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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

We are interested in solving systems of linear equations of the form:

ajix1 +apexe + -+ ainxn = by
a1 X1 + axpxo + -+ agpx, = b
anmX1+amxa+ -+ amxn = by

This is a system of n equations in the n unknowns, xi,xo, - - , Xp.

The elements a;; and b; are assumed to be prescribed real numbers.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

We are interested in solving systems of linear equations of the form:

ajix1 +apexe + -+ ainxn = by
a1 X1 + axpxo + -+ agpx, = b
anmX1+amxa+ -+ amxn = by

This is a system of n equations in the n unknowns, xi,xo, - - , Xp.

The elements a;; and b; are assumed to be prescribed real numbers.
We can rewrite this system of linear equations in a matrix form:

ail a2 - ain X1 by
a1 ax -+ an X2 b
dnl dp2 d°°°  apn Xn [oy;

We can denote these matrices by A, x, and b, giving the simpler
equation: Ax = b.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

Notation:
© Let A be a mx n matrix. Then

o The (i,j) entry of A is denoted by Aj, aj or A(i, ).
o The j-th row of A is denoted by A(j, :).
o The j-th column of A is denoted by A(:, ).
@ The n x n identity matrix is denoted by /, or I,x,. When the
dimension n is clear,n x n we sometimes also use / to denote

the identity matrix.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

If A and B are two matrices such that AB = [, then we say that B is

a right inverse of A and that A is a left inverse of B. For example,
1 0 0
010

10
10 a 10
[0 . 6] 0 1 {0 1}/2“, Vo, 5 € R.

1 0
1 :|:1 0:|:/2><2, Va,ﬁeR.
B

0 1

Notice that right inverse and left inverse may not unique.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

A square matrix can possess at most one right inverse.

n
Let AB= 1. Then )] bjA(:,j) = I(:, k) for all 1 < k < n. So, the
=1
columns of A form a basis for R". Therefore, the coefficients bjx
above are uniquely determined. o
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

A square matrix can possess at most one right inverse.

n
Let AB= 1. Then )] bjA(:,j) = I(:, k) for all 1 < k < n. So, the
=1
columns of A form a basis for R". Therefore, the coefficients bjx
above are uniquely determined. o

If A and B are square matrices such that AB = I, then BA = I.

Let C=BA—/+B. Then AC=ABA—Al+ AB=A—-A+I=1
Since right inverse for square matrix is at most one, B= C.
Hence, C=BA— 1+ B=BA— I+ C, thatis, BA=I. o
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

@ If a square matrix A has a right inverse B, then B is unique and
BA = AB = |. We then call B the inverse of A and say that A
is invertible or nonsingular. We denote B= A~!.

@ If Ais invertible, then the system of equations Ax = b has the
solution x = A~ 'h. If A=1 is not available, then in general, A1

should not be computed solely for the purpose of obtaining x.

© How do we get this A~1?
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

@ Let two linear systems be given, each consisting of n equations

with n unknowns:
Ax=b and Bx—=d.

If the two systems have precisely the same solutions, we call
them equivalent systems.

@ Note that A and B can be very different.

© Thus, to solve a linear system of equations, we can instead
solve any equivalent system. This simple idea is at the heart of

our numerical procedures.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

Let &; denote the i-th equation in the system Ax = b. The following
are the elementary operations which can be performed:
o Interchanging two equations in the system: & < &;;
@ Multiplying an equation by a nonzero number: \&; — &;;
@ Adding to an equation a multiple of some other equation: &+
X — &

If one system of equations is obtained from another by a finite se-

quence of elementary operations, then the two systems are equiva-

lent.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

@ An elementary matrix is defined to be an nx n matrix that arises
when an elementary operation is applied to the n x n identity
matrix.

@ The elementary operations expressed in terms of the rows of
matrix A are:
o The interchange of two rows in A: A(/,:) < A(),:);
o Multiplying one row by a nonzero constant: AA(/,:) — A(:, i);
e Adding to one row a multiple of another:

A(l, ) + AA(G, ) — A(l2).

© Each elementary row operation on A can be accomplished by
multiplying A on the left by an elementary matrix.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

100 ail a2 ais ai] a2 as
001 as1 az a3 az] asz as3
| 01 0 || a31 a3z az3 | | a21 a2 a3
100 ail aiz ais ail a2 a3
0OAXNO dg1 dg2 as3 = )\321 )\322 )\323
L 00 1 || a1 a32 as3 | | a31 as2 ass
100 ai] aiz ais ar EID) a3
010 asl ag ax |= asi as ass
L O A1 || a31 a2 a3z | [ Aa21+as1 Aase+asy Aasg+ass
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

@ If matrix A is invertible, then there exists a sequence of ele-
mentary row operations can be applied to A, reducing it to the
identity matrix /,

EnEm_1---ESEFA= 1.

@ This gives us an equation for computing the inverse of a matrix:
At =E Epn 1 BE = EpEm1 - BBy

Remark: This is not a practical method to compute A~1.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

Let A e C"*" be a square matrix. If there exists a nonzero vector
x € C" and a scalar A € C such that

Ax = \x,
then X is called an eigenvalue of A and x is called the corresponding
eigenvector of A.

