

function output = source_q(x,t)
output = x.*(x-10).*cos(t) + (2*x-10)*sin(t);

and change the line in magenta by

plot(x,x.*(x-L).*sin(t(j)),’r);

You will see a sawtooth like graph of the numerical solution, while the exact solution is still
smooth.

Finally, you can change the source to

function output = source_q(x,t)
output = abs(x-5)-5;

and you will find that the numerical solution becomes a garbage immediately.
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3.3 Models with Several Spatial Variables

3.3.1 Equation of continuity

Let u be the density of concentration of some physical quantity (v = u(z,t)) in a domain
Q < R", where n = 2 or n = 3, and let F be the flux of the quantity; that is, F - N dS is
the flow rate of the quantity that passes through an area dS in the direction N (outward

pointing) normal to dS. Then for a given open domain O with smooth boundary,

1. the total change of the amount of the quantity from time ¢ to t + At is
f [u(z,t + At) — u(z,t)] dz.
o

2. the flow rate of the quantity flowing out of O through 0O at time ¢ is J (F-N)(t)dS;
20

thus the total amount of the quantity flows out of O through ¢O from time ¢ to t+ At
is

fﬂt LO(F "N)(z, 5) dSds.

3. if there is a source of the quantity, the total amount of the quantity input by the
source from time t to t + At is

t+At
f f q(zx, s)dzds,
t @

where ¢ is the strength of sources for the quantity.

Therefore, the balance of quantity implies that

L [z, t + A) — u(z, t)] do = ft o LO(F “N)(z, s) dSds + ft o L q(z, s)dzds

for all “good” subset O < (), here a “good” set refers to a set with piecewise smooth
boundary. Dividing both sides of the equation above by At and passing to the limit as
At — 0, we obtain that

d
— | udx = —J F-NdS —|—f qdx for all “good” open subset O < Q2. (3.15)
dt Jo 20 o
If w is smooth, by the divergence theorem we find that
f up do = J (¢ — divF) dx for all “good” open subset O < 2,
o o
or equivalently,
J [ut + divF — q} der =0 for all “good” open subset O < ().
o
Since O is given arbitrarily in {2, we conclude that

u + divF = q in Qx(0,7T). (3.16)

Equation (3.16) is called the equation of continuity
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e The conservation of mass in fluid dynamics

Let o(z,t) and u(x,t) denote the density and the velocity of a fluid at point x at time ¢.
Then the density flux F' = pu, and the equation of continuity reads

ot + div(ou) =0 VeeQ,teR. (3.17)

In particular, if the density of a fluid is constant (incompressible fluid), then the velocity w
of this fluid must satisfy
divu=0 in Q. (3.18)

3.3.2 The heat equations

Let ¥(x,t) defined on Q x (0,7] be the temperature of a material body at point = € Q at
time ¢ € (0,7], and s(z), o(z), k(x) be the specific heat, density, and the inner thermal
conductivity of the material body at x, and ¢(x,t) is the strength of the source of the heat
energy. Then by the conservation of heat, similar to the derivation of Equation (3.15) (with

F = —kV49 in mind) we obtain that for any “good” open set O < ,

4
dt Jo

S@M@W@wazf

k(x)VI(x,t) - N(z)dS —l—f Q(z,t)dx, (3.19)
20 @

where N denotes the outward-pointing unit normal of O. Assume that u is smooth, and O

is a domain with piecewise smooth boundary. By the divergence theorem, (3.19) implies

fo s(z)o(x)V(z,t) de = J

div(k(z)VI(z, 1)) dx + f Q(z,t)dz.
o o

Since O is arbitrary, the equation above implies
s(x)o(z)d¢(x, t) — div(k(x) VI (x,t)) = Q(z,t) Ve, te(0,T].
If k£ is constant, then
50
—0y = AV + q(x,t) VeeQ,te(0,T],

k
here A is the Laplace operator (and Av reads laplacian theta) defined by

. = 0%
A19 = le(v&) = 4 é—x? .
If furthermore s and o are constants, then after rescaling of time we have

9, =A0+q in Qx(0,7T]. (3.20)

This is the standard heat equation, the prototype equation of parabolic equations.

We need complementary conditions to specify a particular solution of (3.20):

1. Initial condition: ¥(z,0) = Jg(x), where Jg(x) is a given function.
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2. Boundary condition: if 0§2 # ¢, some boundary condition of v at x € 02 for all time

have to be introduced by physical reason to specify a unique solution.
(a) Dirichlet condition: ¥(x,t) = g(x,t) for all z € 0Q2 and ¢t > 0, where g is a given
function.

oV
(b) Neumann condition: N 0 for all z € 0Q and t > 0, where 211\91 =N V¢ and
0
g is a given function.

0V
(¢) Robin condition: N +hu = g for all z € 092 and ¢t > 0, where h and g are given

functions.

3.3.3 The wave equations

Consider the membrane (of a drum) as a graph of a function z = u(xy, z3) for (zq,x2) € Q.

Question: If the deformation of the membrane is due to a small external force f, what is
the relation between f and u?

Idea: The membrane stores certain energy E(u) so that the deformation of the membrane
changes the energy stored in the membrane which balances the work done by the external
force f.

Suppose that an extra small external force af = af(x1,x2) is suddenly added onto the
membrane (so that the total force exerted on the membrane is f + af), and the membrane
deforms to the surface z = (u + au)(zy,xs) slowly. We note that af is a function of
au and af — 0 as au — 0. Then the extra energy needed to deform the membrane is
E(u+ au) — E(u), while this extra work is done by the force f + af given by

f (f + Af)AU dx .
Q
Therefore,
E(u+ au) — E(u) = J (f+af)audz.
Q
Let o be a given € function and au = tp. Then if ¢ # 0,

E(u+ty) — E(u)
t

=f(f+Af)s0dx,
Q
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where af is a function of ty and af — 0 as t — 0. Passing to the limit as ¢ — 0, we find

that 5
lim (utty) -
t—0 t

= L feodz Voe?'(Q). (3.21)

Equation (3.21) always holds when considering time independent problems.

Suppose that the energy stored in the membrane is given by

E(u):J T(j—i—QdA LT(W—UCZA,

where T is called the tension of a membrane. In other words, to deform a membrane from
its unforced equilibrium state to a surface S given by z = u(x1, x3) requires the input of the

energy shown above. Assuming that u is a smooth function, then

O

:JT<6t’t \/1—|—]Vu+th0\) T

E(u+tp) — E(u) i J \/1+\Vu+th0|2 \/l+|Vu|2dA
t
Vu -V

dA
V14 |Vul?
. TpVu . TVu
= | div([———==) dA — div( ————) dA
L lV<\/1+Vu|2> L@ 1V<\/1+|Vu|2>

where we have used div(¢pF) = ¢@divF + F - Vy to conclude the last equality. By the

divergence theorem, with N denoting the outward-pointing unit normal on 02,

VE(u; @) = W-Nd,&—fﬂgpdiv<m> dA;

o0 /\/1—{—|VU|2 /\/1—{-|VU|2

thus (3.21) implies that

dA =0 for all €'-function . (3.22)

Jolv () +lean- || e

In particular,

TVu
div<7> + } dA =0 for all € -function ¢ that vanishes on 0. (3.23
L[ e fle @ (3.23)
The above identity implies that
TVu
iV ——= |+ f=0 in . 3.24
() H/=0 m (3:20

Therefore,

1. If the membrane is constrained on the boundary; that is, the boundary of the mem-

brane is fixed (for example, u = 0 on 02), then u satisfies that

TVu
Cdiv(—2 ) = in Q, 3.25
1V< n |Vu\2> f in (3.25a)
u=0 on 09Q. (3.25b)
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2. If the membrane is not constrained on the boundary (such as the banners), then (3.22)
and (3.24) imply that
ou

T
LQ V14 |VU\257N

Therefore, % = 0 on 09 (where we assume that 7" > 0 everywhere) which shows

that u satisfies

@dA =0 for all *-function ¢ .

TVu
—div( ——= ) = in 3.26
1V< 1—|—|Vu\2) f in Q, (3.26a)
ou
AN 0 on 0f). (3.26b)

Remark 3.6. If v = 0 on the boundary, we will not have an extra boundary condition
(3.26b) (even though at the first glance it seems the case) since if v = 0 on €2, then all
possible displacement au should also satisfy that au = 0 on 0€2; thus ¢ also has to vanish
on 012 in the derivation of (3.22). In other words, if the membrane is constrained, instead
of (3.22) we should obtain (3.23) directly.

Remark 3.7. By expanding the derivatives, we find that

4 ( TVu ) dv(TVu) oo 1
1v = U - e —
A1+ |[Vul? A1+ [Vul? 1+ | Vul?
_ div(TVu) e 22: umiuacjuxixjg ‘
V1+|[Vul ig=1 V1+[Vu?
Therefore, if |[Vu| « 1 (which is a valid assumption for the case of drums), we find that
.V< TVu
V14 |Vul?

thus (3.25) can be approximated by

) ~ div(TVu);

—div(TVu) = f in Q,
B (D)
u=>0 on 0.
while (3.26) can be approximated by
{ —div(TVu) = f in Q,
ou (N)
aiN =0 on (3Q .

e Equation for vibrating membrane

Let T be the tension, ¢ be the density, and f be the density of the external force which may
depend on x and t. For the case of vibrating membranes, part of f induces the acceleration
of the membrane with implies that

_di ( TVu

v V14| Vul?

):f—gutt in Qx(0,7]
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or under the assumption that |Vu| « 1, the PDE above is simplified as
—div(TVu) = f — ouy in Qx(0,7].

This is in fact the d’Alembert’s principle which states that the displacement u satisfies
that

L [—TVu-Ve+ (f — ouw)p| de =0

for all ¢ compatible with the existing constraints. Therefore,

1. Membrane fastened on the boundary:

ouy — div(TVu) = f in Qx(0,7],
u=g on 0Q x (0,77,
u(z,0) = g(z), uz,0) = h(z) for all z € Q.

2. Membrane with free boundary:

ouy — div(TVu) = f in Qx(0,7],
ou
a_NZO on aQX(O,T],
u(z,0) = g(z), u(x,0) = h(x) for all z € Q.

3.3.4 The Navier-Stokes equations

Aside from the equation of continuity (3.17), at least an equation for the fluid velocity w is
required to complete the system. Consider that conservation of momentum m = pu. By
the fact that the rate of change of momentum of a body is equal to the resultant force acting

on the body, the conservation of momentum states that

ij mda::—f m(u-N)dS+J O'dS—l—ffdx, (3.27)
dt Jo 00 00 o

where N is the outward-pointing unit normal of 0O, f is the external force (such as the

gravity) on the fluid system, and o is the stress (& # ) exerted by the fluid given by
o = 2uDefuN — pN |

where p is called the dynamical viscosity (which may depend on w) and Defu, called the

rate of strain tensor, is the symmetric part of the gradient of u given by

out 5uj)

a.%'j 51’1

(Defu);; = %(

In other words, if & = (01, 09, 03), then
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Assuming the smoothness of the variables, (3.27) and the divergence theorem imply that
for each 1 <7 < 3,

3 .
J[mﬁZ Z%” & Z;[ (25] ZZZ)]m}dx:o

for all regular domain O < €). As a consequence, we obtain the momentum equation

(ou): + div(pu ® u) + Vp = div(uDefu) + f in Qx(0,00), (3.28)
3, daj
where for a matrix a = [a;5], (diva); = >, —2.
j=1 aﬂfj

e Newtonian and non-Newtonain fluids
1. Newtonian fluids: the viscosity p is a constant.

2. Non-Newtonian fluids: the viscosity p is a function of w.

Consider the Newtonian case. If the fluids under consideration is incompressible, we let
o =1 and (3.18) and (3.28) together imply the Navier-Stokes equations

u+u-Vu+ Vp =pAu+ f in Qx(0,7T), (3.29a)
dive = 0 in Qx(0,7T), (3.29b)

where we have used the incompressibility condition (3.18) to deduce that
3 ; 3 3

0 ou' 0uj o (out  ouw
Z&[ ( 0961)]_”;5%-(6% 61'Z> Z

Initial conditions: u(x,0) = uy(zx) for all z € Q.

