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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

A differential equation is a mathematical equation that relates some

unknown function with its derivatives.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Definition

A differential equation is a mathematical equation that relates some
unknown function with its derivatives. A differential equation is
called an ordinary differential equation (ODE) if it contains an
unknown function of one independent variable and its derivatives.
A differential equation is called a partial differential equation
(PDE) if it contains unknown multi-variable functions and their par-

tial derivatives.

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Definition

A differential equation is a mathematical equation that relates some
unknown function with its derivatives. A differential equation is
called an ordinary differential equation (ODE) if it contains an
unknown function of one independent variable and its derivatives.
A differential equation is called a partial differential equation
(PDE) if it contains unknown multi-variable functions and their par-

tial derivatives.

Definition
The order of a differential equation is the order of the highest-order
derivatives presented in the equation. A differential equation of order

1 is called first order, order 2 second order, etc.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Remark:

© In general, an n-th order (scalar) ODE has the form
F(t>y>y/7"' ’y(n)) = 07
# 0. By the implicit function theorem,
A =o(ty,y, D) (%)

for some function ¢ (locally).

oF
Oy

where
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Remark:
© In general, an n-th order (scalar) ODE has the form
Ft.y,y's-- ") =0,
# 0. By the implicit function theorem,
y(n) — n,o(t, vyl oo 7y(n—1)) (%)
for some function ¢ (locally).

@ Assume that y satisfies (x). Let x = (y,y/,y",--- ,y<"*1))T.
Then x satisfies

oF
Oy

where

x" = f(t,x),
where the vector-valued function fis given by
X2
f(t,X):f(t,Xl,"',Xn>: :
Xn
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Remark (cont’d):
© It is also possible to consider n-th order vector-valued ODE.

For example, let r(t) denote the position of a planet (of mass
m) moving around the sun (of mass M) which locates at the
origin. Then Newton's second law of motion implies that

_CMm

mr” (t) =
(8 I
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Remark (cont’d):
© It is also possible to consider n-th order vector-valued ODE.
For example, let r(t) denote the position of a planet (of mass
m) moving around the sun (of mass M) which locates at the

origin. Then Newton's second law of motion implies that

mr"(£) =~ (1)
In general, when considering this kind of equation, we assume

that it can be written as
W =o(tyy, -y ).
Then the same procedure (by letting x = (y,y',-- -, ("_1))T

and find an equation that x satisfies) shows that the equation
above reduces to an first order ODE

x" = f(t, x).
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Initial-value problem (IVP): find x(t) such that

x'(t) = £(t,x(t)), (ordinary differential equations)
x(ty) = xo, (initial condition)

where f(t, x), ty € R, xg € R" are given.

Example

x'(t) = x(t) tan(t + 3), x(=3)=1.
The analytic solution of this IVP is x(t) = sec(t + 3). The solution
is valid only for —Z < t+3 < Z.

Example

)
[\
A\

x'(t) = x, x(0) =1.
Try x(t) = ce™ = cre™ = ce™ = r=1, x= ce' general solution

Use x(0) =1 = x= €' particular solution
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Existence and Uniqueness of Solution: Not all [VPs have a solu-
tion. Even if there exists a solution, the solution may not be unique.

Example

There is no solution to the initial value problem

exp (x'(t)) =0, x(0)=0
even if complex-valued solutions are allowed.

Example

|

The initial value problem

x'(t) = 3x(t) x(0)=0
has infinitely many solutions. In fact, the function
{ 0 ift<c

(t—o) ift>c
is a solution to the given ODE for all ¢ > 0.

2
3

xc(t) =
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Theorem (Existence and Uniqueness of Solution)

Consider the initial value problem

x" = f(t, x), x(ty) = xo -
If f and the first partial derivatives of f with respect to all its vari-
ables, possibly except t, are continuous functions in some rectan-
gular domain R that contains the point (ty, Xp) in the interior, then
the initial value problem has a unique solution p(t) in some interval
I = (to — h, to + h) for some positive number h.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Theorem (

Consider the initial value problem

x' = f(t, x), x(tg) = xo -
If f and the first partial derivatives of f with respect to all its vari-
ables, possibly except t, are continuous functions in some rectan-
gular domain R that contains the point (ty, Xp) in the interior, then
the initial value problem has a unique solution ¢(t) in some interval

I = (ty — h, ty + h) for some positive number h.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Theorem (

Consider the initial value problem

x' = f(t, x), x(tg) = xo -
If f and the first partial derivatives of f with respect to all its vari-
ables, possibly except t, are continuous functions in some rectan-
gular domain R that contains the point (ty, Xp) in the interior, then
the initial value problem has a unique solution ¢(t) in some interval

I = (ty — h, ty + h) for some positive number h.

