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Chapter 1. Dimensional Analysis

Introduction

For a given physical quantity g, we use [q] to denote the dimension
of g, and use L, M, T to denote the dimension of length, mass,

and time, respectively.
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For a given physical quantity g, we use [q] to denote the dimension
of g, and use L, M, T to denote the dimension of length, mass,
and time, respectively. A quantity g which does not change after
changing unit of every fundamental dimension is called dimensionless
(& € % /& F]=x) and is denoted by [g] = 1.
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Introduction

For a given physical quantity g, we use [q] to denote the dimension
of g, and use L, M, T to denote the dimension of length, mass,
and time, respectively. A quantity g which does not change after
changing unit of every fundamental dimension is called dimensionless
(& & % /& %]=x) and is denoted by [q] = 1.

Let F, v, a and p demote the force, the velocity, the acceleration

and the pressure, respectively. Then
[F]= MLT—2, v]=LT 1,
[a] = LT2, [p] = ML71T—2.
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Chapter 1. Dimensional Analysis

Introduction

For a given physical quantity g, we use [q] to denote the dimension
of g, and use L, M, T to denote the dimension of length, mass,
and time, respectively. A quantity g which does not change after
changing unit of every fundamental dimension is called dimensionless
(& & % /& %]=x) and is denoted by [q] = 1.

Let F, v, a and p demote the force, the velocity, the acceleration

and the pressure, respectively. Then
[F]= MLT—2, v]=LT 1,
[a] = LT2, [p] = ML71T—2.

. F . .. .
The quantity —, where m is the mass, is dimensionless.
ma
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Question: What does it mean by a relation among several dimen-
sioned physical quantities?

The air resistance F a biker encounters appears to be related to the
speed v and the cross-sectional area A, as well as the air density p.

Therefore,
F=d(p,A,v)

or equivalently,

O (F,p,A,v)=F—¢(p,A,v)=0.

.
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§1.1 Dimensional Methods

Suppose that we want to compute the yield of the first atomic explo-

sion after viewing photographs of the spread of the fireball.
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Suppose that we want to compute the yield of the first atomic explo-
sion after viewing photographs of the spread of the fireball. In such
an explosion a large amount of energy E is released in a short time
in a region small enough to be considered a point.
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Suppose that we want to compute the yield of the first atomic explo-
sion after viewing photographs of the spread of the fireball. In such

an explosion a large amount of energy E is released in a short time
in a region small enough to be considered a point. From the point
of the explosion a strong shock wave spreads outwards; the pressure
behind the shock is on the order of hundreds of thousands of atmo-
spheres, far greater than the ambient air pressure whose magnitude
can be accordingly neglected in the early stages of the explosion.
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Suppose that we want to compute the yield of the first atomic explo-
sion after viewing photographs of the spread of the fireball. In such
an explosion a large amount of energy E is released in a short time
in a region small enough to be considered a point. From the point
of the explosion a strong shock wave spreads outwards; the pressure
behind the shock is on the order of hundreds of thousands of atmo-
spheres, far greater than the ambient air pressure whose magnitude
can be accordingly neglected in the early stages of the explosion. It
is plausible that there is a relation between the radius of the blast

wave front r, time t, the initial air density p, and the energy released
E.
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Suppose that we want to compute the yield of the first atomic explo-
sion after viewing photographs of the spread of the fireball. In such
an explosion a large amount of energy E is released in a short time
in a region small enough to be considered a point. From the point
of the explosion a strong shock wave spreads outwards; the pressure
behind the shock is on the order of hundreds of thousands of atmo-
spheres, far greater than the ambient air pressure whose magnitude
can be accordingly neglected in the early stages of the explosion. It
is plausible that there is a relation between the radius of the blast
wave front r, time t, the initial air density p, and the energy released
E. Hence, we assume there is a physical law

o(t,r,p, E) =0

which provides a relationship among these quantities.
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§1.1 Dimensional Methods

Suppose that m quantities g1, g2, - - - , g are dimensioned quantities

that are expressed in terms of certain selected fundamental dimen-

sions Ly, Ly,---,L,, where n < m,
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§1.1 Dimensional Methods

Suppose that m quantities g1, g2, - - - , g are dimensioned quantities

that are expressed in terms of certain selected fundamental dimen-
sions Ly, Lo,---, L, where n < m, and the dimensions of g; can be

written in terms of the fundamental dimensions as
aij, as;j an;
[q_]] fry L11JL22J P Lnj

for some exponents ajj, agj, - - - , anj.
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Suppose that m quantities g1, g2, - - - , g are dimensioned quantities

that are expressed in terms of certain selected fundamental dimen-
sions Ly, Lo,---, L, where n < m, and the dimensions of g; can be

written in terms of the fundamental dimensions as

[qj] = L‘;UL;QJ . Li”f

for some exponents ayj, agj, - - - ,anj. The n x m matrix
ail aim
dnl dnm

containing the exponents is called the dimension matrix (of q1, - - -,

gm w.r.t. dimensions L, ---, L,).
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Suppose that m quantities g1, g2, - - - , g are dimensioned quantities

that are expressed in terms of certain selected fundamental dimen-
sions Ly, Lo,---, L, where n < m, and the dimensions of g; can be

written in terms of the fundamental dimensions as

[qj] = L‘;UL;QJ . Li”f

for some exponents ayj, agj, - - - ,anj. The n x m matrix
ail aim
dnl dnm

containing the exponents is called the dimension matrix (of q1, - - -,
gm w.r.t. dimensions L, ---, L,). The entries in the j-th column

give the exponents for g; in terms of the powers of Ly,---, L.
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We note that the choices of different independent fundamental di-
mensions results in different dimension matrices; however, the rank
of dimension matrices is well-defined.
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§1.1 Dimensional Methods

We note that the choices of different independent fundamental di-
mensions results in different dimension matrices; however, the rank
of dimension matrices is well-defined.

Definition

Let g1, -+, gm be dimensioned quantities.

@ A quantity 7 is called a dimensionless combinations of q;,
“, Qm if m = g{"" - g for some rational numbers oy, - - -
am and [7] = 1.
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§1.1 Dimensional Methods

We note that the choices of different independent fundamental di-
mensions results in different dimension matrices; however, the rank
of dimension matrices is well-defined.

Definition

Let g1, -+, gm be dimensioned quantities.

@ A quantity 7 is called a dimensionless combinations of q;,
oo, gm if m=q{" -+ g2 for some rational numbers ay, - - -,
am and [7] = 1.

@ A collection {m,--- ,mx} of dimensionless combinations of gy,
b 9
-+, gm is said to be maximal if any dimensionless quantities
_ € Ck
m formed from g1, -+, gm can be expressed as ™ = 7y - - - 7T,
for some unique ¢, - - -, Ck.
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§1.1 Dimensional Methods

We note that the choices of different independent fundamental di-
mensions results in different dimension matrices; however, the rank
of dimension matrices is well-defined.

Definition

Let g1, -+, gm be dimensioned quantities.

@ A quantity 7 is called a dimensionless combinations of q;,

oo, gm if m=q{" -+ g5 for some rational numbers ay, -
am and [7] = 1.

@ A collection {1, - ,m} of dimensionless combinations of gy,
-+, gm is said to be maximal if any dimensionless quantities

Gj ©

7 formed from q;, ---, gm can be expressed as ™ = 7" - - -7

for some unique ¢, - - -, Ck.

Remark: If {7y, -, 7} is maximal, then k must be the nullity of
the dimension matrix.
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§1.1 Dimensional Methods

Any fundamental dimension Ly has the property that its units can be

changed upon multiplication by the appropriate conversion factor to

obtain a new value in a new system of units.
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Any fundamental dimension Ly has the property that its units can be
changed upon multiplication by the appropriate conversion factor to
obtain a new value in a new system of units. Let {[L1]1, - ,[Ln]1}
and {[L1]2,- -+ ,[Ln]2} be two particular choices of units for funda-
mental dimensions. Then for each 1 < k < n, [Lglo = A\¢[Lk]1 for

some dimensionless constant Ax > 0.
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Any fundamental dimension Ly has the property that its units can be
changed upon multiplication by the appropriate conversion factor to
obtain a new value in a new system of units. Let {[L1]1, - ,[Ln]1}
and {[L1]2,- -+ ,[Ln]2} be two particular choices of units for funda-
mental dimensions. Then for each 1 < k < n, [Lglo = A\¢[Lk]1 for
some dimensionless constant Ay > 0. The value of a quantity q then
can be changed in the fashion that if
[q] = Li* L2 - L7, (1)
and v1(q) denotes the value of g in the system of units {[Lkh}Z:lv
then
v2(q) = AP A2 - A (q) (2)

gives the value of g in the new system of units {[Lk]g}zzl.
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To justify if a given physical law ¢(q1, -+ ,qm) = 0 is true, we
measure each dimensioned quantities based on a particular choice
of units and check if the law holds for this particular choice of units.
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To justify if a given physical law ¢(q1, -+ ,qm) = 0 is true, we
measure each dimensioned quantities based on a particular choice
of units and check if the law holds for this particular choice of units.
The fact that the validity of a physical law is independent of the
choice of units induces the following

Definition

Let g1,92,- - , gm be dimensioned quantities. The physical law

Qb(CIvaIZa“' 7qm) =0

is said to be unit free (or physically meaningful) if for all positive

real numbers Ay, - -, A,

p(vi(qr), - vi(gm)) =0 < ¢(va(qr), - ,va(gm)) =0,
) are related by (2) if g; obeys (1).

where vi(qj) and v»(q;
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Theorem (Buckingham's Pi Theorem)

Suppose that
¢(q17 q2, 7Qm) =0

is a unit free physical law that relates the dimensioned quantities
41,492, ,dm-
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Theorem (Buckingham's Pi Theorem)

Suppose that
¢(q17 q2, 7Qm) =0

is a unit free physical law that relates the dimensioned quantities

q1,q92,  ,dm- 7 7 T 7

% . o
[o] _ p3Lig 92 J @nj 1 -
I — =1 cn J— 5 y 11T
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Theorem (Buckingham's Pi Theorem)

Suppose that
¢(q17 q2, 7Qm) =0

is a unit free physical law that relates the dimensioned quantities

q17q27“. ,qm- ’ ’ ’ ns 7
L . "
[] _ (Lig 92 J @nj ;1 -
[ — 1 =2 cn J— 5 y 11T
Then there exists a maximal collection {1, o, - , 7k} of dimen-
sionless combinations of q1,--- ,qm and the physical law above is

equivalent to an equation
(1, k) =0

expressed only in terms of the dimensionless quantities.
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Theorem (Buckingham's Pi Theorem)

Suppose that
¢(q17 q2, 7Qm) =0

is a unit free physical law that relates the dimensioned quantities

q17q27“. ,qm- ’ ’ ’ ns 7
L . "
[] _ (Lig 92 J @nj ;1 -
4= +t1 02 tp =5 R
Then there exists a maximal collection {1, o, - , 7k} of dimen-
sionless combinations of q1,--- ,qm and the physical law above is

equivalent to an equation
(1, k) =0

expressed only in terms of the dimensionless quantities.

Remark: If the rank of the dimension matrix is r, then k= m —r.
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Proof of the Pi Theorem.
Let D = [ajj]nxm be the dimension matrix, r = rank(D). Suppose
that 7 = g; 52 --- g™ is a dimensionless quantities. Then with

o denoting the column vector [ag, -+, am]t, we have
Da=0,

where 0 denotes the zero vector in R”.
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Proof of the Pi Theorem.

Let D = [ajj]nxm be the dimension matrix, r = rank(D). Suppose
that 7 = g; 52 --- g™ is a dimensionless quantities. Then with
o denoting the column vector [ag, -+, am]t, we have

Da=0,
where 0 denotes the zero vector in R"”. Since rank(D) = r,
W.L.O.G. we can assume that the first r column of D is linearly
independent; thus a1, - - - , @, can be uniquely expressed in terms of

(ar+17 Qpry2,- ,Oém).

Ching-hsiao Arthur Cheng #cH 2 - MA3067-*



Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Proof of the Pi Theorem.
Let D = [ajj]nxm be the dimension matrix, r = rank(D). Suppose
that 7 = g; 52 --- g™ is a dimensionless quantities. Then with
o denoting the column vector [ag, -+, am]t, we have
Da=0,

where 0 denotes the zero vector in R"”. Since rank(D) = r,
W.L.O.G. we can assume that the first r column of D is linearly
independent; thus a1, - - - , @, can be uniquely expressed in terms of
(Qrp1, Qpy2, -+ ). In fact,

D(:1:nNa(l:r)=-D(,r+1: ma(r+1:m),
where D(:, i : j) denotes the matrix formed by the i~th to j-th columns
of D and (i : j) denotes the column vector formed by the ith to

Jj-th components of a. o
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Proof of the Pi Theorem (cont.)

Assume that the vector (1 : r) is given by

Qg DA bl(m—r) Qri1
678 brl e br(m—r) Om
] b1 by by
and let mq, -+, mm—, be given by m; = q;7q5” -+ - G- qryj.
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Proof of the Pi Theorem (cont.)

Assume that the vector (1 : r) is given by

Qg DA bl(m—r) Qri1
678 brl e br(m—r) Om
] b1 by by
and let mq, -+, mm_, be given by m; = q;’q5” ---qr’qr+j. Then

{mi, - ,™m—r} is @ maximal collection of dimensionless combina-
tions of g1, -+, qr.
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Proof of the Pi Theorem (cont.)

Assume that the vector (1 : r) is given by

Qg DA bl(m—r) Qri1
678 brl e br(m—r) Om
] b1 by by
and let mq, -+, mm_, be given by m; = q;’q5” ---qr’qr+j. Then

{mi, - ,™m—r} is @ maximal collection of dimensionless combina-
tions of g1, - - -, g,. Define
F(qi, Gy s Tmes)
=BG, G TGP g g T gy )
We then have F(qi, - - ,qr, 71, ,™m—r) = 0 if and only if

(b(qla"' 7qm) = 0.
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Proof of the Pi Theorem (cont.)

Assume that the vector (1 : r) is given by

Qg bip - bl(m—r) Cri1
= ° . . 0
(67 b,l cee br(m—r) am
and let mq, -+, mm—, be given by m; = qf”qg% e qf’jqrﬂ-. Then
{mi, - ,™m—r} is @ maximal collection of dimensionless combina-
tions of g1, - -+, q,. Define
F(Gr, > Qr 1, s Tmer)
=BG, G TGP g g T gy )

We then have F(qi, - - ,qr, 71, ,™m—r) = 0 if and only if

&(q1, -+ ,9m) = 0. Moreover, since ¢(q1,q2, " ,qm) = 0 is unit
free, F(q1, - ,qr, m1, - ,T™m—r) = 0 is unit free. o
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Proof of the Pi Theorem (cont.)

Now, since F(qi, " ,qr, 71, ,Tm—r) = 0 is unit free, for any
choice of unit systems {[L1]1,- -, [Ln]1} and {[L1]2,- - - , [Ln]2} with
conversion factors A1,--- , A\, > 0 so that

vo(q) = AT9NY A wi(q), 1<j<r,

we must have F(vz(ql),“- s Vva(qr), 1, s Tm—r) = 0.
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Proof of the Pi Theorem (cont.)

Now, since F(qi, " ,qr, 71, ,Tm—r) = 0 is unit free, for any
choice of unit systems {[L1]1,- -, [Ln]1} and {[L1]2,- - - , [Ln]2} with
conversion factors A1,--- , A\, > 0 so that

va(g)) = AP0 Awi(q), 1<j<r,
we must have F(vz(ql),“- s va(qr), mp, - - ,7rm_,) = 0. Since the
columns of D(:,1 : r) are linearly independent and n > r, there exist

A1, -+, Ap (might not be unique if n > r) such that

ai - am log A\ —logvi(q1)
ajy - am log Ao —log vi(g2)

| : 2| = : (3)
dir - dnr IOg )\n - IOg Vl(qr) 5
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Proof of the Pi Theorem (cont.)
Choose A1, -, A, satisfying (3). Then in the new system of units
va(gj) = 1 for all 1 < j < r; thus we establish that as long as

qi, -+, qr satisfy F(q1,--- ,qr, 71, ,™m—r) = 0, there exists a
system of units such that w»(q1) = -+ = w(q,) = 1. This implies
that F is independent of g1, - , g, and we have

O(my, -y Tmey) = F(1,--- 1,71, ,Tm—y) =0. =
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Proof of the Pi Theorem (cont.)

Choose A1, -, A, satisfying (3). Then in the new system of units
va(gj) = 1 for all 1 < j < r; thus we establish that as long as
qi, -+, qr satisfy F(q1,--- ,qr, 71, ,™m—r) = 0, there exists a
system of units such that w»(q1) = -+ = w(q,) = 1. This implies
that F is independent of g1, - , g, and we have

¢(7T17"‘57Tm—r)EF(17"'7177T17"'77Tm—r)20' o

.

Reconsider the biker's air resistance problem in which the physical

law is
®(F,p,A,v)=0,

where F is the air resistance, p is the air density, A is the cross-

sectional area, and v is the velocity.
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Example (Biker's air resistance problem (cont.))

Since [F] = MLT 2, [p] = ML™3, [A] = L? and [v] = LT}, the
dimension matrix (with the order of dimension T, L, M) is

-2 0 0 -1
1 -3 2 1/.
1 1 0 0
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Example (Biker's air resistance problem (cont.))

Since [F] = MLT 2, [p] = ML™3, [A] = L? and [v] = LT}, the
dimension matrix (with the order of dimension T, L, M) is

-2 0 0 -1
1 -3 2 1/.
1 1 0 0

The rank of the dimension matrix above is 3; thus there is only one
dimensionless quantity that can be formed from F, p, A, v.
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Example (Biker's air resistance problem (cont.))

Since [F] = MLT 2, [p] = ML™3, [A] = L? and [v] = LT}, the
dimension matrix (with the order of dimension T, L, M) is

-2 0 0 -1
1 -3 2 1/.
1 1 0 0

The rank of the dimension matrix above is 3; thus there is only one
dimensionless quantity that can be formed from F, p, A, v. Suppose
that m = FY1p*2 A% y™ is a dimensionless quantity. Then

2 0 0 -11|™ 0
1 -3 2 1[[*=]o
1 1 0 of]° 0

Q4

which gives a dimensionless quantity 7 = Fp~tA=1v 2.
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (Biker's air resistance problem (cont.))

Since [F] = MLT 2, [p] = ML™3, [A] = L? and [v] = LT}, the
dimension matrix (with the order of dimension T, L, M) is

-2 0 0 -1
1 -3 2 1/.
1 1 0 0

The rank of the dimension matrix above is 3; thus there is only one
dimensionless quantity that can be formed from F, p, A, v. Suppose
that m = FY1p*2 A% y™ is a dimensionless quantity. Then

2 0 0 -11|™ 0
1 -3 2 1[[*=]o
1 1 0 of]° 0

Q4

which gives a dimensionless quantity 7 = Fp~'!A~'v=2. Therefore,
an equivalent physical law is given by g(7) = 0 which shows that = =

k (or equivalently, F = kpAv?) for some (dimensionless) constant k.
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Reconsider the atomic explosion problem in which the physical law
is given by ¢(t, r, p, E) = 0, where

[t]=T, [rl=L, [pl=ML"®, [E]=ML*T 2,
so that the dimension matrix (with the order of T, L, M) is given by

1 0 0 =2
0o 1 -3 2/|.
0 0 1 1
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Reconsider the atomic explosion problem in which the physical law
is given by ¢(t, r, p, E) = 0, where

[t]=T, [rl=L, [pl=ML"®, [E]=ML*T 2,
so that the dimension matrix (with the order of T, L, M) is given by

1 0 0 =2
0o 1 -3 2/|.
0 0 1 1

The rank of the dimension matrix above is clearly 3; thus there is
only one dimensionless quantity that can be formed from t, r, p, E.
Suppose that m = t¥1r®2p* E* is a dimensionless quantity. Then

1 0 0o -2][x 0
01 =3 2[[:]|=]o
00 1 1]|qa 0

which gives a dimensionless quantity 7 = t2r°p~'E as well as an

equivalent physical law m = k for some (dimensionless) constant k.
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

At time t = 0 an amount of heat energy e, concentrated at a point in

space, is allowed to diffuse outward into a region with temperature
zero. If r denotes the radial distance from the source and t is time,
the problem is to determine the temperature 6 as a function of r

and t.
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

At time t = 0 an amount of heat energy e, concentrated at a point in
space, is allowed to diffuse outward into a region with temperature
zero. If r denotes the radial distance from the source and t is time,
the problem is to determine the temperature 6 as a function of r
and t.

Clearly the temperature 6 depends on t, r and e. Moreover, it is
“reasonable” that the “thermal diffusivity” k with dimension length-
squared per time and the “heat capacity” c of the region, with di-

mension energy per degree per volume, play a role.

Ching-hsiao Arthur Cheng #cH 2 - MA3067-*



Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

At time t = 0 an amount of heat energy e, concentrated at a point in
space, is allowed to diffuse outward into a region with temperature
zero. If r denotes the radial distance from the source and t is time,
the problem is to determine the temperature 6 as a function of r
and t.

Clearly the temperature 6 depends on t, r and e. Moreover, it is
“reasonable” that the “thermal diffusivity” k with dimension length-
squared per time and the “heat capacity” c of the region, with di-
mension energy per degree per volume, play a role. Therefore, the

physical law is given by
o(t,r,0,ekc)=0.
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)

This physical law has 6 dimensioned quantities

(t]=T, [rl= [6] = ©,
[e] = E, [k]= L2T L [c] = EO7IL3.
The dimension matrix (with the order of T, L, ©, E) is given by
100 0 -1 0
0100 2 =3
0010 0 -1
00 0 1 O 1
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)

This physical law has 6 dimensioned quantities

(t]=T, [rl= [6] = ©,
[e] = E, [k]= L2T L [c] = EO7IL3.
The dimension matrix (with the order of T, L, ©, E) is given by
100 0 -1 0
0100 2 =3
0010 0 -1

00 0 1 O 1
It is easy to see that the dimension matrix has rank 4; thus by the
Pi theorem there are 2 dimensionless quantities that can be formed
from t,r,0, e, c, k. To see how we form dimensionless quantities, we
assume that the combination

[t01r20%3e k5] = 1.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)

In other words,

1000 -1 0]y 0
0O 1 0o 0 2 =3 _ |0
0O 01 0 0 -1 B 0]
0O 0 01 O 1 (o7} 0
which shows that a1 = a5, a3 = —aq4 = g, and as = —2a5 +

3a.
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)

In other words,

1000 -1 0]y 0
0O 1 0o 0 2 =3 _ |0
0O 01 0 0 -1 B 0]
0O 0 01 O 1 (o7} 0
which shows that a1 = a5, a3 = —aq4 = g, and as = —2a5 +

3ag. Therefore, two dimensionless quantities can be formed (using

(a5, 06) = (—%,0) or (g,l)) as
7'(‘1:L and ﬁgz%(kt)%

vkt

and an equivalent physical law is given by ®(71,72) = 0 which
“implies” that my = u(m;) for some function u. Therefore, the

temperature 6 can be expressed by 6 = € U(L)
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

In this example we determine the relation between the power P that
must be applied to keep a ship of length ¢ moving at a constant
speed V.
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

In this example we determine the relation between the power P that
must be applied to keep a ship of length ¢ moving at a constant
speed V. Assume that P depends on the density of water g, the
acceleration due to gravity g, and the viscosity of water v (in length-

squared per time), as well as £ and V. The physical law is given by

QS(P,Q,g,V,e, V) =0.
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

In this example we determine the relation between the power P that
must be applied to keep a ship of length ¢ moving at a constant
speed V. Assume that P depends on the density of water g, the
acceleration due to gravity g, and the viscosity of water v (in length-

squared per time), as well as £ and V. The physical law is given by
(ZS(P,Q,g,V,K, V) - 0
Suppose that the fundamental dimension is the time T, the length
L, and the mass M. Then
[P]= MI2T=5, [o) =ML, [g]=LT2,
[v] = L2T~1, [¢]=1L, V]=LT .

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)
Therefore, the dimension matrix (in the order T, L, M) is

-3 0 -2 -1 0 -1
D=]2 -3 1 2 1 1
1 1 0 0 0 O

which has rank 3. By the Pi Theorem, there are three dimensionless
quantities 71, 2 and 73 and the physical law ¢(P, 0, g, v, ¢, V) =0

is equivalent to ® (71,2, 3) = 0 (or sometimes m = F(ma, 73)).
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)
Therefore, the dimension matrix (in the order T, L, M) is

-3 0 -2 -1 0 -1
D=]2 -3 1 2 1 1
1 1 0 0 0 O

which has rank 3. By the Pi Theorem, there are three dimensionless
quantities 71, 2 and 73 and the physical law ¢(P, 0, g, v, ¢, V) =0
is equivalent to ® (71,2, 3) = 0 (or sometimes m = F(ma, 73)).

Suppose that m = P¥ @2 gy *4{*5 |/ js dimensionless. Then

oy
-3 0 -2 -1 0 -17| 4 0
2 -3 1 2 1 1 S l=10].
1 1 0 0O 0 O : 0
ag

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)

Three choices of (ay,- -+, ag) are

=
27
which implies that the physical law is equivalent to

(1,-1,0,0, -2, —3), (0,0,—%,0,— 1) and (0,0,0,—1,1,1)

_P _ (L %)
o?Vv3 — \\g' v/’
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)

Three choices of (ay,- -+, ag) are

=
27
which implies that the physical law is equivalent to

(1,-1,0,0, -2, —3), (0,0,—%,0,— 1) and (0,0,0,—1,1,1)

_P _ (L %)
o?Vv3 — \\g' v/’

1% Vi
The two dimensionless quantities — and ve are called the Froude
VV0g v

number Fr and the Reynolds number Re, respectively, so that the
equality above can be rewritten as

P

BV = F(Fr,Re).
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Suppose that at time t = 0 an object of mass m is given a vertical

upward velocity V from the surface of a spherical planet (with mass
M and radius R). The height h of the object is a function of t that
obeys

d?h GMm
m— =—-———
dt? (R+ h)2
The gravitational acceleration g on the surface of the planet is given
by §= 77 GM ; thus including the initial data,
d2h . R%g
dt2 ~ (R+h)2’
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)

The physical law of the system above can be written as
o(t,h,R,V,g) =0,
where the five dimensioned quantities have dimension
[t]=T,[A =L, [R]=L, [V]=LT ‘and [g] = LT 2,
and the dimension matrix (with the order of T, L) is given by

1 00 -1 -2
011 1 1

If 7 =t h*2R*3 Vg js a dimensionless quantity, then

aq
1 0 0 -1 -2 .1 |0
0 1 1 1 1 S ()

Qs

or equivalently, a1 = ay + 25 and ag = — (a3 + g + as).
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)

Since the rank of the dimension matrix is 2 there are three dimen-
sionless quantities that can be formed: we choose (a3, ay,a5) =
(=1,0,0),(—1,1,0) and (—1,2,—1) to form

h tV &
™=, T2 =5 7r3:ﬁ.

Therefore, the Pi theorem “implies” that there exists a function d
such that (T)(m,wg,ﬂg) = 0 which “implies” that m = ® (g, 73);

thus Vv
t
= )

i@ v
R ‘R’gR
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Chapter 1. Dimensional Analysis

§1.1 Dimensional Methods

Example (cont.)

Suppose that at t = tnax the object reaches its maximum height. In-
tuitively tmax should depends on three dimensional quantities g, R, V.
On the other hand, we have h’(tmax) = 0; thus

i
dt

tvV V2 0P ,tmaxV V2
) = Vo—( —)-

0= h'(tmax) = R o R gR

t=1tmax ﬁ, E (}71_2
V2

is a function of —; thus

gR

tmax V

The above relation “implies” that

eV 1
= F(?).
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

The “characteristic scales” are some specific chosen values of di-
mensions in the problem under consideration.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

The “characteristic scales” are some specific chosen values of di-
mensions in the problem under consideration. The use of character-
istic scales helps us reduce mathematical model into dimensionless
form, and a good choice of characteristic scales sometimes can even
simplify complicated models into simple ones.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

The “characteristic scales” are some specific chosen values of di-
mensions in the problem under consideration. The use of character-
istic scales helps us reduce mathematical model into dimensionless
form, and a good choice of characteristic scales sometimes can even
simplify complicated models into simple ones.

In this example we choose characteristic time scale t. and length
scale /. to recast the ODE

d2h R%g
A L h(0) = h(0) = V.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

The “characteristic scales” are some specific chosen values of di-
mensions in the problem under consideration. The use of character-
istic scales helps us reduce mathematical model into dimensionless
form, and a good choice of characteristic scales sometimes can even
simplify complicated models into simple ones.

In this example we choose characteristic time scale t. and length
scale /. to recast the ODE

d2h R%g
A L h(0) = h(0) = V.

We note that in pratice we know the values of R, g and V, so we

should choose characteristic scales according to these values.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)

Define the dimensionless time ¢ = t/t. and dimensionless height

h = h/lc (so that h(t) = h(;.‘ct)). With the dimensionless time
t and dimensionless height h, the ODE above is equivalent to the
dimensionless ODE

—s=—<2_ - h0)=0, hl0)==".

t.V
df2 Zc (1 s &/7-,)2 éc
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)

Define the dimensionless time ¢ = t/t. and dimensionless height

h = h/lc (so that h(t) = h(;.‘ct)). With the dimensionless time

t and dimensionless height h, the ODE above is equivalent to the
dimensionless ODE

2 2
% :—tz—g%, h0) =0, h'0)= té—v
c ZCh)2 @
1+ Rh)
Three dimensioned quantities in the ODE are
[R]=1L, g]=LT"? and [V]=LT!.

Therefore, three relevant time scales are t. = R/V, t. = v/R/g or
tc = V/g, and two relevant length scales are {. = Ror (. = Vz/g.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)

: : : : % : -
Define a dimensionless quantity € = L Using these characteristic
g

scales, we reach at the following dimensionless problems:
Q Let tc.= R/Vand . = R. The scaled problem becomes
d?h 1 - =
Q Let t. = R/V and /. = V?/g. The scaled problem becomes

d*h 1 - iy 1
R _ ]
‘ dt? (1+eh)2’ IO =0, 0, €’
Q Let t. = +/R/gand {. = R. The scaled problem becomes
d?h 1 .

di2  (1+h?’ h(0) =0, h'(0)= .
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
Q Let t. = \/R/gand . = V?/g. The scaled problem becomes
d*h 11 _ _
g P — h(0) = h
df2 o (1 +6h)2 ) (0) 07
O Let t. = V/gand {. = R. The scaled problem becomes
d*h 1 - =
—_— — h = h = €.
dEQ 6(1 T h)2 ) (0) 07 (O) €
Q Let t. = V/gand . = V?/g. The scaled problem becomes
i S
42 (1+eh?’
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
Q Let t. = \/R/gand . = V?/g. The scaled problem becomes
d*h 11 _ _
g P — h(0) = h
df2 o (1 +6h)2 ) (0) 07
O Let t. = V/gand {. = R. The scaled problem becomes
d*h 1 - =
—_— — h = h = €.
dEQ 6(1 T h)2 ) (0) 07 (O) €
Q Let t. = V/gand . = V?/g. The scaled problem becomes
i S
42 (1+eh?’

