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Chapter A. Vector Calculus

§A.1 Vector Fields

Definition (Vector Fields - # & 3-)
A (two-dimensional) vector field over a plane region R is a vector-

valued function F that assigns a vector F(x,y) € R? to each point

(x,y) in R.
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Chapter A. Vector Calculus
§A.1 Vector Fields

Definition (Vector Fields - # & 3#-)

A (two-dimensional) vector field over a plane region R is a vector-
valued function F that assigns a vector F(x,y) € R? to each point
(x,y) in R. A (three-dimensional) vector field over a solid region Q
is a vector-valued function F that assigns a vector F(x,y,z) € R? to
each point (x, y, z) in Q.
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Chapter A. Vector Calculus
§A.1 Vector Fields

Definition (Vector Fields - # & 3#-)

A (two-dimensional) vector field over a plane region R is a vector-
valued function F that assigns a vector F(x,y) € R? to each point
(x,y) in R. A (three-dimensional) vector field over a solid region Q
is a vector-valued function F that assigns a vector F(x,y,z) € R? to

each point (x, y, z) in Q.

In general, an n-dimensional vector field over a region D < R" is a

vector-valued function F that assigns a vector F(x1, x2, -+ ,x,) € R"

to each point x = (x1,x2, -+ ,x,) in D.
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Chapter A. Vector Calculus
§A.1 Vector Fields

Definition (Vorticity - *& A )

Let Q be an open region in space, and F: @ — R3 be a vector field
given by F(x,y,z) = M(x,y,z)i+ N(x,y,z)j+ P(x,y,z)k. The curl
of F, also called the vorticity of F, is a vector field given by

oP aN>._(aP a/vl). <6N 6M>k'

If curlF = 0, then F is said to be irrotational.
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Chapter A. Vector Calculus
§A.1 Vector Fields

Definition (Vorticity - *& A )

Let Q be an open region in space, and F: @ — R3 be a vector field
given by F(x,y,z) = M(x,y,2)i+ N(x,y, 2)j+ P(x,y, z)k. The curl
of F, also called the vorticity of F, is a vector field given by

oP aN>._(aP a/vl). <6N 6M>k'

If curlF = 0, then F is said to be irrotational.

Symbolically, the curl of Fis given by

curlF=V x F=

T R~
SEIP
TR &
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Chapter A. Vector Calculus
§A.1 Vector Fields

Remark: Let F be a two dimensional vector field given by F(x, y) =
M(x, y)i+ N(x, y)j. We can also define the curl of F by treating F
as a three-dimensional vector field

Fx,¥,2) = Mlx, )i+ Nix,y)j + Ok
(which is a three-dimensional vector field independent of z) and
define curlF as the third component of curlF (for the first two com-
ponents of curlF are zero).

Ching-hsiao Arthur Cheng #8535 % # 8 = - MA3067-*



Chapter A. Vector Calculus
§A.1 Vector Fields

Remark: Let F be a two dimensional vector field given by F(x, y) =
M(x, y)i+ N(x, y)j. We can also define the curl of F by treating F
as a three-dimensional vector field

~

F(x,y,z) = M(x, y)i+ N(x,y)j + Ok

(which is a three-dimensional vector field independent of z) and
define curlF as the third component of curlF (for the first two com-
ponents of curlF are zero). Therefore, the curl of a two dimensional
vector field F = Mi+ Nj is a scalar function given by

oN oM

curlF = i a—y
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Chapter A. Vector Calculus
§A.1 Vector Fields

Remark: Let F be a two dimensional vector field given by F(x, y) =
M(x, y)i+ N(x, y)j. We can also define the curl of F by treating F
as a three-dimensional vector field

~

F(x,y,z) = M(x, y)i+ N(x,y)j + Ok

(which is a three-dimensional vector field independent of z) and
define curlF as the third component of curlF (for the first two com-
ponents of curlF are zero). Therefore, the curl of a two dimensional
vector field F = Mi+ Nj is a scalar function given by

oN oM

ox oy’

Moreover, by defining the differential operator V+ = (—é ﬁ) on
plane we have the symbolic representation

curlF=V=* . F.

curlF =
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Chapter A. Vector Calculus
§A.1 Vector Fields

Definition (Divergence - 4T/ )

Let R be an open region in the plane, and F: R — R? be a vector
field given by F(x,y) = M(x,y)i+ N(x,y)j. The divergence of F is
a scalar function given by

divF= M o

é’x+87y'
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Chapter A. Vector Calculus
§A.1 Vector Fields

Definition (Divergence - 4T/ )

Let R be an open region in the plane, and F: R — R? be a vector
field given by F(x,y) = M(x,y)i+ N(x,y)j. The divergence of F is
a scalar function given by

divF= M o

0x M dy

Let Q be an open region in space, and F: Q@ — R3 be a vector
field given by F(x,y,z) = M(x,y, 2)i+ N(x,y,2)j + P(x,y,z)k. The
divergence of F is a scalar function given by

oM N 0P

ox Oy 0z

divF =

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter A. Vector Calculus
§A.1 Vector Fields

Definition (Divergence - 4T/ )

Let R be an open region in the plane, and F: R — R? be a vector
field given by F(x,y) = M(x,y)i+ N(x,y)j. The divergence of F is
a scalar function given by

divF= M o

ox M dy

Let Q be an open region in space, and F: Q@ — R3 be a vector
field given by F(x,y,z) = M(x,y, 2)i+ N(x,y,2)j + P(x,y,z)k. The
divergence of F is a scalar function given by

oM N 0P

O0x

divF =

dy 0z

The symbolic representation of the divergence is

divF=V - F.
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Chapter A. Vector Calculus
§A.1 Vector Fields

Remark: In general, if D is an open region in R" and F: D — R"
be a vector field given by F(x) = (Fi(x), F2(x), -, Fa(x)), where

x = (x1,X2, -+ ,Xn), the divergence of F is a scalar function given
by

divF — ZPF 0F 0F2+.“+0F,,'

oxi  Ox1 PXQ 0Xn
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Chapter A. Vector Calculus
§A.1 Vector Fields

Remark: In general, if D is an open region in R" and F: D — R"
be a vector field given by F(x) = (Fi(x), F2(x), -, Fa(x)), where
x = (x1,X2, -+ ,Xn), the divergence of F is a scalar function given

by
divF — ZPF 0F 0F2+.“+0F,,'

oxi  Ox1 PXQ 0Xn

Let F be a three-dimensional vector field given by F(x,y,z) =
M(x, y, z)i+ N(x, y, z) j+ P(x, y, z)k. If M, N, P have continuous sec-
ond partial derivatives, then

div(curlF) =0.
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Chapter A. Vector Calculus
§A.2 Line Integrals

§A.2.1 Curves and parametric equations

Definition

A subset Cin the plane (or space) is called a curve if Cis the image
of an interval / € R under a continuous vector-valued function r.
The continuous function r: | — R? (or R3) is called a parametriza-
tion of the curve, and the equation

(x,y)=r(t), tel (or (x,y,2) =r(t), tel)

is called a parametric equation of the curve.

