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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

O Interpolation: find a function that fits the given data

(%0, ¥0)s (X1, 1), 5 (Xn, Yn)-
©@ Why polynomials?
The Weierstrass Approximation Theorem:
Suppose that fe C([a, b]). Then for every € > 0, there exists a
polynomial p defined on [a, b] such that |f(x) — p(x)| < & for all
x € [a, b]. In other words, every continuous function fon [a, b]
is the uniform limit of polynomials.

© Why not Taylor polynomials?

o need to calculate f'(x), f"(x),- - -
e accurate near at a specific point, not on entire interval.
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

@ We solve the following problem: given a table of n+ 1 data
points (xi, yi),
x| xo | x| |
ylivw |y |

we seek a polynomial p of lowest possible degree for which
p(xi) =yi (0<i<n).

@ Such a polynomial is said to “interpolate” the data.
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Given n + 1 distinct real (or complex) numbers xg, x1,- - ,x, and
their function values f(xp), f(x1), -+ ,f(xn), there exists a unique

polynomial p(x), degree p(x) < n, such that

p(xk) = f(xk), k=0,1,---,n

Definition
The polynomial p given in the theorem above is called the n-th La-

grange interpolating polynomial for the data (xp, f(xp)), (x1,f(x1)),
oy (Xn, F(Xn)).
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Given n + 1 distinct real (or complex) numbers xg, x1,- - ,x, and
their function values f(xp), f(x1), -+ ,f(xn), there exists a unique

polynomial p(x), degree p(x) < n, such that
( ) f(Xk) kanL"'?”

Definition
The polynomial p given in the theorem above is called the n-th La-

grange interpolating polynomial fer-the-data-ar Foxohbas Foa

[} ns n
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Proof.
Assume that

p(x) = ap + a1x+ agx? 4 -+ apx".

The interpolation conditions, p(xx) = f(xx) for 0 < k < n, lead
to the following system of n + 1 linear equations for determining

40,41, ", dn:
(1 x0 x¢2 - 7] [ a ] [ f(x0) ]
1 x3 x¢ - X a f(x1)
1 x x5 Xg a | = | f(x)
R A I | f(xn) |

The coefficient matrix X is called the Vandermonde matrix. It is
nonsingular with det X = [ ], ;c,(xj — x)) = 0, (but it is often
ill-conditioned). o
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

@ Given (xp, f(x0)) and (x1, f(x1)), xo = x1, we consider

p(x) = 2L f(x0)+——2F(x1) = L1,0(x)F(x0)+L11(x)F(x1) -

X0 — X1 X1 — Xo

Then degree p(x) < 1 and p(xp) = f(xp), p(x1) = f(x1).
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

@ Given (xp, f(x0)) and (x1, f(x1)), xo = x1, we consider

p(x) = X_le f(x0)+ X_):U f(x1) = Lio(x)f(x0)+L11(x)f(x1) .

X0 — X1 —

Then degree p(x) < 1 and p(xp) = f(xp), p(x1) = f(x1).

@ Given n+ 1 distinct numbers xg, x1, - - - , xp, then for each k=
0,1,---,n, how to construct a quotient L, x(x) such that
1 ifi=k
L, k(X)) = 7
k() { 0 ifi#k
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

@ Given (xp, f(xp)) and (xi, f(x1)), xo = x1, we consider

x—’:1 f(xo0)+ X—XXO(] f(x1) = L1o(x)f(x0)+L11(x)f(x1).

X1 —

P(x) = —
Then degree p(x) < 1 and p(xp) = f(xp), p(x1) = f(x1).
@ Given n+ 1 distinct numbers xg, x1, - - - , xp, then for each k=
0,1,---,n, how to construct a quotient L, x(x) such that
1 ifi=k
L ) = ’
k() { 0 ifik

Answer: for k=0,1,--- ,n,

_ (x=x) o (X = Xk—1) (X— Xkt1) s (x— xn)
Ln,k(X> - (X;< - XO) (Xk — Xk,]) (X;< — Xk+]) c (Xk _ Xn)

n

15—,

0 kA K]
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Given n + 1 distinct real (or complex) numbers xg,x1,- - ,x, and
)

their function values f(xp), f(x1), -+ ,f(xn), there exists a unique

polynomial p(x), degree p(x) < n, such that
( ) f(X) kanL"'?”‘

In fact, this polynomial is given by

x0)Lno(x) + f(x1)Ln1(Xx) + - -+ + F(Xn) L n(X)

p(x) = f(xo
= /;]f(xk) Ln,k(X)'
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Example

Let X0 = 2, f(Xo) = 0.5, x1 = 2.5, f(Xl) =04, x9 = 4, f(Xg) =
0.25 (in fact, f(x) = 1/x). Find the second (n = 2) Lagrange
interpolating polynomial.
 (x—25)(x—4) _ x?—6.5x+10
Lao(x) = (2—25)(2—4) 1 ’
 (x=2)(x—4) x> —6x+8
oles) = (25-2)(25-4)  -075
 (x—=2)(x—2.5)  x®>—45x+5
LQZ()_(4—2)(4—25)_ 3 '
Therefore,
. x? — 6.5x+ 10 x? —6x+8
p() = 05( =) + 04 ()
2
+0.25 (X525 E) - 0.05x% — 0.425x + 115,
Note that p(3) = 0.325 and f(3) ~ 0.333.
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Theorem

Let f be a given real-valued function in C™1([a, b)), and xg, x1, - - -,
xn € [a, b] be n+1 distinct numbers. Then for each x in [a, b], there
exists £(x) € (a, b) such that

L (D) ()] [ (x — ),

(n+1)! Lo
where p(x) is the n-th Lagrange interpolating polynomial for the
data (xo, f(x0)), (x1,f(x1)), -+, (Xn, F(xn)).

F) = p(x) +

| \

Proof.
Let x € [a, b]. If x = x, for some 0 < k < n, then the assertion holds;
thus W.L.O.G., we assume that x # x; for any k=0,1,--- ,n. o
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Proof (Cont.) :

Let w(t) = ﬁ(t— x;) and define g: [a, b] — R by
i=0
() = £(5) = p() = "L ().
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Proof (Cont.) :

n

Let w(t) = [](t — x;) and define g [a, b] — R by
() = £(5) = p() = "L ().
Then g € C""1([a, b]) and g vanishes at (distinct) n + 2 points

X, X0, X1y ** 5 Xn-
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Proof (Cont.) :

n

Let w(t) = [[(t — x;) and define g: [a, b] — R by

f(x) — p(x
() = £(5) = p() = "L ().
Then g € C""1([a, b]) and g vanishes at (distinct) n + 2 points
X, X0, X1, *+ ,Xpn. By generalized Rolle's Theorem, g("“) has at least

one zero £(x) € (a, b).
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Proof (Cont.)