We note that these six ODEs are equivalent; however, we look for

further simplification if the parameter € is very small (or very large).
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)

Suppose that € « 1; that is, V2 is much smaller than gR. In this
case case, we are tempted to delete the terms involving e (or simply
setting € = 0) in the scaled problem. Then only case 3, 5, 6 provide
meaningful models; however, only case 6 can provide a reasonable
interpretation of the real phenomena:
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)

Suppose that € « 1; that is, V2 is much smaller than gR. In this
case case, we are tempted to delete the terms involving e (or simply
setting € = 0) in the scaled problem. Then only case 3, 5, 6 provide
meaningful models; however, only case 6 can provide a reasonable
interpretation of the real phenomena: by setting ¢ = 0, the scaled
problem in case 6 becomes

d*h - _
Z=(®-1,  h0)=0, h'(0)=1

whose solution is given by h(t) =t — %f :
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)

Suppose that € « 1; that is, V2 is much smaller than gR. In this
case case, we are tempted to delete the terms involving e (or simply
setting € = 0) in the scaled problem. Then only case 3, 5, 6 provide
meaningful models; however, only case 6 can provide a reasonable
interpretation of the real phenomena: by setting ¢ = 0, the scaled
problem in case 6 becomes

d*h - _
Z=(®-1,  h0)=0, h'(0)=1

whose solution is given by h(t) =t — %fz. This implies that

% (gt lg
te g

the formula for projectile motion that we learned in high school.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
The lesson of the example: To simplify a complicated model, one

needs to be very careful about choosing characteristic scales.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
The lesson of the example: To simplify a complicated model, one

needs to be very careful about choosing characteristic scales.

The reason why t. = V/g and /. = V?/g is the correct charac-
teristic scale when € « 17

When V is very small, we expect that the gravity acceleration is

. GM
always almost g (instead of m)
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
The lesson of the example: To simplify a complicated model, one

needs to be very careful about choosing characteristic scales.

The reason why t. = V/g and /. = V?/g is the correct charac-
teristic scale when € « 17

When V is very small, we expect that the gravity acceleration is
. GM
always almost g (instead of m)
. : . v . . .
is g, the object (with mass m) takes 2 time to reach its maximum
V2 1%
height Q—g; thus t. = — is a good choice of the characteristic time

If the gravity acceleration

V2 . o
scale and /. = — is a good choice of the characteristic length scale.
g
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Let p = p(t) denote the population of an animal species located in
a fixed region at time t. The simplest model of population growth is

the classic Malthus model which states that the rate of change of

. dp. . . .
the population F[t) is proportional to the population p, or equivalently
dp .
dr 28

where r is the growth rate, given in dimensions of inverse-time.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Let p = p(t) denote the population of an animal species located in

a fixed region at time t. The simplest model of population growth is

the classic Malthus model which states that the rate of change of

. dp. . . .
the population Pis proportional to the population p, or equivalently

dt
dp
E =1p,
where r is the growth rate, given in dimensions of inverse-time. A
more reasonable model, called the logistics model, is given by

dp P
E—rp(l K)’

where K > 0 is called the carring capacity (with dimension of pop-

ulation).
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
To complete the system, we need to impose an initial condition so
that the complete equation is

dp

gt rp(l - R) ) p(0) = po-
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
To complete the system, we need to impose an initial condition so

that the complete equation is

P rp1-B), w0 =p.
In the logistic model above, the dimension of t is time, and the
dimension of population is named “population”. Let t. and p. denote
the characteristic time scale and the characteristic population scale,
respectively. Introducing the dimensionless time t = t/t. and the
dimensionless population p = p/pc (so that p(t) = M)
obtain the following scaled problem be

dp

A
L —rnep(1-25),  pO0)=2.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)

Apparently, we should choose the characteristic time scale t. =
1/r. On the other hand, two characteristic population scales can

be chosen: p. = K or p. = pg. Moreover, there is a dimensionless

quantity € = p—}? in the system.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
Apparently, we should choose the characteristic time scale t. =
1/r. On the other hand, two characteristic population scales can
be chosen: p. = K or p. = pg. Moreover, there is a dimensionless
quantity € = p—}? in the system.
@ p. = K: the scaled problem becomes
dp

5 —P(=p),  p0)=e.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
Apparently, we should choose the characteristic time scale t. =
1/r. On the other hand, two characteristic population scales can
be chosen: p. = K or p. = pg. Moreover, there is a dimensionless
quantity € = p—}? in the system.

@ p. = K: the scaled problem becomes

%Zﬁ(l—ﬁ), p(0) =e.

@ pc = po: the scaled problem becomes

dp _ _
ﬁ:p(l—ep% p(0) =1.
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Chapter 1. Dimensional Analysis

§1.2 Characteristic Scales and Scaling

Example (cont.)
Apparently, we should choose the characteristic time scale t. =
1/r. On the other hand, two characteristic population scales can
be chosen: p. = K or p. = pg. Moreover, there is a dimensionless
quantity € = p—}? in the system.
@ p. = K: the scaled problem becomes
dp .. _
—_— = 1 — B 0 S .
5 —P(1=p) p(0) = ¢
@ pc = po: the scaled problem becomes
dp
“E = p(1—ep p(0) =1.
7 = PL—ep),  p0)

If e < 1, we set € =0 in the scaled problem and find that only case

2 provides a reasonable interpretation of the real phenomena.
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Chapter 2. Ordinary Differential Equations

Chapter 2. Ordinary Differential Equations ( ¥ #c4 = #2)
§2.1 Initial Value Problems (IVP)
§2.2 Some Basic Techniques of Solving ODEs
§2.3 Solving IVP using matlab®
§2.4 Boundary Value Problems (BVP)
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Chapter 2. Ordinary Differential Equations

Introduction

Definition

A differential equation is a mathematical equation that relates some

unknown function with its derivatives.
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Chapter 2. Ordinary Differential Equations

Introduction

Definition

A differential equation is a mathematical equation that relates some
unknown function with its derivatives. The unknown functions in
a differential equations are sometimes called dependent variables,
and the variables which the derivatives of the unknown functions
are taken with respect to are sometimes called the independent

variables.
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Chapter 2. Ordinary Differential Equations

Introduction

Definition

A differential equation is a mathematical equation that relates some
unknown function with its derivatives. The unknown functions in
a differential equations are sometimes called dependent variables,
and the variables which the derivatives of the unknown functions
are taken with respect to are sometimes called the independent
variables. A differential equation is called an ordinary differential
equation (ODE) if it contains an unknown function of one indepen-

dent variable and its derivatives.
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Chapter 2. Ordinary Differential Equations

Introduction

A differential equation is a mathematical equation that relates some

unknown function with its derivatives. The unknown functions in
a differential equations are sometimes called dependent variables,
and the variables which the derivatives of the unknown functions
are taken with respect to are sometimes called the independent
variables. A differential equation is called an ordinary differential
equation (ODE) if it contains an unknown function of one indepen-
dent variable and its derivatives. A differential equation is called a

partial differential equation (PDE) if it contains unknown multi-

variable functions and their partial derivatives.
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Chapter 2. Ordinary Differential Equations

Introduction

Definition
A differential equation is a mathematical equation that relates some

unknown function with its derivatives. The unknown functions in
a differential equations are sometimes called dependent variables,
and the variables which the derivatives of the unknown functions
are taken with respect to are sometimes called the independent
variables. A differential equation is called an ordinary differential
equation (ODE) if it contains an unknown function of one indepen-
dent variable and its derivatives. A differential equation is called a

partial differential equation (PDE) if it contains unknown multi-

variable functions and their partial derivatives.

We note that in most of the mathematical ODE models, the inde-
pendent variable is the time variable t or the spatial variable x.
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Chapter 2. Ordinary Differential Equations

Introduction

Definition
The order of a differential equation is the order of the highest-order
derivatives present in the equation. A differential equation of order

1 is called first order, order 2 second order, etc. )
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Chapter 2. Ordinary Differential Equations

Introduction

Definition
The order of a differential equation is the order of the highest-order
derivatives present in the equation. A differential equation of order

1 is called first order, order 2 second order, etc.

Definition

The ordinary differential equation
F(t,)/ay/a"'7y(n71)ay(n)):0 (4)
is said to be linear if
F(tﬂcyﬂcylv"' 7Cy(n_1)7cy(n)) _F(t70707"' 70)
VceR.
= C[F(tmyay/) e 7)/('7_1)7}’(")) — F<ta0707 e 50>]

The ODE (4) is said to be nonlinear if it is not linear.
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Chapter 2. Ordinary Differential Equations

Introduction

Remark: It is commonly assumed that an ordinary differential equa-
tion of order n

F(t,y,y', -,y y() =0 (if the independent variable is t)
can be written as

yO ) = f(ty,y -y, yl)
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Chapter 2. Ordinary Differential Equations

Introduction

Remark: It is commonly assumed that an ordinary differential equa-
tion of order n

F(t,y,y', -,y y() =0 (if the independent variable is t)
can be written as
y(")(t) =f(t,y,y' - 7y(n—2)7y(n—1)).
Moreover, given a differential equation above, we can define a vector-
valued function z = (y,y/,y",--- ,y(”_l))T and write the ODE

above as
Z] V4]
d ) z3
z'(t) = — = : = f(t,z
(== _ (t.2)
Zn—1 Zn
Zn f(t7217227"' 72,7)

which is a first order ODE with a vector-valued unknown.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems
In this section, the ODE under consideration is always written as
y(n)(t) - f(tayvy/7 e 7}’("_2)7}/("_1)) ©
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems
In this section, the ODE under consideration is always written as

y(n)(t) = f(tayvylv"' 7y(n—2)7y(n—1)).

Definition
An initial value problem (IVP) is a (system of) differential equa-
tion

y(n)<t):f(tay7y/a"' 7)/("_2)’}/("_1)) (53)

equipped with an initial condition
y(to) = yo, ¥'(to) = y1, y"(to) = y2, -~ y(n_l)(to) =Yn-1, (5b)
where tj is a given point/time, and yp,y1, -, ya—1 are given num-

bers.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems
In this section, the ODE under consideration is always written as

y(n)(t) = f(tayvylv"' 7y(n—2)7y(n—1)).

Definition

An initial value problem (IVP) is a (system of) differential equa-
tion

y ) = fty,y', -y, y ) (5a)

equipped with an initial condition
y(t) = yo, y'(t0) = y1, y"(t0) = ya, -+ y""D(t0) = yn-1, (5D)
where tj is a given point/time, and yp,y1, -, ya—1 are given num-

bers. A solution to the IVP (5) is a function y defined on an open
interval I so that ty € / and (5) is satisfied.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Before we have talked about the Malthus model

%’t) =rp,  p0)=po
for the growth of population. In this model, the growth rate is
assumed to be positive. However, the same differential equation
can be used to model the decay of radioactive substance such as
plutonium (47 ).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Before we have talked about the Malthus model

%’t) =rp,  p0)=po

for the growth of population. In this model, the growth rate is
assumed to be positive. However, the same differential equation
can be used to model the decay of radioactive substance such as
plutonium (47). If p(t) is the total amount of such kind of substance

. . dp .
at time t, the rate of change of the amount of the plutonium Pis

proportional to the total amount p, except that the “growth” rate r

is negative. In such a case, ris called the decay rate.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Before we have talked about the Malthus model

d,
F’; =rp,  p0)=po

for the growth of population. In this model, the growth rate is
assumed to be positive. However, the same differential equation
can be used to model the decay of radioactive substance such as
plutonium (47). If p(t) is the total amount of such kind of substance
at time t, the rate of change of the amount of the plutonium dp is
proportional to the total amount p, except that the “growth” rate r
is negative. In such a case, ris called the decay rate.

The model has linear ODE and usually is called linear model (for

population growrth or decay of radioactive substance).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Spring-mass system with or without Friction)

Consider an object of mass m attached to a spring with Hook's
constant k. Let x(t) denote the signed distance between the object
and the equilibrium position at time t. If there is no friction, by

the Newton second law of motion we find that x obeys the ODE
mx= —kx.

x
e

IR | m

1 L

Figure 1: The spring-mass system

Ching-hsiao Arthur Cheng #cH 2 - MA3067-*



Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Spring-mass system with or without Friction - cont.)

When the friction is under consideration, by the fact that the friction
is proportional to the velocity, we find that

mx=—kx—rx.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Spring-mass system with or without Friction - cont.)
When the friction is under consideration, by the fact that the friction
is proportional to the velocity, we find that

mx= —kx—rx.

If in addition some external force f(t) are exerted on the mass, the

model becomes
mx=—kx—rx-+f.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Spring-mass system with or without Friction - cont.)

When the friction is under consideration, by the fact that the friction
is proportional to the velocity, we find that

mX=—kx—rx.
If in addition some external force f(t) are exerted on the mass, the

model becomes
mx=—kx—rx-+f.

If the initial position and the initial velocity of the object is x(0) = x
and x’(0) = x1, then x(t) satisfies the IVP

mxX=—kx—rx+f, x(0)=x9, x'(0)=w. (6)
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Spring-mass system with or without Friction - cont.)

When the friction is under consideration, by the fact that the friction
is proportional to the velocity, we find that

mX=—kx—rx.
If in addition some external force f(t) are exerted on the mass, the

model becomes
mx=—kx—rx-+f.

If the initial position and the initial velocity of the object is x(0) = x
and x’(0) = x1, then x(t) satisfies the IVP
mX=—kx—rx+f, x(0)=x9, x'(0)=w. (6)
The ODE in (6) is linear since the function
F(t, x,x,X) = mX+ rx+ kx— f(t)
satisfies F(t, cx, cx, cX)—F(t,0,0,0) =c[F(t, cx, cx, cX)—F(t,0,0,0)].

v
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

In this example we study a closed circult shown in the figure below.

Figure 2: A closed circuit

In the figure above, V is the voltage (% /&) source powering the
circuit, I is the current (& /i) admitted through the circuit, R is
the effective resistance (& FE) of the combined load, source, and
components, L is the inductance of the inductor (% & ) component,

and
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)

An electric current (T i) is the rate of flow of electric charge (%
J7) past a point or region:

d
I(t)zT?.

Ching-hsiao Arthur Cheng #cH 2 - MA3067-*



Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)

An electric current (T i) is the rate of flow of electric charge (%
J7) past a point or region:
1(p) = 99
dt
A capacitor (& %) consists of two conductors separated by a non-
conductive region which can either be a vacuum or an electrical
insulator material known as a dielectric (/i T F).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)

An electric current (T i) is the rate of flow of electric charge (%
J7) past a point or region:

1(p) = 99

dt

A capacitor (& %) consists of two conductors separated by a non-
conductive region which can either be a vacuum or an electrical
insulator material known as a dielectric (/i & & ). From Coulomb’s
law (R i %_#£) a charge on one conductor will exert a force on
the charge carriers within the other conductor, attracting opposite
polarity charge and repelling like polarity charges, thus an opposite
polarity charge will be induced on the surface of the other conductor.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)

An electric current (T i) is the rate of flow of electric charge (%
J7) past a point or region:

1(p) = 99

dt

A capacitor (& %) consists of two conductors separated by a non-
conductive region which can either be a vacuum or an electrical
insulator material known as a dielectric (/i & & ). From Coulomb’s
law (R i %_#£) a charge on one conductor will exert a force on
the charge carriers within the other conductor, attracting opposite
polarity charge and repelling like polarity charges, thus an opposite
polarity charge will be induced on the surface of the other conductor.
The conductors thus hold equal and opposite charges on their facing
surfaces, and the dielectric develops an electric field.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

An ideal capacitor is characterized by a constant capacitance C
which is defined as the ratio of the positive or negative charge Q on

each conductor to the voltage V between them:

C:9 or Q=CV.

If the current

Charge is increasing
+0 Inductance
] L
+ then a voltage <F |I ||
@ opposing that change l |
. is created by the

Electric - magnetic field | |

field E of the coil. -

-~ Inductor
Plate separation d

Figure 3: Left: capacitor, Right: inductance
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)
Inductance (% &) is the tendency of an electrical conductor to op-

pose a change in the electric current flowing through it, and is de-
fined as the ratio of the induced voltage to the rate of change of

current causing it:
dl
=L

V(t) = i

Ching-hsiao Arthur Cheng #cH 2 - MA3067-*



Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)

Inductance (% &) is the tendency of an electrical conductor to op-
pose a change in the electric current flowing through it, and is de-
fined as the ratio of the induced voltage to the rate of change of
current causing it:
dl
V(t) =L—.
(t) =L

The design of inductance is based on Lenz's law (/4 =t %_#&) which
states that “the current induced in a circuit due to a change in a
magnetic field is directed to oppose the change in flux and to exert
a mechanical force which opposes the motion"” (B3 £ dec%m &
2R BRI B e SIUERU gD ).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)

[Lenz’s Law

The induced B field in a loop of wire will oppose the
change in magnetic flux through the loop.

If you try to increase the flux If you try to decrease the flux
through a loop, the induced through a loop, the induced
field will oppose that increase! field will replace that decrease!

v 4
- =
e =

B

induced indu

Figure 4: /4 =x 2 &7 £ B
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)

In a closed circuit (a circuit without interruption, providing a con-
tinuous path through which a current can flow) shown in Figure 2,
one has

VO = TR+ LI+ Za).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)

In a closed circuit (a circuit without interruption, providing a con-
tinuous path through which a current can flow) shown in Figure 2,

one has i
V(t) = I(H)R + L—+ EQ(t) :
By the definition of I, we find that Q satisfies
d*Q daQ 1

To complete the model, initial conditions have to be imposed so
that we have

d? d 1
1E2rEE 0=V, Q=@ Q=T
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (cont.)

In a closed circuit (a circuit without interruption, providing a con-
tinuous path through which a current can flow) shown in Figure 2,

one has i
V() =R+ LE + 6Q(t) .
By the definition of I, we find that Q satisfies
d*Q daQ 1

To complete the model, initial conditions have to be imposed so
that we have

?Q dQ 1

LF+RE+6Q:V’ Q(to) =Qo, Q'(to) =Io.

We note that the IVP above is essentially the same as the IVP (6)
derived from studying the spring-mass system.

T = = =
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Oscillating pendulum)

A simple pendulum consists of a mass m hanging from a string of
length L and fixed at a pivot point P. When displaced to an initial
angle and released, the pendulum will swing back and forth with

periodic motion.

Figure 5: A simple pendulum system
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Oscillating pendulum - cont.)

Let O(t) denote the angle, measured from the vertical dashed line

(see Figure 5), at time t. By Newton's second law,
mll = —mgsinf,  0(0) =6y, 6'(0)=wp.
The ODE in the IVP above is a nonlinear ODE.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Oscillating pendulum - cont.)

Let O(t) denote the angle, measured from the vertical dashed line

(see Figure 5), at time t. By Newton's second law,
mll = —mgsinf,  0(0) =6y, 6'(0)=wp.
The ODE in the IVP above is a nonlinear ODE.

When the angle of oscillation is very small; that is, 8 ~ 0, then by

the fact that giH(l) ¥ = 1 we find that in this case

mLO ~ —mg#;

thus we obtain a simplified model for simple pendulum

mL = —mgh, 0(0) =6y, 0'(0) =wp.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Lotka-Volterra or Prey-Predator model)

Suppose that two different species of animals interact within the
same environment or ecosystem, and suppose further that the first
species eats only vegetation and the second eats only the first
species. In other words, one species is a predator (4% @ ﬁ) and

the other is a prey (.4 ).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Lotka-Volterra or Prey-Predator model)

Suppose that two different species of animals interact within the
same environment or ecosystem, and suppose further that the first
species eats only vegetation and the second eats only the first
species. In other words, one species is a predator (4% @ ﬁ) and
the other is a prey (.4 ).

Let p(t) and q(t) denote, respectively, the populations of the prey
and the predator. If there is no prey, then the population of the

predator should decrease/decay and follows

dq
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Lotka-Volterra or Prey-Predator model - cont.)

When preys are present in the environment, it seems reasonable that
the number of encounters or interactions between these two species
per unit time is jointly proportional to their populations p and g; that
is, proportional to the product pgq.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Lotka-Volterra or Prey-Predator model - cont.)

When preys are present in the environment, it seems reasonable that
the number of encounters or interactions between these two species
per unit time is jointly proportional to their populations p and g; that
is, proportional to the product pg. Thus when preys are present, the
predator are added to the system at a rate dpg, 4 > 0. In other
words, the population of g should follows

%:—ﬁqﬁ-épq, 8,6 >0.
Here the growth rate of the population of the predator is (0p — /)

since dq B

5 = (9P —P)q.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Lotka-Volterra or Prey-Predator model - cont.)

On the other hand, if there is no predator, the population of the
prey should follow the Malthus model (assuming that the supply of
food is always sufficient); however, the population of the prey will
decrease by the rate at which the preys are consumed during their

encounters with the predator; thus

%Zap—wq, a,7>0.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Lotka-Volterra or Prey-Predator model - cont.)

On the other hand, if there is no predator, the population of the
prey should follow the Malthus model (assuming that the supply of
food is always sufficient); however, the population of the prey will
decrease by the rate at which the preys are consumed during their

encounters with the predator; thus

%Zap—wq, a,7>0.

Therefore, we obtain the predator-prey model (or the Lotka-
Volterra model):

d
T/Ft) =ap—ypq=(a—"9)p,

dq

% = Ba+dpqg= (=L +dp)q.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Lotka-Volterra or Prey-Predator model - cont.)

An initial condition p(0) = py, g(0) = qo can be imposed so that it

becomes an IVP.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Lotka-Volterra or Prey-Predator model - cont.)
An initial condition p(0) = py, g(0) = qo can be imposed so that it

becomes an IVP.

The Lotka-Volterra model is nonlinear since by letting z = [p, q]*

we can rewrite the model as
s=ftn=|% 0|24 |22
- ’ - 0 —,B (52122

which shows that F(t, cz, cz) — F(t,0,0) # c|[F(t,z,z) — F(t,0,0)]
if c# 1, where

F(t,z,z) =z— f(t,z).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (SIR model for spread of diseases)

This example presents a classical model, called the SIR model, of
disease transmission within a population. The total population is
divided into three groups: individuals susceptible to disease (%
E ¥ ), infected individuals (3 J5 ), and “removed” individuals
(# & —ﬁ) The removed class counts those individuals who are not
infected and not susceptible; in other words, immune, quarantined,
or dead.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (SIR model for spread of diseases)

This example presents a classical model, called the SIR model, of
disease transmission within a population. The total population is
divided into three groups: individuals susceptible to disease (%
E ¥ ), infected individuals (3 J5 ), and “removed” individuals
(# & Jﬁ") The removed class counts those individuals who are not
infected and not susceptible; in other words, immune, quarantined,
or dead. Individuals may move from one class to another; for exam-
ple, an individual may move from the infected class to the removed
class upon recovery. Thus the model accounts for the interdepen-

dency of the different classes within the population.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (SIR model for spread of diseases - cont.)

The fundamental relation of the SIR model is the relation
N = S(t) + I(t) + R(t),
where N is the total population size, taken to be constant; S(t) is

the size of the susceptible population, /(t) is the size of the infected
population, and R(t) is the size of the removed population.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (SIR model for spread of diseases - cont.)
The fundamental relation of the SIR model is the relation

N = S(t) + I(t) + R(t),
where N is the total population size, taken to be constant; S(t) is
the size of the susceptible population, /(t) is the size of the infected
population, and R(t) is the size of the removed population. We note
that the relationship above shows that the rate of change of S, / and
R must obey the following identity

dS dl  dR
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (SIR model for spread of diseases - cont.)
The derivation of the SIR model is similar to the prey-predator
model: the roles of the infected group and the susceptible group

are respectively similar to the predator and the prey in the prey-
predator model, except that the assumption of a fixed amount of

total population prohibits the growth of the susceptible group.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (SIR model for spread of diseases - cont.)

The derivation of the SIR model is similar to the prey-predator
model: the roles of the infected group and the susceptible group
are respectively similar to the predator and the prey in the prey-
predator model, except that the assumption of a fixed amount of
total population prohibits the growth of the susceptible group. The
population of the infected group, without the presence of the sus-
ceptible group, decays due to the recovery from the disease and
increases due to contact with the susceptible group. On the other

hand, the only way an individual leaves the susceptible group is by

becoming infected (due to contact with the infected group).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (SIR model for spread of diseases - cont.)
Therefore, we obtain the following differential equation
dS

o = s,
dl
- = V®)+b5)1(1),

where b is termed effective disease transmission, and <y is the re-

covery rate. Because of the identity

s dl _dR_,
dt  dt dt
we find that e

— =vl(t).

5 = (t)

The equation above explains the term recovery rate.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (SIR model for spread of diseases - cont.)
Sometimes the system of ODEs in the previous page is written in

the following form:

© _ bsi),

dl

& i) + S,
K =i

where 5 = Nb is called the disease transmission rate.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (SIR model for spread of diseases - cont.)

Sometimes the system of ODEs in the previous page is written in
the following form:

i —bS(t)I(t),

dl

== 1O+ bSO,
C:Tf: =7I(t).

where 5 = Nb is called the disease transmission rate.

In epidemiology (i f'?:}f%éf’), the basic reproduction number, de-
noted by Ry, of an infection is the expected number of cases directly

generated by one case in a population where all individuals are sus-

ceptible to infection. In the SIR model, Ry = 3/7.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Three springs and two Mass system)

Now we consider another spring-mass system in which there are two

objects, of mass m; and ms, moving on a frictionless surface under

the influence of external forces Fi(t) and Fa(t), and they are also

constrained by the three springs whose Hooke's constants are ki, ko

and ks, respectively (see Figure 6).
}F_(f)

\
‘ k

f T

_
M M AW

X

Figure 6: A two-mass, three-spring system
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Three springs and two Mass system - cont.)
Let Ly, Lo, Ls be the length of the unconstrained springs, and /1,

{5, £3 be the increment of the springs in equilibrium. Then
kil1 = koly = ksls.

Let x(t) and y(t) be the position of mass m; and mgy, measured from
the left end, respectively. Then x(t) and y(t) satisfy

d?x
mlw :—kl(X—L1)+k2(y—X—L2)+F1,
d2
mg?;/ :—kg(y—X—L2)+k3(L1+L2+L3+£1+£2—|—€3—y—L3)—|—FQ

=—ko(y—x—La)+ks(Li+La+l1+Llo+ls3—y)+Fa.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Three springs and two Mass system - cont.)

Let x1, xo be the position of masses m; and my measured from the
equilibrium position; that is, x; = x— L; — ¢; and xo = y— L; —
{1 — Ly — l5. Then the equations for x; and x», locations of mass
my and mo measured from the equilibrium positions, are given by

d2X1

m—s = —kix1 + ka(x2 — x1) + F1,
d2

ma dt)? e —kQ(XQ — Xl) — k3xo + Fo .
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Three springs and two Mass system - cont.)

Let x1, xo be the position of masses m; and my measured from the
equilibrium position; that is, x; = x— L; — ¢; and xo = y— L; —
{1 — Ly — l5. Then the equations for x; and x», locations of mass
my and mo measured from the equilibrium positions, are given by

d2X1

m—s = —kix1 + ka(x2 — x1) + F1,
d2

ma dt)? e —kQ(XQ — Xl) — k3xo + Fo .

Note that the equation is “the same as” letting L1 = Ly = L3 =
l1 = €y = ¢35 = 0 in the equation for x, y in the previous page.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Three springs and two Mass system - cont.)

Let x1, xo be the position of masses m; and my measured from the
equilibrium position; that is, x; = x— L; — ¢; and xo = y— L; —
{1 — Ly — l5. Then the equations for x; and x», locations of mass
my and mo measured from the equilibrium positions, are given by

d2X1

m—s = —kix1 + ka(x2 — x1) + F1,
d2

ma dt)? e —kQ(XQ — Xl) — k3xo + Fo .

Note that the equation is “the same as” letting L1 = Ly = L3 =
l1 = €y = ¢35 = 0 in the equation for x, y in the previous page.

The ODE above is a second order linear ODE, and it becomes an
IVP if initial conditions x1(tp) = x10, x2(tp) = Xx20, X{(ty) = x11 and
x9(tp) = X1 are imposed.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion)

In this example, we consider the orbit of a planet moving around the
sun in the solar system. Suppose that planet under consideration
is Earth.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion)

In this example, we consider the orbit of a planet moving around the
sun in the solar system. Suppose that planet under consideration
is Earth. Since Earth moves on the ecliptic plane (F i & ) , we
can treat the orbit of Earth as a plane curve on the xy-plane. Let
the origin of the xy-plane be the center of mass of the sun, and the
location of Earth at time t be r(t) = x(t)i+ y(t)j, where i and j

are pre-chosen but fixed directions of Cartesian coordinates.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion)

In this example, we consider the orbit of a planet moving around the
sun in the solar system. Suppose that planet under consideration
is Earth. Since Earth moves on the ecliptic plane (F i & ) , we
can treat the orbit of Earth as a plane curve on the xy-plane. Let
the origin of the xy-plane be the center of mass of the sun, and the
location of Earth at time t be r(t) = x(t)i+ y(t)j, where i and j
are pre-chosen but fixed directions of Cartesian coordinates. Then
Newton's second law of motion implies that

- e = me(). ™)

where M and m denote the mass of the sun and Earth, respectively,

and ||r(t)| is the distance from Earth to the sun at time t.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)
We note that the two unknowns of the ODE (7) are indeed x(t)
and y(t). To study the motion of Earth better, a polar coordinate

representation of the ODE is need. We introduce a polar coordinate
system in which the pole of the polar coordinate system is the sun,

and the polar axis is i.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)
We note that the two unknowns of the ODE (7) are indeed x(t)
and y(t). To study the motion of Earth better, a polar coordinate

representation of the ODE is need. We introduce a polar coordinate
system in which the pole of the polar coordinate system is the sun,
and the polar axis is i. Let (r(t),6(t)) be the polar coordinate
of the location of Earch at time t; that is, r(t) = r(t) cos0(t)i +
r(t) sin 0(t)j, and define two vectors

r(t) =cosO(t)i+sinb(t)j,
0(t) = —sinO(t)i + cosO(t)j,

accordingly.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)
We note that the two unknowns of the ODE (7) are indeed x(t)
and y(t). To study the motion of Earth better, a polar coordinate

representation of the ODE is need. We introduce a polar coordinate
system in which the pole of the polar coordinate system is the sun,
and the polar axis is i. Let (r(t),6(t)) be the polar coordinate
of the location of Earch at time t; that is, r(t) = r(t) cos0(t)i +
r(t) sin 0(t)j, and define two vectors

r(t) =cosO(t)i+sinb(t)j,
0(t) = —sinO(t)i + cosO(t)j,

accordingly. Then r(t) = r(t)r(t).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)
By the fact that

P = (—sinfi+ cos0j)0’ =00,
0 = —(cos0i+sindj)o’ = —0'7,
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)
By the fact that

7' = (—sin i+ cos0j)f’ = 0’0,
0" = —(cosi+sindj)o’ = —0'7
we find that
r’ = di(r r+ro é\) =r"P+ 004 r'0'0 + r6"9 — r(0')%
= [r" = r(0")?)P+ [2r'0" + r0"]0.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)
By the fact that

7' = (—sin i+ cos0)0’ = 66,
6’ = —(cos0i+ sin0j)0’ = —0'F
we find that
r’ = di(r P r00) =r"F+ 00+ r'0'0 + r0"0 — r(6")%F
= [r" = r(0")?]P+ [2r'0" + r0"]8.
Therefore, (7) implies that

——r=[r"— r(@’)ﬂ?—i— [2r'0" + r9”]§.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)

Since 7 and 0 are linearly independent, we find that the polar coor-
dinate (r(t),6(t)) of Earch must satisfy the nonlinear ODE

GM
—7:r”—r(9,)2, (83)

2r'0" +rf" = 0. (8b)
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)

Since 7 and 0 are linearly independent, we find that the polar coor-
dinate (r(t),6(t)) of Earch must satisfy the nonlinear ODE

GM
—7:r”—r(9,)2, (83)

2r'0" +rf" = 0. (8b)
Since (8) is a second-order ODE, to make it an initial value problems
we need to specify the values of r(ty), 6(to), r'(to) and 6'(tp).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)

Since 7 and 0 are linearly independent, we find that the polar coor-
dinate (r(t),6(t)) of Earch must satisfy the nonlinear ODE

GM
—7:r”—r(9,)2, (83)

2r'0" +rf" = 0. (8b)
Since (8) is a second-order ODE, to make it an initial value problems

we need to specify the values of r(ty), 6(to), r'(to) and 6'(tp).

