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Chapter 2. Solutions of Nonlinear Equations
Introduction

O Let f: @ =A< R — R be a nonlinear real-valued function in
variable x. We are interested in finding the roots (solutions) of

the equation f(x) = 0; i.e., zeros of the function f(x).

@ A system of nonlinear equations:
Let F: @ = A< R” — R"” be a nonlinear vector-valued func-
tion in a vector variable X = (x1,x2,--- ,x,) . We are inter-
ested in finding the roots (solutions) of the equation F(X) = 0;
i.e., zeros of the function F(X).
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Chapter 2. Solutions of Nonlinear Equations
Introduction

o Let us look at three functions (polynomials):
o f(x) = x* —12x3 + 47x% — 60x
o f(x) = x* —12x3 + 47x% — 60x + 24
o f(x) = x —12x3 + 47x% — 60x + 24.1

@ Find the zeros of these polynomials is not an easy task.
e The first function has real zeros 0, 3, 4, and 5.
o The real zeros of the second function are 1 and 0.888....
o The third function has no real zeros at all.

e Matlab: p = [1 -12 47 -60 0]; r = roots(p)

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 2. Solutions of Nonlinear Equations
Introduction

Consider the nonlinear equation f(x) = 0 or F(X) = 0.
@ The basic questions:

e Does the solution exist?
o Is the solution unique?
e How to find it?

@ In this lecture, we will mainly focus on the third question and
we always assume that the problem under considered has a

solution x*.

o We will study iterative methods for finding the solution: first
find an initial guess xp, then a better guess x1, - - -, in the end

we hope that lim x, = x*.
n—0o0
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Chapter 2. Solutions of Nonlinear Equations
Introduction

@ lterative methods: Constructive ways of finding roots of equa-
tions

e Bisection method;
o Fixed-point method;
o Newton's method;

e Secant method.
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Chapter 2. Solutions of Nonlinear Equations
§2.1 Bisection Method

Theorem (Bolzano)
Let f: [a,b] — R be continuous. If f(a)f(b) < 0, then there exists
ce (a, b) such that f(c) = 0.

The basic idea: Assume that f(a)f(b) < 0.
@ Set ay = a and by = b, compute p; = %(31 + by).
o If f(p1)f(a;) =0 then f(p1) =0 = p=py;

if f(p1)f(a1) > 0 then pe (p1, b1), set ag = p; and by = by;
if f(p1)f(a1) <O then pe (a1, p1), set ay = a; and by = p;.
@ pp = %(32 + ba).

@ Repeat the process until the interval is very small then any
point in the interval can be used as approximations of the zero.
In fact, pL P2~ p3 -,
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Chapter 2. Solutions of Nonlinear Equations

The bisection algorithm

Input a, b, tolerance TOL, max. no. of iteration Nj.
Output approximate sol. of p or message of failure.
Step 1: i=1, FA=f(a).
Step 2: while i < Ny do step 3-6.
Step 3: set p=a+ %(b— a); FP = f(p).
Step 4: if FP=0 or %(b— a) < TOL then output(p); stop.
Step 5: =i+ 1.
Step 6: if FA x FP > 0 then set a= p and FA = FP,
else set b = p.

Step 7: output (method failed after Ny iterations); stop.
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Chapter 2. Solutions of Nonlinear Equations

The bisection algorithm

Input a, b, tolerance TOL, max. no. of iteration Nj.
Output approximate sol. of p or message of failure.
Step 1: i=1, FA=f(a).
Step 2: while i < Ny do step 3-6.
Step 3: set p=a+ %(b— a); FP = f(p).
Step 4: if FP=0 or %(b — a) < TOL then output(p); stop.
Step 5: =i+ 1.
Step 6: if FA x FP > 0 then set a= p and FA = FP,
else set b = p.

Step 7: output (method failed after Ny iterations); stop.
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Chapter 2. Solutions of Nonlinear Equations
§2.1 Bisection Method

Stopping criteria

@ The stopping criteria are practical tests needed to determine
when to stop the iteration (loop) or even the whole program.
In our algorithm in the previous page, two stopping criteria are

1
FP=0 or 5(b—a)< TOL.

@ Let € > 0 be a given tolerance.

o The stopping criterium FP = 0 can be replaced by |FP| < e.
e The stopping criterium %(b— a) < TOL can be replaced by

|Pi*Pi—1| -
Pi

|pi — pi1| < e or €.
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Chapter 2. Solutions of Nonlinear Equations

Find a root of f(x) = x* + 4x* — 10.

Note that f(1)

pe [1,2]. Actual root is p = 1.365230013...

