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Chapter A. Vector Calculus

§A.1 Vector Fields
Definition (Vector Fields - 向量場)
A (two-dimensional) vector field over a plane region R is a vector-
valued function F that assigns a vector F(x, y) P R2 to each point
(x, y) in R. A (three-dimensional) vector field over a solid region Q
is a vector-valued function F that assigns a vector F(x, y, z) P R3 to
each point (x, y, z) in Q.

In general, an n-dimensional vector field over a region D Ď Rn is a
vector-valued function F that assigns a vector F(x1, x2, ¨ ¨ ¨ , xn) P Rn

to each point x = (x1, x2, ¨ ¨ ¨ , xn) in D.
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Chapter A. Vector Calculus

§A.1 Vector Fields
Definition (Vorticity - 旋度)
Let Q be an open region in space, and F : Q Ñ R3 be a vector field
given by F(x, y, z) = M(x, y, z)i + N(x, y, z) j + P(x, y, z)k. The curl
of F, also called the vorticity of F, is a vector field given by

curlF =
(

BP
By ´

BN
Bz

)
i ´

(
BP
Bx ´

BM
Bz

)
j +

(
BN
Bx ´

BM
By

)
k .

If curlF = 0, then F is said to be irrotational.

Symbolically, the curl of F is given by

curlF = ∇ ˆ F =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k
B

Bx
B

By
B

Bz
M N P

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
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Chapter A. Vector Calculus

§A.1 Vector Fields
Remark: Let F be a two dimensional vector field given by F(x, y) =
M(x, y)i + N(x, y) j. We can also define the curl of F by treating F
as a three-dimensional vector field

rF(x, y, z) = M(x, y)i + N(x, y) j + 0k

(which is a three-dimensional vector field independent of z) and
define curlF as the third component of curlrF (for the first two com-
ponents of curlrF are zero). Therefore, the curl of a two dimensional
vector field F = Mi + N j is a scalar function given by

curlF =
BN
Bx ´

BM
By .

Moreover, by defining the differential operator ∇K =
(́

B

By ,
B

Bx

)
on

plane we have the symbolic representation

curlF = ∇K ¨ F .
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Chapter A. Vector Calculus

§A.1 Vector Fields
Definition (Divergence - 散度)
Let R be an open region in the plane, and F : R Ñ R2 be a vector
field given by F(x, y) = M(x, y)i + N(x, y) j. The divergence of F is
a scalar function given by

divF =
BM
Bx +

BN
By .

Let Q be an open region in space, and F : Q Ñ R3 be a vector
field given by F(x, y, z) = M(x, y, z)i + N(x, y, z) j + P(x, y, z)k. The
divergence of F is a scalar function given by

divF =
BM
Bx +

BN
By +

BP
Bz .

The symbolic representation of the divergence is
divF = ∇ ¨ F .
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Chapter A. Vector Calculus

§A.1 Vector Fields
Remark: In general, if D is an open region in Rn and F : D Ñ Rn

be a vector field given by F(x) =
(
F1(x),F2(x), ¨ ¨ ¨ ,Fn(x)

)
, where

x = (x1, x2, ¨ ¨ ¨ , xn), the divergence of F is a scalar function given
by

divF =
n
ÿ

i=1

BFi
Bxi

=
BF1

Bx1
+

BF2

Bx2
+ ¨ ¨ ¨ +

BFn
Bxn

.

Theorem
Let F be a three-dimensional vector field given by F(x, y, z) =

M(x, y, z)i+N(x, y, z) j+P(x, y, z)k. If M,N,P have continuous sec-
ond partial derivatives, then

div(curlF) = 0 .
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Chapter A. Vector Calculus

§A.2 Line Integrals
§A.2.1 Curves and parametric equations
Definition
A subset C in the plane (or space) is called a curve if C is the image
of an interval I Ď R under a continuous vector-valued function r.
The continuous function r : I Ñ R2 (or R3) is called a parametriza-
tion of the curve, and the equation

(x, y) = r(t) , t P I
(
or (x, y, z) = r(t), t P I

)
is called a parametric equation of the curve.

A curve C is called a plane curve if it is a subset in the plane.
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Chapter A. Vector Calculus

§A.2 Line Integrals
Definition
A curve C is called simple if it has an injective parametrization; that
is, there exists r : I Ñ R3 such that r(I) = C and r(x) = r(y) implies
that x = y. A curve C with parametrization r : I Ñ R3 is called
closed if I = [a, b] for some closed interval [a, b] Ď R and r(a) =

r(b). A simple closed curve C is a closed curve with parametrization
r : [a, b] Ñ R3 such that r is one-to-one on [a, b). A smooth curve C
is a curve with continuously differentiable parametrization r : I Ñ R3

such that r 1(t) ‰ 0 for all t P I.
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Chapter A. Vector Calculus

§A.2 Line Integrals
When a parametrization r : I Ñ R3 of curves C is mentioned, we
always assume that “there is no overlap”; that is, there are no inter-
vals [a, b], [c, d ] Ď I satisfying that r([a, b]) = r([c, d ]). If in addition

1 C is a simple curve, then r is injective, or
2 C is closed, then I = [a, b] and r(a) = r(b), or
3 C is simple closed, then I = [a, b] and r is injective on [a, b) and

r(a) = r(b).
4 C is smooth, then r is continuously differentiable and r 1(t) ‰ 0

for all t P I.
Theorem
Let C be a smooth curve parameterized by r : [a, b] Ñ R3. Then

ℓ(C) ” the length of C =
ż b

a
}r 1(t)} dt .
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Chapter A. Vector Calculus

§A.2 Line Integrals
§A.2.2 Line integrals of scalar functions
In this section, we are concerned with the “integral” of a real-valued
function f defined on a curve C.
Definition (Partition of curves)
Let C be a curve in space. A partition of C is a collection of curves
␣

C1,C2, ¨ ¨ ¨ ,Cn
(

satisfying
1 C =

n
Ť

i=1
Ci (so that Ci Ď C);

2 If i ‰ j, then Ci X Cj contains at most two points.
Let P =

␣

C1,C2, ¨ ¨ ¨ ,Cn
(

be a partition of C. The norm of P,
denoted by }P}, is the number

}P} = max
␣

ℓ(C1), ℓ(C2), ¨ ¨ ¨ , ℓ(Cn)
(

,

where ℓ(Cj) denotes the length of curve Cj.
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Chapter A. Vector Calculus

§A.2 Line Integrals
Definition (Riemann sum)
Let C be a curve in space, and f : C Ñ R is a real-valued function
defined on C. A Riemann sum of f for partition P is a sum of the
form

n
ÿ

i=1

f (qi)ℓ(Ci) ,

where tq1, q2, ¨ ¨ ¨ , qnu is a collection of points on C satisfying qj P Cj

for all 1 ď j ď n.

