數值分析 MA-3021

Chapter 1. Mathematical Preliminaries

- §1.1 Review of Calculus
- §1.2 Round-off Errors and Computer Arithmetic
- §1.3 Algorithms and Convergence

Definition

Let I be a non-empty set in \mathbb{R} (not necessary an interval), c be an accumulation point of I, and $f:I\to\mathbb{R}$ be a real-valued function.

Then $\lim_{x\to c} f(x) = L$ means for every $\varepsilon>0$ there exists $\delta>0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$ and $x \in X$.

Definition

$$|x_n - x| < \varepsilon$$
 whenever $n \geqslant N$.

Definition

Let $I \subseteq \mathbb{R}$ be a non-empty set (not necessary an interval), c be an accumulation point of I, and $f: I \to \mathbb{R}$ be a real-valued function.

Then $\lim_{x\to c} f(x) = L$ means for every $\varepsilon>0$ there exists $\delta>0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$ and $x \in X$.

Definition

$$|x_n - x| < \varepsilon$$
 whenever $n \ge N$.



Definition

Let $I \subseteq \mathbb{R}$ be a non-empty set (not necessary an interval), c be an accumulation point of I, and $f: I \to \mathbb{R}$ be a real-valued function.

Then $\lim_{\mathbf{x}\to\mathbf{c}}f(\mathbf{x})=\mathbf{L}$ means for every $\varepsilon>0$ there exists $\delta>0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$ and $x \in X$.

Definition

$$|x_n - x| < \varepsilon$$
 whenever $n \ge N$.

Definition

Let $\varnothing \neq I \subseteq \mathbb{R}$ (not necessary an interval), c be an accumulation point of I, and $f: I \to \mathbb{R}$.

Then $\lim_{\mathbf{x}\to\mathbf{c}}f(\mathbf{x})=\mathbf{L}$ means for every $\varepsilon>0$ there exists $\delta>0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$ and $x \in X$.

Definition

$$|x_n - x| < \varepsilon$$
 whenever $n \ge N$.

Theorem

Let $\emptyset \neq I \subseteq \mathbb{R}$, c is an accumulation point of I, and f be a real-valued function defined on $I - \{c\}$. Then $\lim_{x \to c} f(x) = L$ if and only if

every sequence
$$\{c_n\}_{n=1}^{\infty}\subseteq I-\{c\}$$
 satisfying $\lim_{n\to\infty}c_n=c$ also has the property that $\lim_{n\to\infty}f(c_n)=L$.

Using the logic notation, $\lim_{x\to c} f(x) = L$ if and only if

$$\left(\forall \{c_n\}_{n=1}^{\infty} \subseteq I - \{c\}\right) \left(\lim_{n \to \infty} c_n = c \Rightarrow \lim_{n \to \infty} f(c_n) = L\right).$$

§1.1 Review of Calculus - Continuity of Functions

Definition

Let $\varnothing \neq I \subseteq \mathbb{R}$, $c \in I$, and $f \colon I \to \mathbb{R}$. Then f is said to be continuous at c if $\lim_{x \to c} f(x) = f(c)$. Using the ε - δ language, f is continuous at c if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x) - f(c)| < \varepsilon$ whenever $|x - c| < \delta$ and $x \in I$.

Theorem

Let $\emptyset \neq I \subseteq \mathbb{R}$, $c \in I$, and $f : I \to \mathbb{R}$. Then f is continuous at c if and only if

$$\lim_{n\to\infty} f(c_n) = f(c) \text{ as long as } \{c_n\}_{n=1}^{\infty} \subseteq I \text{ and } \lim_{n\to\infty} c_n = c.$$

(一函數 f 在 c 連續如果「所有在 I 中收斂到 c 的數列其函數值 所形成的數列都收斂到 f(c)」)

§1.1 Review of Calculus - Continuity of Functions

Definition

Let $\emptyset \neq I \subseteq \mathbb{R}$. The collection of all continuous functions defined on I is denoted by C(I).

Remark:

- For simplicity, we also use C[a, b] to denote C([a, b]), and use C(a, b] to denote C((a, b]), and etc.
- ② To be more precise, we use C(I;J) to denote all continuous functions defined on I with codomain J. For example, we use $C(I;\mathbb{R})$ to denote all continuous real-valued function defined on I, and use $C(I;\mathbb{R}^3)$ to denote all continuous three vector-valued functions defined on I, and etc.

§1.1 Review of Calculus - Smoothness

Definition

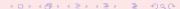
Let I be a non-empty (open) interval in \mathbb{R} , $c \in I$, and $f: I \to \mathbb{R}$.

- If $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists, then we say f is differentiable at c and $f'(c) \equiv \lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ is the derivative of f at c.
- 2 If f is differentiable at each point in I, then we say f is differentiable on I.

Alternative definition:
$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$
.

Theorem

If f is differentiable at c, then f is continuous at c.



§1.1 Review of Calculus - Smoothness

Definition

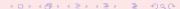
Let $\emptyset \neq I \subseteq \mathbb{R}$ be an (open) interval , $c \in I$, and $f: I \to \mathbb{R}$.

- If $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists, then we say f is differentiable at c and $f'(c) \equiv \lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ is the derivative of f at c.
- 2 If f is differentiable at each point in I, then we say f is differentiable on I.

Alternative definition:
$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$
.

Theorem

If f is differentiable at c, then f is continuous at c.



§1.1 Review of Calculus - Smoothness

Definition

Let $\emptyset \neq I \subseteq \mathbb{R}$ be an interval, and $f: I \to \mathbb{R}$. Function f is said to be continuously differentiable on I if

- f is differentiable on I.
- **2** f' is continuous on I.

Function f is said to be k-times continuously differentiable on I if

- **1** $f, f', f'', \cdots, f^{(k)}$ exists on I.
- 2 $f^{(k)}$ is continuous on I.