= pAu’ .

g7[\')

Boundary condition:

1. No-slip boundary condition: u = 0 on 0f).

2. Navier boundary condition: w-N =0 and N x (uDefuN) = a(N x u) on 02 for
some constant a > 0. This condition is based on the assumption that the traction

force due to the viscous effect is proportional to the fluid velocity on the boundary.

e Some brief introduction about stress/traction

e What is the stress/traction?

Let X be a small piece of surface centered at x with area d A and “outward-pointing”
unit normal n. The stress exerted by the fluid on the side toward which n points on
the surface X (n “Tdp e cie - RISV 6 X A el ) is defined as

O0F

where  F is the force exerted on the surface by the fluid on that side (only one side

is involved).
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e General properties of the stress:
1. For a unit vector n = (ny,nq,n3), o(x,t,—n) = —o(x,t,n).
2. At a given point z, suppose that o(z,t,e;) = 7,61 + To€s + 735€3 for 1 < j < 3,
where {ej, e, €3} is the standard basis of R* and 7;; = 7;;(«,t). Then
3
o(z,t,n) =o(x,t e)n +o(x,t e)ny +o(z,t e3)ns = ( Z Tijnj)ei (*)
ij=1
or equivalently,
Tir Ti2 T3 ni
o(x,t,n) = [To1 Too Toz| |2
T31 T32 733 n3

3. By the conservation of angular momentum, 7;; = 7j; for all 1 <4,j < 3. In other

words, the matrix (called the stress tensor) 7 = [r;;] is symmetric.

ey A A A

€3

A J

A,
(a) (b) (c)
Figure 3.1: (a) On each side orthogonal to the coordinate axis, the stress is given by o(—e;) =
23] oije;. (b) On the “slant” side, the stress is given by o(n) = t,, = t,1€1 + t0€2 + t,3€3.
gc:)l By force balances, o(n)A,, = o(e1)A; + o(ez)As + o(e3)As which leads to ().

e The reason why 2uDefuN appears in the expression of o:
1. Suppose that ¥ is the xy-plane, n = (0,0,1), and u = (u,0,0). The larger the

0
value —u, the larger the traction due to the fluid; thus the traction should be

53?3
. 0 . . L :
proportion to a—u Suppose that the traction, without considering the effect of
3
.0 0
pressure, is ua—;s. Then o(n) = ua—::gel.

2. If n=(0,0,1) but instead u = (u,v,0), choose a constant unit vector such that
O(u-e1)A ou

u= (u-e)e, then o(n) = el

3. When n is arbitrary, by the fact that ai is the directional derivative in the
3

direction m when n = (0,0, 1), it is naive to imagine that o(n) = pu(Vu)n.

4. Since the stress tensor has to be symmetric, we have o (n) = 2uDefun.
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3.4 Solving PDE using matlab® - Part II

There is a built-in solver for PDE (with certain boundary conditions and probably initial
condition) in matlab®. The PDE has to be of the form
0%u

ou .
M=z + d% —div(cVu) +au = f for all x € Q, (3.30)

where ) is an open set in R% d = 2 or 3, and either the Dirichlet, Neumann or mixed
type boundary condition can be imposed. Moreover, the unknown u can be a scalar or
vector-valued function.

The main tool of solving PDE of form (3.30) in matlab® is the command “solvepde”.
The simplest code for PDE simulation in matlab® is for the PDE

—Au=1 in Q,
u=20 on 0,

and is given as follows:

model = createpde();
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model, dirichlet’,’Edge’,1:model. Geometry.NumEdges, u’,0);
specifyCoefficients(model, m’,0,...
'd’,0,...
c1,...
a’,0,...
1.1);
generateMesh(model,’Hmax’,0.25);

results = solvepde(model);

here the domain 2 is an L-shape region (which has a built-in function named “Ishapeg” for

describing it).
e Explanation of each line:

1. the command “createpde” is to create a PDE model of the form (3.30), where the
coefficients m, d, ¢, a, f and the domain €2 will be specified later. In general, you need
to specify the number of equations/unknowns N in the input (so that the line becomes
“model = createpde(N)”); nevertheless, you do not need to specify N for a model when
N=1.

2. the command “geometryFromEdges” is to create the domain 2. Usually one needs to
write a separate function to specify the domain. The way of writing a function for

your own domain will be describe later.
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3. the command “applyBoundaryCondition” is to assign boundary condition to the PDE.

4. the command “specifyCoefficients” is to assign the coefficients m, d, ¢, a, f. When they
are constants, they can be assigned simply like what the code shown above. When
they not constant, one usually needs to write a separate function to specify these

non-constant functions.

5. the command “generateMesh” is to generate a mesh for the domain (for solving PDE

using the finite element method).

6. the command “solvepde” is to solve the PDE based on the settings above.

We can make a slight modification of the codes above to solve

u — Au=1 in Qx(0,00),
u = g on § x {t=0},
u=0 on 09 x (0,00),

where ug(z,y) = 2? + y>.

model = createpde();

geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model, dirichlet’,’Edge’,1:model. Geometry.NumEdges, u’,0);
setInitialCondition(model,@(location) location.x. A2 + location.y.A2;);
specifyCoefficients(model, ' m’,0,...

1,

c1,...

a’,0,...

,1);
generateMesh(model,’Hmax’,0.25);
tlist = 0:0.1:1;

results = solvepde(model,tlist);

In the code above, we add the fourth line for specifying the initial condition, and in order
to solve this time-dependent problem we need a list of time vector (given in “tlist”) for the
PDE solver.

For the assignment of the initial data, the variable “location” is in fact a “structure”
that the PDE solver will pass to the function, and location.x and location.y denote the x-
and y- coordinate of the location. See the assignments of non-constant coefficients for more
details.

¢ Visualization of the domain: In order to make sure the function that is used to describe

the domain is correct, we need to plot the domain using the function we wrote and check if
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the outcome is exactly as what we want. One way to plot the domain is as follows:

pdegplot(@filename)

where “filename” is the function used to describe the domain.
One can add additional parameters to show more information of the domain. For exam-

ple, for 2-dimensional domain we can use the following command

pdegplot(@filename,’EdgeLabels’,’on’,’FaceLabels’’on’)

or

pdegplot(model,’EdgeLabels’’on’ "FaceLabels’,’on’)

to show the label of edges and faces.

A T T T T T T T T T 1 T T T T T T —E2—

0.8 H 0.8
0.6 4 0.6 J
E10 i E6
0.4 ] 0.4 1
0.2 S 0.2F
0 0 E7 E8
02+ 1 -0.2
-04 1 1 -04
=] £2 E9 i E5
06 1 -0.6
081 1 081
= . . . . | . . . . 1 i - . | . -y .
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 =1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 3.2: Difference between with and without 'EdgeLabels’” and "FaceLabels’

You can also see the mesh generated by the mesh generator “generateMesh” using

pdeplot(model)

e Visualization of the solution: The outcome “result” of the PDE solver is a structure
that has several variables such as “NodalSolution”, “XGradients”, “YGradients” and “Mesh”
stored inside the structure. In order to access these variables, we add “result.” in front of

these variables. For example, for time-independent problems, you can use the command

pdeplot(model, X YData’ results.NodalSolution)

to visualize the solution, here “results.NodalSolution” is the value of “NodalSolution” in the

results structure.
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For time-dependent problems, “NodalSolution” is a matrix whose column represents the
value of the solution at different time (given by “tlist”).
e Coefficient for specifyCoefficients: In the simple PDE example the domain is divided
into three sub-domains. If some coefficients are constants but different in different sub-
domains, one can assign the value of these coefficients by adding some additional switches.

The following code is a typical example for assigning the forcing function in three sub-
domains.

specifyCoefficients(model,’m’,0,’d’,0,’¢c’,1,’a’,0,’f’,1,’Face’,1);
specifyCoefficients(model,’m’,0,’d’,0,’¢’,1,’a’,0,’f",5, Face’,2);

specifyCoefficients(model,’m’,0,’d’,0,’¢’,1,’a’,0,’f" -8,’Face’,3);

When the coefficients are non-constant, one needs to write separate functions for them.
matlab® has a special requirement for these functions: these functions are of the form

“filename(location,state)”, where “solvepde” passes the location and state structures to

these functions automatically:

(a) location is a structure with these fields:
- location.x
- location.y
- location.z
- location.subdomain
The fields x, y, and z represent the x-, y-, and z- coordinates of points for which your

function calculates coefficient values. The subdomain field represents the subdomain

numbers, which currently apply only to 2-D models. The location fields are row

vectors.

(b) state is a structure with these fields:
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- state.u

- state.ux
- state.uy
- state.uz

- state.time

The state.u field represents the current value of the solution u. The state.ux, state.uy,
and state.uz fields are estimates of the solution’s partial derivatives u,, u, and u, at the
corresponding points of the location structure. The solution and gradient estimates
are N-by-Nr matrices, where Nr = length(location.x) (that is, the number of points
to be evaluated). The state.time field is a scalar representing time for time-dependent

models.

For example, to specify the forcing function
r—y+u

é’ul 5U3
= | 1+ tanh + tanh (—=
f an ((9 ) (@y)

(5+U3)\/172+y 9

one cal use

function f = fcoeffunction(location,state)

N = 3; % Number of equations
Nr = length(location.x); % Number of columns

f = zeros(N,Nr); % Allocate f

% Now the particular functional form of f
f(1,:) = location.x - location.y + state.u(1,:);
f(2,:) = 1 + tanh(state.ux(1,:)) + tanh(state.uy(3,:));

f(3,:) = (5 + state.u(3,:)).*sqrt(location.x. A2 + location.y.A2);

and use the following command

specifyCoefficients(model,’f” @fcoeffunction,...)

to specify this coefficient.
Some requirement for other coefficients:

1. The i-th component of the vector div(c¢Vu), where the unknown u = (u', - uN)

Y

(here the superscript ¢ refer to the i-th component of ), is in general given by
i i 0 < (9u5>
=\ Cijke .
J=1 kf=1 Ok Te
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(a)

()

d
If there exists v such that div(cVu)’ = Z aa( 2 ) for all 1 <7 < N, one can

specify ¢ simply by "
specifyCoefficients(model,’c’,v,...)

if v is a constant, or
specifyCoefficients(model,’c’,Qccoeffunction,...) (3.31)

if 11 is a non-constant function, where “ccoeffunction” is a function of structures
“location” and “state” whose output is a 1-by-Nr row vector, here again Nr =
length(location.x) is the number of points to be evaluated.

d
If there exists vy, 1o, -+, vy such that div(cVu)' = > 0

&’:U( ' )foralll
k=1 k

"Oxy
i < N (or equivalently, each equation has its own diffusion coefficient), one can

specify ¢ simply by

specifyCoefficients(model,’c’, [vy;09;- - - 58],

if all v;’s are constants; that is, we assign ¢ as an N-Element column vector
[1;v9; -+ ;uN], or using (3.31) if one of v; is a non-constant function, where
“ccoeffunction” is a function of structures “location” and “state” whose out-
put is an N-by-Nr matrix whose i-th row is the value of v; at point (loca-

tion.x, location.y, location.z), similar to the one given in “fcoeffunction”.

When ¢, is a general tensor elements, the assignment for ¢ is quite complicated

and we will not discuss here. Check the manual in matlab® for the detail.