Note that (8b) implies that (r26’)’ = 0; thus r?¢’ is a constant.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)

Since 7 and 0 are linearly independent, we find that the polar coor-
dinate (r(t),6(t)) of Earch must satisfy the nonlinear ODE

GM
—7:r”—r(9,)2, (83)

2r'0" +rf" = 0. (8b)
Since (8) is a second-order ODE, to make it an initial value problems
we need to specify the values of r(ty), 6(to), r'(to) and 6'(tp).
Note that (8b) implies that (r26’)’ = 0; thus r?¢’ is a constant.
Let ¢ be the constant angular momentum so that
¢ = mr?0’ = mryvo, (9)

where rq is the perihelion distance (iT p B:EF) and vy is the speed
at the perihelion (17 p 2).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)

Note that (9) shows that 6’ is sign-definite (unless ¢ = 0), so 6 is
one-to-one.

Ching-hsiao Arthur Cheng #cH 2 - MA3067-*



Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)

Note that (9) shows that 6’ is sign-definite (unless ¢ = 0), so 6 is
one-to-one. Let t; < ty. The area swept out in the time interval
[t1, ta] is given by

t t:
1o [ L g U2 —t) _ Xovo .
L o (t)H(t)dt—L det— 5m 3 (ta—t1);

1
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)

Note that (9) shows that 6’ is sign-definite (unless ¢ = 0), so 6 is
one-to-one. Let t; < ty. The area swept out in the time interval
[t1, ta] is given by

t t:
1o [ L g U2 —t) _ Xovo .
L o (t)H(t)dt—L det— 5m 3 (ta—t1);

1

thus we conclude Kepler’s second law of planetary motion:

A line joining a planet and the Sun sweeps out equal areas

during equal intervals of time.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary motion - cont.)

Note that (9) shows that 6’ is sign-definite (unless ¢ = 0), so 6 is
one-to-one. Let t; < ty. The area swept out in the time interval
[t1, ta] is given by

t t:
1o [ L g U2 —t) _ Xovo .
L o (t)H(t)dt—L det— 5m 3 (ta—t1);

1

thus we conclude Kepler’s second law of planetary motion:

A line joining a planet and the Sun sweeps out equal areas

during equal intervals of time.

Remark: Kepler's first and third laws of planetary motion will be

discussed later.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Planetary

Planet
/
Equal areas /
in equal Times
T~

3\
kY
Y

SUN

Figure 7: Kepler's second law of planetary motion
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Remark: The angular momentum of a moving object relative to a

point is the cross product of the particle’s position vector r (relative

to the point) and its momentum vector p (relative to the point as

well).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Remark: The angular momentum of a moving object relative to a

point is the cross product of the particle’s position vector r (relative
to the point) and its momentum vector p (relative to the point as
well). Therefore, the angular momentum of the planet relative to

the Sun is

~

rxmr’' =mrex(r't4+r0'0) = mr’0’'Fx § = mr?0'k;
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Remark: The angular momentum of a moving object relative to a

point is the cross product of the particle’s position vector r (relative
to the point) and its momentum vector p (relative to the point as
well). Therefore, the angular momentum of the planet relative to
the Sun is
rxmr' =mrex(r'F+r0'0) = mr?0'Fx 0 = mr?0'k;

thus the quantity mr?6’ is the angular momentum of the planet
relative to the sun. (8b) (or (9)) then implies that the angular
momentum is a constant, so-called the conservation of angular

momentum ( 4 % & 7 |5) .
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Finding relative minimum of a function)

Suppose that f: R — R is a continuously differentiable function.
To find a relative minimum of f, we first look for critical points of
f. In general, it may not be easy to solve for zeros of f’. In this

example we provide a way to “find” possible local minimum of f.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Finding relative minimum of a function)

Suppose that f: R — R is a continuously differentiable function.
To find a relative minimum of f, we first look for critical points of
f. In general, it may not be easy to solve for zeros of f’. In this

example we provide a way to “find” possible local minimum of f.

Suppose that xg is given. If f'(xg) < 0, we expect that the value of
f(x) will be smaller than f(xp) when x is close but on the right-hand

side of xp.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Finding relative minimum of a function)

Suppose that f: R — R is a continuously differentiable function.
To find a relative minimum of f, we first look for critical points of
f. In general, it may not be easy to solve for zeros of f’. In this

example we provide a way to “find” possible local minimum of f.

Suppose that xg is given. If f'(xg) < 0, we expect that the value of
f(x) will be smaller than f(xp) when x is close but on the right-hand
side of xp. Similarly, if f/(xp) > 0, then the value of f(x) will be
smaller than f(xp) when x is close but on the left-hand side of xp.
Therefore, for a given point xp, we can localize the position of the
nearest critical point where f attains a local minimum by “moving”
to the right or to the left based on the sign of f’.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Finding relative minimum of a function - cont.)

This motivates the following IVP
x'=-f'(x), x(0) = xo .
In general, for a continuously differentiable function f: R" — R, we

x' = —(VOX),  x(0)=x.

where x = (x1, %2, -+ ,X,), to find a critical point near xg.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Example (Finding relative minimum of a function - cont.)
This motivates the following IVP
x'=-f'(x), x(0) = xo .
In general, for a continuously differentiable function f: R" — R, we

—(VH(x),  x(0) =xo,

where x = (x1, %2, -+ ,X,), to find a critical point near xg.

v

Remark: To avoid the speed of the motion becoming too slow when
x(t) is close to a relative minimum of f, sometimes we can normalize

the right-hand side so that the IVP under consideration becomes

' r_ _ (VO _
X ——T)} (or x = H VA ”) x(0) = xo .
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Theorem (Existence and Uniqueness of the Solution of IVP)

Consider the initial value problem

x" = f(t, x), x(to) = xo € R",
where x and f functions with values in R". If f and the first partial
derivatives of f with respect to all its variables, possibly except t,
are continuous functions in some rectangular domain R = [a, b] x
[c1, d1] X [c2, d2] X - - - X [cn, dp] that contains the point (ty, xo) in the
interior, then the initial value problem above has a unique solution

in some interval | = (ty — h,ty + h) for some positive number h.

Moreover, the solution is continuously differentiable on I.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

Theorem (Existence and Uniqueness of the Solution of IVP)

Consider the initial value problem

x" = f(t, x), x(to) = xo € R",
where x and f functions with values in R". If f and the first partial
derivatives of f with respect to all its variables, possibly except t,
are continuous functions in some rectangular domain R = [a, b] x
[c1, d1] X [c2, d2] X - - - X [cn, dp] that contains the point (ty, xo) in the
interior, then the initial value problem above has a unique solution

in some interval | = (ty — h,ty + h) for some positive number h.

Moreover, the solution is continuously differentiable on I.

Remark: Every n-th order IVP has a unique solution provided that
the right-hand side function has required properties.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

To be more precise, we rewrite the IVP
(n—l)) 7

Y = fty,-- oy y(t) = yo,--- ¥\ Dito) = ynr

as x’ = f(t, x) with x(ty) = xo, where

y Yo 0
y' i :
x= , , Xo=| . and f(t,x) = Nx+
y(n_l) Yn—1 f(ta X)

in which N = [nj] is the constant matrix given by ny 11 = 1 for
1< k< n—1and nj=0 elsewhere.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems

To be more precise, we rewrite the IVP

y W = fey, ), v = v,y ) = vae

as x’ = f(t, x) with x(ty) = xo, where

y Yo 0
y' i :
x= , , Xo=| . and f(t,x) = Nx+
y(n_l) Yn—1 f(ta X)

in which N = [nj] is the constant matrix given by ny 11 = 1 for
1< k< n—1and nj= 0 elsewhere. Then

of of 1T
— 0 .. ]
o ekt dy®
of . . . . of . . . L
so F is continuous if and only if _"_is continuous. This verifies
5Xk (’3\‘)/(k>

the statement in the previous page.
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems
In particular, if the ODE in IVP is linear; that is,
ft,y, -,y
= a1y + -+ a(t)y’ + a0y + &lt),

then clearly the first partial derivative of f with respect to all the
“y-variables” are continuous if ap,ai, - ,a,—1 are continuous (on

an open interval containing tp).
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Chapter 2. Ordinary Differential Equations

§2.1 Initial Value Problems
In particular, if the ODE in IVP is linear; that is,
ft,y, -,y
= a1y + -+ a(t)y’ + a0y + &lt),

then clearly the first partial derivative of f with respect to all the
“y-variables” are continuous if ap,ai, - ,a,—1 are continuous (on
an open interval containing ty). Therefore, if the coefficients and
the forcing of a linear ODE are continuous (on an open interval con-
taining ty), then the solution of IVP exists and is uniquely determine

by the initial data yp, -+, Ya_1.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.1 Separation of variables
The simplest ODE takes the form x’ = g(t)h(x). Formally we let ®

1
and G be an anti-derivative of i and g, respectively. Then

SB(x() = ¥ (xO)x0) = ok = g(0)
which implies that ®(x(t)) = G(t) + C for some constant C. A

general solution x(t) then is obtained by inverting the function ®.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.1 Separation of variables
The simplest ODE takes the form x’ = g(t)h(x). Formally we let ®

1
and G be an anti-derivative of i and g, respectively. Then

d / / X/(t)
Efb(x(t)) = O'(x(t))x(t) = h(x(@®) g(t)

which implies that ®(x(t)) = G(t) + C for some constant C. A

general solution x(t) then is obtained by inverting the function ®.

If an initial condition x(ty) = xp is provided, then we can choose ®
and G satisfying ®(xp) = G(ty) so that

B(x() - 2(0) = | " Za(x(s) ds = | " g(s) ds = Glt) — Glty);

thus ®(x(t)) = G(t) which further shows that x(t) = ®~1(G(t)) (as

long as ® has an inverse function).
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Consider the logistic equation
r_ )
& rp<1 K)

introduced in Chapter 1. Letting h(p) = rp(l — 7”() we have
@7 EJL — lf Lo L g
Jh(P) r) p(K—p) r (p+ K—p) &
:%(ln]p|—ln|K—p])+C.

Therefore, an anti-derivative of % is ®(p) = lrln ‘Kigp‘ + C whose

inverse function, when considering the case 0 < p < K (which is the
case if 0 < p(ty) < K), is given by

_ Ke"=9 KDe™
14+ e=9 1+ Dert
_ _—Cr. _ KDe™
where D = e~ "; thus p(t) = 1 oo
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.2 The method of integrating factor

Consider the first-order linear ODE
x'(t) + q(t)x(t) = r(t) ,
where g, r are given continuous functions defined on a certain inter-

val.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.2 The method of integrating factor

Consider the first-order linear ODE
x'(t) + q(t)x(t) = r(t) ,
where g, r are given continuous functions defined on a certain inter-

val. Let @ denote an antiderivative of q. Note that

dﬁt [eQ(t)x(t)] = e g(t)x () + 9V x/(t) = 2V (X' (O)+a)x(®)] ;
thus J
o [€QOx(8)] = QO r(t). (10)

The equation above implies that

QW (t) — feo(t)r(t) dt or x(t) = e Q0 f €90 (1) dt.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Suppose now we are given an initial condition x(ty) = xg. Then we

integrate both sides of (10) from ty to t and obtain that

t
J e | ds= LU Q) r(s) ds.

The Fundamental Theorem of Calculus further implies that

t
e x(t) — e)x(y) = f e%9)r(s) ds:
to

thus .
X(t) = Q)05 ¢ f €900 1(5) ds

to
Formula above gives the solution to the initial value problem

x'(t) + q(t)x(t) = r(t), x(tp) = xo -
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.3 Second-order linear ODEs with constant coefficients

Consider the second-order linear ODE
x"(t) + b(t)x'(t) + c(t)x(t) = f(t), (11)

where b, ¢ and f are given continuous functions.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.3 Second-order linear ODEs with constant coefficients

Consider the second-order linear ODE

x"(t) + b(t)x'(t) + c(t)x(t) = f(¢), (11)
where b, ¢ and f are given continuous functions.
We first consider the case f = 0. In this case, the ODE is said
to be homogeneous, and the theory of differential equations shows

that the solution space (that is, the collection of solutions) is two

dimensional.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.3 Second-order linear ODEs with constant coefficients

Consider the second-order linear ODE
x"(t) + b(t)x'(t) + c(t)x(t) = f(t), (11)

where b, ¢ and f are given continuous functions.

We first consider the case f = 0. In this case, the ODE is said
to be homogeneous, and the theory of differential equations shows
that the solution space (that is, the collection of solutions) is two
dimensional. In other words, there exist two linearly independent
solutions ¢ and (2 such that every solution x can be written as the
linear combination of ¢ and @y or equivalently,

x(t) = Cipi(t) + Capa(t) for some constantn C; and Go.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

In general, it is not easy to find linearly independent solution to ho-
mogeneous ODEs. Nevertheless, if b(t) = b and c(t) = ¢ are con-
stant functions, we can find linearly independent solution by looking
at the characteristic equation

r’+br+c=0. (12)
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

In general, it is not easy to find linearly independent solution to ho-
mogeneous ODEs. Nevertheless, if b(t) = b and c(t) = ¢ are con-
stant functions, we can find linearly independent solution by looking
at the characteristic equation
r’+br+c=0. (12)
@ If (12) has two distinct real zeros r; and ry, then
pif) =™ and  ga() =e

rot
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

In general, it is not easy to find linearly independent solution to ho-
mogeneous ODEs. Nevertheless, if b(t) = b and c(t) = ¢ are con-
stant functions, we can find linearly independent solution by looking
at the characteristic equation

r’+br+c=0. (12)
@ If (12) has two distinct real zeros r; and ry, then
pit) = e
@ If (12) has a repeated real zero r, then
p1t) =e™  and  po(t) = te.

nt rot

and pa(t) =e
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

In general, it is not easy to find linearly independent solution to ho-
mogeneous ODEs. Nevertheless, if b(t) = b and c(t) = ¢ are con-
stant functions, we can find linearly independent solution by looking
at the characteristic equation

r’+br+c=0. (12)
@ If (12) has two distinct real zeros r; and ry, then
pi(t) = e
@ If (12) has a repeated real zero r, then
p1t) =e™  and  po(t) = te.
© If (12) has complex zeros « + i3, where «, 8 € R, then
p1(t) = e cos(Bt) and pa(t) = e*'sin(Bt) .

nt rot

and pa(t) =e
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§2.2 Some Basic Techniques of Solving ODEs

In general, it is not easy to find linearly independent solution to ho-
mogeneous ODEs. Nevertheless, if b(t) = b and c(t) = ¢ are con-
stant functions, we can find linearly independent solution by looking
at the characteristic equation
r’+br+c=0. (12)
@ If (12) has two distinct real zeros r; and ry, then
P =€t and  ga(t) = e
@ If (12) has a repeated real zero r, then
p1t) =e™  and  po(t) = te.
© If (12) has complex zeros « + i3, where «, 8 € R, then
p1(t) = e cos(Bt) and pa(t) = e*'sin(Bt) .
When considering initial value problem, the constants C; and C; are
determined by the initial conditions.

rot
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Simple harmonic motion)

Consider the spring-mass system
mx+ kx=0, x(0) =xp, x'(0)=vp.

Rewrite the equation above as X + w?x = 0, where w = +/k/m.
Since the corresponding characteristic equation has two complex
zeros +wi, we find that

x(t) = C; cos(wt) + Cosin(wt) .

Using the initial data, we find that C; = xp and G2 = vy/w; thus
the solution to the IVP above is given by

x(t) = xp cos(wt) + % sin(wt) = Rcos(wt — ¢),

2
where R =4 /x2 + 22 and ¢ satisfies cos ¢ = ~2 and sin¢ = —_.
w? R Rw
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

If bor cis not constant, there is a way to find a second solution which

is linearly independent to a known non-zero solution. Suppose

that x = ¢1(t) satisfies
x"(t) + b(t)x'(t) + c(t)x(t) = 0. (13)
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

If bor cis not constant, there is a way to find a second solution which

is linearly independent to a known non-zero solution. Suppose

that x = ¢1(t) satisfies
x"(t) + b(t)x'(t) + c(t)x(t) = 0. (13)
We look for a solution @2 of the form s (t) = v (t)pi(t). If such a

2 is a solution to (13), then
0= @3'(t) + b(t)pa(t) + c(D)p2()
= v ([®)@a(t) + 2v()1(0) + bV (D pa(t)
+v () [21'(t) + b(E)ei(t) + c()pr(D)]
= v"(B)e1() + V(1) [21(t) + b(B)pa(t)] -
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

If bor cis not constant, there is a way to find a second solution which

is linearly independent to a known non-zero solution. Suppose

that x = ¢1(t) satisfies
x"(t) + b(t)x'(t) + c(t)x(t) = 0. (13)
We look for a solution @2 of the form s (t) = v (t)pi(t). If such a

2 is a solution to (13), then
0= @3'(t) + b(t)pa(t) + c(D)p2()
= v ([®)@a(t) + 2v()1(0) + bV (D pa(t)
+v () [21'(t) + b(E)ei(t) + c()pr(D)]
= v"(B)e1() + V(1) [21(t) + b(B)pa(t)] -
The equation above is a first order ODE for y(t) = v/(t) and can be

solved using the method of integrating factor:
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

A second solution (9 is given by ¢a(t) = v(t)pi1(t), where v satisfies

v (Opu(t) + v'(8) [201() + b(E)ea(t)] = 0.
The equation above is an first order ODE for y(t) = v/(t) and can
be solved using the method of integrating factor:
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

A second solution (9 is given by ¢a(t) = v(t)pi1(t), where v satisfies

v (t)p1(t) + v'(8) [201(t) + b(t)pa(t)] = 0.
The equation above is an first order ODE for y(t) = v/(t) and can
be solved using the method of integrating factor: since y satisfies
201(t) + b(t)p1(t)
t) =0,
e y(®)

with B denoting an anti-derivative of b we have

y(t) = Cexp (_ J 2¢1(t) + b(t)a(t) dt)

e1(t)

— Cexp (—21n lo(t)| - B(t)) _ %((-;)265@_

y'+
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

A second solution (9 is given by ¢a(t) = v(t)pi1(t), where v satisfies

v (t)p1(t) + v'(8) [201(t) + b(t)pa(t)] = 0.
The equation above is an first order ODE for y(t) = v/(t) and can
be solved using the method of integrating factor: since y satisfies
201(t) + b(t)p1(t)
t) =0,
e y(®)

with B denoting an anti-derivative of b we have

y(t) = Cexp (_ J 2¢1(t) + b(t)a(t) dt)

e1(t)

— Cexp (—21n lo(t)| - B(t)) _ %((-;)265@_

y'+

Therefore, another solution s is given by

p2(t) = v(t)p1(t) = pa(t) J ﬁe"g(t) dt.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

. 1. .
Given that y = ¢4(t) = S isa solution of

2t2x" + 3tx’ —x=0 fort> 0,

find a linearly independent solution of the equation.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

. 1. .
Given that y = ¢4(t) = S isa solution of

2t2x" + 3tx’ —x=0 fort> 0,
find a linearly independent solution of the equation.

Rewrite the ODE above as

VA S ( _i)
X"+ 5ox 2tzx—O. so b(t)_Qt

Using the formula from previous page, we find that a linearly inde-

pendent second solution is given by

_ L B0 _EJ2 3 _2
cpg(t)_¢1(t)f¢1(t)2e dt=— |t eXp< 21nt) dt = 3\/?.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Now we consider the general case that f is not the zero function.

In this case, the theory of differential equations shows that the so-

lution to (11) can be expressed as
x(t) = Gipa(t) + G2 pa(t) + xp(2)

for some constants C; and Gy, where {¢1,p2} is a basis of the
solution space of the corresponding homogeneous ODE, and x, is

a particular solution of (11).
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Now we consider the general case that f is not the zero function.

In this case, the theory of differential equations shows that the so-

lution to (11) can be expressed as

x(t) = Gip1(t) + G pa(t) + xp(1)

for some constants C; and Gy, where {¢1,p2} is a basis of the
solution space of the corresponding homogeneous ODE, and x, is
a particular solution of (11). One such a particular solution can be
found using the method of variation of parameters/constants

as follows. Suppose that

xp(t) = C(t)p1(t) + Ca(t)ip2(t)

for some functions C;, Cy to be determined.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

First we assume that C;, Cs satisfy
CiOe1(t) + C3(t)p2(t) = 0.

Then x/(t) = C1(t)p{(t) + Ca(t)ps(t)
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs
First we assume that Cj, G satisfy
CiOe1(t) + C3(t)p2(t) = 0.
Then x,(t) = Ci(t)¢1(t) + Ca(t)pq(t) which further implies that

F(t) = x5/(£) + b(E)x5(t) + c(£)xp(t)
= G)e1(t) + GO [¢{' () + bB)ei (1) + c(B)pr(t)]

)
GB)es(t) + C(t) [05(t) + b3 (1) + c()p2(t)]
@1 (1) + GOps(D) -
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

First we assume that C;, Cs satisfy

Ci)er(t) + Gyt)p2(t) = 0.

Then x,(t) = Ci(t)¢1(t) + Ca(t)pq(t) which further implies that

F(t) = xp () + b(£)x5(t) + c(£)xp(1)
= GOe{®) + GO + bB)¢{ () + c(Heu(t)]
GB)es(t) + C(t) [05(t) + b3 (1) + c()p2(t)]
= G(t)e (1) + C()ps(t) -
Therefore, C; and Gy satisfy
CBea(t) + GH)e2(t) =0,
Cit)e{ () + Cat)pa(t) = (D) -

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Let W{p1, p2] denote the function p1¢4— {2 (termed the Wron-

skian of 1 and y2). Then solving the system
C([Bei(t) + GH)e2(t) =0,
Ci[B)e{ () + Ct)pa(t) = f(D) -
we obtain that

Cll(t) _ f(t)p2(t)

o FOo®
Wior, 2@ )

and Wi, 0al®
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Let W{p1, p2] denote the function p1¢4— {2 (termed the Wron-

skian of 1 and y2). Then solving the system
C([Bei(t) + GH)e2(t) =0,
Ci[B)e{ () + Ct)pa(t) = f(D) -
we obtain that

e e
G0 = o 0al® ) = s 0al®

As a consequence, a particular solution of (11) is given by

N
JW%,SDZ W<P17<P2

and
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§2.2 Some Basic Techniques of Solving ODEs

Let W{p1, p2] denote the function p1¢4— {2 (termed the Wron-

skian of 1 and y2). Then solving the system
C([Bei(t) + GH)e2(t) =0,
Ci[B)e{ () + Ct)pa(t) = f(D) -
we obtain that

e e
G0 = o 0al® ) = s 0al®

As a consequence, a particular solution of (11) is given by

N
JW%,SDZ W<P17<P2

We note that the indefinite integral has undetermined constants;

and

thus the general solution to (11) is given by the formula above.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Consider the spring-mass system

mx+kx=Fy, x(0)=xp, x'(0)=wv,

where Fy is a given constant force.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Consider the spring-mass system

mx+ kx= Foy, x(0) =x, x'(0)=w,
where Fy is a given constant force. Let ¢1(t) = cos(wt) and pa(t) =
sin(wt), where w = y/k/m. We note that previous example shows

that {¢1, p2} is a basis of the solution space of the corresponding

homogeneous ODE mx+kx = 0.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Consider the spring-mass system

mx+ kx= Fy, x(0) =xp, x'(0)= v,
where Fy is a given constant force. Let ¢1(t) = cos(wt) and pa(t) =
sin(wt), where w = y/k/m. We note that previous example shows
that {¢1, p2} is a basis of the solution space of the corresponding
homogeneous ODE mx+kx = 0. To apply the formula of a particular
solution, we first compute the Wronskain:

Wip1, 02](t) = 1(t)ps(t) — @i(t)a(t)

= w| cos?(wt) + sin?(wt)] = w.
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§2.2 Some Basic Techniques of Solving ODEs

Example (cont.)

Having obtained the Wronskian, the formula for particular solutions
to second-order linear ODEs implies that a particular solution to the
ODE in the IVP is given by

Xp(t) = — cos(wt) f M dt + sin(wt) j Fo/m-cos(wt)

W

_ _fo [ cos®(wt) + sin®(wt)] =

Fo
mw? ’

k

Therefore, the general solution to the ODE in the IVP is
x(t) = G cos(wt) + Cosin(wt) + il?

o .. . F
and the initial conditions imply that ¢; = xy — 70 and G = Sy
w
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion)

In this example we prove Kepler’s first and third laws of planetary
motion. Recall that in previous example we have shown that the
polar coordinate (r,#) of the location of a planet moving around a

single sun satisfy a nonlinear second order ODE

_GM _ r' —r(6)?, (8a)

r2

2r'0" +r0” =0. (8b)
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion)

In this example we prove Kepler’s first and third laws of planetary
motion. Recall that in previous example we have shown that the
polar coordinate (r,#) of the location of a planet moving around a
single sun satisfy a nonlinear second order ODE

_%\/I =r" —r(0)?, (8a)

2r'0" +r0” =0. (8b)
Since 0 is one-to-one and continuously differentiable, the inverse
function of 6 exists and is also continuously differentiable (the

Inverse Function Theorem for functions of one variable). Write

t = t(#), and every function of t can be viewed as a function of
6 (via f(t) — f(t(0))).
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§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

For a function fof t, we let f(0) denote d—def(t(e)) and 7(0) denote

d2
L)),
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§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

For a function fof t, we let f(0) denote d—def(t(e)) and 7(0) denote

2
%f(t(@)). By the chain rule and the fact that mr?0’ = ¢,
d ddd ,d ¢ d . L
Gt dids U s mrmag ©F equivalently, w2

#c# £ H MA3067-*
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

For a function fof t, we let f(0) denote d—def(t(e)) and 7(0) denote

2
%f(t(@)). By the chain rule and the fact that mr?0’ = ¢,
d ddd ,d ¢ d . .l
Gt dids U s mrmag ©F equivalently, w2
which implies that

0 r 1 . r
thus r' = — L letu=-. Thent = —_
m r? r r2

r'=——ua.
m

#c# £ H MA3067-*
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§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

For a function fof t, we let f(6) denote d%f(t(@)) and 7(0) denote
2
%f(t(@))_ By the chain rule and the fact that mr?0’ = ¢,

i—ﬁi—Q’i—ii or equivalentl f’—if'
dt dtdd d9  mr?dp g Yo U=
0 r 1 . r . . .
thus r’ = —%. Let v = —. Thend = —% which implies that
mr r r
r' = ——1i. Therefore,
m ¢
= ﬁ /‘U:fﬁu 2.
m mr? m? ’
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§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

For a function fof t, we let f(6) denote d%f(t(@)) and 7(0) denote
2
%f(t(@))_ By the chain rule and the fact that mr?0’ = ¢,

d_dd _,d _ !

=== ———  or equivalentl T Lf
dt  dtdd d9 mr2dd . Yoo = el
f 1 . f i .
thus r’ = ﬁL. Let v = —. Thend = —— which implies that
m r2 r r2
r’ = ——ua. Therefore,
m .
A
T =T n A
thus (8a) and the fact that mr?6’ = ¢ show that
1 1 / =
—GM= = " - r< 0 )
r
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

For a function fof t, we let f(6) denote d%f(t(@)) and 7(0) denote
2
%f(t(@))_ By the chain rule and the fact that mr?0’ = ¢,

d_dd _,d _ !

=== ———  or equivalentl T Lf
dt  dtdd d9 mr2dd . Yoo = el
f 1 . f i .
thus r’ = ﬁL. Let v = —. Thend = —— which implies that
m r2 r r2
r’ = ——ua. Therefore,
m .
A
T =T n A
thus (8a) and the fact that mr?6’ = ¢ show that
1 " / =
~GM— = " (0"
r
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§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

For a function fof t, we let f(6) denote d%f(t(@)) and 7(0) denote
2
%f(t(@))_ By the chain rule and the fact that mr?0’ = ¢,

d_dd _,d _ !

= == ———  or equivalentl fl = Lf
dt dtdd d9  mr?dp g Yo U=
Ll 1 . P
thus r' = ——. Let u = —. Thenu = —— which implies that
mr r r
r' = —=1. Therefore,
m 2
r’ = f-i,u_fiu%
m mr? m?2 '

thus (8a) and the fact that mr?6’ = ¢ show that

2 2
—GMu? = 7:7%UU2 — r(i)
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§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

For a function fof t, we let f(6) denote d%f(t(@)) and 7(0) denote
2
%f(t(@))_ By the chain rule and the fact that mr?0’ = ¢,

d_dd _,d _ !

= == ———  or equivalentl fl = Lf
dt dtdd d9  mr?dp g Yo U=
Ll 1 . P
thus r' = ——. Let u = —. Thenu = —— which implies that
mr r r
r' = —=1. Therefore,
m 2
r’ = f-i,u_fiu%
m mr? m?2 '

thus (8a) and the fact that mr?6’ = ¢ show that

2 2 2 2
—GMuzz—LUUQ—r( £ ) _ L L8
m
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs
Example (Kepler's 15t and 3™ laws of planetary motion - cont.)
Therefore, CMm?