Using the bisection method, we get the table:

—5, f(2) = 14. Therefore, there exists a root

l

dan

[

bp

[

Pn

f(pn)

18

1.000000000000
1.000000000000
1.250000000000

1.364990234375
1.365112304687

1.365226745605

2.000000000000
1.500000000000
1.500000000000

1.365234375000
1.365234375000

1.365234375000

1.500000000000
1.250000000000
1.375000000000

1.365112304687
1.365173339843

1.365230560302

2.375000000000
-1.796875000000
0.162109375000

-0.001943659010
-0.000935847281

0.000009030992

See the details of the M-file: bisection.m
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Chapter 2. Solutions of Nonlinear Equations
§2.1 Bisection Method

Properties of bisection methods

o Drawbacks:
o often slow:;
e a good intermediate approximation may be discarded;
o doesn't work for higher dimensional problems: F(X) = 0.

e Advantage: it always converges to a solution if a suitable initial
interval can be chosen.
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Chapter 2. Solutions of Nonlinear Equations
§2.1 Bisection Method

Iffe (([a, b]) and p is the unique zero of fin [a, b], then the bisection

method generates {p,}*_, with |p, — p| < LYb—2a) foralin > 1.
n=1 2n

Proof.

|
N

For n > 1, we have b, — a, = (b—a) and p € [ap, by).

2n71
1
" Pn= i(an aF bn)y Yn=1.

DN | =
[\)
7
—

. 1
"|pn_p‘<§(bn_an):

Note: Since |p, — p| < %(b— a), we have p, = p+(’)(%)_
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Definition
Let @ # X < Y be two sets, and g: X — Y be a function. A point
pe Xis called a fixed-point of g if g(p) = p.

Root-finding problem & fixed-point problem are equivalent in the
following sense:
e If pis aroot of f(x) =0, pis a fixed point of g(x) := x— f(x),

h(x) :==x— :/(()2)

o If pis a fixed point of g(x); i.e., g(p) = p, then pis a root of
f(x) :==x—g(x), h(x) := 3x—3g(x), and etc.

, and etc.

(root-finding problem) < (fixed-point problem).
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Example

Let g: [~2,3] — R be defined by g(x) = x? — 2.
g(-1)=(-1)2-2=-1land g(2) =22 -2=2.

. —1 and 2 are fixed points of g.

Moreover, finding the fixed-point of g is equivalent to finding the

zeros of the function f(x) = x? — x — 2.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Let —o0 < a< b< o0 and g: [a, b] — [a, b] be continuous. Then g

has a fixed-point.

Proof.

If g(a) = a or g(b) = b then g has a fixed point in [a, b]. Suppose
not, then a < g(a) < b and a < g(b) < b. Define h(x) := g(x) — x.
Then h is continuous on [a, b] and h(a) > 0, h(b) < 0. By the
Intermediate Value Theorem, there exists p € (a, b) such that h(p) =

0; i.e., g(p) = p. o

<

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Theorem
Let —o0 < a< b< o0 and g: [a, b] — [a, b] be continuous. Then g

has a fixed-point.

Proof.

If g(a) = a or g(b) = b then g has a fixed point in [a, b]. Suppose
not, then a < g(a) < b and a < g(b) < b. Define h(x) := g(x) — x.
Then h is continuous on [a, b] and h(a) > 0, h(b) < 0. By the
Intermediate Value Theorem, there exists p € (a, b) such that h(p) =

0; i.e., g(p) = p. o

| \

Example
Let g: [~2,2] — R be defined by g(x) = x>—2. Then g: [-2,2] —
[—2,2] and —1 and 2 are fixed points of g.

A
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Theorem (Banach fixed-point theorem)
Let —o0 < a < b < o0 and g : [a,b] — [a,b]. If there exists a
constant k € [0,1) such that
() —gy)| < klx—y|  VYxyelab],
then there exists a unique fixed-point of g (i.e., there is one and

only one fixed-point of g).
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Theorem (Banach fixed-point theorem)

Let —o0 < a < b < o0 and g : [a,b] — [a,b]. If there exists a

constant k € [0,1) such that

g(x) —gy)| < klx—y  Vxyeab],
then there exists a unique fixed-point of g (i.e., there is one and
only one fixed-point of g). Moreover, for any given p; € [a, b], the
sequence {pp};°_, obtained by pny1 = g(pn) for all n€ N converges

to the fixed-point p and

n—1

_ k
lpn—pl < K" Hpr—pl and |pn—pl < T lp2 = pil. (%)
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Theorem (Banach fixed-point theorem)

Let —o0 < a < b < o0 and g : [a,b] — [a,b]. If there exists a
constant k € [0,1) such that

g(x) —gy)| < klx—y  Vxyeab],
then there exists a unique fixed-point of g (i.e., there is one and
only one fixed-point of g). Moreover, for any given p; € [a, b], the
sequence {pp};°_, obtained by pny1 = g(pn) for all n€ N converges

to the fixed-point p and

n—1

1—k

lpn— Pl < k" p1 —p| and |pn—pl < P2 —pi]. (%)

v

Note: Even though we might not know where p locates, () is still
a good estimate of the speed of convergence of {pp};2; to p.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Proof.
Note that the condition |f(x) — f(y)| < k|x— y| for all x,y in [a, b]
implies that f is continuous on [a, b|; thus the previous theorem

implies that f has at least one fixed-point.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Proof.
Note that the condition |f(x) — f(y)| < k|x— y| for all x,y in [a, b]
implies that f is continuous on [a, b|; thus the previous theorem
implies that f has at least one fixed-point.
Suppose that p and g are fixed-points of g. Then

lp—dl =|g(p) —g(a)| < kp—ql.
Since k € [0,1), we must have |p—q| = 0 or p = q. Therefore,
there is only one fixed-point of g.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Proof.

