數值分析 MA-3021

Chapter 5. Direct and Iterative Methods for Solving Linear Systems

- §5.1 Introduction Review on Linear Algebra
- §5.2 LU decomposition
- §5.3 Norms of Vectors and Matrices
- §5.4 Iterative Methods
- §5.5 Absolute Error, Relative Error and Condition Number

We are interested in solving systems of linear equations of the form:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ & \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

This is a system of *n* equations in the *n* unknowns, x_1, x_2, \dots, x_n . The elements a_{ij} and b_i are assumed to be prescribed real numbers.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

We can denote these matrices by A, x, and b, giving the simpler

We are interested in solving systems of linear equations of the form:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ & \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

This is a system of *n* equations in the *n* unknowns, x_1, x_2, \dots, x_n . The elements a_{ij} and b_i are assumed to be prescribed real numbers. We can rewrite this system of linear equations in a matrix form:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

We can denote these matrices by A, x, and b, giving the simpler equation: Ax = b.

Notation:

- Let A be a $m \times n$ matrix. Then
 - The (i,j) entry of A is denoted by A_{ij} , a_{ij} or A(i,j).
 - The *j*-th row of A is denoted by A(j,:).
 - The *j*-th column of A is denoted by A(:,j).
- ② The $n \times n$ identity matrix is denoted by I_n or $I_{n \times n}$. When the dimension n is clear, $n \times n$ we sometimes also use I to denote the identity matrix.

If A and B are two matrices such that AB = I, then we say that B is a right inverse of A and that A is a left inverse of B. For example,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \alpha & \beta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2\times 2}, \quad \forall \alpha, \beta \in \mathbb{R}.$$

$$\begin{bmatrix} 1 & 0 & \alpha \\ 0 & 1 & \beta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2\times 2}, \qquad \forall \alpha, \beta \in \mathbb{R}.$$

Notice that right inverse and left inverse may not unique.

Theorem

A square matrix can possess at most one right inverse.

Proof.

Let AB = I. Then $\sum\limits_{j=1}^n b_{jk}A(:,j) = I(:,k)$ for all $1 \leqslant k \leqslant n$. So, the columns of A form a basis for \mathbb{R}^n . Therefore, the coefficients b_{jk} above are uniquely determined.

Theorem

If A and B are square matrices such that AB = I, then BA = I.

Proof.

Let C = BA - I + B. Then AC = ABA - AI + AB = A - A + I = I. Since right inverse for square matrix is at most one, B = C. Hence, C = BA - I + B = BA - I + C; that is, BA = I.

Theorem

A square matrix can possess at most one right inverse.

Proof.

Let AB = I. Then $\sum_{j=1}^{n} b_{jk}A(:,j) = I(:,k)$ for all $1 \le k \le n$. So, the columns of A form a basis for \mathbb{R}^n . Therefore, the coefficients b_{jk} above are uniquely determined.

Theorem

If A and B are square matrices such that AB = I, then BA = I.

Proof.

Let C = BA - I + B. Then AC = ABA - AI + AB = A - A + I = I. Since right inverse for square matrix is at most one, B = C. Hence, C = BA - I + B = BA - I + C; that is, BA = I.

(□) (□) (□) (□) (□) (□) (□) (□)

- If a square matrix A has a right inverse B, then B is unique and BA = AB = I. We then call B the inverse of A and say that A is invertible or nonsingular. We denote $B = A^{-1}$.
- ② If A is invertible, then the system of equations $A\mathbf{x} = \mathbf{b}$ has the solution $\mathbf{x} = A^{-1}\mathbf{b}$. If A^{-1} is not available, then in general, A^{-1} should not be computed solely for the purpose of obtaining x.
- **3** How do we get this A^{-1} ?

• Let two linear systems be given, each consisting of *n* equations with *n* unknowns:

$$A\mathbf{x} = \mathbf{b}$$
 and $B\mathbf{x} = \mathbf{d}$.

If the two systems have precisely the same solutions, we call them equivalent systems.

- ② Note that A and B can be very different.
- Thus, to solve a linear system of equations, we can instead solve any equivalent system. This simple idea is at the heart of our numerical procedures.

Let \mathcal{E}_i denote the *i*-th equation in the system $A\mathbf{x} = \mathbf{b}$. The following are the **elementary operations** which can be performed:

- Interchanging two equations in the system: $\mathcal{E}_i \leftrightarrow \mathcal{E}_{ji}$
- Multiplying an equation by a nonzero number: $\lambda \mathcal{E}_i \to \mathcal{E}_{i}$
- Adding to an equation a multiple of some other equation: $\mathcal{E}_i + \lambda \mathcal{E}_i \rightarrow \mathcal{E}_i$.

Theorem

If one system of equations is obtained from another by a finite sequence of elementary operations, then the two systems are equivalent.

- **1** An elementary matrix is defined to be an $n \times n$ matrix that arises when an elementary operation is applied to the $n \times n$ identity matrix.
- The elementary operations expressed in terms of the rows of matrix A are:
 - The interchange of two rows in $A: A(i,:) \leftrightarrow A(j,:)$;
 - Multiplying one row by a nonzero constant: $\lambda A(i,:) \rightarrow A(:,i)$;
 - Adding to one row a multiple of another:

$$A(i,:) + \lambda A(j,:) \rightarrow A(i,:).$$

• Each elementary row operation on A can be accomplished by multiplying A on the left by an elementary matrix.

Example

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ \lambda a_{21} & \lambda a_{22} & \lambda a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \lambda & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ \lambda a_{21} + a_{31} & \lambda a_{22} + a_{32} & \lambda a_{23} + a_{33} \end{bmatrix}.$$

• If matrix A is invertible, then there exists a sequence of elementary row operations can be applied to A, reducing it to the identity matrix I,

$$E_m E_{m-1} \cdots E_2 E_1 A = I$$
.

This gives us an equation for computing the inverse of a matrix:

$$A^{-1} = E_m E_{m-1} \cdots E_2 E_1 = E_m E_{m-1} \cdots E_2 E_1 I.$$

Remark: This is not a practical method to compute A^{-1} .

Let $A \in \mathbb{C}^{n \times n}$ be a square matrix. If there exists a nonzero vector $\mathbf{x} \in \mathbb{C}^n$ and a scalar $\lambda \in \mathbb{C}$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$

then λ is called an **eigenvalue** of A and x is called the corresponding **eigenvector** of A.

Remark: Computing λ and \mathbf{x} is a major task in numerical linear algebra.

For an $n \times n$ real matrix A, the following properties are equivalent:

- $oldsymbol{0}$ The inverse of A exists; that is, A is nonsingular;
- 2 The determinant of A is nonzero;
- **3** The rows of A form a basis for \mathbb{R}^n ;
- **1** The columns of A form a basis for \mathbb{R}^n ;
- **1** As a map from \mathbb{R}^n to \mathbb{R}^n , A is injective (one to one);
- As a map from \mathbb{R}^n to \mathbb{R}^n , A is surjective (onto);
- **1** The equation Ax = 0 implies x = 0;
- **1** For each $\mathbf{b} \in \mathbb{R}^n$, there is exactly one $x \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$;
- A is a product of elementary matrices;
- 0 is not an eigenvalue of A.

There are some easy-to-solve systems:

Diagonal Structure

$$\begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}.$$

The solution is: (provided $a_{ii} \neq 0$ for all $i = 1, 2, \dots, n$)

$$\mathbf{x} = \left(\frac{b_1}{a_{11}}, \frac{b_2}{a_{22}}, \frac{b_3}{a_{33}}, \cdots, \frac{b_n}{a_{nn}}\right)^{\top}.$$

- If $a_{ii} = 0$ for some index i, and if $b_i = 0$ also, then x_i can be any real number. The number of solutions is infinity.
- If $a_{ii} = 0$ and $b_i \neq 0$, no solution of the system exists.
- What is the complexity of the method? *n* divisions.

There are some easy-to-solve systems:

2 Lower Triangular Systems

$$\begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}.$$

Some simple observations:

- If $a_{11} \neq 0$, then we have $x_1 = b_1/a_{11}$.
- Once we have x_1 , we can simplify the second equation, $x_2 = (b_2 a_{21}x_1)/a_{22}$, provided that $a_{22} \neq 0$.

Similarly, $\mathbf{x}_3=(\mathbf{b}_3-\mathbf{a}_{31}\mathbf{x}_1-\mathbf{a}_{32}\mathbf{x}_2)/\mathbf{a}_{33}$, provided that $\mathbf{a}_{33}\neq 0$.

In general, to find the solution to this system, we use forward substitution (assume that $a_{ii} \neq 0$ for all i).

There are some easy-to-solve systems:

- 2 Lower Triangular Systems (cont'd)
 - Algorithm of forward substitution:

input
$$n$$
, (a_{ij}) , $b = (b_1, b_2, \cdots, b_n)^{\top}$
for $i = 1$ to n do
 $x_i \leftarrow \left(b_i - \sum\limits_{j=1}^{i-1} a_{ij}x_j\right)/a_{ii}$

end do

output
$$x = (x_1, x_2, \cdots, x_n)^{\top}$$

- Complexity of forward substitution:
 - n divisions.
 - the number of multiplications: 0 for x_1 , 1 for x_2 , 2 for x_3 , \cdots total = $0 + 1 + 2 + \cdots + (n-1) \approx (n+1)n/2 = \mathcal{O}(n^2)$.
 - the number of subtractions: same as the number of multiplications = $\mathcal{O}(n^2)$.

Forward substitution is an $\mathcal{O}(n^2)$ algorithm.

• Remark: forward substitution is a sequential algorithm (not parallel at all).

There are some easy-to-solve systems:

1 Upper Triangular Systems

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}.$$

- The formal algorithm to solve for x is called backward substitution. It is also an $\mathcal{O}(n^2)$ algorithm.
- Assume that $a_{ii} \neq 0$ for all i. Algorithm:

input
$$n$$
, (a_{ij}) , $b = (b_1, b_2, \dots, b_n)^{\top}$
for $i = n : -1 : 1$ do
 $x_i \leftarrow \left(b_i - \sum_{j=i+1}^n a_{ij}x_j\right)/a_{ii}$

end do

output
$$x = (x_1, x_2, \cdots, x_n)^{\top}$$

LU decomposition (factorization):

Suppose that A can be factored into the product of a lower triangular matrix L and an upper triangular matrix U:

$$A = LU$$
.

Then, Ax = LUx = L(Ux). Thus, to solve the system of equations Ax = b, it is enough to solve this problem in two stages:

$$Lz = b$$
 solve for z ,
 $Ux = z$ solve for x .