U+ u= 12
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

Therefore,

U+u—GMm2—GM
2 13v?
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

Therefore,

U+ u= 7GMm2 = ﬂ
7 r2v2
A particular solution u, to the ODE above is the constant function
up(f) = om.
oV’
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§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

Therefore,

U+u—GMm2—GM
o2 v

A particular solution u, to the ODE above is the constant function

up(f) = %; thus the general solution to the ODE above is

0Vvo
u(@) = Gy cosf + Cysinf + % = Ccos(f + ¢) + %
fovo o9V

for some constant C > 0 and angle ¢.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

Therefore, ity GMm?  GM
o2 v

A particular solution u, to the ODE above is the constant function

up(f) = %; thus the general solution to the ODE above is

0Vvo
u(@) = Gy cosf + Cysinf + % = Ccos(f + ¢) + %
fovo o9V

for some constant C > 0 and angle ¢. By the fact that u= 1/r, we
find that the polar equation for the orbit of the planet is given by

1 A
r = =] s
Ccos(0 + ¢) + % 1+ ecos(f + ¢)
I'oVo
12v2
where A = % and e = AC.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

The polar equation of the orbit of a planet given by
L A
~ 1+4ecos(+ ¢)

represents a conic section ([fl4a# #) with eccentricity (&< %) e.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

The polar equation of the orbit of a planet given by
P N—
~ 1+4ecos(+ ¢)
represents a conic section ([fl4a# #) with eccentricity (&< %) e.
This proves Kepler’s first law of planetary motion:

The orbit of every planet is an ellipse with the Sun at one

of the two foci.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

The polar equation of the orbit of a planet given by
P N—
~ 1+4ecos(+ ¢)
represents a conic section ([fl4a# #) with eccentricity (&< %) e.
This proves Kepler’s first law of planetary motion:

The orbit of every planet is an ellipse with the Sun at one

of the two foci.

v

Remark: The eccentricity e of a conic section C is a constant defined
by
the distance from P to the focus (& 2)

_ P .
© the distance from P to the directrix (i) LEae
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

To derive the polar equation for conic sections, we introduce the

polar coordinate in which the pole is (one of) the focus and the

polar axis is perpendicular to and intersects the directrix.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

To derive the polar equation for conic sections, we introduce the

polar coordinate in which the pole is (one of) the focus and the

polar axis is perpendicular to and intersects the directrix.

Conic section C \ d(P,D)

P, :
d(P, F) |
d(P,F !
e= _dBF) - : A, Polar axis
d(P,D) F, Focusyole

D, Directrix

Figure 8: Polar representation of conic sections
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

To derive the polar equation for conic sections, we introduce the

polar coordinate in which the pole is (one of) the focus and the

polar axis is perpendicular to and intersects the directrix.

Conic section C \ d(P,D)

e= ——"— = : A, Polar axis
d(P,D) F, Focusyole ! b

D, Directrix

Figure 8: Polar representation of conic sections
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

To derive the polar equation for conic sections, we introduce the

polar coordinate in which the pole is (one of) the focus and the

polar axis is perpendicular to and intersects the directrix.

Conic section C \ d(P,D)
(r,0) =P

S -- : A, Polar axis
d(P,D) F, Focusyole ! b

D, Directrix

Figure 8: Polar representation of conic sections
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

To derive the polar equation for conic sections, we introduce the

polar coordinate in which the pole is (one of) the focus and the

polar axis is perpendicular to and intersects the directrix.

Conic section C \ d(P,D) E

(r7 0) = P: :
d(P,F) |
0 :

= 4 : A, Polar axis
d(P,D) F, Focusyole ! b
) 9“ :

=

4
D, Directrix

Figure 8: Polar representation of conic sections
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

To derive the polar equation for conic sections, we introduce the

polar coordinate in which the pole is (one of) the focus and the

polar axis is perpendicular to and intersects the directrix.

Conic section C \ d(P,D)

(r7 0) =
. A, Polar axis
ocusyole !

=N
)
S
t
b= = =g

D, Directrix

Figure 8: Polar representation of conic sections
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

To derive the polar equation for conic sections, we introduce the

polar coordinate in which the pole is (one of) the focus and the

polar axis is perpendicular to and intersects the directrix.

Conic section C \ d(P,D)

(r7 0) =
. A, Polar axis
ocusyole !

r
e_L—rcos9 F

U B u |

D, Directrix

Figure 8: Polar representation of conic sections
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

To derive the polar equation for conic sections, we introduce the

polar coordinate in which the pole is (one of) the focus and the

polar axis is perpendicular to and intersects the directrix.

Conic section C \ d(P,D)

(r7 0) =
. A, Polar axis
ocusyole !

P el
" 1+ecosf

t
b= = =g

D, Directrix

Figure 8: Polar representation of conic sections
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

If a new polar axis A’ is given by # = ¢ in the polar coordinate system

with polar axis A, then the polar equation for a conic section with
el

eccentricity e is given by r= HTS(@‘H?).
Conic section C >~ d(P,D)
(r0) = |

1
1
i
1
! A’, Polar axis
1
1
1
1

_ e ¢
1+ecos(0+¢) ﬁT?, Focus/{@/ole :
e |

Figure 8: Polar representation of conic sections

r

A

D, Directrix
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Remark: Since we have proved that the orbit of a planet must

be an ellipse, unlike the case of parabola or hyperbola the angular
parameter 6 in the equation

L u= Ccos(f + ¢) + % _ 1hecos®+¢)
r A A

can be any real numbers.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Remark: Since we have proved that the orbit of a planet must
be an ellipse, unlike the case of parabola or hyperbola the angular
parameter 6 in the equation

L u=Ceos(9+¢)+ M _ L1tecolft¢)
r A A

can be any real numbers. Therefore, the maximum of v is given by
the reciprocal (#|#c) of the perihelion and we have

1 GM
—=C+ 5.
Io IgvE
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Remark: Since we have proved that the orbit of a planet must
be an ellipse, unlike the case of parabola or hyperbola the angular
parameter 6 in the equation

L u=Ceos(9+¢)+ M _ L1tecolft¢)
r A A

can be any real numbers. Therefore, the maximum of v is given by
the reciprocal (#|#c) of the perihelion and we have

1 GM
0 TIpVp
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Remark: Since we have proved that the orbit of a planet must
be an ellipse, unlike the case of parabola or hyperbola the angular

parameter 6 in the equation

L u=Ceos(+¢)+ M _ Liecos@+9)
r A A

can be any real numbers. Therefore, the maximum of v is given by
the reciprocal (#|#c) of the perihelion and we have

1 GM
= 2
0 0Y0
I'2V2
This further implies that the eccentricity e = AC = ﬁC is given
2
ToVy
by e = 22¥0 _ 1
Y= om
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Remark: Since we have proved that the orbit of a planet must
be an ellipse, unlike the case of parabola or hyperbola the angular

parameter 6 in the equation

L u=Ceos(9+¢)+ M _ L1tecolft¢)
r A A

can be any real numbers. Therefore, the maximum of v is given by
the reciprocal (#|#c) of the perihelion and we have

1 GM
0 TIpVp

2,2
This further implies that the eccentricity e = AC = %—VN‘;C is given
2
by e = ICO;—VA;; — 1 and the polar equation of the ellipse is given by
A

= 1+ecos(f+¢)
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Remark: Since we have proved that the orbit of a planet must
be an ellipse, unlike the case of parabola or hyperbola the angular

parameter 6 in the equation

L u= Ccos(f + ¢) + % _ 1tecos®+¢)
r 5V A

can be any real numbers. Therefore, the maximum of v is given by
the reciprocal (#|#c) of the perihelion and we have

1 GM
= o
0 oVo
I‘2V2
This further implies that the eccentricity e = AC = ﬁC is given
2
by e = réiv/\/(]) — 1 and the polar equation of the ellipse is given by

_ (1+e)rg
~ 14ecos(f+¢)°
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

Recall that Kepler’s second law of planetary motion shows that

to ta _
JlrQ(t)Gl(t)dt:J L=l t) _movo, 4y
" 2m

t 2m 2
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

Recall that Kepler’s second law of planetary motion shows that

to ta _
JlrQ(t)Gl(t)dt:J L=l t) _movo, 4y
" 2m

t 2m 2

Let a, b be the semi-major axis (X & ##h) and semi-minor axis (£

“&dh) of the orbit of a planet, and T be the orbital period (= ##i¥
#7). Then the identity above shows that

T
1 T
wab:J 2r29" gt = TV
0 2 2
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

Recall that Kepler’s second law of planetary motion shows that

to ta _
JlrQ(t)Gl(t)dt:J L=l t) _movo, 4y
" 2m

t 2m 2

Let a, b be the semi-major axis (X & ##h) and semi-minor axis (£

“&dh) of the orbit of a planet, and T be the orbital period (= ##i¥
#7). Then the identity above shows that

T
1 T
wab:J 2r29" gt = TV
0 2 2

Therefore, by the fact that b= av/1 — €2,

T2 — <27rab)2 B 471'234(1 _e?) = 4m2a* 2GM - 1ov}

r2vi GM roGM

(14)

ToVo
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (Kepler's 15t and 3™ laws of planetary motion - cont.)

I‘Q(]. —+ e)
1+ ecos(f+ o)

Il
rmax:r|9+¢:ﬂ_:r01_e;

Moreover, the polar equation r = implies that

thus using the expression of e,
To+ fmax Yo roGM
2 l—e 2GM—rov3’

42
Using the identity above in (14), we conclude that T2 = Gl/\/lad

which shows the third law of Kepler:

The square of the orbital period of a planet is directly

proportional to the cube of the semi-major axis of its orbit.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.4 Linear systems with constant coefficients

A general linear system of ODEs takes the form

d

% = an()x + aa(t)xe + - + awn(t)xn + f(D)
d

=2 = an(xa + an(the + -+ atxn + H(0),
dxn. .

o 9 (t)x1 + an2(t)x2 + - - + ann(t)xn + fa(t) ,

where the coefficients a;;, where 1 < i,j < n, and the forcing

fi,--- ,f, are given functions.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.4 Linear systems with constant coefficients

A general linear system of ODEs takes the form

d

% = an()x + aa(t)xe + - + awn(t)xn + f(D)
d

=2 = an(xa + an(the + -+ atxn + H(0),
dxn.

o 9 (t)x1 + an2(t)x2 + - - + ann(t)xn + fa(t) ,

where the coefficients a;;, where 1 < i,j < n, and the forcing
fi,--- ,f, are given functions. The linear system above is said to
be homogeneous if fi(t) = 0 for all 1 < i < n; otherwise it is in-

homogeneous.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

§2.2.4 Linear systems with constant coefficients

A general linear system of ODEs takes the form

d

% = an()x + aa(t)xe + - + awn(t)xn + f(D)
d

=2 = an(xa + an(the + -+ atxn + H(0),
dxn.

o 9 (t)x1 + an2(t)x2 + - - + ann(t)xn + fa(t) ,

where the coefficients a;;, where 1 < i,j < n, and the forcing
fi,--- ,f, are given functions. The linear system above is said to
be homogeneous if fi(t) = 0 for all 1 < i < n; otherwise it is in-
homogeneous. In this sub-section, we look for solutions of a linear

system when all the aj's are constant functions.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs
In other words, we look for vector-valued function

T
x(t) = [xa(), - xn(t)]
satisfying the ODE

x/(t) = Ax(t) + F(0),
where A = [aj]nxn is a constant matrix, f(t) = [A(t),- - ,fn(t)}T.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs
In other words, we look for vector-valued function

x(t) = [, n@)]
satisfying the ODE

x'(t) = Ax(t) + f(t),

where A = [aj]nxn is a constant matrix, f(t) = [A(t),- - ,fn(t)}T.

We mimic the method of integrating factor and look for a matrix-
valued function M = M(t) such that

dﬂt [M(1)x(1)] = M()[x'(t) — Ax(t)] = MHF(z).
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

In other words, we look for vector-valued function

T

x(t) = [xa(), - xn(t)]
satisfying the ODE
x'(t) = Ax(t) + f(t),

where A = [aj]nxn is a constant matrix, f(t) = [A(t),- - ,fn(t)}T.

We mimic the method of integrating factor and look for a matrix-
valued function M = M(t) such that

d
o [M(t)x(t)] = M(t) [x'(t) — Ax(t)] = M(t)F(t).

This amounts to choose M satisfying

d
FtM(t) =—-M()A.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

We note that the ODE %M(t) = —M(t)A shows that

dM, M, . dM, )
Moy = -mo)a. M0 = - M)a= mo)a*,
&M, . M, 5
IM0) = <M 0)a= —m(0)A
o gk . L

and inductively we obtain W(O) = (—1)*M(0)A".
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

dM d’M dM

E(O) = _M(O)Av dr2 (0) = —?(O)A = M(O)A27
d*M d’mM
W(O) = —F(O)A = —M(O)A3

km
W(O) = (—=1)*M(0)A*. Therefore,

using the Taylor expansion we formally obtain that

and inductively we obtain

© 1 d“M @ (—1)

M(t) = kgo Flare (0K = kgo Tt"M(O)Ak
= M(0)S 1 (~tA).
(=) ¢
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

dM d’M dM

E(O) = _M(O)Av dr2 (0) = —?(O)A = M(O)A27
d*M d’mM
W(O) = —F(O)A = —M(O)A3

k
and inductively we obtain M(O) = (=1)*M(0)A*. Therefore,

dtk
using the Taylor expansion we formally obtain that

© 1 d“M @ (—1)

M(t) = kgo Flare (0K = kgo Tt"M(O)Ak
= M(0)S 1 (~tA).
(=) ¢

This motivates the following
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Definition
Let B be an n x n matrix. The exponential of B, denoted by €B, is
the series

B_ Loz, 1p3 _ w1
e fI+B+iB +§B +"'_ZEB'

k=0

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Definition

Let B be an n x n matrix. The exponential of B, denoted by €B, is
the series

B_ Loz, 1p3 _ w1
e fI+B+iB +§B +"'_ZEB'

k=0

Having defined the exponential of square matrices, we conclude that

EM@E) = —MHA = M@ =Moe A (15)
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Definition
Let B be an n x n matrix. The exponential of B, denoted by €B, is
the series

B_ Loz, 1p3 _ w1
e fI+B+iB +§B +"'_ZEB'

k=0

Having defined the exponential of square matrices, we conclude that
dﬁt M) = —MHA < M) =M0)e ™.  (15)

Remark: We note that the exponential of square matrices is given
by an infinite series, so in principle we should check the convergence
of the series before we can define it. Nevertheless, we will treat the
convergence of the series as a fact for this requires some additional

knowledge in analysis.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Before proceeding, let us establish a fundamental identity

eBesB = tt9B  for all square matrices B and t,s€ R.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Before proceeding, let us establish a fundamental identity

eBesB = tt9B  for all square matrices B and t,s€ R.

To see this, we note that e/2B = Be'® for all te R and

d tB tB
—e” = e"B.
dt

Therefore, for each given s€ R,

dit BB _ o(t+s) B} — oBBeB _ J(tt9Bg _ [ BB _ f(t+s) B} B.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Before proceeding, let us establish a fundamental identity

eBesB = tt9B  for all square matrices B and t,s€ R.

To see this, we note that e/2B = Be'® for all te R and

d tB tB
—e” = e"B.
dt

Therefore, for each given s€ R,

dit BB _ o(t+s) B} _ oBBeB _ J(tt9Bg _ [ BB _ o(t+9) B} B.

Using (15),

otBesB _ o(t+9)B _ [ BB _ e(0+s)B] etB — -

b

thus we establish the desired identity.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Now we come back to solve for the ODE x'(t) = Ax(t) + f(t).
We choose M(0) = I so that an integrating factor M is given by
M(t) = e *A. Therefore,

d

&[e_mx(t)] = e "x'(t) — Ax(t)] = e " F (D).

The equation above shows that

x(t) = et J e HAF (1) dt.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Now we come back to solve for the ODE x'(t) = Ax(t) + f(t).
We choose M(0) = I so that an integrating factor M is given by
M(t) = e *A. Therefore,

d

&[e_mx(t)] = e "x'(t) — Ax(t)] = e " F (D).

The equation above shows that
x(t) = et J e tAF (1) dt.

If an initial condition x(ty) = Xo is imposed, the unique solution to
the IVP is given by

t
x(t) = elt710)Ax, 4 etAJ e *Af(s) ds.

to
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

e The computation of e'® for square matrix B
By Jordan decomposition, every square matrix B can be written as

B=PJP !,
where J takes the Jordan canonical form
J1 O ---0
J=|0% -0
in which each Jordan block J, is a square matrix of the form AI or
01 0 -0 A1 0 -0
00 1 . 0 A 1 .o
A S I IS
: - @ i : a1
0 v .- 0 0 0 --v - 0 M

for some eigenvalue of B.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs
Writing B in the form above, by the fact that BX = PJsP~1 we

have B_ v L o kpk o Lok gk 1
B_ w1 B 1 _
B = Y, ot B = P( 3 ks Pt
k=0 k=0
Jf
. K 5
Since J* = _ , we have
I
o 1 -
D thuE
k=0 k'
1
Z *'thZk
eth P =0 k! p-1
® 1
Z Ethék
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs
Writing B in the form above, by the fact that BX = PJsP~1 we

have B_ v L o kpk o Lok gk 1
B_ w1 B 1 _
B = 3, ot B = P( 3 ks Pt
k=0 k=0
S
: P 55
Since J* = _ , we have
I
etJ1
tJo
e
eB=pP p-1
eth
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

01 0 0
00 1
For each r, since I commutes with the matrix N= |: . . "-. o],
0 1
_() ...... 0 0_
we have
[0 1 0 0] [0 1 0 0]’
o o0 1 -.: o o0 1 -.:
k - . . k K kyk—j|: - . .
= ([ o|) =gk
- 91 =0 - 91
0 o oo 0 0] 0 o e 0 0]

Here the zeroth power of a square matrix is the identity matrix.
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

By the fact that

j columns of 0's here

—
[0 0 1 0 0 T
_ _ 0 0 1 0
1 0 0
00 1
Lol = 0107
0 1 0 1
0 - - 0 0] 0
L O 0 ]
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§2.2 Some Basic Techniques of Solving ODEs

if J,is an m x m matrix, we have
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Here CX is the number
m > k.

Ching-hsiao Arthur Cheng #:5 %

m!

so that CK = 0 if

# 2  MA3067-*



Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Therefore, if J, is an m x m matrix taking the form J, = A + N,
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Therefore, if J, is an m x m matrix taking the form J, = A + N,
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

210 0 0 0
021 0 0 0 4
002 0 0 0 !

Let J= 000 -3 1 0 . Then J takes the form Js )
000 0 -3 0 3
000 0O 0 5

so that

_ ) ;
ettt %em 0 0 0
0 et te?t 0 0
|0 0 € 0 0
0 0 e 3t te3t 0
0 0 e 3t 0
(0 0 0 €&
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Consider the ODE derived from studying the two masses three

springs system:

mﬁ——kx + ka(xe — x1) + F
1—m =~k + k(e —x I
d?x
2dT;=*k2(X2*X1)*k3X2+F2-
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Consider the ODE derived from studying the two masses three

springs system:

mﬁ——kx + ka(xe — x1) + F
1= = —Kx + e — X 1,
d?x:

msz;Z*kz(X2*X1)*k3X2+F2-

Let y = [x1,x2, x{, x5]T. Then

i 0 0 1 07 [0 T
0 0 0 1 0
y't)=Ay+f=| kthk ke 0o ly+| AL
mq my m
ka ket ks 0 0 Fa
L mo mso . L my A
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (cont.)
Suppose that my = my = ki = ko = k3 = 1. If X is an eigenvalue

of A, then

- 0 0

0 \ 0 1 - 0 1 0 -
0= =—Al1 =X 1|4+]—2 1 o0

1 -2 0 -
= A=A —2)+F(4—14+22) =2 +422+3
=2 +3) (A2 +1)
which implies that the eigenvalues of A are ++4/3i and +i.
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§2.2 Some Basic Techniques of Solving ODEs

Example (cont.)
Suppose that my = my = ki = ko = k3 = 1. If X is an eigenvalue

of A, then

- 0 0

0 \ 0 1 - 0 1 0 -
0= =—Al1 =X 1|4+]—2 1 o0

1 -2 0 =X
= A=A —2)+F(4—14+22) =2 +422+3
= (A2 +3) (A2 +1)
which implies that the eigenvalues of A are ++/3i and +i. Corre-

sponding eigenvectors are
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (cont.)

thus
ii — i —i i 1/ Li—if -
V3 B V3i V3 VB
PO I VB SIS S
5 VB ; 3 B
—1 -1 11 i —1 -1 11
1 1 11 1 1 11
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (cont.)

thus
1 . 1. .. 1 . i
%I —ﬁl —I 1 \/gl ﬁl _ﬁl —I 1
T N _\3i 1, 1,
A: —%I %I —I I I —%I ﬁl —I
—1 -1 11 i —1 -1 11
1 1 11 1 1 11
Therefore,
1 1 . 1 . 1. .77t
—31 —%l - ei\/§t %I —%I —1I
tA L, L, i eV L L i
=" NERNG
-1 -1 11 B B R R |
1 1 11 € 1 1 11
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (cont.)

Using the formula for solutions of linear systems, we find that the
general solution to the given ODE is given by

[elV/3t ] e V3t

yty=pP| ¥ |pt J P VS IPTUE(L) dt
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Consider the linear system x’ = Ax, where
(4 —2 0 2
0O 6 —2 0
o 0 2 2 0
0 -2 0 6
2 0 0 174 1 0 0] [-2 0 0 17"
/=2 1 1 0 0 4 0 O -2 1 1 0
T 1=2 2 1 0 0O 0 4 0 -2 2 1 0
-2 0 1 1]]0 0 O 6] [-2 0 1 1
=PJP!.
Using the formula
x'(t) = Ax(t) + F(t) = x(t) = etAJetAf(t) dt,
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Chapter 2. Ordinary Differential Equations

§2.2 Some Basic Techniques of Solving ODEs

Example (cont.)

we find that the general solution to the given ODE is

x(t) = eAC= Pe’P~IC
—1

-2 00 1 4100 -2 00 1 G
2110 0400 -2 110 G
122100040/ ]]-2210 |
-2 0 1 1} 0006 —2 011 Cs
=2 0 0 1] [e* te'* 0 0 G
|-2110[]0 €t 0 0]]|GC
-2 210[]|0 0 €t 0 Cs

-2 01 1][0 0 0 €t |C

for some constants C;, Cy, C3 and C;.
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Step 1: Write the IVP in the vector form
y'=fty). y0)=y.
Note that usually you need to write the VP in a dimensionless
form (under a proper choice of characteristic scale).
Step 2: Write (and save) the function fin matlab.
Step 3: Once the function fis saved, use the command “ode45"
(based on the adaptive Runge-Kutta method) to solve the IVP:

[t,y] = ode45(@name of the function,[starting time, terminal time], initial data)

where the output of this command has two pieces t and y:

@ tis a column vector whose components are the samples of time
at which the numerical solution evaluates.

@ vy is a m x n matrix, where m is the total number of time
samples, and n is the dimension of the vector y.
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Consider solving the IVP (from the Lotka-Volterra model)
p’ = —0.16p + 0.08pq, p(0) =5,
q’' =4.59—0.9pq, q(0) =3,

numerically using matlab.
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Consider solving the IVP (from the Lotka-Volterra model)
p’ = —0.16p + 0.08pq, p(0) =5,

q' =4.5q—0.9pq, q(0) =3,
—0.16p + 0.08pg
4.5g—09pg |’

First we write the function f (in the name “ODE_RHS"):

numerically using matlab. Let y = [Z], f(t,y) = {

function yp = ODE_RHS(t,y)
p=y(11) g =y(21);

yp(1,1) = —0.16*p + 0.08*p*q;
yp(2.1) = 4.5%q - 0.9%p*q;

and then run

[t.y] = ode45(@ODE_RHS,[0,10],[5:3]);
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Consider solving the IVP (from the study of Kepler's laws of plane-

tary motion)

_SMmE e, K0 =h, F(0)=r,

r2

under the settings: GM =1, ry = [1;0] and r, = [0;0.6]. We note

that the IVP above can be written as

el Ml o o LA ot L
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Consider solving the IVP (from the study of Kepler's laws of plane-

tary motion)

_SMmE e, K0 =h, F(0)=r,

r2

under the settings: GM =1, ry = [1;0] and r, = [0;0.6]. We note

that the IVP above can be written as

I Gl [l
2+y)L5 [y~ y" ] yO ] = |y
One can follow the previous example and write the function on the

right-hand side as a separate file; however, there is an easier way to

do this if the right-hand side function is simple.
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Example (Con't)

Let z = [z1; 205 23; z4) = [x;y; x'; ¥']. Then z satisfies

4| Z4 1
d | z» . Z] . 0
e P R = RS
Zy . 22 0.6

@+

Therefore, we execute the following codes

ODE_RHS = Q(t,y) [y(3:4); -1/(norm(y(1:2))A3)*y(1:2)];
[t.y] = oded5(@(t,y) ODE_RHS(t,y), [0,3], [1;0;0;0.6]);

to solve this problem numerically.
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Example (Con't)
If the right-hand side function has some parameters, one can write

this function as a function of t, y, as well as these parameters (t and
y have to be the first two variables). To use ode45, one runs

ODE_RHS = ©(t,y,G,M) [y(3:4); -G*M/(norm(y(1:2)) A3)*y(1:2)];
G=1,M=1,;

[t,y] = ode45(0(t,y) ODE_RHS(t,y,G,M), [0,3], [1;0;0;0.6]);
plot(y(:,1).y(:2),'b’);

axis equal;
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Consider finding the position where the function
) =xe ="

attains its global minimum or one of its local minimums.
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Consider finding the position where the function
2

f(x,y) = xe XY

attains its global minimum or one of its local minimums. Using the

idea of gradient flows, we compute
f(xy) = (1 — 2X2)efx27y2 and f,(x,y) = —2xye*’<2*y2

and consider the VP

2] G-

where (xp, yo) is a point closed to the global minimum or a local

minimum.
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Example (Con't)
We first write the function —Vf by

function zp = ODE_RHS(t,z)

x =2z(1,1); y = z(2,1);

zp(1,1) = (2*xA2-1)*exp(—xA2-yA2);
zp(2,1) = 2*x*y*exp(—xA2-yA2);

and then (with a wild guess of a local minimum (xo, yo) = (0.5, 0.5)

in mind) run

[t,y] = ode45(@(t,y) ODE_RHS(t,y),[0,10],[0.5;0.5]);
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Chapter 2. Ordinary Differential Equations

§2.3 Solving IVP using matlab®

Example (Con't)
We first write the function —Vf by

function zp = ODE_RHS(t,z)

x =2z(1,1); y = z(2,1);

zp(1,1) = (2*xA2-1)*exp(—xA2-yA2);
zp(2,1) = 2*x*y*exp(—xA2-yA2);

and then (with a wild guess of a local minimum (xo, yo) = (0.5, 0.5)

in mind) run

[t,y] = ode45(@(t,y) ODE_RHS(t,y),[0,10],[0.5;0.5]);

The vector y(end, :) may be very closed to tlim y(t), a candidate of

what we are after.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

In this section we only consider ODE of the form

v+ Py +al)y = gx),
where p, g and g are given functions, and y = y(x) is the unknown
function.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

In this section we only consider ODE of the form

v+ Py +al)y = gx),
where p, g and g are given functions, and y = y(x) is the unknown
function. Instead of imposing the initial condition y(ty) = yo and
y'(to) = y1, sometimes the following four kinds of boundary condi-
tion can be imposed:
L y(a) =y, y(B) = y1; 2. y(a) =y, y'(B) = »1;
3. y'(a) = yo0, ¥(B) = y1; 4 y'(a) = yo. y'(B) = n1,

where «, (5, yo and y; are given numbers.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

In this section we only consider ODE of the form

v+ Py +al)y = gx),
where p, g and g are given functions, and y = y(x) is the unknown
function. Instead of imposing the initial condition y(ty) = yo and
y'(to) = y1, sometimes the following four kinds of boundary condi-
tion can be imposed:

L y(a) =y, y(B) = y1; 2. y(a) =y, y'(B) = »1;

3. y'(a) = yo0, ¥(B) = y1; 4 y'(a) = yo. y'(B) = n1,
where «, 5, yo and y; are given numbers. Such kind of combination
of ODE and boundary condition is called a (two-point) boundary
value problem (BVP), and a solution y to a BVP must be defined

on the interval | = [«, /3], as well as satisfy the ODE and the bound-
ary condition.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

In this example we reconsider the ODE in the spring-mass system
mx = —kx — rx+ f(t).
We explain the meaning of the different boundary condition as fol-
lows:
Q@ x(0) = xp and x(T) = xq: the initial and the terminal position
of the mass are given.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

In this example we reconsider the ODE in the spring-mass system
mx = —kx — rx+ f(t).
We explain the meaning of the different boundary condition as fol-
lows:
Q@ x(0) = xp and x(T) = xq: the initial and the terminal position
of the mass are given.
@ x(0) = xp and x'(T) = v;: the initial position and the terminal

velocity of the mass are given.

Ching-hsiao Arthur Cheng #cH 2 - MA3067-*



Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

In this example we reconsider the ODE in the spring-mass system
mx = —kx — rx+ f(t).
We explain the meaning of the different boundary condition as fol-
lows:
Q@ x(0) = xp and x(T) = xq: the initial and the terminal position
of the mass are given.
@ x(0) = xp and x'(T) = v;: the initial position and the terminal
velocity of the mass are given.
© x'(0) = vy and x(T) = xy: the initial velocity and the terminal

position of the mass are given.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

In this example we reconsider the ODE in the spring-mass system
mx = —kx — rx+ f(t).
We explain the meaning of the different boundary condition as fol-
lows:
Q@ x(0) = xp and x(T) = xq: the initial and the terminal position
of the mass are given.
@ x(0) = xp and x'(T) = v;: the initial position and the terminal
velocity of the mass are given.
© x'(0) = vy and x(T) = xy: the initial velocity and the terminal
position of the mass are given.

Q x’(0) = vy and x'(T) = vq: the initial and the terminal velocity

of the mass are given.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems
Again we consider the ODE
d*h _ GMm

Mz = Ry h2
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Again we consider the ODE
d*h GMm
m—=————.
dt2 (R+ h)?
This time we do not require that initial height h(0) and the initial
velocity h’(0) are given but instead we want the object to reach

certain height H at time t = T. Then the BVP is written as

2
d*h_ __GMm_ h(0) =0, h(T)=H.