Let w(t) = [[(t — x;) and define g: [a, b] — R by

f(x) — p(x
() = £(5) = p() = "L ().
Then g € C""1([a, b]) and g vanishes at (distinct) n + 2 points
X, X0, X1, *+ ,Xpn. By generalized Rolle's Theorem, g("“) has at least

one zero £(x) € (a, b). Since
gD (1) = £ (5) — p(m (1) - BB (i) g

w(x)
we have
0=g(g(x) = FD(E() — (n+ 1)I===2 . o
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Chapter 3. Interpolation and Polynomial Approximation
§3.1 Interpolation and the Lagrange Polynomial

Example

f(x) = eX,x € [0,1]. Let xg,x1,-*,x, be a uniform partition of
[0, 1] with step size h=1/n.

Consider [xj, xjy1] for some j. Let p(x) be the first Lagrange inter-
polating polynomial on [xj, xj;1]. Then for x € [xj, xj;1],

1700 p09] = | (= ) (x — s30)
< |- me- G| €etge)

. (x— jh)(x— G+ 1)h)

< — max e£ max
2 ¢e0,1]  xe[x;xjt1]

1 h*  eh?

21 T 8

If|f(x) — p(x)| < (eh?)/8 < 1070 then h < 1.72 x 1073, We can
choose h = 0.001.
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

@ Let f be a function whose values are known at points (nodes)

X0, X1, 5 Xn-

© We assume that these nodes are distinct, but they need not be
ordered.

© We know there is a unique polynomial p of degree at most n
such that
p(xi) = f(x;) for 0 <i< n.

© p can be constructed as a linear combination of 1, x, x2, - -+ , x".
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

Instead of expressing p as the linear combination of monomials

1,x,x2,---,x" we should use the Newton form of the interpolating
polynomials:

qo(x) =1,

q1(x) = (x—xo) ,

42(x) = (x— x0) (x— x1).,

g3(x) = (x = x0) (x = x1) (x = x2) ,

4n(x) = (x— x0)(x = x1)(x = x2) -+ (x— Xn_1).

The n-th Lagrange interpolating polynomial p can be expressed as

pO) = Y6a(0)-
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

@ The interpolation conditions give rise to a linear system of equa-
tions for the unknown coefficients:

Ygai(xi) = f(x) for 0 <i<n.

j=0

@ The elements of the coefficient matrix are
ajj = qj(x,-) for 0 <i,j<n.

© The (n+1) x (n+1) matrix A = [aj](n41)x(nt+1) IS @ lower tri-
angular matrix because

j—1
q;(x) = [ [(x—xx)
k=0
which implies that
-1
a,-j:qj(x,-) = H(X,'—Xk) =0 ifl'gj—l.
k=0
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences
Consider the case of three nodes with

p(x) = coqo(x) + c1q1(x) + c2g2(x)
=+ ci(x—xp) + c2(x— x0)(x— x1).

Setting x = xp,x = x1, and x = xa, we have a lower triangular

system
1 0 0 ()] f(X())
1 (x1—xp) 0 a | =| fa)
1 (X2 — Xo) (XQ — XO)(X2 — X1) Co f(XQ)

Thus, ¢, depends on f at xg, x1,- -+ ,Xp, and define the notation

Cn = X0, X1, "+, Xn] -
We call f[xp,x1, -+ ,xn] a divided difference of f.
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Chapter 3. Interpolation and Polynomial Approximation

§3.2 Divided Differences

Note that f[xg, x1, - - - , x| is the leading coefficient of polynomial

p of degree < n which interpolates f at xp, X1, - , Xp.
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

Note that f[xg, x1, - - - , x| is the leading coefficient of polynomial
p of degree < n which interpolates f at xp, X1, - , Xp.

Theorem (Theorem on Higher-Order Divided Differences)

The divided differences satisfy the equation:

f[XlaXQa' T 7Xn] - f[XO:Xla" : 7Xn71]

f[X()lev"’aXn]: X — X
n
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

Note that f[xg, x1, - - - , x| is the leading coefficient of polynomial
p of degree < n which interpolates f at xp, X1, - , Xp.

Theorem (Theorem on Higher-Order Divided Differences)

The divided differences satisfy the equation:

Flxi, xa,++ , Xa] = X0, X1, + , Xn—
f[XOaXh"’,X,,]: [x1, X2, s Xn) [x0, x1,  Xn 1]'

Xn — X0

Proof.

Let px be the polynomial of degree < k that interpolates f at
X0, X1, "+ ,Xk. Let g denote the polynomial of degree < n— 1 that
interpolates f at xq, X9, - - , Xp.
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

Note that f[xg, x1, - - - , x| is the leading coefficient of polynomial
p of degree < n which interpolates f at xp, X1, - , Xp.

Theorem (Theorem on Higher-Order Divided Differences)

The divided differences satisfy the equation:

flx1, 7"'7n7f gANilg 777 9 Na=
f[X()lev"' aXn] = [XI/XQ X] [XO/Xl . 1] .
Xpn — X0
Let px be the polynomial of degree < k that interpolates f at
X0, X1, "+ ,Xk. Let g denote the polynomial of degree < n— 1 that
interpolates f at xq,xs,- - ,X,. Then
pn(x) = a(x) + - —[a(9) = pra(x)]

since both sides have the same values at xp, xq,: -, X, and same
degree < n.
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

Note that f[xg, x1, - - - , x| is the leading coefficient of polynomial
p of degree < n which interpolates f at xp, X1, - , Xp.