We note that in order to define the norm of partitions, it is
required that every sub-curve Cj of C has length. This kind
of curves is called rectifiable curves, and we can only consider line
integrals along rectifiable curves. In particular, a piecewise continu-
ously differentiable curve is rectifiable.
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Chapter A. Vector Calculus

§A.2 Line Integrals
The line integral of f along C is the limit of Riemann sums

lim
}P}Ñ0

n
ÿ

j=1

f (qj)ℓ(Cj)

if the limit indeed exists. The precise definition is given below.
Definition
Let C be a rectifiable curve, and f : C Ñ R be a scalar function.
The line integral of f along C is a real number L such that for every
ε ą 0 there exists δ ą 0 such that if P = tC1,C2, ¨ ¨ ¨ ,Cnu is a
partition of C satisfying }P} ă δ, then any Riemann sum of f for P
belongs to the interval (L ´ ε, L + ε).
Whenever such an L exists, it must be unique, and the number L is
denoted by

ż

C
f ds

(
and when C is a closed curve, we use

¿

C
f ds to

emphasize that the curve is closed
)
.
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Chapter A. Vector Calculus

§A.2 Line Integrals
Theorem
Let C be a (piecewise) smooth curve with (piecewise) continuously
differentiable injective parametrization r : [a, b] Ñ R3, and f : C Ñ

R be a continuous function. Then the line integral of f along C
exists and is given by

ż

C
f ds =

ż b

a
(f ˝ r)(t)

›

›r 1(t)
›

› dt ,

where
›

›r 1(t)
›

› is the length of the vector r 1(t).
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Chapter A. Vector Calculus

§A.2 Line Integrals
Example

Evaluate
ż

C
(x2 ´y+3z) ds, where C is the line segment connecting

the points (0, 0, 0) and (1, 2, 1).

First we note that the line segment can be parameterized by

r(t) = (1 ´ t)(0, 0, 0) + t(1, 2, 1) = ti + 2t j + tk t P [0, 1] .

Therefore, the desired line integral is given by
ż

C
(x2 ´ y + 3z) ds =

ż 1

0

(t2 ´ 2t + 3t)}i + 2 j + k} dt

=
?
6
ż 1

0

(t2 + t) dt = 5
?
6

6
.
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Therefore, the desired line integral is given by
ż

C
(x2 ´ y + 3z) ds =

ż 1

0

(t2 ´ 2t + 3t)}i + 2 j + k} dt

=
?
6
ż 1

0

(t2 + t) dt = 5
?
6

6
.
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Chapter A. Vector Calculus

§A.2 Line Integrals
Example

Evaluate
ż

C
x ds, where C is the curve starting from (0, 0) to (1, 1)

along y = x2 then from (1, 1) to (0, 0) along y = x.

Let C1 be the piece of the curve connecting (0, 0) and (1, 1) along
y = x2, and C2 be the piece of the curve connecting (1, 1) and (0, 0)

along y = x. Then C1 and C2 can be parameterized by

r1(t) = ti + t2 j t P [0, 1] and r2(t) = ti + t j t P [0, 1] ,

respectively. Since C = C1 Y C2 and C1 X C2 has only two points,
ż

C
x ds =

ż

C1

x ds +
ż

C2

x ds =
ż 1

0

t}i + 2t j} dt +
ż 1

0

t}i + j} dt

=
ż 1

0

[
t
?
1 + 4t2 +

?
2t
]

dt = 1

12
(5

?
5 ´ 1) +

?
2

2
.
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Chapter A. Vector Calculus

§A.2 Line Integrals
Example
Let C be the upper half part of the circle centered at the origin with
radius R ą 0 in the xy-plane. Evaluate the line integral

ż

C
y ds.

First, we parameterize C by

r(t) = R cos ti + R sin t j t P [0, π] .

Then
ż

C
y ds =

ż π

0

R sin t }´R sin ti + R cos t j} dt

=
ż π

0

R2 sin t dt = 2R2 .
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Chapter A. Vector Calculus

§A.2 Line Integrals
Example
Find the mass of a wire lying along the first octant part of the curve
of intersection of the elliptic paraboloid z = 2 ´ x2 ´ 2y2 and the
parabolic cylinder z = x2 between (0, 1, 0) and (1, 0, 1) if the density
of the wire at position (x, y, z) is ϱ(x, y, z) = xy.

Note that we can parameterize the curve C by

r(t) = ti +
a

1 ´ t2 j + t2k t P [0, 1] .

Therefore, the mass of the curve can be computed by
ż

C
ϱ ds =

ż 1

0

t
?
1 ´ t2

›

›

›
i + ´t

?
1 ´ t2

j + 2tk
›

›

›
dt

=
ż 1

0

t
a

2 ´ (1 ´ 2t2)2 dt = π

8
+

1

4
.
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Chapter A. Vector Calculus

§A.2 Line Integrals
§A.2.3 Line integrals of vector fields
Definition
An oriented curve is a curve on which a consistent tangent direction
T is defined. In other words, an oriented curve is a (piecewise)
smooth curve with a given parametrization r : I Ñ R3 so that

T ˝ r = r 1

}r 1}
is defined (almost everywhere).

Definition
Let F be a continuous vector field defined on a smooth oriented
curve C parameterized by r(t) for t P [a, b]. The line integral of F
along C is given by

ż

C
F ¨ T ds .
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Chapter A. Vector Calculus

§A.2 Line Integrals
Remark:

1 Since T ˝ r = r 1

}r 1}
, for a curve C parameterized by r : [a, b] Ñ

R3,
ż

C
F¨T ds =

ż b

a
(F˝r)(t)¨ r 1(t)

}r 1(t)}}r 1(t)} dt =
ż b

a
(F˝r)(t)¨r 1(t) dt.

Since r 1(t) dt = dr(t), sometimes we also use
ż

C
F¨dr to denote

the line integral of F along the oriented curve C parameterized
by r.

2 Given an oriented curve C and F : C Ñ R3, we sometimes use
ż

´C
F ¨ dr to denote the line integral

ż

C
F ¨ (´T) ds, where ´T

is the tangent direction opposite to the orientation of C.
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Chapter A. Vector Calculus

§A.2 Line Integrals
3 Let C be a smooth oriented curve parameterized by r : [a, b ] Ñ

R3 and F : C Ñ R3. Then ´C, the oriented curve with opposite
orientation w.r.t. C, can be parameterized by r1 : [´b,´a] Ñ

R3 given by r1(t) = r(´t) so that
ż

´C
F ¨ dr =

ż ´a

´b
(F ˝ r1)(t) ¨ r 1

1(t)dt

=
ż ´a

´b
(F ˝ r)(´t) ¨ (´r 1)(´t) dt

=
ż a

b
(F ˝ r)(t) ¨ r 1(t) dt

= ´

ż b

a
(F ˝ r)(t) ¨ r 1(t) dt =

ż

C
F ¨ (´T) ds .