Example (Basic Gaussian elimination)

Let $A^{(1)}=(a^{(1)}_{ij})=A=(a_{ij})$ and $b^{(1)}=b$. Consider the following linear system $A\mathbf{x}=\mathbf{b}$:

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 34 \\ 27 \\ -38 \end{bmatrix}.$$

pivot row = row1; pivot element: $a_{ij}^{(1)} = 6$.

$$row2 - (12/6) \times row1 \rightarrow row2.$$

$$row3 - (3/6) \times row1 \rightarrow row3.$$

$$row4 - (-6/6) \times row1 \rightarrow row4.$$

$$\implies \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 3 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ 21 \\ -26 \end{bmatrix}.$$

multipliers: 12/6, 3/6, (-6)/6

Example (Basic Gaussian elimination - cont'd)

We have the following equivalent system $A^{(2)}\mathbf{x} = \mathbf{b}^{(2)}$:

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 3 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ 21 \\ -26 \end{bmatrix}.$$

pivot row = row2; pivot element $a_{22}^{(2)} = -4$.

$$row3 - (-12/-4) \times row2 \rightarrow row3.$$

$$row4 - (2/-4) \times row2 \rightarrow row4.$$

$$\implies \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ -9 \\ -21 \end{bmatrix}.$$

multiplier:
$$(-12)/(-4)$$
, $2/(-4)$

Example (Basic Gaussian elimination - cont'd)

We have the following equivalent system $A^{(3)}\mathbf{x} = \mathbf{b}^{(3)}$:

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ -9 \\ -21 \end{bmatrix}.$$

pivot row = row3; pivot element $a_{33}^{(3)} = 2$.

$$row4 - (4/2) \times row3 \rightarrow row4$$
.

$$\implies \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ -9 \\ -3 \end{bmatrix}.$$

multiplier: 4/2

Example (Basic Gaussian elimination - cont'd)

Finally, we have the following equivalent upper triangular system $A^{(4)}x = b^{(4)}$:

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ -9 \\ -3 \end{bmatrix}.$$

Using the backward substitution, we have

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ -2 \\ 1 \end{bmatrix}.$$

Example (Basic Gaussian elimination - cont'd)

Display the multipliers in an unit lower triangular matrix $L=(\ell_{ij})$:

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ \frac{1}{2} & 3 & 1 & 0 \\ -1 & -\frac{1}{2} & 2 & 1 \end{bmatrix}.$$

Let $U=(u_{ij})$ be the final upper triangular matrix $A^{(4)}$. Then we have

$$U = \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

and one can check that A = LU (the Doolittle Decomposition).

Remark:

- The entire elimination process will break down if any of the pivot elements are 0.
- 2 The total number of arithmetic operations:
 - multiplication and division $=\frac{n^3}{3}-\frac{n}{3}$ $\left(\sum\limits_{k=1}^{n-1}k(k+1)\right)$;
 - addition and subtraction $=\frac{n^3}{3}-\frac{n^2}{2}+\frac{n}{6}$ $\left(\sum\limits_{k=1}^{n-1}k^2\right)$.

Therefore, the Gauss Elimination is an $\mathcal{O}(n^3)$ algorithm.

Definition

A **nomed vector space** $(\mathcal{V},\|\cdot\|)$ is a vector space \mathcal{V} over field \mathbb{F} associated with a function $\|\cdot\|:\mathcal{V}\to\mathbb{R}$ such that

- **1** $\|x + y\| \le \|x\| + \|y\|$ for all $x, y \in \mathcal{V}$.

A function $\|\cdot\|$ satisfies ①–④ is called a **norm** on \mathcal{V} .

Remark: The norm of a vector can be viewed as the length of that vector. Moreover, the norm induces the concept of distance on the vector space: the distance between two points \mathbf{x} and \mathbf{y} in a normed vector space $(\mathcal{V}, \|\cdot\|)$ is defined by $d(\mathbf{x}, \mathbf{y}) \equiv \|\mathbf{x} - \mathbf{y}\|$.

Definition

A **nomed vector space** $(\mathcal{V},\|\cdot\|)$ is a vector space \mathcal{V} over field \mathbb{F} associated with a function $\|\cdot\|:\mathcal{V}\to\mathbb{R}$ such that

- **③** ||x + y|| ≤ ||x|| + ||y|| for all x, y ∈ V.

A function $\|\cdot\|$ satisfies ①–④ is called a **norm** on \mathcal{V} .

Remark: The norm of a vector can be viewed as the length of that vector. Moreover, the norm induces the concept of distance on the vector space: the distance between two points \mathbf{x} and \mathbf{y} in a normed vector space $(\mathcal{V}, \|\cdot\|)$ is defined by $d(\mathbf{x}, \mathbf{y}) \equiv \|\mathbf{x} - \mathbf{y}\|$.

Example

- Let $\mathbf{x} = (x_1, x_2, \cdots, x_n)^{\top} \in \mathbb{R}^n$:
 - The 2-norm (Euclidean norm, or ℓ^2 norm): $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$
 - The infinity norm (ℓ^{∞} -norm): $\|\mathbf{x}\|_{\infty} = \max_{1 \leqslant i \leqslant n} |x_i|$
 - The 1-norm (ℓ^1 -norm): $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
 - The *p*-norm (ℓ^p -norm), $1 \leqslant p < \infty$, is $\|\mathbf{x}\|_p = \left(\sum\limits_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$
- **2** Let $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$, $\mathbf{y} = (y_1, y_2, \dots, y_n)^{\top} \in \mathbb{R}^n$. Then
 - $\| \mathbf{x} \mathbf{y} \|_2 = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
 - $\bullet \|\mathbf{x} \mathbf{y}\|_{\infty} = \max_{1 \le i \le n} |x_i y_i|$
 - $\|\mathbf{x} \mathbf{y}\|_1 = \sum_{i=1}^n |x_i y_i|$
 - $\|\mathbf{x} \mathbf{y}\|_{p} = \left(\sum_{i=1}^{n} |x_{i} y_{i}|^{p}\right)^{\frac{1}{p}}$

Example

 $(\mathbb{R}^2, \|\cdot\|_p)$ is a normed vector space. Consider the ball centered at $\mathbf{x}_0 = \mathbf{0}$ with radius 1 and p = 1, p = 2 and $p = \infty$ respectively.

1
$$p = 1$$
: $\|\mathbf{x} - \mathbf{x}_0\|_1 = |x_1| + |x_2|$.

2
$$p=2$$
: $\|\mathbf{x}-\mathbf{x}_0\|_2 = \sqrt{x_1^2+x_2^2}$.

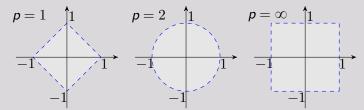


Figure 1: The 1-ball about 0 in \mathbb{R}^2 with different p

Example

Let A be an invertible $n \times n$ matrix. For a given norm $\|\cdot\|_{\mathbb{R}^n}$ on \mathbb{R}^n , define a map $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ by

$$\|\mathbf{x}\| = \|A\mathbf{x}\|_{\mathbb{R}^n}$$
.

Then $\|\cdot\|$ is a norm on \mathbb{R}^n .

Definition

Let $(\mathcal{V}, \|\cdot\|)$ be a normed vector space, and $\{x^{(n)}\}_{n=1}^{\infty}$ be a sequence in \mathcal{V} . Then $\{x^{(n)}\}_{n=1}^{\infty}$ is said to converge to a vector $x \in \mathcal{V}$, denoted by $\lim_{n \to \infty} x^{(n)} = x$, if for every $\varepsilon > 0$, there exists N > 0 such that

$$\|\mathbf{x}^{(n)} - \mathbf{x}\| < \varepsilon$$
 whenever $n \geqslant N$

Sequence $\{x^{(n)}\}_{n=1}^{\infty}$ in \mathcal{V} is said to be convergent if there exists $x \in \mathcal{V}$ such that $\lim_{n \to \infty} x^{(n)} = x$.

Example

Let A be an invertible $n \times n$ matrix. For a given norm $\|\cdot\|_{\mathbb{R}^n}$ on \mathbb{R}^n , define a map $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ by

$$\|\mathbf{x}\| = \|A\mathbf{x}\|_{\mathbb{R}^n}$$
.

Then $\|\cdot\|$ is a norm on \mathbb{R}^n .

Definition

Let $(\mathcal{V},\|\cdot\|)$ be a normed vector space, and $\{\boldsymbol{x}^{(n)}\}_{n=1}^{\infty}$ be a sequence in \mathcal{V} . Then $\{\boldsymbol{x}^{(n)}\}_{n=1}^{\infty}$ is said to converge to a vector $\boldsymbol{x}\in\mathcal{V}$, denoted by $\lim_{n\to\infty}\boldsymbol{x}^{(n)}=\boldsymbol{x}$, if for every $\varepsilon>0$, there exists N>0 such that $\|\boldsymbol{x}^{(n)}-\boldsymbol{x}\|<\varepsilon$ whenever $n\geqslant N$.

Sequence $\{\mathbf{x}^{(n)}\}_{n=1}^{\infty}$ in \mathcal{V} is said to be convergent if there exists $\mathbf{x} \in \mathcal{V}$ such that $\lim_{n \to \infty} \mathbf{x}^{(n)} = \mathbf{x}$.

Definition

Let $(\mathcal{V}, \|\cdot\|_{\mathcal{V}})$, $(\mathcal{W}, \|\cdot\|_{\mathcal{W}})$ be normed vector spaces, $A \subseteq \mathcal{V}$, and $f: A \to \mathcal{W}$ be a \mathcal{W} -valued function. f is said to be continuous at $a \in A$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\|f(\mathbf{x}) - f(\mathbf{a})\|_{\mathcal{W}} < \varepsilon$ whenever $\|\mathbf{x} - \mathbf{a}\|_{\mathcal{V}} < \delta$ and $\mathbf{x} \in A$.

$$C_1 \|\mathbf{x}\| \leqslant \|\mathbf{x}\| \leqslant C_2 \|\mathbf{x}\| \quad \forall \mathbf{x} \in \mathcal{V}.$$

Remark: Equivalent norms induce the same concept of convergence equivalent norm of $\|\cdot\|_1$, then $\{x^{(k)}\}_{k=1}^{\infty}$ is convergent in $(\mathcal{V}, \|\cdot\|_2)$.

Definition

Let $(\mathcal{V}, \|\cdot\|_{\mathcal{V}})$, $(\mathcal{W}, \|\cdot\|_{\mathcal{W}})$ be normed vector spaces, $A\subseteq\mathcal{V}$, and $f:A\to\mathcal{W}$ be a \mathcal{W} -valued function. f is said to be continuous at $a\in A$ if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$\|f(\mathbf{x}) - f(\mathbf{a})\|_{\mathcal{W}} < \varepsilon$$
 whenever $\|\mathbf{x} - \mathbf{a}\|_{\mathcal{V}} < \delta$ and $\mathbf{x} \in A$.

Definition

Two norms $\|\cdot\|$ and $\|\cdot\|$ on a vector space $\mathcal V$ are called equivalent if there are positive constants $\mathcal C_1$ and $\mathcal C_2$ such that

$$C_1 \|\mathbf{x}\| \leqslant \|\mathbf{x}\| \leqslant C_2 \|\mathbf{x}\| \qquad \forall \ \mathbf{x} \in \mathcal{V}.$$

Remark: Equivalent norms induce the same concept of convergence of sequences, continuity of functions, and so on. For example, if $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is a convergent sequence in $(\mathcal{V},\|\cdot\|_1)$ and $\|\cdot\|_2$ is an equivalent norm of $\|\cdot\|_1$, then $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is convergent in $(\mathcal{V},\|\cdot\|_2)$.

Definition

Let $(\mathcal{V}, \|\cdot\|_{\mathcal{V}})$, $(\mathcal{W}, \|\cdot\|_{\mathcal{W}})$ be normed vector spaces, $A\subseteq\mathcal{V}$, and $f:A\to\mathcal{W}$ be a \mathcal{W} -valued function. f is said to be continuous at $a\in A$ if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$\|f(\mathbf{x}) - f(\mathbf{a})\|_{\mathcal{W}} < \varepsilon$$
 whenever $\|\mathbf{x} - \mathbf{a}\|_{\mathcal{V}} < \delta$ and $\mathbf{x} \in A$.