Theorem (Theorem on Higher-Order Divided Differences)

The divided differences satisfy the equation:

flx1, 7"'7n7f gANilg 777 9 Na=
f[X()lev"' aXn] = [XI/XQ X] [XO/Xl . 1] .
Xpn — X0
Let px be the polynomial of degree < k that interpolates f at
X0, X1, "+ ,Xk. Let g denote the polynomial of degree < n— 1 that
interpolates f at xq,xs,- - ,X,. Then
pn(x) = a(x) + - —[a(9) = pra(x)]

since both sides have the same values at xp, xq,: -, X, and same

degree < n. Examining the coefficient of x” on the both sides, we

arrive at the assertion. o
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

© If a table of function values (x;, f(x;)) is given, we can construct
from it a table of divided differences as follows:

xo flxo] | flxo,x1] flxo0,x1,x2] f[x0,x1, X2, X3]
x1 flxa] | flxi,xe]  flxi, x2, x3]

xy  flxo] | f[xa, xs]

x3 f[x3

@ The following formula is called Newton’s interpolatory divided-
difference formula:

pn(x) = flx0] + Zi:f[xo,xl,-~- Xk (x = xp) -+ (X — Xk—1)-

© The coefficients required in the Newton interpolatory divided-
difference formula occupy the top row in the divided difference
table.
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

Compute a divided difference table from
Xi 1.0 1.3 1.6 1.9 2.2
f(x;) || 0.7651977 | 0.6200860 | 0.4554022 | 0.2818186 | 0.1103623

Xi f[X,‘] f[X,'7 X,‘+1] f[X,‘,- ° o XH_Q] f[X,',- o o X,'+3} f[X,',- o o9 X,‘+4]
xo=1.0 | 0.7651977 —0.4837057 —0.1087339 0.0658784 0.0018251
x1=1.3 | 0.6200860 —0.5489460 —0.0494433 0.0680685
x2=1.6 | 0.4454022 —0.5786120 0.0118183
x3=1.9 | 0.2818186 —0.5715210
x4=2.2 | 0.1103623

Then Newton's interpolatory divided-difference formula provides

pa(x) = 0.7651977 — 0.4837057(x — 1.0)
—0.1087339(x — 1.0)(x — 1.3)
+0.0658784(x — 1.0)(x — 1.3)(x — 1.6)
+0.0018251(x — 1.0)(x — 1.3)(x — 1.6)(x — 1.9). .
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Chapter 3. Interpolation and Polynomial Approximation
§3.2 Divided Differences

If (29,21, z) is a permutation of (xp, X1, - Xp), then

flzo,z1,- -+, 2zn] = f[X0, X1, -+ , Xn] -
Q flz0,2z1, -,z is the coefficient of x" in the ponnomiaI of
degree < n that interpolates f at the nodes zy, z1, - - - , z,.
Q f[xp,x1, - ,%n] is the coefficient of x" in the ponnomiaI of

degree < n that interpolates f at the nodes xp, x1,- -« , Xs.

© These two polynomials are identical. This leads to the conclu-
sion. =

v
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Definition
Let xp,x1,:*,xn € [a,b] be n + 1 distinct numbers.  Let
my, my, -+, m, = 0 integers and m = max{mg, my,--- , mu}. Sup-

pose that fe C™([a, b]). Then the osculating polynomial approxi-
mating fis the polynomial p(x) of least degree such that
dp df

W(XI)ZW(XI) for i=0,1,--- ,nand k=0,1,--- , m;.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Definition
Let xp,x1,:*,xn € [a,b] be n + 1 distinct numbers.  Let
my, my, -+, m, = 0 integers and m = max{mg, my,--- , mu}. Sup-

pose that fe C™([a, b]). Then the osculating polynomial approxi-
mating fis the polynomial p(x) of least degree such that
dp df
ok ) = gk

Remark:
@ The degree of p(x) < (Z?:o m,-) +n:=M.

(xj) fori=0,1,---,nand k=0,1,---, m;.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Definition
Let xp,x1,:*,xn € [a,b] be n + 1 distinct numbers.  Let
my, my, -+, m, = 0 integers and m = max{mg, my,--- , mu}. Sup-

pose that fe C™([a, b]). Then the osculating polynomial approxi-
mating fis the polynomial p(x) of least degree such that

dk df
d—i(x,-) = W(Xi) for i=0,1,--- ,nand k=0,1,--- , m;.
x x

Remark:

@ The degree of p(x) < (Z?:o m,-) +n:=M.
@ If n=0, then p(x) = mp-th Taylor polynomial of f(x) at xo.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Definition
Let xp,x1,:*,xn € [a,b] be n + 1 distinct numbers.  Let
my, my, -+, m, = 0 integers and m = max{mg, my,--- , mu}. Sup-

pose that fe C™([a, b]). Then the osculating polynomial approxi-
mating fis the polynomial p(x) of least degree such that

dk df
d—i(x,-) = W(Xi) for i=0,1,--- ,nand k=0,1,--- , m;.
x x

Remark:

@ The degree of p(x) < (Z?:o m,-) +n:=M.

@ If n=0, then p(x) = mp-th Taylor polynomial of f(x) at xo.

©Q If mj=0fori=0,1,---,n, then p(x) = n-th Lagrange inter-
polating polynomial of f(x) at xp, x1, -+ , Xp.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Definition
Let xp,x1,:*,xn € [a,b] be n + 1 distinct numbers.  Let
my, my, -+, m, = 0 integers and m = max{mg, my,--- , mu}. Sup-

pose that fe C™([a, b]). Then the osculating polynomial approxi-
mating fis the polynomial p(x) of least degree such that

dk df
d—i(x,-) = W(Xi) for i=0,1,--- ,nand k=0,1,--- , m;.
x x

Remark:

@ The degree of p(x) < (Z?:o m,-) +n:=M.

@ If n=0, then p(x) = mp-th Taylor polynomial of f(x) at xo.

©Q If mj=0fori=0,1,---,n, then p(x) = n-th Lagrange inter-
polating polynomial of f(x) at xp, x1, -+ , Xp.

Q If mj=1fori=0,1,---,n, then p(x) is the Hermite inter-
polating polynomial.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Theorem

Let xp, X1, , Xn € [a, b] be n+1 distinct numbers and fe C'([a, b]).
The unique polynomial of least degree agreeing with f(x) and f'(x)
at xp, X1, -+ ,Xn IS the Hermite polynomial of degree at most 2n+ 1
and is given by

Han1(x Z f(x) Hn, j(x) + > F' (%)) Hnj(x),
=0

where, with L, x(x) = (1)2[ "

=

-, Hp,j and I:I,w- are given by

1- )L 109)] L2109
Hn,J( ) (X_XJ)L2 ( X) .

Moreover, if fe C?"+2([a, b]), then there exists ¢ € (a, b) such that

(2n4-2)
f(X) = H2n+1 (X) aF ﬁ

(X*XU)2(X7X1)2”' 2

(x—xp)*.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Proof.
Let ¢;; be the Kronecker delta defined by d;; = 0 if i # j and §;; = 1
if i=j. Then
09 = =2 (9)13 109 +2[1 = 2(x= )L} 09)] L (9L )
H,,/,j(X) = L%,j(x) +2(x — XJ')L,,J(X)LH/J(X);

thus using that L, j(x;) = ¢;; we find that
H, (x)=0; and H,:(x) =0

",’J( ) =0 A",’J( ) forall 0<i,j<n.