This explains
ż

´C
F ¨ dr =

ż

C
F ¨ (´T) ds.
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Chapter A. Vector Calculus

§A.2 Line Integrals
Example
Find the work done by the force field

F(x, y, z) = ´
1

2
x i ´

1

2
y j + 1

4
k

on a particle as it moves along the helix parameterized by

r(t) = cos ti + sin t j + tk

from the point (1, 0, 0) to the point (´1, 0, 3π). Note that such a
helix is parameterized by r(t) with t P [0, 3π]. Therefore,
ż

C
F ¨ dr =

ż 3π

0

(
´

1

2
cos ti ´

1

2
sin t j + 1

4
k
)

¨
(

´ sin ti + cos t j + k
)

dt

=
ż 3π

0

(
1

2
sin t cos t ´

1

2
sin t cos t + 1

4

)
dt = 3π

4
.
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Chapter A. Vector Calculus

§A.2 Line Integrals
Example

Let F(x, y) = y 2 i + 2xy j. Evaluate the line integral
ż

C
F ¨ dr from

(0, 0) to (1, 1) along
1 the straight line y = x,
2 the curve y = x 2, and
3 the piecewise smooth path consisting of the straight line seg-

ments from (0, 0) to (0, 1) and from (0, 1) to (1, 1).
For the straight line case, we parameterize the path by r(t) = (t, t)
for t P [0, 1]. Then

ż

C
F ¨ dr =

ż 1

0
(t 2 i + 2t 2 j) ¨ (i + j)dt =

ż 1

0
3t 2dt = 1 .
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Chapter A. Vector Calculus

§A.2 Line Integrals
Example (cont.)
For the case of parabola, we parameterize the path by r(t) = (t, t 2)
for t P [0, 1]. Then

ż

C
F ¨ dr =

ż 1

0

(t 4 i + 2t 3 j) ¨ (i + 2t j)dt =
ż 1

0

5t 4dt = 1 .

For the piecewise linear case, we let C1 denote the line segment
joining (0, 0) and (0, 1), and let C2 denote the line segment joining
(0, 1) and (1, 1). Note that we can parameterize C1 and C2 by

r1(t) = t j t P [0, 1] and r2(t) = ti + j t P [0, 1] ,

respectively. Therefore,
ż

C
F ¨dr =

ż

C1

F ¨dr+
ż

C2

F ¨dr =
ż 1

0

t 2 i ¨ j dt+
ż 1

0

(i+2t j) ¨ i dt = 1 .
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Chapter A. Vector Calculus

§A.2 Line Integrals
Example (cont.)
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Chapter A. Vector Calculus

§A.2 Line Integrals
Example
Let F(x, y) = yi ´ x j. Evaluate the line integral

ż

C
F ¨ dr from (1, 0)

to (0,´1) along
1 the straight line segment joining these points, and
2 three-quarters of the circle of unit radius centered at the origin

and traversed counter-clockwise.
For the first case, we parameterize the path by r(t) = (1´ t,´t) for
t P [0, 1]. Then

ż

C
F ¨ dr =

ż 1

0

[
´ ti + (t ´ 1) j

]
¨ (´i ´ j) dt = 1 .

For the second case, we parameterize the path by r(t) = cos ti +
sin t j for t P

[
0,

3π

2

]
. Then

ż

C
F ¨ dr =

ż 3π
2

0

(sin ti ´ cos t j) ¨ (´ sin ti + cos t j) dt = ´
3π

2
.
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Chapter A. Vector Calculus

§A.3 Green’s Theorem
Let R Ď R2 be a region enclosed by a simply closed curve C and
F = Mi+N j be a vector fields on (an open set containing) R, where
C is oriented counterclockwise so that

C is traversed once so that the region R always lies to the left.

The line integral of F along an oriented curve C sometimes is written
as

¿

C
Mdx + Ndy

since symbolically we have dr = dxi + dy j so that

F ¨ dr = (Mi + N j) ¨ (dxi + dy j) = Mdx + Ndy .

The right-hand side of the identity above is called a differential
form.
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Chapter A. Vector Calculus

§A.3 Green’s Theorem
Theorem (Green’s Theorem)
Let R be a plane region enclosed by a closed curve C oriented coun-
terclockwise; that is, C is traversed once so that the region R always
lies to the left. If M and N have continuous first partial derivatives
in an open region containing R, then

¿

C
Mdx + Ndy =

żż

R

(
BN
Bx ´

BM
By

)
(x, y) dA .

Remark: If F is a two-dimensional vector field given by F = Mi+N j,
then under the assumption of Green’s Theorem,

¿

C
F ¨ T ds =

żż

R
(curlF)(x, y) dA .

This is sometimes called Green’s Theorem in Tangential Form.

Ching-hsiao Arthur Cheng 鄭經斅 數學建模 MA3067-*



Chapter A. Vector Calculus

§A.3 Green’s Theorem
Theorem (Green’s Theorem)
Let R be a plane region enclosed by a closed curve C oriented coun-
terclockwise; that is, C is traversed once so that the region R always
lies to the left. If M and N have continuous first partial derivatives
in an open region containing R, then

¿

C
Mdx + Ndy =

żż

R

(
BN
Bx ´

BM
By

)
(x, y) dA .

Remark: If F is a two-dimensional vector field given by F = Mi+N j,
then under the assumption of Green’s Theorem,

¿

C
F ¨ T ds =

żż

R
(curlF)(x, y) dA .

This is sometimes called Green’s Theorem in Tangential Form.

Ching-hsiao Arthur Cheng 鄭經斅 數學建模 MA3067-*



Chapter A. Vector Calculus

§A.3 Green’s Theorem
Remark: Let R be a region enclosed by a smooth simply closed
curve C with outward-pointing unit normal N on C, and F be a
smooth vector field defined on an open region containing R. We are

interested in
¿

C
F ¨ Nds, the line integral of F ¨ N along C.

Suppose that F = Mi + N j, and C is parameterized by r(t) =

x(t)i+y(t) j, t P [a, b], so that C is oriented counterclockwise. Define
G = ´Ni+M j. Then Green’s Theorem (in tangential form) implies
that
¿

C
´Ndx + Mdy =

¿

C
G ¨ dr =

żż

R
curlG dA =

żż

R

(
Mx + Ny

)
dA

=
żż

R
divF dA .
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Chapter A. Vector Calculus

§A.3 Green’s Theorem
On the other hand, if r is a counterclockwise parametrization of C,
then

N(r(t)) = y 1(t)
}r 1(t)} i ´

x 1(t)
}r 1(t)} j @ t P [a, b] ;

thus
¿

C
F ¨ N ds =

ż b

a
(F ¨ N)(r(t))}r 1(t)} dt =

ż b

a
F(r(t)) ¨ N(r(t))}r 1(t)} dt

=
ż b

a

[
M(x(t), y(t))y 1(t) ´ N(x(t), y(t))x 1(t)

]
dt

=
¿

C
´ N dx + M dy =

¿

C
G ¨ dr =

żż

R
divF dA .

Therefore,
¿

C
F ¨ N ds =

żż

R
divF dA .

This is sometimes called Green’s Theorem in Normal Form.
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Chapter A. Vector Calculus

§A.3 Green’s Theorem
On the other hand, if r is a counterclockwise parametrization of C,
then

N(r(t)) = y 1(t)
}r 1(t)} i ´

x 1(t)
}r 1(t)} j @ t P [a, b] ;

thus
¿

C
F ¨ N ds =

ż b

a
(F ¨ N)(r(t))}r 1(t)} dt =

ż b

a
F(r(t)) ¨ N(r(t))}r 1(t)} dt

=
ż b

a

[
M(x(t), y(t))y 1(t) ´ N(x(t), y(t))x 1(t)

]
dt

=
¿

C
´ N dx + M dy =

¿

C
G ¨ dr =

żż

R
divF dA .

Therefore,
¿

C
F ¨ N ds =

żż

R
divF dA .