The collection of all k-times continuously differentiable functions defined on I is denoted by $C^k(I)$, and the collection of all continuous functions defined on I that have derivatives of all order is denoted by $C^{\infty}(I)$.

§1.1 Review of Calculus - Mean Value Theorem

Theorem (Extreme Value Theorem)

Let $f: [a,b] \to \mathbb{R}$ be continuous. Then there exists $c_1, c_2 \in [a,b]$ such that $f(c_1) \leqslant f(x) \leqslant f(c_2)$ for all $x \in [a,b]$.

Theorem (Fermat)

Let $f:(a,b) \to \mathbb{R}$ be differentiable. If a < c < b and f(c) is a local extreme value of f, then f'(c) = 0.

Extreme Value Theorem + Fermat's Theorem \Rightarrow

Theorem (Rolle)

Let $f: [a, b] \to \mathbb{R}$ be continuous. If f is differentiable on (a, b) and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

§1.1 Review of Calculus - Mean Value Theorem

Theorem (Mean Value Theorem)

Let $f:[a,b] \to \mathbb{R}$ be continuous. If f is differentiable on (a,b), then there exists $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Theorem (Generalized Rolle's Theorem)

Let $f: [a,b] \to \mathbb{R}$ be continuous. If $f \in C^k((a,b))$ and f has (k+1) distinct zeros in [a,b], then there exists $c \in (a,b)$ such that

$$f^{(k)}(c)=0.$$

§1.1 Review of Calculus - Intermediate Value Theorem

Theorem (Bolzano)

Let $f: [a, b] \to \mathbb{R}$ be continuous. If f(a)f(b) < 0, then there exists $c \in (a, b)$ such that f(c) = 0.

Theorem (Intermediate Value Theorem)

Let $f: [a, b] \to \mathbb{R}$ be continuous, and K is any number between f(a) and f(b); that is, f(a) < K < f(b) or f(b) < K < f(a), then there exists $c \in (a, b)$ such that f(c) = K.

Note: The Least-Upper-Bound Axiom + sign-preserving property

 \Rightarrow Bolzano's Theorem \Rightarrow Intermediate Value Theorem.

§1.1 Review of Calculus - Riemann integrals

Definition

A finite set $\mathcal{P}=\{x_0,x_1,\cdots,x_n\}$ is said to be a partition of the closed interval [a,b] if $a=x_0< x_1<\cdots< x_n=b$. Such a partition \mathcal{P} is usually denoted by $\{a=x_0< x_1<\cdots< x_n=b\}$. The norm of \mathcal{P} , denoted by $\|\mathcal{P}\|$, is the number $\max\{x_i-x_{i-1}\,\big|\,1\leqslant i\leqslant n\}$; that is,

$$\|\mathcal{P}\| \equiv \max\left\{x_i - x_{i-1} \mid 1 \leqslant i \leqslant n\right\}.$$

Let $f: [a, b] \to \mathbb{R}$ be a function. A Riemann sum of f for the partition $\mathcal{P} = \{a = x_0 < x_1 < \dots < x_n = b\}$ of [a, b] is a sum which takes the form

$$\sum_{k=1}^{n} f(c_k)(x_k - x_{k-1}),$$

where $x_{k-1} \le c_k \le x_k$ for each $1 \le k \le n$.

§1.1 Review of Calculus - Riemann integrals

Conceptually, a function $f:[a,b] \to \mathbb{R}$ is integrable if

$$\lim_{\|\mathcal{P}\| \to 0} \sum_{k=1}^{n} f(c_k) (x_k - x_{k-1}) \text{ exists.}$$

The precise meaning of the limit above is the following

Definition

Let $f\colon [a,b]\to\mathbb{R}$ be a function. f is said to be Riemann integrable on [a,b] if there exists a real number A such that for every $\varepsilon>0$, there exists $\delta>0$ such that if $\mathcal P$ is partition of [a,b] satisfying $\|\mathcal P\|<\delta$, then any Riemann sums for the partition $\mathcal P$ belongs to the interval $(A-\varepsilon,A+\varepsilon)$. Such a number A (is unique and) is called the Riemann integral of f on [a,b] and is denoted by $\int_{[a,b]} f(x)\,dx$.

§1.1 Review of Calculus - Riemann integrals

Definition

A set $A \subseteq \mathbb{R}$ is called a set of measure zero or is said to have measure zero if for every $\varepsilon > 0$ there exist intervals $I_1, I_2, \cdots, I_n, \cdots$ such that

Theorem (Lebesgue)

Let $f:[a,b] \to \mathbb{R}$ be a **bounded** function. Then f is Riemann integrable on [a,b] if and only if the collection of discontinuities of f has measure zero.

Therefore, if $f:[a,b]\to\mathbb{R}$ is continuous, then f is Riemann integrable on [a,b].

§1.1 Review of Calculus - Weighted Mean Value Theorem for Integrals

Theorem

Let $f \in C([a,b])$, g is Riemann integrable on [a,b] and does not change sign on [a,b]. There exists $c \in (a,b)$ such that

$$\int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx.$$

Proof.

W.L.O.G., we assume that $g \ge 0$ on [a,b] such that $\int_a^b g(x) \, dx > 0$. Since $f \in C([a,b])$, there exist $m = \min_{x \in [a,b]} f(x)$ and $M = \max_{x \in [a,b]} f(x)$.

Then

$$\int_{a}^{b} mg(x) dx \leqslant \int_{a}^{b} f(x)g(x) dx \leqslant \int_{a}^{b} Mg(x) dx;$$

thus $m \le \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx} \le M$, and the assertion holds by the Inter-

mediate Value Theorem.