2. The i-th component of the vector muy, du; and au are in general of the form

N

i aZUJ' i al 6uj i J
(mug)' = Z Mij 575 (duy)" = Z diji&t , (au)' = Z @ijUy -
7=1 3=1

j=1
If my; = 0;;p for some p so that (muy )" = puj, for all 1 <4 < N, one can specify

m by

specifyCoefficients(model,’m’, s,...)

if 1 is a constant, or

specifyCoefficients(model,’'m’ @mcoeffunction,...) (3.32)

if 1 is a scalar function, where “mcoeffunction” is a function of structures “lo-
cation” and “state” whose output is a 1-by-Nr row vector, here again Nr =
length(location.x) is the number of points to be evaluated. Similar situation

applies to d and a.
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(b) If mi; = 8y for some pu, -+, pun so that (muy)’ = pul, for all 1 < i < N, one

can specify m by

specifyCoefficients(model, m’, [p1;p09;- - - ;un],--)

if all p;’s are constants; that is, assign m as an N-Element column vector
[p1; p2; -+ - 5 N, or using (3.32) if one of p; is a non-constant function, where
“mcoeffunction” is a function of structures “location” and “state” whose out-
put is an N-by-Nr matrix whose i-th row is the value of u; at point (loca-
tion.x, location.y, location.z), similar to the one given in “fcoeffunction”. Similar

situation applies to d and a.

(c) For general m;;, transform the N x N matrix into one N?-Element column vector

in the way

mi1
mo1

mn1
mia
mag

mi; Miz2 -+ TN
Ma1 Meo2 -+  TN2N

mnNe
msi
msz

mNi1 MN2 - MNN

MN(N-1)
MNN

and the output of the function “mcoeffunction” is an N?-by-Nr matrix. Similar

situation applies to d and a.

Example 3.8. Consider a possible extension of the Lotka-Volterra model (2.18)

pr = —0.16p + 0.08pq + div(k1 Vp) in Qx(0,7],

q = 4.5q — 0.9pq + div(k2Vq) in Qx(0,7],
dp _ dq _
N AN on 09 x (0,77,
P=Do; 4d=4qo on Qx {t=0},

where the spatial dependence is included into the problem, and p, ¢ denote the population

of the fox and the rabbit, respectively. It is reasonable to assume the x; is a decreasing

function of ¢ while k5 is an increasing function of p (which indicates that foxes intend to

stay in a place with more rabbits, but rabbits intend to leave a place with more foxes), so

for a baby model we assume that

k1 = k1(q) = 2 — tanh(q) and Ky = Ka(p) = 2 + tanh(p) .
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The domain under consideration is a pacman-like domain which is described by the following
function

function [x,y] = Pacman_domain(bs,s)

switch nargin

case 0

x = 3; % total number of curve parametrizations

return
case 1
dl=[-3+pi/4 0 0 % start parameter values of each curve
3xpi/4 1 1 % end parameter values of each curve
1 0 1 % The region label on the LHS of each curve
0 1 0]; % The region label on the RHS of each curve
x = dl(:,bs);
return
case 2

x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1

bs = bs*ones(size(s));
end
cbs = find(bs == 1); % the following two lines describes the 1st curve
x(cbs) = cos(s(chs))

;% s(cbs) is the arc-length parameter
y(cbs) = sin(s(cbs));

cbs = find(bs == 2);
x(cbs) = cos(3*pi/4)=s(cbs);
y(cbs) = sin(3xpi/4)=s(cbs);

cbs = find(bs == 3);

x(cbs) = cos(3=pi/4)*s(cbs);

y(cbs) = —sin(3#pi/4)=s(cbs);
return

end
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which gives the following domain

o8
0sf

0.4}

E2
0.2
or //
02t .
v
041 //ﬁé F1
s P
-06 7

%
081

»0‘.6 —0‘.4 -62 0 777(’)‘.2 0.‘4 016 0;8
Figure 3.3: The Pacman-like domain

We assume the initial conditions

0 ify>0,
po(z,y) =

5 ify <0,

3 ify>0,

and qO(l’,y)Z{ 0 ify<0

which indicates that initially the foxes and the rabbits are separated into two regions. We
also note that Neumann boundary condition are imposed so that the foxes and rabbits are
not allowed to leave the region.

The following codes can be used to simulated the PDE described above.

model = createpde(2);
geometryFromEdges(model,@Pacman_domain);
initfun = @(location) [5*(location.y < 0); 3*(location.y > 0)];
setInitialConditions(model,initfun);
applyBoundaryCondition(model, neumann’,"Edge’,1:3,’¢’,[0;0]);
ccoeffunction = @(location,state) [2-tanh(state.u(2,:)); 2+tanh(state.u(1,:))];
acoeffunction = @Q(location,state) [0.16-0.08*state.u(2,:); 0.9*state.u(1,:)-4.5];
specifyCoefficients(model, ' m’,0,...
1,
‘¢’ ,ccoeffunction,...
"a’ acoeffunction,...
'1,10:0));
generateMesh(model,"Hmax’,0.2);
tlist = 0:0.01:0.1;

results = solvepde(model,tlist);
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Chapter 4

Optimization Problems and Calculus
of Variations

4.1 Examples of optimization problems

4.1.1 Heron’s principle

Given a straight line L and two points a, b on a plane P, find a point x on L such that

|az| + |bx| is minimal.

Theorem 4.1. If z is a point of L such that the sum |az| + |bx| is the least possible, then

the lines ax and bx form equal angles with the line L.

4.1.2 Steiner’s tree problem

The Steiner tree problem is superficially similar to the minimum spanning tree problem:
given a set V' of points (vertices), interconnect them by a network (graph) of shortest
length, where the length is the sum of the lengths of all edges. The difference between
the Steiner tree problem and the minimum spanning tree problem is that, in the Steiner
tree problem, extra intermediate vertices and edges may be added to the graph in order to

reduce the length of the spanning tree.

4.1.3 Separation problem (4 ¥ 4%)

Suppose that we are given two types of points in R™: points of type A x;, x5, -+, x,, and
points of type B @, 411, Tyio, -+, Timap. The goal of the separation problem is to find a

linear separator, a hyperplane of the form
Hw,f)={zxecR"|w- -z+ =0}

for which points of type A and points of type B are on opposite sides of the hyperplane and
the hyperplane is the “farthest” as possible from all points.
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The margin of the separator is the distance of the separator from the closest point, as

illustrated in Figure 4.1. In mathematics,

margin = min
I<ismtp  [lw]o

o

O M M M M M N M N N
0 05 1k 152 25 3 354 45 5
Figure 4.1: A linear separator that separates points of type = and point of type ¢

The separation problem will thus consist of finding the linear separator with the largest

margin:
. ]wmz-—i—ﬁ} . w-z;+p0<0 forl<i<m,
(wnlg)leaﬂ?n+l { |<igmp w2 subject to w-xz;+8>0 form+1<i<m+p.

4.1.4 Dido’s problem (Isoperimetric problem)

For a simple closed curve C' in the plane, let ¢(C) denote the length of the curve. The
isoperimetric problem is to find a curve C' satisfying ¢(C') = L which encloses the largest
area.
If A(C) denotes the area enclosed by the curve C, then the isoperimetric inequality
provides that
((C)? = 47 A(C) for every simple closed curve C', (4.1)

and “=" holds if and only if C' is a circle.

Sketch of the proof. Let &2, denote the collection of simple closed polygon with 2n sides
and with length L. We look for one P in &2, which encloses the largest area. Let

Pn = [AlaAQa“' 7An7An+17”' 7A2n7A1]

be a polygon in &, which encloses the largest area. We use the notion A; = A if j = k
(mod 2n).

Claim I: P, is convex.

Claim II: For all j € N, ‘AJA]Jrl’ = ’Aj+1Aj+2|.
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Claim III: For all j S N, [A], Aj+1, ce ’A]’+n’ A]] and [AjJrn,AjJrnJrl, s >Aj+2n7 Aj+n] en-
closes the same area.

Claim 1IV: For 1 <] <n-+ 1, AlAj s AjAn+1 at Aj.

Proof of Claim IV: If TAJ is not perpendicular to m at A;, we can adjust the
position of A; to A}, and adjust accordingly the positions of Ag, -+, Aj 1 to Ay, -+, A} so
that the polygon [A;, Ay, - -+, Aj, A1] is the identical (in shape) to [A7, A5, -+, AL |, A;, Al
We note that the area enclosed by the polygon [A},--- AL |, Aj, Ajy, - Ay, AY] s

larger than the area enclosed by the polygon [Ay, -, Auy1, A1]. (End of proof of Claim IV)

By Claim 1V, A’s locates on a circle (with diameter [A;A,11]). Let 7, be the radius of

the circle in which P, is inscribed. Then 4nr,, sin 21 = L and the area A,, enclosed by P, is
n

2 s
A, —m“ sin = = — cot —;
n 8n on’

thus A, 41 = A, for all n € N (Exercise!). The circle C' with radius r has length L and

encloses the largest area among all simple closed curves with length L and L? = 47 A. =

On the other hand, the minimization problem can be reformulated by looking for “min-
imizer” in the space of piecewise continuously differentiable closed curve; that is, we look
for curves C' that can be parameterized, using the arc-length, by vector-valued function
r(s) = z(s)i + y(s)j in the set

A= {'r’(s) = 2(s)i + y(s)j‘x,y e 210, L]:R), r(0) = (L), |i(s)]> = 1 for all s € [o,L]} ,

where 2'([0, L]; R) consists of continuous, piecewise continuously differentiable functions on

[0, L]. Then the problem above is equivalent to the minimization problem

max f [2(s)5(s) — @(s)y(s)] ds.

r=zityjeA J,

4.1.5 Minimal surface of revolution

This is a problem of finding a curve C' connecting (xg, yo) and (z1,y;), where xq < x, such
that its surface of revolution has the least surface area. Given a function y = y(z) satisfying

y(zo) = yo and y(z1) = w1, the surface of revolution of the curve C' = {(z,y(z))|y €

P ([wo, 21]; R), y(20) = yo, y(x1) = 31} is given by
QWJ y\/ 1+ y'(z)? de .

Therefore, the problem of minimal surface of revolution is to find a function y € A = {y €

2" ([wo, 21); R) | y(x0) = yo, y(x1) = 1} which minimizes the functional

I(y —27rf yv/ 1+ y'(z)?dx.

69



4.1.6 Newton’s problem

The Newton problem is to find a curve C' connecting (xg,yo) and (x1,y;), where zy < z1,
such that its surface of revolution has the least resistance from the air when it moves along
x-axis with speed v (or velocity vg).

Let u be the normal component of the velocity (given some surface of revolution) (thus

_dy y'v > .
u = —v = —=———). Suppose that for each surface element dS (at point (z,y, z)), the
=T i pp (at point (z,y, 2))

resistance force is [¢(u)dS]N for some function ¢, where N is the unit normal of the surface
with negative first component (which means the resistance force points to the left). If the
surface of revolution is given by the curve y = y(x), then with ds denoting the infinitesimal

arc-length, for each slice of the surface the total force acting on this slice is 2ryp(u)ds(N-e;)
. d .

(the vertical component cancels out); thus by the fact that d—z = (N-ey), the total resistance

force (in magnitude) is

I(y) =27 Jxl ygp(u)ds@ =27 Jml yy’gp(z’//l})dx
o dS ) \/ 1 + y/2

Therefore, the Newton problem can be formulated as “finding a function y € A = {y €

2

P ([0, 71]; }y o) = Yo, y(21) = y1} which minimizes I(y)".

Newton’s model: p(u) = u?.

4.1.7 Brachistochrone problem (#i& T % & 41 R° 4%)

A brachistochrone curve, meaning “shortest time” or curve of fastest descent, is the curve
that would carry an idealized point-like body, starting at rest and moving along the curve,
without friction, under constant gravity, to a given end point in the shortest time. For
given two point (0,0) and (a,b), where @ > 0 and b < 0, what is the brachistochrone curve
connecting (0,0) and (a,b)?