Note that the condition |f(x) — f(y)| < k|x— y| for all x,y in [a, b]
implies that f is continuous on [a, b|; thus the previous theorem
implies that f has at least one fixed-point.

Suppose that p and g are fixed-points of g. Then

lp—al=|g(p) —g(a)| < klp—dl.
Since k € [0,1), we must have |p—q| = 0 or p = q. Therefore,
there is only one fixed-point of g.

Let p;1 € [a, b, and pp+1 = g(pn) for all ne N. Then
|Pns1 — Pl = |g(pn) —&(P)| < Klpn—p| ~ Vn=>1.
Therefore,

Pn— Pl < Klpn-1 — p| < Klpaa —pl <+ < k" 'p1—pl;
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Proof.

Note that the condition |f(x) — f(y)| < k|x— y| for all x,y in [a, b]
implies that f is continuous on [a, b|; thus the previous theorem
implies that f has at least one fixed-point.

Suppose that p and g are fixed-points of g. Then

lp—al=|g(p) — g(a)| < klp—dl.
Since k € [0,1), we must have |p —q| = 0 or p = q. Therefore,
there is only one fixed-point of g.

Let p1 € [a, b], and pp+1 = g(pn) for all n€ N. Then
|Pns1 — Pl = |g(pn) —&(P)| < Klpn—p| ~ Vn=>1.
Therefore,

Pn— Pl < Klpn1 — pl < Klpna —pl <+ < k" '|b —a;
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Proof.

Note that the condition |f(x) — f(y)| < k|x— y| for all x,y in [a, b]
implies that f is continuous on [a, b|; thus the previous theorem
implies that f has at least one fixed-point.

Suppose that p and g are fixed-points of g. Then

lp—al=|g(p) — g(a)| < klp—dl.
Since k € [0,1), we must have |p —q| = 0 or p = q. Therefore,
there is only one fixed-point of g.

Let p1 € [a, b], and pp+1 = g(pn) for all n€ N. Then
|Pns1 — Pl = |g(pn) —&(P)| < Klpn—p| ~ Vn=>1.
Therefore,

Pn— Pl < Klpn1 — pl < Klpna —pl <+ < k" '|b —a;

thus {pn};2, converges to p. o
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

n—1
Goal: |p, — p| < %(]pg — p1] for all n > 2.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Goal: |p, — p| < —]pg — p1| for all n >

Proof (Cont.)

Finally, we note that

‘pn—H — Pn‘ = |g(pn) - g(pn—l)’ < k‘pn — Pnfl‘ Vn=2

thus if n+4j > 2,

|Pn+j - pn+j*1| <
<

k|Pn+J 1 — Pn+j- 2| < k2|Pn+j*2 - pn+j*3|
< K2y — .

Ching-hsiao Cheng
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Goal: |p, — p| < —]pg — p1| for all n >

Proof (Cont.)

Finally, we note that

‘pn—H — Pn‘ = |g(pn) - g(pn—l)’ < k‘pn — Pnfl‘ Vn=2

thus if n+4j > 2,

|Pntj — Prtj—1] < KlPntj—1 — Pntj—2| < k2|Pntj—2 — Pntj—3]

< ...

~

Therefore, for j > 1 and n > 2,
Pntj—1l + -+ + |pnt2 — Poy1| + |Pnt1 —

|Pntj = Pnl < |Pn+j—

< k™72 py — pi].

S K+ K1+ 4+ KK 2(p2 — pi
1— Kk
S Rl Yp2 — pul.

The final conclusion follows from passing to the limit as j — co.

Pnl

(]

Ching-hsiao Cheng
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Theorem (Banach fixed-point theorem)
Let —0 < a< b< o and g : [a,b] — [a,b]. If there exists a
constant k € [0,1) such that

g(x) —g(y)| < klx—y  Vxyeab],
then there exists a unique fixed-point of g (i.e., there is one and
only one fixed-point of g). Moreover, for any given p; € [a, b], the
sequence {pp};-_, obtained by pny1 = g(pn) for all n€ N converges
to the fixed-point p and

. knfl
o —pl < K"Hp1—pl and |pn—pl < 7—lp2—pil. (%)
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Chapter 2. Solutions of Nonlinear Equations
§2.2 Fixed-Point Iteration and Error Analysis

Theorem (Banach fixed-point theorem)

Let —0 < a< b< o and g : [a,b] — [a,b]. If there exists a
constant k € [0,1) such that

g(x) —gW)| < Kx—y  ¥xyel[abl,
then there exists a unique fixed-point of g (i.e., there is one and
only one fixed-point of g). Moreover, for any given p; € [a, b], the
sequence {pp};-_, obtained by pny1 = g(pn) for all n€ N converges
to the fixed-point p and

. knfl
o —pl < K"Hp1—pl and |pn—pl < 7—lp2—pil. (%)