§1.1 Review of Calculus - Weighted Mean Value Theorem for Integrals

Remark:

- When $g(x) \equiv 1$ on [a,b], the weight MVT for integrals implies that $\int_a^b f(x) dx = f(c)(b-a)$. This is the original MVT for integrals.
- 2 The number $\frac{1}{b-a} \int_a^b f(x) dx$ is called the average value of f on [a,b], and sometimes is denoted by $(f)_{[a,b]}$.

Theorem (Taylor's Theorem for functions of one variable)

Let $f \in C^{m+1}([a,b])$ and $x_0 \in [a,b]$. Then for every $x \in [a,b]$, there exists $\xi(x)$ between x and x_0 such that

$$f(x) = P_m(x) + R_m(x),$$

where the m-th Taylor polynomial $P_m(x)$ is given by

$$P_m(x) = \sum_{k=0}^{m} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$

and the remainder (error) term $R_m(x)$ is given by

$$R_{m}(x) = \frac{1}{m!} \int_{x_{0}}^{x} (x - t)^{m} f^{(m+1)}(t) dt$$
 (Integral form)
$$= \frac{1}{(m+1)!} f^{(m+1)}(\xi(x)) (x - x_{0})^{m+1}$$
 (Lagrange's form)

(the last "=" is by the weighted MVT for integrals)

Remark: Assume that $f \in C^{\infty}([a, b])$.

- The series $\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x_0) (x x_0)^k$ is called the Taylor series of
 - f at x_0 . It is also called the Maclaurin series of f when $x_0 = 0$.
- If $R_m(x) \to 0$ as $m \to \infty$, then $P_m(x) \to f(x)$ as $m \to \infty$; i.e.,

$$f(x) = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k.$$

Example

The Maclaurin series of the sine function is $\sum\limits_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$ and the Maclaurin series of the cosine function is $\sum\limits_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$. In fact,

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$
 and $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$ $\forall x \in \mathbb{R}$.

Example

Use the Taylor polynomial of $f(x) = \cos(x)$ at $x_0 = 0$ to estimate $\cos(0.01)$.

$$f'(x) = -\sin(x), \ f''(x) = -\cos(x), \ f'''(x) = \sin(x), \ f^{(4)}(x) = \cos(x).$$

 $f(0) = 1, \ f'(0) = 0, \ f''(0) = -1, \ f'''(0) = 0, \ f^{(4)}(0) = 1.$

Case
$$m=2$$
:

$$\cos(x) = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3\sin(\xi(x))$$
, where $\xi(x)$ is between 0 and x.

$$\cos(0.01) = 0.99995 + 0.1\bar{6} \times 10^{-6} \sin(\xi)$$
, where $0 < \xi < 0.01$.

$$|\cos(0.01) - 0.99995| \le 0.1\bar{6} \times 10^{-6} |\sin(\xi)| \le 0.1\bar{6} \times 10^{-6} \times 0.01$$

= $0.1\bar{6} \times 10^{-8}$,

where we use the fact $|\sin(x)| \le |x|$ for all $x \in \mathbb{R}$.

Case
$$m = 3$$
:

$$\cos(x) = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\cos(\widetilde{\xi}(x))$$
, where $\widetilde{\xi}(x)$ is between 0 and x .

$$|\cos(0.01) - 0.99995| \le \frac{1}{24}(0.01)^4 \times 1 \le 4.2 \times 10^{-10}.$$

Example (continued)

$$\int_{0}^{0.1} \cos(x) dx = \int_{0}^{0.1} (1 - \frac{1}{2}x^{2}) dx + \int_{0}^{0.1} \frac{1}{24}x^{4} \cos(\widetilde{\xi}(x)) dx$$

$$= (x - \frac{1}{6}x^{3}) \Big|_{0}^{0.1} + \int_{0}^{0.1} \frac{1}{24}x^{4} \cos(\widetilde{\xi}(x)) dx$$

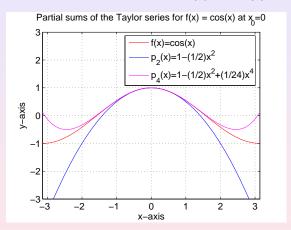
$$= 0.0998\overline{3} + \int_{0}^{0.1} \frac{1}{24}x^{4} \cos(\widetilde{\xi}(x)) dx.$$

$$\left| \int_{0}^{0.1} \cos(x) dx - 0.0998\overline{3} \right| \leqslant \frac{1}{24} \int_{0}^{0.1} x^{4} |\cos(\widetilde{\xi}(x))| dx$$

$$\leqslant \frac{1}{24} \int_{0}^{0.1} x^{4} dx = 8.\overline{3} \times 10^{-8}.$$

True value is 0.099833416647, actual error for this approximation is 8.3314×10^{-8} .

Partial sums of the Taylor series for $f(x) = \cos(x)$ at $x_0 = 0$



Note: A Taylor series converges rapidly near the point of expansion and slowly (or not at all) at more remote points.

Taylor's Theorem for functions of multiple variables:

Let $U \subseteq \mathbb{R}^n$ be open, and $\mathbf{a} \in U$. Suppose that $\mathbf{x} \in U$ is such that $\overline{\mathbf{a}\mathbf{x}} \subseteq U$; that is, \mathbf{x} satisfies that the point

$$p(t) = (1-t)\mathbf{a} + t\mathbf{x} \in U$$
 whenever $t \in [0,1]$.

For a function $f: U \to \mathbb{R}$, define a function h by

$$h(t) = f(p(t)) = f(\boldsymbol{a} + t(\boldsymbol{x} - \boldsymbol{a})).$$

If $h \in C^{m+1}([0,1])$, then Taylor's theorem for functions of one variable implies that

$$h(1) = h(0) + h'(0) + \frac{1}{2!}h''(0) + \dots + \frac{1}{m!}h^{(m)}(0) + R_m,$$

where the remainder R_m , in Lagrange's form, is given by

$$R_m = \frac{1}{(m+1)!} h^{(m+1)}(s)$$

Questions:

- **1** When is $h \in C^{m+1}([0,1])$?
- ② What is $h^{(k)}(t)$ for general $k \in \mathbb{N}$?