Given a curve parameterized by { (z,y(z)) | z € [0, a]} for some function y € ([0, a]; R),

the total time required to travel from (0,0) to (a,b) is given by

JW

v/ —2gy(x)
Therefore, the brachistochrone problem can be formulated as finding y € A = {y €
2'([0,a];R) | y(0) = 0,y(a) = b} such that I(y) is minimized. In other words, the mini-

mizer ¢ satisfies that
“\/1+y'(2)?
yE.A

—2gy

4.1.8 Plateau’s problem - minimal surface problem (& ] ¢ % £’ %)

The minimal surface problem is to find a (smooth) surface ¥ whose boundary is a given

curve C' but has the minimal surface area. Consider the simplest case that the orthogonal
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projection from space onto the zy-plane is a bijection between the curve C' and the boundary
of a simply connected region 2 on the zy-plane. In this case, there exists a continuous
function f : 02 — R so that

C={zi+yj+ f(z,y)k|(z,y) € Q}.

The goal is then to find a (smooth) function z = u(x,y) defined on € such that v = f on
0Q) and

f \/1 + g (2,y)? +uy (7, y)* dA = minf \/1 +0a(2,9)? + oy (2, ) dA,
Q veA Q
where A is the admissible set

A={v:Q - R|vis (piecewise) differentiable on Q and v = f on 0Q}.

Figure 4.2: Costa’s Minimal Surface - the minimal surface with three circles as prescribed
boundaries.

4.1.9 Image processing

An image can often be viewed as a function defined on a square domain. In many problems
in image processing, the goal is to recover an ideal image u from an observation f, where
u is a perfect original image describing a real scene, f is an observed image, which is a

degraded version of u. The degradation can be due to:
1. Signal transmission: there can be some noise (random perturbation).
2. Defects of the imaging system: there can be some blur (deterministic perturbation).
The simplest modelization is the following:
f=Ku+n,

where n is the noise, and K is the blur, a linear operator (for example a convolution). The

following assumptions are classical:
1. K is known (but often not invertible);

2. Only some statistics (mean, variance, -- - ) are known of n.
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A classical approach in the image processing problems consists in introducing a regular-

ization term L which admits a unique solution of the optimization problem

inft (J |f—Ku|*dx + /\L(u)> :
ue Q

where A is an admissible set which describes the requirement for the real images, and L is

a non-negative function (with certain requirements that we will not explore here).

4.2 Simplest Problem in Calculus of Variations

Let [a,b] € R, L : [a,b] x R xR — R be continuous. We consider the problem of minimizing

the functional

szfL@M@w%»M

for y € €'([a,b]; R) or 2'([a,b];R), and y satisfies the boundary condition y(a) = Ag, y(b) =
By, where ¢ ([a, b]; R) denotes the space of continuously differentiable functions on [a, b], and
2 (|a, b]; R) denotes the space of continuous, piecewise continuously differentiable functions
on [a,b]. In other words, with A denoting either the set {y € ¢"([a,b]; R) ‘ y(a) = Ag,y(b) =
Bo} or {y € 2*([a,b];R) | y(a) = Ao, y(b) = By}, we consider the minimization problem

inf J L(x,y(x),y'(z)) dz . (4.2)

yeA a
The function L is called the Lagrangian.
In the following discussion, we write L = L(z,y, p) and let arg Ig‘lin I(z) denote the min-
zZE
imizer, if exists, of the minimization problem mijl I(z). In other word, if y = arg rjlin I(2),
zE ZE

then y € A and
I(y) < I(z) Vze A.

Remark 4.2. Let
X ={ye @' ([a,b;R) |y(a) = Ao, y(b) = Bo}
Y ={ye 2'(a,b];R)|y(a) = 49,y(b) = Bo}.

Then arg r)?in I(z), if exists, equals arg r)glin I(z). To see this, we first note that ml)? I(z) >
ze zZE ze

ml}gl I(z); thus for arg r/\gin I(z) # argglin I(z) to hold, we must have y € Y\X such that
zE ze z€E

I(y) < ml)? I(z). By smooth ¢ at corners, we obtain § € X such that I(y) < mi)r(1 I(2), a
z€E s

contradiction.

However, it is possible that there are only minimizers in 2'([a,b]; R). See Example 4.14
for the detail.

4.2.1 First Variation of [

Let A = {y € 7 ([a, b R) | y(a) = Ao, y(b) = Bo} and N = {5 € €"([a, b: R) [ n(a) = n(b) =

0}, called the admissible set and the test function space, respectively. For y € A,
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neN and € e R, let J(e) = I(y + en) and consider the following quotient

90 _1

- Lz, y(x) + en(x), y'(z) + en'(x)) — Lz, y(x),y'(2))] dz ¥Ye#0.

a

Assume that L, and L, are continuous, then

iy 2000 _ [

e—0 €

[Ly(z,y(x),y' (@)n(z) + Ly(z,y(z),y"(2))n'(z)] dz .

. /

This limit, denoted by §1(y;n) or g—j(y), is called the first variation of I at y along 7.
n
Theorem 4.3. Ify = arg rjnn 1(2) is a minimizer of I, then 61(y;n) =0 for allne N.
zE

Definition 4.4. The integral equation 61(y;n) = 0 for all n € A is called the weak form

of the Fuler-Lagrange equation (associated with the minimization problem (4.2)).

e Basic Lemmas

Lemma 4.5. If y € €([a,b];R) and | y(z)n(z)dx =0 for allne€ €([a,b];R), then y = 0.

Lemma 4.6. Ify € €([a,b;R) and | y(z)n'(x)dx =0 for alln € N, then y = ¢ for some
constant c. ¢

x b
Proof. Let n(x) = j (y(t)—c) dt, where the constant c is chosen so that J (y(t)—c)dt = 0.

Then n € N and ’

a

b

b b
J ‘y(x) — 0‘2 dr = f (y(x) — c)n/(x) do = —cf n'(z)de = c(n(a) — n(b)) =0.

a

Therefore, y(z) = ¢ for all x € [a, b]. o

Lemma 4.7. If y,z € €([a,b; R) satisfy

J ly(z)n(z) + z(z)n'(z)] dz =0 VneN, (4.3)

a

then z € €*([a,b]; R) and 2'(x) = y(x) for all x € [a,b).

Proof. Let z(x) = j y(t) dt. Integration-by-parts provides that

a

thus (4.3) implies that

b
f [2(z) — z1(x)]n'(z) dz = 0 VneN.

a

By Lemma 4.6, z(x) — z1(x) = C for some constant C. Therefore, z(z) = C + f y(t)dt
which implies that z € €' ([a,b];R) and 2'(z) = y(x). ' o
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Lemma 4.8. Suppose that y, z € € ([a,b];R) and z is not a constant function. If

b b
f y(x)n'(x)de =0  VneN andn satisfies J 2(z)n'(x)dx =0,

a a

then there are constants \, u € R such that y(x) = Az(x) + p.

Proof. Let n(z) = J (y(t) — Az(t) — p) dt, where A, p are chosen so that n(b) = 0 and

b
f z(z)n'(z) dz = 0; that is,

¢ b b b
)\f z(:c)d:z:—l—uj d:czf y(x) dz

)\f 22 dx + ,uLbz(x) i — Lby(x)z(x) i

Since z is not a constant, the Cauchy-Schwarz inequality implies that the system above has
b
a unique solution (A, ). Since n € N and satisfies f z(z)n'(z) de = 0, we have

a

[ = 2ete) =t = [ 0t = 220) — i)t = e[ iy ao =,

a

thus y(z) = Az(x) + p for all x € [a, b]. o

4.2.2 The Euler-Lagrange Equation

Recall that the weak form of the Euler-Lagrange equation associated with the minimization

problem (4.2) is I(y;n) = 0 for all n € .

Theorem 4.9. Suppose that L, L,, L, are continuous. If y € A is a minimizer of the

minimization problem (4.2), then

d A~ PN
T Ly(@, 5(@), 5'(@)) = Ly(z,5(a), §'(2)) (44)
for point x at which y’ is continuous.

Proof. Apply Theorem 4.3 and Lemma 4.7 to each interval on which 7 is of class €. =

Definition 4.10. Equation (4.4) is called (the strong form of) the Euler-Lagrange equa-

tion (associated with the minimization problem (4.2)).

Remark 4.11. 1. Theorem 4.9 is essentially due to Du Bois-Reymond, so (4.4) is also
called the Du Bois-Reymond equation.

2. It § € €*([a,b];R) and L,,, Ly, L,, are continuous, then g satisfies the following
second order ODE

Lyp(x,§(x), §'(x))y" (x)
= Ly(z,§(2), 5" (x)) = Lpa (2, §(2), §'(z)) = Lpy(, §(2), §"(2))y" ()

This is the equation that Euler originally derived/obtained.
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Example 4.12. Now we consider the brachistochrone problem. Making the change of

variable y — —y (and ignoring 4/2¢g in the denominator), we rewritten the minimization

problem as
a /1 / 2
inf —i——y(a;) dz
veA Jo y(@)
2
where A = {y € 2'([0,a];R) |y(0) = 0,y(a) = —b}. Therefore, L(z,y,p) = 1\/—;]) which

implies that the Euler-Lagrange equation for the brachistochrone problem is

d y' oA/l
v \Jy\/1+y"” 2y>

Similarly, the Euler-Lagrange equation for the minimal surface of revolution problem is

d yy
—_ 99 1 2
dxr /1 + y2 Ty

and the Euler-Lagrange equation for Newton’s problem (with ¢(u) = u?) is

dyy”(y”+3) "
dr (1+y/2)2 - 1+y/2'

Theorem 4.13. Suppose that § € 2*(|a,b]; R) satisfies the Euler-Lagrange equation (4.4),
and z € (a,b). If L,y, Ly, are continuous at (x,y(x),y’'(z)), Lyp(z,y(x),y'(x)) # 0, and y’

is continuous at x, then y”(x) exists.

Proof. Since y € A is a minimizer of the minimization problem (4.2) and g’ is continuous
at x, by Theorem 4.9 we find that

Ly, 90, 7' (2) = Ly, 5(0),§'(2)).
Note that
dy oo Lt e § )+ ) — Ly 5). 7))

[Lp(x, ), y'(x + €)) = Ly(z, y(x), §'(x))
L Ll teyl@te i@ +e) = Ly @), y'(z + 6))] .

By the mean value theorem,

Ly(z +e,5(x+e€), 7' (x +€) — Ly(z,§(2), 7 (x + €))
=L(z+e€,yx+e€),y (x+¢€) — Ly(z,y(x +€),7 (x +¢))
+ Lp(2,J(z + €),§'(z + €)) — Lp(z,5(2), §'(x +¢))
= Lys(z + 016,(x +€),§'(x +€))e
+ Lyy (2, §(x) + 62(F(z + €) — §(2)), §'(z + €))([H(z + €) — (=)
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for some 6, = 0;(¢, z) and Oy = 05(€, x) satisfying 0 < 61,05 < 1. Therefore, by the continuity
of L,, and Ly, at (z,y(z),y'(z)) and " at =,

lim L(z+ey(x+e),y (x+e€)— Ly(r,y(z),y (x +e€))
e—0 €

= Lpe(v, (), Z/J\/(x)) + pr(x, y(z), g//\’(:p))@\’(x) )

thus the limit

o Lol 9 (e + ) — Ly (2,52, () -
e—0 € 4.5
= Ly(2,y(x),§"(2)) = Lpa(2,5(2), y'(2)) = Ly (2,5(), 5" (x))y" ()

exists.

Suppose the contrary that §”(x) does not exist. Then
#{0<le| <0|P(z+e) #7(x)} =0  VI>0 (4.6)

for otherwise there exists § > 0 such that #{0 < |¢| < 0| §'(z+¢€) # §'(z)} < o0; thus there
exists €* > 0 such that §'(z + €) = y'(z) for all |¢| < €* which then leads to a contradiction

that
iy 2049 = (0
€e— €

=0.