Hn,j(Xi) =0 and Hn’j(X,') = (5,_,

Therefore, by the fact that H, ; and Hn,j are polynomials of degree

2n + 1 we conclude that {H,,,J-, ﬁ,,,j};.’:o is a basis in the space of

polynomials of degree 2n + 1. o
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Chapter 3. Interpolation and Polynomial Approximation

§3.3 Hermite Interpolation

Proof (Cont.) H.,. (>

In other words, every polynomial of degree < 2n+1 can be expressed

a . . . 7 n
as a unique linear combination of {H,,yj, H":J}j:()'
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Proof (Cont.) Hani1(x) = 3 F(x3)Hn,i(x) + :

In other words, every polynomial of degree < 2n+1 can be expressed
. q . . n n

as a unique linear combination of {H,,yj, H":J}j:()'

If gis a polynomial of degree < 2n+ 1 satisfying g(x;) = f(x;)
and g'(xj) = f'(x;) for j=0,1,--- , n, then

Q z(x) = i cjHn, j(x) + i deA-I,,,J-(x) for some coefficients ¢;, dj.

j=0 j=0
Q g(xj) = f(x;) for all jimplies that ¢; = f(x;).
Q g'(x) = f'(x)) for all j implies that d; = f'(x;) for all j.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Proof (Cont.) Hani1(x) = £ F(x)Hni(x) + 3 ' (x;)Ha, j(x).

In other words, every polynomial of degree < 2n+1 can be expressed
. q . . n n
as a unique linear combination of {H,,yj, H":J'}j:o
If gis a polynomial of degree < 2n+ 1 satisfying g(x;) = f(x;)
and g'(xj) = f'(x;) for j=0,1,--- , n, then
Q z(x) = i cjHn, j(x) + i deA-I,,,J-(x) for some coefficients ¢;, dj.
j=0 =0
Q g(xj) = f(x;) for all jimplies that ¢; = f(x;).
Q g'(x) = f'(x)) for all j implies that d; = f'(x;) for all j.
In other words, the function

o1 (x zfx, 7 () + Y (x) Ho (%)
j=0

is the only function agreeing with f(x) and f’(x) at xo, X1, , X

[}
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Proof (Cont.) f(x) = Hopi1(x) + i S (x—x0)2(x—x1)% - (x— xn)2.

(2n + 2)!

Error estimate: We mimic the proof of the error estimate for La-

grange polynomials. For each x # xg, x1 - - - , Xp, define

(1) = F() = Hanr (1) — Ll ol ) T 0 ()]

(x—x0)2(x—x1)2 - - (x—Xn)2

Then g € C?"2([a,b]) and g vanishes at n + 2 points x, Xo,

X1, "y Xn.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Proof (Cont.) f(x) = Hopi1(x) + i (x—x0)2(x—x1)% - (x— xn)2.

(2n + 2)!

Error estimate: We mimic the proof of the error estimate for La-

grange polynomials. For each x # xg, x1 - - - , Xp, define

(1) = F() = Hanr (1) — Ll ol ) T 0 ()]

(x—x0)2(x—x1)2 - - (x—Xn)2

Then g € C?"2([a,b]) and g vanishes at n + 2 points x, Xo,

X1, +++, Xp. By Rolle's Theorem, there exist distinct n + 1
points ¢y, c1, -+ ,C, such that g'(¢)) = 0 for all 0 < j <
n.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Error estimate: We mimic the proof of the error estimate for La-
grange polynomials. For each x # xg, x1 - - - , Xp, define

(1) = F() = Hanr (1) — Ll ol ) T 0 ()]

(x=x0)2(x=x1)? - - - (x—xn)?
Then g € C?"2([a,b]) and g vanishes at n + 2 points x, Xo,
X1, +++, Xp. By Rolle's Theorem, there exist distinct n + 1
points ¢y, c1, -+ ,C, such that g'(¢)) = 0 for all 0 < j <

n. Moreover, all ¢'s are different from x, xg,x1,- -, x,; that is,

X0y X1, " »Xp, Cos Cl, -+ ,Cp are distinct 2n + 2 points.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Error estimate: We mimic the proof of the error estimate for La-

grange polynomials. For each x # xg, x1 - - - , Xp, define

(1) = F() = Hanr (1) — Ll ol ) T 0 ()]

(x—x0)2(x—x1)2 - - (x—Xn)2

Then g € C?"2([a,b]) and g vanishes at n + 2 points x, Xo,
X1, +++, Xp. By Rolle's Theorem, there exist distinct n + 1
points ¢y, c1, -+ ,C, such that g'(¢)) = 0 for all 0 < j <
n. Moreover, all ¢'s are different from x, xg,x1,- -, x,; that is,
X0y X1, 5 Xn, €0, Cl, "+ + , Cp are distinct 2n + 2 points. Since g’

vanishes at these 2n + 2 points,
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Proof (Cont.) f(x) — Ho, : = (x — x0)*(x — x1)% -+ (x— xn)°.

Error estimate: We mimic the proof of the error estimate for La-

grange polynomials. For each x # xg, x1 - - - , Xp, define

(1) = F() = Hanr (1) — Ll ol ) T 0 ()]

(x—x0)2(x—x1)2 - - (x—Xn)2

Then g € C?"2([a,b]) and g vanishes at n + 2 points x, Xo,
X1, +++, Xp. By Rolle's Theorem, there exist distinct n + 1
points ¢y, c1, -+ ,C, such that g'(¢)) = 0 for all 0 < j <
n. Moreover, all ¢'s are different from x, xg,x1,- -, x,; that is,
X0y X1, 5 Xn, €0, Cl, "+ + , Cp are distinct 2n + 2 points. Since g’
vanishes at these 2n + 2 points, the generalized Rolle’s Theorem
implies that there exists ¢ such that (g/)2"t1)(€) = 0. This fact
implies the error estimate above. o
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Chapter 3. Interpolation and Polynomial Approximation

§3.3 Hermite Interpolation

k Xk f(Xk) f/(Xk)
0 1.3 0.6200860 —0.5220232
1 16 04554022 —0.5698959
2 1.9 02818186 —0.5811571
x—16)(x—1.9) _ 50 175 152
Lyo(x) = (o LOG=19) _ 50 5 175 152
(—0.3)(=0.6) 9 9 9
100 175
2000 = 5-x— =
—1.3)(x—1.9) 100 o | 320 247
L X :(X— = ——X = =
2,1(%) (0.3)(—0.3) 9 X T 9
200 | 320
/2,1(X):_7X 9
~13)(x—1.6) 50 o 145 104
L X :(X— = — X — ——Xx it
2.2(%) (0.6)(0.3) 9 g Xt g
100 145
L, (x) = 190, 145
2,2(X) 9 9
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

Example (Cont.)