Definition (Multi-index)

An *n*-dimensional multi-index is a vector $\alpha=(\alpha_1,\cdots,\alpha_n)$ of non-negative integers, Given an *n*-dimensional multi-index $\alpha=(\alpha_1,\cdots,\alpha_n)$, $|\alpha|$ and $\alpha!$ are defined by

$$|\alpha| = \sum_{k=1}^{n} \alpha_k$$
 and $\alpha! = \prod_{k=1}^{n} \alpha_k!$.

The differential operator $D_{\mathbf{x}}^{\alpha}$ is defined by

$$D_{\mathbf{x}}^{\alpha} = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}.$$

When the variable is specified, we simply use D^{α} to denote $D_{\mathbf{x}}^{\alpha}$.

Example

 $\alpha = (1,5,3)$ is a three-dimensional multi-index satisfying

$$|\alpha| = 9$$
 and $\alpha! = 5! \cdot 3! = 720$.

Example

Suppose that f is a function of three variables x_1, x_2, x_3 . Then

$$D^{(1,5,3)}f(x_1,x_2,x_3) = \frac{\partial^9 f}{\partial x_1 \partial x_2^5 \partial x_3^3}(x_1,x_2,x_3).$$

The chain rule for functions of multiple variables:

$$\frac{d}{dt}f(x_1(t),\cdots,x_n(t)) = \sum_{i=1}^n \frac{\partial f}{\partial x_j}(x_1(t),\cdots,x_n(t))x_j'(t).$$

Therefore, if $x_i(t) = a_i + t(x_i - a_i)$ for all $1 \le i \le n$.

$$\frac{d}{dt}f(x_1(t),\cdots,x_n(t))=\sum_{j=1}^n\frac{\partial f}{\partial x_j}(x_1(t),\cdots,x_n(t))(x_j-a_j).$$

Example

 $\alpha=(1,5,3)$ is a three-dimensional multi-index satisfying

$$|\alpha| = 9$$
 and $\alpha! = 5! \cdot 3! = 720$.

Example

Suppose that f is a function of three variables x_1, x_2, x_3 . Then

$$D^{(1,5,3)}f(x_1,x_2,x_3) = \frac{\partial^9 f}{\partial x_1 \partial x_2^5 \partial x_3^3}(x_1,x_2,x_3).$$

The chain rule for functions of multiple variables:

$$\frac{d}{dt}f(x_1(t),\cdots,x_n(t))=\sum_{i=1}^n\frac{\partial f}{\partial x_j}(x_1(t),\cdots,x_n(t))x_j'(t).$$

Therefore, if
$$x_j(t) = a_j + t(x_j - a_j)$$
 for all $1 \le j \le n$,

$$\frac{d}{dt}f(x_1(t),\cdots,x_n(t))=\sum_{j=1}^n\frac{\partial f}{\partial x_j}(x_1(t),\cdots,x_n(t))(x_j-a_j).$$

Questions:

- **1** When is $h \in C^{m+1}([0,1])$?
- ② What is $h^{(k)}(t)$ for general $k \in \mathbb{N}$?

Answers:

- **1** The mixed partial derivatives $D^{\alpha}f$ is continuous in an open set containing \overline{ax} for all n-dimensional multi-index α satisfying $|\alpha| \leq m+1$.
- 2 By the chain rule for function of multiple variables,

$$h^{(k)}(t) = \sum_{|\alpha|=k} \frac{|\alpha|!}{\alpha!} (D^{\alpha} f)(p(t)) (\boldsymbol{x} - \boldsymbol{a})^{\alpha},$$

where

$$(\mathbf{x}-\mathbf{a})^{\alpha} = \prod_{k=1}^{n} (x_k-a_k)^{\alpha_k} = (x_1-a_1)^{\alpha_1}(x_2-a_2)^{\alpha_2} \cdots (x_n-a_n)^{\alpha_n}.$$

Therefore, if $D^{\alpha}f$ is continuous in an open set containing \overline{ax} for all n-dimensional multi-index α satisfying $|\alpha| \leq m+1$, we have

$$f(\mathbf{x}) = h(1) = h(0) + h'(0) + \frac{1}{2!}h''(0) + \dots + \frac{1}{m!}h^{(m)}(0) + R_m$$

$$= \sum_{k=0}^{m} \frac{1}{k!}h^{(k)}(0) + R_m$$

$$= \sum_{k=0}^{m} \frac{1}{k!} \sum_{|\alpha|=k} \frac{|\alpha|!}{\alpha!} (D^{\alpha}f)(\mathbf{a})(\mathbf{x} - \mathbf{a})^{\alpha} + R_m,$$

where

$$R_m = \frac{1}{(m+1)!} \sum_{|\alpha|=m+1} \frac{|\alpha|!}{\alpha!} (D^{\alpha} f)(p(s)) (\mathbf{x} - \mathbf{a})^{\alpha}$$

Therefore, if $D^{\alpha}f$ is continuous in an open set containing \overline{ax} for all n-dimensional multi-index α satisfying $|\alpha| \leq m+1$, we have

$$f(\mathbf{x}) = \mathbf{h}(1) = \mathbf{h}(0) + \mathbf{h}'(0) + \frac{1}{2!}\mathbf{h}''(0) + \dots + \frac{1}{m!}\mathbf{h}^{(m)}(0) + R_m$$

$$= \sum_{k=0}^{m} \frac{1}{k!}\mathbf{h}^{(k)}(0) + R_m$$

$$= \sum_{k=0}^{m} \sum_{|\alpha|=k} \frac{1}{\alpha!} (D^{\alpha}f)(\mathbf{a})(\mathbf{x} - \mathbf{a})^{\alpha} + R_m,$$

where

$$R_m = \sum_{|\alpha|=m+1} \frac{1}{\alpha!} (D^{\alpha} f)(p(s)) (\mathbf{x} - \mathbf{a})^{\alpha}$$