Mz = (R+ h)2’

#c# £ H MA3067-*
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Again we consider the ODE
d*h _ GMm

Mz = Ry h2

This time we do not require that initial height h(0) and the initial
velocity h’(0) are given but instead we want the object to reach
certain height H at time t = T. Then the BVP is written as

d*h GMm
Similarly, if we want the object to reach certain velocity V at time

t = T, then we have the BVP

d*h GMm . 5 .
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Consider the two-point boundary value problem

y'+px)y +ax)y=2gk), y(@) =y, y(@B)=y. (16)
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Consider the two-point boundary value problem

y'+px)y +ax)y=2gk), y(@) =y, y(@B)=y. (16)

I

e yi— ol “ yo. Then z satisfies
B8 —«a a— [

24 p)z' + q)z =G, za) = z2(8) =0,

Let z(x) = y(x) —

where G(x) = g(x) —p(x)y(z:j;l - q(x)(X_ i+ Xf gyo).
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Consider the two-point boundary value problem

y'+px)y +ax)y=2gk), y(@) =y, y(@B)=y. (16)
e yi— ol j Yo. Then z satisfies
B8 —«a a— [

Let z(x) = y(x) —

24 p)z' + q)z =G, za) = z2(8) =0,

_ _ Yo—»n X—« x—p ~
where G(x) = g(x) — p(x) " q(x)(ﬂ — Nt Byo). There

fore, in general we can assume the homogeneous boundary condition

Yo=VY1 = Oin (16)
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Consider the two-point boundary value problem

y'+px)y +ax)y=2gk), y(@) =y, y(@B)=y. (16)

e yi— ol Yo. Then z satisfies
B8 —«a a— [

24 p)z' + q)z =G, za) = z2(8) =0,

Let z(x) = y(x) —

_ _ Yo—»n X—« x—p ~
where G(x) = g(x) — p(x) " q(x) (‘8 — Nt Byo). There
fore, in general we can assume the homogeneous boundary condition
yo = y1 = 0in (16). Similarly, ODE y” + p(x)y’ + q(x)y = g(x) with
the other three kinds of boundary conditions can also be rewritten

as a BVP with homogeneous boundary condition.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Remark: Even though the initial value problem

y'+p)y +qlt)y=2gt), y(to) =y, y'(to)=x

looks quite similar to the boundary value problem (16), they actu-

ally differ in some very important ways.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Remark: Even though the initial value problem

y'+p)y +qlt)y=2gt), y(to) =y, y'(to)=x

looks quite similar to the boundary value problem (16), they actu-
ally differ in some very important ways. For example, if p, g, g are
continuous, the initial value problem above always have a unique
solution, while the boundary value problem (16) might have no so-

lution or infinitely many solutions:
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Remark: Even though the initial value problem

y'+p)y +qlt)y=2gt), y(to) =y, y'(to)=x

looks quite similar to the boundary value problem (16), they actu-
ally differ in some very important ways. For example, if p, g, g are
continuous, the initial value problem above always have a unique
solution, while the boundary value problem (16) might have no so-
lution or infinitely many solutions:

@ y” + y = 0 with boundary condition y(0) = y(7) = 0 has

infinite many solutions y.(x) = csin x.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Remark: Even though the initial value problem

y'+p)y +qlt)y=2gt), y(to) =y, y'(to)=x

looks quite similar to the boundary value problem (16), they actu-
ally differ in some very important ways. For example, if p, g, g are
continuous, the initial value problem above always have a unique
solution, while the boundary value problem (16) might have no so-
lution or infinitely many solutions:

@ y” + y = 0 with boundary condition y(0) = y(7) = 0 has

infinite many solutions y.(x) = csin x.
@ y” + y = sin x with boundary condition y(0) = y(w) = 0 has

no solution.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

On the other hand, there are cases that (16) has a unique solution.

For example, the general solution to the boundary value problem

y//+2y:0

is given by
y(x) = Ci cos vV2x + Cosinv/2x;

thus to validate the boundary condition y(0) = 1 and y(w) = 0,
we must have C; = 1 and G, = —cot+/27. In other words, the
solution y(x) = cosv/2x — cot /27 sin v/2x.
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Chapter 2. Ordinary Differential Equations

§2.4 Boundary Value Problems

Let o, 8 be real numbers and o« < (3. Suppose that the function

f= f(x,y, p) is continuous on the set
D={(xy.p)|x€a,Bl,y,pe R}
and the partial derivatives f, and f, are also continuous on D. If

Q f,(x,y,p) >0 for all (x,y,p) € D, and

@ there exists a constant M > 0 such that
oy, p)| <M Y(xyp)eD,
then the boundary value problem
y'=fooyy")  Vxe(ap), y(a)=y(B)=0

has a unique solution.
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Chapter 3. Partial Differential Equations

Chapter 3. Partial Differential Equations ( i #c4 = #2.)
§3.1 Models with One Temporal Variable and One Spatial Variable
§3.2 Solving PDEs using matlab® - Part |
§3.3 Models with Several Spatial Variables
§3.4 Solving PDEs using matlab® - Part II
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

§3.1.1 The 1-dimensional conservation laws

Suppose that a substance of interest lives in a 1-dimensional space
such as a tube. Let u(x, t) be the density or concentration of the
substance at position x and time t.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

§3.1.1 The 1-dimensional conservation laws

Suppose that a substance of interest lives in a 1-dimensional space
such as a tube. Let u(x, t) be the density or concentration of the
substance at position x and time t. Then

x+Ax
f u(y, t) dy

X

is the total amount of the substance in the interval / = [x, x + Ax]
at time t;
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

§3.1.1 The 1-dimensional conservation laws

Suppose that a substance of interest lives in a 1-dimensional space
such as a tube. Let u(x, t) be the density or concentration of the
substance at position x and time t. Then

x+Ax
f u(y, t) dy

X

is the total amount of the substance in the interval [ = [x,x+ AXx|
at time t; thus during the time period [t, t + At]|, the change of
the amount of the substance in the interval / in the time period
t, t+ At] is given by

X+ Ax x+Ax
f u(y, t+ At) dy — f u(y, t) dy

X X

= JX+AX[u(y, t+ At) — u(y, t)] dy.

X
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

On the other hand, there are two sources of changing the amount
of the substance in the interval /.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

On the other hand, there are two sources of changing the amount
of the substance in the interval /.
Q aflux (i  » ¥ & & = /it ) that describes any effect that
appears to pass or travel the substance through points.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

On the other hand, there are two sources of changing the amount
of the substance in the interval /.
Q aflux (i  » ¥ & & = /it ) that describes any effect that
appears to pass or travel the substance through points.
@ a source that will release or absorb the substance in this in-
terval.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

On the other hand, there are two sources of changing the amount
of the substance in the interval /.
Q aflux (i  » ¥ & & = /it ) that describes any effect that
appears to pass or travel the substance through points.
@ a source that will release or absorb the substance in this in-
terval.
Let f denote the flux and g denote the source. Then in the time
interval [t, t+ At] the amount of the substance flowing into / from
the point x is given by

t+At
J f(x, t') dt’
t
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

On the other hand, there are two sources of changing the amount
of the substance in the interval /.
Q aflux (i  » ¥ & & = /it ) that describes any effect that
appears to pass or travel the substance through points.
@ a source that will release or absorb the substance in this in-
terval.
Let f denote the flux and g denote the source. Then in the time
interval [t, t+ At] the amount of the substance flowing into / from
the point x is given by

t+At
J f(x, t') dt’
t

while the amount of the substance flowing out of / from the point
x+ Ax is given by

t+At
J f(x+ Ax, t')dt’.
t

Ching-hsiao Arthur Cheng 85 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Moreover, the change of the amount of the substance in the interval
l'in the time period [t, t + At] due to the source is given by

t+At px+Ax
J J q(y, t') dydt".
t X

Ching-hsiao Arthur Cheng # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Moreover, the change of the amount of the substance in the interval
I 'in the time period [t, t + At] due to the source is given by

t+At px+Ax
J J q(y, t') dydt".
t X

Therefore, the change of amount of the substance in the interval /

in the time period [t, t + At] is given by

t+At t+At px+Ax
f [F(x,t') — Fx+ Ax, t')]dt’ + J f dly, t') dydt’ .
t t X
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Moreover, the change of the amount of the substance in the interval
I 'in the time period [t, t + At] due to the source is given by

t+At px+Ax
J J q(y, t') dydt".
t X

Therefore, the change of amount of the substance in the interval /

in the time period [t, t + At] is given by

t+At t+At px+Ax
f [F(x t") — f(x+ Ax, t")] dt" + J f q(y, t') dydt’ .
t t X

AS a consequence,
x4+ Ax
J [u(y, t+ At) — u(y, t)] dy

t+At t+At px+Ax
= J [f(x t") — f(x+ Ax, t')] dt’ + J J q(y, t') dydt’ .
t t X
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Dividing both sides of the resulting equation through by Ax and
then passing to the limit as Ax — 0,
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Dividing both sides of the resulting equation through by Ax and
then passing to the limit as Ax — 0, by the fundamental theorem

of Calculus we find that (without any rigorous verification)
t+At -

t+ At
u(x, t+ At) — u(x, t) = —f Zf(x, t")dt’ + J q(x, t’) dt’.
’ t

t X

S

Fundamental Theorem of Calculus:
x+AXx

Al}glo BJ; g(y) dy = g(x) if g is continuous at x.
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§3.1 Models with One Temporal Variable and One Spatial Variable

Dividing both sides of the resulting equation through by Ax and
then passing to the limit as Ax — 0, by the fundamental theorem

of Calculus we find that (without any rigorous verification)
t+AL t+At

u(x,t+At)—u(x,t):—f Zf(x, t") dt’ +J q(x, t’) dt’.
t

OX

S

Similarly, dividing both sides of the equality above through At and
then passing to the limit as At — 0, the fundamental theorem of
Calculus implies that

0

a—tu(x t) +

0

g(7"(x, t) = q(x t).

Fundamental Theorem of Calculus:

x+AXx
Al}glo BL g(y) dy = g(x) if g is continuous at x.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Example (Traffic flows (cont.))
Consider the traffic on the highway (parameterized by R). Let u
denote the car density (given in the number of vehicles per unit

length).
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Example (Traffic flows (cont.))

Consider the traffic on the highway (parameterized by R). Let u
denote the car density (given in the number of vehicles per unit
length). Then the flux fis a function of u with the property that

Q fluy=0ifu=0o0ru>L,
Q '(u) > 0if ue (0, umax), and f'(u) < 0 if u€ (Umax, L).
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Example (Traffic flows (cont.))

Consider the traffic on the highway (parameterized by R). Let u
denote the car density (given in the number of vehicles per unit
length). Then the flux fis a function of u with the property that

Q fluy=0ifu=0o0ru>L,
Q f'(u) > 0if ue (0, tmax), and f'(u) <0 if u€ (Umax, L).
Suppose that fis differentiable, and 7/(u) = c(u). Then
ue(x, t) + c(ulx, t))ux(x, t) = q(x, t) VxeR,teR
which can be abbreviated as

ur+ c(u)ux=gq in RxR.
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§3.1 Models with One Temporal Variable and One Spatial Variable

Example (Traffic flows (cont.))

Consider the traffic on the highway (parameterized by R). Let u
denote the car density (given in the number of vehicles per unit
length). Then the flux fis a function of u with the property that

Q fluy=0ifu=0o0ru>L,
Q f'(u) > 0if ue (0, tmax), and f'(u) <0 if u€ (Umax, L).
Suppose that fis differentiable, and 7/(u) = c(u). Then
ue(x, t) + c(ulx, t))ux(x, t) = q(x, t) VxeR,teR
which can be abbreviated as
ur+ c(u)ux=gq in RxR.

To complete the model, we also need to impose an initial condition

u(x,0) = up(x) VxeR (orsimply u=ugonR x {t=0}).

B T —= =
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

§3.1.2 The 1-dimensional heat equations

Consider the heat distribution on a rod of length L: Parameterize
the rod by [0, L], and let t be the time variable.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

§3.1.2 The 1-dimensional heat equations

Consider the heat distribution on a rod of length L: Parameterize
the rod by [0, L], and let t be the time variable. Let p(x), s(x), x(x)
denote the density, specific heat, and the thermal conductivity
of the rod at position x € (0, L), respectively, and 9J(x, t) denote
the temperature at position x and time t.
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§3.1 Models with One Temporal Variable and One Spatial Variable

§3.1.2 The 1-dimensional heat equations

Consider the heat distribution on a rod of length L: Parameterize
the rod by [0, L], and let t be the time variable. Let p(x), s(x), x(x)
denote the density, specific heat, and the thermal conductivity
of the rod at position x € (0, L), respectively, and 9J(x, t) denote
the temperature at position x and time t. For 0 < x < L, and
Ax, At « 1,

JX+Axp(y)S(y) [0y, t+ At) = I(y, 1)] dy

X

= LHN[HJ(XwL AX)Ox(x+ Ax, t') — k(x)0x(x, t")] dt’

where the left-hand side denotes the change of the total heat in the
small section (x, x+ Ax), and the right-hand side denotes the heat
flowing into the section from outside.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

If there is a heat source @, then the equation above has to be
modified as

JX+AXp(y)S(y) [0y, t+ Ar) — Iy, t)] dy

X

_ f+At[,{(x+ A)Dx(x + Ax, t') — K(x)0x(x, t")] dt’

t+At px+Ax
+ J J Qy, t') dydt’.
t X
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

If there is a heat source @, then the equation above has to be
modified as

JX+AXp(y)S(y) [0y, t+ Ar) — Iy, t)] dy

X

_ f+At[,<(x+ A)Dx(x + Ax, t') — K(x)0x(x, t")] dt’

t+At px+Ax
+ J J Qy, t') dydt’.
t X

Dividing both sides by Ax and passing to the limit as Ax — 0, by the
Fundamental Theorem of Calculus (assuming that all the functions
appearing in the equation above are smooth enough) we obtain that

p(x)s(x) [F(x, t + At) — I(x, t)]

tHAL 5 tEAL
_ J 9 (k)0 t')] dt’ + f Qx, t') dt’.
t t
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Dividing both sides of the equation above by At and then passing
to the limit to At — 0, we obtain the heat equation

p(x)s(x)éﬁ(x, t) = ? [K()9x(x )] + Qx,t) 0<x<L,t>0.

ot ox
Assuming uniform rod; that is, p, s, x are constant functions, then

the heat equation above reduces to that

De(x, 1) = ?V(x, 1) + g(x, 1), 0<x<L, t>0,

2:

where « p—ﬁs is called the thermal diffusivity.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

To determine the state of the temperature, we need to impose an
initial condition

Y(x,0) = Yo (x) 0<x<lL
and a boundary condition (BC):

@ Temperature on the end-points of the rod is fixed: ¥(0,t) = T;

and Y¥(L,t) = Ts. This kind of boundary condition is called
Dirichlet BC.
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§3.1 Models with One Temporal Variable and One Spatial Variable

To determine the state of the temperature, we need to impose an
initial condition

Y(x,0) = Yo (x) 0<x<lL
and a boundary condition (BC):

@ Temperature on the end-points of the rod is fixed: ¥(0,t) = T;

and Y¥(L,t) = Ts. This kind of boundary condition is called
Dirichlet BC.

@ Insulation on the end-points of the rod: ¥,(0, t) = J,(L, t) = 0.
This kind of boundary condition is called Neumann BC.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

To determine the state of the temperature, we need to impose an
initial condition

Y(x,0) = Yo (x) 0<x<lL
and a boundary condition (BC):

@ Temperature on the end-points of the rod is fixed: 9(0,t) = Ty
and Y¥(L,t) = Ts. This kind of boundary condition is called
Dirichlet BC.

@ Insulation on the end-points of the rod: ¥,(0, t) = J,(L, t) = 0.
This kind of boundary condition is called Neumann BC.

© Mixed boundary conditions: 9¥(0,t) = T and ¥,(L,t) = 0, or
I(L, t) = Ta and 94(0, t) = 0.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

§3.1.3 The 1-dimensional wave equations
(@D From Hooke's law:
k k
() () ()
u(x — h) u(z) u(z + h)
imagine an array of little weights of mass m interconnected with

massless springs of length h, and the springs have a stiffness of k
(see the figure).
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§3.1 Models with One Temporal Variable and One Spatial Variable

§3.1.3 The 1-dimensional wave equations

(@D From Hooke's law:
k k
() () ()
u(z — h) u(z) u(z + h)
imagine an array of little weights of mass m interconnected with
massless springs of length h, and the springs have a stiffness of k
(see the figure). If u(x, t) measures the distance from the equilibrium
of the mass situated at position x and time t, then the forces exerted

on the mass m at the location x are
2
o~ u
FNewton = ma = mi{jl‘Q (X, t) 5

Frooke = k[u(x+ h, t) — u(x, t)] — k[u(x, t) — u(x— h, t)]
= k[u(x+ h,t) — 2u(x, t) + u(x— h, t)] .
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

The balance of force then implies that
02u

0 2(X t) = k[ (x+ h, t) — 2u(x, t) + u(x— h, t)]
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

The balance of force then implies that
02u
a 02
If the array of weights consists of N weights spaced evenly over the
length L = (N4 1)h of total mass M = Nm, and the total stiffness
of the array K= k/(N+ 1), then
(?2u(X § = N KL? u(x+ h,t) = 2u(x, t) + u(x — h, t)
o2 N+1 M h? ’

(x, t) = k[u(x+ h,t) — 2u(x, t) + u(x— h, t)] .
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§3.1 Models with One Temporal Variable and One Spatial Variable

The balance of force then implies that
02u
a 02
If the array of weights consists of N weights spaced evenly over the
length L = (N4 1)h of total mass M = Nm, and the total stiffness
of the array K= k/(N+ 1), then
(?2u(X § = N KL? u(x+ h,t) = 2u(x, t) + u(x — h, t)
o2 N+1 M h? ’

(x, t) = k[u(x+ h,t) — 2u(x, t) + u(x— h, t)] .

Passing to the limit as N — o0 and h — 0 (and assuming smooth-
ness) we obtain the wave equation

(%, t) = un(x, 1),
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

2 Equation of vibrating string: let u(x, t) measure the distance of
a string from its equilibrium, and T(x, t) denote the tension of the
string at position x and time t.

r x+h

Assuming only motion in the vertical direction, the horizontal com-
ponent of tensions T; = T(x, t) and To = T(x+ h, t) have to be the
same; thus

Ticosa= Tycosf3.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

Noting that
- . 1 - 1
RS e V1+tania v/1+ tan?(m + a)
1
B I+ u(x )2’
. . 1 . 1
Gosf = secff \/1—|—tan25 - \/1—|—tan?(2777/3)

1
T+ u(x+ b, 02’
the identity T1 cosa = Ty cos 8 implies that the function
T(x. 1)
1+ ux(x t)?

is constant in x (but not necessary constant in t), and we denote
this constant as 7(t).
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

By the fact that the vertical component of 77 and Ty induce the
vertical motion, we obtain that

x+h N2
J u(y)% dy = —Tysin8 — Ty sina

ot

= —(Tycos3)tan B — (T cos o) tan o

7(t) tan(2m — B) — 7(t) tan(m + «)
= 7(t) [ux(x+ h, t) — ux(x, )] ,

where 1 denotes the density of the string, and the integral on the
left-hand side is the total force due to the acceleration.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

By the fact that the vertical component of 77 and Ty induce the
vertical motion, we obtain that

Gl o%u
J uly) 22 gy

ot?

—Tysinf — Ty sina

X

—(TecosB)tan f — ( Ty cos ) tan v

= 7(t) tan(27 — B) — 7(t) tan(w + «)

= 7(t) [ux(x+ h, t) — ux(x, )] ,
where 1 denotes the density of the string, and the integral on the
left-hand side is the total force due to the acceleration. Dividing

both sides through by h and passing to the limit as h — 0, we
obtain

w(X)uge(x, t) = 7(t) Uex(x, t) .
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

If there is an external forcing f acting on the string, then the derived
wave equation becomes

p(X)upe(x, t) = 7(t) uxx(x, t) + F(x, t) .
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

If there is an external forcing f acting on the string, then the derived
wave equation becomes

p(x)uee(x, t) = T(t) usx(x, t) + F(x, ) .
If 1 is constant in x and 7 is constant in t (which is a reasonable

assumption if the vibration of the string is very small and uniform),
then the wave equation above reduces to

uge(x, t) = C2UXX(X, t) + if(x, t),

where c? = 7/p.
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Chapter 3. Partial Differential Equations

§3.1 Models with One Temporal Variable and One Spatial Variable

If there is an external forcing f acting on the string, then the derived
wave equation becomes

p(x)uee(x, t) = T(t) usx(x, t) + F(x, ) .
If 1 is constant in x and 7 is constant in t (which is a reasonable

assumption if the vibration of the string is very small and uniform),
then the wave equation above reduces to

Uet(x, 1) = Cug(x, t) + if(x, t),
where c? = 7/p.
Initial conditions: Since the PDE is second order in t, to determined
the state of the we need to impose two initial conditions
u(x,0) = p(x), ut(x,0) = (x) Vxe[0,L],

where ¢ and 1) are given functions.
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§3.1 Models with One Temporal Variable and One Spatial Variable

Wave equations: 1i(x)us(x, t) = 7(t) uxx(x, t) + F(x, t).
Initial conditions: Since the PDE is second order in t, to determined
the state of the we need to impose two initial conditions
u(x,0) = p(x), ut(x,0) = (x) Vxe[0,L],
where ¢ and 1) are given functions.
Boundary conditions:
© Vibration string with fixed ends: w(0,t) = wu(L,t) = 0 - this
kind of boundary condition is also called Dirichlet BC.

@ Vibration string with free ends: uy(0,t) = ux(L,t) = 0 - this
kind of boundary condition is also called Neumann BC.

© Mixed boundary conditions: u(0,t) = ux(L,t) =0 or u(L,t) =
ux(0,t) = 0.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

§3.3.1 Equation of continuity

Let u be the density of concentration of some physical quantity
(u= u(x, t)) in a domain Q € R"”, where n=2or n=3, and let F
be the flux of the quantity; that is, F-n dS is the flow rate of the
quantity that passes through an area dS in the direction n normal
to dS:
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Then for a given open set O cc=() so that dO is piecewise smooth,

@ the change of the total amount of the quantity in O from time
tto t+ Atis

J@ [u(x, t+ At) — u(x, t)] dx.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Then for a given open set O cc=() so that dO is piecewise smooth,

@ the change of the total amount of the quantity in O from time
tto t+ Atis
J [u(x, t+ At) — u(x, t)] dx.
o

@ the total amount of the quantity flows out of O through /O
from time t to t+ At is

LHNLO (F-n)(x,s) dSds,

where n is the outward-pointing unit normal of 0O.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Then for a given open set O cc=() so that dO is piecewise smooth,

@ the change of the total amount of the quantity in O from time
ttot+ Atis
J [u(x, t+ At) — u(x, t)] dx.
o
@ the total amount of the quantity flows out of O through /O
from time t to t+ At is

LHNLO (F-n)(x,s) dSds,

where n is the outward-pointing unit normal of 0O.
© if there is a source of the quantity, the total amount of the
quantity in O produced by the source from time t to t+ At is

t+At
J f q(x, s)dxds,
t o

where g is the strength of sources for the quantity.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Therefore, the balance of the amount of the quantity in O implies
that

Jo [u(x, t4+ At) — u(x, t)] dx
_ _fWLO(F. n)(x, t') dSdt’ + f+mfoq(x, £/) dxdt!

for all “good” subset O < 2, here a “good” set refers to a set with
piecewise smooth boundary.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Therefore, the balance of the amount of the quantity in O implies
that

Jo [u(x, t4+ At) — u(x, t)] dx

t+At t+At
= —J J (F-n)(x, t’) dSdt’ + J J q(x, t")dxdt’
t 00 t (@]

for all “good” subset O < 2, here a “good” set refers to a set with
piecewise smooth boundary. Dividing both sides of the equation
above by At and passing to the limit as At — 0, we obtain that

u(x, t) dx = — LO(F- n)(x,t) dS+ | q(x,t)dx

dt 10 (@)

for all “good” open subset O < ).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

If uis smooth, by the divergence theorem we find that

J Uy dx = J (—divF + g) dx for all “good"” open subset O < €,
o o

or equivalently,

J (ut + divF — q) dx=0 for all “good” open subset O < (.
(@)

The Divergence Theorem: Suppose that 0O is smooth with
outward-pointing unit normal n. If Fis a smooth vector field,

thenf F-ndSszidex.
o0 O
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

If uis smooth, by the divergence theorem we find that

J Uy dx = J (—divF + g) dx for all “good"” open subset O < €,
o o
or equivalently,
J (ut + divF — q) dx=0 for all “good” open subset O < (.
(@)

Since O is given arbitrarily in €2, we conclude that
ur+divF=gq in Qx(0,7).

The equation above is called the equation of continuity.

The Divergence Theorem: Suppose that 0O is smooth with
outward-pointing unit normal n. If Fis a smooth vector field,

thenf F-ndSszidex.
o0 O

Ching-hsiao Arthur Cheng #8535 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e The conservation of mass in fluid dynamics

Let o(x, t) and u(x, t) denote the density and the velocity of a fluid
at point x at time t. Then the density flux F = pu, and the equation
of continuity reads

ot + div(ou) =0 Vxe,teR.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e The conservation of mass in fluid dynamics

Let o(x, t) and u(x, t) denote the density and the velocity of a fluid
at point x at time t. Then the density flux F = pu, and the equation
of continuity reads

ot + div(ou) =0 Vxe,teR.

In particular, if the density of a fluid is constant (incompressible
fluid), then the velocity u of this fluid must satisfy

divu =0 in .

A vector field u satisfying divu = 0 everywhere in the domain is said
to be solenoidal or divergence-free.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

§3.3.2 The heat equations

Let 9(x, t) defined on 2 x (0, T] be the temperature of a material
body at point x € Q at time t € (0, T], and s(x), o(x), k(x) be
the specific heat, density, and the inner thermal conductivity of
the material body at x, and Q(x, t) is the strength of the source of
the heat energy.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

§3.3.2 The heat equations

Let 9(x, t) defined on 2 x (0, T] be the temperature of a material
body at point x € Q at time t € (0, T], and s(x), o(x), k(x) be
the specific heat, density, and the inner thermal conductivity of
the material body at x, and Q(x, t) is the strength of the source of
the heat energy. Then by the conservation of heat energy, similar
to the derivation of the equation of continuity (with the heat flux
F = —xkV in mind), we obtain that for any “good” open set O < (),

p Os(x)g(x)z?(x, t) dx
_ f KOV, 1) - n(x) dS + f Qx 8) dx,
00 o

where n denotes the outward-pointing unit normal of O.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Assume that 9 is smooth, and O is a domain with piecewise smooth

boundary. By the divergence theorem,

Ls(x)g( i ) b= f div[k(x) VO(x, )] dx + f Qkx £) d

Since O is arbitrary, the equation above implies

s(X)o(x)Ve(x, t) — div[(x)VI(x, )] = Q(x,t) VxeQ, te (0, T].
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Assume that 9 is smooth, and O is a domain with piecewise smooth

boundary. By the divergence theorem,

f S alb e, ) o= f div[k(x) VO(x, )] dx + f Qkx £) d
Sinci O is arbitrary, the equation above implies
s(X)o(x)Ve(x, t) — div[(x)VI(x, )] = Q(x,t) VxeQ, te (0, T].
If s, 0 and k are constants (uniform material), then

9= a’AY + q(x,t) YxeQ,te(0,T],

where a? = % qg= S—IQQ and A is the Laplace operator (and At
reads laplacian theta) defined by

@
AY = div(VY) Z

This is the standard heat equation.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

We need complementary conditions to specify a particular solution

of the heat equation.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

We need complementary conditions to specify a particular solution

of the heat equation.

e Initial condition: ¥(x,0) = Jy(x) for some given function Jy(x).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

We need complementary conditions to specify a particular solution
of the heat equation.
e Initial condition: ¥(x,0) = Jy(x) for some given function Jy(x).

e Boundary condition: if 0€) # (7, some boundary condition of u
at x € 0N for all time have to be introduced by physical reason to
specify a unique solution.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

We need complementary conditions to specify a particular solution
of the heat equation.
e Initial condition: ¥(x,0) = Jy(x) for some given function Jy(x).

e Boundary condition: if 0€) # (7, some boundary condition of u
at x € 0N for all time have to be introduced by physical reason to
specify a unique solution.

© Dirichlet boundary condition: ¥(x, t) = g(x, t) for all x € 02
and t > 0, where g is a given function.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

We need complementary conditions to specify a particular solution
of the heat equation.

e Initial condition: ¥(x,0) = Jy(x) for some given function Jy(x).

e Boundary condition: if 0€) # (7, some boundary condition of u
at x € 0N for all time have to be introduced by physical reason to
specify a unique solution.

© Dirichlet boundary condition: ¥(x, t) = g(x, t) for all x € 02
and t > 0, where g is a given function.

© Neumann boundary condition: 2—11\91 = g for all x € 02 and

t > 0, where 5—11\91 =N . V9 and g is a given function.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

We need complementary conditions to specify a particular solution
of the heat equation.

e Initial condition: ¥(x,0) = Jy(x) for some given function Jy(x).

e Boundary condition: if 0€) # (7, some boundary condition of u
at x € 0N for all time have to be introduced by physical reason to
specify a unique solution.

© Dirichlet boundary condition: ¥(x, t) = g(x, t) for all x € 02
and t > 0, where g is a given function.

© Neumann boundary condition: 2—11\91 = g for all x € 02 and
t > 0, where 5—11\91 =N . V9 and g is a given function.
v + h = g for all xe€ 02 and

N
t > 0, where h and g are given functions.

© Robin boundary condition:
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

§3.3.3 The wave equations

Consider the membrane (of a drum) as a graph of a function z =

<>

u(xy, x2) for (x1,x2) € Q.

Question: If the deformation of the membrane is due to a small
external force f, what is the relation between f and u?
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Idea: The membrane stores certain energy E(u) so that the defor-

mation of the membrane changes the energy stored in the membrane

which balances the work done by the external force f.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Idea: The membrane stores certain energy E(u) so that the defor-
mation of the membrane changes the energy stored in the membrane

which balances the work done by the external force f.

Suppose that an extra small external force af = af(xj, x2) is sud-
denly added onto the membrane (so that the total force exerted on
the membrane is f+ af), and the membrane deforms to the sur-
face z = (u+ au)(xi, x2) slowly (so the inertia does not have any
effect).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Idea: The membrane stores certain energy E(u) so that the defor-

mation of the membrane changes the energy stored in the membrane

which balances the work done by the external force f.

Suppose that an extra small external force af = af(xj, x2) is sud-
denly added onto the membrane (so that the total force exerted on
the membrane is f+ af), and the membrane deforms to the sur-
face z = (u+ au)(xi, x2) slowly (so the inertia does not have any
effect). Then the extra energy needed to deform the membrane is
E(u+ au) — E(u), while this extra work is done by the force f+ af
given by
L(f-i— af)audx.

Therefore,
E(u+ au) — E(u) = J (f+ af)audx.