Remark:
© If fis k-times continuously differentiable, then xis (k+1)-times
continuously differentiable.
@ The length of the time interval of existence “usually” is inverse
proportional to the maximum of ||| + | £]|.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Remark:
© Suppose that for a constant k € (0, 1) the “cube” Q centered at
(to, Xo) with width 2k is a subset of the rectangular domain R,
and for some M > 1, |f(t,y)| + |f(t, x)| < M for all (t,x) € Q.

Then the solution x to the initial value problem

x" = f(t, x), x(ty) = xo -
. . . k k
exists at least in the interval [tg — a0+ IT/I]'
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Definition (Informal definition)

A numerical method of solving the ODE x" = f(t, x) with x(ty) = xo
is an iterative scheme which, when the step size h > 0 is given,
generates a unique sequence of vectors {x;,---,xy} (for some N
which in general depends on h) such that some function ¢ which
interpolates the data (t, xo), (t1,x1), - -+, (tn, Xny) Where, t, = to +
nh, resembles the solution to x’ = £(t,x) with initial condition
x(ty) = xo in the time interval [ty, ty]. The function ¢ is called the

numerical solution generated by this numerical method with step

size h.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Definition (Informal definition (cont'd))

A numerical method of solving the ODE x’ = £(t, x) is called a k-
step method if it requires X, Xp4+1, - , Xn1k—1 to determine X, «
forall ne {0,--- ,N— k}.

A numerical method of solving the ODE x’ = f{(t, x) is said to be

explicit if it does not require “nonlinear procedures” to obtain some

X,'s, and is said to be implicit if it is not explicit.

<

Remark: A one-step explicit method is often (but not always) given
in the form x,11 = x, + h®(t,, x,) for some function ®, while a
k-step explicit method is often (but not always) given in the form

Xpt1 = Q1 Xp + QoXp—1 + -+ - + QpXp_ki1

+h 61 f(tna Xn) SR ka(tnfk+17 Xn7k+1) .
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

The forward Euler method of solving the ordinary differential equa-

tions y’ = f(t, y) is an explicit one-step method given by
Xn = Xp—1 + hf(th—1,Xp—1) Vne{l,2,--- N},
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

The forward Euler method of solving the ordinary differential equa-

tions y’ = f(t, y) is an explicit one-step method given by
Xn = Xp—1 + hf(th—1,Xp—1) Vne{l,2,--- N},
while the backward Euler method is an implicit one-step method

given by
Xn = Xn—1 + hf(tn, xn) Vne{l,2,--- N}.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

The forward Euler method of solving the ordinary differential equa-

tions y’ = f(t, y) is an explicit one-step method given by
Xn = Xp—1 + hf(th—1,Xp—1) Vne{l,2,--- N},
while the backward Euler method is an implicit one-step method

given by
Xn = Xn—1 + hf(tn, xn) Vne{l,2,--- N}.

Example

The Runge-Kutta method is an explicit one-step method given by
knl + 2kn2 + 2kn3 + kn4>
6 )

Xnt1 = Xp + /7<
where
kn1 = (tn, Xn) , kno = f(t, + %h, Xn + %hknl) :
kng = F(tn + 2, X0+ hkna) , Kna = F{tn + b, Xn + hkng)
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

There are three fundamental sources of error of a numerical solution:

© The iterative scheme used to produce the sequence {x, - - , xp}
is an approximate one. In other words, at each step the numeri-
cal method does not produce the correct value of the solution at
the next time step. This relates to the local/global truncation

error.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

There are three fundamental sources of error of a numerical solution:
© The iterative scheme used to produce the sequence {x, - - , xp}
is an approximate one. In other words, at each step the numeri-

cal method does not produce the correct value of the solution at

the next time step. This relates to the local/global truncation

error.

@ The input data used in the iterative scheme are only approx-
imations to the actual values of the solution at each t;. For
example, one should use x(tx) to generate xx11 but we are
forced to start with xx. This relates to the global truncation

error.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

There are three fundamental sources of error of a numerical solution:

© The iterative scheme used to produce the sequence {x, - - , xp}
is an approximate one. In other words, at each step the numeri-
cal method does not produce the correct value of the solution at
the next time step. This relates to the local/global truncation
error.

@ The input data used in the iterative scheme are only approx-
imations to the actual values of the solution at each t;. For
example, one should use x(tx) to generate xx11 but we are
forced to start with xx. This relates to the global truncation
error.