A curve Cis called a plane curve if it is a subset in the plane.
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Chapter A. Vector Calculus
§A.2 Line Integrals

Definition
A curve Cis called simple if it has an injective parametrization; that
is, there exists r: | — R3 such that r(/) = Cand r(x) = r(y) implies

that x = y.
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Chapter A. Vector Calculus
§A.2 Line Integrals

Definition

A curve Cis called simple if it has an injective parametrization; that
is, there exists r: | — R3 such that r(/) = Cand r(x) = r(y) implies
that x = y. A curve C with parametrization r : | — R3 is called

closed if | = [a, b| for some closed interval [a,b] € R and r(a) =
r(b).
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Chapter A. Vector Calculus
§A.2 Line Integrals

Definition
A curve Cis called simple if it has an injective parametrization; that
is, there exists r: | — R3 such that r(/) = Cand r(x) = r(y) implies

that x = y. A curve C with parametrization r : | — R3 is called
closed if | = [a, b| for some closed interval [a,b] € R and r(a) =

r(b). A simple closed curve Cis a closed curve with parametrization

r: [a, b] — R3 such that ris one-to-one on [a, b).
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Chapter A. Vector Calculus
§A.2 Line Integrals

Definition
A curve Cis called simple if it has an injective parametrization; that
is, there exists r: | — R3 such that r(/) = Cand r(x) = r(y) implies

that x = y. A curve C with parametrization r : | — R3 is called
closed if | = [a, b| for some closed interval [a,b] € R and r(a) =
r(b). A simple closed curve Cis a closed curve with parametrization
r: [a, b] — R3 such that ris one-to-one on [a, b). A smooth curve C
is a curve with continuously differentiable parametrization r: | — R3
such that r’(t) # 0 for all te .
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Chapter A. Vector Calculus

§A.2 Line Integrals

When a parametrization r : | — R3 of curves C is mentioned, we
always assume that “there is no overlap”; that is, there are no inter-
vals [a, b, [c, d] < Isatisfying that r([a, b]) = r([c, d]).
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Chapter A. Vector Calculus
§A.2 Line Integrals

When a parametrization r : | — R3 of curves C is mentioned, we
always assume that “there is no overlap”; that is, there are no inter-
vals [a, b, [c, d] < Isatisfying that r([a, b]) = r([c, d]). If in addition
@ Cis a simple curve, then ris injective, or
@ Cis closed, then /= [a, b] and r(a) = r(b), or
© Cissimple closed, then [ = [a, b] and ris injective on [a, b) and
r(a) = r(b).
Q@ Cis smooth, then ris continuously differentiable and r’(t) 0
for all te l
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Chapter A. Vector Calculus
§A.2 Line Integrals

When a parametrization r : | — R3 of curves C is mentioned, we
always assume that “there is no overlap”; that is, there are no inter-
vals [a, b], [¢, d] < Isatisfying that r([a, b]) = r([c, d]). If in addition
@ Cis a simple curve, then ris injective, or
@ Cis closed, then /= [a, b] and r(a) = r(b), or
© Cissimple closed, then [ = [a, b] and ris injective on [a, b) and
r(a) = r(b).
Q@ Cis smooth, then ris continuously differentiable and r’(t) 0
for all te I

Let C be a smooth curve parameterized by r: [a, b] — R3. Then

b
#(C) = the length of C — f IF' ()] dt.
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Chapter A. Vector Calculus
§A.2 Line Integrals

§A.2.2 Line integrals of scalar functions

In this section, we are concerned with the “integral” of a real-valued
function f defined on a curve C.

Definition (Partition of curves)

Let C be a curve in space. A partition of Cis a collection of curves
{Cl, G, -, Cn} satisfying

Q@ C=J G (so that C; < C);
i=1

Q If i # j, then C;n C; contains at most two points.
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Chapter A. Vector Calculus
§A.2 Line Integrals

§A.2.2 Line integrals of scalar functions

In this section, we are concerned with the “integral” of a real-valued
function f defined on a curve C.

Definition (Partition of curves)

Let C be a curve in space. A partition of Cis a collection of curves
{Cl, G, -, Cn} satisfying

n
Q@ C=J G (so that C; < C);
i=1
Q If i # j, then C;n C; contains at most two points.

Let P = {Ci, Gy, -+, Cp} be a partition of C. The norm of P,
denoted by |P|

IP] = max {E(Cl)ag(cé)a T ,E(Cn)} )

, is the number

where ¢(Cj) denotes the length of curve C;.
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Chapter A. Vector Calculus
§A.2 Line Integrals

Definition (Riemann sum)
Let C be a curve in space, and f: C — R is a real-valued function

defined on C. A Riemann sum of f for partition P is a sum of the

form

> (@G

where {q1, g2, - , qn} is a collection of points on Csatisfying q; € C;

forall 1 <j< n.
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Chapter A. Vector Calculus
§A.2 Line Integrals

Definition (Riemann sum)

Let C be a curve in space, and f: C — R is a real-valued function
defined on C. A Riemann sum of f for partition P is a sum of the

form

> (@G

where {q1, g2, - , qn} is a collection of points on Csatisfying q; € C;

forall 1 <j< n.

We note that in order to define the norm of partitions, it is
required that every sub-curve C; of C has length. This kind
of curves is called rectifiable curves, and we can only consider line
integrals along rectifiable curves. In particular, a piecewise continu-
ously differentiable curve is rectifiable.
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Chapter A. Vector Calculus
§A.2 Line Integrals

The line integral of falong C is the limit of Riemann sums

lim S £(g)e(C;
HPH—>0,-; (g)(C))

if the limit indeed exists.
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Chapter A. Vector Calculus
§A.2 Line Integrals

The line integral of falong C is the limit of Riemann sums

lim S £(g)e(C;
Jim 3 @)(G)

if the limit indeed exists. The precise definition is given below.

Definition

Let C be a rectifiable curve, and f: C — R be a scalar function.
The line integral of falong Cis a real number L such that for every
e > 0 there exists § > 0 such that if P = {C;, Co,---,C,} is a
partition of C satisfying |P|| < 0, then any Riemann sum of f for P
belongs to the interval (L —¢, L+ ¢).
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Chapter A. Vector Calculus
§A.2 Line Integrals

The line integral of falong C is the limit of Riemann sums

lim S £(g)e(C;
Jim 3 @)(G)

if the limit indeed exists. The precise definition is given below.
Definition
Let C be a rectifiable curve, and f: C — R be a scalar function.