Therefore,
Hao(x) = (10x— 12)(x? — Tx+ 222,
100 320 247
Ho1(x) = 1(——5-x* + Z=x — =5)?,
50 145 1042
Hz,z(X) 10(2 - )(§X2 x+5°)?,
50 175 1522
Foo() = (x=13)(;x% = =Sx+ =2)2,
100 320 2479
,1<x> (x—1.6)(—% g - Ay,
50 145 1049
p2(%) = (x = LI)(Fx® — =x+ =)
thus
Hs(x) = 0.6200860H2 0(x) + 0.4554022Hx 1 (X) + 0.2818186H2 2(x)
—0.5220232H5,0(x) — 05698059 Ho 1 (x) — 0.5811571 Ha 5(x).

V.
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

@ The Newton interpolatory divided-difference formula for the n-

th Lagrange polynomial at distinct numbers xg, x1,- - , Xp is
given by
Pn(x) = flxo] + X flx0, X1, -+, xk] (x = x0) -+ (x = xk—1) -
k=1
Q Define zy,z1,- -+, z2p11 by 22; = 20141 = x;, for i=0,1,--- , n.

Then the Newton interpolatory divided-difference formula for
the Hermite interpolating polynomial at distinct numbers xp,

X1, **+, Xp is given by
2n+1

Hony1(x) = flzo] + ). flzo, 21, -+, z](x — 20) - - - (X — Zk—1)

k=1
where f[x;, x;| := f'(x;), since

lim f[x;, x] = lim flx) — f(x)

X—> X X— X X — X

= f/(X;) o
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

2
zy
Zy
z3

Z4

f'

Z()]

~

7]

[
[
(2]
(23]
[

-

B

~

Z3

f

24]

f
f

Z(J,Zﬂ
, 23]
, 23]

Zy,

N

_h
N
N

2

~-

Z

w
X

, 24]
, z5]

[
[
[
[
dl

Z4

f[Zo-, 21,22, 23]

[ ]

flo, 22,23)  flzr, 22, 23, 2]
[ | flzz, 2, 24, 25]
[ ]

f[Zo, 21,22, Z3, 24}

flz1, 25, 23, 24, 25
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Chapter 3. Interpolation and Polynomial Approximation
§3.3 Hermite Interpolation

20 flz] | flzo,z1] flz0,21,20) Flz0,21,22,23] flz0, 21, 22, 23, 24)
z1 flz] | fla,z] flzi,20,23] flz1,20,23,24] flz1, 22, 23, 24, 25]
7o flz] | flze, 23] flz2,23,24) (22,23, 24, 25]

z3  flzs) | flzs,za] flz3, 24, 25

zy  flz] | flz, 2]

2 f f{207z]722323] f[207zlaz2723724]

4 f f[zl722123724] f[zlvz27237z47z5]

[z0] [ ]
(1] [ 3]
2 flz) | ') flzozs,2a)  Flzs, 23, 24, 25)
2] [ ]
(2]
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation

Disadvantages of
@ Lagrange interpolating polynomial: oscillation of high-degree
polynomial.
o Piecewise linear approximation: no assurance of differentiability
at each endpoints of the subintervals.
@ Piecewise Hermite interpolating polynomial Hs(x) of degree 3:
f'(x0), f'(x1),- -, f'(xn) are usually not available.
Goals:
@ piecewise polynomial,
@ no derivative information is required, except perhaps at xo(= a)
and x,(= b);
e continuously differentiable in the whole domain [a, b)].

— spline interpolation
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation

Let f be defined on [xp, x2], and f(xp), f(x1) and f(x2) are given.

A quadratic spline function S consists of the quadratic polynomials:

So(x) = ap + bo(x — xp) + co(x — Xo)2 on [xp, x1],

Si(x) = a1+ bi(x—x1) +ci(x—x1)* on [x1, x]
such that
Q S(x0) = f(x0), S(x1) = f(x1) and S(x2) = f(x2);
Q Se Cl([Xo,XQ]).
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation

@ From condition (@), we must have
ap =

f'

ap + bo(Xl — Xo) aF CQ(X1 — X())2 =f
a f

f

1
al+ bi(xe —x1) + c(xe — x1)? =

e From condition (), we must have S{(x1) = Sj(x1). By the fact
that S{(x) = by + 2cp(x — xp) and Sj(x) = by + 2¢1(x — x1),
we conclude that

bo + 2C0(X1 = Xo) = b;.

@ 6 unknowns, 5 equations = flexibility exists.

o If we require S€ C?([xo, x2]), then Sf(x1) = 2c0, S (x1) = 2¢1
= =C

= 5 unknowns and 5 equations = a solution may not exist!
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation

Definition (Cubic spline)

Given a = xg < x1 < --+ < Xp_1 < X, = b and a set of function
values f(xp), f(x1), -, f(xn), a cubic spline interpolant S for fis a
function that satisfies

(1) 5|[x,-,x,-+1] is a cubic polynomial for j = 0,1,--- ,n — 1, denoted by

Slgx411 () = S5();

Q S(x) =f(x), j=0,1,---,n;

O Sit1(X41) = Si(xj+1), j=0,1,--- ,n—2;

Q S (x+1) = 5(X4+1), j=0,1,--- ,n—2;

):

o Sﬂrl(xjﬂ SJ-”(XJ'H).J':O,L--' ,n—2;
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation

Definition (Cubic spline)

Given a = xg < x1 < --+ < Xp_1 < X, = b and a set of function
values f(xp), f(x1), -, f(xn), a cubic spline interpolant S for fis a
function that satisfies
(1) 5|[x,-,x,-+1] is a cubic polynomial for j = 0,1,--- ,n — 1, denoted by
Slgx411 () = S5();
Q S(x) =f(x), j=0,1,---,n;