Definition

Two norms $\|\cdot\|$ and $\|\cdot\|$ on a vector space $\mathcal V$ are called equivalent if there are positive constants $\mathcal C_1$ and $\mathcal C_2$ such that

$$C_1 \|\mathbf{x}\| \leq \|\mathbf{x}\| \leq C_2 \|\mathbf{x}\| \quad \forall \mathbf{x} \in \mathcal{V}.$$

Remark: Equivalent norms induce the same concept of convergence of sequences, continuity of functions, and so on. For example, if $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is a convergent sequence in $(\mathcal{V},\|\cdot\|_1)$ and $\|\cdot\|_2$ is an equivalent norm of $\|\cdot\|_1$, then $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ is convergent in $(\mathcal{V},\|\cdot\|_2)$.

Theorem

Any two norms on a finite dimensional real (or complex) normed vector space $\mathcal V$ are equivalent.

Proof.

Let $\{\boldsymbol{e}_k\}_{k=1}^N$ be a basis of \mathcal{V} . For each $\boldsymbol{x} \in \mathcal{V}$, we write $\boldsymbol{x} = \sum\limits_{k=1}^N x_k \boldsymbol{e}_k$ and define a function $\|\cdot\|_2 : \mathcal{V} \to \mathbb{R}$ by

$$\|\mathbf{x}\|_2 = \left(\sum_{k=1}^N |x_k|^2\right)^{\frac{1}{2}}.$$

Then

- **1** $\|\mathbf{x}\|_2 \geqslant 0$ for all $\mathbf{x} \in \mathcal{V}$, and $\|\mathbf{x}\|_2 = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- $2 \|\lambda \mathbf{x}\|_2 = |\lambda| \|\mathbf{x}\|_2 \text{ for all } \lambda \in \mathbb{R} \text{ (or } \mathbb{C}\text{) and } \mathbf{x} \in \mathcal{V}.$

-Schwarz inequality.

Theorem

Any two norms on a finite dimensional real (or complex) normed vector space $\mathcal V$ are equivalent.

Proof (cont'd).

Therefore, $\|\cdot\|_2$ is a normed on \mathcal{V} . It then suffices to shows that any norm $\|\cdot\|$ on \mathcal{V} is equivalent to $\|\cdot\|_2$:

if
$$C_1 \| \mathbf{x} \| \le \| \mathbf{x} \|_2 \le C_2 \| \mathbf{x} \|$$
 and $C_3 \| \| \mathbf{x} \| \| \le \| \mathbf{x} \|_2 \le C_4 \| \| \mathbf{x} \|$, then $\frac{C_1}{C_4} \| \mathbf{x} \| \le \| \| \mathbf{x} \| \| \le \frac{C_2}{C_3} \| \mathbf{x} \|$.

By the definition of norms and the Cauchy-Schwarz inequality,

$$\|\mathbf{x}\| \leq \sum_{k=1}^{N} |x_k| \|\mathbf{e}_k\| \leq \|\mathbf{x}\|_2 \left(\sum_{k=1}^{N} \|\mathbf{e}_k\|^2\right)^{\frac{1}{2}}$$

thus letting $C_2 = \left(\sum_{k=1}^N \|\boldsymbol{e}_k\|^2\right)^{\frac{1}{2}}$ we have $\|\boldsymbol{x}\| \leqslant C_2 \|\boldsymbol{x}\|_2$.

Theorem

Any two norms on a finite dimensional real (or complex) normed vector space $\mathcal V$ are equivalent.

Proof (cont'd).

Therefore, $\|\cdot\|_2$ is a normed on \mathcal{V} . It then suffices to shows that any norm $\|\cdot\|$ on \mathcal{V} is equivalent to $\|\cdot\|_2$:

if
$$C_1 \| \mathbf{x} \| \le \| \mathbf{x} \|_2 \le C_2 \| \mathbf{x} \|$$
 and $C_3 \| \mathbf{x} \| \le \| \mathbf{x} \|_2 \le C_4 \| \mathbf{x} \|$, then $\frac{C_1}{C_4} \| \mathbf{x} \| \le \| \mathbf{x} \| \le \frac{C_2}{C_3} \| \mathbf{x} \|$.

By the definition of norms and the Cauchy-Schwarz inequality,

$$\|\mathbf{x}\| \leq \sum_{k=1}^{N} |x_k| \|\mathbf{e}_k\| \leq \|\mathbf{x}\|_2 \Big(\sum_{k=1}^{N} \|\mathbf{e}_k\|^2\Big)^{\frac{1}{2}};$$

thus letting $C_2 = \left(\sum_{k=1}^N \|\boldsymbol{e}_k\|^2\right)^{\frac{1}{2}}$ we have $\|\boldsymbol{x}\| \leqslant C_2 \|\boldsymbol{x}\|_2$.

Theorem

Any two norms on a finite dimensional real (or complex) normed vector space $\mathcal V$ are equivalent.

Proof (cont'd).

Define $f: (\mathcal{V}, \|\cdot\|_2) \to \mathbb{R}$ by $f(\mathbf{x}) = \|\mathbf{x}\|$. Then

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\|\mathbf{x}\| - \|\mathbf{y}\|| \le \|\mathbf{x} - \mathbf{y}\| \le C_2 \|\mathbf{x} - \mathbf{y}\|_2$$

which implies that f is continuous. Let \mathbb{S}^{n-1} be the unit sphere

 $\{x \in \mathcal{V} \mid \|x\|_2 = 1\}$. Then \mathbb{S}^{n-1} is (sequentially) compact in $(\mathcal{V}, \|\cdot\|_2)$

so f attains its minimum on \mathbb{S}^{n-1} . Suppose that $\min_{\mathbf{x} \in \mathbb{S}^{n-1}} f(\mathbf{x}) = f(\mathbf{a})$

for some $\mathbf{a} \in \mathbb{S}^{n-1}$. Then $f(\mathbf{a}) > 0$ (for otherwise $\mathbf{a} = \mathbf{0}$), and

$$\left\| \frac{\mathbf{x}}{\|\mathbf{x}\|_2} \right\| = f\left(\frac{\mathbf{x}}{\|\mathbf{x}\|_2}\right) \geqslant f(\mathbf{a}) \quad \forall \mathbf{x} \in \mathcal{V}$$

which implies that $\|\mathbf{x}\| \geqslant C_1 \|\mathbf{x}\|_2$ for $C_1 = f(\mathbf{a})$

Theorem

Any two norms on a finite dimensional real (or complex) normed vector space $\mathcal V$ are equivalent.

Proof (cont'd).

Define $f: (\mathcal{V}, \|\cdot\|_2) \to \mathbb{R}$ by $f(\mathbf{x}) = \|\mathbf{x}\|$. Then

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\|\mathbf{x}\| - \|\mathbf{y}\|| \le \|\mathbf{x} - \mathbf{y}\| \le C_2 \|\mathbf{x} - \mathbf{y}\|_2$$

which implies that f is continuous. Let \mathbb{S}^{n-1} be the unit sphere $\{x \in \mathcal{V} \mid \|x\|_2 = 1\}$. Then \mathbb{S}^{n-1} is (sequentially) compact in $(\mathcal{V}, \|\cdot\|_2)$, so f attains its minimum on \mathbb{S}^{n-1} . Suppose that $\min_{x \in \mathbb{S}^{n-1}} f(x) = f(a)$

for some $\mathbf{a} \in \mathbb{S}^{n-1}$. Then $f(\mathbf{a}) > 0$ (for otherwise $\mathbf{a} = \mathbf{0}$), and

$$\left\| \frac{\mathbf{x}}{\|\mathbf{x}\|_2} \right\| = f\left(\frac{\mathbf{x}}{\|\mathbf{x}\|_2}\right) \geqslant f(\mathbf{a}) \quad \forall \mathbf{x} \in \mathcal{V}$$

which implies that $\|\mathbf{x}\| \geqslant C_1 \|\mathbf{x}\|_2$ for $C_1 = f(\mathbf{a})$

Theorem

Any two norms on a finite dimensional real (or complex) normed vector space \mathcal{V} are equivalent.

Proof (cont'd).

Define $f: (\mathcal{V}, \|\cdot\|_2) \to \mathbb{R}$ by $f(\mathbf{x}) = \|\mathbf{x}\|$. Then

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\|\mathbf{x}\| - \|\mathbf{y}\|| \le \|\mathbf{x} - \mathbf{y}\| \le C_2 \|\mathbf{x} - \mathbf{y}\|_2$$

which implies that f is continuous. Let \mathbb{S}^{n-1} be the unit sphere $\{x \in \mathcal{V} \mid ||x||_2 = 1\}$. Then \mathbb{S}^{n-1} is (sequentially) compact in $(\mathcal{V}, ||\cdot||_2)$, so f attains its minimum on \mathbb{S}^{n-1} . Suppose that $\min_{\mathbf{x} \in \mathbb{S}^{n-1}} f(\mathbf{x}) = f(\mathbf{a})$

for some $\mathbf{a} \in \mathbb{S}^{n-1}$. Then $f(\mathbf{a}) > 0$ (for otherwise $\mathbf{a} = \mathbf{0}$), and

$$\left\| \frac{\mathbf{x}}{\|\mathbf{x}\|_2} \right\| = f\left(\frac{\mathbf{x}}{\|\mathbf{x}\|_2}\right) \geqslant f(\mathbf{a}) \quad \forall \mathbf{x} \in \mathcal{V}$$

Theorem

Any two norms on a finite dimensional real (or complex) normed vector space $\mathcal V$ are equivalent.

Proof (cont'd).

Define $f: (\mathcal{V}, \|\cdot\|_2) \to \mathbb{R}$ by $f(\mathbf{x}) = \|\mathbf{x}\|$. Then

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\|\mathbf{x}\| - \|\mathbf{y}\|| \le \|\mathbf{x} - \mathbf{y}\| \le C_2 \|\mathbf{x} - \mathbf{y}\|_2$$

which implies that f is continuous. Let \mathbb{S}^{n-1} be the unit sphere $\{\mathbf{x} \in \mathcal{V} \mid \|\mathbf{x}\|_2 = 1\}$. Then \mathbb{S}^{n-1} is (sequentially) compact in $(\mathcal{V}, \|\cdot\|_2)$, so f attains its minimum on \mathbb{S}^{n-1} . Suppose that $\min_{\mathbf{x} \in \mathbb{S}^{n-1}} f(\mathbf{x}) = f(\mathbf{a})$

for some ${\pmb a} \in \mathbb{S}^{n-1}$. Then $f({\pmb a}) > 0$ (for otherwise ${\pmb a} = {\pmb 0}$), and

$$\left\|\frac{\mathbf{x}}{\|\mathbf{x}\|_2}\right\| = f\left(\frac{\mathbf{x}}{\|\mathbf{x}\|_2}\right) \geqslant f(\mathbf{a}) \qquad \forall \ \mathbf{x} \in \mathcal{V}$$

which implies that $\|\mathbf{x}\| \geqslant C_1 \|\mathbf{x}\|_2$ for $C_1 = f(\mathbf{a})$.

2000

Theorem

Let $\|\cdot\|_{\mathbb{R}^n}$ be a norm on \mathbb{R}^n and $\|\cdot\|_{\mathbb{R}^m}$ be a norm on \mathbb{R}^m . Then $\|A\|_{\mathbb{R}^n,\mathbb{R}^m} \equiv \max\left\{\|A\mathbf{x}\|_{\mathbb{R}^m}: \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_{\mathbb{R}^n} = 1\right\}$

defines a norm on the vector space of all $m \times n$ real matrices.

Proof.