The line integral of falong Cis a real number L such that for every
e > 0 there exists § > 0 such that if P = {C;, Co,---,C,} is a
partition of C satisfying |P|| < 0, then any Riemann sum of f for P
belongs to the interval (L —¢, L+ ¢).

Whenever such an L exists, it must be unique, and the number L is
denoted by L fds (and when C is a closed curve, we use jgc fds to

emphasize that the curve is cIosed).
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Chapter A. Vector Calculus
§A.2 Line Integrals

Let C be a (piecewise) smooth curve with (piecewise) continuously

differentiable injective parametrization r: [a, b] — R3, and f: C —
R be a continuous function. Then the line integral of f along C

exists and is given by
b
f fds = f (fo (@) |r' ()] dt
C a

where ||r'(t)| is the length of the vector r'(t).
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Chapter A. Vector Calculus
§A.2 Line Integrals

Evaluate J (x2 — y+3z) ds, where Cis the line segment connecting
c

the points (0,0,0) and (1,2,1).
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Chapter A. Vector Calculus
§A.2 Line Integrals

Evaluate J (x2 — y+3z) ds, where Cis the line segment connecting
c

the points (0,0,0) and (1,2,1).

First we note that the line segment can be parameterized by

r(t) = (1 —1)(0,0,0) + t(1,2,1) = ti + 2tj + tk te[0,1].
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Chapter A. Vector Calculus
§A.2 Line Integrals

Evaluate J (x2 — y+3z) ds, where Cis the line segment connecting
c

the points (0,0,0) and (1,2,1).
First we note that the line segment can be parameterized by
r(t) = (1—1)(0,0,0) + t(1,2,1) = ti + 2tj + tk te[0,1].

Therefore, the desired line integral is given by
1
f (x? — y+ 32) ds = J (£2 = 2t + 30)|)i + 2j + k| dt
C 0

- _5v6
—\@L(t + 1) dt= 2=
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Chapter A. Vector Calculus
§A.2 Line Integrals

Evaluate f xds, where C is the curve starting from (0,0) to (1,1)
c

along y = x? then from (1,1) to (0,0) along y = x.
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Chapter A. Vector Calculus
§A.2 Line Integrals

Evaluate f xds, where C is the curve starting from (0,0) to (1,1)
c

along y = x? then from (1,1) to (0,0) along y = x.

Let C; be the piece of the curve connecting (0,0) and (1,1) along
y = x2, and G, be the piece of the curve connecting (1, 1) and (0, 0)
along y = x. Then C; and (;, can be parameterized by

n(t)=ti+t?j tel0,1] and mn(t)=ti+tj tel0,1],

respectively.
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Chapter A. Vector Calculus
§A.2 Line Integrals

Evaluate f xds, where C is the curve starting from (0,0) to (1,1)
c

along y = x? then from (1,1) to (0,0) along y = x.

Let C; be the piece of the curve connecting (0,0) and (1,1) along
y = x2, and G, be the piece of the curve connecting (1, 1) and (0, 0)
along y = x. Then C; and (;, can be parameterized by

n(t)=ti+t?j tel0,1] and mn(t)=ti+tj tel0,1],

respectively. Since C= C; u G, and C; n G has only two points,
1 1

f et — J skt || xas— f i + 2t dt + f i+ j dt
c G G 0 0

= fl[thm/it] dtz%(&')ﬁ—l)—kg.
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Chapter A. Vector Calculus
§A.2 Line Integrals

Let C be the upper half part of the circle centered at the origin with

radius R > 0 in the xy-plane. Evaluate the line integral j yds.
c

First, we parameterize C by
r(t) = Rcos ti + Rsin tj te[0,m].

Then .
J yds = f Rsin t | — Rsin ti + Rcos tj| dt
c 0

= f R2sintdt = 2R?.
0
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Chapter A. Vector Calculus
§A.2 Line Integrals

Find the mass of a wire lying along the first octant part of the curve

of intersection of the elliptic paraboloid z = 2 — x?> — 2y? and the
parabolic cylinder z = x? between (0, 1,0) and (1,0, 1) if the density
of the wire at position (x, y, z) is o(x, y, z) = xy.
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Chapter A. Vector Calculus
§A.2 Line Integrals

Find the mass of a wire lying along the first octant part of the curve

of intersection of the elliptic paraboloid z = 2 — x?> — 2y? and the
parabolic cylinder z = x? between (0, 1,0) and (1,0, 1) if the density
of the wire at position (x, y, z) is o(x, y, z) = xy.

Note that we can parameterize the curve C by

rit)=ti++1-t2j+t’k  te0,1].
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Chapter A. Vector Calculus
§A.2 Line Integrals

Find the mass of a wire lying along the first octant part of the curve

of intersection of the elliptic paraboloid z = 2 — x?> — 2y? and the
parabolic cylinder z = x? between (0, 1,0) and (1,0, 1) if the density
of the wire at position (x, y, z) is o(x, y, z) = xy.

Note that we can parameterize the curve C by
rit)=ti++1-t2j+t’k  te0,1].

Therefore, the mass of the curve can be computed by

Jgds:J t\/l—t2H1+ +2tkHdt
C
_ \/ﬁ :f -
_Jot2 (1 —2t2)2dt 8+4.
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Chapter A. Vector Calculus
§A.2 Line Integrals

§A.2.3 Line integrals of vector fields

Definition

An oriented curve is a curve on which a consistent tangent direction
T is defined.
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Chapter A. Vector Calculus

§A.2 Line Integrals

§A.2.3 Line integrals of vector fields

Definition
An oriented curve is a curve on which a consistent tangent direction

T is defined. In other words, an oriented curve is a (piecewise)

smooth curve with a given parametrization r : | — R? so that

!
Tor= ”:—,” is defined (almost everywhere).
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Chapter A. Vector Calculus
§A.2 Line Integrals

§A.2.3 Line integrals of vector fields

Definition

An oriented curve is a curve on which a consistent tangent direction
T is defined. In other words, an oriented curve is a (piecewise)

smooth curve with a given parametrization r : | — R? so that

Tor= is defined (almost everywhere).

r/
]

Definition

Let F be a continuous vector field defined on a smooth oriented
curve C parameterized by r(t) for t € [a, b]. The line integral of F
along C is given by

F-Tds.
C
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Chapter A. Vector Calculus
§A.2 Line Integrals

Remark:
O Since Tor= H T for a curve C parameterized by r: [a, b] —
R3,
b I‘/(t) , b ,
f F.T ds:f (For)(®) Tl ©)] dt:J (For)(t)-r'(z) dt.
C a a

Since r’(t) dt = dr(t), sometimes we also use f F-drto denote

the line integral of F along the oriented curve C parameterized

by r.
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Chapter A. Vector Calculus
§A.2 Line Integrals

Remark:

@ Since Tor= H " for a curve C parameterized by r: [a, b] —
R3,

| Frds= | (Fon(e) rcrlir ®l de = | (Fon(®-r'() e

a

Since r’(t) dt = dr(t), sometimes we also use f F-drto denote

the line integral of F along the oriented curve C parameterized
by r.