O Sit1(X41) = Si(xj+1), j=0,1,--- ,n—2;
Q S 1(xr1) = S(xt1), j=0,1,-+- ,n—2;
O S i(x4+1) =S/ (X41), j=0,1,--- ,n—2;

@ one of the following is satisfied:
o S”(xp) = S"(x,) = 0, free or natural boundary conditions =
natural spline;
o S'(xp) = f'(x0), S (xn) = f'(xn), clamped boundary conditions
= clamped spline.
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Chapter 3. Interpolation and Polynomial Approximation
e Condition (1) implies that
Si(x) = aj+bj(x—xj)+cj(x—x;)2 +di(x—x))>,j = 0,1,--- ,n—1.

e Condition (2) = Sj(xj) = aj = f(x;) (given), j=0,1,--- ,n—1.
Define ap := Sp—1(xn) = f(xn) (given).
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Chapter 3. Interpolation and Polynomial Approximation
e Condition (1) implies that
Si(x) = aj+bj(x—xj)+cj(x—x))2 +di(x—x))®,j = 0,1, -+ ,n—1.

e Condition (2) = Sj(xj) = aj = f(x;) (given), j=0,1,--- ,n—1.
Define ap := Sp—1(xn) = f(xn) (given).
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Chapter 3. Interpolation and Polynomial Approximation
e Condition (1) implies that
i) = aby{(x=x)+Gi(x—x) i (x=x)*,j = 0, 1, , n—1.
e Condition (2) = Sj(xj) = aj = f(x;) (given), j=0,1,--- ,n—1.
Define ap := Sp—1(xn) = f(xn) (given).
e Condition (3) implies that
3jr1 = Sjr1(x11) = Si(xj1)
= 3j+ big41 = %) + Gi(xir1 = )" + dilg41 = x)°

forj=0,1,---, n—2.
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Chapter 3. Interpolation and Polynomial Approximation
e Condition (1) implies that
Si(x) = aj+bj(x—xj)+cj(x—x))2 +di(x—x))®,j = 0,1, -+ ,n—1.
e Condition (2) = Sj(xj) = aj = f(x;) (given), j=0,1,--- ,n—1.
Define ap := Sp—1(xn) = f(xn) (given).
e Condition (3) implies that
3jr1 = Sjr1(x11) = Si(xj1)
= 3j+ big41 = %) + Gi(xir1 = )" + dilg41 = x)°
forj=0,1,---, n—2. Define hj = xj11—x;, j=0,1,--- ,n—1.
ajy1 = aj+ bjhj+ gh? + djh?, j=0,1,--- ,n—2.
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Chapter 3. Interpolation and Polynomial Approximation
e Condition (1) implies that
Si(x) = aj+bj(x—xj)+cj(x—x))2 +di(x—x))®,j = 0,1, -+ ,n—1.
e Condition (2) = Sj(xj) = aj = f(x;) (given), j=0,1,--- ,n—1.
Define ap := Sp—1(xn) = f(xn) (given).
e Condition (3) implies that
3jr1 = Sjr1(x11) = Si(xj1)
= 3j + bj(xit1 =) + (X1 — )% + di(xir1 — x)°
forj=0,1,---, n—2. Define hj = xj11—x;, j=0,1,--- ,n—1.
ajy1 = aj+ bjhj+ gh? + djh?, j=0,1,--- ,n—2.
Moreover,

an= f(Xn) = Sn—l(Xn) =ap_1+bp—1hp—1+cn_1 h,21_1+dn—1h?1_1 .

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 3. Interpolation and Polynomial Approximation
e Condition (1) implies that
Si(x) = aj+bj(x—xj)+cj(x—x))2 +di(x—x))®,j = 0,1, -+ ,n—1.
e Condition (2) = Sj(xj) = aj = f(x;) (given), j=0,1,--- ,n—1.
Define ap := Sp—1(xn) = f(xn) (given).
e Condition (3) implies that
3jr1 = Sjr1(X1) = Si(xj1)
= 3j + bj(xit1 =) + (X1 — )% + di(xi11 — x)°
forj=0,1,---, n—2. Define hj = xj11—x;, j=0,1,--- ,n—1.
ajy1 = aj+ bjhj+ gh? + dih?, j=0,1,--- ,n—1.
Moreover, )

an= f(Xn) = Sn—l(Xn) =ap_1+bp—1hp—1+cn_1 h,21_1+dn—1h?1_1 .
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Chapter 3. Interpolation and Polynomial Approximation
e Condition (1) implies that
Si(x) = aj+bj(x—xj)+cj(x—x))2 +di(x—x))>,j = 0,1, -+ ,n—1.
e Condition (2) = Sj(x;) = aj = f(x;) (given), j=0,1,--- ,n—1.
Define ap := Sp—1(xn) = f(xn) (given).
e Condition (3) implies that
31 = Spra(Xj41) = Si(xp1)
= 3j+ big41 = %) + Gi(xir1 = )" + dilxg41 = x)°
forj=0,1,---, n—2. Define hj = xj11—x;, j=0,1,--- ,n—1.

ajy1 = aj+ bjh; + CJ'/’IJ2 aF djhf j=0,1,--- ., n—1.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ Note that

S0 = by+ 26(x = ) + 3dh(x— )%, j=0,1,- ,n—1;
thus SJf(xj):bjforj:O,l,--- ,n—1.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ Note that

SI(¥) = by + 2Gi(x — x5) + 3d{x— %)% j= 0,1, ,n—1;

thus S/(xj) = bj for j=0,1,--- ,n— 1. Condition (4) implies
that

b_,'+1 = SJ{_H(XjJrl) = 5;(Xj+1) = bj aF 2thj aF 3djh12
forj=0,1,--- ,n—2.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ Note that

SI(¥) = by + 2Gi(x — x5) + 3d{x— %)% j= 0,1, ,n—1;

thus S/(xj) = bj for j=0,1,--- ,n— 1. Condition (4) implies
that

b_,'+1 = SJ{_H(XjJrl) = 5;(Xj+1) = bj aF 2thj aF 3djh12
for j=0,1,---,n—2. Define b, := S'(x,) = S,

n

_1(xn). Then

b, = 5,/7_1(Xn) =bp_1+ 2Cn—l(Xn_Xn—l) + 3C"n—1<xn_xn—1)2
= bp_1+2¢cp_1hp—1 + 3dn—1h?,71-
Therefore,

biy1 = bj+2¢ih;+ 3d;hf, j=0,1,---,n—1.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
o Note that