Remark: Computing A and x is a major task in numerical linear
algebra.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

For an n x n real matrix A, the following properties are equivalent:

@ The inverse of A exists; that is, A is nonsingular;

@ The determinant of A is nonzero;

© The rows of A form a basis for R":

© The columns of A form a basis for R";

@ As a map from R” to R”, A is injective (one to one);

@ As a map from R” to R”, A is surjective (onto);

@ The equation Ax = 0 implies x = 0;

© For each be R", there is exactly one x € R" such that Ax = b;
© A is a product of elementary matrices;

@ 0 is not an eigenvalue of A.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

There are some easy-to-solve systems:
© Diagonal Structure

ain 0 0 0 X1 by
0 dg2 0 0 X2 b2
0 0 a3 0 x3 | = | bs
0 0 0 - am Xp b,
The solution is: (provided a; =0 for all i=1,2,---,n)
S T
x= (2, b T
d11 d22 ass ann

e If a;; = 0 for some index /, and if b; = 0 also, then x; can be any
real number. The number of solutions is infinity.

e If a; =0 and b; = 0, no solution of the system exists.

e What is the complexity of the method? n divisions.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

There are some easy-to-solve systems:
@ Lower Triangular Systems

all 0 0 000 0 X1 bl
dg1 ds2 0 0 X2 bz
a1 azy a3 0 X3 | = | bs
danl dan2 dn3 e dnn Xn bn

Some simple observations:
o If a1 =0, then we have x; = by /a;;.

e Once we have x;, we can simplify the second equation, xo =
(bg = 321X1)/322, provided that ass = 0.

Similarly, x3 = (b3 — ag1x1 — asax2)/ass, provided that aszz = 0.

In general, to find the solution to this system, we use forward
substitution (assume that a; = 0 for all /).
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

There are some easy-to-solve systems:
@ Lower Triangular Systems (cont’d)
e Algorithm of forward substitution:
input n, (a,-j), b= (bl, b2, 000 ,bn)T
forizltond(')1
Xj (bi - Zaijxj)/aﬁ
j=1
end do
output x = (x1,x2," -+ ,Xp)
o Complexity of forward substitution:
@ n divisions.
o the number of multiplications: 0 for x1, 1 for x2, 2 for x3, - - -
total =0+ 1+2+---+(n—1) ~ (n+1)n/2 = O(n?).
@ the number of subtractions: same as the number of multiplica-
tions = O(n?).
Forward substitution is an O(n?) algorithm.
e Remark: forward substitution is a sequential algorithm (not
parallel at all).
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.1 Introduction - Review on Linear Algebra

There are some easy-to-solve systems:
© Upper Triangular Systems

d11 412 4d13 - din X1 by
0 axp a3 -+ a, X2 by
0 0 a3 - a3 X3 | — | b3
0 0 0 -+ amm Xn b,

o The formal algorithm to solve for x is called backward substitu-
tion. It is also an O(n?) algorithm.

e Assume that a; = 0 for all i. Algorithm:

input n, (a;), b= (b1, b2, - ,by)"
fori=n:—-1:1do

i (bi— X ayx)/ai

X ( j:%l JX.I>/
end do

output x = (x1, X, , Xn)
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.2 LU Decomposition

LU decomposition (factorization):
Suppose that A can be factored into the product of a lower triangular
matrix L and an upper triangular matrix U:

A=LU.
Then, Ax = LUx = L(Ux). Thus, to solve the system of equations
Ax = b, it is enough to solve this problem in two stages:

Lz=0b solve for z,

Ux=~z solve for x.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.2 LU Decomposition
Example (Basic Gaussian elimination)

Let A = (afj”) = A = (a;) and bY) = b. Consider the following linear
system Ax = b:

6 -2 2 4 x1 12
12 -8 6 10 xx | | 34
3 -13 9 3 xs | | 27
-6 4 1 -—18 x4 —38

pivot row = rowl; pivot element: afj” = 6.
row2 — (12/6)xrowl — row?.

row3 — (3/6)xrowl — row3.

row4 — (—6/6)xrowl — row4.

6 -2 2 4 x1 12
_|o 42 2 x | | 10
0 -12 8 1 x3 21
0 2 3 —14 X4 —26

multipliers: 12/6, 3/6, (—6)/6
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.2 LU Decomposition
Example (Basic Gaussian elimination - cont'd)

We have the following equivalent system A(?) x = b2

6 =% 2 4 X1 12

0 42 2||x/|_| 10

0 —12 8 1 X3 B 21

0 2 3 -—-14 X4 —26
pivot row = row?2; pivot element a{2) = —4.

row3 — (—12/—4)xrow2 — row3.
rowd — (2/—4)xrow2 — row4.

6 —2 2 4 x1 12
_ |0 —4 2 x | | 10
0 0 2 =5 x3 -9
0 0 4 —13 X —21

multiplier: (—12)/(—4), 2/(—4)
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.2 LU Decomposition

Example (Basic Gaussian elimination - cont'd)

We have the following equivalent system A() x = b

6 —2 2 4 x1 12

0 -4 2 2 x | | 10

0 0 2 -5 xs | | -9

0 0 4 -13 X4 —21
@) _

pivot row = row3; pivot element aj;

row4 — (4/2)xrow3 — row4.

6 —2 2 4 X1 12
|0 42 2 x | | 10
0 0 2 -5 X3 B -9
0 0 0 -3 X4 -3
multiplier: 4/2
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.2 LU Decomposition

Example (Basic Gaussian elimination - cont'd)

Fi(n)ally, we have the following equivalent upper triangular system A x =
b\
6 —2 2 4 X1 12
0 —4 2 2 x | | 10
0 0 2 -5 X3 B -9
0 0 0 -3 X4 -3
Using the backward substitution, we have
X1 1
X2 _ —3
X3 o —2
X4 1
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.2 LU Decomposition
Example (Basic Gaussian elimination - cont’d)

Display the multipliers in an unit lower triangular matrix L = (¢;):

1 00 0

2 10 0

L:%310
1

-1 -1 21

Let U = (uj) be the final upper triangular matrix A® . Then we

have
6 —2 2 4
0 —4 2 2
U= 0 0 2 -5
0 0 0 -3

and one can check that A= LU (the Doolittle Decomposition).
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.2 LU Decomposition

Remark:

© The entire elimination process will break down if any of the
pivot elements are 0.