@ Given an oriented curve C and F: C — R?, we sometimes use

j F - dr to denote the line integral J F-(—T)ds, where —T
NG c

is the tangent direction opposite to the orientation of C.
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Chapter A. Vector Calculus
§A.2 Line Integrals

© Let C be a smooth oriented curve parameterized by r: [a, b] —
R3 and F: C— R3. Then —C, the oriented curve with opposite
orientation w.r.t. C, can be parameterized by r : [—b,—a] —

R3 given by ri(t) = r(—t)
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Chapter A. Vector Calculus
§A.2 Line Integrals

© Let C be a smooth oriented curve parameterized by r: [a, b] —
R3 and F: C— R3. Then —C, the oriented curve with opposite
orientation w.r.t. C, can be parameterized by r : [—b,—a] —

R3 given by ri(t) = r(—t) so that

f F.dr— f_a(Forl)() Fl(2)dt

_ L(For) dt_JF
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Chapter A. Vector Calculus
§A.2 Line Integrals

© Let C be a smooth oriented curve parameterized by r: [a, b] —
R3 and F: C— R3. Then —C, the oriented curve with opposite
orientation w.r.t. C, can be parameterized by r : [—b,—a] —

R3 given by ri(t) = r(—t) so that
J Bl f_a(Forl)() Fl(2)dt
_r (For)(—t) - (—r")(—1) dt
— [[(Fon(® ro

_ Lb(For) dt_JF

This explains J F.dr= J F.-(—T)ds.
- c
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Chapter A. Vector Calculus
§A.2 Line Integrals

Find the work done by the force field

1. 1. 1
F(X7y7 Z) = _§X1 — iy.] + Zk

on a particle as it moves along the helix parameterized by
r(t) = cos ti + sin tj + tk

from the point (1,0,0) to the point (—1,0,37). Note that such a
helix is parameterized by r(t) with t € [0,37]. Therefore,

3
1 1 1
J F-dr:J (—fcosti—fsinthrfk) - (= sinti+ cos tj + k) dt
c o U2 2 4

—fm(lsintcost 1simtcost—i—1>dt—37T
) \2 2 4 4

Ching-hsiao Arthur Cheng #%5 % # 8 = - MA3067-*



Chapter A. Vector Calculus
§A.2 Line Integrals

Let F(x,y) = y?i + 2xyj. Evaluate the line integral J F - dr from
c
(0,0) to (1,1) along

O the straight line y = x,
2

@ the curve y = x=, and

© the piecewise smooth path consisting of the straight line seg-
ments from (0,0) to (0,1) and from (0,1) to (1,1).
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Chapter A. Vector Calculus
§A.2 Line Integrals

Let F(x,y) = y?i + 2xyj. Evaluate the line integral J F - dr from
c
(0,0) to (1,1) along

O the straight line y = x,
2

@ the curve y = x=, and

© the piecewise smooth path consisting of the straight line seg-
ments from (0,0) to (0,1) and from (0,1) to (1,1).
For the straight line case, we parameterize the path by r(t) = (t, t)
for te [0,1]. Then

1 1
J F-dr:J (t2i+2t2j)~(i+j)dt:f 3t2dt=1.
C 0 0
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Chapter A. Vector Calculus
§A.2 Line Integrals

Example (cont.)

For the case of parabola, we parameterize the path by r(t) = (t, t?)
for te [0,1]. Then

1
JF dr_J (t*i+ 2t3]) - ('+2tj)dt:f5t4dt:1.
0 0
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Chapter A. Vector Calculus
§A.2 Line Integrals

Example (cont.)

For the case of parabola, we parameterize the path by r(t) = (t, t?)
for te [0,1]. Then

1
JF dr_J (t*i+2t%)) - (i +2tj)dtzf5t4dt:1.
0 0

For the piecewise linear case, we let C; denote the line segment
joining (0,0) and (0,1), and let C; denote the line segment joining
(0,1) and (1,1). Note that we can parameterize C; and C; by

nt =tj tel0,1] and mr(t)=ti+j tel0,1],

respectively. Therefore,

1 1
JF-dr: Fodrv [ Fodr= f t2i-jdt+f )t
C G 0 0

Co
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Chapter A. Vector Calculus
§A.2 Line Integrals

Let F(x,y) = yi— xj. Evaluate the line integral J F - dr from (1,0)
C
to (0,—1) along
@ the straight line segment joining these points, and

@ three-quarters of the circle of unit radius centered at the origin
and traversed counter-clockwise.

For the first case, we parameterize the path by r(t) = (1 —t, —t) for
te [0,1]. Then

1
j F.dr= f [—tit (t—1)j] - (—=i—j)dt=1.
C 0
For the second case, we parameterize the path by r(t) = costi +
sin tj for t e [0, S—W] Then
2
3w

f F-dr= JT(sinti—costj) - (—sinti+ costj) dt = —
C 0
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Chapter A. Vector Calculus
§A.3 Green's Theorem

Let R < R? be a region enclosed by a simply closed curve C and
F = Mi+ Nj be a vector fields on (an open set containing) R, where
C is oriented counterclockwise so that

C is traversed once so that the region R always lies to the left.

The line integral of F along an oriented curve C sometimes is written

as
3§ Mdx + Ndy
C

since symbolically we have dr = dxi + dyj so that
F-dr= (Mi-+ Nj) - (dxi+ dyj) = Mdx+ Ndy.

The right-hand side of the identity above is called a differential
form.
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Chapter A. Vector Calculus
§A.3 Green's Theorem

Theorem (Green's Theorem)

Let R be a plane region enclosed by a closed curve C oriented coun-
terclockwise; that is, C is traversed once so that the region R always
lies to the left. If M and N have continuous first partial derivatives

in an open region containing R, then

N oM
j{{CdeJr Ndy = HR (5 - a—y)(x,y) dA.
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Chapter A. Vector Calculus
§A.3 Green's Theorem

Theorem (Green's Theorem)

Let R be a plane region enclosed by a closed curve C oriented coun-
terclockwise; that is, C is traversed once so that the region R always
lies to the left. If M and N have continuous first partial derivatives

in an open region containing R, then

N oM
3£chX+ Ndy = HR (5 - a—y)(x,y) dA.

Remark: If Fis a two-dimensional vector field given by F = Mi+ Nj,

then under the assumption of Green's Theorem,

jgc F-Tds= JL (curlF)(x,y) dA.

