Exercise Problem Sets 2

Apr. 2 2020

(due Apr. 8. 2020)

Problem 1. In this problem you are asked to write a computer code of a function

where

- 1. the inputs \boldsymbol{x} , \boldsymbol{y} are vectors of length n+1 given by $\boldsymbol{x}=[x_0,x_1,\cdots,x_n]$ and $\boldsymbol{y}=[y_0,y_1,\cdots,y_n]$, and
- 2. the output c is a vector of length n+1 given by

$$\boldsymbol{c} = \left[c_0, c_1, \cdots, c_n\right],\,$$

where c_i 's are the coefficients of the n-th Lagrange interpolating polynomial p satisfying

$$p(x) = c_0 + \sum_{i=1}^{n} c_j(x - x_0)(x - x_1) \cdots (x - x_{i-1}).$$

Note that when p is the n-th Lagrange interpolating polynomial for the data $(x_0, f(x_0)), (x_1, f(x_1)), \cdots, (x_n, f(x_n)), \text{ the coefficient } c_i \text{ is the divided difference } f[x_0, x_1, \cdots, x_i].$

Hint: The algorithm for computing the divided difference $f[x_0, x_1, \dots, x_n]$ is stated below:

INPUT: numbers x_0, x_1, \dots, x_n ; values $f(x_0), f(x_1), \dots, f(x_n)$ as $F_{0,0}, F_{1,0}, \dots, F_{n,0}$.

OUTPUT: the numbers $F_{0,0}$, $F_{1,1}$, \cdots , $F_{n,n}$, where $F_{i,i} = f[x_0, x_1, \cdots, x_i]$ satisfies

$$P_n(x) = F_{0,0} + \sum_{i=1}^n F_{i,i} \prod_{j=0}^{i-1} (x - x_j),$$

by the following steps:

Step 1 For $i = 1, 2, \dots, n$

For
$$j = 1, 2, \dots, i$$

set $F_{i,j} = \frac{F_{i,j-1} - F_{i-1,j-1}}{x_i - x_{j-1}}$. $\left(F_{i,j} = f[x_{i-j}, x_{i-j+1}, \dots, x_i]\right)$

Step 2 Output $(F_{0,0}, F_{1,1}, \cdots, F_{n,n});$

STOP.