Definition
Let & # A< R". A function g: A — R" is called a contraction or
a contraction mapping if there exists a constant k € [0, 1) such that

lg(x) —gly)| < klx—y|  VxyeA.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Theorem ( )
Let —0 < a< b< o and g : [a,b] — [a,b]. If there exists a
constant k € [0,1) such that

g(x) —gW)| < Kx—y  ¥xyel[abl,
then there exists a unique fixed-point of g (i.e., there is one and
only one fixed-point of g). Moreover, for any given p; € [a, b], the
sequence {pp};-_, obtained by pny1 = g(pn) for all n€ N converges
to the fixed-point p and

. knfl
o —pl < K"Hp1—pl and |pn—pl < 7—lp2—pil. (%)

Definition
Let & # A< R". A function g: A — R" is called a contraction or
a contraction mapping if there exists a constant k € [0, 1) such that

lg(x) —gly)| < klx—y|  VxyeA.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Let | € R be an interval, and f: | — R. If there exists a constant
ke [0,1) such that |f'(x)| < k for all x€ I, then f is a contraction.

Proof.
Let x,ye I. By MVT, there exists z between x and y such that

f(x) = f(y) = f'(D(x—);
thus by the condition that |f’(x)| < k for all xe /,
[f(x) = fW] = |f'(2)|[x— ¥l < kix— o
Since k < 1, fis a contraction. o
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Theorem
Let | € R be an interval, and f: | — R. If there exists a constant
ke [0,1) such that |f'(x)| < k for all x€ I, then f is a contraction.

Proof.

Let x,ye I. By MVT, there exists z between x and y such that

) —f(y) = (D (x—y);
thus by the condition that |f’(x)| < k for all x € |,

[£(x) = fFW)] = |f'(DIx = yI < kix—y].
Since k < 1, fis a contraction. o

Example

The function f: (0,00) — R defined by f(x) = arctanx is not a

contraction even though |f’(x)| < 1 for all x € R.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Fixed point iterations

pn:g(pn—1)7 n:1727"'
Assume that g is continuous and lim p, = p. Then
n—aoo0
g(p) = g(lim py) = g(lim py—1) = lim g(pn-1)
= lim p, = p.
n—o0

Therefore, p is a fixed point of the function g.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Fixed point iterations

pn:g(pn—1)7 n:1727"'
Assume that g is continuous and lim p, = p. Then
n—aoo0
g(p) = g(lim py) = g(lim py—1) = lim g(pn-1)
= lim p, = p.
n—o0

Therefore, p is a fixed point of the function g.

Note: When g is continuous, the iteration scheme pp+1 = g(pp) in

general will NOT produce a convergent sequence {p,}72 ;.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

The function f(x) = x3 + 4x? — 10 has a unique zero in [1,2]:
@ Since (1) = =5 < 0 and f(2) = 14 > 0, Bolzano's Theorem
implies that f has a zero in [1, 2].
@ Since f/(x) = 3x%2 + 8x > 0 for all x € (1,2), fis strictly

increasing on [1,2]; f has a unique zero in [1,2].
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

The function f(x) = x3 + 4x? — 10 has a unique zero in [1,2]:
@ Since (1) = =5 < 0 and f(2) = 14 > 0, Bolzano's Theorem
implies that f has a zero in [1, 2].
@ Since f/(x) = 3x%2 + 8x > 0 for all x € (1,2), fis strictly

increasing on [1,2]; f has a unique zero in [1,2].

Next, we focus on finding the unique zero of f using the fixed-point

iteration. This amounts to provide a good continuous function g so

that x = g(x) is equivalent to f(x) = 0.
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Example (Cont.)

Some computations show that the fixed-point of the following func-
tions are the unique zero of f.
(a) x=g1(x) = x— x> — 4x? + 10.

(b) x=go(x) := (% - 4x) 1/2.

(c) x=g3(x) := %(10 — x3>1/2
@) se= ) = (41?)()1/2.

X3 4 dx2 —
(e) x=g5(x) :=x— W
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Example (Cont.)

Using the fixed-point iterations with functions g1, g2, - -, g5 and
po = 1.5, we have the following numerical results:
[ n] () [ (b) [ (o) [ (d) [ (e) |
0] 15 15 15 15 15
3 || 4607 .(—8.65)1/2
4 || 1.03 x 108 1.365230013
15 1.365223680 | 1.365230013
30 1.365230013
The actual root is p = 1.365230013...
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Chapter 2. Solutions of Nonlinear Equations

§2.2 Fixed-Point Iteration and Error Analysis

Example (Cont.)

Using the fixed-point iterations with functions g1, g2, - -, g5 and
po = 1.5, we have the following numerical results:
[ n] () [ (b) [ (o) [ (d) [ (e) |
0] 15 15 15 15 15
3 || 4607 .(—8.65)1/2
4 || 1.03 x 108 1.365230013
15 1.365223680 | 1.365230013
30 1.365230013
The actual root is p = 1.365230013...