Let {¢;}72, be sequence converging to 0 such that

~/ '_’\/ ~/ 4_’\/
liminfy($+ej) y($)<limsupy($+ej) y(x)

(4.7)

Using (4.6), {j € N|7'(z + ¢;) # §'(z)} = {je},; thus by the definition of L,, and the
continuity of 7’ at x,

lim Lyp(z,9(x), 9" (x + €j,)) — Lp(z,9(2),§'(z)) —

e 7z +e,)— 7' (x) po(2, 9(2), 7' () -

The condition L,,(z,y(x),y’(x)) # 0 further implies that

p(7:9(2),7"(x))  Lyp(z, §(2),§'(x))

We then conclude from (4.5) that the limit

. y'(r+¢5,) —y'(z) 1
11m — =
t—0 Ly(x,§(x), 7" (x +€j,)) —

o T+ 65) = 7'(2)
{—0 €5

14
!

y'(z+ej,) —y'(x) Lp(@,y(x),§'(x + €5,)) = Lp(x, y(), @’(93))]

= o L 3@ @) o

>0 LLy(2,9(2), 7 ( + €j,))

_ Ly(2, y(2), §'(2)) — Ly (2, §(2), 5" (2)) — Ly (2, 4(x), §'(2))y'(x)
Lyp(2,y(2), y'(z))
exist, a contradiction to (4.7). o
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Example 4.14. Let A = {y € 2'([0,1];R) | y(0) = y(1) = 0}. Consider the minimization
problem

inf f (y'(x)? = 1) da;

yeA 0
that is, we assume L(z,y,p) = (p* — 1)%. The Euler-Lagrange equation associated with this

minimization problem is
d d

ww 2 2:
iz dp (p°—=1)"=0

p=y’(x)

1
which, together with the fact that L,,(z,y, p) = 12p*—4, implies that if p* 3 the minimizer
Y satisfies
2@\/2@\// + (@\/2 _ 1)@\// — 0 .
N oA . D~y . e~ 1 ~
Therefore, §” (37" —1) = 0 on points at which 7’ is continuous if §"* # 3 Therefore, y” = 0

e~ | P . . .
if g% # 3 which implies that 7’ is piecewise constant. The minimizer is then saw-tooth like

function with slope +1, and there are only 2'-minimizers.

Remark 4.15. Let § = arg I}llin I(z). If Ly, Lyy, Ly, are continuous at (z,y(x),y'(x)),
zZE

L,,(z,y(x),y'(x)) # 0, and ¥’ is continuous in a neighborhood of z, then y” exists in a

neighborhood of x and is continuous there.

Remark 4.16 (Remark on the extensions of the simplest problem of Calculus of variations).

1. Higher derivatives: The Lagrangian might involves higher order derivatives of .

For example, we can consider the minimization problem
b
i [ Lo y(0) v/ (@), 9" (@) do
yeA a
where A = {y € 2*([a,b]; R) ‘ y(a) = Ag,y(b) = Bo,y'(a) = A1, y'(b) = Bl}. We note
that the corresponding test function space is

N ={y e 7*(la,}]:R) [ y(a) = y(b) = y'(a) = y'(b) = 0}.

If ¥ is a minimizer, then J(e) = I(y + en) attains its minimum at ¢ = 0 for
all n € N. This implies J'(0) = 0 for all n € N, and this condition gives the weak

form of the Euler-Lagrange equation associated with this minimization problem: write

L= L(z,y,p,q),

J [Ly(x,z?(x), §'(), 5" (x))n(x) + Ly(z, §(x), ¥'(x), §" (x))n"(x)

+ Ly(w, §(2), §'(@), 7" (@)n" (@) dw = 0 VneN.

2. Free ends: This is to consider the minimization problem

b
inf f L(z,y(z),y'(z)) dx.

yeZ*([a,bliR) J,
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In this case, the test function space is then N = €*([a,b]; R). The same argument

implies that

f [Ly(@, 9(2), 7' (2))n(z) + Ly(z, §(x), §'(@))n' ()] dz =0 ¥neN  (48)

a

if ¥ is a minimizer. In particular, the integral equation above holds for all 7 € {y €
€1 ([a,b]; R) ‘ y(a) =y(b) = O}; thus Lemma 4.7 shows that if L, are L, are continuous,

then
d ~/

Ly, §(2),9'(@) = Ly, 5(2), 5'(2))

for point = at which ¢’ is continuous. Integrating-by-parts of (4.8) further implies that
Ly (b,5(b), §"(0))n(b) — Lyp(a, §(a),§'(a))n(a) =0 VneN.
Therefore,

(a) The Euler-Lagrange/Du Bois-Reymond equation holds.
(b) L,(b,y(b),y'(b)) = Ly(a,y(a),y’(a)) = 0 - this is called the natural boundary

condition.

. Several dependent variables: Let
A={y=(y, ) [a,t] > R"|y; € 2'([a,0;R) for 1 < j <m,
y(a) = 4o, y(b) = By}
or (when considering minimization problems with free ends)
A={y= (- ,9):[a,0] > R |y; € 2'([a,0];R) for 1 < j <n} = P'([a,b;R"),

and L : [a,b] x R* x R* — R. Consider the minimization problem

b
inff L(z,y(x),y' (x))dx.

yeA ),

Write L = L(z, Y1, ,Yn,P1," - ,Pn)- Then the Du Bois-Reymond equation is
%Lm (. y(z),y'(z)) = Ly, (2, y(x), y'(x))  for i=1,2,--- n. (4.9)
When considering free ends problem, natural boundary conditions
Los(b,9(0), 7' (1) = Ly(0,5(), §(@) =0 for i=1,2,,n  (410)
have to be imposed for the minimizer y.

. Several independent variables: Let 2 € R" be bounded open set, and L : € x
R x R* — R (here we write L = L(z,y,p1, - ,pn)) be continuous. Consider the

minimization problem

in Lux,y(x),wm) dr,

where A could be
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(a) A={ye 2" (4R) |y = f on dQ} (with corresponding N = {n € €* (4 R) |n =
0 on 69}) when considering the fixed-end problem, or
(b) A= 2 (;R) (with corresponding N' = €} (€2; R)) when considering the free-end

problem.

Define J(e) = I(y + en), where § € A is a possible minimizer, n € A" and € € R. The
weak form of the Euler-Lagrange equation is J'(0) = 0:

|, [0, V3@ + (T, 3(a). Vi) - Vanta) | do =0 ¥y e,

a—L, a—L, ceey a—L) is the gradient of L in p-variable. By the divergence
dp1’ Op2 Opn

theorem (Theorem A.48), the strong form of the Euler-Lagrange equation is

where V,L = (

div, [(V,L)(x, (), V§(2))] = Ly(x. §(x), Vi(x)). (4.11)

5. Non-affine admissible set: We note that in Dido’s problem the admissible set A
is not an affine space (a translation of a vector space). In a minimization problem,
the admissible set A in general is not an affine space so there is no obvious test
function spaces N to work on. See Example 4.19 for deriving the weak form of the

Euler-Lagrange equation for minimizers.

Example 4.17 (The minimal surface). In this example we revisit Plateau’s problem. Sup-
pose that Q < R? is a bounded set with boundary parameterized by (z(t), y(t)) for ¢ € I, and
C < R3 is a closed curve parameterized by (x(t),y(t), f(z(t),y(t))) for some given function
f. We want to find a surface having C as its boundary with minimal surface area. Then
the goal is to find a function u with the property that v = f on 0€) that minimizes the

functional

Alw) = J 1+ |Vw]2dA.
Q
Let ¢ € €'(%;R), and define

S A ) = lim Alu + ep) — A(u) Vu-Ve

= dr .
t—0 € Q /1_|_ |vu|2

If v minimizes A, then dA(u; ) = 0 for all p € €1(Q; R) satisfying ¢ = 0 on 0. Assuming
that u € €2(%; R), by the divergence theorem (Theorem A.48) we find that u satisfies

div(\/1f1|L7VU|2> =0,

or expanding the bracket using the Leibnitz rule, we obtain the minimal surface equation
(14 U2 Y Ugw — 2ty + (1 + Ul )y, =0 in Q. (4.12)
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Example 4.18. Consider finding the shortest path on the unit sphere connecting two points
Ap and By (on the same sphere).

In other words, we are interested in the minimization
problem

me !r ]dt

= Ao, (1) = By, |r(t)] =1 for all t € [0, 1]}.
Similar to the previous example, we introduce a family of curves

r(t;€), where € € R is
a parameter that will be passed to the limit, such that

L 7(t;0) =7(t); 2. 7(0;¢€) = Ap;

where A = {re 2'([0,1]; R*)| r(0

3. 7(1;¢) = Bg; 4. ris also differentiable in €
where 7 gives the shortest path connecting 4y and By. Denote dr(t) =

56 -, r(t;€). Then
the fact that r € A implies that d7 - 7 = 0; thus we shall introduce .44 as
Ny = {57‘ e ¢1([0,1;R?) | 7(t) - or(t) = 0 for all t € [0, 1]}
Since 7' - 7 = 0 whenever 7'(¢) exists, we can assume that
7(t), 7' (t), (?' x 7)(t) are linearly independent if 7'(t) # 0. (4.13)
In particular, with (4.13) we conclude that

Ny =span (7, 7' x 7) = {a? +b(?' x 7)|a,beR}. (4.14)
Now suppose that 7 € €2([0,1]; R?). Similar to the derivation of (4.17), we obtain that

d 1 , 1 /7;/ .
:—eofo |r(t;e)}dt:JO W,E& (57) (1) dt

de

Vore N,
and integrating by parts further shows that for dr € .45,

- w0 - () oo

i om0 = URpY
[ Gy

where we have use the fact that (67)(0) =
~1

(67)(1) = 0 to eliminate the boundary contribu-
!/

tions. Since (f,) -7 =0, we conclude from (4.14) that

T

f b(t)(f:(ﬂ>/ (FxW(B)dt=0  Vbe?(0,1];
0 |7 (1)
which, by Lemma 4.5, shows that

R)

(LY @ <=0 vie1],

ol

By the fact that 7 - (#" x 7) = 0, the identity above further shows that
) (P xP)(t)=0 Vtelo,1]. (4.15)
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Now suppose that the parametrization of the shortest path satisfies that |#'(t)| = constant;
that is, the motion along the shortest path has constant speed. Then 7'(¢) - 7"(¢) = 0 for
all ¢t € [0, 1]; thus (4.13) implies that

" =cr+d(® x7) for some functions ¢ and d of .

Identity (4.15) further shows that d = 0; thus 7" = ¢7 so that
(' x?) =" xP=crx7=0.

As a consequence, 7 x 7 is a constant vector ¢; thus (4.13) implies that 7- ¢ = 0. Therefore,
the trajectory lies on a plane passing through the origin which shows that the shortest path

connecting two points on the sphere must be part of a great circle.

Example 4.19 (Isoperimetric Inequality - revisit). We rephrase Dido’s problem as finding

a simply closed curve C' enclosing a fixed number A of area with shortest perimeter. Let

A= {r(t) — ()i + y(t)j e 2'([0,1]; R?) | #(0) = (1), Jl (2 — yi)dt = 2A}

0

1
and I(r) = in£ J |7(t)| dt. We would like to study the minimization problem in£ I(r).
TE 0 TE

The difficulty of this particular formulation is that A is not an affine space so there
is “no” corresponding test functions space to compute the first variation as before. To see
how we derive the Euler-Lagrange equation for this minimization problem for a minimizer
T = Zi+ yj, we introduce a family of curves r(t;€) = z(t;€)i + y(t;€)j € A, where € € R is

a parameter that will be passed to the limit, such that

1. 7(t;0) = 7(t); 2. 7(0;¢) = r(1;¢€); 3. 7 is also differentiable in e.
Denote dr(t) = di r(t;€) = 0x(t)i + oy(t)j. Since r e A,
€le=0

d

de e:OJ [z(t;€)y(t;e) — y(t; e)i(t;e)] dt =0

0

which implies that dr satisfies

[ 160+ 206 - (60)3 - 5t6)] @ =0. (4.16)

For each possible minimizer 7, the relation above induces a linear vector space
1 . .
N = {51“ = 0zi+ dyje €1 ([0, 1]; R?) ’ J [:’1:\(5y) — Q((Sa:)] dt = O} )
0

Now we look for a minimizer 7 € €*([0,1];R?). We note that Remark 4.2 implies

that if we are able to find a minimizer in €2([0,1]; R?) (thus a %'-minimizer), it must
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also be a minimizer in 2'([0, 1]; R?). Since 7 € €>([0, 1]; R?) is a minimizer, the function

J(€) = I(r(t;€)) attains its minimum at € = 0. This yields that J’(0) = 0 or more precisely,

f () (0r)'(t)

~/

0 |7 (t)]

where we note that dr € 44. In other words, T satisfies

[

and Lemma 4.8 implies that there exists A1, Ag, i1, 1o € R such that

(0r)'(t)dt=0  Vore S, (4.17)

(1)
|7 (t)]

~/

T (t)

)~ (a0 + )i+ (20 + pa)i.