This is sometimes called Green’s Theorem in Normal Form.
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§A.3 Green’s Theorem
Example
Use Green’s Theorem to evaluate the line integral

¿

C
y 3dx + (x 3 + 3xy 2)dy ,

where C is the path from (0, 0) to (1, 1) along the graph of y = x 3

and from (1, 1) to (0, 0) along the graph of y = x.

Let R =
␣

(x, y)
ˇ

ˇ 0 ď x ď 1, x 3 ď y ď x
(

. Then Green’s Theorem
implies that

¿

C
y 3dx + (x 3 + 3xy 2)dy =

żż

R

[
B

Bx(x
3 + 3xy 2) ´

B

Byy 3
]

dA

=
żż

R
3x 2 dA =

ż 1

0

( ż x

x 3

3x 2 dy
)

dx =
1

4
.
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Chapter A. Vector Calculus

§A.3 Green’s Theorem
Example
Let D Ď R2 be the annular region D =

␣

(x, y)
ˇ

ˇ 1 ă x 2 + y 2 ă

4
(

, F(x, y) =
y

x 2 + y 2
i ´

x
x 2 + y 2

j, and C Ď D be a simple closed
curve oriented counterclockwise so that the origin is inside the region
enclosed by C. Find

¿

C
F ¨ dr.

Choose r ą 1 so that the circle centered at the origin with radius
r lies in the intersection of D and the finite region enclosed by C.
Let Cr denote this circle with clockwise orientation, and pick a line
segment B connecting C and Cr (with starting point on C and end-
point on Cr). Define Γ as the oriented curve B Y Cr Y (´B) Y C,
where ´B denotes oriented curve B with opposite orientation, and
let R be the region enclosed by Γ. Then R Ď D and R is the region
lies to the left of Γ.
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§A.3 Green’s Theorem
Example (cont.)
Therefore, Green’s Theorem implies that

ż

Γ

F ¨ dr =
żż

R
curlF dA = 0 .

On the other hand,
ż

Γ

F ¨ dr =
ż

B
F ¨ dr +

ż

Cr

F ¨ dr +
ż

´B
F ¨ dr +

ż

C
F ¨ dr ;

thus by the fact that
ż

´B
F ¨ dr = ´

ż

B
F ¨ dr, we conclude that

ż

C
F ¨ dr +

ż

Cr

F ¨ dr =
ż

Γ

F ¨ dr = 0

or equivalently,
ż

C
F ¨ dr = ´

ż

Cr

F ¨ dr =
ż

´Cr
F ¨ dr .
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§A.3 Green’s Theorem
Example (cont.)
In other words, the line integral of F along C is the same as the line
integral of F along the circle Cr with counterclockwise orientation.
Since ´Cr can be parameterized by

r(t) = r cos ti + r sin t j t P [0, 2π] ,

we find that
ż

C
F ¨ dr =

ż 2π

0

( r sin t
r 2 i ´

r cos t
r 2 j

)
¨
(

´ r sin ti + r cos t j
)

dt

=
ż 2π

0

(´1) dt = ´2π .
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
§A.4.1 Parametric surfaces
Definition (Parametric Surfaces)
Let X, Y and Z be functions of u and v that are continuous on a
domain D in the uv-plane. The collection of points

Σ ”

!

r P R3
ˇ

ˇ

ˇ
r = X(u, v)i+Y(u, v) j+Z(u, v)k for some (u, v) P D

)

is called a parametric surface. The equations x = X(u, v), y =

Y(u, v), and z = Z(u, v) are the parametric equations for the surface,
and r : D Ñ R3 given by r(u, v) = X(u, v)i + Y(u, v) j + Z(u, v)k is
called a parametrization of Σ.
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Definition (Regular Surfaces)
A parametric surface

Σ ”

!

r P R3
ˇ

ˇ

ˇ
r = X(u, v)i+Y(u, v) j+Z(u, v)k for some (u, v) P D

)

is said to be regular if X, Y, Z are continuously differentiable func-
tions and

ru(u, v) ˆ rv(u, v) ‰ 0 @ (u, v) P D ,

where ru(u, v) ” Xu(u, v)i + Yu(u, v) j + Zu(u, v)k ,
rv(u, v) ” Xv(u, v)i + Yv(u, v) j + Zv(u, v)k .
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example
Let R be an open region in the plane, and f : R Ñ R be a continuous
function. Then the graph of f is a parametric surface. In fact,

the graph of f =
!

r P R3
ˇ

ˇ

ˇ
r = xi+y j+f (x, y)k

)
for some (x, y) P R

)

.

Therefore, a parametric surface can be viewed as a generalization of
surfaces being graphs of functions.

Example
Let S2 =

␣

(x, y, z) P R3
ˇ

ˇ x 2 + y 2 + z 2 = 1
(

be the unit sphere in
R3. Consider

r(θ, ϕ) = cos θ sinϕi + sin θ sinϕ j + cosϕk ,

where (θ, ϕ) P D = [0, 2π)ˆ [0, π). Then r : D Ñ S2 is a continuous
bijection; thus S2 is a parametric surface.
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example
Consider the torus shown below

2. Let S2 denote the unit sphere centered at the origin. Use (0.1) to compute

∫∫

S2

x2e2zdS .

You can use the formula

∫

xeaxdx = (
x

a
−

1

a2
)eax to reduce the computation.

Problem 4. Let D be the solid given by

(x, y, z) = Φ(u, v, w)

= ((2 + w cos v) cosu, (2 + w cos v) sin u, w sin v) , 0 ≤ u ≤ 2π , 0 ≤ v ≤ 2π , 0 ≤ w ≤ 1

whose surface T
2 is a torus obtained by rotating the curve

⇀
r (t) = (2 + cos t, sin t), 0 ≤ θ ≤ 2π, on

the xz-plane about the z-axis.

u

v

x

z

(x,y,z)

(  x2+y2,0,z)

y

1. Compute the volume of D.

2. Let
⇀
r (u, v) = Φ(u, v, 1). Then

⇀
r (u, v) with (u, v) ∈ [0, 2π]×

[

−
π

2
,
π

2

]

is a parametrization of

Σ. Compute
⇀
r u×

⇀
r v, as well as ‖

⇀
r u×

⇀
r v ‖.

3. There are two unit normal vectors

⇀
r u×

⇀
r v

‖
⇀
r u×

⇀
r v ‖

and −

⇀
r u×

⇀
r v

‖
⇀
r u×

⇀
r v ‖

at each point
⇀
r (u, v) on Σ.

Determine which one is compatible with the outward pointing orientation.

4. Let
⇀

F (x, y, z) = (ln(x2 + y2), ln(x2 + y2), ln(x2 + y2)). Use the divergence theorem to compute

the surface integral

∫∫

T2

⇀

F ·
⇀

N dS, where
⇀

N is the outward point unit normal to T
2.

Problem 5. Let C be a smooth curve on the unit sphere parametrized by

⇀
r (t) = (cos(sin t) sin t, sin(sin t) sin t, cos t) , 0 ≤ t ≤ 2π .