Therefore, if $D^{\alpha}f$ is continuous in an open set containing \overline{ax} for all n-dimensional multi-index α satisfying $|\alpha| \leq m+1$, we have

$$f(\mathbf{x}) = h(1) = h(0) + h'(0) + \frac{1}{2!}h''(0) + \dots + \frac{1}{m!}h^{(m)}(0) + R_m$$

$$= \sum_{k=0}^{m} \frac{1}{k!}h^{(k)}(0) + R_m$$

$$= \sum_{k=0}^{m} \sum_{|\alpha|=k} \frac{1}{\alpha!}(D^{\alpha}f)(\mathbf{a})(\mathbf{x} - \mathbf{a})^{\alpha} + R_m,$$

where

$$R_m = \sum_{|\alpha|=m+1} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{p}(\mathbf{s})) (\mathbf{x} - \mathbf{a})^{\alpha}$$



Therefore, if $D^{\alpha}f$ is continuous in an open set containing \overline{ax} for all n-dimensional multi-index α satisfying $|\alpha| \leq m+1$, we have

$$f(\mathbf{x}) = h(1) = h(0) + h'(0) + \frac{1}{2!}h''(0) + \dots + \frac{1}{m!}h^{(m)}(0) + R_m$$

$$= \sum_{k=0}^{m} \frac{1}{k!}h^{(k)}(0) + R_n$$

$$= \sum_{k=0}^{m} \sum_{|\alpha|=k} \frac{1}{\alpha!}(D^{\alpha}f)(\mathbf{a})(\mathbf{x} - \mathbf{a})^{\alpha} + R_m,$$

where

$$R_m = \sum_{|\alpha|=m+1} \frac{1}{\alpha!} (D^{\alpha} f) (\boldsymbol{\xi}) (\boldsymbol{x} - \boldsymbol{a})^{\alpha}$$

for some $\xi \in \overline{ax}$.

Theorem (Taylor's Theorem for functions of multiple variables)

Let $U\subseteq\mathbb{R}^n$ be open, $f:U\to\mathbb{R}$, and $\mathbf{a},\mathbf{x}\in U$ be such that $\overline{\mathbf{a}\mathbf{x}}\subseteq U$. If $D^{\alpha}f$ is continuous in an open set containing $\overline{\mathbf{a}\mathbf{x}}$ for all n-dimensional multi-index α satisfying $|\alpha|\leqslant m+1$, then there exists $\boldsymbol{\xi}\in\overline{\mathbf{a}\mathbf{x}}$ such that

$$f(\mathbf{x}) = P_m(\mathbf{x}) + R_m(\mathbf{x}),$$

where the m-th Taylor polynomial $P_m(x)$ is given by

$$P_{m}(\mathbf{x}) = \sum_{k=0}^{m} \sum_{|\alpha|=k} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$$

and the remainder (error) term $R_m(x)$ is given by

$$R_m(\mathbf{x}) = \sum_{|\alpha|=m+1} \frac{1}{\alpha!} (D^{\alpha} f)(\boldsymbol{\xi}) (\mathbf{x} - \boldsymbol{a})^{\alpha}.$$

Example

The second Taylor polynomial of $f = f(\mathbf{x}) = f(x_1, x_2)$ about $\mathbf{a} = (a_1, a_2)$ is $P_2(\mathbf{x}) = \sum_{k=0}^2 \sum_{|\alpha|=k} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$; thus

$$\begin{split} P_2(\mathbf{x}) &= \sum_{|\alpha|=0} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha} + \sum_{|\alpha|=1} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha} \\ &+ \sum_{|\alpha|=2} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha} \\ &= f(\mathbf{a}) + \frac{1}{(1,0)!} (D^{(1,0)} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{(1,0)} + \frac{1}{(0,1)!} (D^{(0,1)} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{(0,1)} \\ &+ \frac{1}{(2,0)!} (D^{(2,0)} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{(2,0)} + \frac{1}{(1,1)!} (D^{(1,1)} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{(1,1)} \\ &+ \frac{1}{(0,2)!} (D^{(0,2)} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{(0,2)} . \end{split}$$

Example

The second Taylor polynomial of $f = f(\mathbf{x}) = f(x_1, x_2)$ about $\mathbf{a} = (a_1, a_2)$ is $P_2(\mathbf{x}) = \sum_{k=0}^2 \sum_{|\alpha|=k} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$; thus $P_2(\mathbf{x}) = \sum_{|\alpha|=0} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha} + \sum_{|\alpha|=1} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$

$$\begin{aligned} &+\sum_{|\alpha|=0} \frac{1}{\alpha!} (D^{\alpha}f)(\mathbf{a})(\mathbf{x}-\mathbf{a})^{\alpha} \\ &+\sum_{|\alpha|=2} \frac{1}{\alpha!} (D^{\alpha}f)(\mathbf{a})(\mathbf{x}-\mathbf{a})^{\alpha} \\ &= f(\mathbf{a}) + \frac{1}{(1,0)!} (D^{(1,0)}f)(\mathbf{a})(\mathbf{x}-\mathbf{a})^{(1,0)} + \frac{1}{(0,1)!} (D^{(0,1)}f)(\mathbf{a})(\mathbf{x}-\mathbf{a})^{(0,1)} \\ &+ \frac{1}{(2,0)!} (D^{(2,0)}f)(\mathbf{a})(\mathbf{x}-\mathbf{a})^{(2,0)} + \frac{1}{(1,1)!} (D^{(1,1)}f)(\mathbf{a})(\mathbf{x}-\mathbf{a})^{(1,1)} \\ &+ \frac{1}{(0,2)!} (D^{(0,2)}f)(\mathbf{a})(\mathbf{x}-\mathbf{a})^{(0,2)} .\end{aligned}$$