Q
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Even though we have assumed implicitly that au is a function of af
(the deformation of the membrane is due to the change of external
force), we can also assume that afis a function of au (so that we

can modify au independently).
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Chapter 3. Partial Differential Equations
§3.3 Models with Several Spatial Variables

Even though we have assumed implicitly that au is a function of af
(the deformation of the membrane is due to the change of external
force), we can also assume that afis a function of au (so that we
can modify au independently). Let ¢ be an “admissible” function
(which means that ty can be used as au for each t « 1) and
au = ty. Then if t # 0,

E(u+tp) — E(u)
: = JQ(H— af)pdx.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Even though we have assumed implicitly that au is a function of af

(the deformation of the membrane is due to the change of external
force), we can also assume that afis a function of au (so that we
can modify au independently). Let ¢ be an “admissible” function
(which means that ty can be used as au for each t « 1) and
au = ty. Then if t # 0,
E(u+ ty) — E(u)
t

- L(H af)p dx.

Note that af — 0 as au — 0, so we have af — 0 as t — 0.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Even though we have assumed implicitly that au is a function of af

(the deformation of the membrane is due to the change of external
force), we can also assume that afis a function of au (so that we
can modify au independently). Let ¢ be an “admissible” function
(which means that ty can be used as au for each t « 1) and
au = ty. Then if t # 0,

E(u+ ty) — E(u)
t

- L(H af)p dx.

Note that af— 0 as au — 0, so we have af — 0 as t — 0. Passing
to the limit as t — 0, we find that

i Elut tg) — E@)

= J fodx for all admissible . (17)
t—0 t Q
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Even though we have assumed implicitly that au is a function of af

(the deformation of the membrane is due to the change of external
force), we can also assume that afis a function of au (so that we
can modify au independently). Let ¢ be an “admissible” function
(which means that ty can be used as au for each t « 1) and
au = ty. Then if t # 0,
E(u+ ty) — E(u)
t

- L(H af)p dx.

Note that af— 0 as au — 0, so we have af — 0 as t — 0. Passing
to the limit as t — 0, we find that

i Elut tg) — E@)

= J fodx for all admissible . (17)
t—0 t Q

Equation (17) above always holds when considering time indepen-

dent problems.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Suppose that the energy stored in the membrane is given by

E(u):f (7—1 )da = J VItV —1)da,

where T is called the tension of a membrane.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Suppose that the energy stored in the membrane is given by

E(u):f (7—1 )da = J VItV —1)da,

where T is called the tension of a membrane. In other words, to
deform a membrane from its unforced equilibrium state to a surface
S given by z = u(xy, x2) requires the input of the energy E(u).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Suppose that the energy stored in the membrane is given by
E(U)ZJ <7—1 dA J 1+|Vu|2—1)dA

where T is called the tension of a membrane. In other words, to
deform a membrane from its unforced equilibrium state to a surface
S given by z = u(xy, x2) requires the input of the energy E(u).
Assuming that v is a smooth function, then

- E(u+ ty) — E(u)
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Suppose that the energy stored in the membrane is given by
E(U)ZJ <7—1 dA J 1+|Vu|2—1)dA

where T is called the tension of a membrane. In other words, to
deform a membrane from its unforced equilibrium state to a surface
S given by z = u(xy, x2) requires the input of the energy E(u).

Assuming that v is a smooth function, then

2
—/1+|Vy| di

0E(u; ) = hm J T\/1
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Suppose that the energy stored in the membrane is given by
E(U)ZJ <7—1 dA J 1+|Vu|2—1)dA

where T is called the tension of a membrane. In other words, to
deform a membrane from its unforced equilibrium state to a surface
S given by z = u(xy, x2) requires the input of the energy E(u).
Assuming that v is a smooth function, then

) 1 o2 — /1 2
SE(u;p) = hné T\/ ud tvi‘ V1tV dA
=0 Jo

- JQT(aat’t:o\/l +|Vu+ tVSOP) dA
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Suppose that the energy stored in the membrane is given by
E(U)ZJ <7—1 dA J 1+|Vu|2—1)dA
where T is called the tension of a membrane. In other words, to
deform a membrane from its unforced equilibrium state to a surface
S given by z = u(xy, x2) requires the input of the energy E(u).

Assuming that v is a smooth function, then

2 2
5E(u;@)11111JT\/1+VU+ tV:\ —/1+|Vy| JA

Vu-Vo
_ T— 1 Vot tvy 2 dA:jTidA
JQ ot t=0\/ T Vust Vel o /14 |Vul?
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Suppose that the energy stored in the membrane is given by

E(u):f (7—1 )da = J VItV —1)da,

where T is called the tension of a membrane. In other words, to
deform a membrane from its unforced equilibrium state to a surface
S given by z = u(xy, x2) requires the input of the energy E(u).

Assuming that v is a smooth function, then

2 2
SE(u; ) = iy J T\/l + [Vu+ tVe2 — /1 + |V JA
Vu-Vo

t
JQ at t= \V, ]'+ |VU|2
. TeVu J . TVu
= | div| ———=) dA — div| ——— ) dA
JQ 1V<y/1—i-|Vu|2) Qgp 1V(«/l—i-VuP)

where identity div(¢F) = ¢ divF+ F- Ve is used.

VIFIVut (V) dh = JT
Q
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

By the divergence theorem, with N denoting the outward-pointing

unit normal on 09,

S o) TpVu TVu )

_ 7-Nds—f div<7
sor/L+ VP of Y\ T VP
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

By the divergence theorem, with N denoting the outward-pointing

unit normal on 09,

(5E(u; 4,0) ToVu TVu )

— [ I Nas- f div (2
o0+/1+ |Vul? Q('D 1+ |Vu?
thus (17) implies that
TVu T ou
(22 4 o [ TP oaso
L{ 1+ ‘VU‘Z 14 oon/1 + ‘Vu|2 ()NQP

for all admissible .
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

By the divergence theorem, with N denoting the outward-pointing

unit normal on 09,

5Ewg) = [ =2V Nds— Lgodiv(i) dA -

o0+/1+ |Vul? 1+ |Vu|?

thus (17) implies that

=0

1i dA —
L{(W(«/Mrvw 99 J «/1+\V |2 PN

for all admissible ¢. In particular,

L [div(\/%) +flpda=0

for all admissble ¢ that vanishes on 0f).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

By the divergence theorem, with N denoting the outward-pointing

unit normal on 09,

5Ewg) = [ =2V Nds— Lgodiv(i) dA -

o0+/1+ |Vul? 1+ |Vu|?

thus (17) implies that

=0

1i dA —
L{(W(«/Mrvw 99 J «/1+\V |2 PN

for all admissible ¢. In particular,

L [div(\/%) +flpda=0

for all admissble ¢ that vanishes on 0€). Therefore,

div(ﬂ> +f=0 in Q.

V14 |Vu?
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Therefore,

@ |If the membrane is constrained on the boundary, then

. TVu . .

u=20 on 09).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Therefore,

@ |If the membrane is constrained on the boundary, then

~div(——L ) =f i 0
V14 [Vul? ’
u=20 on o).
@ |If the membrane is not constrained on the boundary, then
T ou

———— ——@pds=0 for all admissible ¢.
o0+/1+ |Vul? N

Therefore, by the assumption that T > 0 everywhere we have

ou
a—N—Oon of.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Therefore,

@ |If the membrane is constrained on the boundary, then

~div(——L ) =f i 0
V14 [Vul? ’
u=20 on o).
@ |If the membrane is not constrained on the boundary, then
T ou

———— ——@pds=0 for all admissible ¢.
o0+/1+ |Vul? N

Therefore, by the assumption that T > 0 everywhere we have

% = (0 on 0. This shows that v satisfies
TVu
(T Y of w o,
V14 |Vu? '
ou A
87N = O on (Q .
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Remark: If u = 0 on the boundary, we will NOT have an extra

boundary condition % = 0 on 052 (even though at the first glance

it seems the case).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Remark: If u = 0 on the boundary, we will NOT have an extra

boundary condition % = 0 on 052 (even though at the first glance

it seems the case). In fact, if u = 0 on 052, then all possible dis-
placement au should also satisfy that au = 0 on 0f; thus ¢ also
has to vanish on 02 in the derivation of the equation (and this is

what the term “admissible” refers to in this case).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Remark: If u = 0 on the boundary, we will NOT have an extra

boundary condition % = 0 on 052 (even though at the first glance

it seems the case). In fact, if u = 0 on 052, then all possible dis-
placement au should also satisfy that au = 0 on 0f; thus ¢ also
has to vanish on 02 in the derivation of the equation (and this is
what the term “admissible” refers to in this case). In other words,

if the membrane is constrained, instead of obtaining
TVu
(2 + i ah - W do=0
U NaERZE 4 oon/L+ Va2 \v 2 N"D
for all admissible ¢ we should directly obtain
TVu
(2L + oo =0
Lz[ V14 |Vul? 2

for all admissible .
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Remark: By expanding the derivatives, we find that

+TVu-V

; ( TVu )_ div(T Vu)

1
v VIFIVu2/ 1+ [V V14 |Vu|?
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Remark: By expanding the derivatives, we find that

+TVu-V

; ( TVu )_ div(T Vu)

1
v VIFIVu2/ 1+ [V V14 |Vu|?

_ diV(T VU) T 2 Ux; qu uXin

> :
\V/1+[Vul? =BV N7
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Remark: By expanding the derivatives, we find that

; ( TVu )_ div(T Vu)

1
v VIFIVu2/ 1+ [V V14 |Vu|?

_ diV(T VU) T 2 Ux; qu uXin

+TVu-V

> :
\V/1+[Vul? =BV N7

Therefore, if [Vu| « 1, we find that

div(i) ~ div(TVu);

V14 |Vu?
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Remark: By expanding the derivatives, we find that

; ( TVu )_ div(T Vu)

1
v VIFIVu2/ 1+ [V V14 |Vu|?

_ diV(T VU) T 2 Ux; qu uXin

> :
\V/1+[Vul? =BV N7

Therefore, if [Vu| « 1, we find that

+TVu-V

div(i) ~ div(TVu);

V14 |Vu?

thus if [Vu| « 1, the equations can be approximated by

—div(TVu) = f in Q,
{ u=20 on 0f). (D)
and
{ —div(TVu) = f in Q, )
ou
= 0 on 01).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Let T be the tension, o be the density, and f be the density of
the external force which may depend on x and t. For the case
of vibrating membranes, part of f induces the acceleration of the

membrane
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Let T be the tension, o be the density, and f be the density of
the external force which may depend on x and t. For the case
of vibrating membranes, part of f induces the acceleration of the

membrane which implies that
TVu
—div(——=—) =f-oux in Qx(0,T
\/m Q tt ( ) }
or under the assumption that |Vu| « 1, the PDE above is simplified

as
—div(TVu) = f— ous in Qx(0,T].
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Let T be the tension, o be the density, and f be the density of
the external force which may depend on x and t. For the case
of vibrating membranes, part of f induces the acceleration of the
membrane which implies that
div(%) = f— ouy in Qx(0,T]
or under the assumption that |Vu| « 1, the PDE above is simplified
as
—div(TVu) = f— ou in Qx(0,T].

This is in fact the d’Alembert’s principle which states that the
displacement u satisfies that

fQ [-TVu- Vo + (f— ouw)p] dx=0

for all admissible .
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Once the time derivative is involved in the PDEs, to fully determine

the dynamics we need to impose initial conditions. For the wave
equations, we need two initial conditions:

u(x0) = p(), w(x0)=¥() VYxe®,

where ¢ and ¢ are given functions.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Once the time derivative is involved in the PDEs, to fully determine
the dynamics we need to impose initial conditions. For the wave

equations, we need two initial conditions:
u(x0) = (), uwl60)=() VYxeQ,
where ¢ and ¢ are given functions. Therefore, if |Vu| « 1,
@ Membrane fastened on the boundary:

ouge — div(TVu) = f in Qx(0,T],
u=g on 00 x(0,T],
u(x,0) = o(x), u(x,0) =1(x) for all xe Q).
@ Membrane with free boundary:
ouy — div(TVu) = f in Qx(0,T],
%:0 on 09 x (0, T],
u(x,0) = o(x), u(x,0) = P(x) for all xe Q).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables
§3.3.4 The Navier-Stokes equations

In this section we derive the governing equation for fluid velocity in
a fluid system. Let € be the fluid domain in which the fluid flows,
and ¢ and u = (u!,u? u3) be the density and the velocity of the
fluid, respectively. Aside from the equation of continuity, at least an
equation for the fluid velocity u is required to complete the system.

Consider the conservation of momentum m = pu.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

By the fact that the rate of change of momentum of a body is
equal to the resultant force acting on the body, the conservation
of momentum states that for all O c=() with (piecewise) smooth

boundary,

df mdx:—f m(u~n)d5+f o-d5+j fdx,
dt Jo 20 20 o

where n is the outward-pointing unit normal of 0O (so that the
first integral on the right-hand side is due to the momentum flux),
f is the external force (such as the gravity) on the fluid system
(so that the third integral on the right-hand side is the source of
momentum), and o is the stress (J& # ) exerted by the fluid due to
the friction (B-#&4 )/viscosity (%% # ) and the fluid pressure.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

In the case of incompressible fluids, the stress is given by

o = 2uDefun — pn,
where 1 is called the dynamical viscosity (which may be a function

of u), p is the fluid pressure, and Defu, called the rate of strain
tensor, is the symmetric part of the gradient of u given by

A0 N J
(Defu),-j _ 1((/u n ou ) .

3 2
2 \ 0x; OX;

In other words, if n = (ny, ne, n3) and o = (01, 09,03), then each
component of o is given by

23] ou'  oul
;=W (q +T>nj—pn;.
= 0%

The reason why the stress takes the form above will be ex-
plained later.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Therefore, writing m = (m*, m*, m®) and f= (f!, f2, f3), using the

expression of o in

d
f mdx:—f m(u-n)d5+f UdS—i—f fdx,
dt Jo 00 80 o

we find that for each 1 < i < 3 and all OccQ with (piecewise)
smooth boundary,

— mdx+z m'u/n; dS

o 00
3 ou”  ou’ -
= ZJ {M(q +T>nj—pn;} dS+ | f'dx.
j=1Jo0 oy @ o
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Assuming the smoothness of the dependent variables, the divergence

theorem imply that

The Divergence Theorem: Suppose that 0O is smooth with
outward-pointing unit normal n. If Fis a smooth vector field,

thenj F~nd5:Jdidex.
o0 (@)
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Assuming the smoothness of the dependent variables, the divergence

theorem imply that

The Divergence Theorem: Suppose that 0O is smooth with
outward-pointing unit normal n. If g is a smooth function,

.
then J gng dS = %€ dx for each 1 < k < 3.
20 ©) P
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Assuming the smoothness of the dependent variables, the divergence

theorem impIy that for each 1 < i< 3,

[ fmts 57D 225 22 )] o=
=1 i / /

Oxj (x,

for all regular domain O < (.

The Divergence Theorem: Suppose that 0O is smooth with
outward-pointing unit normal n. If g is a smooth function,

5
then J gng dS = %€ dx for each 1 < k < 3.
00

o OXk

Ching-hsiao Arthur Cheng #8535 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Assuming the smoothness of the dependent variables, the divergence
theorem impIy that for each 1 </ < 3,

5 0(m uf op ou ou’
» A} o —
f { +Zl (X, Z(Xj|: ((Xj (‘X;):|+ X 0
for all regular domain O < . As a consequence, we obtain the

momentum equation

(ou) + div(pu®u) + Vp = div(uDefu) + f in  Q x (0,00),

where u® u = [u'u’] and for a matrix a = [a;], (diva); = i (;iij-
=1 0X;

The Divergence Theorem: Suppose that 0O is smooth with
outward-pointing unit normal n. If g is a smooth function,

.
then gng dS = %€ dx for each 1 < k < 3.
20 ©) P
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables
Type of fluids:

@ Newtonian fluids: the viscosity w is a constant.
@ Non-Newtonian fluids: the viscosity u is a function of u.

Consider the Newtonian case. If the fluids under consideration is
incompressible, we let o = 1 so that the equation of continuity and
the momentum equation together imply the Navier-Stokes equa-
tions

ur+ (u-Viu+Vp=pAu+f in Qx(0,T), (18a)
divu =0 in Qx(0,7), (18b)

where the incompressibility condition (18b) is used to deduce that

jix(uf,,j> Z( - ) Z

= ox oy

and
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables
Type of fluids:

@ Newtonian fluids: the viscosity w is a constant.
@ Non-Newtonian fluids: the viscosity u is a function of u.

Consider the Newtonian case. If the fluids under consideration is
incompressible, we let o = 1 so that the equation of continuity and
the momentum equation together imply the Navier-Stokes equa-
tions

ur+ (u-Vu+Vp=pAu+f in Qx(0,T), (18a)
divu =0 in Qx(0,7), (18b)

where the incompressibility condition (18b) is used to deduce that

3.0 ou' (uf 0 ou’ 3 0%’ ;
;7{ ((7)9 ¢ )} _MZ ()9(3)9 EX;) _Mj; 7 = pAu
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

To fully determine the dynamics of fluids, in addition to the Navier-
Stokes equations

ur+ (u-Viu+Vp=pAu+f in Qx(0,T),
divu=0 in Qx(0,7),

we also need to impose initial and boundary conditions.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

To fully determine the dynamics of fluids, in addition to the Navier-
Stokes equations

ur+ (u-Viu+Vp=pAu+f in Qx(0,T),
divu =0 in Qx(0,7),
we also need to impose initial and boundary conditions.

Initial conditions: u(x,0) = uy(x) for all x € (2.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

To fully determine the dynamics of fluids, in addition to the Navier-
Stokes equations

u+ (u-Vu+Vp=pAu+f in Qx(0,T),
divu=0 in Qx(0,7),
we also need to impose initial and boundary conditions.
Initial conditions: u(x,0) = uy(x) for all x € (2.
Boundary condition:

@ No-slip boundary condition: u = 0 on 0.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

To fully determine the dynamics of fluids, in addition to the Navier-
Stokes equations

u+ (u-Vu+Vp=pAu+f in Qx(0,T),
divu=0 in Qx(0,7),
we also need to impose initial and boundary conditions.
Initial conditions: u(x,0) = uy(x) for all x € (2.
Boundary condition:
@ No-slip boundary condition: u = 0 on 0.

@ Navier boundary condition: u-N = 0 and N x (uDefuN) =
a(N x u) on 09 for some constant a > 0.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

To fully determine the dynamics of fluids, in addition to the Navier-
Stokes equations

u+ (u-Vu+Vp=pAu+f in Qx(0,T),
divu=0 in Qx(0,7),
we also need to impose initial and boundary conditions.
Initial conditions: u(x,0) = uy(x) for all x € (2.
Boundary condition:
@ No-slip boundary condition: u = 0 on 0.

@ Navier boundary condition: u-N = 0 and N x (uDefuN) =
a(N x u) on 09 for some constant a > 0. This condition is
based on the assumption that the traction force due to the vis-
cous effect is proportional to the fluid velocity on the boundary.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e What is the stress/traction?

Let X be a small piece of surface centered at x with area dA and n
be a unit normal of ¥. The stress exerted by the fluid on the side
toward which n points on the surface ¥ (n = # b'“rffg[ Cr Rl e E e
WY 5 X % a4 ) is defined as

oF

am) =

where OF is the force exerted on the surface by the fluid on that
side (only one side is involved).

n oF
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e General properties of the stress:

@ For a point x and a unit vector n, o(x, —n) = —o(x,n).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e General properties of the stress:
@ For a point x and a unit vector n, o(x, —n) = —o(x,n).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e General properties of the stress:
@ For a point x and a unit vector n, o(x, —n) = —o(x,n).

Body force (that acts on every point of the body): alawahf.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e General properties of the stress:
@ For a point x and a unit vector n, o(x, —n) = —o(x,n).

Body force (that acts on every point of the body): alawahf.
Surface force (due to the stress):
[o(x,n) + o(x— ahn, —n)|alaw
+ [0’(3?, n) + o(x— afln, —ﬁ)]AWAh

=+ [0’(;(, ﬁ) + 0'()~<— AWﬁ, —ﬁ)} alah.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e General properties of the stress:

@ For a point x and a unit vector n, o(x, —n) = —o(x,n).

Body force (that acts on every point of the body): alawahf.
Surface force (due to the stress):
[o(x,n) + o(x— ahn, —n)|alaw
+ [0’(3?, n) + o(x— afln, —ﬁ)]AWAh
+ [0’(;(, ﬁ) + 0'()~<— AWﬁ, —ﬁ)} alah.
Balance of force: Let a denote the acceleration of the body. Then
oalawaha = body force + surface force.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e General properties of the stress:

@ For a point x and a unit vector n, o(x, —n) = —o(x,n).

Therefore,
oalawaha = alawahf

+[o(x,n) + o(x — ahn, —n)]alaw
+ [0’(3\(, ﬁ) + 0'(3(— A£ﬁ7 —ﬁ)]AWAh
+[o(*1) + o (X — awi, —01) | alah.
Body force (that acts on every point of the body): alawahf.
Surface force (due to the stress):
[o(x,n) + o(x— ahn, —n)|alaw
—+ [0’(3?, n) + o(x— aln, —ﬁ)]AWAh
+ [0’(;(, ﬁ) + 0'()~<— AWﬁ, —ﬁ)} alah.
Balance of force: Let a denote the acceleration of the body. Then
oalawaha = body force + surface force.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e General properties of the stress:

@ For a point x and a unit vector n, o(x, —n) = —o(x,n).

Therefore,
oalawaha = alawahf

+[o(x,n) + o(x — ahn, —n)]alaw

+[o(X,n) + o(X — al0, —n)|awah

4F [0'(}, n) + o(x — awn, —ﬁ)]AﬁAh.
Passing to the limit as ah — 0, we find that

[o(x,n) + o(x,—n)|alaw =0
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e General properties of the stress:

@ For a point x and a unit vector n, o(x, —n) = —o(x,n).

Therefore,
oalawaha = alawahf

+[o(x,n) + o(x — ahn, —n)]alaw

+[o(X,n) + o(X — al0, —n)|awah

4F [0'(}, n) + o(x — awn, —ﬁ)]AﬁAh.
Passing to the limit as ah — 0, we find that

[o(x,n) + o(x,—n)|alaw =0

or to be more precise,

L [o(y,n) + o (y, —n)] dA = 0.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e General properties of the stress:

@ For a point x and a unit vector n, o(x, —n) = —o(x,n).

Therefore,
oalawaha = alawahf

+[o(x,n) + o(x — ahn, —n)]alaw

+[o(X,n) + o(X — al0, —n)|awah

4F [0'(}, n) + o(x — awn, —ﬁ)]AﬁAh.
Passing to the limit as ah — 0, we find that

[o(x,n) + o(x,—n)|alaw =0

or to be more precise,

L [o(y,n) + o (y, —n)] dA = 0.

Dividing both sides by the area of O (that is, alaw) and passing to
the limit as (af, aw) — (0,0), we conclude the desired identity.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Q Let {e1, e, e3} is the standard basis of R3. For a point x and

a unit vector n = (ny, ny, n3),

o(x,n) =o(x,e1)n + o(x e2)n + o(xe3)ns. (19)
In other words, the stress o(x,n) can be expressed as a linear
combination of o(x,e1), o(x,e2) and o(x, e3).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Q Let {e1, e, e3} is the standard basis of R3. For a point x and

a unit vector n = (ny, na, n3),

o(x,n) = o(x,e1)n + o(x,ex)ny + o(x, e3)ns . (19)
In other words, the stress o(x,n) can be expressed as a linear
combination of o(x,e1), o(x,e2) and o(x, e3).
Suppose that
o(x,e)) = Tije1 + jes + 1363 1< <3,

where 7j; = Tj(x).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Q Let {e1, e, e3} is the standard basis of R3. For a point x and

a unit vector n = (ny, na, n3),

o(x,n) = o(x,e1)n + o(x,ex)ny + o(x, e3)ns . (19)
In other words, the stress o(x,n) can be expressed as a linear
combination of o(x,e1), o(x,e2) and o(x, e3).
Suppose that
o(x,e)) = Tije1 + jes + 1363 1< <3,

where 7j; = 7ji(x). Then (19) implies that

o(x,n) = (i T,-jnj)e,-

i, j=1

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Q Let {e1, e, e3} is the standard basis of R3. For a point x and
a unit vector n = (ny, ny, n3),

o(x,n) = o(x,e1)n + o(x,ex)ny + o(x, e3)ns . (19)

In other words, the stress o(x,n) can be expressed as a linear
combination of o (x,e1), o(x,e2) and o(x,e3).
Suppose that
o(x,e)) = Tije1 + jes + 1363 1< <3,
where 7j; = 7ji(x). Then (19) implies that
3
o) = (% ryme
i j=1

or equivalently,

Tl Ti2 T3| [Mm

o(xn)= 721 T Ta3| |M
731 732 T33] |M3
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

(a) On each side orthogonal to the coordinate axis, the stress is

given by o(—ej) = i Ojk ek
k=1
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

(a) On each side orthogonal to the coordinate axis, the stress is

3 S
given by o(—ej) = k21 Tik ek = —_21 Tij€;.
= =
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

(a) On each side orthogonal to the coordinate axis, the stress is
given by o(—ej) = ki Tik ek = —_i Tij€;.

(b) On the “slant” side of the tetrahegron, the stress can be written
as o(n) = t, = tpie1 + tpoes + tpzes.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

(a) On each side orthogonal to the coordinate axis, the stress is
given by o(—ej) = él Tik ek = —j:il Tij€;.

(b) On the “slant” side of the tetrahedron, the stress can be written
as o(n) = t, = tp1e1 + th2e2 + tnzes.

(c) By force balances, o(n)A, = o(e1)A1 + o(e2)As + o(e3)As
which leads to (19).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

© By the conservation of angular momentum, 7; = 7j; for all

1 < i,j < 3. In other words, the matrix 7 = [], called the
stress tensor, is symmetric.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

© By the conservation of angular momentum, 7; = 7j; for all
1 < i,j < 3. In other words, the matrix 7 = [], called the
stress tensor, is symmetric.
Reason: Relabel the point of interest as 0 = (0,0,0), and in
the following we show that 712(0) = 721(0) (that 713 = 731 and
To3 = T32 can be shown in a similar fashion).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

© By the conservation of angular momentum, 7; = 7j; for all
1 < i,j < 3. In other words, the matrix 7 = [], called the

stress tensor, is symmetric.

Reason: Relabel the point of interest as 0 = (0,0,0), and in
the following we show that 712(0) = 721(0) (that 713 = 731 and
To3 = T32 can be shown in a similar fashion). Consider the cube

[ 2% 2%« |- Ay Ay] X [—A—z A—z] rotating about the zaxis.

27 2 27 2 27 2
Z
)
AZ
/ AX
x &Y
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

© By the conservation of angular momentum, 7; = 7j; for all
1 < i,j < 3. In other words, the matrix 7 = [], called the

stress tensor, is symmetric.

Reason: Relabel the point of interest as 0 = (0,0,0), and in
the following we show that 712(0) = 721(0) (that 713 = 731 and
To3 = T32 can be shown in a similar fashion). Consider the cube

[— Ax AX] X [— Ay Ay] X [—A—z A—z] rotating about the z-axis.

27 2 27 2 27 2
Z
D)
AZ
/ AX
x &Y
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Torque about a point: Given a force F acting on a particle,
the torque 7 on that particle about an fulcrum (£ 2t ) is defined
as the cross product

T=rxF,

where r is the particle’s position vector relative to the fulcrum.

T

Figure 9: Torque in high school is given by F,r which is Frsin®,
where F = |F| and r = |r||. Note that |r x F| = |r|||F| sin 6.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Torque about an axis: Given a force F acting on a particle,

the torque 7 on that particle about an axis is the projection
of the cross product

T=rxF
onto the direction of the axis, where r is the particle’s posi-
tion vector relative to any point on the axis.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Torque about an axis: Given a force F acting on a particle,

the torque 7 on that particle about an axis is the projection
of the cross product

T=rxF
onto the direction of the axis, where r is the particle’s posi-
tion vector relative to any point on the axis.

The net torque on a body determines the rate of change of
the body’s angular momentum L =r X p, where p is the linear
momentum.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Torque about an axis: Given a force F acting on a particle,

the torque 7 on that particle about an axis is the projection
of the cross product

T=rxF
onto the direction of the axis, where r is the particle’s posi-
tion vector relative to any point on the axis.