Computer project: write the Matlab files for (c), (d), and (e).
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Chapter 2. Solutions of Nonlinear Equations

§2.3 Newton's Method

e Motivation: we know how to solve f(x) = 0 if fis linear. For

nonlinear f, we can always approximate it with a linear function.

o Suppose that fe C%([a, b]) and f(p) = 0. Let po € [a, b] be an
approximation to p, f’(po) = 0 and |p — po| is “small”. Using

Taylor Theorem, we have

0= (p) = F(pv) + (p — po)'(p0) + L=2L 7 (e(p)).

If |p — po| is small, then we can drop the (p — pg)? term,
0~ f(po) + (P~ pPo)f'(po) -

Solving for p gives

f(po) ;
P~ p1:i=po— F1(o0) provided f’(pg) # 0.
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Chapter 2. Solutions of Nonlinear Equations

§2.3 Newton's Method

e Motivation: we know how to solve f(x) = 0 if fis linear. For

nonlinear f, we can always approximate it with a linear function.

o Suppose that fe C%([a, b]) and f(p) = 0. Let po € [a, b] be an
approximation to p, f’(po) = 0 and |p — po| is “small”. Using

Taylor Theorem, we have

0= (p) = F(pv) + (p — po)'(p0) + L=2L 7 (e(p)).

If |p — po| is small, then we can drop the (p — pg)? term,

0~ f(po) + (P~ pPo)f'(po) -

@ Newton’s method can be defined as follows: forn=0,1,2, -

f(pn .
Pn+1 = Pn — f'((pn))’ provided f'(p,) # 0.
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Chapter 2. Solutions of Nonlinear Equations

§2.3 Newton's Method

Geometrical interpretation

X X1 Xn

@ An illustration of one iteration of Newton’s method. The func-
tion fis shown in blue and the tangent line is in red. We see
that p,4+1 is a better approximation than p, for the root p of
the function f.

e What is the geometrical meaning of f'(p,) = 0?
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Find the zero the function f(x) = cosx — x in [0, 7/2].

o " f(r/2) =—n/2<0and f(0) =1>0.
.". there exists p € (0,7/2) such that f(p) = 0.
Newton’s method: choose py € [0, 7/2] and

coS(Pn—1) — Pn—1

n=1.
—sin(p,_1) — 1~

Pn ‘= Pn—1 —

@ Numerical results: py = 7/4.

Pn f(pn)

0.78539816339745 | -0.07829138221090
0.73953613351524 | -0.00075487468250
0.73908517810601 | -0.00000007512987
0.73908513321516 | -0.00000000000000

W N = OIS
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Assume that f € C?([a,b]), p € (a,b) such that f(p) = 0 and
f'(p) # 0. Then there exists 6 > 0 such that if py € [p— 6, p+ 0]

then Newton'’s method generates {pp}>"_, converging to p.

f(x)
f(x)
g. To apply the Banach fixed-point theorem for the construction of

. Then p is a fixed-point of

Idea of proof: Define g(x) = x—

the fixed-point of g, we want to find § > 0 such that
Q g:[p—96,p+ 9] — [p—9,p+ 9] or equivalently,
|g(x) —p| <6 Vxel[p—46,p+4].
@ there exists k € (0,1) such that |g/(x)| < k for all x € [p—
9, p+ ).
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Since f’ is continuous on [a, b], there exists ; > 0 such that

1f'(p) — F'(x)| <@ Vxe[p—0d1,p+ 1] S [ab].
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Since f’ is continuous on [a, b], there exists ; > 0 such that

If'(p)| — |F'(x)| < @ Vxe[p—0d1,p+d1] S [ab].
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Since f’ is continuous on [a, b], there exists ; > 0 such that

V;ﬂ < |f’(X)| Vxel[p—d1,p+01] S [a, b].
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Since f’ is continuous on [a, b], there exists ; > 0 such that

0< V;ﬂ <|f'(x)| Vxelp—d1,p+d]c[ab.
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Since f’ is continuous on [a, b], there exists ; > 0 such that

f‘/
0< |2ﬂ <|f'(x)| Vxelp—d1,p+d]c[ab.
Let ke (0,1) be a constant and g: [p— 01, p+ 1] — R be defined
f(x)

by g(x) = x— 100
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Since f’ is continuous on [a, b], there exists ; > 0 such that

V;ﬂ < |f’(x)| Vxel[p—d1,p+01] S [a,b].

Let ke (0,1) be a constant and g: [p— d1, p+ 01] — R be defined
_ .,
by g(x) = x 100 Then
1oy — 1 I =" (x) _ F()f"(x)
g'(x) =1 F1(x)2 T (x2

0<
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Since f’ is continuous on [a, b], there exists ; > 0 such that

0< V;ﬂ <|f'(x)| Vxelp—d1,p+d]c[ab.

Let ke (0,1) be a constant and g: [p— d1, p+ 01] — R be defined
by g(x) = x— f()i). Then
FONF ()= FRF" () FF"(x)

g/(X) — F1(x)2 - F/(x)2

Therefore, g’ is continuous on [p—d1, p+91]. Moreover, g’(p) = 0;
thus there exists 0 < d < d7 such that
lg'(x)| <k Vxelp—d,p+d].
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method

Since f’ is continuous on [a, b], there exists ; > 0 such that

0< V;ﬂ <|f'(x)| Vxelp—d1,p+d]c[ab.