Example

The second Taylor polynomial of $f = f(\mathbf{x}) = f(x_1, x_2)$ about $\mathbf{a} = (a_1, a_2)$ is $P_2(\mathbf{x}) = \sum_{k=0}^2 \sum_{|\alpha|=k} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$; thus $P_2(\mathbf{x}) = \sum_{|\alpha|=0} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha} + \sum_{|\alpha|=1} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$

$$\begin{split} &+\sum_{|\alpha|=2} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha} \\ &= f(\mathbf{a}) + \frac{\partial f}{\partial x_{1}} (\mathbf{a}) (x_{1} - \mathbf{a}_{1}) + \frac{1}{(0,1)!} (D^{(0,1)} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{(0,1)} \\ &+ \frac{1}{(2,0)!} (D^{(2,0)} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{(2,0)} + \frac{1}{(1,1)!} (D^{(1,1)} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{(1,1)} \\ &+ \frac{1}{(0,2)!} (D^{(0,2)} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{(0,2)} . \end{split}$$

Example

 $(a_1, a_2) \text{ is } P_2(x) = \sum_{k=0}^2 \sum_{|\alpha|=k} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}; \text{ thus}$ $P_2(\mathbf{x}) = \sum_{|\alpha|=0} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha} + \sum_{|\alpha|=1} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$ $+ \sum_{|\alpha|=2} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$

The second Taylor polynomial of $f = f(\mathbf{x}) = f(x_1, x_2)$ about $\mathbf{a} =$

$$= f(\mathbf{a}) + \frac{\partial f}{\partial x_1}(\mathbf{a})(x_1 - \mathbf{a}_1) + \frac{1}{(0,1)!}(D^{(0,1)}f)(\mathbf{a})(\mathbf{x} - \mathbf{a})^{(0,1)}$$

$$+ \frac{1}{(2,0)!}(D^{(2,0)}f)(\mathbf{a})(\mathbf{x} - \mathbf{a})^{(2,0)} + \frac{1}{(1,1)!}(D^{(1,1)}f)(\mathbf{a})(\mathbf{x} - \mathbf{a})^{(1,1)}$$

$$+ \frac{1}{2}\frac{\partial^2 f}{\partial x_2^2}(\mathbf{a})(x_2 - \mathbf{a}_2)^2 .$$

Example

 (a_1, a_2) is $P_2(x) = \sum_{k=0}^{2} \sum_{|\alpha|=k} \frac{1}{\alpha!} (D^{\alpha} f)(a)(x-a)^{\alpha}$; thus $P_2(\mathbf{x}) = \sum_{|\alpha|=0}^{\infty} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha} + \sum_{|\alpha|=1}^{\infty} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$ $+\sum_{|\alpha|=2}\frac{1}{\alpha!}(D^{\alpha}f)(a)(x-a)^{\alpha}$ $= f(a) + \frac{\partial f}{\partial x_1}(a)(x_1 - a_1) + \frac{1}{(0,1)!}(D^{(0,1)}f)(a)(x-a)^{(0,1)}$ $+\frac{1}{(2,0)!}(D^{(2,0)}f)(\mathbf{a})(\mathbf{x}-\mathbf{a})^{(2,0)}+\frac{\partial^2 f}{\partial x_1\partial x_2}(\mathbf{a})(x_1-a_1)(x_2-a_2)$

The second Taylor polynomial of $f = f(\mathbf{x}) = f(x_1, x_2)$ about $\mathbf{a} =$

 $+ \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (\mathbf{a}) (x_2 - \mathbf{a}_2)^2$.

Example

 $(a_1, a_2) \text{ is } P_2(x) = \sum_{k=0}^2 \sum_{|\alpha|=k} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}; \text{ thus}$ $P_2(\mathbf{x}) = \sum_{|\alpha|=0} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha} + \sum_{|\alpha|=1} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$ $+ \sum_{|\alpha|=2} \frac{1}{\alpha!} (D^{\alpha} f)(\mathbf{a}) (\mathbf{x} - \mathbf{a})^{\alpha}$ $= f(\mathbf{a}) + \frac{\partial f}{\partial x_1} (\mathbf{a}) (x_1 - a_1) + \frac{\partial f}{\partial x_2} (\mathbf{a}) (x_2 - a_2)$

The second Taylor polynomial of $f = f(\mathbf{x}) = f(x_1, x_2)$ about $\mathbf{a} =$

$$+ \frac{1}{2} \frac{\partial^{2} f}{\partial x_{1}^{2}} (\mathbf{a}) (x_{1} - a_{1})^{2} + \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} (\mathbf{a}) (x_{1} - a_{1}) (x_{2} - a_{2})$$

$$+ \frac{1}{2} \frac{\partial^{2} f}{\partial \mathbf{v}^{2}} (\mathbf{a}) (x_{2} - a_{2})^{2} .$$

Example (Cont.)