1. Show that the corresponding curve of
⇀
r (t) on θφ-plane consists of two curves C1 and C2 given

by

C1 =
{

(θ, φ)
∣

∣ θ = sinφ , 0 ≤ φ ≤ π
}

, C2 =
{

(θ, φ)
∣

∣ θ = π − sinφ , 0 ≤ φ ≤ π
}

.

Figure 1: Torus with parametrization r(u, v). (temporary picture)
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example (cont.)
Note that the torus has a parametrization

r(u, v) = (a + b cos v) cos ui + (a + b cos v) sin u j + b sin v k ,

where (u, v) P [0, 2π) ˆ [0, 2π). Therefore, the torus is a parametric
surface.
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
§A.4.2 Surface area of parametric surfaces
Theorem
Let D be an open region in the plane, and

Σ ”

!

r P R3
ˇ

ˇ

ˇ
r = X(u, v)i+Y(u, v) j+Z(u, v)k for some (u, v) P D

)

be a regular parametric surface so that r is continuously differen-
tiable; that is, Xu, Xv, Yu, Yv, Zu, Zv are continuous. Then

the surface area of Σ =
żż

D

›

›ru(u, v) ˆ rv(u, v)
›

› d(u, v) .
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§A.4 The Surface Integrals
Example
The theorem above provides one specific way of evaluating the sur-
face integrals: if the surface Σ is in fact a subset of the graph of a
function f : R Ď R2 Ñ R; that is, Σ Ď

␣

x, y, f (x, y))
ˇ

ˇ (x, y) P R
(

,
then Σ has a parametrization

r(x, y) = xi + y j + f (x, y)k , (x, y) P R .

Then

}rx(x, y) ˆ ry(x, y)}2R3 = 1 +
ˇ

ˇ

ˇ

Bf
Bx(x, y)

ˇ

ˇ

ˇ

2
+
ˇ

ˇ

ˇ

Bf
By(x, y)

ˇ

ˇ

ˇ

2
;

thus

the surface area of Σ =
żż

R

c

1 +
ˇ

ˇ

ˇ

Bf
Bx(x, y)

ˇ

ˇ

ˇ

2
+
ˇ

ˇ

ˇ

Bf
By(x, y)

ˇ

ˇ

ˇ

2
dA .
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§A.4 The Surface Integrals
Example
Given the parametrization of the unit sphere S2

r(θ, ϕ) = cos θ sinϕi+ sin θ sinϕ j+cosϕk , (θ, ϕ) P [0, 2π]ˆ [0, π] ,

we find that
rθ(θ, ϕ) = ´ sin θ sinϕi + cos θ sinϕ j ,
rϕ(θ, ϕ) = cos θ cosϕi + sin θ cosϕ j ´ sinϕk

so that
(rθ ˆ rϕ)(θ, ϕ) = ´ cos θ sin2 ϕi ´ sin θ sin2 ϕ j ´ sinϕ cosϕk

= ´ sinϕ
(

cos θ sinϕi + sin θ sinϕ j + cosϕk
)
.

Therefore, the surface area of S2 is
żż

[0,2π]ˆ[0,π]

›

›(rθ ˆ rϕ)(θ, ϕ)
›

›d(θ, ϕ) =
ż π

0

( ż 2π

0

sinϕ dθ
)

dϕ = 4π .

Ching-hsiao Arthur Cheng 鄭經斅 數學建模 MA3067-*



Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example
Given the parametrization of the torus given in previous example by

r(u, v) = (a + b cos v) cos ui + (a + b cos v) sin u j + b sin v k ,

where (u, v) P [0, 2π) ˆ [0, 2π), we find that
ru(u, v) = ´(a + b cos v) sin ui + (a + b cos v) cos u j ,
rv(u, v) = ´b sin v cos ui ´ b sin v sin u j + b cos v k ;

thus

(ru ˆ rv)(u, v) = b(a + b cos v)
(

cos u cos vi + sin u cos v j + sin vk
)
.

Therefore, the surface area of the torus is
żż

[0,2π]ˆ[0,2π]

b(a + b cos v) d(u, v) =
ż 2π

0

( ż 2π

0

(ab + b2 cos v) du
)

dv

= 4π2ab .
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§A.4 The Surface Integrals
Example
Let C be a smooth curve parameterized by

r(t) = (cos t sin t, sin t sin t, cos t) , t P I =
[

´
π

2
,
π

2

]
.

Then clearly C is on the unit sphere S2 since }r(t)}R3 = 1 for all
t P I. Since C is a closed curve, C divides S2 into two parts. Find
the surface area of the part Σ “enclosed” by C.

Solution:

(a) Let
⇀

F (x, y, z) = (0, f(x, y, z), 0). By the divergence theorem,

∫∫

Σ

f(x, y, z)n2(x, y, z)dS =

∫∫

Σ

⇀

F (x, y, z)· ⇀
n (x, y, z)dS =

∫∫∫

D

div
⇀

F (x, y, z)dV

=

∫∫∫

D

∂f

∂y
(x, y, z)dV .

(b) On the sphere x2 + y2 + z2 = 9, the outward point normal vector
⇀
n (x, y, z) = 1

3
(x, y, z).

Therefore, by (0.1) (with f(x, y, z) = 3yez in mind),

∫∫

Σ

y2ezdS =

∫∫

Σ

3yez
y

3
dS =

∫∫∫

D

∂

∂y
(3yez)dV =

∫

3

0

∫

2π

0

∫ π

0

3eρ cosφρ2 sinφdφdθdρ

= 3

∫ 3

0

∫ 2π

0

−ρeρ cosφ
∣

∣

∣

φ=π

φ=0

dθdρ

= 6π

∫ 3

0

(ρeρ − ρe−ρ)dρ

= 6π(ρ− 1)eρ
∣

∣

∣

ρ=3

ρ=0

− 6π(−ρ− 1)e−ρ
∣

∣

∣

ρ=3

ρ=0

= 12π(e3 + 2e−3) .

Problem 5. Let C be a smooth curve parametrized by

⇀
r (t) = (cos t sin t, sin t sin t, cos t) , −π

2
≤ t ≤ π

2
.

x
y

z

1. (10%) Show that the corresponding curve of
⇀
r (t) on θφ-plane consists of two line segments L1

and L2 given by

L1 =
{

(θ, φ)
∣

∣

∣
θ = φ , 0 ≤ φ ≤ π

2

}

, L2 =
{

(θ, φ)
∣

∣

∣
θ = π − φ , 0 ≤ φ ≤ π

2

}

.

2. (10%) Plot L1 and L2 on the θφ-plane. The curve C divides the unit sphere into two parts,

and let Σ be the part with smaller area. Identify the corresponding region of Σ on θφ-plane.