The net torque on a body determines the rate of change of
the body’s angular momentum L =r X p, where p is the linear
momentum. Note that with m and v denoting the mass and the

velocity of the point, respectively, we have v = Z—r and p= mv
so that ‘
ﬂ:i(rxmv):vx mv+rxmﬂ/:mrxa.
dt dt dt
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

The torque about the zaxis due to the stress on the six faces
of the cube is the third component of

Ay Ay
J[ 4% 442 AZ}( 77,0)><0((x,7,z),e2) dA

_ by _Ay 5y
' J[—%X,gx]x[—%agq(x’ 2 0xo((6 =55 2), —es) dA
Ax Ax
+ (‘77)/70)X0—(<‘7;y,2),61> dA
-5 4Ix-42.47 2 2
A A
+£ Ay Arv|y[—Az Az]( = y,()) ((_7)(,)/72),—61) dA
o _ Az
* [—Ax Ax)y AyA](Xy’O) ((Xv)/??)veiﬂ) dA
_ Az
+ (X yvo) ((va‘/_?),_eg) dA .
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

The torque about the zaxis due to the stress on faces inter-

secting the y-axis is the third component of
2y &y
J[ Ax Ax] X[~ Az Az}( 0) XU((X7 9 72)7 e2) dA

+J Ax Ax]y [ ( ’_%/’O)XO—(()Q_%/’Z%_GQ) dA

JAZ]
2 2
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

The torque about the zaxis due to the stress on faces inter-
secting the y-axis is the third component of

Ay Ay
J[ B = Az Az](X7770)XU((X7772)7e2) dA
_ Ly _Ay
+J e AZ](Xv > ,0)x o ((x, 52> e2) dA

= J (X,0,0)xa((x, %/,z),eg) dA

2 02 _272]

_Ay
+J[—§X,A;]x[—g2,gz (X,O,O)xa((x7 7,z)7 62) dA
y
+ J[_AQX7AX]X[_A27%Z](O, 5 ,0) x ((x, 5 ,z),eg) dA
_ABy _Ay
+ Ly e P 0, 5 ,O)xa((x, ,Z) 6‘2) dA
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

The torque about the zaxis due to the stress on faces inter-
secting the y-axis is the third component of

J (x, HO) o((x,%/,z),eg)dA
[ Ax Ax] [ Az Az}

*J s s x, =5, 0)x0 (6~ 5, 2), —e2) dA
- J—A;,A; oy g B0 52, ea) db

- J_J,Q] ‘e ;7%1(X7070>><0((X7—A2y,z),e2) dA

’ J—%X,%ﬂ e S 0xo((x ) e2) dh

’ J—%X,A;] i T <o (s =32 oh
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

The torque about the zaxis due to the stress on faces inter-
secting the y-axis is the third component of

J (x, AJ o)xo((x,%y,z),eg) dA
[ Ax Ax] [ Az Az}

_ Ay Ay
+J ax Ax)y [_TZaATZ]( ’ 2 ,O)XO'((X, 2 72)7 e2) dA
- X‘[[_%XVAQX]X —ATZvAZ]XO-((X7 2 ’ ) e2) dA
—erx xo((x —2, 2), e2) dA
-4 x4 20T
+ﬂ/e2x J((X 2) e2) dA
2 =55 =% T2
2 Ay
E 62X£—®7?1x[—%7%10((x’ 21 9e2) dA.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

The torque about the zaxis due to the stress on faces inter-
secting the y-axis is the third component of

J (x, AJ o)xo((x,%y,z),eg) dA
[ Ax Ax] [ Az Az}

Ay Ay
+ J ( ,——,O)XJ((X,——,Z),—eg) dA
Ax Ax] [_TZ’ATZ] 2 2
Ay
= erx | xo((x 2, 2), e2) dh
- 4%, 451 (- 47.,47)
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Dividing both sides by the volume of the cube and passing to
the limit as (Ax, Ay, Az) — (0,0,0),
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Dividing both sides by the volume of the cube and passing to
the limit as (Ax, Ay, Az) — (0,0,0), by the fact that

1 A
i *” LAY 2) eg) dA
A;’rilo Ay Ax AX]X[,/—\T)Z %Z]XU((X/ 2 VZ)/eZ)
_J XU((Xa—%yaZ%ez) dA}
-5 FIx - 5557
— oo
J[—%ﬁ%*]x[ 55 7((X’0’z)’92) da,
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Dividing both sides by the volume of the cube and passing to
the limit as (Ax, Ay, Az) — (0,0,0), by the fact that

lim 1[J - /‘ XU((X,%/,Z)./ez) dA

_J[/t . xo((x, 5, 2), e2) dA]

and

. 1
lim [J , =,
(Ax,Az)—(0,0) AxAz [—Ax Ax]y[_ Az Az T2

N o {(x Ay 5, e2) dA} =20(0,e3),
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

we find that
lim _r
(Ax,Ay,Az)—(0,0,0) AxAyAz

A A
[J[ A B[ A Az](&%ﬂ)xa((x,?}/,z),eg) dA

—|—J (X,—H,O)XU((X,—H,Z),—EQ) dA}
_ Ax AX]X[7%7%] 2 2
1 do
= lim erx | 0,2), e2) dA
" (AxA-(0.0) AxBz [—%%X]x[—%,%z]xay((x 2ez)

—|—182X U((X> ﬂ/'/2)7‘32) dA
2 [,AX AX]X[,AZ Az] 2
2 2 2 2
+ leyx o((x, =, 2),e2) dA
2 _Ax Ax|y[_Az Az
=SS Ix=5%1

ZGQXO'(O,GQ).
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§3.3 Models with Several Spatial Variables

Similarly,

. 1
lim -
(Ax,Ay,Az)—(0,0,0) AxAyAz
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Similarly,
lim .
(Ax,Ay,Az)—(0,0,0) AxAyAz

> X . X
. J[ Ay Aviy Az AZ]U((_7X>% Z) el) X (—7)(,)/ 0) dA]
=€ XO'(O, el) c
Moreover,
1 Az
MWH[_A;,%X]X[_%A%d(X’y’ 7),93) x (x,y,0) dA

Az
+ ﬁ—%x,m]x[—%y,gy]g((X7y’ _7>7 _63) X(X7y7 0) dA
— 0 as (Ax,Ay,Az) — (0,0,0).
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Therefore, by the fact that

T11(X) Tlg(x) 7'13(X) n
O‘(X, Il) = | 721 (X) TQQ(X) 7'23(X) npl, n—= (nl, ny, ng)T,
731(x) T32(x) T33(x)| | N3

we find that
. the torque about the zaxis due to the stress
lim
(Ax,Ay,Az)—(0,0,0) AxAyAz

= [eg XU(O,GQ)] -e3 + [el xa(O,el)} - €3
= [(0,1,0) x (112(0), 722(0), 732(0)) ] - (0,0, 1)
+ [(1,0,0) x (711(0), 721 (0), 731(0))] - (0,0,1)

Ching-hsiao Arthur Cheng #8535 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Therefore, by the fact that

T11(X) Tlg(x) 7'13(X) n
O‘(X, Il) = | 721 (X) TQQ(X) 7'23(X) npl, n—= (nl, ny, ng)T,
731(x) T32(x) T33(x)| | N3

we find that
. the torque about the zaxis due to the stress
lim
(Ax,Ay,Az)—(0,0,0) AxAyAz

= [e2x0(0,e)] - €5+ [e1x(0,e1)] - €3

= [(0, 1,0) x (7_12(0)’7-22(0)77_32(0))] -(0,0,1)
+ [(1,0,0) x (111(0), 721(0), 731 (0))] - (0,0, 1)

= 191(0) — 712(0) .
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Now, the torque about the zaxis due to the body force is

(%, y,0)x f(x,y,z) dV,

€3 f
(4 -5 K- 57, 4]
and the total torque contributes to the rate of change of the
third component of the angular momentum so that

€3 - f[m’m]x[%y %]X[i%’%z]()(?y?())Xp(X7y7Z)a(X7y7z) dv
= €3 L—Q Arp_Ar Avy_ac AZ]<X7y>0)><f(xvyaz) dv
2 02 202 20

2
+ the torque about the zaxis due to the stress.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Now, the torque about the zaxis due to the body force is

(%, y,0)x f(x,y,z) dV,

€3 f
(4 -5 K- 57, 4]
and the total torque contributes to the rate of change of the
third component of the angular momentum so that

€3 - ﬁ%’%]x[? %]X[,%’%Z](X’)G O)Xp(X7 Y, z)a(x,y7 Z) dv
—e3- x,v,0)x f(x,y,z)dV
3 J‘[—%X,%)(]x[—éy,%y]x[—%’,%zﬁ Y ) ( » Ys )

+ the torque about the zaxis due to the stress.
Dividing both sides by the volume of the cube ans passing to
the limit as (Ax, Ay, Az) — (0,0, 0), the limit involving volume
integrals are zero; thus we conclude that

7'21(0) - T]Q(O) =0.
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

O What is the form of o(x,n)?
e First note that the force due to the pressure is always per-
pendicular to the surface under consideration; thus

o(x,m) = —p(x)n + S(x)n = (£ — pI) (x)n

for some symmetric matrix ¥ = [7;].
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

O What is the form of o(x,n)?
e First note that the force due to the pressure is always per-
pendicular to the surface under consideration; thus
o(x,m) = —p(x)n+ E(x)n = (S — p) (x)n
for some symmetric matrix ¥ = [7;].
e The presence of X is due to the internal friction of fliuds and
is called the viscous stress tensor.
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§3.3 Models with Several Spatial Variables

O What is the form of o(x,n)?
e First note that the force due to the pressure is always per-
pendicular to the surface under consideration; thus
o(x,m) = —p(x)n+ E(x)n = (S — p) (x)n
for some symmetric matrix ¥ = [7;].
e The presence of X is due to the internal friction of fliuds and
is called the viscous stress tensor.
e The friction of fluids occurs only when different fluid particles
move with different velocities. Therefore, > must depend on

Vu= [@] where u = (u!, u?, u?).

2

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

O What is the form of o(x,n)?
e First note that the force due to the pressure is always per-
pendicular to the surface under consideration; thus
o(x,m) = —p(x)n+ E(x)n = (S — p) (x)n
for some symmetric matrix ¥ = [7;].
e The presence of X is due to the internal friction of fliuds and
is called the viscous stress tensor.
e The friction of fluids occurs only when different fluid particles
move with different velocities. Therefore, > must depend on
Vu= [(2—:] where u = (u', u?, u?).
o If the velocity gradient is small, we can assume that X is
linear in Vu. Therefore,
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Since Ojj = Tjis

_ 1, _ 3 aijkl+ajik€ auk
0jj = §(UU+UJi) =D =

Therefore, W.L.O.G. we can assume that a

6Xg '
ijkt _ 3 Jikl
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Since Ojj = Tjis

_ 1, _ 3 aijkl+ajik€ auk
0jj = §(UU+UJi) =D =

k=1 T)Q ‘
Therefore, W.L.O.G. we can assume that a/ké = gkt
o Write
_ 13 ,--kg(auk (‘)Ue) [ "kg(auk 6u£>
S T o jjke (o4 cd
JU 2‘(;:1 a an + an + 2k,£2:1 a an an

Since we do not expect any viscous effect (internal friction) to

be present if the fluid is in a state of pure rotation, we find that
~ £
— i—u thus
Xe OXk
3 K 3 ikt o itk o,k
sy L3 (O Y g o
2 Oxp Ok 2 Ox¢

k=1
ikt — Sijtk

K
ou

o is independent of =

k,0=1

Therefore, W.L.O.G. we can also assume that a
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e Consider the case of laminar flow (% /i) that n = e and

u = u(xs)e, for some s 7é r. Then

[o(x,n ] Z ikt 0u (x)dsj = aisrs@(x) .

Ki=1 an 6xs
Since in this case the drag force due to the friction is in direction
e,, we find that ™ =0 if i # rand r # s.
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§3.3 Models with Several Spatial Variables

e Consider the case of laminar flow (% /i) that n = e and

u = u(xs)e, for some s 7é r. Then
Ukﬂau - isrs@
[o(x,n ] uZ1 e (x)dsj = a T (x) .
Since in this case the drag force due to the friction is in direction
e,, we find that a®* =0 if i # rand r # s.

On the other hand, if i= r (and r # s), we let a"™" = 4 for all

r # s so that o
o(x,es) = /Lp—(x)er.

DXs
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

e Consider the case of laminar flow (% /i) that n = e and
u = u(xs)e, for some s 7é r. Then
UkZaU - isrs@
[o(x,n ] MZ1 e (x)dsj = a T (x) .
Since in this case the drag force due to the friction is in direction
e,, we find that a®* =0 if i # rand r # s.

On the other hand, if i= r (and r # s), we let a"™" = 4 for all
r # s so that o
o(x,es) = H(?Tg(x)er'

e Therefore, the only possible non-zero 2kt terms are:

al forall1<i<3,
aikkk | ghikk - giikk  gikik  oikKi with £ k|

2k aKii \yith distinct i, k, £
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Due to the isotropy (that is, properties are the same in all

directions) and the symmetry of a/**, we have
@ allll = 22222 — 33333 — 4
® 2222 = 2122 — L1333 — 3133 — 2111 _ L1211 _ 2333 _

3233 _ 3111 _ 1311 _ ;3222 _ 2322 _ p

a

© all22 = 2211 — 1133 _ 3311 _ 22233 _ ;3322 _

@ al212 = Q2112 = 2121 — 1221 _ L1313 _ 8113 _ 33131
1331 — 2323 _ 3223 _ 3232 _ 3223 _

@ a1l = 211 = 1322 — 3122 _ 41283 _ 2133 _ [
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Chapter 3. Partial Differential Equations

§3.3 Models with Several Spatial Variables

Due to the isotropy (that is, properties are the same in all

directions) and the symmetry of a/**, we have

@ allll = 22222 — 33333 — 4,

® al222 = 2122 = 41333 — 3133 _ 2111 _ 1211 _ ;2333 _
23233 _ 3111 _ 1311 _ 3222 _ 2322 _ p

© all22 = 22211 — U183 _ 3311 _ 32233 _ 33322 _

@ a'212 = 212 = Q2121 _ 1221 _ GI313 _ pBUI3 _ 3131 _
1331 — 2323 _ 3223 _ 3232 _ 3223 _

@ all23 = gl182 = ;2213 — ;2231 _ 3312 _ 3321 _

@) a1l = 211 = 1322 — 3122 _ 41283 _ 2133 _ [

The simplest case is A= B =C=puy =D = Eand pis a
constant. In such a case, o(-,n) = pDefun or more precise,

o(x ’g‘i(“: X ().

0X;
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Chapter 4. Optimization Problems and Calculus of Variations

Chapter 4. Optimization Problems and Calculus of Vari-
ations (B E M iR R L)
§4.1 Examples of Optimization Problems

§4.2 Simplest Problem in Calculus of Variations
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Chapter 4. Optimization Problems and Calculus of Variations

§4.1 Examples of Optimization Problems
§4.1.1 Heron’s principle

Given a straight line L and two points a, b on a plane P, find a point
x on L such that |ax| + |bx| is minimal.

If x is a point of L such that the sum |ax| + |bx| is the least possible,

then the lines ax and bx form equal angles with the line L.

B
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Chapter 4. Optimization Problems and Calculus of Variations

§4.1 Examples of Optimization Problems

§4.1.2 Steiner’s tree problem

The minimum spanning tree problem: given a set V of points
(vertices), interconnect them by a network (graph) of shortest length,
where the length is the sum of the lengths of all edges. In the Steiner
tree problem, extra intermediate vertices and edges may be added
to the graph in order to reduce the length of the spanning tree.

Euclidean metric

Cost =2 ! Cost =v3 4 Steiner Point
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Chapter 4. Optimization Problems and Calculus of Variations

§4.1 Examples of Optimization Problems

§4.1.3 Separation problem (~ # ¥ %)

Suppose that we are given two types of points in R”: points of type
A x1, X2, ---, Xm and points of type B Xpmi1, Xmy2, - Xmip.
The goal of the separation problem is to find a linear separator, a

hyperplane of the form
Hw, ) = {xeR"|w~x+ﬁ:0}
for which
@ points of type A and points of type B are on opposite sides of

the hyperplane, and
@ the hyperplane is the “farthest” as possible from all points.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.1 Examples of Optimization Problems

The margin of the separator is the distance of the separator from

the closest point, as illustrated in the figure below. In mathematics,

. . |w - x; + 3]
margin = min —_—
1<i<mtp w2
45
*
4 *
35

margin

0
0 05 1 16 2 25 3 35 4 45 5
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Chapter 4. Optimization Problems and Calculus of Variations

§4.1 Examples of Optimization Problems

The separation problem will thus consist of finding the linear sepa-

rator with the largest margin:

max { |w'Xi+5\}
(w,B8)eRn+1 L1<i<m+p Hng

subject to the following constraints:

w-xi+ <0 forl<i<m,
w-xi+B>0 form+1<i<m+p.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.1 Examples of Optimization Problems

§4.1.4 Dido’s problem (Isoperimetric problem)

For a simple closed curve C in the plane, let ¢(C) denote the length
of the curve. The isoperimetric problem is to find a closed curve
C satisfying ¢(C) = L which encloses the largest area.
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§4.1 Examples of Optimization Problems

§4.1.4 Dido’s problem (Isoperimetric problem)
For a simple closed curve C in the plane, let ¢(C) denote the length
of the curve. The isoperimetric problem is to find a closed curve

C satisfying ¢(C) = L which encloses the largest area.

If A(C) denotes the area enclosed by the curve C, then

{(C)? = 41A(C) for every simple closed curve C, (20)

and “=" holds if and only if C is a circle.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*
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§4.1 Examples of Optimization Problems

§4.1.4 Dido’s problem (Isoperimetric problem)
For a simple closed curve C in the plane, let ¢(C) denote the length
of the curve. The isoperimetric problem is to find a closed curve

C satisfying ¢(C) = L which encloses the largest area.

If A(C) denotes the area enclosed by the curve C, then

{(C)? = 41A(C) for every simple closed curve C, (20)

and “=" holds if and only if C is a circle.

2

Inequality (20) is called the isoperimetric inequality ( % % 7 %

).
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§4.1 Examples of Optimization Problems

Sketch of the proof.

Let P, denote the collection of simple closed polygon with 2n sides

and with perimeter L.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.1 Examples of Optimization Problems

Sketch of the proof.

Let P, denote the collection of simple closed polygon with 2n sides
and with perimeter L. We look for P in P, which encloses the largest
area. For given points By, -, By, let [Bi, B, -+, Bm, B1] denote
the polygon with edges B1Bs, ByBs, - -, Bym—_1Bm and B, By. Sup-

pose that
Pn — [A17A27 toe 7An;An+17 e 7A2n7A1]

is a polygon in P, which encloses the largest area. We use the notion
Aj = Ay if j= k (mod 2n).
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§4.1 Examples of Optimization Problems

Sketch of the proof.

Let P, denote the collection of simple closed polygon with 2n sides
and with perimeter L. We look for P in P, which encloses the largest
area. For given points By, -, By, let [Bi, B, -+, Bm, B1] denote
the polygon with edges B1Bs, ByBs, - -, Bym—_1Bm and B, By. Sup-

pose that
Pn — [A17A27 toe 7An;An+17 e 7A2n7A1]

is a polygon in P, which encloses the largest area. We use the notion
Aj = Ay if j= k (mod 2n).

Claim I: P, is convex.
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§4.1 Examples of Optimization Problems

Sketch of the proof.

Let P, denote the collection of simple closed polygon with 2n sides
and with perimeter L. We look for P in P, which encloses the largest
area. For given points By, -, By, let [Bi, B, -+, Bm, B1] denote
the polygon with edges B1Bs, ByBs, - -, Bym—_1Bm and B, By. Sup-
pose that

Py =[A1, A, , An, Anst, - 5 Aan, Al
is a polygon in P, which encloses the largest area. We use the notion
Aj = Ay if j= k (mod 2n).
Claim I: P, is convex.
Claim lI: For all je N, |[AjAj11] = |Aj+1Aj12|.
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§4.1 Examples of Optimization Problems

Sketch of the proof.
Let P, denote the collection of simple closed polygon with 2n sides

and with perimeter L. We look for P in P, which encloses the largest
area. For given points By, -, By, let [Bi, B, -+, Bm, B1] denote
the polygon with edges B Bs, B3B3, - -+, Bn_1Bm and B, By. Sup-

pose that
Pn — [A17A27 toe 7An;An+17 e 7A2n7A1]

is a polygon in P, which encloses the largest area. We use the notion
Aj = Ay if j= k (mod 2n).

Claim I: P, is convex.

Claim lI: For all je N, |[AjAj11] = |Aj+1Aj12|.

Claim lll: For all j € N, the two polygons [Aj, Ajt1,- -+, Ajrn, Ajl

and [Ajin, Ajtnti, -+ 5 Ajran, Ajrn] enclose the same area. o
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§4.1 Examples of Optimization Problems

Proof (cont.)

Claim IV: For 1 <j<n+1, AjA; L AjA,41 at A,

Proof of Claim IV: If AjA; is not perpendicular to AjA,41 at
Aj, we can adjust the position of A; to A’l, and adjust ac-
cordingly the positions of Ag,---,Aj_; to A, --- ,Aj-_l so that
the polygon [A1,Ag,- -, A}, Ai] is the identical (in shape) to
[AL A, - A, Aj, Al]l. We note that the area enclosed by the

=L
polygon [Aj, -+, A1, Aj Ajr1, -+, Any1, Aql is larger than the
area enclosed by the polygon [A;, -+, Ant1, A1]. (End of proof of Claim V) O

v
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§4.1 Examples of Optimization Problems

Proof (cont.)

By Claim IV, A’s locates on a circle (with diameter |[A1A,11]).
Let r, be the radius of the circle in which P, is inscribed. Then

4nr, sin % = L and the area A, enclosed by P, is

A, = nr,?simI = —cot —;

n
thus A,+1 = A, for all ne N. The circle C with radius r has length
L and encloses the largest area among all simple closed curves with
length L and L2 = 47A. o
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§4.1 Examples of Optimization Problems

On the other hand, the optimization problem can be reformulated by
looking for “minimizer” of a certain functional in the space of piece-

wise continuously differentiable closed curve.
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§4.1 Examples of Optimization Problems

On the other hand, the optimization problem can be reformulated by
looking for “minimizer” of a certain functional in the space of piece-
wise continuously differentiable closed curve. To be more precise, we
look for curves C that can be parameterized
by vector-valued function r(s) = x(s)i+ y(s)j in the set
A={r(9) = x()i+y(9)j | x ye D0, L];R), r(0) = r(L),
1#(s)[2 = 1 for all se [0, L]},

SO

that the functional

is minimized.
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§4.1 Examples of Optimization Problems

On the other hand, the optimization problem can be reformulated by
looking for “minimizer” of a certain functional in the space of piece-
wise continuously differentiable closed curve. To be more precise, we
look for curves C that can be parameterized, using the arc-length,

by vector-valued function r(s) = x(s)i+ y(s)j in the set
A={r(9) = x(s)i+ y(9)j | x ye D0, L|;R), r(0) = r(L),
1#(s)[2 = 1 for all se [0, L]},
where D!([a, b]; R) denotes the collection of continuous, piecewise

continuously differentiable real-valued functions defined on [a, b] so

that the functional

~ | X079 — Koo ds

0
is minimized.
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§4.1 Examples of Optimization Problems

§4.1.5 Minimal surface of revolution
This is a problem of finding a curve C connecting two given points
(x0, o) and (x1,y1), where xp < x1, such that its surface of revolu-

tion has the least surface area.
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§4.1 Examples of Optimization Problems

§4.1.5 Minimal surface of revolution

This is a problem of finding a curve C connecting two given points
(x0, o) and (x1,y1), where xp < x1, such that its surface of revolu-
tion has the least surface area. Given a function y = y(x) satisfying

y(x0) = yo and y(x1) = y1, the surface of revolution of the curve

C={(xy)|ye D'([x0,x];R),y(x0) = yo,y(x1) = y1} is

WJ y()A/1+ y'(x)? dx.

Therefore, the problem of minimal surface of revolution is to find
a function y € A = {y € D!([x0,x1;R) | y(x0) = y0,¥(x1) = y1}
which minimizes the functional

1) =2n [ Yt/ T+ 7R o
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§4.1 Examples of Optimization Problems

§4.1.6 Newton’s problem

The Newton problem is to find a curve C connecting two given
points (xp, o) and (x1,y1), where xy < x1, such that its surface of
revolution has the least resistance from the air when it moves along
x-axis with speed v (or velocity vi).
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§4.1 Examples of Optimization Problems

§4.1.6 Newton’s problem

The Newton problem is to find a curve C connecting two given
points (xp, o) and (x1,y1), where xy < x1, such that its surface of
revolution has the least resistance from the air when it moves along
x-axis with speed v (or velocity vi).

Let u be the normal component of the velocity (given some surface

of revolution) (thus u= %v = \/%> Suppose that for each
surface element dS (at point (x,y, z)), the resistance force is
[o(u)dS]N

for some function ¢, where N is the unit normal of the surface with
negative first component (which means the resistance force points
to the left).
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§4.1 Examples of Optimization Problems

If the surface of revolution is given by the curve y = y(x), then with
ds denoting the infinitesimal arc-length, for each slice of the surface

the total force acting on this slice is 2wy (u)ds(N - e1) (the e2 and

e3 components all cancel out);
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§4.1 Examples of Optimization Problems

If the surface of revolution is given by the curve y = y(x), then with
ds denoting the infinitesimal arc-length, for each slice of the surface
the total force acting on this slice is 2wy (u)ds(N - e1) (the e2 and
e3 components all cancel out); thus by the fact that % =(N-ey),

the total resistance force (in magnitude) is

B X1 . ﬂ/ B X1 p ﬁ( y/V >
I(y)2ﬂ—£0 yg’(u)deSQﬂ—LO nyV W dX
Therefore, the Newton problem can be formulated as “finding a
function y € A = {y € ‘Dl([Xo./Xﬂ;R)‘y(Xo) = yo,y(x1) = yl}

which minimizes /(y)

Newton’s model: p(u) = u?.
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§4.1 Examples of Optimization Problems

§4.1.7 Brachistochrone problem (#:i# ™ "% o 4 /* 47)

A brachistochrone curve, meaning "shortest time” or curve of fastest
descent, is the curve that would carry an idealized point-like body,
starting at rest and moving along the curve, without friction, under
constant gravity, to a given end point in the shortest time. For given
two points (0,0) and (a, b), where a > 0 and b < 0, what is the

brachistochrone curve connecting (0,0) and (a, b)?
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§4.1 Examples of Optimization Problems

§4.1.7 Brachistochrone problem (#:i# ™ "% o 4 /* 47)

A brachistochrone curve, meaning "shortest time” or curve of fastest
descent, is the curve that would carry an idealized point-like body,
starting at rest and moving along the curve, without friction, under
constant gravity, to a given end point in the shortest time. For given
two points (0,0) and (a, b), where a > 0 and b < 0, what is the

brachistochrone curve connecting (0,0) and (a, b)?

Given a curve parameterized by {(x y(x ) ‘xe 0,a } for some func-
tion y € DI([0, a];R), the total time required to travel from (0,0)
to (a, b) is given by

JW

v/ —2gy(x)
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§4.1 Examples of Optimization Problems

Therefore, the brachistochrone problem can be formulated as finding
ye A= {yeDl 0, a; R |y =0,y(a —b}suchthatT()
minimized. In other words, the minimizer y satisfies that

f V1ty'(x)?
yeA

—2gy
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§4.1 Examples of Optimization Problems

§4.1.8 Plateau’s problem - minimal surface problem

The minimal surface problem is to find a (smooth) surface ¥ whose
boundary is a given curve C but has the minimal surface area. Con-
sider the simplest case that the orthogonal projection from space
onto the xy-plane is a bijection between the curve C and the bound-
ary of a simply connected region 2 on the xy-plane.
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§4.1 Examples of Optimization Problems

§4.1.8 Plateau’s problem - minimal surface problem

The minimal surface problem is to find a (smooth) surface ¥ whose
boundary is a given curve C but has the minimal surface area. Con-
sider the simplest case that the orthogonal projection from space
onto the xy-plane is a bijection between the curve C and the bound-
ary of a simply connected region 2 on the xy-plane. In this case,
there exists a continuous function f: 92 — R so that

C={xi+yj+ f(x,y)k’ (x,y) € 002} .
The goal is then to find a (smooth) function z= u(x, y) defined on
Q such that u= fon 02 and

J V14 ux(x, )2 + uy(x, y)? dA
Q

= min J‘ \/1 -+ VX(Xay)Q + Vy(X,Y)2 dA’
veA Jo
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§4.1 Examples of Optimization Problems

where A is the admissible set
A={v:Q - R|vis (piecewise) differentiable on Q and
v=fon GQ} .

Figure 1: Costa’s Minimal Surface - the minimal surface with three circles
as prescribed boundaries.
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§4.1 Examples of Optimization Problems

§4.1.9 Image processing

An image can often be viewed as a function defined on a square
domain. In many problems in image processing, the goal is to recover
an ideal image u from an observation f, where u is a perfect original
image describing a real scene, fis an observed image, which is a
degraded version of wu.
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§4.1 Examples of Optimization Problems

§4.1.9 Image processing

An image can often be viewed as a function defined on a square
domain. In many problems in image processing, the goal is to recover
an ideal image u from an observation f, where u is a perfect original
image describing a real scene, fis an observed image, which is a
degraded version of u. The degradation can be due to:

@ Signal transmission: there can be some noise (random pertur-
bation).
@ Defects of the imaging system: there can be some blur (deter-

ministic perturbation).
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§4.1 Examples of Optimization Problems

§4.1.9 Image processing
An image can often be viewed as a function defined on a square
domain. In many problems in image processing, the goal is to recover
an ideal image u from an observation f, where u is a perfect original
image describing a real scene, fis an observed image, which is a
degraded version of u. The degradation can be due to:
@ Signal transmission: there can be some noise (random pertur-
bation).
@ Defects of the imaging system: there can be some blur (deter-
ministic perturbation).
The simplest modelization is the following:
f=Ku+n,

where n is the noise, and K'is the blur, a linear operator.
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§4.1 Examples of Optimization Problems

The following assumptions are classical:
@ Kis known (but often not invertible);

@ Only some statistics (mean, variance, ) are known of n.
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§4.1 Examples of Optimization Problems

The following assumptions are classical:
@ Kis known (but often not invertible);

@ Only some statistics (mean, variance, ) are known of n.

A classical approach in the image processing problems consists in
introducing a regularization term L which admits a unique solution

of the optimization problem

inf (f IF — Kul? dx + )\L(u)) :
ueA Q

where A is an admissible set which describes the requirement for
the real images, and L is a non-negative function (with certain re-

quirements that we will not explore here).
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§4.1 Examples of Optimization Problems

Suppose that the polluted image fis solely due to noise (so K = Id,
the identity map). The ROF model is a model for denoise which

requires the minimization of the functional
J \f—u\QdAJr)\f |Vu|dA,
Q Q
where u should picked up in the admissible set

A= {u Q- R‘ u is continuous and piecewise differentiable

with f Vil dA < oo}
Q
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Let [a,b] € R, L:[a,b] x R x R — R be continuous. We consider

the problem of minimizing the functional
b
10) = [ Lxy60, ')

for y € C!([a, b];R) or D!([a, b];R), and y satisfies the boundary
condition y(a) = Ag,y(b) = By, where C!([a, b];R) denotes the
space of continuously differentiable real-valued functions defined on
[a, b], and D([a, b]; R) denotes the space of continuous, piecewise

continuously differentiable real-valued functions defined on |[a, b].
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§4.2 Simplest Problem in Calculus of Variations

In other words, with A denoting either the set
{yee([a,b];R) | y(a) = Ao, y(b) = Bo}

or

{ye D'([a,b];R) | y(a) = Ao, y(b) = Bo},

we consider the minimization problem

b

inf | L(x y(x),y’'(x)) dx.
yeA J;

The function L is called the Lagrangian.
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§4.2 Simplest Problem in Calculus of Variations

In other words, with A denoting either the set
{yee([a,b];R) | y(a) = Ao, y(b) = Bo}

or

{ye D'([a,b];R) | y(a) = Ao, y(b) = Bo},

we consider the minimization problem
b
inf | L(x y(x),y’'(x)) dx.
yeA J;
The function L is called the Lagrangian.

In the following discussion, we write L = L(x, y, p) and let arg Ij"lin I(z)
V4SS

denote the minimizer, if exists, of the minimization problem IIli}tl I(z).
VA4S

In other word, if y = arg%in I(z), then ye A and
ze

I(y) < 1(2) Vze A.
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§4.2 Simplest Problem in Calculus of Variations

Remark: Let
X = {ye €!([a,b;R) | y(a) = Ao, y(b) = Bo}
Y ={ye D'([a,b;R) | y(a) = Ao, y(b) = Bo} .

Then arg min /(z), if exists, equals arg min /(z).
zeX ze)
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§4.2 Simplest Problem in Calculus of Variations

Remark: Let

X = {ye(‘?1 [a, b]; ’y —Ao,y(b):Bo}

y= {yeDl ([a, b]; |y —Ao,y(b):BO}.
Then arg gin I(z), if exists, equals arzgerﬁin I(z). To see this, we first
note that mlAr} I(z) > mljr} I(z); thus for arzgeglin I(z) # arzgerjl)qin I(z)
to hold, we must have y € Y\X such that /(y) < Izrg/{/ll(z) By

smooth y at corners, we obtain y € X" such that /(y) < ml}r{1 1(2), a
ze

contradiction.
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§4.2 Simplest Problem in Calculus of Variations

Remark: Let

X = {ye(‘?1 [a, b]; ’y —Ao,y(b):Bo}

y= {yeDl ([a, b]; |y —Ao,y(b):BO}.
Then arg gin I(z), if exists, equals arzgerﬁin I(z). To see this, we first
note that mlAr} I(z) > mljr} I(z); thus for arzgeglin I(z) # arzgerjl)qin I(z)
to hold, we must have y € Y\X such that /(y) < Izrg/{/ll(z) By

smooth y at corners, we obtain y € X" such that /(y) < ml}r{1 1(2), a
ze

contradiction.