Since 7 = (Z,79) € €*([0, 1]; R?), we differentiate the equation above and obtain that

(1) Y e L AT s
<’$,<t)’> = MY (1) i+ A2 (1)F -

2

~/ |

=

we find that

0= ( f (1) >( f (t;|>/ = (M7 (t)i+ AT ()]) - 7Aﬂ/(t) = (A2 + A1) |(?

7 (t

)y’ (t)
)| Vtel0,1]

which implies that Ay = —A; = X (for otherwise 2’7" = 0 which shows that the trajectory is
a straight line); thus
(1)
(1)

Note that A # 0 for otherwise the unit tangent vector is constant which implies that 7 is a

= (=AY(t) + pa)i + (AZ(t) + p2) 4 -

parametrization of a straight line. Therefore, with 7 denoting the vector
T )i+ i= (2 2\, (=~ P .

F(t) = () i+ §(t)f = <a;(t) + 7>z + <y(t) _ 7>J,

we have _

#(1)]

Finally, taking the inner product of the equation above with the (position) vector 7, we

= AJ(t)i+ N ().

conclude that
% T
Therefore, the closed curve having fixed length and enclosing the largest area must be a

circle.
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Appendix A

Vector Calculus

A.1 Vector Fields

Definition A.1. A (two-dimensional) vector field over a plane region R is a vector-valued
function F that assigns a vector F(z,y) € R? to each point (z,y) in R. A (three-dimensional)
vector field over a solid region @) is a vector-valued function F' that assigns a vector

F(z,y,2) € R3 to each point (z,y,z) in Q.

In general, an n-dimensional vector field over a region D < R" is a vector-valued function

F that assigns a vector F(z1, 22, -+ ,x,) € R" to each point € = (x1, 22, -+ ,x,) in D.

Definition A.2 (*2A ). Let Q be an open region in space, and F : Q — R?® be a vector
field given by F(z,y,2) = M(x,y,2)i+ N(z,y,2)j+ P(z,y,2)k. The curl of F, also called
the vorticity of F, is a vector field given by

cwrlF — <6j_aN>i_ (&P_&M), (&N_&M)k.

dy 0z o 0z 0T Gz T oy
If curlF = 0, then F is said to be trrotational.

Symbolically, the curl of F is given by

i j ok

0 o 0

CU.I']F—VXF— oz aiy &
M N P

Remark A.3. Let F be a three-dimensional vector field, and F; be the i-th component of
F'; that is,
3
F=Fi+FPyj+ Fk=) Fe.
i=1

Then using the permutation symbol €;;, we have

3
(curlF'); = the i-th component of curl F = Z gijk@ : (A.1)

0x;
k=1 J
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Remark A.4. Let F be a two dimensional vector field given by F(z,y) = M(z,y)i +
N(x,y)k. We can also define the curl of F by treating F' as a three-dimensional vector field

F(x,y,2) = M(z,y)i+ N(z,y)j + 0k
(which is a three-dimensional vector field independent of z) and define curlF as the third
component of curl P (for the first two components of curlF are zero). Therefore, the curl of
a two dimensional vector field F = M7+ Nj is a scalar function given by
ON oM
curl F' = Friair

Moreover, by defining the differential operator V+ = <— ;, ;) on plane we have the
y X
symbolic representation

curlF =V*+. F.

Definition A.5 (¥t/ ). Let R be an open region in the plane, and F : R — R? be a vector
field given by F(z,y) = M(x,y)i+ N(x,y)j. The divergence of F' is a scalar function given
by oM ON

divF = Gy + e
Let @ be an open region in space, and F : Q — R3? be a vector field given by F(x,y,z) =
M(z,y,2)i+ N(z,y,2)j+ P(x,y, 2)k. The divergence of F' is a scalar function given by
opr 6N> . (6P 6M> . (6]\7 B 6M>k

CurlF:<ay—azz — — Ty

o 0z )7
In general, if D is an open region in R® and F : D — R" be a vector field given by
F(z) = (Fi(z), Fo(z),- -, Fu(x)), the divergence of F is a scalar function given by

A.2 The Line Integrals

A.2.1 Curves and parametric equations

Definition A.6. A subset C' in the plane (or space) is called a curve if C' is the image of
an interval I < R under a continuous vector-valued function . The continuous function

r: I — R? (or R?) is called a parametrization of the curve, and the equation
(x,y)=7r(t), tel (or (x,y,z) = r(t), te[)

is called a parametric equation of the curve. A curve C'is called a plane curve if it is

a subset in the plane.

Since a plane can be treated as a subset of space, in the following we always assume that
the curve under discussion is a curve in space (so that the parametrization of the curve is

given by r: I — R3).
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Definition A.7. A curve C is called simple if it has an injective parametrization; that
is, there exists r : I — R? such that r(I) = C and r(z) = r(y) implies that z = y. A
curve C' with parametrization r : I — R3 is called closed if I = [a,b] for some closed
interval [a,b] € R and r(a) = r(b). A simple closed curve C is a closed curve with
parametrization 7 : [a,b] — R?® such that r is one-to-one on (a,b). A smooth curve C is a

curve with differentiable parametrization r: I — R3 such that 7/(¢) # 0 for all ¢ € I.

Example A.8. The parabola y = 2% + 2 on the plane is a simple smooth plane curve since
r: R — R? given by r(t) = ti+ (r?+2)j is an injective differentiable parametrization of this
™

parabola. We note that 7 : ( 5 2) — R? given by 7(t) = tanti + (sec®t + 1)j is also an

injective smooth parametrization of this parabola. In general, a curve usually has infinitely

many parameterizations.

Example A.9. Let I < R be an interval, and 7 : I — R? be defined by r(t) = cos ti+sin tj.
Since r is continuous and the co-domain is R?, the image of I under 7, denoted by C, is a
plane curve. We note that C' is part of the unit circle centered at the origin. Moreover, C

is a smooth curve since r/(t) # 0 for all ¢ € 1.
1. If I =a,b] and |b — a|] < 27, then C is a simple curve.
2. If I =[0,27], then C' is not a simple curve. However, C' a simple closed curve.

Example A.10. Let 7 : [0,27] — R? be defined by 7(t) = sinté + sint costj. The image
([0, 27]; R?) is a curve called figure eight.

Figure A.1: Figure eight

Example A.11. Let 7: R — R? be defined by 7(t) = costi + sintj + tk. Then the image

r(R) is a simple smooth space curve. This curve is called a helix.

In the following, when a parametrization r : I — R? of curves C' is mentioned, we always
assume that “there is no overlap”; that is, there are no intervals [a,b], [¢,d] < I satisfying
that 7([a,b]; R?) = 7([c, d]; R?). If in addition

1. C'is a simple curve, then r is injective, or

2. C is closed, then I = [a,b] and r(a) = r(b), or

3. C is simple closed, then I = [a,b] and r is injective on [a,b) and r(a) = r(b).
4. C'is smooth, then 7 is differentiable and r/(t) # 0 for all ¢ € 1.
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A.2.2 Line integrals of scalar functions

Theorem A.12. Let C be a (piecewise) smooth curve with (piecewise) continuously differ-
entiable injective parametrization r : [a,b] — R?, and f : C — R be a continuous function.

Then the line integral of f along C' exists and is given by
b
J (f o ) (@) |7 (1)) dt

Example A.13. Evaluate J (22 — y + 3z) ds, where C is the line segment connecting the
c
points (0,0,0) and (1,2,1).

First we note that the line segment can be parameterized by
r(t) = (1 —1¢)(0,0,0) +¢(1,2,1) =ti+ 2tj+tk  te][0,1].

Therefore, Theorem A.12 implies that

1 1 5\/6
J(mQ—y+3z)ds:J(t2—2t+3t)]i+2j+k|]dt:\/éf(t2+t)dt:6.
C 0 0

Example A.14. Evaluate J x ds, where C' is the piecewise smooth curve starting from
(0,0) to (1,1) along y = x* th(én from (1,1) to (0,0) along y = x.

Let C} be the piece of the curve connecting (0,0) and (1,1) along y = 22, and Cy be
the piece of the curve connecting (1,1) and (0,0) along y = x. Then C; and Cy can be

parameterized by
r(t)=ti+t’j te[0,1] and  m(t)=ti+tj tel0,1],

respectively. Since C' = C; u Cy and C; n Cs has only two points,

1 1
des: [ xds+f deZJ t|1:+2tjdt+f ti+ 4| dt
C JCq Co 0 0

1
— [tV1+ 422 + V/2t] dt
JO
! 3 \/§t2 t=1
= |5 +a)t+ Y]
T

1 V2
= 5(Vo-1)+ -

t=0
Example A.15. Let C' be the upper half part of the circle centered at the origin with
radius R > 0 in the xy-plane. Evaluate the line integral f yds.

c

First, we parameterize C' by
r(t) = Rcosti+ Rsintj  te[0,7].

Then i i
J yds = J RsintH — Rsinti+ RcosthRth = J R%*sintdt = 2R?.
c 0 0
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Example A.16. Find the mass of a wire lying along the first octant part of the curve of
intersection of the elliptic paraboloid z = 2 — 22 — 2y? and the parabolic cylinder z = 2
between (0,1,0) and (1,0, 1) if the density of the wire at position (x,y, z) is o(x,y, z) = xy.

Note that we can parameterize the curve C' by

r(t) =ti++vV1 -2+t tel0,1].

Therefore, the mass of the curve can be computed by
1— 24+ 2+ 482(1 — 12)
ds = | tv1i=¢2 Hz+ + 2tkH dt = f WiteY dt

J ¢ J ] V1 —t2

Jt«/Q— (1 —2t2)2dt = J V2 —uldu = - J4 2 cos? 0 db

4

+

™
o=—7 8

1 [9 N sm(29)} l9=4

1
4 2 4

A.2.3 Line integrals of vector fields

Definition A.17. An oriented curve is a curve on which a consistent tangent direction T

is defined. In other words, an oriented curve is a (piecewise) smooth curve with a given
/!

parametrization 7 : I — R3 so that T = s defined.

|
Definition A.18. Let F be a continuous vector field defined on a smooth oriented curve

C' parameterized by r(t) for t € [a,b]. The line integral of F' along C'is given by

J F.-Tds.
c

Remark A.19. Note that since T o r = Tl ’H by Theorem A.12 we have

-Tds = b or ) r’ = ’ or)(t)-r
FTds = [(For))- o= | (Fono)- ).

Since 7'(t) dt = dr(t), sometimes we also use j F-dr to denote the line integral of F' along

a

the oriented curve C' parameterized by .
Remark A.20. Given an oriented curve C and F : C' — R3, we sometimes use f F-dr
e

to denote the line integral f F-(—T)ds, where —T is the tangent direction opposite to the
c

orientation of C.