This is sometimes called Green’s Theorem in Tangential Form.
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Chapter A. Vector Calculus
§A.3 Green's Theorem

Remark: Let R be a region enclosed by a smooth simply closed

curve C with outward-pointing unit normal N on C, and F be a
smooth vector field defined on an open region containing R. We are

interested in 3€ F - Nds, the line integral of F- N along C.
c

Suppose that F = Mi + Nj, and C is parameterized by r(t) =
x(t)i+y(t)], t € [a, b], so that Cis oriented counterclockwise. Define
G = —Ni+ Mj. Then Green's Theorem (in tangential form) implies
that

ff ~ Nebx + Mdy:§> G- dr= H curlGdA = H (My + Ny) dA
C c R R

_ ” divEdA.
R
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Chapter A. Vector Calculus
§A.3 Green's Theorem

On the other hand, if ris a counterclockwise parametrization of C,
then

N(r(@) = L8 4 X0 o yic sy
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Chapter A. Vector Calculus
§A.3 Green's Theorem
On the other hand, if ris a counterclockwise parametrization of C,

then
ORI

:3€ —Ndx—i—Mdy:ﬁ; G~dr:f divFdA.
C C R

#c# £ H MA3067-*
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Chapter A. Vector Calculus
§A.3 Green's Theorem
On the other hand, if ris a counterclockwise parametrization of C,

then
ORI

:3€ —Ndx+Mdy:§§ G~dr:f divFdA.
C C R

Therefore,

fﬁ F~Nds:f divF dA
c R
This is sometimes called Green’s Theorem in Normal Form

#c# £ H MA3067-*

T
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Chapter A. Vector Calculus
§A.3 Green's Theorem

Use Green's Theorem to evaluate the line integral

jg y3dx + (x3 + 3xy2)dy,
c

where C is the path from (0,0) to (1,1) along the graph of y = x3
and from (1,1) to (0,0) along the graph of y = x.

Let R={(xy)|0 < x < 1,x> < y < x}. Then Green's Theorem
implies that

3€ y3dx+ (x3 + 3xy?)dy = Jf (x3 + 3xy?) — aany dA

—ﬂ?,di f f?)xdy dx—Z
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Chapter A. Vector Calculus
§A.3 Green's Theorem

Let D < R? be the annular region D = {(x,y) ‘ 1 <x24+y% <

X

4}, Fix,y) = —2Y _i— yzj, and C € D be a simple closed

x2 < y2 x2 B
curve oriented counterclockwise so that the origin is inside the region

enclosed by C. Find ff F.dr
C
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Chapter A. Vector Calculus
§A.3 Green's Theorem

Let D < R? be the annular region D = {(x,y) ‘ 1 <x24+y% <

4}, F(x,y) = X2jﬁy2i — x2—|)iy2j' and C € D be a simple closed

curve oriented counterclockwise so that the origin is inside the region
enclosed by C. Find ff F.dr
C

Choose r > 1 so that the circle centered at the origin with radius

r lies in the intersection of D and the finite region enclosed by C.
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Chapter A. Vector Calculus
§A.3 Green's Theorem

Let D < R? be the annular region D = {(x,y) ‘ 1 <x24+y% <
4}, Flxy) = 2—i -

X . o

c
1y X2+y23, and C € D be a simple closed
curve oriented counterclockwise so that the origin is inside the region

enclosed by C. Find ff F.dr
C

Choose r > 1 so that the circle centered at the origin with radius
r lies in the intersection of D and the finite region enclosed by C.
Let C, denote this circle with clockwise orientation, and pick a line
segment B connecting C and C, (with starting point on C and end-
point on C,). Define I as the oriented curve Bu C, u (—B) u C,
where —B denotes oriented curve B with opposite orientation, and
let R be the region enclosed by I'. Then R< D and R is the region

lies to the left of T'.
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Example (cont.)

Chapter A. Vector Calculus
§A.3 Green's Theorem

Therefore, Green's Theorem implies that

fF-dr: H curlFdA = 0.
T R

On the other hand,

jF-dr:J F-dr—l—f F-dr+f F-dr—i—fF-dr;
B

thus by the fact that J F-dr=— f F - dr, we conclude that

der+der—der—
fF.dr:—f F-dr:f .
c C e

or equivalently,
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Chapter A. Vector Calculus
§A.3 Green's Theorem

Example (cont.)

In other words, the line integral of F along C is the same as the line
integral of F along the circle C, with counterclockwise orientation.

Since —C, can be parameterized by

r(t) = rcos ti + rsin tj te[0,2n],

we find that
™ rrsint, rcost, .. .
F-dr= ( i J)-(—r81nt1+rcostj)dt
c 0
27
_ f (—1)dt = —2r.
0 v
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

§A.4.1 Parametric surfaces

Definition (Parametric Surfaces)

Let X, Y and Z be functions of v and v that are continuous on a

domain D in the uv-plane. The collection of points
Y= {re R3 ‘ r= X(u,v)i+ Y(u, v)j+ Z(u, v)k for some (u,v) € D}

is called a parametric surface. The equations x = X(u,v), y =
Y(u, v), and z = Z(u, v) are the parametric equations for the surface,
and r: D — R3 given by r(u,v) = X(u,v)i+ Y(u,v)j+ Z(u, v)k is

called a parametrization of X.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Definition (Regular Surfaces)

A parametric surface
Y= {re R3 ‘ r= X(u,v)i+ Y(u, v)j+ Z(u, v)k for some (u,v) € D}

is said to be regular if X, Y, Z are continuously differentiable func-

tions and
ry(u,v) x r(u,v) #0 VY (u,v)eD,

WRETE (V) = Xt V)i Yol V)i + Zulu, VK,

r(u,v) = Xo(u, )i+ Yo(u, v)j+ Zy(u, vk
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Let R be an open region in the plane, and f: R — R be a continuous

function. Then the graph of fis a parametric surface. In fact,
the graph of f= {re ]R3’r: xi+yj+f(x, y)k) for some (x,y) € R}.

Therefore, a parametric surface can be viewed as a generalization of

surfaces being graphs of functions.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Let R be an open region in the plane, and f: R — R be a continuous

function. Then the graph of fis a parametric surface. In fact,
the graph of f= {re ]R3’r: xi+yj+f(x, y)k) for some (x,y) € R}.

Therefore, a parametric surface can be viewed as a generalization of

surfaces being graphs of functions.

Let S = {(X,y, z) € R3 |x2 A 1} be the unit sphere in
R3. Consider

r(f, ¢) = cos @ sin ¢i + sin 0 sin ¢j + cos ¢k ,
where (0, ¢) € D= [0,27) x [0, 7). Then r: D — S? is a continuous

bijection; thus S? is a parametric surface.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Consider the torus shown below

Figure 1: Torus with parametrization r(u, v). (temporary picture)
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Example (cont.)