3. (15%) Find the surface area of Σ.
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§A.4 The Surface Integrals
Example (cont.)
To compute the surface area of Σ, we need to find a way to param-
eterize Σ. Naturally we try to parameterize Σ using the spherical
coordinate. In other words, let R = (0, 2π)ˆ(0, π) and ψ : R Ñ R3

be defined by

ψ(θ, ϕ) = cos θ sinϕi + sin θ sinϕ j + cosϕk ,

and we would like to find a region D Ď R such that ψ(D) = Σ.
Suppose that γ(t) =

(
θ(t), ϕ(t)

)
, t P

[
´

π

2
,
π

2

]
, is a curve in R

such that (ψ ˝ γ)(t) = r(t). Then for t P
[
0,

π

2

]
, the identity

cos t = cosϕ(t) implies that ϕ(t) = t ; thus the identities cos t sin t =
cos θ(t) sinϕ(t) and sin t sin t = sin θ(t) sinϕ(t) further imply that
θ(t) = t.
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example (cont.)
On the other hand, for t P

[
´

π

2
, 0
]
, the identity cos t = cosϕ(t),

where ϕ(t) P (0, π), implies that ϕ(t) = ´t ; thus the identities
cos t sin t = cos θ(t) sinϕ(t) and sin t sin t = sin θ(t) sinϕ(t) further
imply that θ(t) = π + t.

θ

ϕ

R

D = ψ´1(Σ)

θ = ϕ

θ + ϕ = π
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§A.4 The Surface Integrals
Example (cont.)
Since

ψθ(θ, ϕ) = ´ sin θ sinϕi + cos θ sinϕ j
ψϕ(θ, ϕ) = cos θ cosϕi + sin θ cosϕ j ´ sinϕk

we find that
›

›(ψθ ˆψϕ)(θ, ϕ)
›

›

2

=
›

›´ cos θ sin2 ϕi ´ sin θ sin2 ϕ j ´ (sin2 θ + cos2 θ) sinϕ cosϕk
›

›

2

= (cos2 θ + sin2 θ) sin4 ϕ+ sin2 ϕ cos2 ϕ = sin2 ϕ ,

the area of the desired surface can be computed by
ż π

2

0

ż π´ϕ

ϕ

sinϕ dθdϕ =
ż π

2

0

(π ´ 2ϕ) sinϕ dϕ

=
(

´ π cosϕ+ 2ϕ cosϕ´ 2 sinϕ)
ˇ

ˇ

ˇ

ϕ=π
2

ϕ=0
= π ´ 2 .
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example (cont.)
Another way to parameterize Σ is to view Σ as the graph of func-
tion z =

a

1 ´ x 2 ´ y 2 over D, where D is the projection of Σ along
z-axis onto xy-plane. We note that the boundary of D can be pa-
rameterized by

rr (t) = cos t sin t i + sin t sin t j , t P

[
´
π

2
,
π

2

]
.

Let (x, y) P BD. Then x 2+y 2 = y ; thus Σ can also be parameterized
by ψ : D Ñ R3, where

ψ(x, y) = xi+y j+
a

1 ´ x 2 ´ y 2k and D =
␣

(x, y)
ˇ

ˇ x 2+y 2 ď y
(

.
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example (cont.)
Therefore, with f denoting the function f (x, y) =

a

1 ´ x 2 ´ y 2, the
surface area of Σ is

ż

D

b

1 + f 2x + f 2y dA =
ż 1

0

ż

?
y´y 2

´
?

y´y 2

1
a

1 ´ x 2 ´ y 2
dxdy

=
ż 1

0

arcsin x
a

1 ´ y 2

ˇ

ˇ

ˇ

x=
?

y´y 2

x=´
?

y´y 2
dy = 2

ż 1

0

arcsin
?y

?
1 + y dy ;

thus making a change of variable y = tan2 θ we conclude that the
surface area of Σ is

2
ż π

4

0

arcsin tan θ
sec θ d(tan2 θ) = 2

ż π
4

0

θ d
(

tan2 θ)

= 2
[
θ tan2 θ

ˇ

ˇ

ˇ

θ=π
4

θ=0
´

ż π
4

0

tan2 θdθ
]
= π ´ 2 .
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§A.4 The Surface Integrals
§A.4.3 Surface integrals of scalar functions
Let Σ Ď R3 be a regular surface and f : Σ Ñ R be a real-valued
function. We partition Σ into small pieces Σ1,Σ2, ¨ ¨ ¨ ,Σn so that
Σi X Σj has zero area if i ‰ j and Σ =

n
Ť

k=1

Σk. A Riemann sum of f

for partition tΣ1, ¨ ¨ ¨ ,Σnu (of Σ) takes the form
n
ÿ

k=1

f (pk)σ(Σk) ,

where p1, ¨ ¨ ¨ , pn are points on Σ satisfying pk P Σk, and σ(Σk)

denotes the surface area of Σk. The limit of Riemann sums as
max

␣

diam(Σ1), diam(Σ2), ¨ ¨ ¨ , diam(Σn)
(

approaches zero, if ex-
ists, is called the surface integral of f on Σ, and is denoted by
ż

Σ

f dS.
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Theorem
Let D be an open region in the plane, and

Σ ”
!

r P R3
ˇ

ˇ

ˇ
r = X(u, v)i+Y(u, v) j+Z(u, v)k for some (u, v) P D

)

be a regular parametric surface so that r is continuously differen-
tiable, and f : Σ Ñ R be a continuous function. Then the surface
integral of f on Σ exists and is given by

żż

D
(f ˝ r)(u, v)

›

›(ru ˆ rv)(u, v)
›

› d(u, v) .

Remark: If the surface Σ is the graph of a function f : R Ď R2 Ñ R,
then for a continuous function g : Σ Ñ R, we have

ż

Σ

g dS =
żż

R
g
(
x, y, f (x, y)

)b
1 + fx(x, y)2 + fy(x, y)2 dA .
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example

Evaluate the surface integral
ż

Σ

(y 2 + 2yz)dS, where Σ is the first-
octant portion of the plane 2x + y + 2z = 6.

First, we note that Σ can be parameterized by

Σ =
!

xi + y j + 6 ´ 2x ´ y
2

k
ˇ

ˇ

ˇ
(x, y) P R

)

,

where R is the triangle
␣

(x, y)
ˇ

ˇ x P [0, 3], 0 ď y ď 6´2x
(

. Therefore,
ż

Σ

(y 2 + 2yz) dS

=
żż

R

(
y 2 + 2y ¨

6 ´ 2x ´ y
2

)c
1 + (´1)2 +

(
´

1

2

)2 dA

=
ż 3

0

( ż 6´2x

0

3

2
(6y ´ 2xy) dy

)
dx = ¨ ¨ ¨ =

243

2
.
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example

Evaluate the surface integral
ż

Σ

a

x(1 + 2z) dS, where Σ is the por-

tion of the cylinder z =
y 2

2
over the triangular region

R ”
␣

(x, y)
ˇ

ˇ x ě 0, y ě 0, x + y ď 1
(

in the xy-plane. Similar to the previous example, we have
ż

Σ

a

x(1 + 2z) dS =
żż

R

a

x(1 + y 2)
a

1 + 02 + y 2 dA

=
ż 1

0

( ż 1´x

0

?
x(1 + y 2) dy

)
dx =

ż 1

0

?
x
(

y + y 3

3

)ˇ
ˇ

ˇ

y=1´x

y=0
dx

=
ż 1

0

?
x
(
1 ´ x + (1 ´ x)3

3

)
dx =

284

945
.
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example

Evaluate the surface integral
ż

Σ

z dS, where Σ is the surface given
in one of previous examples

Solution:

(a) Let
⇀

F (x, y, z) = (0, f(x, y, z), 0). By the divergence theorem,

∫∫

Σ

f(x, y, z)n2(x, y, z)dS =

∫∫

Σ

⇀

F (x, y, z)· ⇀
n (x, y, z)dS =

∫∫∫

D

div
⇀

F (x, y, z)dV

=

∫∫∫

D

∂f

∂y
(x, y, z)dV .