Example A.21. Find the work done by the force field
1, 1, 1
F(z,y,2) = —gwi—cyj+ 1k
on a particle as it moves along the helix parameterized by

r(t) = costi+sintj + tk
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from the point (1,0,0) to the point (—1,0,3m). Note that such a helix is parameterized by
r(t) with t € [0, 37]. Therefore,

3w
1 1 1
f F-dr:f (——costz'——sintj—i——k:) : (—sinti+costj+k:) dt
. o 2 2 4

1 1. 1
= (—Slntcost——81ntcost+—)dt:—.
0 \2 2 4

Example A.22. Let F(z,y) = y?i + 2xyj. Evaluate the line integral J F - dr from (0,0)
c
to (1,1) along

1. the straight line y = =,
2. the curve y = 22, and

3. the piecewise smooth path consisting of the straight line segments from (0, 0) to (0, 1)
and from (0, 1) to (1,1).

For the straight line case, we parameterize the path by r(t) = (¢,t) for ¢t € [0, 1]. Then
1

1
f F-dr:f (t2i+2t2j)-(i+j)dt:f 3t’dt = 1.
C 0 0

For the case of parabola, we parameterize the path by r(t) = (¢,¢?) for t € [0,1]. Then
1 1
J F.dr= f (t*d 4 2t%5) - (i + 2t5)dt = f Sttdt = 1.
c 0 0

For the piecewise linear case, we let Cy denote the line segment joining (0,0) and (0, 1),

and let Cy denote the line segment joining (0, 1) and (1,1). Note that we can parameterize
C: and Cy by
ri(t)=tj te[0,1] and mo(t)=ti+j te]0,1],

respectively. Therefore,

1 1
JF-dr: F-dr+f F-dr:ft2i-jdt+f(z‘+2tj)-z‘dt:1.
C Ch Cs 0 0

We note that in this example the line integrals of F along three different paths joining (0, 0)

and (1,1) are identical.

Example A.23. Let F(z,y) = yi — xj. Evaluate the line integral J F - dr from (1,0) to
c
(0,—1) along

1. the straight line segment joining these points, and

2. three-quarters of the circle of unit radius centered at the origin and traversed counter-

clockwise.
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For the first case, we parameterize the path by r(t) = (1 —t, —t) for ¢ € [0,1]. Then

1

1
f F-dr:f [— ti+ (t — 1)j] -(—z‘—j)dt:f ldt=1.
c 0 0
For the second case, we parameterize the path by r(t) = costé + sintj for t € [0, 37%}
Then

3T 3

* s

JF-d'r':fQ(sinti—costj)-(—sinti+costj)dt:f (—=1)dt = 5
c 0 0

We note that in this example the line integrals of F along different paths joining (1,0) and
(0,—1) can be different.

A.3 The Green Theorem

Let R < R? be a region enclosed by a simply closed curve C and F = Mi+ Nj be a vector

fields on (an open set containing) R, where C'is oriented counterclockwise so that

C' is traversed once so that the region R always lies to the left.

The line integral of F along an oriented curve C' sometimes is written as
f Mdx + Ndy
c
since symbolically we have dr = dxi + dyj so that
F.-dr=(Mi+ Nj)- (dei+ dyj) = Mdx + Ndy.

The right-hand side of the identity above is called a differential form.

Theorem A.24 (Green’s Theorem). Let R be a plane region enclosed by a closed curve C
oriented counterclockwise; that is, C' is traversed once so that the region R always lies to the

left. If M and N have continuous first partial derivatives in an open region containing R,

then
ON oM
jchdx + Ndy = ﬂ <76x i >(x, y)dA. (A.2)

Remark A.25. If F is a two-dimensional vector field given by F = M1 + N3, then under

the assumption of Green’s Theorem,
jg F-Tds = Jf (curlF)(x,y)dA.
c
R

This is sometimes called Green’s Theorem in Tangential Form. Moreover, by treating

F as a three-dimensional vector field, then under the assumption of Green’s Theorem,

jch cdr = ﬂ (curlF - k)(z,y) dA.
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Remark A.26. Let R be a region enclosed by a smooth simply closed curve C with

outward-pointing unit normal N on | and F' be a smooth vector field defined on an
open region containing R. We are interested in J F - Nds, the line integral of F'- N along
C. ¢

Suppose that F = Mi+ Nj, and C is parameterized by r(t) = z(t)i + y(t)j, t € |a, b],
so that C' is oriented counterclockwise. Define G = —N7 + Mj. Then Green’s Theorem
implies that

f —Ndx+Mdy:3€ G- dr = churlGdA :f (Mx—i—Ny) dA = deideA.
c c
R R R

On the other hand, if 7 is a counterclockwise parametrization of C', then

oyl L ()
NO) = 1t el

Vtela,b];
thus

§§ F-Nds = )l @] dt:f F(r(t)) - N(r(t))[r'(t)] dt

a
b

)i+ NG, 9] - [+

1)y () = N(a(), (1) (1)) de

J. =
Jb
J, b
§ Nda:—{—Mdy—jg G- dT‘—delVFdA

§ F -Nds = ffdideA.
c
R

This is sometimes called Green’s Theorem in Normal Form or Divergence Form.

Therefore,

Example A.27. Use Green’ s Theorem to evaluate the line integral fﬁ yidr + (x® 4 3zy?)dy,

c
where C is the path from (0,0) to (1,1) along the graph of y = z* and from (1,1) to (0,0)
along the graph of y = x.
Let R = {(:1:', Y) | 0<z<l,28<y< x} Then Grenn’s Theorem implies that

3@ yPdr + (2% + 3xy? dy—ﬁ[ (x +3xy)—aiy dA = JJ3$ dA
c

_Jol (Ld 3x2dy> dJJ—J;) 3$2(I—m3) dr — (sz;_%xﬁ) =1 1

Example A.28. Let D < R? be the annular region D = {(x,y) ‘ 1 < 22 +9% < 4},

=0 4 ’

F(z,y) = A S j, and C' < D be a simple closed curve oriented counterclockwise
21 .2 2 1 .2
2 +y2 2?4y

so that the origin is inside the region enclosed by C. Find § F - dr.
c
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Choose r > 1 so that the circle centered at the origin with radius r lies in the region
enclosed by C'. Let C. denote this circle with clockwise orientation, and pick a line segment
B connecting C' and C,. (with starting point on C' and end-point on C,. Define I" as the
oriented curve B u C, U (—B) u C, where —B denotes oriented curve B with opposite
orientation, and let R be the region enclosed by I'. Then R € D and R is the region lies to
the left of ['. Therefore, Green’s Theorem implies that

JJ F-drzfjcurleA:().
rJc,
R

On the other hand,

JF-dr:J F-dr+J F~dr+J F-d’r‘—l—f F-dr;
r B Cr -B c

thus by the fact that f F.-dr= —J F - dr, we conclude that
-B B

fF-dr—i—J F~dr:JJ F.-dr=0
c C, rJo.
fF-d'r:—f F-d'r:f F-dr.
C C —Cr

In other words, the line integral of F along C'is the same as the line integral of F along the

or equivalently,

circle C. with counterclockwise orientation. Since —C). can be parameterized by
r(t) = rcosti+ rsintj tel0,2n],

we find that

2m . 2m
JCF-dr:fO <r512nti_ TC(;“j) - (= rsinti+ rcostj) dt :f (=1)dt = —27.

T r

A.4 The Surface Integrals

A.4.1 Parametric Surfaces

Definition A.29 (Parametric Surfaces). Let X, Y and Z be functions of u and v that are

continuous on a domain D in the uv-plane. The collection of points
Y= {r e R? ’ r=X(u,v)i+Y(u,v)j+ Z(u,v)k for some (u,v) € D}

is called a parametric surface. The equations © = X (u,v), y = Y (u,v), and z = Z(u,v)
are the parametric equations for the surface, and r: D — R3 given by r(u,v) = X (u,v)i +

Y (u,v)j+ Z(u,v)k is called a parametrization of 3.
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Definition A.30 (Regular Surfaces). A parametric surface
Y= {'r‘ e R? ‘ r=X(u,v)i+ Y(u,v)j+ Z(u,v)k for some (u,v) € D} :
is said to be regular if X, Y, Z are differentiable funcitons and
7y (u,v) X ry(u,v) # 0 V(u,v) € D,
where r, = X, i+ Y, j+ Z,kand r, = X, i+ Y, 7+ Z, k.

Example A.31. Let R be an open region in the plane, and f : R — R be a continuous

function. Then the graph of f is a parametric surface. In fact,
the graph of f = {'r’ eR? ‘ r=2xi+yj+ f(x,y)k) for some (z,y) € R} .

Therefore, a parametric surface can be viewed as a generalization of surfaces being graphs

of functions.

Example A.32. Let S* = {(z,y,2) € R¥|2? + y* + 22 = 1} be the unit sphere in R®.

Consider
r(0, ¢) = cos O sin i + sinfsin ¢j + cos ok, (6,¢) € D = [0,27] x [0, 7].
Then r: D — S? is a continuous bijection; thus S? is a parametric surface.

Example A.33. Consider the torus shown below

Figure A.2: Torus with parametrization 7(u,v). (temporary picture)

Note that the torus has a parametrization
r(u,v) = (a+ bcosv) cosui + (a+ beosv)sinuj + bsinvk, (u,v) € [0,27] x [0, 27].

Therefore, the torus is a parametric surface.
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A.4.2 Surface Area of Parametric Surfaces
Theorem A.34. Let D be an open region in the plane, and
Y= {T‘ e R3 ‘ r=X(u,v)i+Y(u,v)j+ Z(u,v)k for some (u,v) € D} :

be a reqular parametric surface so that v is continuously differentiable; that is, X,, X,, Y,

Y,, Z., Z, are continuous. Then

the surface area of ¥ = Jf |ru(u, v) x 7y (u,v)| d(u,v).
D

Remark A.35. The example above provides one specific way of evaluating the surface
integrals: if the surface ¥ is in fact a subset of the graph of a function f : R € R? — R;

that is, ¥ < {.CE, y, f(x,y)) ! (x,y) € R}, then ¥ has a parametrization

r(z,y) =zi+yj+ f(z,y)k, (z,y) eV,

where V is the projection of 3 onto the zy-plane along the z-direction. Then

2

0 z2 e
Irae,9) > @yl = 1+ |5 @) + |5 @)

)

thus

of 2 |of 2
the surface area of ¥ = 1+ T(x,y)) + ‘—(m,y)‘ d(x,y).
v ox oy

Example A.36. Given the parametrization of the unit sphere S? given in Example A.32,
we find that

0,¢) = —sinfsin ¢ + cos fsin ¢F ,
T4(0, ¢) = cos b cos ¢t + sin 6 cos ¢j — sin gk
so that

(14 x 7,)(0,¢) = — cos O sin® i — sin 0 sin® ¢j — sin ¢ cos Pk
= — sin ¢( cos 0 sin ¢ + sin 0 sin ¢5 + cos ¢k) .

By Theorem A.34 the surface area of S? is given by

U [(ro x r4)(0,6)]d(0, ¢) = Lﬂ (sz sin g df)dg = 4
]

[0,27] x [0,

Example A.37. Given the parametrization of the torus given in Example A.33, we find
that

ry(u,v) = —(a+ bcosv) sinui 4 (a + beosv) cosuj,

ry(u,v) = —bsinv cosui — bsinvsinuj + bcos vk;

93



thus

(ry x 1) (u,v) = b(a + bcosv) cosucosvi+ b(a+ bcosv) cosvsinug + b(a + bcosv) sinvk

= b(a + beosv) (cosucosvi + sinucosvj + sinvk) .

By Theorem A.34 the surface area of the torus is given by

Jf b(a + bcosv) d(u,v) = f% (J%(ab + b? cos v) du) dv = 47%ab.

0 0
[0,27] x[0,27]

Example A.38. Let C' be a smooth curve parameterized by

. o, T
r(t) = (costsint,sintsint, cost), te [—5, 5] .

272
closed curve, C' divides S? into two parts. Let ¥ denote the part with smaller area (see the

The clearly C is on the unit sphere S? since |r(t)|gs = 1 for all ¢ € [— z q. Since C' is a

following figure), and we are interested in finding the surface area of X.