Note that the torus has a parametrization
r(u,v) = (a+ bcosv) cos ui+ (a+ bcosv)sin uj + bsin vk,

where (u, v) € [0,27) x [0,27). Therefore, the torus is a parametric

surface.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

§A.4.2 Surface area of parametric surfaces

Let D be an open region in the plane, and

Y= {re R3 ‘ r= X(u, v)i+ Y(u, v)j+ Z(u, v)k for some (u,v) € D}

be a regular parametric surface so that r is continuously differen-
tiable; that is, X,, X,, Yu, Yo, Zu, Z, are continuous. Then

the surface area of ¥ = Jf |ru(u, v) x r(u,v)| d(u, v).
D
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

The theorem above provides one specific way of evaluating the sur-

face integrals: if the surface X is in fact a subset of the graph of a
function f: R < R? — R; thatis, ¥ < {x,y,f(x,y)) | (x. y) € R},

then ¥ has a parametrization

r(x,y) = xi+yj+ f(x, y)k, (xy) eR.

Then
It ) x 16 9l = 14+ Lo )| + [ L )|
X\ y\© R3 B 9 ay 5 9
thus
2
the surface area of ¥ = fj —1—’ (x, ) —1—‘ ’ dA.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Given the parametrization of the unit sphere S?
r(0, ¢) = cos @ sin ¢i+sin O sin pj+ cos ok, (0, ¢) € [0,27] x [0, 7] ,
we find that
ry(0,¢) = —sinOsin pi+ cosfsin@j,
rs(0, ¢) = cos cos ¢i + sinf cos pj — sin pk
so that
(rg x ry)(0, ¢) = — cos @ sin? i — sin @ sin? ¢j — sin ¢ cos Pk
=— sin¢>(cos€sin¢i + sinfsin ¢j + cosd>k) .

Therefore, the surface area of S? is

us 2T

J-f[o,zw]x[o,ﬂ] |(rg x r5)(0,9)|d0, ¢) = JO (fo sin¢d9) di = 4rr.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Given the parametrization of the torus given in previous example by

r(u,v) = (a+ bcosv) cosui+ (a+ bcosv)sinuj+ bsin vk,
where (u, v) € [0,27) x [0,27), we find that
ry(u,v) = —(a+ bcos v)sin ui+ (a+ bcos v) cos uj,
r,(u,v) = —bsin vcos ui — bsin vsin uj + bcos vk;
thus
(rux r,)(u, v) = b(a+ bcos v)( cos ucos vi + sin ucos vj + sin vk) .
Therefore, the surface area of the torus is

21 2m
ff b(a+ bcosv)d(u,v) = f (J (ab + b2 cos v) du) dv
[0,27] % [0,27]

0 0
= 472ab.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Let C be a smooth curve parameterized by

r(t) = (cos tsin t,sin tsin t, cos t) tel= [—g, g] .

Then clearly C is on the unit sphere S? since |r(t)|gs = 1 for all
t e 1. Since Cis a closed curve, C divides S? into two parts. Find

the surface area of the part X “enclosed” by C.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Example (cont.)

To compute the surface area of 3, we need to find a way to param-
eterize 3. Naturally we try to parameterize ¥ using the spherical
coordinate. In other words, let R = (0, 27) x (0,7) and ¥ : R — R3
be defined by

P (0, @) = cos O sin ¢i + sin O sin ¢j + cos ok,
and we would like to find a region D < R such that (D) = .
Suppose that v(t) = (0(t),9(t)), t € [—g,g] is a curve in R
such that (¢ o 4)(t) = r(t). Then for t € [0, g] the identity
cos t = cos ¢(t) implies that ¢(t) = t; thus the identities cos tsin t =
cos 0(t) sin ¢(t) and sin tsin t = sin 0(t) sin ¢(t) further imply that
0(t) =t

v
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Example (cont.)

On the other hand, for t € [—g,O], the identity cost = cos ¢(t),
where ¢(t) € (0,7), implies that ¢(t) = —t; thus the identities
cos tsin t = cos 0(t) sin ¢(t) and sin tsin t = sin 0(t) sin ¢(t) further
imply that 6(t) = 7 + t.

.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Example (cont.)

Since

Py(0,p) = — sin O sin i + cos O sin pj

Y40, ) = cos 0 cos gi + sin 6 cos ¢j — sin gk
we find that
[ x %), )|’

= H — cosf 51112 $i — sin Osin? ¢j — (sin? @ + cos? ) sin ¢ cos cszH2
= (cos? 0 + sin? 0) sin* ¢ + sin® ¢ cos? ¢ = sin? ¢,
the area of the desired surface can be computed by
5 (v g
J J sin ¢ dfde = J o — 20tk
0o Jo 0

$=T
= (—ﬂcos¢+2¢cos¢—2sin¢) . 02 =7—2.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Example (cont.)

Another way to parameterize Y is to view X as the graph of func-

tion z= /1 — x2 — y2 over D, where D is the projection of ¥ along
z-axis onto xy-plane. We note that the boundary of D can be pa-

rameterized by

= . . o 0 o m™
r(t) =costsinti+sintsintj, te [_57 5] )

Let (x,y) € OD. Then x?+y? = y; thus ¥ can also be parameterized
by ¢ : D — R3, where

(% y) = xi+yi++/1—x2—y%k and D= {(x,y)|x*+y? <y}.
v
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Example (cont.)

Therefore, with fdenoting the function f(x, y) = /1 — x? — y2, the
surface area of ¥ is

1+ 2+ f2dA= dxdy
Jo e

=+/y—y? 1
= f arcsin # dy = QJ arcsin VY dy;
1—y2 y—y? 0 vi+y

thus making a change of variable y = tan® 6 we conclude that the

surface area of X is

f T . tand
2 arcsin
0 sec

d(tan26) = 2 F 0 d( tan 0)
0

b=z 3
:2[9tan29‘9 - f tan29d0} —n—2.
= 0
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

§A.4.3 Surface integrals of scalar functions
Let ¥ < R? be a regular surface and f: ¥ — R be a real-valued

function. We partition Y into small pieces 31,35, -+, 3, so that

n
Yin X¥j has zero area if i # jand ¥ = |J k. A Riemann sum of f
k=1
for partition {¥1,---,3,} (of X) takes the form

Y flP)o(Ze)

where py,---, pp are points on X satisfying px € >, and o ()
denotes the surface area of Xy. The limit of Riemann sums as
max {diam(X1),diam(3z), - - ,diam(2Z,)} approaches zero, if ex-

ists, is called the surface integral of f on X, and is denoted by

L fds.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Let D be an open region in the plane, and

Y= {re R3 ‘ r= X(u,v)i+ Y(u, v)j+ Z(u, v)k for some (u,v) € D}

be a regular parametric surface so that r is continuously differen-
tiable, and f: > — R be a continuous function. Then the surface
integral of f on % exists and is given by

HD (for)(u,v) H(ru x r,)(u, V)H d(u,v).