- Clearly $||A||_{\mathbb{R}^n,\mathbb{R}^m} \geqslant 0$, and ||A|| = 0 if and only if A = 0.
- $$\begin{split} & \| \lambda A \|_{\mathbb{R}^{n}, \mathbb{R}^{m}} = \max \left\{ \| \lambda A \mathbf{x} \|_{\mathbb{R}^{m}} : \| \mathbf{x} \|_{\mathbb{R}^{n}} = 1 \right\} \\ & = \max \left\{ |\lambda| \| A \mathbf{x} \|_{\mathbb{R}^{m}} : \| \mathbf{x} \|_{\mathbb{R}^{n}} = 1 \right\} \\ & = |\lambda| \max \left\{ \| A \mathbf{x} \|_{\mathbb{R}^{m}} : \| \mathbf{x} \|_{\mathbb{R}^{n}} = 1 \right\} = |\lambda| \| A \|_{\mathbb{R}^{n}, \mathbb{R}^{m}}. \end{split}$$

$$\begin{aligned} & \|A + B\|_{\mathbb{R}^{n},\mathbb{R}^{m}} = \max \left\{ \|(A + B)\mathbf{x}\|_{\mathbb{R}^{m}} : \|\mathbf{x}\|_{\mathbb{R}^{n}} = 1 \right\} \\ & \leqslant \max \left\{ \|A\mathbf{x}\|_{\mathbb{R}^{m}} + \|B\mathbf{x}\|_{\mathbb{R}^{m}} : \|\mathbf{x}\|_{\mathbb{R}^{n}} = 1 \right\} \\ & \leqslant \max \left\{ \|A\mathbf{x}\|_{\mathbb{R}^{m}} : \|\mathbf{x}\|_{\mathbb{R}^{n}} = 1 \right\} + \max \left\{ \|B\mathbf{x}\|_{\mathbb{R}^{m}} : \|\mathbf{x}\|_{\mathbb{R}^{n}} = 1 \right\} \\ & = \|A\|_{\mathbb{R}^{n},\mathbb{R}^{m}} + \|B\|_{\mathbb{R}^{n},\mathbb{R}^{m}}. \end{aligned}$$

Remark:

 \bullet $\|\cdot\|_{\mathbb{R}^n,\mathbb{R}^m}$ is called the matrix norm induced by vector norms $\|\cdot\|_{\mathbb{R}^n}$ and $\|\cdot\|_{\mathbb{R}^m}$. Moreover,

$$||A||_{\mathbb{R}^{n},\mathbb{R}^{m}} \equiv \max \left\{ ||A\mathbf{x}||_{\mathbb{R}^{m}} : \mathbf{x} \in \mathbb{R}^{n}, ||\mathbf{x}||_{\mathbb{R}^{n}} = 1 \right\}$$

$$\Leftrightarrow ||A||_{\mathbb{R}^{n},\mathbb{R}^{m}} \equiv \max \left\{ \frac{||A\mathbf{x}||_{\mathbb{R}^{m}}}{||\mathbf{x}||_{\mathbb{R}^{n}}} : \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0} \right\}$$

② If $\|\cdot\|_{\mathbb{R}^n} = \|\cdot\|_p$ and $\|\cdot\|_{\mathbb{R}^m} = \|\cdot\|_q$, then $\|A\|_{\mathbb{R}^n,\mathbb{R}^m}$ is simply denoted by $\|A\|_{p,q}$. If in addition p=q, then $\|A\|_{p,q}$ is simply denoted by $\|A\|_p$.

Theorem (Additional properties of matrix norms)

Let A be a $m \times n$ matrix, and B be a $n \times k$ matrix.

Remark:

 $lackbox{0} \|\cdot\|_{\mathbb{R}^n,\mathbb{R}^m}$ is called the matrix norm induced by vector norms $\|\cdot\|_{\mathbb{R}^n}$ and $\|\cdot\|_{\mathbb{R}^m}$. Moreover,

$$||A||_{\mathbb{R}^{n},\mathbb{R}^{m}} \equiv \max \left\{ ||A\mathbf{x}||_{\mathbb{R}^{m}} : \mathbf{x} \in \mathbb{R}^{n}, ||\mathbf{x}||_{\mathbb{R}^{n}} = 1 \right\}$$

$$\Leftrightarrow ||A||_{\mathbb{R}^{n},\mathbb{R}^{m}} \equiv \max \left\{ \frac{||A\mathbf{x}||_{\mathbb{R}^{m}}}{||\mathbf{x}||_{\mathbb{R}^{n}}} : \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0} \right\}$$

② If $\|\cdot\|_{\mathbb{R}^n} = \|\cdot\|_p$ and $\|\cdot\|_{\mathbb{R}^m} = \|\cdot\|_q$, then $\|A\|_{\mathbb{R}^n,\mathbb{R}^m}$ is simply denoted by $\|A\|_{p,q}$. If in addition p=q, then $\|A\|_{p,q}$ is simply denoted by $\|A\|_p$.

Theorem (Additional properties of matrix norms)

Let A be a $m \times n$ matrix, and B be a $n \times k$ matrix.

Remark:

 $lackbox{0} \|\cdot\|_{\mathbb{R}^n,\mathbb{R}^m}$ is called the matrix norm induced by vector norms $\|\cdot\|_{\mathbb{R}^n}$ and $\|\cdot\|_{\mathbb{R}^m}$. Moreover,

$$||A||_{\mathbb{R}^{n},\mathbb{R}^{m}} \equiv \max \left\{ ||A\mathbf{x}||_{\mathbb{R}^{m}} : \mathbf{x} \in \mathbb{R}^{n}, ||\mathbf{x}||_{\mathbb{R}^{n}} = 1 \right\}$$

$$\Leftrightarrow ||A||_{\mathbb{R}^{n},\mathbb{R}^{m}} \equiv \max \left\{ \frac{||A\mathbf{x}||_{\mathbb{R}^{m}}}{||\mathbf{x}||_{\mathbb{R}^{n}}} : \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0} \right\}$$

② If $\|\cdot\|_{\mathbb{R}^n} = \|\cdot\|_p$ and $\|\cdot\|_{\mathbb{R}^m} = \|\cdot\|_q$, then $\|A\|_{\mathbb{R}^n,\mathbb{R}^m}$ is simply denoted by $\|A\|_{p,q}$. If in addition p=q, then $\|A\|_{p,q}$ is simply denoted by $\|A\|_p$.

Theorem (Additional properties of matrix norms)

Let A be a $m \times n$ matrix, and B be a $n \times k$ matrix.

3
$$||I_{n \times n}||_p = 1$$
 for all $p \in [1, \infty]$.

Example $(\|A\|_{\infty})$

Let $A = [a_{ij}]_{m \times n}$ and $\max_{1 \leqslant i \leqslant m} \sum_{j=1}^{n} |a_{ij}| = \sum_{j=1}^{n} |a_{kj}|$ for some $1 \leqslant k \leqslant m$.

- Let $\mathbf{x} = (\operatorname{sgn}(a_{k1}), \operatorname{sgn}(a_{k2}), \cdots, \operatorname{sgn}(a_{kn}))$. Then $\|\mathbf{x}\|_{\infty} = 1$, and $\|A\mathbf{x}\|_{\infty} = \sum_{i=1}^{n} |a_{kj}|$.
- 2 Let $\mathbf{x}=(x_1,\cdots,x_n)$. If $\|\mathbf{x}\|_{\infty}=1$, then $|x_j|\leqslant 1$ for all $1\leqslant j\leqslant n$; thus

$$|a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n| \leq \sum_{j=1}^n |a_{ij}| \leq \sum_{j=1}^n |a_{kj}|.$$

By the definition of matrix norms, ① implies that $\|A\|_{\infty} \geqslant \sum\limits_{j=1}^{n} |a_{kj}|$ while ② implies that $\|A\|_{\infty} \leqslant \sum\limits_{i=1}^{n} |a_{kj}|$. Therefore,

$$\|A\|_{\infty} = \max \left\{ \sum_{j=1}^{n} |a_{1j}|, \sum_{j=1}^{n} |a_{2j}|, \cdots, \sum_{j=1}^{n} |a_{nj}| \right\};$$

that is, $||A||_{\infty}$ is the largest sum of the absolute value of row entries.

Theorem

For each $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_1 = \max \left\{ \mathbf{y}^{\mathsf{T}} \mathbf{x} : \|\mathbf{y}\|_{\infty} = 1 \right\}, \ \|\mathbf{x}\|_{\infty} = \max \left\{ \mathbf{y}^{\mathsf{T}} \mathbf{x} : \|\mathbf{y}\|_1 = 1 \right\}.$$

Example ($||A||_1$)

By the theorem above,

$$\begin{split} \|A\|_1 &= \max_{\|\mathbf{x}\|_1 = 1} \|A\mathbf{x}\|_1 = \max_{\|\mathbf{x}\|_1 = 1} \max_{\|\mathbf{y}\|_{\infty} = 1} \mathbf{y}^{\top} A\mathbf{x} \\ &= \max_{\|\mathbf{y}\|_{\infty} = 1} \max_{\|\mathbf{x}\|_1 = 1} \mathbf{y}^{\top} A\mathbf{x} = \max_{\|\mathbf{y}\|_{\infty} = 1} \max_{\|\mathbf{x}\|_1 = 1} \mathbf{x}^{\top} A^{\top} \mathbf{y} \\ &= \max_{\|\mathbf{y}\|_{\infty} = 1} \|A^{\top} \mathbf{y}\|_{\infty} = \|A^{\top}\|_{\infty} \,; \end{split}$$

thus

$$||A||_1 = \max\left\{\sum_{i=1}^m |a_{i1}|, \sum_{i=1}^m |a_{i2}|, \cdots, \sum_{i=1}^m |a_{in}|\right\};$$

that is, $||A||_1$ is the largest sum of the absolute value of column entries.

Example ($||A||_2$)

Let A be an $m \times n$ matrix. Then by the definition of the 2-norm,

$$\|\boldsymbol{A}\|_2^2 = \max\left\{\|\boldsymbol{A}\boldsymbol{x}\|_2^2: \|\boldsymbol{x}\|_2 = 1\right\} = \max\left\{\boldsymbol{x}^{\!\top}\!\boldsymbol{A}^{\!\top}\!\boldsymbol{A}\boldsymbol{x}: \|\boldsymbol{x}\|_2 = 1\right\}.$$

Since $A^{\top}A$ is an $n \times n$ symmetric matrix, $A^{\top}A$ has n real eigenvalues $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$ and corresponding **orthogonal unit** eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$. Then each $\mathbf{x} \in \mathbb{R}^n$ can be expressed as

$$\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n \tag{*}$$

and the condition $\|\mathbf{x}\|_2 = 1$ is translated into $\sum_{i=1}^n x_i^2 = 1$. Using (\star) ,

$$\mathbf{x}^{\mathsf{T}} A^{\mathsf{T}} A \mathbf{x} = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$$

whose maximum, under the constraint $\sum_{i=1}^{n} x_i^2 = 1$, is λ_n . Therefore

 $\|A\|_2 =$ the square root of the maximum eigenvalue of $A^{\top}A$

Example ($||A||_2$)

Let A be an $m \times n$ matrix. Then by the definition of the 2-norm,

$$\|\mathbf{A}\|_2^2 = \max \left\{ \|\mathbf{A}\mathbf{x}\|_2^2 : \|\mathbf{x}\|_2 = 1 \right\} = \max \left\{ \mathbf{x}^{\!\top}\!\mathbf{A}^{\!\top}\!\mathbf{A}\mathbf{x} : \|\mathbf{x}\|_2 = 1 \right\}.$$