@ The total number of arithmetic operations:

e . n® n n=1
e multiplication and division = 3 73 ( > k(k+ 1)) ;

.. . n3 n? n n—1
e addition and subtraction = — — — + — ( > k2) :
3 2 6 k=1

Therefore, the Gauss Elimination is an O(n?) algorithm.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

A nomed vector space (V, | - ||) is a vector space V over field F

associated with a function || - | : V — R such that
Q |[x| =0 for all xe V.
@ |x| =0 if and only if x=0.
Q |A-x||=|\-|x| forall \e F and xe V.
Q [x+y| <|x|+ |y] forall x,ye V.

A function | - | satisfies D—@® is called a norm on V.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Definition
A nomed vector space (V, | - ||) is a vector space V over field F
associated with a function || - | : V — R such that

Q |[x| =0 for all xe V.

@ |x| =0 if and only if x=0.

Q |A-x||=|\-|x| forall \e F and xe V.
Q |x+yl| <|x|| + |ly| for all x,ye V.

A function | - | satisfies D—@® is called a norm on V.

Remark: The norm of a vector can be viewed as the length of that
vector. Moreover, the norm induces the concept of distance on the
vector space: the distance between two points x and y in a normed
vector space (V, | - |) is defined by d(x,y) = ||x — y|.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

O Let x= (x1,x2, -+ ,x,) | € R™
2

o The 2-norm (Euclidean norm, or £% norm): |x|> = i 5%
i=1

o The infinity norm (£*°-norm): |x|s = max; <<, |Xi
o The 1-norm (¢!-norm): ||x|; = Zn]\x,-\

i=1 1
o The p-norm (¢P-norm), 1 < p < o0, is ||x|, = (Z \x,-|p) ‘

=

T

Q Let x=(x1,x2, -+ ,xn) ', ¥y= (y1,¥2," " ,yn)TeR”. Then

n

o [x—yllz=4/> (xi—yi)?

=il

° HX_ y“,)c = maXj<i<n ‘Xi - )/i|

o Ix=yli = Sx—vi

o [x=ylo=(Sho— )

1

P
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

R?, || - is a normed vector space. Consider the ball centered at
P

Xo = 0 with radius 1 and p=1, p= 2 and p = o0 respectively.
Q p=1: [x—xof1 = [xa| + [x.
Q p=2: |x—xol2 = /X + x5

@ p=c0: |x— o = max {|xl, Jrel}.

p:l ]_ p:2’_1\ p_’(?qif].fiﬂ
=y 0 R | T =3 1
—1 \_\]__// ‘77;7]_7777J

Figure 1: The 1-ball about 0 in R? with different p
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Let A be an invertible n x n matrix. For a given norm | - [g» on R”,
define a map ||-]| : R" — R by

[l = lAx] g -

Then ||-||| is a norm on R".

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Let A be an invertible n x n matrix. For a given norm | - [g» on R”,
define a map ||-]| : R" — R by

[l = lAx] g -

Then ||-||| is a norm on R".

Definition

Let (V, | -|) be a normed vector space, and {x("}%_, be a sequence
in V. Then {x(”)}zozl is said to converge to a vector x € V), denoted

by lim x(" = x, if for every € > 0, there exists N > 0 such that
n—0o0

||x(”) — xH <e€ whenever n > N.
Sequence {x(M}” in V is said to be convergent if there exists
x € V such that lim x(" = x.
n—0o0
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Definition
Let WV, |- [v), OV, | - [lw) be normed vector spaces, A < V, and
f: A — W be a W-valued function. fis said to be continuous at

a e A if for every € > 0 there exists § > 0 such that

|f(x) — f(a)Jw <&  whenever |x—aly <dand xeA.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
Let (W, | - [lv), OV, - |w) be normed vector spaces, A < V, and

f: A — W be a W-valued function. fis said to be continuous at
a € A if for every € > 0 there exists 6 > 0 such that

|f(x) — f(a)Jw <&  whenever |x—aly <dand xeA.

Definition

|

Two norms | - || and |||-||| on a vector space V are called equivalent if
there are positive constants C; and G, such that

Glx| < lixlll < Glx| — vVxeV.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Let WV, |- [v), OV, | - [lw) be normed vector spaces, A < V, and
f: A— W be a W-valued function. fis said to be continuous at
a e A if for every € > 0 there exists § > 0 such that

|f(x) — f(a)Jw <&  whenever |x—aly <dand xeA.

Definition

|

Two norms | - || and |||-||| on a vector space V are called equivalent if
there are positive constants C; and G, such that

Glx| < lixlll < Glx| — vVxeV.

v

Remark: Equivalent norms induce the same concept of convergence
of sequences, continuity of functions, and so on. For example, if

{xW} | is a convergent sequence in (V,| - [1) and | - |2 is an

equivalent norm of || - |1, then {X(k)}ZO:1 is convergent in (V, || - [|2).
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Any two norms on a finite dimensional real (or complex) normed
vector space V are equivalent.

Proof.

N
Let {ek},’yz1 be a basis of V. For each xe€ V, we write x = k;xkek

and define a function |- ||2: V — R by

N 1
I = () bl?)*
Then -
Q |x|]2 =0 for all xe V, and |x|2 = 0 if and only if x = 0.
Q | Ax|l2 = |Al|x]2 for all Ae R (or C) and x € V.
O [Ix+yl2 < |[xll2 + |y]2 for all x,y € V becuase of the Cauchy

-Schwarz inequality. =
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Any two norms on a finite dimensional real (or complex) normed
vector space V are equivalent.

Proof (cont'd).

Therefore, | - |2 is a normed on V. It then suffices to shows that
any norm | - || on V is equivalent to | - [|2:
if Gilx| <[xl2 < Glx| and Gaix[| < [Ix]2 < Caflx]l,

G
then S < [Ixll < .
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Any two norms on a finite dimensional real (or complex) normed
vector space V are equivalent.

Proof (cont'd).