Let ke (0,1) be a constant and g: [p— d1, p+ 01] — R be defined
by g(x) = x— f()i). Then
FONF ()= FRF" () FF"(x)

g/(X) — F1(x)2 - F/(x)2

Therefore, g’ is continuous on [p—d1, p+91]. Moreover, g’(p) = 0;
thus there exists 0 < d < d7 such that

‘g’(x)‘ <k Vxelp—4,p+9].
The mean value theorem further implies that

g(x) — p| = |g(x) — &(p)| < kix—p|<d Vxe[p—d,p+4d]. o
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Chapter 2. Solutions of Nonlinear Equations

§2.3 Newton's Method

Definition

A sequence {p,}°2_, is said to converge to p of order o, where o > 0,

if lim p, = p and there exists M > 0 such that
n—0o0

|Pn+1 — p| < M|p,— p|® for all large n.
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Chapter 2. Solutions of Nonlinear Equations

§2.3 Newton's Method

Definition

A sequence {p,}°2_, is said to converge to p of order o, where o > 0,
if lim p, = p and there exists M > 0 such that
n—0o0

|Pn+1 — p| < M|p,— p|® for all large n.

Note:

@ If lim p, = p and the limit lim 2t B o odmis st &

n— |p, — p|*
non-zero, then {p,}>°; converges to p of order v and \ is called
the asymptotic error constant.
@ If a=1 (and A < 1), then we say {pp};2, is linearly conver-

gent. If & = 2, then we say {p,}72; is quadratically convergent.
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Chapter 2. Solutions of Nonlinear Equations

§2.3 Newton's Method

Theorem

Assume that f € C?([a,b]), p € (a,b) such that f(p) = 0 and
f'(p) # 0. If {pn};2, given by

f(Pn

/(p ) v
f (pn)
converges to p, then {p,}>°_, converges to p quadratically.

Pn+1 = Pn — nz=1
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Chapter 2. Solutions of Nonlinear Equations

§2.3 Newton's Method

Theorem
Assume that f € C?([a,b]), p € (a,b) such that f(p) = 0 and
f'(p) # 0. If {pn};2, given by

f(pn)
f'(pn) v

converges to p, then {p,}>°_, converges to p quadratically.

n>=1

Pn+1 = Pn —

In short,

Newton’s method is quadratically convergent when it

converges.
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method
Newton’s method is quadratically convergent when it converges.

Sketch of the proof.

Since fe C*([a, b)) , by Taylor's Theorem for each

n € N there exists £, between p and p, such that

F(p) = F(pn) + F(P)(p— po) + 52 (p— py)?.
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method
Newton’s method is quadratically convergent when it converges.

Sketch of the proof.

Since fe C?([a, b]) and f(p) = 0, by Taylor's Theorem for each
n € N there exists &, between p and p, such that

0= f(Pn) + f/(Pn)(P - Pn) + f//éfn) (P - Pn)2 0
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method
Newton’s method is quadratically convergent when it converges.

Sketch of the proof.

Since fe C?([a, b]) and f(p) = 0, by Taylor's Theorem for each
n € N there exists &, between p and p, such that

F{pn) + ' (pn) (p = pr) = =52

(p— Pn)2 0
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method
Newton’s method is quadratically convergent when it converges.

Sketch of the proof.

Since fe C?([a, b]) and f(p) = 0, by Taylor's Theorem for each
n € N there exists &, between p and p, such that

F(pn) + F'(P)(p — o) = o (p— p,)?.
Therefore,
(p— pn) + ;((’;"n)) — —2ff,((£ )) (p— pn)?
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method
Newton’s method is quadratically convergent when it converges.

Sketch of the proof.

Since fe C?([a, b]) and f(p) = 0, by Taylor's Theorem for each
n € N there exists &, between p and p, such that

f(Pn) I f/(Pn)(P - Pn) = = f//2(;§n) (P - Pn)2 .
Therefore,
flpn)  _ f"(&)
P— Pn + f/(Pn) — _2f/(Pn) (P _ pn)2

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method
Newton’s method is quadratically convergent when it converges.

Sketch of the proof.

Since fe C?([a, b]) and f(p) = 0, by Taylor's Theorem for each
n € N there exists &, between p and p, such that

F(pn) + F'(P)(p — o) = o (p— p,)?.
Therefore,
flpn) \ _  f"(&n)
P~ (0= ) = "2y P P’
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method
Newton’s method is quadratically convergent when it converges.

Sketch of the proof.

Since fe C?([a, b]) and f(p) = 0, by Taylor's Theorem for each
n € N there exists &, between p and p, such that

Fpn) + 7' (pn) (p = pa) = =57

(p— Pn) .

Therefore,

_ f"(f)

p— Pn+1
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method
Newton’s method is quadratically convergent when it converges.

Sketch of the proof.