Since $A^{T}A$ is an $n \times n$ symmetric matrix, $A^{T}A$ has n real eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$ and corresponding **orthogonal unit** eigenvec-

tors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$. Then each $\mathbf{x} \in \mathbb{R}^n$ can be expressed as

$$\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_n \mathbf{v}_n \tag{*}$$

and the condition $\| {m x} \|_2 = 1$ is translated into $\sum\limits_{i=1}^n x_i^2 = 1$. Using $(\star)_i$

$$\mathbf{x}^{\mathsf{T}} A^{\mathsf{T}} A \mathbf{x} = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$$

whose maximum, under the constraint $\sum_{i=1}^{n} x_i^2 = 1$, is λ_n . Therefore,

 $\|A\|_2 =$ the square root of the maximum eigenvalue of $A^{\top}A$

Example ($||A||_2$)

Let A be an $m \times n$ matrix. Then by the definition of the 2-norm,

$$\|\mathbf{A}\|_2^2 = \max \big\{ \|\mathbf{A}\mathbf{x}\|_2^2 : \|\mathbf{x}\|_2 = 1 \big\} = \max \big\{ \mathbf{x}^{\!\top}\!\mathbf{A}^{\!\top}\!\mathbf{A}\mathbf{x} : \|\mathbf{x}\|_2 = 1 \big\}.$$

Since $A^{\top}A$ is an $n \times n$ symmetric matrix, $A^{\top}A$ has n real eigenvalues $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$ and corresponding **orthogonal unit** eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$. Then each $\mathbf{x} \in \mathbb{R}^n$ can be expressed as

$$\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_n \mathbf{v}_n \tag{*}$$

and the condition $\|\mathbf{x}\|_2 = 1$ is translated into $\sum_{i=1}^n x_i^2 = 1$. Using (\star) ,

$$\mathbf{x}^{\mathsf{T}} A^{\mathsf{T}} A \mathbf{x} = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$$

whose maximum, under the constraint $\sum_{i=1}^{n} x_i^2 = 1$, is λ_n . Therefore

 $||A||_2 =$ the square root of the maximum eigenvalue of $A^{\dagger}A$

Example ($||A||_2$)

Let A be an $m \times n$ matrix. Then by the definition of the 2-norm,

$$\|\mathbf{A}\|_2^2 = \max \big\{ \|\mathbf{A}\mathbf{x}\|_2^2 : \|\mathbf{x}\|_2 = 1 \big\} = \max \big\{ \mathbf{x}^{\!\top}\!\mathbf{A}^{\!\top}\!\mathbf{A}\mathbf{x} : \|\mathbf{x}\|_2 = 1 \big\}.$$

Since $A^{\top}A$ is an $n \times n$ symmetric matrix, $A^{\top}A$ has n real eigenvalues $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$ and corresponding **orthogonal unit** eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$. Then each $\mathbf{x} \in \mathbb{R}^n$ can be expressed as

$$\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_n \mathbf{v}_n \tag{*}$$

and the condition $\|\mathbf{x}\|_2 = 1$ is translated into $\sum_{i=1}^n x_i^2 = 1$. Using (*),

$$\mathbf{x}^{\mathsf{T}} A^{\mathsf{T}} A \mathbf{x} = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$$

whose maximum, under the constraint $\sum_{i=1}^{n} x_i^2 = 1$, is λ_n . Therefore,

 $||A||_2 =$ the square root of the maximum eigenvalue of $A^{\dagger}A$

Example ($||A||_2$)

Let A be an $m \times n$ matrix. Then by the definition of the 2-norm,

$$\|\mathbf{A}\|_2^2 = \max \left\{ \|\mathbf{A}\mathbf{x}\|_2^2 : \|\mathbf{x}\|_2 = 1 \right\} = \max \left\{ \mathbf{x}^{\!\top}\!\mathbf{A}^{\!\top}\!\mathbf{A}\mathbf{x} : \|\mathbf{x}\|_2 = 1 \right\}.$$

Since $A^{\top}A$ is an $n \times n$ symmetric matrix, $A^{\top}A$ has n real eigenvalues $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$ and corresponding **orthogonal unit** eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$. Then each $\mathbf{x} \in \mathbb{R}^n$ can be expressed as

$$\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_n \mathbf{v}_n \tag{*}$$

and the condition $\|\mathbf{x}\|_2 = 1$ is translated into $\sum_{i=1}^n x_i^2 = 1$. Using (*),

$$\mathbf{x}^{\mathsf{T}} A^{\mathsf{T}} A \mathbf{x} = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$$

whose maximum, under the constraint $\sum_{i=1}^{n} x_i^2 = 1$, is λ_n . Therefore,

 $||A||_2$ = the square root of the maximum eigenvalue of A^TA .

Example

Consider the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$. Then

$$A^{\top}A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 & -1 \\ 2 & 6 & 4 \\ -1 & 4 & 5 \end{bmatrix}$$

which implies that the characteristic equation of A^TA is

$$\det(A^{\top}A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & -1 \\ 2 & 6 - \lambda & 4 \\ -1 & 4 & 5 - \lambda \end{vmatrix} = -\lambda(\lambda^2 - 14\lambda + 42) = 0.$$

Therefore, the eigenvalues of $A^{\mathsf{T}}\!A$ are $\lambda=0,7+\sqrt{7},7-\sqrt{7}$; thus

$$||A||_2 = \sqrt{\rho(A^{\top}A)} = \sqrt{7 + \sqrt{7}} \approx 3.106.$$

Example (Frobenius Norm)

Not every norm on the space of $m \times n$ real matrices is of the form $\|\cdot\|_{\mathbb{R}^n,\mathbb{R}^m}$ (called the **natural norm**). For example, the **Frobenius norm**, sometimes also called the **Euclidean norm** (a term unfortunately also used for the vector ℓ^2 -norm), is matrix norm of an $m \times n$ matrix A defined as the square root of the sum of the absolute squares of its elements; that is,

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}.$$

This is clear a norm because this is to identify the space of real $m \times n$ matrices as the space \mathbb{R}^{mn} with ℓ^2 -norm. The Frobenius norm can also be computed by

$$||A||_F = \sqrt{\operatorname{Tr}(AA^\top)}$$

where Tr(M) is the trace of (a square matrix) M.

Example (Frobenius Norm)

Not every norm on the space of $m \times n$ real matrices is of the form $\|\cdot\|_{\mathbb{R}^n,\mathbb{R}^m}$ (called the **natural norm**). For example, the **Frobenius norm**, sometimes also called the **Euclidean norm** (a term unfortunately also used for the vector ℓ^2 -norm), is matrix norm of an $m \times n$ matrix A defined as the square root of the sum of the absolute squares of its elements; that is,

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}.$$

This is clear a norm because this is to identify the space of real $m \times n$ matrices as the space \mathbb{R}^{mn} with ℓ^2 -norm. The Frobenius norm can also be computed by

$$||A||_F = \sqrt{\operatorname{Tr}(AA^\top)}$$

where Tr(M) is the trace of (a square matrix) M.

Example (Frobenius Norm)

Not every norm on the space of $m \times n$ real matrices is of the form $\|\cdot\|_{\mathbb{R}^n,\mathbb{R}^m}$ (called the **natural norm**). For example, the **Frobenius norm**, sometimes also called the **Euclidean norm** (a term unfortunately also used for the vector ℓ^2 -norm), is matrix norm of an $m \times n$ matrix A defined as the square root of the sum of the absolute squares of its elements; that is,

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}.$$

This is clear a norm because this is to identify the space of real $m \times n$ matrices as the space \mathbb{R}^{mn} with ℓ^2 -norm. The Frobenius norm can also be computed by

$$\|A\|_F = \sqrt{\mathsf{Tr}(AA^\top)}$$
,

where Tr(M) is the trace of (a square matrix) M.

Definition

The spectral radius of a square matrix is the largest absolute value of its eigenvalues. The spectral radius of A is denoted by $\rho(A)$.

Theorem

Let A be an $m \times n$ real matrix. Then $||A||_2 = \sqrt{\rho(A^TA)}$.

Remark: The ℓ^2 -matrix norm is also called the spectral norm.

Corollary

If A is a real symmetric matrix, then $||A||_2 = \rho(A)$.

Theorem

 $ho(A) \leqslant \|A\|$ for any real square matrix A and natural norm $\|\cdot\|$.

Theorem

Let A be a real square matrix. Then for every $\varepsilon > 0$ there exists a (subordinate) matrix norm $\|\cdot\|$ such that $\|A\| \leqslant \rho(A) + \varepsilon$.

Proof.

Let A be an $n \times n$ real matrix. The Jordan canonical form of A is

$$A = S \begin{bmatrix} J_{n_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{n_2}(\lambda_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{n_k}(\lambda_k) \end{bmatrix} S^{-1},$$

where S is an invertible matrix, $\lambda_1, \lambda_2, \dots, \lambda_k$ are (complex) eigenvalues of A, $n_1 + n_2 + \dots + n_k = n$, and $J_{n_j}(\lambda_j)$ are Jordan blocks of size $n_i \times n_i$.

Proof (cont'd).

For each $m \in \mathbb{N}$ and $\eta > 0$, define

$$D(\eta) = \begin{bmatrix} D_{n_1}(\eta) & 0 & \cdots & 0 \\ 0 & D_{n_2}(\eta) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_{n_k}(\eta) \end{bmatrix}, \text{ where } D_m(\eta) = \begin{bmatrix} \eta & 0 & \cdots & 0 \\ 0 & \eta^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \eta^m \end{bmatrix}.$$

Then the norm defined by

$$\|M\| \equiv \|D(\frac{1}{\varepsilon})S^{-1}MSD(\varepsilon)\|_1$$

has the property that $||A|| \le \rho(A) + \varepsilon$. Define a norm on \mathbb{R}^n by

$$\|\mathbf{x}\|_{\mathbb{R}^n} = \|D(\frac{1}{\varepsilon})S^{-1}\mathbf{x}\|_1$$
. Then

$$\|M\mathbf{x}\|_{\mathbb{R}^{n}} = \|D(\frac{1}{\varepsilon})S^{-1}M\mathbf{x}\|_{1} = \|D(\frac{1}{\varepsilon})S^{-1}MSD(\varepsilon)D(\frac{1}{\varepsilon})S^{-1}\mathbf{x}\|_{1}$$

$$\leq \|D(\frac{1}{\varepsilon})S^{-1}MSD(\varepsilon)\|_{1}\|D(\frac{1}{\varepsilon})S^{-1}\mathbf{x}\|_{1} = \|M\|\|\mathbf{x}\|_{\mathbb{R}^{n}}$$

which implies that $\|\cdot\|$ is an subordinate norm.

Proof (cont'd).

For each $m \in \mathbb{N}$ and $\eta > 0$, define

$$D(\eta) = \begin{bmatrix} D_{n_1}(\eta) & 0 & \cdots & 0 \\ 0 & D_{n_2}(\eta) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_{n_k}(\eta) \end{bmatrix}, \text{ where } D_m(\eta) = \begin{bmatrix} \eta & 0 & \cdots & 0 \\ 0 & \eta^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \eta^m \end{bmatrix}.$$

Then the norm defined by

$$\|M\| \equiv \|D(\frac{1}{\varepsilon})S^{-1}MSD(\varepsilon)\|_1$$

has the property that $||A|| \le \rho(A) + \varepsilon$. Define a norm on \mathbb{R}^n by

$$\|\mathbf{x}\|_{\mathbb{R}^n} = \|D(\frac{1}{\varepsilon})S^{-1}\mathbf{x}\|_1$$
. Then

$$\begin{aligned} \| \mathbf{M} \mathbf{x} \|_{\mathbb{R}^n} &= \left\| D \left(\frac{1}{\varepsilon} \right) S^{-1} \mathbf{M} \mathbf{x} \right\|_1 = \left\| D \left(\frac{1}{\varepsilon} \right) S^{-1} \mathbf{M} S D(\varepsilon) D \left(\frac{1}{\varepsilon} \right) S^{-1} \mathbf{x} \right\|_1 \\ &\leqslant \left\| D \left(\frac{1}{\varepsilon} \right) S^{-1} \mathbf{M} S D(\varepsilon) \right\|_1 \left\| D \left(\frac{1}{\varepsilon} \right) S^{-1} \mathbf{x} \right\|_1 = \left\| \mathbf{M} \right\| \| \mathbf{x} \|_{\mathbb{R}^n} \end{aligned}$$

which implies that $\|\cdot\|$ is an subordinate norm.

