Problem 1. Let $b, c \in \mathbb{R}$, and assume that $r^2 + br + c = 0$ has two distinct roots r_1, r_2 . Solve the IVP

$$x''(t) + bx'(t) + cx(t) = f(t),$$
 $x(0) = x_0, x'(0) = x_1$

by the following steps.

1. Since r_1, r_2 are two distinct roots of $r^2 + br + c = 0$, one has $b = -(r_1 + r_2)$ and $c = r_1 r_2$. Rewrite the IVP as

$$x''(t) - (r_1 + r_2)x'(t) + r_1r_2x(t) = f(t)$$
 $x(0) = x_0, x'(0) = x_1.$

Define $y(t) = x'(t) - r_1 x(t)$. Show that y satisfies

$$y'(t) - r_2 y(t) = f(t), y(0) = x_1 - r_1 x_0.$$
 (*)

- 2. Solve (\star) using the method of integrating factor.
- 3. Solve the IVP

$$x'(t) - r_1 x(t) = y(t), x(0) = x_0$$

using the method of integrating factor again.

Hint: If you do not know how to express the solution in this general form, try to solve the IVP with the following settings: b = -3, c = 2, $f(t) = \sin t$, as well as $x_0 = x_1 = 0$.

Remark: From Problem 1 you should be able to see the reason that one has $\varphi_1(t) = e^{r_1 t}$ and $\varphi_2(t) = e^{r_2 t}$ as a basis of the solution space for the homogeneous case (if you are not told this fact).

Problem 2. Given one solution $\varphi_1(t) = t^2$ of the ODE

$$t^{2}x''(t) - 3tx'(t) + 4x(t) = 0, (\star\star)$$

solve the IVP

$$t^2x''(t) - 3tx'(t) + 4x(t) = t^3 \ln t$$
, $x(1) = -2$, $x'(1) = -5$

for t > 0. Do **NOT** use formula (2.25) in the lecture note to find another solution φ_2 to $(\star\star)$ which is linearly independent of φ_1 , but instead try to follow the steps of deriving (2.25) to find such φ_2 .

Solution. Suppose that $\varphi_2(t) = t^2 v(t)$ is a solution to the corresponding homogeneous ODE

$$t^2x''(t) - 3tx'(t) + 4x(t) = 0. (\diamond)$$

Then

$$t^{2}[t^{2}v(t)]'' - 3t[t^{2}v(t)]' + 4t^{2}v(t) = 0$$

$$\Rightarrow t^{2}[2v(t) + 4tv'(t) + t^{2}v''(t)] - 3t[2tv(t) + t^{2}v'(t)] + 4t^{2}v(t) = 0$$

$$\Rightarrow t^{4}v'' + t^{3}v'(t) = 0 \Rightarrow tv'' + v'(t) = 0.$$

Let y(t) = v'(t). Then $y' + \frac{1}{t}y = 0$; thus

$$\frac{d}{dt} \left[\exp\left(\int \frac{1}{t} dt \right) y(t) \right] = 0.$$

Therefore, $y(t) = \frac{C}{t}$ so that $v(t) = C \ln t$. This shows that $\varphi_2(t) = t^2 \ln t$ is another solution to (\diamond) which is linearly independent of φ_1 .

Having obtained a basis $\{\varphi_1, \varphi_2\}$ of the solution space of the corresponding homogeneous ODE, we apply formula (2.27) in the lecture to find a particular solution x_p of $(\star\star)$. First we note that the Wronskian W[φ_1, φ_2] is given by

$$W[\varphi_1, \varphi_2](t) = \varphi_1(t)\varphi_2'(t) - \varphi_2(t)\varphi_1'(t) = t^2(2t \ln t + t) - t^2 \ln t \cdot 2t = t^3.$$

Therefore,

$$x_p(t) = -t^2 \int \frac{t \ln t \cdot t^2 \ln t}{t^3} dt + t^2 \ln t \int \frac{t \ln t \cdot t^2}{t^3} dt = -t^2 \int (\ln t)^2 dt + t^2 \ln t \int \ln t dt.$$

Since

$$\int \ln t \, dt = t \ln t - t \,,$$

integrating by parts (with $u = \ln t$ and $dv = \ln t dt$) shows that

$$\int (\ln t)^2 dt = \ln t (t \ln t - t) - \int \frac{t \ln t - t}{t} dt = t (\ln t)^2 - t \ln t - (t \ln t - t) + t$$
$$= t (\ln t)^2 - 2t \ln t + 2t,$$

we conclude that

$$x_p(t) = -t^2 \left[t(\ln t)^2 - 2t \ln t + 2t \right] + t^2 \ln t(t \ln t - t) = t^3 \ln t - 2t^3$$

so the general solution to the ODE above is

$$x(t) = C_1 t^2 + C_2 t^2 \ln t + t^3 \ln t - 2t^3.$$

By the initial condition x(1) = -2 and x'(1) = -5, we find that $C_1 = C_2 = 0$; thus the solution to the IVP above is $x(t) = t^3 \ln t - 2t^3$.