Therefore, | - |2 is a normed on V. It then suffices to shows that
any norm | - || on V is equivalent to | - [|2:
if Gilx| <[xl2 < Glx| and Gaix[| < [Ix]2 < Caflx]l,

G
then S < [Ixll < .

By the definition of norms and the Cauchy-Schwarz inequality,

N N 1
2
I < 37 I llexll < IIX\Iz(Z Hekll2) ;
k=1 k=1

N
thus letting G, = ( > Hek”2) * we have |x| < G|x|. o
k=1
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Any two norms on a finite dimensional real (or complex) normed
vector space V are equivalent.

Proof (cont'd).
Define f: (V,| - |2) — R by f(x) = |x|. Then
|F(x) = f(y)| = [Ix] = Inl| < Ix—yl < Glx -yl

which implies that f is continuous.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Any two norms on a finite dimensional real (or complex) normed
vector space V are equivalent.

Proof (cont'd).
Define f: (V,| - |2) — R by f(x) = |x|. Then

|F(x) = fW)| = [Ix] = Iyl] < Ix =yl < Clx — yl2
which implies that fis continuous. Let S"~' be the unit sphere
{xe V||x|2 = 1}. ThenS"~!is (sequentially) compact in (V, |-|2).

so f attains its minimum on S"1.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Any two norms on a finite dimensional real (or complex) normed
vector space V are equivalent.

Proof (cont'd).
Define f: (V,| - |2) — R by f(x) = |x|. Then

|F(x) = fW)| = [Ix] = Iyl] < Ix =yl < Clx — yl2
which implies that fis continuous. Let S"~' be the unit sphere
{xe V||x|2 = 1}. ThenS"~!is (sequentially) compact in (V, |-|2).
so f attains its minimum on S"~!. Suppose that Xgéi{ll f(x) = f(a)

for some a€ S"~L. Then f(a) > 0 (for otherwise a = 0),

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Any two norms on a finite dimensional real (or complex) normed
vector space V are equivalent.

Proof (cont'd).
Define f: (V,| - |2) — R by f(x) = |x|. Then

() = fW)| = [Ix] = Inl| < [x =yl < Goflx— ¥l
which implies that fis continuous. Let S"~' be the unit sphere
{xe V||x|2 = 1}. ThenS"~!is (sequentially) compact in (V, |-|2).
so f attains its minimum on S"~1. Suppose that Xgéi{ll f(x) = f(a)

for some a€ S"~1. Then f(a) > 0 (for otherwise a = 0), and

X X
X (XY f VxeV
‘ el = ) 2 7@ v
which implies that | x| > Ci|x|2 for C; = f(a). o
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Let | - |gn be a norm on R" and | - |gm be a norm on R™. Then
Al som = mae { [ Ax]zn : x € R, [x]n = 1}

defines a norm on the vector space of all m x n real matrices.

@ Clearly [|A|gngm =0, and |A|| = 0 if and only if A= 0.
Q [MA|grrrm = max {|[AAX|gm: || x]|rr = 1}

= max {|A| | Axlgn: [ xlge = 1}

— A max { [ Axlge: [xlze = 1} = M| Algngn
Q [A+ B|rrgm = max {[(A+ B)x|rm: | x|rr = 1}
< max {[|Ax|gn + | Bx|rm: | x|r» = 1}

N

< max {| Ax|gn: |x|gr = 1} + max {| Bxlgn: [x]ge = 1}
= | Allrrgm + || B|re g o
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Remark:
Q | - |rrgrm is called the matrix norm induced by vector norms

|- |re and || - |rm. Moreover,
|A|re gm = max {HAXHRm :x€R" | x|gn = 1}
< |A|gegm = max { Hf;i”}: :xe R x # 0}
@ If | an = [ Ip and |- [izm = | - g then |Alznzn is simply
denoted by |A|p,q. If in addition p = g, then |A|,q is simply
denoted by |A[p.

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Remark:
Q | - |rrgrm is called the matrix norm induced by vector norms

|- |re and || - |rm. Moreover,
|A|gn rm = max {HAXHRm :x€R" | x|gn = 1}
< |Algnrm = max { Hm‘bm :xe R x # 0}
Q@ If | an = | [p and |- i = | - I then |Alznun is simply
denoted by |A|p,q. If in addition p = g, then |A|,q is simply
denoted by |A[p.

Theorem (Additional properties of matrix norms)

Let A be a m x n matrix, and B be a n x k matrix.
Q [|Ax|rm < |A|rnrm|X|re for all xe R"  (sub-ordinance)
Q ||AB|gxgm < |Alrnrm|Bllgcgn  (sub-multiplicativity)
Q |llnxnlp=1 for all pe [1,0].
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Remark:
Q | - |rrgrm is called the matrix norm induced by vector norms

|- |re and || - |rm. Moreover,
|A|gn rm = max {HAXHRm :x€R" | x|gn = 1}
< |Algnrm = max { Hm‘bm :xe R x # 0}
Q@ If | an = | [p and |- i = | - I then |Alznun is simply
denoted by |A|p,q. If in addition p = g, then |A|,q is simply
denoted by |A[p.