Definition

A square matrix A is said to be convergent (to zero matrix) if for all $1 \le i, j \le n$ the (i, j)-entry of A^n converges to 0 as $n \to \infty$.

Example

$$A = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} \frac{1}{4} & 0 \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \Rightarrow A^3 = \begin{bmatrix} \frac{1}{8} & 0 \\ \frac{3}{16} & \frac{1}{8} \end{bmatrix} \Rightarrow \cdots$$

By induction, one can show that

$$A^k = \begin{bmatrix} \left(\frac{1}{2}\right)^k & 0\\ \frac{k}{2^{k+1}} & \left(\frac{1}{2}\right)^k \end{bmatrix}.$$

Since $\lim_{k\to\infty} (\frac{1}{2})^k = 0$ and $\lim_{k\to\infty} \frac{k}{2^{k+1}} = 0$, A is a convergent matrix.

Theorem

The following statements are equivalent:

- A is a convergent matrix;

- **4** $\rho(A) < 1$;
- $\lim_{n\to\infty} A^n \mathbf{x} = 0 \text{ for all } \mathbf{x}.$

Remark:

- ② ⇔ ③ because all norms on a finite dimensional real vector space are equivalent.
- $\textcircled{1} \Leftrightarrow \textcircled{4} \Leftrightarrow \textcircled{5}$ by writing A into Jordan canonical form.
- $(1) \Leftrightarrow (2)$ by using the Frobenius norm.

Lemma

Let A be a square matrix. If $\rho(A) < 1$, then $(I - A)^{-1}$ exists and

$$(I-A)^{-1} = I + A + A^2 + \cdots = \sum_{n=0}^{\infty} A^n$$
.

Proof.

Since $\rho(A) < 1$, 1 is not an eigenvalue of A; thus (I - A)x = 0 has only trivial solution. Moreover, if A is $m \times m$, the for all $x \in \mathbb{R}^m$,

$$(I-A)\sum_{n=0}^{\infty} A^{n} \mathbf{x} = (I-A)\lim_{N\to\infty} \sum_{n=0}^{N} A^{n} \mathbf{x} = \lim_{N\to\infty} (I-A)\sum_{n=0}^{N} A^{n} \mathbf{x}$$
$$= \lim_{N\to\infty} \left(\sum_{n=0}^{N} A^{n} \mathbf{x} - \sum_{n=0}^{N} A^{n+1} \mathbf{x}\right)$$
$$= \lim_{N\to\infty} \left(\mathbf{x} - A^{N+1} \mathbf{x}\right) = \mathbf{x};$$

thus $(I-A)^{-1}\mathbf{x} = \sum_{n=0}^{\infty} A^n \mathbf{x}$. (Does $\sum_{n=0}^{\infty} A^n \mathbf{x}$ converges for all \mathbf{x} ?)

Lemma

Let A be a square matrix. If $\rho(A) < 1$, then $(I - A)^{-1}$ exists and

$$(I-A)^{-1} = I + A + A^2 + \cdots = \sum_{n=0}^{\infty} A^n$$
.

Proof.

Since $\rho(A) < 1$, 1 is not an eigenvalue of A; thus $(I - A)\mathbf{x} = \mathbf{0}$ has only trivial solution. Moreover, if A is $m \times m$, the for all $\mathbf{x} \in \mathbb{R}^m$,

$$(I - A) \sum_{n=0}^{\infty} A^{n} \mathbf{x} = (I - A) \lim_{N \to \infty} \sum_{n=0}^{N} A^{n} \mathbf{x} = \lim_{N \to \infty} (I - A) \sum_{n=0}^{N} A^{n} \mathbf{x}$$
$$= \lim_{N \to \infty} \left(\sum_{n=0}^{N} A^{n} \mathbf{x} - \sum_{n=0}^{N} A^{n+1} \mathbf{x} \right)$$
$$= \lim_{N \to \infty} \left(\mathbf{x} - A^{N+1} \mathbf{x} \right) = \mathbf{x};$$

thus $(I - A)^{-1}x = \sum_{n=0}^{\infty} A^n x$. (Does $\sum_{n=0}^{\infty} A^n x$ converges for all x?)

Lemma

Let A be a square matrix. If $\rho(A) < 1$, then $(I - A)^{-1}$ exists and

$$(I-A)^{-1} = I + A + A^2 + \cdots = \sum_{n=0}^{\infty} A^n$$
.

Proof.

Since $\rho(A) < 1$, 1 is not an eigenvalue of A; thus $(I - A)\mathbf{x} = \mathbf{0}$ has only trivial solution. Moreover, if A is $m \times m$, the for all $\mathbf{x} \in \mathbb{R}^m$,

$$(I-A)\sum_{n=0}^{\infty} A^{n} \mathbf{x} = (I-A)\lim_{N\to\infty} \sum_{n=0}^{N} A^{n} \mathbf{x} = \lim_{N\to\infty} (I-A)\sum_{n=0}^{N} A^{n} \mathbf{x}$$
$$= \lim_{N\to\infty} \left(\sum_{n=0}^{N} A^{n} \mathbf{x} - \sum_{n=0}^{N} A^{n+1} \mathbf{x}\right)$$
$$= \lim_{N\to\infty} \left(\mathbf{x} - A^{N+1} \mathbf{x}\right) = \mathbf{x};$$

thus $(I-A)^{-1}\mathbf{x} = \sum_{n=0}^{\infty} A^n \mathbf{x}$. (Does $\sum_{n=0}^{\infty} A^n \mathbf{x}$ converges for all \mathbf{x} ?)

Recall that in Chapter 3 to solve a nonlinear equation f(x) = 0 we introduce iterative method

$$\mathbf{x}^{(k+1)} = \mathbf{g}\big(\mathbf{x}^{(k)}\big) \quad \text{for } k \in \mathbb{N} \cup \{0\} \text{ with } \mathbf{x}^{(0)} \text{ given}\,,$$

where $f(x) = 0 \Leftrightarrow x = g(x)$, and the fixed-point of g is a solution of f.

The idea of solving Ax = b using the iterative method is based on the same concept:

- **1** $Ax = b \Leftrightarrow x = Tx + c$ for some fixed matrix T and vector c.
- ② Given $\mathbf{x}^{(0)}$, $\mathbf{x}^{(k+1)} := T\mathbf{x}^{(k)} + \mathbf{c}$ for $k = 0, 1, 2, \cdots$

Let $A\mathbf{x} = \mathbf{b}$ be a linear system of n equations, where $A = [a_{ij}]_{n \times n}$ and $\boldsymbol{b} \in \mathbb{R}^n$. Then A can be decomposed into a diagonal component D, a lower triangular part L and an upper triangular part U:

$$A = \begin{bmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & a_{nn} \end{bmatrix}, \quad D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix}.$$

$$L = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ a_{21} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n(n-1)} & 0 \end{bmatrix}, \quad U = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{(n-1)n} \\ 0 & \cdots & 0 & 0 \end{bmatrix}.$$

- 1 Jacobi method: $Ax = b \Leftrightarrow Dx = -(L+U)x + b$.
- Gauss-Seidel method: $A\mathbf{x} = \mathbf{b} \Leftrightarrow (D+L)\mathbf{x} = -U\mathbf{x} + \mathbf{b}$.

Let $A\mathbf{x} = \mathbf{b}$ be a linear system of n equations, where $A = [a_{ij}]_{n \times n}$ and $\boldsymbol{b} \in \mathbb{R}^n$. Then A can be decomposed into a diagonal component D, a lower triangular part L and an upper triangular part U:

$$A = \begin{bmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & a_{nn} \end{bmatrix}, \quad D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix}.$$

$$L = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ a_{21} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n(n-1)} & 0 \end{bmatrix}, \quad U = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{(n-1)n} \\ 0 & \cdots & 0 & 0 \end{bmatrix}.$$

- **1** Jacobi method: $A\mathbf{x} = \mathbf{b} \Leftrightarrow D\mathbf{x} = -(L+U)\mathbf{x} + \mathbf{b}$.
- **2** Gauss-Seidel method: $A\mathbf{x} = \mathbf{b} \Leftrightarrow (D+L)\mathbf{x} = -U\mathbf{x} + \mathbf{b}$.

① The Jacobi method of solving Ax = b is the iterative method

$${\pmb x}^{(k+1)} \! = \! D^{-1} \big[{\pmb b} - (L\! +\! U) {\pmb x}^{(k)} \big] \! = \! - D^{-1} (L\! +\! U) {\pmb x}^{(k)} + D^{-1} {\pmb b} \, ,$$

and the element-based formula is thus

$$x_{i}^{(k+1)} = \frac{-\sum_{j=1, j \neq i}^{n} a_{ij} x_{j}^{(k)} + b_{i}}{a_{ii}} \quad \forall k \in \mathbb{N} \cup \{0\}.$$

② The Gauss-Seidel method of solving Ax = b is the iterative method

$$\mathbf{x}^{(k+1)} = (D+L)^{-1} [\mathbf{b} - U\mathbf{x}^{(k)}] = -(D+L)^{-1} U\mathbf{x}^{(k)} + (D+L)^{-1} \mathbf{b},$$
 and the element-based formula is thus

$$x_i^{(k+1)} = \frac{-\sum\limits_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum\limits_{j=i+1}^{n} a_{ij} x_j^{(k)} + b_i}{a_{ii}} \quad \forall \ k \in \mathbb{N} \cup \{0\}.$$

① The Jacobi method of solving Ax = b is the iterative method

$$\mathbf{x}^{(k+1)} \! = \! D^{-1} \big[\mathbf{b} - (L\! +\! U) \mathbf{x}^{(k)} \big] \! = \! - D^{-1} (L\! +\! U) \mathbf{x}^{(k)} + D^{-1} \mathbf{b} \, ,$$

and the element-based formula is thus

$$x_{i}^{(k+1)} = \frac{-\sum_{j=1, j \neq i}^{n} a_{ij} x_{j}^{(k)} + b_{i}}{a_{ii}} \quad \forall \ k \in \mathbb{N} \cup \{0\}.$$

2 The Gauss-Seidel method of solving Ax = b is the iterative method

$$\mathbf{x}^{(k+1)} = (D+L)^{-1} [\mathbf{b} - U\mathbf{x}^{(k)}] = -(D+L)^{-1} U\mathbf{x}^{(k)} + (D+L)^{-1} \mathbf{b},$$

and the element-based formula is thus

$$x_i^{(k+1)} = \frac{-\sum\limits_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum\limits_{j=i+1}^{n} a_{ij} x_j^{(k)} + b_i}{a_{ii}} \quad \forall \ k \in \mathbb{N} \cup \{0\}.$$

Example (Solving Ax = b using Jacobi and Gauss-Seidel methods)

Consider a linear system:

$$\begin{cases}
10x_1 - 1x_2 + 2x_3 + 0x_4 = 6 \\
-x_1 + 11x_2 - 1x_3 + 3x_4 = 25 \\
2x_1 - 1x_2 + 10x_3 - 1x_4 = -11 \\
0x_1 + 3x_2 - 1x_3 + 8x_4 = 15
\end{cases}$$

or equivalently,

$$\begin{bmatrix} 10 & -1 & 2 & 0 \\ -1 & 11 & -1 & 3 \\ 2 & -1 & 10 & -1 \\ 0 & 3 & -1 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 25 \\ -11 \\ 15 \end{bmatrix}.$$

Exact unique solution: $\mathbf{x} = (1, 2, -1, 1)^{\top}$.