.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Let D be an open region in the plane, and
Y= {re R3 ‘ r= X(u,v)i+ Y(u, v)j+ Z(u, v)k for some (u,v) € D}

be a regular parametric surface so that r is continuously differen-
tiable, and f: ¥ — R be a continuous function. Then the surface

integral of f on % exists and is given by

HD (for)(u,v) H(ru x r,)(u, V)H d(u,v).

V.

Remark: If the surface 3 is the graph of a function f: R< R? — R,
then for a continuous function g: % — R, we have

Lgds: Jng(x, ¥ FO6 V)1 + Fulx )2 + fylx, )2 dA.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Evaluate the surface integral J (y? 4 2yz)dS, where X is the first-
2
octant portion of the plane 2x+ y+ 2z = 6.

First, we note that X can be parameterized by
D = {xi+yj+6_2#/k‘(x,y) € R},
where Ris the triangle {(x, y) | x € [0,3],0 < y < 6—2x}. Therefore,
J (y? + 2yz) dS
— 2x— 1.2
—H +2y 5 )\/1+( 1)2 +(—§) dA

6—2x
:J J §(6y—2xy)dy>o/x:.--:§.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Evaluate the surface integral J A/ x(1 4 2z) dS, where ¥ is the por-
3
2
tion of the cylinder z= y? over the triangular region
R={(xy)|x>0,y>0,x+y<1}
in the xy-plane. Similar to the previous example, we have
J Vx(1+2z)dS = f‘[ VXx(T+y2)4/1+02 + y2dA
5 R
1 1—x 1 y3 y=1—x
= [(| vx+y?rdy) de= [ vx(y+2)[, " ox
0

0 0 y=0

1 3
_ B (1-x) _ 284
- L\&O X+ 3 )dx_ 945
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Evaluate the surface integral | zdS, where X is the surface given

in one of previous examples

x/ \QA/ k‘y

which can be parameterized by
D = {r(ﬂ, ¢) = cosBsin ¢pi + sinfsin pj + cos ok
0<¢<g,¢<0<n—¢}.
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Chapter A. Vector Calculus
§A.4 The Surface Integrals

Example (cont.)

Therefore,

J- zdS
b

(V]

S 3
|
©

cos gb”(rg X r@(@,qﬁ)H dé?) do

o =) 2
(NVE]
S S

¢
coS ¢ sin ¢ dﬁ) do

T3
|

_ % f * (m — 26) sin(26) d

0
sz ety
- 1(5- 0 ) - 3.
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

Let ¥ < IR be a regular parametric surface with a continuous normal
vector field n : ¥ — R? (sometimes this is called “Y is oriented by
n”).
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

Let ¥ < IR be a regular parametric surface with a continuous normal
vector field n : ¥ — R? (sometimes this is called “Y is oriented by
n"). For a bounded continuous vector-valued function F: ¥ — R3,
the flux integral of F across X (in direction n) is the surface integral
of F-n on X; that is,

the flux integral of F across X (in direction n) = J F-ndS.
b3
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

§A.5.1 Physical Interpretation

Let O < R3 be an open set which stands for a fluid container and
fully contains some liquid such as water, and u : Q — R? be a
vector-field which stands for the fluid velocity; that is, u(x) is the
fluid velocity at point x € 2. Furthermore, let > < Q be a surface
immersed in the fluid with given orientation n, and c: €2 — R be the
concentration of certain material dissolving in the liquid.
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

§A.5.1 Physical Interpretation

Let O < R3 be an open set which stands for a fluid container and
fully contains some liquid such as water, and u : Q — R? be a
vector-field which stands for the fluid velocity; that is, u(x) is the
fluid velocity at point x € 2. Furthermore, let > < Q be a surface
immersed in the fluid with given orientation n, and c: €2 — R be the
concentration of certain material dissolving in the liquid. Then the
amount of the material carried across the surface in the direction n
by the fluid in a time period of At is

At - f cu-ndS.
)

Therefore, J cu - ndS is the rate of the amount of the material

by
carried across the surface in the direction n by the fluid.

Ching-hsiao Arthur Cheng # 8 = - MA3067-*



Chapter A. Vector Calculus
§A.5 The Flux Integrals

Find the flux integral of the vector field F(x, y, z) = (x, y2, z) upward

through the first octant part 3 of the cylindrical surface x? + z% =
a2, 0< y < b.

V4
a
|
|
)\\ |
a/ \\\\ Ib
Xz SO

Figure 2: The surface ¥
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

Example (cont.)

First, we parameterize ¥ by

r(u,v) = ui+ vj++va?—uv’k, (u,v)e D=(0,a) x (0,b)
2

n . _ & i .
so that | (r, x r,)(u, v)|zs = po—t and the upward-pointing unit
normal is N(x, y, z) = (3,0, g)
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

Example (cont.)

First, we parameterize ¥ by

r(u,v) = ui+ vj++va?—uv’k, (u,v)e D=(0,a) x (0,b)
2

n . _ & i .
so that | (r, x r,)(u, v)|zs = po—t and the upward-pointing unit
normal is N(x, y, z) = (3,0, g) Therefore,

J. F-NdS= fj 1(uz—i—a2 — uz)é d(u, v)
5 pa a? —u?

1
_ 2
=a HD T 4 V)
ul¥=a  ma’b

dudv = a’barcsin — =

_aQJbJE 1
0 Jo Va2 —u? alu=0 2
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

§A.5.2 Measurements of the flux - the divergence operator

Let © < R? be an open set, and u = (uy, U, u3) :  — R3 be a
continuously differentiable vector field. Suppose that O is a bounded
open set whose boundary is piecewise smooth so that an outward-
pointing unit normal vector field N = (N1, Ng, N3) can be defined
on 0O except on some curves. Then the flux integral of u on 0O in

the direction N is
f u-NdS.
20
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

§A.5.2 Measurements of the flux - the divergence operator

Let © < R? be an open set, and u = (uy, U, u3) :  — R3 be a
continuously differentiable vector field. Suppose that O is a bounded
open set whose boundary is piecewise smooth so that an outward-
pointing unit normal vector field N = (N1, Ng, N3) can be defined
on 0O except on some curves. Then the flux integral of u on 0O in

the direction N is
f u-NdS.
20

Consider a special case that O = (a1, a2) x (b1, b2) x (c1, ¢2) be an
open cube so that 00 = {a1, a2} x X1 U{b1, bo} x X U{cy, c3} x 3.

Then .
u-NdS= J u-NdS.
LO /; Sk
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

Since on Y3 the outward-pointing normal N is given by

N(x,y,z) = { —k if (%, y,2) € [a1, a2] x [b1, ba] x {c1},
k if (xy,2) € [a1, 2] x [br, bo] x {2},
we find that
J u-NdS
PIES

:Jf u3(X7ya CZ) dA — Jf u3(Xa}/7 Cl)dA

[a1,a2] X [b1,b2] [a1,a2] X [b1,bs]

= Jf us (Xa Y, Z)
[al,SQJX[bl,bg]

_ J f f L TR dz dA = ﬂf % gy,
[a1,22] X [b1,b2] N J[e1,co] 0z

where the last equality is established by Fubini's Theorem.