Since fe C?([a, b]) and f(p) = 0, by Taylor's Theorem for each
n € N there exists &, between p and p, such that
F(pn) + F'(P)(p — o) = o (p— p,)?.
Therefore,
" (&n) 2
p— Pn+1 = 3 (pn) (p— pn)
which implies that
max |f" ()]
p— pry1 < %w po|* forall  n. o
2|f'(p
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Chapter 2. Solutions of Nonlinear Equations
§2.3 Newton's Method
Newton’s method is quadratically convergent when it converges.

Sketch of the proof.

Since fe C?([a, b]) and f(p) = 0, by Taylor's Theorem for each
n € N there exists &, between p and p, such that
F(pn) + F'(P)(p — o) = o (p— p,)?.
Therefore,
" (&n) 2
p— Pn+1 = 3 (pn) (p— pn)
which implies that
max |F"(x)]
xela,b]
p— p,,+1| “_/7|p p,,| for all large n. o
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Chapter 2. Solutions of Nonlinear Equations

§2.3 Newton's Method

Remark:
o Advantages:
© The convergence is quadratic.

© Newton's method works for higher dimensional problems.

o Disadvantages:

© Newton's method converges only locally; i.e., the initial guess
po has to be close enough to the solution p.

@ It needs the first derivative of f(x).
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Chapter 2. Solutions of Nonlinear Equations
§2.4 Secant Method

@ Secant method: given two initial approximations py and p;
with pp = p1 and f(pg) = f(p1). Then for n > 2,

f(pn—l) - f(pn—Q)

e compute m = it pn_1 = pp_a.
Pn—1 — Pn—2
f(pn—1) .
e compute p, = pp—1 — %. if f(pn—l) = f(pn—Q)-

Figure 1: This picture is quoted from http://en.wikipedia.org/wiki/
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Chapter 2. Solutions of Nonlinear Equations
§2.4 Secant Method

o Remarks:
e we need only one function evaluation per iteration.

e p, depends on two previous iterations. For example, to compute

p2, we need both p; and py.

e how do we obtain p;? We need to use FD-Newton: pick a
small parameter h, compute ag = (f(po + h) — f(po))/h, then

P1 = Ppo — f(Po)/ao-
@ The convergence of secant method is superlinear (i.e., better

than linear). More precisely, we have

. ‘pn+1 _,D| _ ~
}Lr&m =C, (1++5)/2~162<2.
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Chapter 2. Solutions of Nonlinear Equations
§2.4 Secant Method

Find the zero the function f(x) = cosx — x in [0, 7/2].

@ Let pp = 0.5 and p; = 7/4.
The secant method:

(pn—l - pn—2)(COS(pn—1) - pn—l)
‘= Dn_1 — , n=2.
P P o8(Pn—1) — Pr_1) — (cOS(Pn—2) — Pr_2)

@ Numerical results:

[n ] pn | f(pn) |
0.50000000000000 | 0.37758256189037
0.78539816339745 | -0.07829138221090
0.73638413883658 | 0.00451771852217
0.73905813921389 | 0.00004517721596
0.73908514933728 | -0.00000002698217
0.73908513321506 | 0.00000000000016

C1 B W N H O S
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

We first focus on solving for zeros of system of two nonlinear equa-

tions. We wish to solve

{ fi(xi,x2) =0,
fo(x1,x2) =0,

where fi and £, are nonlinear functions of x; and xo.
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

We first focus on solving for zeros of system of two nonlinear equa-

tions. We wish to solve

{ fi(xi,x2) =0,
fo(x1,x2) =0,

where fi and £, are nonlinear functions of x; and xo.

Applying Taylor's expansion in two variables around (xi, x2) to
the system of equations, we obtain

0= fi(x+hy, xa-ho) ~ fi(x1, xp) + by F0022) 1 Oilatne)
X1 0x2
2) A
0 = fo(xi+h1, xo+h2) ~ fo(x1, x2)+h1 (/fQ(Xl’X2)+h2Oé(X1’X2)-

0x1 Ox2
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

We first focus on solving for zeros of system of two nonlinear equa-

tions. We wish to solve

{ fi(xi,x2) =0,
fo(x1,x2) =0,

where fi and £, are nonlinear functions of x; and xo.

Applying Taylor's expansion in two variables around (xi, x2) to
the system of equations, we obtain

0= fi(x+hy, xa-ho) ~ fi(x1, xp) + by F0022) 1 Oilatne)
X1 0x2
2) A
0 = fo(xi+h1, xo+h2) ~ fo(x1, x2)+h1 (/fQ(Xl’X2)+h2Oé(X1’X2)-

0x1 Ox2

Putting it into the matrix form, we have

0f1 (x1,x: 0f1 (x1,x:
0 | filx,x) n Oﬁ(axlf B ﬂ(axg = hy
0| | R(x,x) oh(xi,x2)  0f(xi,x) hy |-

0x1 OX2
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

Newton's method for the system of two nonlinear equations is de-

fined as follows: for k=10,1,---,

X§k+1) - ng) . hgk)
ngﬂ) X;k) hék)
with
Oh (k) (K Of (k) (k)
a1 2 ) g (%) [hgk)]_ [ fl(x§k),xgk))]
of: k k of: k k k|~ (k) (k)
(;XQJ-<X§),X5)) ;T;(Xg)vxg)) hy f2(X1 y Xg )
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

Use Newton's method with initial guess
0 0 O\T T
0 = (4", = (0,1)
to solve the following nonlinear system (perform two iterations):

4x12 — x22 =0,
4x1x22 —x1 = 1.