Example (cont'd)

We first rewrite the linear system as

$$x_1 = 0 + \frac{1}{10}x_2 - \frac{2}{10}x_3 + 0 + \frac{6}{10}$$

$$x_2 = \frac{1}{11}x_1 + 0 + \frac{1}{11}x_3 - \frac{3}{11}x_4 + \frac{25}{11}$$

$$x_3 = -\frac{2}{10}x_1 + \frac{1}{10}x_2 + 0 + \frac{1}{10}x_4 - \frac{11}{10}$$

$$x_4 = 0 - \frac{3}{8}x_2 + \frac{1}{8}x_3 + 0 + \frac{15}{8}$$

which, written in matrix form, is

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = T\mathbf{x} + \mathbf{c} \equiv \begin{bmatrix} 0 & \frac{1}{10} & -\frac{2}{10} & 0 \\ \frac{1}{11} & 0 & \frac{1}{11} & -\frac{3}{11} \\ -\frac{2}{10} & \frac{1}{10} & 0 & \frac{1}{10} \\ 0 & -\frac{3}{8} & \frac{1}{8} & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{6}{10} \\ \frac{25}{11} \\ -\frac{11}{10} \\ \frac{15}{8} \end{bmatrix}.$$

Example (cont'd)

If $\mathbf{x}^{(0)} = (0,0,0,0)^{\mathsf{T}}$, then the Jacobi method provides

$$\mathbf{x}^{(1)} = T\mathbf{x}^{(0)} + \mathbf{c} = \begin{bmatrix} \frac{6}{10} \\ \frac{25}{11} \\ -\frac{11}{10} \\ \frac{15}{8} \end{bmatrix} = \begin{bmatrix} 0.6000 \\ 2.2727 \\ -1.1000 \\ 1.8750 \end{bmatrix}.$$

$$\Rightarrow \mathbf{x}^{(2)} = T\mathbf{x}^{(1)} + \mathbf{c} \Rightarrow \cdots$$

$$\Rightarrow \frac{\| \mathbf{\textit{x}}^{(10)} - \mathbf{\textit{x}}^{(9)} \|_{\infty}}{\| \mathbf{\textit{x}}^{(10)} \|_{\infty}} \approx \frac{8.0 \times 10^{-4}}{1.9998} < 10^{-3} \quad \text{stop! (Stopping criteria)}$$

$$\Rightarrow \mathbf{x} \approx \mathbf{x}^{(10)} \approx \begin{bmatrix} 1.00011860 \\ 1.99976795 \\ -0.99982814 \\ 0.99978598 \end{bmatrix}.$$

Example (cont'd)

For the Gauss-Seidel method, we let $\mathbf{x}^{(0)} = (0,0,0,0)^{\top}$ and for $k=0,1,2,\cdots$ define

$$\begin{split} &x_1^{(k+1)} = 0 + \frac{1}{10}x_2^{(k)} - \frac{2}{10}x_3^{(k)} + 0 + \frac{6}{10} \\ &x_2^{(k+1)} = \frac{1}{11}x_1^{(k+1)} + 0 + \frac{1}{11}x_3^{(k)} - \frac{3}{11}x_4^{(k)} + \frac{25}{11} \\ &x_3^{(k+1)} = -\frac{2}{10}x_1^{(k+1)} + \frac{1}{10}x_2^{(k+1)} + 0 + \frac{1}{10}x_4^{(k)} - \frac{11}{10} \\ &x_4^{(k+1)} = 0 - \frac{3}{8}x_2^{(k+1)} + \frac{1}{8}x_3^{(k+1)} + 0 + \frac{15}{8} \end{split}$$

• Need to proceed from the top line to the bottom line: Solving for $x_1^{(k+1)}$ from the first equation, and then use this solution to solve $x_2^{(k+1)}$ from the second equation, and so on.

$$\Rightarrow \frac{\| \mathbf{x}^{(5)} - \mathbf{x}^{(4)} \|_{\infty}}{\| \mathbf{x}^{(5)} \|_{\infty}} = 4.0 \times 10^{-4} < 10^{-3} \quad \text{stop!} \quad \mathbf{x} \approx \mathbf{x}^{(5)}.$$

Theorem

Let T be an $n \times n$ real matrix. For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by

$$\mathbf{x}^{(k+1)} := T\mathbf{x}^{(k)} + \mathbf{c}, \quad k \in \mathbb{N} \cup \{0\},$$

converges to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ if and only if $\rho(T) < 1$.

Proof.

(\Leftarrow) Since $\rho(T) < 1$, $(I-T)^{-1}$ exists; thus $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ has a unique solution. Moreover, there exists a subordinate matrix norm $\|\cdot\|$ and a norm $\|\cdot\|$ on \mathbb{R}^n such that $\|T\| < 1$ and $\|T\mathbf{x}\| \leq \|T\| \|\mathbf{x}\|$ for all $x \in \mathbb{R}^n$. Therefore, the mapping $\mathbf{x} \mapsto T\mathbf{x} + \mathbf{c}$ is a contraction mapping, and the contraction mapping principle implies that the sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by $\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)} + \mathbf{c}$ converges (to the solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$).

Theorem

Let T be an $n \times n$ real matrix. For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by

$$\mathbf{x}^{(k+1)} := T\mathbf{x}^{(k)} + \mathbf{c}, \quad k \in \mathbb{N} \cup \{0\},$$

converges to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ if and only if $\rho(T) < 1$.

Proof.

(\Leftarrow) Since $\rho(T) < 1$, $(I-T)^{-1}$ exists; thus $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ has a unique solution. Moreover, there exists a subordinate matrix norm $\|\cdot\|$ and a norm $\|\cdot\|$ on \mathbb{R}^n such that $\|T\| < 1$ and $\|T\mathbf{x}\| \leq \|T\| \|\mathbf{x}\|$ for all $x \in \mathbb{R}^n$. Therefore, the mapping $\mathbf{x} \mapsto T\mathbf{x} + \mathbf{c}$ is a contraction mapping, and the contraction mapping principle implies that the sequence $\{x^{(k)}\}_{k=1}^{\infty}$ defined by $x^{(k+1)} = Tx^{(k)} + \mathbf{c}$ converges (to the solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$).

Theorem

Let T be an $n \times n$ real matrix. For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by

$$\mathbf{x}^{(k+1)} := T\mathbf{x}^{(k)} + \mathbf{c}, \quad k \in \mathbb{N} \cup \{0\},$$

converges to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ if and only if $\rho(T) < 1$.

Proof.

(\Leftarrow) Since $\rho(T) < 1$, $(I-T)^{-1}$ exists; thus $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ has a unique solution. Moreover, there exists a subordinate matrix norm $\|\cdot\|$ and a norm $\|\cdot\|$ on \mathbb{R}^n such that $\||T\|| < 1$ and $\|T\mathbf{x}\| \leqslant \||T\|| \|\mathbf{x}\|$ for all $x \in \mathbb{R}^n$. Therefore, the mapping $\mathbf{x} \mapsto T\mathbf{x} + \mathbf{c}$ is a contraction mapping, and the contraction mapping principle implies that the sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by $\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)} + \mathbf{c}$ converges (to the solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$).

Theorem

Let T be an $n \times n$ real matrix. For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ defined by

$$\mathbf{x}^{(k+1)} := T\mathbf{x}^{(k)} + \mathbf{c}, \quad k \in \mathbb{N} \cup \{0\},$$

converges to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ if and only if $\rho(T) < 1$.

Proof.

(⇒) Let $z \in \mathbb{R}^n$ be given, and x be the unique solution to x = Tx + c. Define $x^{(0)} = x - z$. Then

$$\mathbf{x}^{(1)} = T\mathbf{x}^{(0)} + \mathbf{c} = T\mathbf{x} - T\mathbf{z} + \mathbf{c} = \mathbf{x} - T\mathbf{z}$$

which further implies

$$\mathbf{x}^{(2)} = T\mathbf{x}^{(1)} + \mathbf{c} = T\mathbf{x} - T^2\mathbf{z} + \mathbf{c} = \mathbf{x} - T^2\mathbf{z}.$$

By induction, $\mathbf{x}^{(k)} = \mathbf{x} - T^k \mathbf{z}$. Since $\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{x}$, we have

 $\lim_{k\to\infty}T^k\mathbf{z}=\mathbf{0}$. Then $\rho(T)<1$ due to the previous theorem. \square

Corollary

- Let $\mathbf{x}^{(0)} \in \mathbb{R}^n$, and $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ be a sequence defined by $\mathbf{x}^{(k+1)} := T\mathbf{x}^{(k)} + \mathbf{c}$, $k \geq 0$. If $\|T\| < 1$ for some natural matrix norm, then $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ converges to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ and
 - $\|\mathbf{x} \mathbf{x}^{(k)}\| \le \|T\|^k \|\mathbf{x} \mathbf{x}^{(0)}\|.$
 - $\|\mathbf{x} \mathbf{x}^{(k)}\| \le \frac{\|T\|^k}{1 \|T\|} \|\mathbf{x}^{(1)} \mathbf{x}^{(0)}\|.$
- ② If A is strictly diagonally dominant, then for any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, both the Jacobi and Gauss-Seidel methods give sequences $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ that converge to the unique solution of $A\mathbf{x} = \mathbf{b}$.

Successive Over Relaxation (SOR):

The Gauss-Seidel method:

$$x_i^{(k)} = \frac{1}{a_{ii}} \Big[-\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} + b_i \Big].$$

2 Successive over-relaxation: for $\omega > 0$,

$$\begin{aligned} x_i^{(k)} &= (1-\omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[-\sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^n a_{ij}x_j^{(k-1)} + b_i \right]. \\ \Leftrightarrow a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} &= (1-\omega)a_{ii}x_i^{(k-1)} - \omega \sum_{j=i+1}^n a_{ij}x_j^{(k-1)} + \omega b_i \\ \Leftrightarrow (D+\omega L)\mathbf{x}^{(k)} &= \left[(1-\omega)D - \omega U \right]\mathbf{x}^{(k-1)} + \omega \mathbf{b} \\ \Leftrightarrow \mathbf{x}^{(k)} &= (D+\omega L)^{-1} \left[(1-\omega)D - \omega U \right]\mathbf{x}^{(k-1)} + \omega (D+\omega L)^{-1} \mathbf{b} \\ \Leftrightarrow \mathbf{x}^{(k)} &= T_\omega \mathbf{x}^{(k-1)} + \mathbf{c}_\omega \end{aligned}$$

Gauss-Seidel:

$$\mathbf{x}^{(k+1)} = -(D+L)^{-1}U\mathbf{x}^{(k)} + (D+L)^{-1}\mathbf{b}.$$

SOR:

$$\mathbf{x}^{(k)} = (D + \omega L)^{-1} \left[(1 - \omega)D - \omega U \right] \mathbf{x}^{(k-1)} + \omega (D + \omega L)^{-1} \mathbf{b}.$$

Different parameter $\boldsymbol{\omega}$ can be chosen according to the need. In general,

- $\omega = 1$: the Gauss-Seidel method.
- $0 < \omega < 1$: when Gauss-Seidel diverges.
- $\omega > 1$: when Gauss-Seidel converges.