However, it is possible that there are only minimizers in D*([a, b]; R).
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§4.2 Simplest Problem in Calculus of Variations

§4.2.1 First variation of /
Let

A= {ye Dl([a, b]; R) |y(a) = Ag,y(b) = Bo}
and

N = {ne D'([a,b];R)|n(a) = n(b) = 0},

called the admissible set and the test function space, respectively.
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§4.2 Simplest Problem in Calculus of Variations

§4.2.1 First variation of /
Let
A= {ye Dl([a, b]; R) |y(a) = Ay, y(b) = Bo}

and
N = {ne D'([a,b];R)|n(a) = n(b) = 0},
called the admissible set and the test function space, respectively.
Forye A, ne N and e € R, let J(¢) = I(y+ en) and consider the
following quotient
J(e) — J(0)

for all € # 0.
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§4.2 Simplest Problem in Calculus of Variations

Assume that L, and L, are continuous, then
(6= J(0)

e—0 €
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§4.2 Simplest Problem in Calculus of Variations

Assume that L, and L, are continuous, then

lim J(e) — J(0)

e—0 €
— [ [L (v Wy @69 + Lalx 0.y W)’ W] .

This limit, denoted by §/(y;n) or %(y) is called the first variation
of | at y along 7.
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§4.2 Simplest Problem in Calculus of Variations

Assume that L, and L, are continuous, then

lim J(e) — J(0)

e—0 €
— [ [L (v Wy @69 + Lalx 0.y W)’ W] .

This limit, denoted by §/(y;n) or ?(y) is called the first variation
n
of | at y along 7.
Ify = argrjlinl(z) is a minimizer of I, then 6/(y;n) = 0 for all
ze
neN.

V,
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§4.2 Simplest Problem in Calculus of Variations

Assume that L, and L, are continuous, then
(6= J(0)

- [ [Ly (% (0, y" ()00 + Lp(x, y (%), y'(x))n" ()] dx.

This limit, denoted by §/(y;n) or ?(y) is called the first variation
n
of | at y along 7.

Ify = argrjlinl(z) is a minimizer of I, then 6/(y;n) = 0 for all
ze
neN.

A

Sketch of proof.

If y is a minimizer of I, then I(y) < I(y + en) for all € € R since
y+ene A =

v
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§4.2 Simplest Problem in Calculus of Variations

Assume that L, and L, are continuous, then
(6= J(0)

- [ [Ly (% (0, y" ()00 + Lp(x, y (%), y'(x))n" ()] dx.

This limit, denoted by §/(y;n) or ?(y) is called the first variation
n
of | at y along 7.

Ify = argrjlinl(z) is a minimizer of I, then 6/(y;n) = 0 for all
ze
neN.

A

Sketch of proof.

If y is a minimizer of /, then J(0) < J(¢) for all € € R; thus J attains
it minimum at 0 so that J'(0) = 0.

a
v
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§4.2 Simplest Problem in Calculus of Variations

The integral equation

[} 16060090 + Ly 9,60 0] e =

for all n € AV is called the weak form of the Euler-Lagrange equa-
tion associated with the minimization problem

b
inf [ L(x,y(x),y'(x)) dx.

yeA J,

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

The weak form of the Euler-Lagrange equation does not seem to
tell us too much about how y should look like, and we prefer to
see if the minimizer satisfies a differential equation. In order to
see what differential equation the minimizer satisfies, we need some
basic lemmas.
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§4.2 Simplest Problem in Calculus of Variations

The weak form of the Euler-Lagrange equation does not seem to
tell us too much about how y should look like, and we prefer to
see if the minimizer satisfies a differential equation. In order to
see what differential equation the minimizer satisfies, we need some
basic lemmas.

If y € ([a, b: R andfy X) dx = 0 for all € C([a, b];R),
then y = 0.
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§4.2 Simplest Problem in Calculus of Variations

The weak form of the Euler-Lagrange equation does not seem to
tell us too much about how y should look like, and we prefer to
see if the minimizer satisfies a differential equation. In order to
see what differential equation the minimizer satisfies, we need some
basic lemmas.

If y e C([a,b;R andfy Ydx = 0 for all n € C([a, b];R),
then y = 0. )

By assumption, i
f y()? dx =

thus by the fact that y is continuous, y = 0. o
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§4.2 Simplest Problem in Calculus of Variations

The weak form of the Euler-Lagrange equation does not seem to
tell us too much about how y should look like, and we prefer to
see if the minimizer satisfies a differential equation. In order to
see what differential equation the minimizer satisfies, we need some
basic lemmas.

If y e C([a,b;R andfy Ydx = 0 for all n € C([a, b];R),
then y = 0.

Remark: It requires more analysis to show the following conclusion:

If ye €([a, b];R) and J y(x)n(x) dx = 0 for all n € D!([a, b]; R),
then y = 0.
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§4.2 Simplest Problem in Calculus of Variations

Ifye C([a, bl;R andJ x)dx =0 forallne N, theny=c

for some constant c.

v
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§4.2 Simplest Problem in Calculus of Variations

Ifye C([a, bl;R andJ x)dx =0 forallne N, theny=c

for some constant c.

v

X

Let n(x) = J (¥(t) — c) dt, where the constant c is chosen so that

a

jb (y(t) — ¢) dt=0.

.
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§4.2 Simplest Problem in Calculus of Variations

If ye €([a, b; andJ x)dx =0 for allme N, theny=c

for some constant c.

v

X

Let n(x) = J (¥(t) — c) dt, where the constant c is chosen so that

a

b
j (y(t) — ¢) dt=0. Then n € N and

Lb ‘y(x) - C‘2 dx = Lb (y(x) - )n'(x) dx = —Cf n’(x) dx
= c(n(a) — n(b)) =0.

Therefore, y(x) = c for all x€ [a, b]. o
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§4.2 Simplest Problem in Calculus of Variations

Ify,ze C([a, b];R) satisfy
Lb [yCIn() + z()n'(x)] dx=0  VneN, (21)
then ze C'([a, b];R) and z'(x) = y(x) for all x € [a, b]. )
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§4.2 Simplest Problem in Calculus of Variations

Ify,ze C([a, b];R) satisfy

fb yCIne) +209n' ()} dx=0  ¥neN,  (21)

a

then ze C'([a, b];R) and z'(x) = y(x) for all x € [a, b].

X

Let z;(x) = f y(t) dt. Integration-by-parts provides that

a

= [Cawnw e

x=a a

[ 0mo0 = 26

a

thus (21) implies that

Jb [2(x) — 210 ]n"(x) dx = 0 VneN. o

a
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§4.2 Simplest Problem in Calculus of Variations

Proof (cont.)

By the previous lemma, z(x) — z1(x) = C for some constant C.
Therefore, z(x) = C+ f y(t) dt which implies that ze @!([a, b]; R)
and z’(x) = y(x). ’ o
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§4.2 Simplest Problem in Calculus of Variations

Suppose that y,z € C([a, b];R) and z is not a constant function. If

b
f yx)n'(x)dx=0 Vne/\/andnsatlsf/esf z(X)n'(x) dx =10,

a

then there are constants A, ju € R such that y(x) = \z(x) + p.
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§4.2 Simplest Problem in Calculus of Variations

Suppose that y,z € C([a, b];R) and z is not a constant function. If

b
f yx)n'(x)dx=0 Vne]\/'andnsatlsf/esf z(X)n'(x) dx =10,

a

then there are constants A, ju € R such that y(x) = \z(x) + p.

Let n(x) = J- (y(t) — Az(t) — p) dt, where A, pu are chosen so that
@ b

n(b) =0and | z(x)n'(x)dx=0; that is,

a

)\J dX—i—,uJ dx—fy

A 223 (x) dx + ,uj x) dx = L y(x)z(x) dx. o
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§4.2 Simplest Problem in Calculus of Variations

Proof (cont.)

Since z is not a constant, the Cauchy-Schwarz inequality implies

that the system above has a unique solution (\, p).
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Proof (cont.)

Since z is not a constant, the Cauchy-Schwarz inequality implies

that the system above has a unique solution (X, u). Since n € N
b
and satisfies J z(x)n’(x) dx = 0, we have

a
b

[ 1760 = 220 o= [ (709~ A9~ im0

a

b
= —uf n'(x) dx=0;

thus y(x) = Az(x) + u for all x€ [a, b]. o
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

§4.2.2 The Euler-Lagrange equation

Recall that the weak form of the Euler-Lagrange equation associated
with the minimization problem inf /(y) is
yeA

J [Ly (% y(x), ¥ ()0 + Lp(x%, y (), ¥ ()0 ()] dx =0 Yy e V.

a

Suppose that L, L, L, are continuous. If y € A is a minimizer of

the minimization problem

inf | L(xy(),y'(x))dx,

yeA J,
then
2 Lp(x,709,769) = Ly(x,7(,7'(4)

for point x at which y' is continuous.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

The differential equation

9 L%, y(0),y' () = Ly, y(), ¥ ()

is called (the strong form of) the Euler-Lagrange equation associ-

ated with the minimization problem

b

inf | L0xy(9.y'(9) .
yeA
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

The differential equation

9 L%, y(0),y' () = Ly, y(), ¥ ()

is called (the strong form of) the Euler-Lagrange equation associ-

ated with the minimization problem

b

it || ey '(x)) dx.
yeA

Remark: The theorem above is essentially due to Du Bois-Reymond,
so the Euler-Lagrange equation is also called the Du Bois-Reymond
equation.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

The Lagrangian for the minimal surface of revolution problem is
L(x,y, p) = yn/1 + p?, so the Euler-Lagrange equation for the min-
imal surface of revolution problem is

I
4w ity

dX /1+y/2
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

The Lagrangian for the minimal surface of revolution problem is
L(x,y, p) = yn/1 + p?, so the Euler-Lagrange equation for the min-
imal surface of revolution problem is

I
4w ity

dX /1+y/2

.

The Lagrangian for Newton's problem is

L(x,y,p) = (L)’
(%, y.p) = ypy Tt
so the Euler-Lagrange equation for Newton's problem (with ¢ (u) =
u?)is
inyQ(y/2_|_3) - y/3
dx (1+y?)2  14y72’

€
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Now we consider the brachistochrone problem. Making the change

of variable y — —y (and ignoring 1/2g in the denominator), we
rewritten the minimization problem as

inf 37” L+ye dx
yeA Jo y()
where A = {y € D'([0,a);R) | y(0) = 0,y(a) = —b}. Therefore,

_ A/1+p?

L(x,y,p) = 7 which implies that the Euler-Lagrange equa-

tion for the brachistochrone problem is

iy Vity?

E(\ﬁ/q/l—ky’Q B Zy%
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Suppose that y € D'([a, b]; R) satisfies the Euler-Lagrange equation

Ly T(.569) = Ly 769, 7))

If for some x € (a,b), Lpx, Lp, are continuous at (x,y(x),y’(x)),

Lpp(x,7(x),¥'(x)) # 0, and y' is continuous at x, then y" (x) exists.

V
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Suppose that y € D'([a, b]; R) satisfies the Euler-Lagrange equation

Ly T(.569) = Ly 769, 7))

If for some x € (a,b), Lpx, Lp, are continuous at (x,y(x),y’(x)),

Lpp(x,7(x),¥'(x)) # 0, and y' is continuous at x, then y" (x) exists.

V

Remark: Let y = argglinl(z). If Lpx, Lpy, Lpp are continuous at
ze

~/

(x,Y(Xx), '), Lpp(x,¥(x),¥'(x)) # 0, and y' is continuous in a
neighborhood of x, then y” exists in a neighborhood of x and is

continuous there.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (A minimization problem whose minimizer is not in C!)

Let A = {y € D([0,1;R)|y(0) = y(1) = 0}. Consider the
minimization problem
1
inf | (y'(x)?—1)dx;
inf | (v'(0)* = 1) dx;
that is, we assume L(x,y,p) = (p? — 1)2. The Euler-Lagrange
equation associated with this minimization problem is

d d 9 9
29a —1)2=0
dx dp)p:y’(X)(p )

which, together with the fact that Lyy(x,y, p) = 12p? — 4, implies
that if p2 # % the minimizer y satisfies

25/\/25/\// + (5/\/2 . 1)5/\// -0

for points at which ¥’ is continuous.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (cont.)

Therefore, y”(3y"* — 1) = 0 for points at which y’ is continuous
if % # % Therefore, 3" = 0 if y'? # % which implies that y’ is

piecewise constant. The minimizer is then saw-tooth like function

with slope +1, and there are only D!-minimizers.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Remark on the extensions of the simplest problem of Calculus

of Variations:
© Higher derivatives: The Lagrangian might involves higher or-
der derivatives of y. For example, we can consider the mini-

mization problem
b

inf | LO6y (9, y' (), y"(x)) dx,

yeA J,
where

A= {ye DX([a, b R)| y(2) = Ao, ¥(6) = o,
y'(a) = AL, y'(b) = Bl}-
We note that the corresponding test function space is

N ={ye D*([a,b];R)|y(a) = y(b) = y'(a) = y'(b) = 0}.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

If y is a minimizer, then J(e) = I(y + en) attains its minimum
at e = 0 for all n € A/, This implies J'(0) = 0 for all n € N,
and this condition gives the weak form of the Euler-Lagrange

equation associated with this minimization problem: write L =
L(x,y,p,q),

forall mpe .
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

@ Free ends: This is to consider the minimization problem

inf J L(x,y(x),y'(x)) dx.

yeD!([a,biR) Ja
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

@ Free ends: This is to consider the minimization problem

inf J L(x,y(x),y'(x)) dx.

yeD!([a,b]iR) Ja
In this case, the test function space is then A" = D(]a, b]; R).

The same argument implies that
Lb [Ly (%709, 7" ())n(¥) + Lp(x, 7(x), 5" ())n" (x) ] dx = 0 (22)

for all n € NV if y is a minimizer.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

@ Free ends: This is to consider the minimization problem

inf J L(x,y(x),y'(x)) dx.

yeD!([a,b]iR) Ja
In this case, the test function space is then A" = D(]a, b]; R).

The same argument implies that
Lb [Ly (%709, 7" ())n(¥) + Lp(x, 7(x), 5" ())n" (x) ] dx = 0 (22)

for all n € N if y is a minimizer. In particular, (22) holds for all
ne {ye D([ab];R)|y(@) = y(b) = 0}; thus the 3rd lemma

shows that if L, and L, are continuous, then

for point x at which y’ is continuous.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Integrating-by-parts of (22) further implies that

Lp(b, 3(b), 7' (b))n(b) — Lp(a,¥(a),¥'(a))n(@) =0 ¥neN.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Integrating-by-parts of (22) further implies that
Lp(b,¥(b),y'(b))n(b) — Lp(a, ¥(a), 7' (a))n(@) =0 VneN.

Choosing 7 € N so that n(a) = 1 and n(b) = 0 (such 7 always
exists), we find that

LP(avy(a)ay/(a)) =0.
Similarly, the choice of € A/ satisfying n(a) = 0 and n(b) = 1

shows that
Lp(b,y(b),y'(b)) =0.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Integrating-by-parts of (22) further implies that
Lp(b,¥(b),y'(b))n(b) — Lp(a, ¥(a), 7' (a))n(@) =0 VneN.

Choosing 7 € N so that n(a) = 1 and n(b) = 0 (such 7 always
exists), we find that

Lp(a,¥(a),y'(a)) = 0.
Similarly, the choice of € A/ satisfying n(a) = 0 and n(b) = 1
shows that
Lp(b,y(b),y'(b)) = 0.
Therefore,
(D The Euler-Lagrange/Du Bois-Reymond equation holds.

@ Lp(b,y(b),y'(b)) = Lp(a,¥(a),y'(a)) = 0 - this is called
the natural boundary condition.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

© Several dependent variables: Let
A= {y: (}/1,"' 7yn) : [aab] _)Rni
yj€ D'([a, b];R) for 1 < j < n,y(a) = Ao, y(b) = By}
or (when considering minimization problems with free ends)
A= {y: ()/17"‘ Jyn) : [aab] _)Rn’
yi€ D1([a, bJ; R) for 1 < j < n} = DI([a, bJ; R"),
and L : [a,b] x R" x R” — R. Consider the minimization

problem b

inf | L(xy(x),y'(x)dx.
yeA Ja
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Write L = L(X,y1,*"* y¥n,P1,"** ,Pn)- Then the Du Bois-

Reymond equation is

I 1y, ¥09) = Ly(x ¥,y () for 1<i<n.

When considering free ends problem, natural boundary condi-

tions
Lp,.(b,f/(b),f/'(b)) = Lp,(a,y(a),?'(a)) =0 for 1<i<n

have to be imposed for the minimizer y.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Q Several independent variables: Let 2 < R” be bounded
open set, and L : @ x R x R” — R (here we write L =
L(x,y,p1,-- ,pn)) be continuous. Consider the minimization

problem

inf | L(x,y(x), Vy(x)) dx,
yeA Jo

where A could be
® A= {y e DHXLR) ‘y = fon dQ} (with corresponding
N = {n € DY(Q;R)|n = 0on dQ}) when considering
the fixed-end problem, or
@ A= DYQ;R) (with corresponding ' = D(Q; R)) when

considering the free-end problem.
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§4.2 Simplest Problem in Calculus of Variations

Define J(e) = I(y + €n), where y € A is a possible minimizer,
n € N and € € R. The weak form of the Euler-Lagrange
equation is J'(0) =0:

L (L, (6,760, V96)006) + (VL) (%, 703, V96)) - V()] b= 0

A a
op1’ 0p2” 7 0pa
ent of L in p-variable. By the divergence theorem, the strong

for all n € N, where V,L = ( ) is the gradi-

form of the Euler-Lagrange equation is

div[(VpL) (% 90, VI()] = Ly (x, 70, VI(9) -
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§4.2 Simplest Problem in Calculus of Variations

Example (The minimal surface)

In this example we revisit Plateau’'s problem. Suppose that ) <
R? is a bounded set with boundary parameterized by (x(t),y(t))
for t € I, and C < R? is a closed curve parameterized by
(x(t), y(t), f(x(t),y(t))) for some given function f. We want to find

a surface having C as its boundary with minimal surface area.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (The minimal surface)

In this example we revisit Plateau’'s problem. Suppose that ) <
R? is a bounded set with boundary parameterized by (x(t),y(t))
for t € I, and C < R? is a closed curve parameterized by
(x(t), y(t), f(x(t),y(t))) for some given function f. We want to find
a surface having C as its boundary with minimal surface area. Then
the goal is to find a function u with the property that u = fon 092

that minimizes the functional
= J V1+|Vw|2dA.
Q

Let o € D(Q;R), and define
5 0) = T (u—l—e<p)—A() Vu-Vo

t—0 € Q1+ |Vu|2
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§4.2 Simplest Problem in Calculus of Variations

Example (The minimal surface (cont.))

If u minimizes A, then 6A(u; @) = 0 for all p € DY(Q;R) satisfying
@ = 0 on 0. Assuming that u € C%(Q;R), by the divergence
theorem (or Green's Theorem in divergence form) we find that u

satisfies

div(L) =0,

1+ |Vul?

or expanding the bracket using the Leibnitz rule, we obtain the min-
imal surface equation

(1+ uf,)uxX — 2uytiytiyy + (14 vy, =0 in Q.
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§4.2 Simplest Problem in Calculus of Variations

© Non-affine admissible set: We note that in Dido's problem
the admissible set A is not an affine space (a translation of a
vector space). In a minimization problem, the admissible set
A in general is not an affine space so there is no obvious test
function spaces ' to work on. See the following two examples
for deriving the weak form of the Euler-Lagrange equation for

minimizers.
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit)

We rephrase Dido’s problem as finding a simple closed curve C en-

closing a fixed number A of area with shortest perimeter. Let
A= {r(®) = x®i + y®j e DX([0, 1;R?)|
r(0) = r(1), J; [x(O3(t) - y(Ox(t)] dr = 24}

1
and I(r) = J \r'(t)| dt. We would like to study the minimization
0

lem inf /(r).
problem inf (r)
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit)

We rephrase Dido’s problem as finding a simple closed curve C en-

closing a fixed number A of area with shortest perimeter. Let
A={r(®) = x(®i+y(®j e D([0,1;R?) |
r(0) = r(1), Jl [x(O3(t) - y(Ox(t)] dr = 24}
and /(r) = Ll \r'(t)| dt. We would like to study the minimization
problem rigftl(r).

The difficulty of this particular formulation is that A is not an affine
space so there is “no” corresponding test functions space to compute

the first variation as before.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))
To see how we derive the Euler-Lagrange equation for this minimiza-
tion problem for a minimizer ¥ = Xi + yj, we introduce a family of
curves r(t;e) = x(t;e)i+ y(t;€)j € A, where € € R is a parameter
that will be passed to the limit, such that

Q r(t;0) =7(1);

Q r(0;¢) = r(l;e);

© ris also differentiable in €.
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

To see how we derive the Euler-Lagrange equation for this minimiza-
tion problem for a minimizer ¥ = Xi + yj, we introduce a family of
curves r(t;e) = x(t;e)i+ y(t;€)j € A, where € € R is a parameter
that will be passed to the limit, such that

Q r(t;0) =r(1);

Q@ r(0;¢) = r(1se);

© ris also differentiable in e.
By the fact that r € A,
[ et 991659 ~ vt 9x(6: ] =24

0

thus
d

de

e=0 f [x(t;€)y(t; €) — y(t; €)x(t;€)] dt = 0.

0
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

Denote dr(t) = di
€

_Or(t; €) = 0x(t)i+ dy(t)j. Then

L 1 [(6x)y + X(8y) — (8y)x — §(6x)] dt = 0.

For each possible minimizer ¥, the relation above induces a linear

vector space

N :{&: 5xi+ Syj e €L([0, 1]; R?) ‘ Ll [%(8y) — 9(6)] dt = o}.
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

Denote dr(t) = di
€

_Or(t; €) = 0x(t)i+ dy(t)j. Then

L 1 [(6x)y + X(8y) — (8y)x — §(6x)] dt = 0.

For each possible minimizer ¥, the relation above induces a linear

vector space
1 . .

N; ={6r = dxi + dyj e €1((0, 1 R?) U [%(dy) - §(8)] de = 0}.
0

Now we look for a minimizer ¥ e €2([0, 1]; R?). We note that if we
are able to find a minimizer in C2([0, 1]; R?) (thus a Cl-minimizer),
it must also be a minimizer in D1([0, 1]; R?). Since 7€ €2([0, 1]; R?)
is a minimizer, the function J(e) = /(r(t;€)) attains its minimum at

e=0. 4
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

This yields that J/(0) = 0 or more precisely,
1 A~/ ’
J r(t) - (5n)'(t) dt =0,

o [P

where we note that dre N;. In other words, ¥ satisfies

1 ~/
re ! _ X
L\?’(t)\ 6P (B dt=0  VoreN;,
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

This yields that J/(0) = 0 or more precisely,
1 A~/ ’
J r(t) - (5n)'(t) dt =0,

o [P

where we note that dre N;. In other words, ¥ satisfies

1 ~/
re ! _ X
fo‘?,(t)‘ 6P (B dt=0  VoreN;,

and by the 4th lemma there exists A1, Ao, u1, o € R such that

T = (MO + )i+ (RO + ).
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

This yields that J/(0) = 0 or more precisely,
1 A~/ ’
J r(t) - (5n)'(t) dt =0,

o [P

where we note that dre N;. In other words, ¥ satisfies

1 ~/
re ! _ X
L\?’(t)\ 6P (B dt=0  VoreN;,

and by the 4th lemma there exists A1, Ao, u1, o € R such that

ol (MY (8) + p1) i+ (AaX(t) 4+ p2)j -

Since ¥ = (%, ) € €2([0, 1]; R?), we differentiate the equation above
and obtain that

POY \ o Sl s
(Fg7) =M @i+ 2@
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

Therefore, taking the inner product of the equation above with the
~/

unit tangent vector |£—, we find that for all ¢t € [0, 1],
r
7'(t) () Y 1 e Pb)
0= =7 N a — )\1_)/ (t)1+ )‘ZX (t).] ° 57
(lf(f)l) (lf(f)l) ( ) [r'(t)]
X'(t)y'(t)
= o+ M)
[r'(t)]
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

Therefore, taking the inner product of the equation above with the
~/

unit tangent vector —-, we find that for all t € [0, 1],
|’, find that for all te [0, 1
r
() AORY NTAY NN
0= (= “\ =7 = (A\1y (t)l—l—)\2x (t).] )
(|f(f)|) (|f(f)|) ( ) r (@)l
X'ty
= Do+ M) XY
r (@)l
which implies that Ao = —\; = )\ (for otherwise X'y’ = 0 which

shows that the trajectory is a straight line);
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

Therefore, taking the inner product of the equation above with the

unit tangent vector we find that for all ¢t € [0, 1],

A7)

|r
7'(t) () Y 1 e Pb)
(lf(f)l) (lf(f)l) ( ) r (@)l
')y
()\2 + )\1) =
r (@)l
which implies that Ao = —\; = )\ (for otherwise X'y’ = 0 which
shows that the trajectory is a straight line); thus
[0 - : - :
T = (A0 + m)i (R0 + )
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§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

Therefore, taking the inner product of the equation above with the

unit tangent vector we find that for all ¢t € [0, 1],

A7)

|r
7'(t) () Y 1 e Pb)
(lf(f)l) (lf(f)l) ( ) r (@)l
')y
()\2 + )\1) =
r (@)l
which implies that Ao = —\; = )\ (for otherwise X'y’ = 0 which
shows that the trajectory is a straight line); thus
[0 - : - :
T = (A0 + m)i (R0 + )

Note that A # 0 for otherwise the unit tangent vector is constant

which implies that 7 is a parametrization of a straight line.

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))

Therefore, with ¥ denoting the vector
7o) =x0i+y05 = (20 + 52)i+ (70

we have
F(1)

7 (@)l

= —Ay(t)i+ AX(t)].

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*




Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Isoperimetric Inequality - revisit (cont.))
Therefore, with ¥ denoting the vector

F) =%0i1+705 = (30 + 2)i+ (70 - &3,

we have
40
7o)

Finally, taking the inner product of the equation above with the

= —Ay(t)i+ AX(t)].

(position) vector F, we conclude that

Therefore, the closed curve having fixed length and enclosing the

largest area must be a circle.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere)
Consider finding the shortest path on the unit sphere connecting
two points Ag and By (on the same sphere). In other words, we are
interested in the minimization problem
1
}gjL |r'(t)] dt,
where A = {re D([0,1];R?) | r(0) = Ao, r(1) = By, |r(t)| = 1V t}.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere)
Consider finding the shortest path on the unit sphere connecting
two points Ag and By (on the same sphere). In other words, we are
interested in the minimization problem
1
:gjL |r'(t)] dt,

where A = {re D([0,1];R?) | r(0) = Ao, r(1) = By, |r(t)| = 1V t}.
Similar to the previous example, we introduce a family of curves
r(t;e), where € € R is a parameter that will be passed to the limit,
such that

D rt;0) =71); @ r0;e) =Ay; @ r(l;e) =By; @ ris

also differentiable in €,

where ¥ gives the shortest path connecting Ag and By.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere (cont.))
Since the minimizer 7 satisfies that F€ A (that is, |[f| = 1), we find
that 7'(t) - 7(t) = 0 whenever 7'(t) exists. Therefore, we can assume

that

7(t),7'(t), (F x 7)(t) are linearly independent if 7'(t) # 0.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere (cont.))

Since the minimizer 7 satisfies that F€ A (that is, |[f| = 1), we find
that 7'(t) - 7(t) = 0 whenever 7'(t) exists. Therefore, we can assume
that

7(t),7'(t), (F x 7)(t) are linearly independent if 7'(t) # 0.

Denote dr(t) —‘ . Then the fact that r € A again implies

that dr- ¥ = 0; thus we shall introduce N; as
N; = {5re el([o, 1]; R?) ‘?(t) .6r(t) = 0 for all te [0, 1}} :

thus we find that

NA:span(r T x )_{ar + b(r ’abeR}
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere (cont.))

Now suppose that ¥ € C2([0, 1]; R3). Similar to the previous example,
we obtain that

d
=

1 " B 1 ?l(t) ' , )
6:0J01r (t,e)]dt_JO S (7@d  vored,

and integrating by parts further shows that for dre N7,

0= ;Eg' 9| - Ll (;:8)’.(&)(15) ot
— [ (E2Y enwe,

where we have use the fact that (6r)(0) = (0r)(1) = 0 to eliminate

the boundary contributions.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere (cont.))
A~/

. r\’ .
Since (m) 7' =0, we conclude from the structure of N; that
r

f: b(t)@gg')' LF'xP(Hdt=0 VYbec(o,1];R)

which (by the first lemma) shows that

(;8) FxPB=0 Vtel0,1].
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere (cont.))

~/

. r\’ .
Since (m) 7' =0, we conclude from the structure of N; that
r

f: b(t)@gg')' LF'xP(Hdt=0 VYbec(o,1];R)

which (by the first lemma) shows that

(Y. @xpw=0 vicp).

7 (®)]
By the fact that 7' - (7' x 7) = 0, the identity above further shows
that

Flt)- (P xP)(t)=0 Vtelo,1]. (23)

v
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere (cont.))

Now suppose that the parametrization of the shortest path satisfies
that |[7'(t)| = constant; that is, the motion along the shortest path
has constant speed. Then #'(t) - 7" (t) = 0 for all t € [0, 1]; thus

7" =cr+d(r'x¥) for some functions c and d of t.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere (cont.))

Now suppose that the parametrization of the shortest path satisfies
that |[7'(t)| = constant; that is, the motion along the shortest path
has constant speed. Then #'(t) - 7" (t) = 0 for all t € [0, 1]; thus

7" =cr+d(r'x¥) for some functions c and d of t.
Identity (??) further shows that d = 0; thus 7" = c¥ so that

F'x?) =F'xF=crxr=0.
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Chapter 4. Optimization Problems and Calculus of Variations

§4.2 Simplest Problem in Calculus of Variations

Example (Geodesic on unit sphere (cont.))

Now suppose that the parametrization of the shortest path satisfies
that |[7'(t)| = constant; that is, the motion along the shortest path
has constant speed. Then #'(t) - 7" (t) = 0 for all t € [0, 1]; thus

7" =cr+d(r'x¥) for some functions c and d of t.
Identity (??) further shows that d = 0; thus 7" = c¥ so that

F'x?) =F'xF=crxr=0.

As a consequence, ¥’ x 7 is a constant vector ¢ which further implies
that 7- ¢ = 0. Therefore, the trajectory lies on a plane passing

through the origin which shows that the shortest path connecting

two points on the sphere must be part of a great circle.
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