Theorem (Additional properties of matrix norms)

Let A be a m x n matrix, and B be a n x k matrix.
Q [Ax|rm < [Algerm|X|re for all xe R™ ([ Ax| < [Allx])
@ |AB|gegn < [|Alrrrr|Blrire  (|AB] < |AllB])
© |/nxnllp =1 for all pe [1,c0].
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Example ([|A] )

Let A= [ay] . and 12'1};,; |ayj] :j; |ayj| for some 1 < k< m.
Q Let x = (sgn(akl),sgn(akz),“- ,sgn(ak,,)). Then ||x]|» = 1,
and |Ax| = 21 |akj|.
=

Q Let x=(x1, -+ ,xp). If [X|ooc =1, then |x;] <1 forall 1 <j<
n; thus

n n
lainxi + apXxo + - - - @jnXn| < Z || < Z EE
j=1 j=1

By the definition of matrix norms, (@) implies that Al > 3 ||
n Jj=1
while ) implies that ||A]s, < Z |akj|. Therefore,

Al = max{z Jaul, z 2z, z Janil} ;
=il

that is,
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

For each x e R",

[x]1 = max {y'x: [yl =1}, [ X0 = max{y'x: |y|1 =1}
Example (|A]1)

By the theorem above,

|

|Al1 = max |Ax|; = max max y'Ax

Ix1=1 Ixl1=1llyllo=1
= max max y'Ax= max max x' A'y
Iyleo=1[Ix1=1 [¥loo=1x]1=1

= max ||ATYHOO = HATHOM
[¥lleo=1

thus . . i
Al = max {3 |anl, ; laizl, -, . lainl }
i=1 i=1 i=1
that is, |A|1 is the largest sum of the absolute value of column
entries.

v
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices
Example (|A]2)

Let A be an m x n matrix. Then by the definition of the 2-norm,

A3 = max{HAxH% :xle = 1} = max {xTATAx: |x]2 = 1}.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Example (|A]2)
Let A be an m x n matrix. Then by the definition of the 2-norm,

A3 = max{HAxH% :xle = 1} = max {xTATAx: |x]2 = 1}.
Since ATA is an n x n symmetric matrix, A'A has n real eigenvalues
Al < A2 < --- < A\, and corresponding orthogonal unit eigenvec-

tors vy, vo, -, Vv,
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Example (|A]2)

Let A be an m x n matrix. Then by the definition of the 2-norm,
2 2. S TATAy - _

A5 = max{HAtz :xle = 1} = max {x A'Ax: |x||2 = 1}.
Since ATA is an n x n symmetric matrix, A'A has n real eigenvalues
Al < A2 < --- < A\, and corresponding orthogonal unit eigenvec-
tors vi, vo, -+, v,. Then each x€ R"” can be expressed as

X = X1V] +XoV2 + - - - XpVp (*)

n
and the condition |[x||2 = 1 is translated into > x? = 1.
=1
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Example (|A]2)
Let A be an m x n matrix. Then by the definition of the 2-norm,

A3 = max{HAxH% :xle = 1} = max {xTATAx: |x]2 = 1}.

Since ATA is an n x n symmetric matrix, A'A has n real eigenvalues
Al < A2 < --- < A\, and corresponding orthogonal unit eigenvec-
tors vi, vo, -+, v,. Then each x€ R"” can be expressed as
X = X1V] + XoVg + - - - XpVp (%)
n
and the condition |[x||2 = 1 is translated into Y] x? = 1. Using (x),
i=1
xATAX = M\ix2 + Aoxd + -+ + Apx2

n

whose maximum, under the constraint > x? = 1, is \p.
i=1
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Example (|A]2)
Let A be an m x n matrix. Then by the definition of the 2-norm,

A3 = max{HAxH% :xle = 1} = max {xTATAx: |x]2 = 1}.
Since ATA is an n x n symmetric matrix, A'A has n real eigenvalues
Al < A2 < --- < A\, and corresponding orthogonal unit eigenvec-
tors vi, vo, -+, v,. Then each x€ R"” can be expressed as

X = X1V] + XoVg + - - - XpVp (%)
n

and the condition |[x||2 = 1 is translated into Y] x? = 1. Using (x),
=1

=
x'ATAX = A\ix? + Aaxg 4 -+ - 4+ Anx2
n
whose maximum, under the constraint )] x,-2 =1, is A\,. Therefore,
i=1
|Allz = the square root of the maximum eigenvalue of ATA.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

] . Then

3 2 -1
= 2 6 4

-1 4 5)

1
Consider the matrix A = [ 1
-1

1 1 -1
1 2 1
0 1 2

which implies that the characteristic equation of ATA is

S —1
2 6-X 4 |=-XA-14\+42)=0.

—1 4 5— X
Therefore, the eigenvalues of ATAare A\ =0,7+ \ﬁ, 7 —+/7: thus

IAl2 = A/p(ATA) = A/ 7 + /7 ~ 3.106.

1
2
1
1
ATA = 1
—1

=N = N = O

0
1
2

det(ATA-\]) =

#eiE A 45 1| MA-3021
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.3 Norms on Vectors and Matrices

Example (Frobenius Norm)

Not every norm on the space of m x n real matrices is of the form

| - |lgnmm (called the natural norm).
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Example (Frobenius Norm)

Not every norm on the space of m x n real matrices is of the form
| - |lgnmm (called the natural norm). For example, the Frobenius
norm, sometimes also called the Euclidean norm (a term unfor-
tunately also used for the vector EQ—norm), is matrix norm of an
mxn matrix A defined as the square root of the sum of the absolute
squares of its elements; that is,

Ialr= (3 2 1a5) "

i=1 j=1

N
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Example (Frobenius Norm)

Not every norm on the space of m x n real matrices is of the form
| - |lgnmm (called the natural norm). For example, the Frobenius
norm, sometimes also called the Euclidean norm (a term unfor-
tunately also used for the vector EQ—norm), is matrix norm of an
mxn matrix A defined as the square root of the sum of the absolute
squares of its elements; that is,

m n 1

IAle= (32 1as?) .

i=1j=1
This is clear a norm because this is to identify the space of real mx n
matrices as the space R™ with ¢?-norm. The Frobenius norm can

also be computed by
HA“F =\ Tr(AAT) 9

where Tr(M) is the trace of (a square matrix) M.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Definition

The spectral radius of a square matrix is the largest absolute value
of its eigenvalues. The spectral radius of A is denoted by p(A).

Let A be an m x n real matrix. Then |All2 = A/p(ATA).

Remark: The ¢2-matrix norm is also called the spectral norm.