To compute the surface area of 32, we need to find a way to parameterize 3. Naturally we
try to parameterize > using the spherical coordinate. In other words, let R = (0, 27) x (0, 7)
and 1) : R — R3 be defined by

(0, ¢) = cos O sin ¢i + sin 0 sin ¢j + cos ok,

and we would like to find a region D < R such that ¢(D) = X.

Suppose that y(t) = (6(t), p(t)), t € [—g, g} , is a curve in R such that (¢pov)(t) = r(t).
Then for t € [O, g], the identity cost = cos ¢(t) implies that ¢(f) = t; thus the identities
costsint = cosf(t) sin ¢(t) and sintsint = sin §(t) sin ¢(t) further imply that 6(t) = ¢.

On the other hand, for t € [—g,()}, the identity cost = cos ¢(t), where ¢(t) € (0, 7),
implies that ¢(t) = —t; thus the identities costsint = cos(t)sin¢(t) and sintsint =
sin 0(t) sin ¢(t) further imply that 0(t) = 7 + ¢.
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3 R
30 = (?/// \\\ i
| y —1 |
P . |
L S | 9
Since
H(% x h,)(0, HRB = H — sin 0'sin ¢ + cos 6 sin @) x (cos 6 cos ¢¢ + sin O cos ¢j — sin ¢k)H;3

= | - cos @ sin® i — sin §sin® ¢f — (sin® 6 + cos® §) sin ¢ cos qbk:H;3
= (cos® § + sin? 0) sin* ¢ + sin® ¢ cos® ¢ = sin® ¢,

by Theorem A.34 the area of the desired surface can be computed by

_
2

PR 3
J f singzﬁd&dd)zj (7?—2<;§)singzﬁdq§:(—ﬂcos¢+2¢cos¢—2sin¢)‘¢ =7—2.
0 Jo 0 $=0

Another way to parameterize X is to view X as the graph of function z = /1 — 22 — 92
over D, where D is the projection of ¥ along z-axis onto zy-plane. We note that the

boundary of D can be parameterized by

~ e Tom
7(t) = costsinti + sintsintj, te [—5,5} :

Let (z,y) € 0D. Then 2% +y? = y; thus ¥ can also be parameterized by v : D — R?, where
(x,y) = xi+yj+ mk and D = {(m,y)‘xz—kyz < y}

Therefore, with f denoting the function f(z,y) = +/1 — 22 — y?, Remark A.35 implies that

the surface area of ¥ can be computed by

fmdA fjmmdxdy

r=r/y— fl \/@
= | arcsin —— dy =2 | arcsin dy;
fo T 2l 0 ity

thus making a change of variable y = tan? § we conclude that

the surface area of X = 2 arcsin
0 sec

9 d(tan? 0) = 2]4 0d( tan?0)
0
- 6== I
— 9 9tan2e) —J tan? 9d9}
L 6=0 0

_ Ll(se&e 1) de} _ QE _ (tanf 9)‘921]

(-5
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Example A.39. Let C' be a smooth curve parameterized by
r(t) = cos(sint) sin t¢ + sin(sint) sintj + cos tk, t € 0,27 .

Then the curve C' is a closed curve on S?, and divide S? into two parts. Let ¥ denote the

part with smaller area.

As in Example A.38, we would like to find the area of X. First we need to parameterize
. As in Example A.38, we look for v(t) = (6(t), ¢(t)), ¢ € [0,2n], on the rf-plane such
that ¢ (v(t)) = r(t), where % : R = (0,27) x (0,7) is given by ¥(0,¢) = cosfsin i +
sin 6 sin ¢j + cos ¢k .

For t € (0,7), since cost = cos ¢(t) and ¢(t) € (0,7), we must have ¢(t) = ¢; thus the
two identities cos(sint)sint = cos#(t)sin ¢(t) and sin(sint)sint = sin0(t) sin ¢(t) further
imply that 6(t) = sint. Therefore, the curve ’I"((O,ﬂ')) corresponds to 6 = sin ¢, ¢ € (0,7),
on R.

On the other hand, for t € (m, 27), the identity cos ¢(t) = cost implies that ¢(t) = 27 —
t. The two identities cos(sint)sint = cos@(t)sin ¢(t) and sin(sint)sint = sin6(t) sin ¢(t)
further imply that

cos(sint) = —cosf(t) and sin(sint) = —sin () te (m2m).

Therefore, 6(t) = 7 + sint which implies that the curve r((m,27)) corresponds to 6 =
m—sing, ¢ € (0,7), on R.

Therefore, by Theorem A.34 the surface area of X is

sin(2¢) ) ‘qb:w

7 presing r ' .
Lf s1n¢d«9dgszo(W—QSlnqﬁ)smqﬁqu:—(Wcosqb—i—qﬁ— ),

in ¢
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A.4.3 Surface integrals of scalar functions

Theorem A.40. Let D be an open region in the plane, and
Y= {'r' e R3 ’ r=X(u,v)i+Y(u,v)j+ Z(u,v)k for some (u,v) € D} :

be a reqular parametric surface so that r is continuously differentiable, and f : ¥ — R be a

continuous function. Then the surface integral of f on X exists and is given by

J (f o r)(uw,v)|(ry x 7o)(u,v)| dA .

Remark A.41. If the surface ¥ is the graph of a function f : R € R? — R; that is,
Y= {:m +yj+ f(z, y)k| (x,y) € R}, then for a continuous function g : ¥ — R, we have

|Lgas = [[ sten. sy 1+ o + par an. (A3)
R

Example A.42. Evaluate the surface integral

f (y* + 2yz)dS,
>

where ¥ is the first-octant portion of the plane 2x + y + 2z = 6.

First, we note that > can be parameterized by
— 9 —
Y= {xi+yj+6#k) ‘ (r,y) € R},

where R is the triangle {(z,y)|z € [0,3],0 < y < 6 — 2z}. Therefore, using (A.3) and
Fubini’s Theorem we find that

r _
J(y2+2yz)d5’: J(y Loy 0T \/1+ %)QdA
) Js

(3, [6-2z 3 3 6-2a

= (J —(6y — 2zy) dy) J <J (9y — 3zy) dy) dx
Jo >0 0

6—22 — )4 ==3 243

= My dr = (3—x)3dx:—M =

JO 2 yZO 0 4 x=0 2

Example A.43. Evaluate the surface integral

| Vatt+2syas.

2
where Y is the portion of the cylinder z = ‘% over the triangular region

R={(z,y)|v=>0,y>0,z+y<1}
in the xy-plane.
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We compute the surface integral using (A.3) and Fubini’s Theorem and obtain that

L\/MdSZJJ\/x(1+y2)\/l+02+y2dA:fol( 0

R G [ R (R

0
1 1 1 3 5 7
= —J <4x§ — 622 + 32 —mi) dz

1—x

Va(l+y?) dy) do

3 Jo

1/8 3 12 5 6 7 2 9 [z=1 284
:—<—ZE2——(E2—|——ZE2——I’2) = —,

3\3 5) 7 9 e=0 945

Example A.44. Evaluate the surface integral

szS,
b

where Y is the surface given in Example A.38.

As already shown in Example A.38, ¥ can be parameterized by
Y= {r(@,gb) = cos@singbi+sinﬁsin¢j+cosgbk‘0 < ¢ < g,qb <O<m— gb} .

Therefore,

fzdS—JQ
5 0

1

=3 L (1 — 2¢)sin(2¢) dp = %[(w —2¢)

1 <7T _ sin(2¢) ‘¢=§> oo
- 2\2 4 6=0/

< Lﬂ_d) cos ¢[(rg x 74)(6, 9)| d9) do = Lg ( Lﬂ_(b cos ¢ sin ¢ d0> do
2 — cos(29) r;’ B JQ cos(26)
0

2 =0 2 dqﬁ}

T
A.5 The Flux Integrals

Let ¥ < R3 be a regular ¢ *-surface with a continuous normal vector field N : ¥ — R3, and
u: Y — R? be a bounded continuous vector-valued function. The flux integral of u over 2

with given orientation N is the surface integral of u - N over .

A.5.1 Physical interpretation

Let < R3 be an open set which stands for a fluid container and fully contains some liquid
such as water, and u : 2 — R3 be a vector-field which stands for the fluid velocity; that is,
u(x) is the fluid velocity at point = € Q2. Furthermore, let ¥ < 2 be a surface immersed in
the fluid with given orientation N, and ¢ : 2 — R be the concentration of certain material
dissolving in the liquid. Then the amount of the material carried across the surface in the

direction N by the fluid in a time period of At is

At‘f cu-NdS.
)
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Therefore, J cu-N dS is the instantaneous amount of the material carried across the surface
b

in the direction N by the fluid.

Example A.45. Find the flux integral of the vector field F(z,y,z) = (x,v? 2) upward
through the first octant part X of the cylindrical surface 22 + 2% = a2, 0 < y < b.

z
a
|
|
P~ |
a// \\\\ Ib
wz ~S2

First, we parameterize > by
r(u,v) =ui+vj+va> —u?k, (u,v)e D =(0,a) x (0,b)

so that [(ry, x 7,)(u,v)|zs =
x

(=,0, E). Therefore,
a’a

_ Lo, 2 2 a _ 2 1
JEFNCZS—JJE(U +a —u)ﬁd(u,v)—a md(u,v)
D D

u
dudv = a’barcsin —

b ra
="
0 Jo Va? —u? a

%, and the upward-pointing unit normal is N(z,y, z) =
a® —Uu

A.5.2 Measurements of the flux - the divergence operator

Let Q < R? be an open set, and w = (uy, uz, u3) : © — R3 be a € vector field. Suppose
that O is a bounded open set whose boundary is piecewise € so that an outward-pointing
unit normal vector field N = (N, Ny, N3) can be defined on 0O except on some curves.

Then the flux integral of w on dO in the direction N is

J u-NdS.
00

Consider a special case that O = (a1,a3) x (by,b2) x (c1,¢2) be an open cube so that
3

00 = |J Zk, where ¥y = {ay, as} x [by,bo] x [c1,¢2], o = [a1,a2] x {b1,ba} X [c1, 2] and
k=1

23 = [al,ag] X [bl,bg] X {Cl,CQ}. Then

3
u-NdS = f u-NdS.
JouNas =3 ]

Since on X3 the outward-pointing normal N is given by

Kk if (x,y,2) € |ay,as] x [b1,bs] x {c1},
N(:L‘,y,z) - { k if (a:,y,z) c [al’aﬂ X [bl,bg] X {CQ},
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we find that

f u-NdS = J u3(x,y,02)dA—f uy(z,y,c1) dA
23 [al,ag]x[bl,bg] [al,ag]x[bl,bz}

T=co
:J U3(.§C Y,z )
[a1,a2] % [b1,b2]

dA
:J (f 5“3(95 y,2)dz) dA = Hfa“?’dv
[a1,a2] % [b1,b2] [e1,c2] 0z

where the last equality is established by Fubini’s Theorem. Similarly,

JdeS:JJfauldV and Ju.NdS:fHa”de;
o ox o oy
O O
J u-NdS = m %+@+% AV = ”fdwudv (A.4)
00

Definition A.46. A vector field u : Q € R™ — R" is called solenoidal or divergence-free if
dive = 0 in Q.

thus

Remark A.47. Let Q < R? be an open set, and u :  — R3 be a ¢! vector field. Using
(A.4), by the continuity of diva we conclude that

1

u-NdS = (divu)(a Vae(,
PG e (dta)

r r r Ty .
where C,(a) = (a1 — §,a1 + 5) X (ag — 5002 + 5) X (a3 — 503 + 5) is the cube centered
at a with side length r. In other words, divu at a point @ is the instantaneous amount (per

volume) of material (with concentration 1) carried outside an infinitesimal cube centered at

xT.

A.6 The Divergence Theorem

Theorem A.48 (The Divergence Theorem). Let Q = R? be a bounded domain such

that 0Q is piecewise smooth, and w = (wy,wy, ws) € € (Q) with outward pointing normal

N. Then
f w~NdS:Jffdivde.
o0 J
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