X=C2
dA

X=cC1
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

Similarly,

JuNdS m @dv and u-NdS— m % gy,
21 E2

thus

f u-NdS— Hj (%4 % O dvzﬂf divudV. (1)
20 oy 0z o
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Chapter A. Vector Calculus
§A.5 The Flux Integrals

Similarly,

JuNdS m @dv and u-NdS— m % gy,
21 E2

thus

f u-NdS— Hj (%4 % O dvzﬂf divudV. (1)
20 oy 0z o

Remark: Let O(a,r) denote a cube centered at a € 2 with side
length r. Using (1),

1

lim —— u-NdS = (divu)(a Vae(.
r—0 |O(a, r)\ a@(aJ) ( )( )

In other words, divu at a point x is the instantaneous amount (per
volume) of material (with concentration 1) carried outside an in-
finitesimal cube centered at x
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Chapter A. Vector Calculus
§A.6 The Divergence Theorem

Equation (1) from the previous page in fact holds for more general
domain O, and we have the following

Theorem (The Divergence Theorem)

Let Q < R? be a bounded domain such that 09 is piecewise smooth

with outward pointing normal N, and w : Q — R3 be continuously
differentiable vector field. Then

J w-NdS= Jff divwdV.
oQ Q
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Chapter A. Vector Calculus
§A.6 The Divergence Theorem

Equation (1) from the previous page in fact holds for more general
domain O, and we have the following

Theorem (The Divergence Theorem)

Let Q < R? be a bounded domain such that 09 is piecewise smooth
with outward pointing normal N, and w : Q — R3 be continuously
differentiable vector field. Then

J w-NdS= Jff divwdV.
oQ Q

Green’s Theorem in Normal/Divergence Form: Let F : R <
R? — R? be a continuously differentiable vector field. Then

4; F.Nds:ﬂ divFdA
oR R

where N is the outward-pointing unit normal on JR.
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem

Remark: Similar to Green's Theorem in Divergence Form, the Di-
vergence Theorem states that "~ » £ ¥ - ®iF g f P eni fd
3 edade (ffA4) EXETe THFRAMLS R F (AR )
2

3

ZERE L Ofe (L)
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem

Remark: Similar to Green's Theorem in Divergence Form, the Di-
vergence Theorem states that "~ » £ ¥ - ®iF g f P eni fd

2

§ 0w infe (f£4) $03e RHEBMA PR (THA)
2

B wRE e (FA)

P EH A BEOER L R AEL S e = f w- N dS.
o0Q

Vie BHF M RS AR R e = ﬂ divwdV.
Q
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem

Remark: Similar to Green's Theorem in Divergence Form, the Di-
vergence Theorem states that "~ » £ ¥ - ®iF g f P eni fd

2

§ 0w infe (f£4) $03e RHEBMA PR (THA)
2

AR anfe (54
— R BB R B B infe = f w- N dS.
o0
o B AMA T AT b e = H g,
Q

Comparison: The fundamental theorem of calculus

Lb () dx= 6~ fla) “=" | .

0la,b]
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Chapter A. Vector Calculus
§A.6 The Divergence Theorem

Letting w be the product of a scalar function ¢ and a vector field v
in the Divergence Theorem, using the identity

div(ev) = pdivv+ Vg - v,
we conclude the following

Let Q < R? be a bounded domain such that 02 is piecewise smooth

with outward-pointing unit normal N, v: Q — R3 be a continuously
differentiable vector field, and ¢ : Q — R be continuously differen-
tiable. Then

ﬁ”ﬂﬂﬂdivvdvz LQ(V. N)pdS — JJL vV dV.
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Chapter A. Vector Calculus
§A.6 The Divergence Theorem

Letting v = fe; for some continuously differentiable function f: Q —
R in the previous corollary, we obtain the following

Let Q < R3 be a bounded domain such that 0S) is piecewise smooth

with outward-pointing normal N = (N1,N2,N3), and f,o : Q — R

be continuously differentiable functions. Then

c_ (990
JJ, o i av= | remias— |[] roz v
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Chapter A. Vector Calculus
§A.6 The Divergence Theorem

Let €2 be the the first octant part bounded by the cylindrical surface
x%2 4+ z2 = a2 and the plane y = b, and F: Q@ — R3 be a vector-

valued function defined by F(x,y, z) = (x, y?, 2).

Figure 3: The domain 2 and its five pieces of boundaries
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Example (cont.)

Chapter A. Vector Calculus
§A.6 The Divergence Theorem

With N denoting the outward-pointing unit normal of 02,

a prb pVa2—x2
Hf dideV:JJJ (2 + 2y) dzdydx
Q 0 JO JO

a pV/aZ—x2 2( K2
:(b2+2b)JJ dzdx:w.
0 JO
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Chapter A. Vector Calculus
§A.6 The Divergence Theorem

Example (cont.)

With N denoting the outward-pointing unit normal of 02,

a b V/a2—x2
Hf dideV:JJJ (2 + 2y) dzdydx
Q 0 JO JO

a a2—x? 2(hH2
= (b2 + 2b)J f dzdx = T2 (0" £ 25)
0 Jo 4

On the other hand, we note that the boundary of € has five parts:
@ X as given in previous example,
@ two rectangles R; = {x = 0} x [0, b] x [0,a], Ra = [0, a] x
[0, b] x {z= 0}, and
Q two quarter disc D1 = {(x,0, 2) 6R3|x + 22 < a?,x,z> 0}
and Dy = {(x, b,2) e R® | x? + z2 < a?,x,z > 0}.
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Chapter A. Vector Calculus
§A.6 The Divergence Theorem

Example (cont.)

Therefore,

a rb
f F~Nd5:fj(O,y2,z)-(—1,0,0)dydz:0,
R4 0 JO

a rb
f F-NdSsz(x,y2,0)'(0,0,—1)dydx:0,
Ro 0 JO

a pvVaZ—x2
f F-NdS= J J (x,0,2) - (0,—1,0) dzdx =0,
D, 0 JO

and

a pv/az—x2
J F.Ndssz (%, b2, 2) - (0, 1,0) dzdx
Dy 0 JO

= bZFJ T dzdx = ma’b? )
0 JO 4
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Example (cont.)

Chapter A. Vector Calculus
§A.6 The Divergence Theorem

Together with the result in previous example, we find that

F-NdS
o0
_ f J f J F N dS
R1 Ro D1 D2
7r32b2 7732b 2(b2 + 2b)

4

_ J J L divFaV.

.
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