If A is a real symmetric matrix, then ||Alls = p(A).

p(A) < |A| for any real square matrix A and natural norm | - |.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Let A be a real square matrix. Then for every ¢ > O there exists a
(subordinate) matrix norm | - | such that |A| < p(A) +¢.

Proof.
Let A be an n x n real matrix. The Jordan canonical form of A is

(M) 0 0
0 Jn(ha)

A=S st

0 0 Jn,(Mp)
where S is an invertible matrix, A1, Aa, - -+, Ak are (complex) eigen-
values of A, nj + ng + -+ ng = n, and J,,(\) are Jordan blocks

of size n; x n;. o
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Proof (cont'd).

For each me N and n > 0, define

Dp(n) O - 0 n 0 - 0

- ; 5 - :

D(n) = 0 D’fz.(n) () , where Dp,(n) = O 77 ()
o o ot 0o

Then the norm defined by
1\ c—
IMIl = | D(2) S~ MSD(e),
has the property that ||A|| < p(A) + .
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Proof (cont'd).
For each me N and n > 0, define

Dp(n) O - 0 n 0 - 0

- ; 5 - :

D(n) = 0 D’fz.(n) () , where Dp,(n) = O 77 ()
o o ot 0o

Then the norm defined by
IMIl = [D(3)S ' MSDEe)],
has the property that ||A|| < p(A) + €. Define a norm on R” by
|x|gn = HD(é)S_lel' Then
|Mxgn = | D(2)S~" Mx], = HD(%S*MSD@)D@)s-1x||1
<[D(2)s D), [0(2) S 5], = Ml

which implies that [||-||| is an subordinate norm. o
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

A square matrix A is said to be convergent (to zero matrix) if for all

1 < i,j < n the (i, j)-entry of A” converges to 0 as n — 0.

|

Example
5 0 e |30 p |50
A= 11 = A° = 11 = A° = 31 = .
4 2 4 4 16 8
By induction, one can show that
Lyk
o k 1\k
g (3)

Ll =0, A is a convergent matrix.

Since lim (%)k =0 and klim e
—>00

k—o0
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

The following statements are equivalent:

O A is a convergent matrix;

@ lim |A"| = 0 for some matrix norm;
n—ao0

@ lim |A"| = 0 for all matrix norms;
n—a0

Q p(A) <1,
Q@ lim A"x =0 for all x.

n—o0

Remark:
@ (2 & (@ because all norms on a finite dimensional real vector
space are equivalent.

e D < @ < (® by writing A into Jordan canonical form.
o (D < (@ by using the Frobenius norm.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Let A be a square matrix. If p(A) < 1, then (I— A)~! exists and
(1— AL = I+A+A2+~--(:: iA").

n=0

Since p(A) < 1, 1 is not an eigenvalue of A; thus (/— A)x = 0 has

only trivial solution.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Let A be a square matrix. If p(A) < 1, then (I— A)~! exists and
(I=A) " =1+ A+ A%+ (= 3 A").

n=0

Proof
Since p(A) < 1, 1 is not an eigenvalue of A; thus (/— A)x = 0 has

only trivial solution. Moreover, if A is m x m, the for all xe R,

(I-A)S Ax=(I-A) lim 3 A"x= Jim (1— A)S Ax

N—00 n=0
_ ny n+1
- i (§ e & 000
= lim (x— AVt ) X;
N—oc0
thus (/— A)"1x = i A'x.
n=0
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.3 Norms on Vectors and Matrices

Let A be a square matrix. If p(A) < 1, then (I— A)~! exists and
(1— AL = I+A+A2+~--(:: 3 A").
n=0

Proof
Since p(A) < 1, 1 is not an eigenvalue of A; thus (/— A)x = 0 has

only trivial solution. Moreover, if A is m x m, the for all xe R,

(I-A)S Ax=(I-A) lim 3 A"x= Jim (1— A)S Ax

N—00 n=0

= lim (Z Alx — Z A”+1x>

N—00 n=0
= lim (x— ANflx) = x;
N—oc0
thus (I — A)"1x = i A"x. (Does i A"x converges for all x?) o
n=0 n=0
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

Recall that in Chapter 3 to solve a nonlinear equation f(x) = 0 we
introduce iterative method

xlkt1) = g(x(k)) for ke N U {0} with x0) given,
where f(x) = 0 < x = g(x), and the fixed-point of g is a solution
of f.
The idea of solving Ax = b using the iterative method is based on
the same concept:
@ Ax=b < x= Tx-+ c for some fixed matrix T and vector c.

Q Given x(0, x(kt1) .= Tx(K 4 ¢ for k=0,1,2,---
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

Let Ax = b be a linear system of n equations, where A = [ajj]nxn
and b e R". Then A can be decomposed into a diagonal component
D, a lower triangular part L and an upper triangular part U:

ai aln_ ai 0 0
0 a .0
A— . D= - 22
: 0
anl e e ann_ O .. O ann
0 0 e 07 0 aio e ain
a 0 : 0 0 :
L= | , u=|"
: 8 0 5 " T+ d(n—1)n
ant - ann—1) O 0o --- 0 0
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

Let Ax = b be a linear system of n equations, where A = [ajj]nxn
and b e R". Then A can be decomposed into a diagonal component
D, a lower triangular part L and an upper triangular part U:

ai aln_ ai 0 0
0 a o0
A— . D=|" 22
: 0
dnl dnnd 0 e 0 ann
0 0 000 07 0 DR ain
a0 : 0 0 ;
L _ 21 . , U _ ' . .
: : 0 5 " T+ d(n—1)n
am1 ++ apw_y O 0 -~~~ 0 0

@ Jacobi method: Ax=b< Dx= —(L+U)x+ b.
@ Gauss-Seidel method: Ax=b < (D+ L)x= —Ux+ b.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

@ The Jacobi method of solving Ax = b is the iterative method
XD =D b — (L+U)x®] =D (L+U)x¥ + Db,

and the element-based formula is thus
n

- % ap”+b
Y R Y ¥ ke Nu {0}.