(b) On the sphere x2 + y2 + z2 = 9, the outward point normal vector
⇀
n (x, y, z) = 1

3
(x, y, z).

Therefore, by (0.1) (with f(x, y, z) = 3yez in mind),

∫∫

Σ

y2ezdS =

∫∫

Σ

3yez
y

3
dS =

∫∫∫

D

∂

∂y
(3yez)dV =

∫

3

0

∫

2π

0

∫ π

0

3eρ cosφρ2 sinφdφdθdρ

= 3

∫ 3

0

∫ 2π

0

−ρeρ cosφ
∣

∣

∣

φ=π

φ=0

dθdρ

= 6π

∫ 3

0

(ρeρ − ρe−ρ)dρ

= 6π(ρ− 1)eρ
∣

∣

∣

ρ=3

ρ=0

− 6π(−ρ− 1)e−ρ
∣

∣

∣

ρ=3

ρ=0

= 12π(e3 + 2e−3) .

Problem 5. Let C be a smooth curve parametrized by

⇀
r (t) = (cos t sin t, sin t sin t, cos t) , −π

2
≤ t ≤ π

2
.

x
y

z

1. (10%) Show that the corresponding curve of
⇀
r (t) on θφ-plane consists of two line segments L1

and L2 given by

L1 =
{

(θ, φ)
∣

∣

∣
θ = φ , 0 ≤ φ ≤ π

2

}

, L2 =
{

(θ, φ)
∣

∣

∣
θ = π − φ , 0 ≤ φ ≤ π

2

}

.

2. (10%) Plot L1 and L2 on the θφ-plane. The curve C divides the unit sphere into two parts,

and let Σ be the part with smaller area. Identify the corresponding region of Σ on θφ-plane.

3. (15%) Find the surface area of Σ.

which can be parameterized by

Σ =
!

r(θ, ϕ) = cos θ sinϕi + sin θ sinϕ j + cosϕk
ˇ

ˇ

ˇ

0 ď ϕ ď
π

2
, ϕ ď θ ď π ´ ϕ

)

.
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Chapter A. Vector Calculus

§A.4 The Surface Integrals
Example (cont.)
Therefore,

ż

Σ

z dS =
ż π

2

0

( ż π´ϕ

ϕ

cosϕ
›

›(rθ ˆ rϕ)(θ, ϕ)
›

› dθ
)

dϕ

=
ż π

2

0

( ż π´ϕ

ϕ

cosϕ sinϕ dθ
)

dϕ

=
1

2

ż π
2

0

(π ´ 2ϕ) sin(2ϕ) dϕ

=
1

2

[
(π ´ 2ϕ)

´ cos(2ϕ)
2

ˇ

ˇ

ˇ

ϕ=π
2

ϕ=0
´

ż π
2

0

cos(2ϕ)
2

dϕ
]

=
1

2

(
π
2 ´

sin(2ϕ)
4

ˇ

ˇ

ˇ

ϕ=π
2

ϕ=0

)
=
π

4
.
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Chapter A. Vector Calculus

§A.5 The Flux Integrals
Let Σ Ď R3 be a regular parametric surface with a continuous normal
vector field n : Σ Ñ R3 (sometimes this is called “Σ is oriented by
n”). For a bounded continuous vector-valued function F : Σ Ñ R3,
the flux integral of F across Σ (in direction n) is the surface integral
of F ¨ n on Σ; that is,

the flux integral of F across Σ (in direction n) =
ż

Σ

F ¨ n dS .
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Chapter A. Vector Calculus

§A.5 The Flux Integrals
§A.5.1 Physical Interpretation
Let Ω Ď R3 be an open set which stands for a fluid container and
fully contains some liquid such as water, and u : Ω Ñ R3 be a
vector-field which stands for the fluid velocity; that is, u(x) is the
fluid velocity at point x P Ω. Furthermore, let Σ Ď Ω be a surface
immersed in the fluid with given orientation n, and c : Ω Ñ R be the
concentration of certain material dissolving in the liquid. Then the
amount of the material carried across the surface in the direction n
by the fluid in a time period of ∆t is

∆t ¨

ż

Σ

cu ¨ n dS .

Therefore,
ż

Σ

cu ¨ n dS is the rate of the amount of the material
carried across the surface in the direction n by the fluid.
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Chapter A. Vector Calculus

§A.5 The Flux Integrals
Example
Find the flux integral of the vector field F(x, y, z) = (x, y 2, z) upward
through the first octant part Σ of the cylindrical surface x 2 + z 2 =

a 2, 0 ă y ă b.

x y

z

a

a

b

Figure 2: The surface Σ
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Chapter A. Vector Calculus

§A.5 The Flux Integrals
Example (cont.)
First, we parameterize Σ by

r(u, v) = ui + v j +
a

a2 ´ u2k , (u, v) P D = (0, a) ˆ (0, b)

so that }(ru ˆ rv)(u, v)}2R3 =
a2

a2 ´ u2
, and the upward-pointing unit

normal is N(x, y, z) = (
x
a , 0,

z
a). Therefore,

ż

Σ

F ¨ N dS =
żż

D

1

a (u
2 + a2 ´ u2)

a
?

a2 ´ u2
d(u, v)

= a2
żż

D

1
?

a2 ´ u2
d(u, v)

= a2
ż b

0

ż a

0

1
?

a2 ´ u2
dudv = a2b arcsin u

a

ˇ

ˇ

ˇ

u=a

u=0
=
πa2b
2

.
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Chapter A. Vector Calculus

§A.5 The Flux Integrals
Example (cont.)
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so that }(ru ˆ rv)(u, v)}2R3 =
a2

a2 ´ u2
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a
?
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ˇ

ˇ
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Chapter A. Vector Calculus

§A.5 The Flux Integrals
§A.5.2 Measurements of the flux - the divergence operator
Let Ω Ď R3 be an open set, and u = (u1, u2, u3) : Ω Ñ R3 be a
continuously differentiable vector field. Suppose that O is a bounded
open set whose boundary is piecewise smooth so that an outward-
pointing unit normal vector field N = (N1,N2,N3) can be defined
on BO except on some curves. Then the flux integral of u on BO in
the direction N is

ż

BO
u ¨ N dS .

Consider a special case that O = (a1, a2)ˆ (b1, b2)ˆ (c1, c2) be an
open cube so that BO = ta1, a2uˆΣ1Ytb1, b2uˆΣ2Ytc1, c3uˆΣ3.
Then

ż

BO
u ¨ N dS =

3
ÿ

k=1

ż

Σk

u ¨ N dS .
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Chapter A. Vector Calculus

§A.5 The Flux Integrals
Since on Σ3 the outward-pointing normal N is given by

N(x, y, z) =
"

´k if (x, y, z) P [a1, a2] ˆ [b1, b2] ˆ tc1u ,

k if (x, y, z) P [a1, a2] ˆ [b1, b2] ˆ tc2u ,

we find that
ż

Σ3

u ¨ N dS

=
żż

[a1,a2]ˆ[b1,b2]

u3(x, y, c2) dA ´

żż

[a1,a2]ˆ[b1,b2]

u3(x, y, c1) dA

=
żż

[a1,a2]ˆ[b1,b2]

u3(x, y, z)
ˇ

ˇ

ˇ

x=c2

x=c1
dA

=
żż

[a1,a2]ˆ[b1,b2]

( ż

[c1,c2]

Bu3

Bz (x, y, z) dz
)

dA =
żżż

O

Bu3

Bz dV ,

where the last equality is established by Fubini’s Theorem.