Example

Consider a linear system

$$\begin{cases} 4x_1 + 3x_2 + 0 &= 24 \\ 3x_1 + 4x_2 - x_3 &= 30 \\ 0 - x_2 + 4x_3 &= -24 \end{cases}$$

Exact unique solution: $\mathbf{x} = (3, 4, -5)^{\mathsf{T}}$.

• Let $x^{(0)} = (1, 1, 1)^{T}$. The Gauss-Seidel method:

$$\begin{cases} x_1^{(k)} = -0.75x_2^{(k-1)} + 6 \\ x_2^{(k)} = -0.75x_1^{(k)} + 0.25x_3^{(k-1)} + 7.5 \\ x_3^{(k)} = 0.25x_2^{(k)} - 6 \end{cases}$$

2 Let $x^{(0)} = (1, 1, 1)^{T}$. The SOR with $\omega = 1.25$:

$$\begin{cases} x_1^{(k)} = -0.25x_1^{(k-1)} - 0.9375x_2^{(k-1)} + 7.5 \\ x_2^{(k)} = -0.9375x_1^{(k)} - 0.25x_2^{(k-1)} + 0.3125x_3^{(k-1)} + 9.375 \\ x_3^{(k)} = 0.3125x_2^{(k)} - 0.25x_3^{(k-1)} - 7.5 \end{cases}$$

Theorem

- If $a_{ii} \neq 0$ for all $i = 1, 2, \dots, n$, then $\rho(T_{\omega}) \geqslant |\omega 1|$. This implies the SOR method can converge **only if** $0 < \omega < 2$.
- **2** If A is symmetric positive definite and $0 < \omega < 2$, then the SOR method converges for any $\mathbf{x}^{(0)}$.

- Suppose that we want to solve the linear system $A\mathbf{x} = \mathbf{b}$, but \mathbf{b} is somehow perturbed to $\tilde{\mathbf{b}}$ (this may happen when we convert a real \mathbf{b} to a floating-point \mathbf{b}).
- 2 Then actual solution would satisfy a slightly different linear system $A\widetilde{\mathbf{x}} = \widetilde{\boldsymbol{h}}$
- **Question**: Is \tilde{x} very different from the desired solution x of the original system?
- Of course, the answer should depend on how good the matrix
 A is.
- **5** Let $\|\cdot\|$ be a vector norm, we consider two types of errors:
 - absolute error: $\|x \widetilde{x}\|$
 - relative error: $\|\mathbf{x} \widetilde{\mathbf{x}}\| / \|\mathbf{x}\|$

For the absolute error, we have

$$\|\mathbf{x} - \widetilde{\mathbf{x}}\| = \|A^{-1}\mathbf{b} - A^{-1}\widetilde{\mathbf{b}}\| = \|A^{-1}(\mathbf{b} - \widetilde{\mathbf{b}})\| \le \|A^{-1}\|\|\mathbf{b} - \widetilde{\mathbf{b}}\|.$$

Therefore, the absolute error of x depends on two factors: the absolute error of b and the matrix norm of A^{-1} .

For the relative error, we have

$$\|\mathbf{x} - \widetilde{\mathbf{x}}\| = \|A^{-1}\mathbf{b} - A^{-1}\widetilde{\mathbf{b}}\| = \|A^{-1}(\mathbf{b} - \widetilde{\mathbf{b}})\|$$

$$\leq \|A^{-1}\|\|\mathbf{b} - \widetilde{\mathbf{b}}\| = \|A^{-1}\|\|A\mathbf{x}\| \frac{\|\mathbf{b} - \widetilde{\mathbf{b}}\|}{\|\mathbf{b}\|}$$

$$\leq \|A^{-1}\|\|A\|\|\mathbf{x}\| \frac{\|\mathbf{b} - \widetilde{\mathbf{b}}\|}{\|\mathbf{b}\|};$$

$$\frac{\|\mathbf{x} - \widetilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \|A^{-1}\| \|A\| \frac{\|\mathbf{b} - \widetilde{\mathbf{b}}\|}{\|\mathbf{b}\|}$$

Therefore, the relative error of x depends on two factors: the

• For the absolute error, we have

$$\|\mathbf{x} - \widetilde{\mathbf{x}}\| = \|A^{-1}\mathbf{b} - A^{-1}\widetilde{\mathbf{b}}\| = \|A^{-1}(\mathbf{b} - \widetilde{\mathbf{b}})\| \le \|A^{-1}\|\|\mathbf{b} - \widetilde{\mathbf{b}}\|.$$

Therefore, the absolute error of x depends on two factors: **the** absolute error of b and the matrix norm of A^{-1} .

For the relative error, we have

$$\begin{aligned} \|\mathbf{x} - \widetilde{\mathbf{x}}\| &= \|A^{-1}\mathbf{b} - A^{-1}\widetilde{\mathbf{b}}\| = \|A^{-1}(\mathbf{b} - \widetilde{\mathbf{b}})\| \\ &\leq \|A^{-1}\|\|\mathbf{b} - \widetilde{\mathbf{b}}\| = \|A^{-1}\|\|A\mathbf{x}\| \frac{\|\mathbf{b} - \widetilde{\mathbf{b}}\|}{\|\mathbf{b}\|} \\ &\leq \|A^{-1}\|\|A\|\|\mathbf{x}\| \frac{\|\mathbf{b} - \widetilde{\mathbf{b}}\|}{\|\mathbf{b}\|}; \end{aligned}$$

that is

$$\frac{\|\mathbf{x} - \widetilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \leqslant \|A^{-1}\| \|A\| \frac{\|\mathbf{b} - \widetilde{\mathbf{b}}\|}{\|\mathbf{b}\|}.$$

Therefore, the relative error of \boldsymbol{x} depends on two factors: the relative error of \boldsymbol{b} and $\|A\| \|A^{-1}\|$.

Definition

For a given subordinate matrix norm $\|\cdot\|$, the condition number of the matrix A is the number

$$\kappa(A) := ||A|| ||A^{-1}||.$$

 $\kappa(A)$ measures how good the matrix A is.

Example

Let $\varepsilon > 0$ and

$$A = \begin{bmatrix} 1 & 1+\varepsilon \\ 1-\varepsilon & 1 \end{bmatrix} \Rightarrow A^{-1} = \varepsilon^{-2} \begin{bmatrix} 1 & -1-\varepsilon \\ -1+\varepsilon & 1 \end{bmatrix}.$$

Then $\|A\|_{\infty}=2+\varepsilon$, $\|A^{-1}\|_{\infty}=\varepsilon^{-2}(2+\varepsilon)$, and

$$\kappa(A) = \left(\frac{2+\varepsilon}{\varepsilon}\right)^2 \geqslant \frac{4}{\varepsilon^2}.$$

- For example, if $\varepsilon = 0.01$, then $\kappa(A) \geqslant 40000$.
- What does this mean? It means that the relative error in x can be 40000 times greater than the relative error in b.
- **1** If $\kappa(A)$ is large, we say that A is **ill-conditioned**, otherwise A is **well-conditioned**.
- In the ill-conditioned case, the solution is very sensitive to the small changes in the right-hand vector b (higher precision in b may be needed).

Consider the linear system Ax = b. Let \tilde{x} be a computed solution (which is an approximation to x). We define

- Residual vector: $\mathbf{r} = \mathbf{b} A\widetilde{\mathbf{x}}$.
- 2 Error vector: $e = x \tilde{x}$.

Then $Ae = Ax - A\tilde{x} = b - A\tilde{x} = r$.

Theorem (bounds involving condition number)

Let A be a square matrix, \mathbf{x} be the solution of $A\mathbf{x} = \mathbf{b}$, and \mathbf{r} , \mathbf{e} are the residual vector and the error vector associated with a computed solution \mathbf{x} , respectively. Then

$$\frac{1}{\kappa(A)} \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \leqslant \frac{\|\mathbf{e}\|}{\|\mathbf{x}\|} \leqslant \kappa(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}.$$

Theorem (bounds involving condition number)

Let A be a square matrix, \mathbf{x} be the solution of $A\mathbf{x} = \mathbf{b}$, and \mathbf{r} , \mathbf{e} are the residual vector and the error vector associated with a computed solution $\tilde{\mathbf{x}}$, respectively. Then

$$\frac{1}{\kappa(A)}\frac{\|\textbf{\textit{r}}\|}{\|\textbf{\textit{b}}\|}\leqslant \frac{\|\textbf{\textit{e}}\|}{\|\textbf{\textit{x}}\|}\leqslant \kappa(A)\frac{\|\textbf{\textit{r}}\|}{\|\textbf{\textit{b}}\|}.$$

Proof.

Since $A\mathbf{e} = \mathbf{r}$, $\mathbf{e} = A^{-1}\mathbf{r}$; thus

$$\|\mathbf{e}\|\|\mathbf{b}\| = \|A^{-1}\mathbf{r}\|\|A\mathbf{x}\| \le \|A^{-1}\|\|\mathbf{r}\|\|A\|\|\mathbf{x}\| = \kappa(A)\|\mathbf{r}\|\|\mathbf{x}\|$$

which further implies that $\frac{\|\mathbf{e}\|}{\|\mathbf{x}\|} \leqslant \kappa(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}$.

On the other hand, we have

$$\|\mathbf{r}\|\|\mathbf{x}\| = \|A\mathbf{e}\|\|A^{-1}\mathbf{b}\| \le \|A\|\|\mathbf{e}\|\|A^{-1}\|\|\mathbf{b}\| = \kappa(A)\|\mathbf{e}\|\|\mathbf{b}\|$$

which shows that $\frac{1}{\kappa(A)} \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \leqslant \frac{\|\mathbf{e}\|}{\|\mathbf{x}\|}$

1 Q C

Theorem (bounds involving condition number)

Let A be a square matrix, \mathbf{x} be the solution of $A\mathbf{x} = \mathbf{b}$, and \mathbf{r} , \mathbf{e} are the residual vector and the error vector associated with a computed solution $\tilde{\mathbf{x}}$, respectively. Then

$$\frac{1}{\kappa(A)}\frac{\|\textbf{\textit{r}}\|}{\|\textbf{\textit{b}}\|}\leqslant \frac{\|\textbf{\textit{e}}\|}{\|\textbf{\textit{x}}\|}\leqslant \kappa(A)\frac{\|\textbf{\textit{r}}\|}{\|\textbf{\textit{b}}\|}.$$

Proof.

Since $A\mathbf{e} = \mathbf{r}$, $\mathbf{e} = A^{-1}\mathbf{r}$; thus

$$\|e\|\|b\| = \|A^{-1}r\|\|Ax\| \le \|A^{-1}\|\|r\|\|A\|\|x\| = \kappa(A)\|r\|\|x\|$$

which further implies that $\frac{\|\mathbf{e}\|}{\|\mathbf{x}\|} \leqslant \kappa(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}$.

On the other hand, we have

$$\|\mathbf{r}\|\|\mathbf{x}\| = \|A\mathbf{e}\|\|A^{-1}\mathbf{b}\| \le \|A\|\|\mathbf{e}\|\|A^{-1}\|\|\mathbf{b}\| = \kappa(A)\|\mathbf{e}\|\|\mathbf{b}\|$$

which shows that $\frac{1}{\kappa(A)} \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \leqslant \frac{\|\mathbf{e}\|}{\|\mathbf{x}\|}$.

000