1
aII
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

@ The Jacobi method of solving Ax = b is the iterative method
XD =D b — (L+U)x®] =D (L+U)x¥ + Db,

and the element-based formula is thus
n

- % ap”+b
Y R Y ¥ ke Nu {0}.

' aji
@ The Gauss-Seidel method of solving Ax = b is the iterative
method
XD = (D4 L)~ b— UxW] = —(D+ L) UxW + (D+ L) b,

and the element-based formula is thus

i—1 n
k+1 k
) 7'—21 a,-jxj(. ) '—Ei+1 a,-jxj(- )+ b;
XD = = - VkeNu {0}

]
aII
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

Example (Solving Ax = b using Jacobi and Gauss-Seidel methods)

Consider a linear system:
10x; — 1x9 4+ 2x3 + 0x4 = 6
—x1 + 11xo — 1x3 + 3x4 = 25
2x1 — 1x9 + 10x3 — 1x4 = —11
Ox1 + 3x9 — 1x3 + 8x4 = 15

or equivalently,

0 -1 2 07 [x 6
1 11 -1 3| |x 25
29 —1 10 —1| x| |-11|
0 3 -1 8] |x 15

Exact unique solution: x = (1,2, —1,1)".
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems

§5.4 lterative Methods

Example (cont'd)

We first rewrite the linear system as
B 1 2 6
X1—0+EX2 TOX3+0+E
1 1 3 25
Xg = —X — X3 — —x4 + =
2=t 0+ s — gt g
2 1 1 11
. 3 1 15
x4 =0 8X2+8X3—|—0+8
which, written in matrix form, is
- 1 2 q - 6
O % 1 O© 10
. 1 13 2
X:
X — 2 | _Tx4c= 11 11 NI 11
X3 2 1 0 4 _ L
% 10 10 10 10
4
_3 1 15
L 8 8 . L 8
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods
Example (cont'd)

If x© =(0,0,0,0)7, then the Jacobi method provides

— E —_
10 0.6000
2 2.2727
xV = 7% 4 ¢ = L .
_ 11 —1.1000
10
15 1.8750
L g

:x(2): Tx(1)+c:...

I — x|  8.0x107*

= X R T 10~3 stop! (Stopping criteria)
- .
1.00011860
a0y _ | 199976795
= XX XTR 1 _0.99982814
0.99978598
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods
Example (cont'd)

For the Gauss-Seidel method, we let x() = (0,0,0,0)T and for
k=0,1,2,--- define

g"“>:0+ ix(k) 120 ()+0+—

(+1)_i(k+1) 7() 3() 25

5 = & +0+ T +

(kD) _ 2 (k+1) 1 (k+l) 1 (k) 11
X3 — = e +0 +3 m

(k+1) _ (k+1) 1 (k+1)

’ fO—gxz —ng3 +0+§

@ Need to proceed from the top line to the bottom line:
Solving for xgkﬂ) from the first equation, and then use this solution

to solve x( +1) from the second equation, and so on.

X — XD

X5 floo

=40x107* <107 stop! x=~ x®.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

Let T be an n x n real matrix. For any x°) € R", the sequence
{x(k)}le defined by

xkH) = TxW 4 ¢, ke N U {0},
converges to the unique solution of x=Tx+c if and only if p(T) < 1.
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

Let T be an n x n real matrix. For any x9) € R", the sequence
{x(k)}le defined by

xkH) = TxW 4 ¢, ke N U {0},
converges to the unique solution of x=Tx+c if and only if p(T) < 1.

(<) Since p(T) < 1, (I— T)~! exists; thus x = Tx+ c has a unique
solution. Moreover, there exists a subordinate matrix norm |||
and a norm | - | on R” such that ||T|| < 1 and || Tx|| < || T|]| x|

for all x € R".

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

Let T be an n x n real matrix. For any x9) € R", the sequence
{x(k)}le defined by

xkH) = TxW 4 ¢, ke N U {0},
converges to the unique solution of x=Tx+c if and only if p(T) < 1.

(<) Since p(T) < 1, (I— T)~! exists; thus x = Tx+ c has a unique

solution. Moreover, there exists a subordinate matrix norm |||-||
and a norm | - || on R” such that ||T|| < 1 and | Tx| < || 7|l
for all x € R". Therefore, the mapping x — Tx+ c is a
contraction mapping, and the contraction mapping principle
implies that the sequence {x(k)}zoz1 defined by x(kt1) = Tx(k 4
c converges (to the solution of x = Tx+ c). =

v
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Chapter 5. Direct & Iterative Methods for Solving Linear Systems
§5.4 lterative Methods

Let T be an n x n real matrix. For any x9) € R", the sequence
{x(k)}le defined by

xkH) = TxW 4 ¢, ke N U {0},
converges to the unique solution of x=Tx+c if and only if p(T) < 1.

(=) Let ze R" be given, and x be the unique solution to x = Tx-+c.

Define x() = x — z. Then
XD =TxO 4 c=Tx—Tz+c=x—Tz
which further implies
X =TV = Tx— T2z4+¢c=x— T2z
By induction, xK) = x — Tkz Since lim x(K = X, we have

k—00

Jim Tkz=10. Then p(T) < 1 due to the previous theorem. o
— 00
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Corollary

Q Letx0 ¢ R" and {x(k)}le be a sequence defined by xkt1) . —
TxK 4+ ¢, k> 0. If|T| < 1 for some natural matrix norm,
then {x(k)}io:1 converges to the unique solution of x= Tx+ ¢
and

o x— xB| < [ T]¥]x — x|
_ < T o
° ||x— x .
I I unﬂ |

Q If A s strictly dlagona//y dominant, then for any xX©) € R", both

the Jacobi and Gauss-Seidel methods give sequences {x(k) }20:1

that converge to the unique solution of Ax = b.
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Successive Over Relaxation (SOR):

@ The Gauss-Seidel method:

a,,[ Za,]x Zauxk Der}

—i+1

@ Successive over-relaxation: for w > 0,

A = (=)D L[5 gl fi aipg’ 4 by .
ii j=1

Jj=i+1
2 i—1 7 fe
= a,-,-x,(- )—i—wz a,-jXJ(- ) — =(1- w)a,,x —w Z a,Jx —|—wb
= =it

= (D+wl)x® = {(17w)D7wU} XD 4 b
XK = (D wL)™ [(I—M)D—MU} XD 4 o(D+wl) b
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Gauss-Seidel:
XD — (D1 ) Lux® 4 (D+ L) Lb.