Let fi(x1,x2) = 4x? — xZ and fo(x1, x2) = 4x1x — x1 — 1. Then

oh of

o Xx2) - == (3, x0) _[ 8x,  —92%
of f T A2 -1 8xix
T)Q(X]J X2) 6X2 (Xl ) XQ)
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

fi(x1,x0) = 4xZ — x5, fo(x1,x2) = 4x1x3 — x1 — 1, and

of
T)Q(X]"XQ) T)Q(X17X2) |:

of: of: -
8721(X17X2) a—);(xl,x2)

8X1 —2X2
4x22 —1 8x1xo

thus the first iteration gives

wl=v ]
NO 1

pY
hy”

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

fi(x1,x0) = 4xZ — x5, fo(x1,x2) = 4x1x3 — x1 — 1, and

oh of
TXI(X]J X2) ax2 (X17 XQ) . 8X1 —2X2
o o T 4d -1 8xix

o (X17 X2) o (Xl, X2)

thus the first iteration gives

pY
hy”

L)L e
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

fi(x1,x0) = 4xZ — x5, fo(x1,x2) = 4x1x3 — x1 — 1, and

oh of
TXI(X]J X2) ax2 (X17 XQ) . 8X1 —2X2
o o T 4d -1 8xix

) e
thus the first iteration gives
D 107, [AO
L;nH | M
-[1)-0 s s
1 3 0 —1
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

fi(x1, x2) = 4)(12 - x22, fo(x1,x2) = 4x1x22 —x1 — 1, and

of ofi
afxl(xlaXQ) T)Q(XMXQ) - 8x1 —2x0
o T 4d -1 8xixo

of:
- (X17X2) i(xl,xz)

thus the first iteration gives

wl=0 ]
& 1

A0
h)
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

fi(x1, x2) = 4)(12 - x22, fo(x1,x2) = 4x1x22 —x1 — 1, and

of ofi
afxl(xlaXQ) T)Q(XMXQ) - 8x1 —2x0
o T 4d -1 8xixo

of:
- (X17X2) aT;(Xl’XQ)

A0
h)

thus the first iteration gives
AL
Xél) 1

[
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

fi(x1,x0) = 4xZ — x5, fo(x1,x2) = 4x1x3 — x1 — 1, and

of
T)Q(X]"XQ) T)Q(X17X2) |:

of: of: -
8721(X17X2) a—);(xl,x2)

A
A

8X1 —2X2
4x22 —1 8x1xo

thus the first iteration gives

ML
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

fi(x1,x0) = 4xZ — x5, fo(x1,x2) = 4x1x3 — x1 — 1, and

oh of
TXI(X]J X2) ax2 (X17 XQ) . 8X1 —2X2
o o T 4d -1 8xix

aXI(X17X2) aXQ(X17X2)

thus the first iteration gives
N [
ORI RS R e

=il
. 1/3 _ 8-1/3 —2-1/2 fi(1/3,1/2)
- [ 1/2 ] [4(1/2)2—1 8-1/3~1/2:| [@(1/3,1/2)]
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

fi(x1, x2) = 4)(12 - x22, fo(x1,x2) = 4x1x22 —x1 — 1, and

of ofi
afxl(xlaXQ) T)Q(XMXQ) - 8x1 —2x0
o T 4d -1 8xixo

of:
- (X17X2) aT;(Xl’XQ)

Ay
hiH

thus the first iteration gives

B] -]

[ 0.5416
| 125
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

@ In general, we can use Newton's method for F(X) = 0, where
X=(x1,%2,...,xp) " and F= (fi,fy,...,f)".

@ For higher dimensional problem, the first derivative is defined

as a matrix (the Jacobian matrix)

[ 0A(X) O0A(X) . OA(X) ]
6X1 6X2 aXn
oR(X) LX)  9R(X)
DF(X) := 0x1 Ox2 0Xn
0 BN . X
0x1 O0x2 0xn 1 nxn
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

Newton's method: given X(©) = [xgo), e ,xf,o)]T, define

XUt = x(0) 4 g0

where

DF(XWYHKW = —F(xK),

which requires solving a large linear system at every iteration.
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

Newton's method: given X(©) = [xgo), e ,xf,o)]T, define

XUt = x(0) 4 g0

where

DF(XWYHKW = —F(xK),
which requires solving a large linear system at every iteration.
@ vector operations: not expensive.
@ function evaluations: can be expensive.
@ compute the Jacobian: can be expensive.

@ solving matrix equations (linear system): very expensive!
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Chapter 2. Solutions of Nonlinear Equations

§2.5 Newton's Method for System of Equations

Computer project: write the computer code of Newton's method

for solving the system of equations

3x — cos(yz) — % =0
X —81(y+0.1)? +sin() 1.06 =0,
e + 202+ =2 = 0

with initial guess (x,y,z)" = (0.1,0.1,-0.1)".
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