S/(x) =2¢+6di(x—x), j=0,1,---,n—1;
thus S/'(x;) = 2¢j for j=0,1,--- ,n—1.
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Chapter 3. Interpolation and Polynomial Approximation
o Note that
S/(x) =2¢+6di(x—x), j=0,1,---,n—1;
thus S;'(xj) = 2¢; for j=0,1,---,n—1. Condition (5) implies

that
2¢j+1 = Sjy1(xi+1) = 5 (Xj41) = 2¢; + 6djh;

for j=0,1,---,n— 2. Therefore,
Ci+1 = ¢+ 3djh;, j=0,1,---,n—2.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
o Note that

S/(x) =2¢+6di(x—x), j=0,1,---,n—1;
thus S;'(xj) = 2¢; for j=0,1,---,n—1. Condition (5) implies
that
2641 = Sj41(x41) = 57 (x541) = 2¢; + 6djh;
for j=0,1,--- ,n— 2. Therefore,
Ci+1 = ¢+ 3djh;, j=0,1,---,n—2.
Define ¢, := %Sg_l(x,,). Then

1
Cnh = 5(2cn—1 + 6dn—1(Xn — Xn—1)) = €n—1 + 3dn—1hn—1.

Therefore,
Cj+1:Cj+3djhj, j=0,1,---,n—1.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation

@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1
and by, ¢, satisfy

ajy1 = aj+ bjhj + th? + djhj.3 (%)
bj+l = bj = 2thj aF SC/J/’IJ2 (%)
Cir1 = CJ+3thj (* * %)

forj=0,1,--- ,n—1.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢;,d; for j = 0,1,--- ,n—1

and b, ¢, satisfy

ajy1 = aj+ bjhj + th? -+ djhj.3 (%)

bj+1 = bj =+ 2thj =+ 3djhj2 (%)
Ciy1 — G
dj = ﬁsihjj (*x %)

forj=0,1,--- ,n—1.
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Chapter 3. Interpolation and Polynomial Approximation
@ As a summary, the unknowns bj, ¢;,d; for j = 0,1,--- ,n—1
and b, ¢, satisfy
ajy1 = aj+ bjhj + gh? + d;h? (*)
bjr1 = bj + 2¢jh; + 3d;h? (%)

Cir1 — G
dj: % (*x %)
J
for j=0,1,---,n—1. Using (x» %) in (x) and (»+), we find that
forj=0,1,--- ,n—1,
Cj — Cj
djt1 = aj =+ bjhj I th2 7j+;hj th-)’
= aj+ by + 2GR,
C — C
bj+1 = bj+ 2thj+ 3 j+;)hj th?
= bj+ (¢ + Gt )hj.-
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation

@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1
and b, ¢, satisfy
2CJ+CJ+1 h2

ajt1 = aj + bjhj + (*)
bj+1 = bj+ (¢ + Cj+1)hj (x*)
dj S (oo

3h;
for j=0,1,---,n—1. Using (x» %) in (x) and (»x), we find that
forj=0,1,--- ,n—1,
aj41 = aj + bjhj + gh? + HL_I 3

3h;

= aj+ by + 29EG2,

C — C
bit1 = bj+ 2¢jhj+ 3 Héh,- L7
= bj+ (G + ¢r1)hj.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and b, ¢, satisfy

a1 = aj+ bjhy+ 22ESL R (o)

bjt1 = bj+ (¢j+ ¢jy1)h; (x+)
Cir1— G
dj = ﬁTJJ e

forj=0,1,--- ,n—1.

We note that b, d;for j=0,1,---,n—1 can be computed using
(*x) and (* * x) as long as all ¢;'s are obtained. Therefore, we

focus on solving for ¢;'s.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and b, c, satisfy

ajr = 3+ b+ 22EIELR ()

bit1 = bj+ (¢ + cs1)hj (%%)
Ci+1 =G
9= 3h; (xxx)
for j=0,1,---,n—1. Rearranging terms in (), we find that
26+ ¢ ,
bihj = (ajp1 — aj) — “2 L 9% 3€’+1hj2 for j=0,1,--- ,n—1
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Chapter 3. Interpolation and Polynomial Approximation

§3.4 Spline Interpolation

@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1
and b, c, satisfy

ajr = 3+ b+ 22EIELR ()

bjy1 = b+ (G + cr1)hj =)
Cit1 — G
d: = 2t J
d 3h; (xxs)
for j=0,1,---,n—1. Rearranging terms in (), we find that
2¢i+ ¢jiy1 4,2 .
bjhj:<aj+1—3j)—7j3j h; forj=0,1,---,n—1
thus
bj:3j+1*3j_(zcj+cj+1)hj forj=0 1, n—1, (o)
h; 3
b = 2 =ai (2641 + G2) i1 forj=—1,0,-- n—2. (o)

hjt 3
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Chapter 3. Interpolation and Polynomial Approximation

§3.4 Spline Interpolation

@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1
and b, ¢, satisfy

ajr1 = aj+ bjhj + 2g+ g1 —;CHl hJ2 (*)
b1 = bj+ (¢ + Gr1)hj (+)

j — 7C.J+] — CJ * *x *
for j=0,1,--- ,n—1. Using (=) and (o) in (x«), we find that

a2 —ait1 (2641 tgra)hipr  ap1—a (264 Gya)h g
- J J J

hj1 e hi ’
for j=0,1,---, n—2. f
. 2¢c; it1)h;
bj:"’f+1h 3 _ Cf+3Cf+1)J for j=0,1,---,n—1, (9)
j
i 4. 2¢; Ci h
bj+1 _ aj+2h aji+1 ( j+1 +31+2) JRET for j=—1,0,--- ,n— 2. (O)
j4+1
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and by, ¢, satisfy

bjt1 = bj+ (¢ + ciy1)h; (x%)
Gl — G
dj = ﬁTJJ ()

for j=0,1,--- ,n—1. Using (=) and (o) in (x«), we find that

a2 —ap1 (21 + o) -3 g+ gr)h | 3(G+ Gra)hy

hjs1 3 h; 3 3
forj=0,1,---, n—2.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and by, ¢, satisfy

bjt1 = bj+ (¢ + ciy1)h; (x%)
Gl — G
dj = ﬁTJJ ()

for j=0,1,--- ,n—1. Using (=) and (o) in (x«), we find that

ajr2— a1 (2G+ Fgi2)hi _ api—a (G426 11)h;

hj+l 3 hj 3
forj=0,1,---, n—2.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and by, ¢, satisfy