Therefore, the second Taylor polynomial of $f=f({\pmb x})=f(x_1,x_2)$ about ${\pmb a}=(a_1,a_2)$ is

$$P_{2}(\mathbf{x}) = f(\mathbf{a}) + \frac{\partial f}{\partial x_{1}}(\mathbf{a})(x_{1} - \mathbf{a}_{1}) + \frac{\partial f}{\partial x_{2}}(\mathbf{a})(x_{2} - \mathbf{a}_{2})$$

$$+ \frac{1}{2} \frac{\partial^{2} f}{\partial x_{1}^{2}}(\mathbf{a})(x_{1} - \mathbf{a}_{1})^{2} + \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(\mathbf{a})(x_{1} - \mathbf{a}_{1})(x_{2} - \mathbf{a}_{2})$$

$$+ \frac{1}{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}(\mathbf{a})(x_{2} - \mathbf{a}_{2})^{2} .$$

Similarly, the third Taylor polynomial of $f = f(x) = f(x_1, x_2)$ about $a = (a_1, a_2)$ is

$$P_{3}(\mathbf{x}) = P_{2}(\mathbf{x}) + \frac{1}{3!} \left[\frac{\partial^{3} f}{\partial x_{1}^{3}} (\mathbf{a}) (x_{1} - a_{1})^{3} + 3 \frac{\partial^{3} f}{\partial x_{1}^{2} \partial x_{2}} (\mathbf{a}) (x_{1} - a_{1})^{2} (x_{2} - a_{2}) \right. \\ \left. + 3 \frac{\partial^{3} f}{\partial x_{1} \partial x_{2}^{2}} (\mathbf{a}) (x_{1} - a_{1}) (x_{2} - a_{2})^{2} + \frac{\partial^{3} f}{\partial x_{2}^{3}} (\mathbf{a}) (x_{2} - a_{2})^{3} \right].$$

Example (Cont.)

Therefore, the second Taylor polynomial of $f=f({\pmb x})=f(x_1,x_2)$ about ${\pmb a}=(a_1,a_2)$ is

$$P_{2}(\mathbf{x}) = \mathbf{f}(\mathbf{a}) + \frac{\partial \mathbf{f}}{\partial x_{1}}(\mathbf{a})(x_{1} - \mathbf{a}_{1}) + \frac{\partial \mathbf{f}}{\partial x_{2}}(\mathbf{a})(x_{2} - \mathbf{a}_{2})$$

$$+ \frac{1}{2} \left[\frac{\partial^{2} \mathbf{f}}{\partial x_{1}^{2}}(\mathbf{a})(x_{1} - \mathbf{a}_{1})^{2} + 2 \frac{\partial^{2} \mathbf{f}}{\partial x_{1} \partial x_{2}}(\mathbf{a})(x_{1} - \mathbf{a}_{1})(x_{2} - \mathbf{a}_{2}) + \frac{\partial^{2} \mathbf{f}}{\partial x_{2}^{2}}(\mathbf{a})(x_{2} - \mathbf{a}_{2})^{2} \right].$$

Similarly, the third Taylor polynomial of $f = f(x) = f(x_1, x_2)$ about $a = (a_1, a_2)$ is

$$P_{3}(\mathbf{x}) = P_{2}(\mathbf{x}) + \frac{1}{3!} \left[\frac{\partial^{3} f}{\partial x_{1}^{3}} (\mathbf{a}) (x_{1} - a_{1})^{3} + 3 \frac{\partial^{3} f}{\partial x_{1}^{2} \partial x_{2}} (\mathbf{a}) (x_{1} - a_{1})^{2} (x_{2} - a_{2}) \right. \\ \left. + 3 \frac{\partial^{3} f}{\partial x_{1} \partial x_{2}^{2}} (\mathbf{a}) (x_{1} - a_{1}) (x_{2} - a_{2})^{2} + \frac{\partial^{3} f}{\partial x_{2}^{3}} (\mathbf{a}) (x_{2} - a_{2})^{3} \right].$$

Example (Cont.)

Therefore, the second Taylor polynomial of $f = f(\mathbf{x}) = f(x_1, x_2)$ about $\mathbf{a} = (a_1, a_2)$ is

$$P_{2}(\mathbf{x}) = \mathbf{f}(\mathbf{a}) + \frac{\partial \mathbf{f}}{\partial x_{1}}(\mathbf{a})(x_{1} - \mathbf{a}_{1}) + \frac{\partial \mathbf{f}}{\partial x_{2}}(\mathbf{a})(x_{2} - \mathbf{a}_{2})$$

$$+ \frac{1}{2} \left[\frac{\partial^{2} \mathbf{f}}{\partial x_{1}^{2}}(\mathbf{a})(x_{1} - \mathbf{a}_{1})^{2} + 2 \frac{\partial^{2} \mathbf{f}}{\partial x_{1}\partial x_{2}}(\mathbf{a})(x_{1} - \mathbf{a}_{1})(x_{2} - \mathbf{a}_{2}) + \frac{\partial^{2} \mathbf{f}}{\partial x_{2}^{2}}(\mathbf{a})(x_{2} - \mathbf{a}_{2})^{2} \right].$$

Similarly, the third Taylor polynomial of $f = f(\mathbf{x}) = f(x_1, x_2)$ about $\mathbf{a} = (a_1, a_2)$ is

$$P_{3}(\mathbf{x}) = P_{2}(\mathbf{x}) + \frac{1}{3!} \left[\frac{\partial^{3} f}{\partial x_{1}^{3}} (\mathbf{a}) (x_{1} - a_{1})^{3} + 3 \frac{\partial^{3} f}{\partial x_{1}^{2} \partial x_{2}} (\mathbf{a}) (x_{1} - a_{1})^{2} (x_{2} - a_{2}) \right. \\ \left. + 3 \frac{\partial^{3} f}{\partial x_{1} \partial x_{2}^{2}} (\mathbf{a}) (x_{1} - a_{1}) (x_{2} - a_{2})^{2} + \frac{\partial^{3} f}{\partial x_{2}^{3}} (\mathbf{a}) (x_{2} - a_{2})^{3} \right].$$

Big \mathcal{O} notation is used to describe the limiting behavior of a function when the argument tends towards a particular value or infinity.