SOR:

x = (D+wl)™! [(1 —w)D—wU|x* Y 4 w(D+wl)™'h.
Different parameter w can be chosen according to the need. In
general,

@ w = 1: the Gauss-Seidel method.
@ 0 <w < 1: when Gauss-Seidel diverges.

@ w > 1: when Gauss-Seidel converges.
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Consider a linear system
4X1 =F 3X2 +0 =24
3X1 aF 4X2 — X3 =
0— Xo + 4X3 =—-24

Exact unique solution: x = (3,4, —5)T
O Let X9 = (1,1,1)T. The Gauss-Seidel method:
{0 =075 + 6
X0 = —0.75x0 +0.25 ) + 7.5
<k> _ 0.25x <k> 6
Q Let X9 = (1,1 1) The SOR with w = 1.25:
{0 = —0.25x1 — 0.9375x D 7.5
0 = —0.9375x§k> 0255 1+ 0.3125x ) + 9.375
X =0.3125xF) —0.25x — 7.5
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Q Ifaj;#0 foralli=1,2,---,n, then p(T,) = |w — 1|. This
implies the SOR method can converge only if )0 < w < 2.

@ If A is symmetric positive definite and 0 < w < 2, then the
SOR method converges for any x(0).
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§5.5 Absolute Error, Relative Error and Condition Number

@ Suppose that we want to solve the linear system Ax = b, but b
is somehow perturbed to b (this may happen when we convert
a real b to a floating-point b).

@ Then actual solution would satisfy a slightly different linear
system

~

Ax = b.
© Question: Is x very different from the desired solution x of the
original system?
@ Of course, the answer should depend on how good the matrix
Ais.
@ Let | - | be a vector norm, we consider two types of errors:
o absolute error: ||x — X|

o relative error: ||x —X| /| x|
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§5.5 Absolute Error, Relative Error and Condition Number

@ For the absolute error, we have
Ix—X| = [A"'b— A7B| = |A~ (b — B)| < |A~||b— B].

Therefore, the absolute error of x depends on two factors: the
absolute error of b and the matrix norm of A~
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§5.5 Absolute Error, Relative Error and Condition Number

@ For the absolute error, we have
|x—%| = |[A~'b— A7'b| = |[A~*(b—b)| < |[A~*]|b— b].

Therefore, the absolute error of x depends on two factors: the
absolute error of b and the matrix norm of A~

@ For the relative error, we have

|x = X| = |[A~'b— A~'b| = |[A~(b— b)|

- T b—b
<A~ [1b - B = A~ | ax| g
b—b
<A A s
that is N
|x — | <| leH H Ib— bH.
Ix] Ib]
Therefore, the relative error of x depends on two factors: the

relative error of b and |A||A7!].
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Definition

For a given subordinate matrix norm | -

|, the condition number of
the matrix A is the number

K(A) = |AJAT].

k(A) measures how good the matrix A is.

Let e > 0 and
. 1 1+€ -1 __ -2 1 —-1—¢
A_[l—s 1 }:A —° [—l—i—s 1

Then |Alw =2 +¢, |[A o = e72(2 +¢), and
2
K(A) = <2j> > 4

€ g2’
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@ For example, if ¢ = 0.01, then x(A) = 40000.

@ What does this mean?

It means that the relative error in x can be 40000 times greater
than the relative error in b.

O If k(A) is large, we say that A is ill-conditioned, otherwise A
is well-conditioned.

Q In the ill-conditioned case, the solution is very sensitive to the
small changes in the right-hand vector b (higher precision in b
may be needed).
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§5.5 Absolute Error, Relative Error and Condition Number

Consider the linear system Ax = b. Let X be a computed solution
(which is an approximation to x). We define

© Residual vector: r= b — Ax.
@ Error vector: e = x— x.

Then Ae=Ax— Ax=b— Ax=r.

Theorem (bounds involving condition number)

Let A be a square matrix, x be the solution of Ax = b, and r, e are
the residual vector and the error vector associated with a computed
solution X, respectively. Then

T N 11|
s(A) ] x| ( )Hb\l'
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Theorem (bounds involving condition number)

Let A be a square matrix, x be the solution of Ax = b, and r, e are
the residual vector and the error vector associated with a computed
solution X, respectively. Then

1 _ el Il
c@ e < T < A

Proof
Since Ae=r, e= A~ 1r; thus
lell|b] = |A~ r||Ax] < [A e [IAN]x] = &(A)|r]]x]

which further implies that H H < K(A)H.
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§5.5 Absolute Error, Relative Error and Condition Number

Theorem (bounds involving condition number)

Let A be a square matrix, x be the solution of Ax = b, and r, e are
the residual vector and the error vector associated with a computed
solution X, respectively. Then

1 _ el Il
c@ e < T < A

Proof
Since Ae =r, e = A~ 'r; thus

lelllbl = A= r | Ax] < [AZ e [IAlx] = &(A)|r]] ]
which further implies that H H < K(A)H.
On the other hand, we have

Irllixl = [ Ael| A~ ] < |Alllel|A~]]b] = «(A)]el]b]
which shows that LIl < lel =

K(A) [b] x|
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