bit1 = bj+ (G + Gr1)h (*%)
Gl — G
dj = JTJJ ()
for j=0,1,--- ,n—1. Using (=) and (o) in (x«), we find that
aiy2—ap1  3r1—3a gyt cg2)hipr | (G +2¢41)h;
hi1 hj a 3 3

forj=0,1,---, n—2.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and by, ¢, satisfy

biy1 = bj+ (G + cr)h; (x*)
Gl — G
dj = JTJJ ()
for j=0,1,--- ,n—1. Using (=) and (o) in (x«), we find that
at1—a 3 —a-1 _ (2 +Grh (g-1+2¢ )hia
hj hi1 3 3

forj=1,2,---, n—1.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and by, ¢, satisfy

bjt1 = bj+ (¢ + ciy1)h; (x%)
Gl — G
dj = ﬁTJJ ()

for j=0,1,--- ,n—1. Using (=) and (o) in (x«), we find that

Qg+ gr)hy | (G-1+2¢)h1 _ a1—a  a—a-1
2 2 hj hjfl

forj=1,2,---, n—1.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and by, ¢, satisfy

3
b1 = bj+ (¢ + Gr1)hj £=)
Cit1— G
dj = ﬁTJJ ()

for j=0,1,--- ,n—1. Using (o) and (o) in (x«), we find that

3(ajr1—a) _ 3(aj—aj-1)

hi—1¢i—1 +2(hj+hj—1)cj+ hicit1 =
hj hjfl

forj=1,2,---, n—1.

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and by, ¢, satisfy

3
b1 = bj+ (¢ + Gr1)hj £=)
Cit1— G
dj = ﬁTJJ ()

for j=0,1,--- ,n—1. Using (o) and (o) in (x«), we find that

3(aj1—a)  3(a—a
hj—1¢—1+2(hj+hi1) G+ hiG1 = 3(%/:. 2 (ajh. alj U g
J J—

forj=1,2,---, n—1.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
@ As a summary, the unknowns bj, ¢, d; for j = 0,1,--- ,n—1

and by, ¢, satisfy

3
b1 = bj+ (¢ + Gr1)hj £=)
Cit1— G
dj = ﬁTJJ ()

for j=0,1,--- ,n—1. Using (o) and (o) in (x«), we find that

3@ri—a)  3(a—a-1) . .
. _ = gj
by Pt

forj=1,2,---, n—1. Hence, we have now (n+ 1) unknowns

hi—1¢i—1 +2(hj+hj—1)cj+ hici1 =

with (n— 1) equations.
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
e Natural boundary condition:

Condition ®(i) (S"(x0) = S"(x,) = 0) implies that ¢p = ¢, = 0;
thus (n — 1) unknowns with (n — 1) equations.
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Chapter 3. Interpolation and Polynomial Approximation

§3.4 Spline Interpolation

e Natural boundary condition:
Condition ®(i) (S"(x0) = S"(x,) = 0) implies that ¢p = ¢, = 0;
thus (n— 1) unknowns with (n — 1) equations. The resulting linear
system is strictly diagonally dominant; thus a unique natural spline

exists.
2(hy +ho) hy 0 e e 0 c1 g1
b1 2(hath1)  ho 0 e 0 o &
0 he  2(hs+ha) hs ®  cosos 0 ' ;
. 0 hn—a 2(hp—3+hs—4) hn—3 0 :
. 0 hp—3 2(hp—2+hn—3) hn—2 Cn—2 &n—2
@  cocee  cocoa  ooooc 0 hp—2 2(hp—1+hp—2) || cp—1 gn—1
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
e Clamped boundary condition:

Consider the clamped boundary condition ®(ii) (S'(xy) = f'(xo)
and S'(x,) = f'(xn)). Note that by = S’(xp) and b, = S'(x,) are

now treated as given. Recall that for j=0,1,--- ,n—1,
biy1 = bj+ (g + gy1)h (*+)
31— 26+ Grihy :
by = h 5 (o)

@ For j=10, (o) provides an additional equation
2h0C0 aF hoCl = 3(21’7;20) — 3b0 =: g -

0

@ For j=n—1, (o) and (xx) imply that
2hp_16p—1 + hp—16p = 3(&1,,/1—73,,71) —3by—1

n—1
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
e Clamped boundary condition:

Consider the clamped boundary condition ®(ii) (S'(xy) = f'(xo)
and S'(x,) = f'(xn)). Note that by = S’(xp) and b, = S'(x,) are

now treated as given. Recall that for j=0,1,--- ,n—1,
biy1 = bj+ (g + gy1)h (*+)
31— 26+ Grihy :
by = h 5 (o)

@ For j=10, (o) provides an additional equation
2h0C0 aF hoCl = 3(21’7;20) — 3b0 =: g -

0

@ For j=n—1, (o) and (*«) imply that
2hn—1Cn—1 + hn—lcn — M — B[bn = (Cn—l - Cn)hn—l]

n—1
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Chapter 3. Interpolation and Polynomial Approximation
§3.4 Spline Interpolation
e Clamped boundary condition:

Consider the clamped boundary condition ®(ii) (S'(xy) = f'(xo)
and S'(x,) = f'(xn)). Note that by = S’(xp) and b, = S'(x,) are

now treated as given. Recall that for j=0,1,--- ,n—1,
biy1 = bj+ (g + gy1)h (*+)
31— 26+ Grihy :
by = h 5 (o)

@ For j=10, (o) provides an additional equation
2h0C0 aF hoCl = 3(21’7;20) — 3b0 =: g -

0

@ For j=n—1, (o) and (*«) imply that
2hn—1Cn—1 + hn—lcn — M — B[bn = (Cn—l - Cn)hn—l]

n—1
which provides another addition equation

hn—1¢p—1 + 2hp_1¢5 = 3(‘377%71) —3b, =: gp.

n—1
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Chapter 3. Interpolation and Polynomial Approximation

§3.4 Spline Interpolation

Therefore, we have (n+ 1) unknowns with (n+ 1) equations. The
resulting linear system is again strictly diagonally dominant; thus a
unique clamped spline exists.

2h0  ho 0 e e 0 - &
ho  2(hi+ho) by 0 e 0 & .
0 by 2(hothy) ko o ... 2 . :
0 hp—3  2(hp_2+h,_3) hp—2 0 : :

0 hn—2 2(hp—1+hp—2) hp—1 Ch_1 gn_1
[0 0 hp_1 2h,_1 - .

Ching-hsiao Cheng #cie 17 | MA-3021



	Chapter 3. Interpolation and Polynomial Approximation