Definition

Suppose that $\lim_{x\to a} G(x) = 0$ and $\lim_{x\to a} F(x) = L$. If there exists K>0 and $\delta>0$ such that $|F(x)-L|\leqslant K|G(x)|$ for all $0<|x-a|<\delta$, then we say that F(x) converges to L with rate of convergence $\mathcal{O}(G(x))$ and write $F(x)=L+\mathcal{O}(G(x))$ as $x\to a$.

Definition

Suppose that $\lim_{n\to\infty}\beta_n=0$ and $\lim_{n\to\infty}\alpha_n=\alpha$. If there exists K>0 and $n_0\in\mathbb{N}$ such that $|\alpha_n-\alpha|\leqslant K|\beta_n|$ for all $n\geqslant n_0$, then we say that $\{\alpha_n\}$ converges to α with rate of convergence $\mathcal{O}(\beta_n)$ and write $\alpha_n=\alpha+\mathcal{O}(\beta_n)$.

Big $\mathcal O$ notation is used to describe the limiting behavior of a function when the argument tends towards a particular value or infinity.

Definition

Suppose that $\lim_{x\to a} G(x) = 0$ and $\lim_{x\to a} F(x) = L$. If there exists K>0 and $\delta>0$ such that $|F(x)-L|\leqslant K|G(x)|$ for all $0<|x-a|<\delta$, then we say that F(x) converges to L with rate of convergence $\mathcal{O}(G(x))$ and write $F(x)=L+\mathcal{O}(G(x))$ as $x\to a$.

Definition

Suppose that $\lim_{n\to\infty}\beta_n=0$ and $\lim_{n\to\infty}\alpha_n=\alpha$. If there exists K>0 and $n_0\in\mathbb{N}$ such that $|\alpha_n-\alpha|\leqslant K|\beta_n|$ for all $n\geqslant n_0$, then we say that $\{\alpha_n\}$ converges to α with rate of convergence $\mathcal{O}(\beta_n)$ and write $\alpha_n=\alpha+\mathcal{O}(\beta_n)$.

Definition (Alternative)

One writes

$$f(x) = \mathcal{O}(g(x))$$
 as $x \to a$

provided that

$$\limsup_{x\to a}\frac{|f(x)|}{|g(x)|}<\infty.$$

Example

By Taylor's theorem,

$$\cos(h) = 1 - \frac{1}{2}h^2 + \frac{1}{24}h^4\cos(\xi(h))$$

for some $\xi(h)$ between 0 and h. Then

$$\left|\cos(h) + \frac{1}{2}h^2 - 1\right| = \left|\frac{1}{24}\cos(\xi(h))\right| h^4 \leqslant \frac{1}{24}h^4 \quad \forall h;$$

thus $\cos(h) + \frac{1}{2}h^2 = 1 + \mathcal{O}(h^4)$

Definition (Alternative)

One writes

$$f(x) = \mathcal{O}(g(x))$$
 as $x \to a$

provided that

$$\limsup_{x\to a}\frac{|f(x)|}{|g(x)|}<\infty.$$

Example

By Taylor's theorem,

$$\cos(h) = 1 - \frac{1}{2}h^2 + \frac{1}{24}h^4\cos(\xi(h))$$

for some $\xi(h)$ between 0 and h. Then

$$\left|\cos(h) + \frac{1}{2}h^2 - 1\right| = \left|\frac{1}{24}\cos(\xi(h))\right| h^4 \leqslant \frac{1}{24}h^4 \quad \forall h;$$

thus $\cos(h) + \frac{1}{2}h^2 = 1 + \mathcal{O}(h^4)$.

Example

Let
$$\alpha_n=1+\frac{n+1}{n^2}$$
. Then $\lim_{n\to\infty}\alpha_n=\alpha=1$. If $\beta_n=\frac{1}{n}$, then $\lim_{n\to\infty}\beta_n=0$ and
$$|\alpha_n-1|=\frac{n+1}{n^2}\leqslant \frac{n+n}{n^2}=2\frac{1}{n}=2|\beta_n-0|\,.$$
 Therefore, $\alpha_n=1+\mathcal{O}\left(\frac{1}{n}\right)$.

Example

Let
$$\alpha_n=2+\frac{n+3}{n^3}$$
. Then $\lim_{n\to\infty}\alpha_n=\alpha=2$. If $\beta_n=\frac{1}{n^2}$, then $\lim_{n\to\infty}\beta_n=0$ and
$$|\alpha_n-2|=\frac{n+3}{n^3}\leqslant \frac{n+3n}{n^3}=4\frac{1}{n^2}=4|\beta_n-0|$$
 Therefore $\alpha_n=\frac{n+3}{n^3}=\frac{n+3n}{n^3}=\frac{1}{n^2}$

Example

Let
$$\alpha_n=1+\frac{n+1}{n^2}$$
. Then $\lim_{n\to\infty}\alpha_n=\alpha=1$. If $\beta_n=\frac{1}{n}$, then $\lim_{n\to\infty}\beta_n=0$ and
$$|\alpha_n-1|=\frac{n+1}{n^2}\leqslant \frac{n+n}{n^2}=2\frac{1}{n}=2|\beta_n-0|\,.$$
 Therefore, $\alpha_n=1+\mathcal{O}\Big(\frac{1}{n}\Big)$.

Example

Let
$$\alpha_n=2+\frac{n+3}{n^3}$$
. Then $\lim_{n\to\infty}\alpha_n=\alpha=2$. If $\beta_n=\frac{1}{n^2}$, then $\lim_{n\to\infty}\beta_n=0$ and
$$|\alpha_n-2|=\frac{n+3}{n^3}\leqslant \frac{n+3n}{n^3}=4\frac{1}{n^2}=4|\beta_n-0|\,.$$
 Therefore, $\alpha_n=2+\mathcal{O}\Big(\frac{1}{n^2}\Big)$.