Ching-hsiao Arthur Cheng 鄭經斅 數學建模 MA3067-*



Chapter A. Vector Calculus

§A.5 The Flux Integrals
Similarly,
ż

Σ1

u ¨ N dS =
żżż

O

Bu1

Bx dV and
ż

Σ2

u ¨ N dS =
żżż

O

Bu2

By dV ;

thus
ż

BO
u ¨ N dS =

żżż

O

(
Bu1

Bx +
Bu2

By +
Bu3

Bz

)
dV =

żżż

O
divu dV . (1)

Remark: Let O(a, r) denote a cube centered at a P Ω with side
length r. Using (1),

lim
rÑ0

1

|O(a, r)|

ż

BO(a,r)
u ¨ N dS = (divu)(a) @ a P Ω .

In other words, divu at a point x is the instantaneous amount (per
volume) of material (with concentration 1) carried outside an in-
finitesimal cube centered at x.
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§A.5 The Flux Integrals
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem
Equation (1) from the previous page in fact holds for more general
domain O, and we have the following
Theorem (The Divergence Theorem)
Let Ω Ď R 3 be a bounded domain such that BΩ is piecewise smooth
with outward pointing normal N, and w : Ω Ñ R3 be continuously
differentiable vector field. Then

ż

BΩ
w ¨ N dS =

żżż

Ω
divw dV .

Green’s Theorem in Normal/Divergence Form: Let F : R Ď

R2 Ñ R2 be a continuously differentiable vector field. Then
¿

BR
F ¨ N ds =

żż

R
divF dA ,

where N is the outward-pointing unit normal on BR.
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem
Remark: Similar to Green’s Theorem in Divergence Form, the Di-
vergence Theorem states that “一向量場在一區域的邊界上的某種
有方向性的和（積分）等於該向量場某種微分的樣子（即散度）

在該區域上的和（積分）”:

一向量場在一區域的邊界上的某種具方向性的和 =
ż

BΩ

w ¨ N dS.

該向量場某種微分的樣子在該區域上的和 =
żżż

Ω

divw dV.

Comparison: The fundamental theorem of calculus
ż b

a
f 1(x) dx = f (b) ´ f (a) ‘‘=”

ż

B[a,b]
f .
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem
Letting w be the product of a scalar function φ and a vector field v
in the Divergence Theorem, using the identity

div(φv) = φdivv +∇φ ¨ v ,
we conclude the following
Corollary
Let Ω Ď R3 be a bounded domain such that BΩ is piecewise smooth
with outward-pointing unit normal N, v : Ω Ñ R3 be a continuously
differentiable vector field, and φ : Ω Ñ R be continuously differen-
tiable. Then

żżż

Ω
φ divv dV =

ż

BΩ
(v ¨ N)φ dS ´

żżż

Ω
v ¨ ∇φ dV .
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem
Letting v = f ei for some continuously differentiable function f : Ω Ñ

R in the previous corollary, we obtain the following
Corollary
Let Ω Ď R3 be a bounded domain such that BΩ is piecewise smooth
with outward-pointing normal N = (N1,N2,N3), and f, φ : Ω Ñ R
be continuously differentiable functions. Then

żżż

Ω
φ

Bf
Bxi

dV =

ż

BΩ
fφNi dS ´

żżż

Ω
f Bφ

Bxi
dV .
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem
Example
Let Ω be the the first octant part bounded by the cylindrical surface
x 2 + z 2 = a 2 and the plane y = b, and F : Ω Ñ R3 be a vector-
valued function defined by F(x, y, z) = (x, y 2, z).

x y

z

a

a

b

Figure 3: The domain Ω and its five pieces of boundaries
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem
Example (cont.)
With N denoting the outward-pointing unit normal of BΩ,

żżż

Ω

divF dV =
ż a

0

ż b

0

ż

?
a2´x2

0

(2 + 2y) dzdydx

= (b 2 + 2b)
ż a

0

ż

?
a 2´x 2

0

dzdx =
πa 2(b 2 + 2b)

4
.

On the other hand, we note that the boundary of Ω has five parts:
1 Σ as given in previous example,
2 two rectangles R1 = tx = 0u ˆ [0, b] ˆ [0, a], R2 = [0, a] ˆ

[0, b] ˆ tz = 0u, and
3 two quarter disc D1 =

␣

(x, 0, z) P R3
ˇ

ˇ x 2 + z 2 ď a 2, x, z ě 0
(

and D2 =
␣

(x, b, z) P R3
ˇ

ˇ x 2 + z 2 ď a 2, x, z ě 0
(

.
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem
Example (cont.)
With N denoting the outward-pointing unit normal of BΩ,

żżż

Ω

divF dV =
ż a

0

ż b

0

ż

?
a2´x2

0

(2 + 2y) dzdydx

= (b 2 + 2b)
ż a

0

ż

?
a 2´x 2

0

dzdx =
πa 2(b 2 + 2b)

4
.

On the other hand, we note that the boundary of Ω has five parts:
1 Σ as given in previous example,
2 two rectangles R1 = tx = 0u ˆ [0, b] ˆ [0, a], R2 = [0, a] ˆ

[0, b] ˆ tz = 0u, and
3 two quarter disc D1 =

␣

(x, 0, z) P R3
ˇ

ˇ x 2 + z 2 ď a 2, x, z ě 0
(

and D2 =
␣

(x, b, z) P R3
ˇ

ˇ x 2 + z 2 ď a 2, x, z ě 0
(

.
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem
Example (cont.)
Therefore,

ż

R1

F ¨ N dS =
ż a

0

ż b

0

(0, y 2, z) ¨ (´1, 0, 0) dydz = 0 ,

ż

R2

F ¨ N dS =
ż a

0

ż b

0

(x, y 2, 0) ¨ (0, 0,´1) dydx = 0 ,

ż

D1

F ¨ N dS =
ż a

0

ż

?
a 2´x 2

0

(x, 0, z) ¨ (0,´1, 0) dzdx = 0 ,

and
ż

D1

F ¨ N dS =
ż a

0

ż

?
a 2´x 2

0

(x, b 2, z) ¨ (0, 1, 0) dzdx

= b 2
ż a

0

ż

?
a 2´x 2

0

dzdx =
πa 2b 2

4
.
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Chapter A. Vector Calculus

§A.6 The Divergence Theorem
Example (cont.)
Together with the result in previous example, we find that

ż

BΩ

F ¨ N dS

=
( ż

Σ

+

ż

R1

+

ż

R2

+

ż

D1

+

ż

D2

)
F ¨ N dS

=
πa 2b 2

4
+
πa 2b
2

=
πa 2(b 2 + 2b)

4

=
żżż

Ω

divF dV .
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