© The precision of calculations of the computer is finite. In other

words, at each step only a finite number of digits can be re-
tained. This relates to the round-off error (or machine error).
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Definition
Let o be a numerical solution obtained by a specific numerical
method (with step size h > 0 fixed) of solving ODE x’' = f(t, x)
with initial data x(ty) = xo. At each time step t,,
@ the global truncation error (associated with this numerical
method) is the number E,(h) = x(t,) — @(tn);
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Definition
Let o be a numerical solution obtained by a specific numerical
method (with step size h > 0 fixed) of solving ODE x’' = f(t, x)
with initial data x(ty) = xo. At each time step t,,
@ the global truncation error (associated with this numerical
method) is the number E,(h) = x(t,) — @(tn);
@ the local truncation error (associated with this numerical
method) is the number 7,(h) = x(tp+1) — Xnt1, where x(+)
is the exact solution and x| is obtained according to the it-

erative scheme with x; = x(t;) for all je {0,1,--- , n}.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Definition

Let o be a numerical solution obtained by a specific numerical
method (with step size h > 0 fixed) of solving ODE x’' = f(t, x)
with initial data x(ty) = xo. At each time step t,,

@ the global truncation error (associated with this numerical
method) is the number E,(h) = x(t,) — @(tn);

@ the local truncation error (associated with this numerical
method) is the number 7,(h) = x(tp+1) — Xnt1, where x(+)
is the exact solution and x| is obtained according to the it-
erative scheme with x; = x(t;) for all je {0,1,--- , n}.

© the round-off error or machine error (associated with this
numerical method) is the number R, = o (t,) — X,, where X,

is the actual value computed from the numerical method.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

In other words, the local truncation error measures the accuracy of
the numerical method for each time step, while the global truncation
error measure the errors accumulated from the beginning of this

iterative scheme.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

In other words, the local truncation error measures the accuracy of
the numerical method for each time step, while the global truncation
error measure the errors accumulated from the beginning of this

iterative scheme.

Definition
A numerical method is said to be consistent if

‘7‘,,/(1h)

lim max

=0
h—0 0<n<N-1

where 7,(h) is the local truncation error associated with the numer-

ical method with step size h.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

In other words, the local truncation error measures the accuracy of
the numerical method for each time step, while the global truncation
error measure the errors accumulated from the beginning of this
iterative scheme.

Definition
A numerical method is said to be consistent if

‘7‘,,/(1h)

lim max
h—00<n<N—1

=0,

where 7,(h) is the local truncation error associated with the numer-
ical method with step size h.

A numerical method is said to have order k if for any sufficiently
smooth solution of the initial value problem, the local truncation

error is O(hk1).
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

For a second order ODE
y" + p(t)y’ + q(t)y = g(t),

instead of imposing the initial condition y(ty) = yo and y'(ty) = y1
sometimes the boundary condition y(a) = yo and y(5) = y; are
imposed and consider the two-point boundary value problem (BVP)

y"'+pX)y" + qx)y =gl Vxe (a,B), y(a) = yo, y(B) = y1.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

For a second order ODE
y" + p(t)y’ + q(t)y = g(t),

instead of imposing the initial condition y(ty) = yo and y'(ty) = y1
sometimes the boundary condition y(a) = yo and y(5) = y; are
imposed and consider the two-point boundary value problem (BVP)

y"'+pX)y" + qx)y =gl Vxe (a,B), y(a) = yo, y(B) = y1.

Let z(x) = y(x) — ;:Zyl — :igyo. Then z satisfies
24Pz + gz = G(x) Vxe (a,B), z(a) = 2(8) =0, ()
where G(x) = g() — POOX =2 — g0 (5=%y + “=Zy0). (=) is

called a homogeneous two-point boundary value problem.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Remark: Even though the IVP

y'+p@)y' +a)y=gt), yto)=x, y'()=xn
looks quite similar to the boundary value problem, they actually differ
in some very important ways. For example, if p, g, g are continuous,
the IVP above always has a unique solution, while the BVP might
have no solution or infinitely many solutions:
@ y” + y = 0 with boundary condition y(0) = y(7) = 0 has
infinite many solutions y.(x) = csin x.
@ y” + y = sin x with boundary condition y(0) = y(7) = 0 has
no solution.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Remark: Even though the IVP

y'+p@)y' +a)y=gt), yto)=x, y'()=xn
looks quite similar to the boundary value problem, they actually differ
in some very important ways. For example, if p, g, g are continuous,
the IVP above always has a unique solution, while the BVP might
have no solution or infinitely many solutions:
@ y” + y = 0 with boundary condition y(0) = y(7) = 0 has
infinite many solutions y.(x) = csin x.
@ y” + y = sin x with boundary condition y(0) = y(7) = 0 has
no solution.
On the other hand, some BVPs has a unique solution. For example,
y"+2y=0, Vxe(0,7), y(0)=1, y(x) =0
has a unique solution y(x) = cos V2x — cot /27 sin v/2x.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Let o, B be real numbers and o < (8. Suppose that the function

f= f(t,y, p) is continuous on the set
D= {(xy,p)|x€ [a,f],y,pe R}

and the partial derivatives f, and f, are also continuous on D. If

Q f,(t,y,p) >0 forall (t,y,p) € D, and

@ there exists a constant M > 0 such that

fo(t,y,p)| S M Y (t,y,p) €D,
then the boundary value problem
y"'=ft,y,y') Vxe(a,p), y(a)=y(B) =0

has a unique solution.
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Chapter 6. Numerical Ordinary Differential Equations

§6.1 Introduction

Let o, 8 be real numbers and o < 3. Suppose that p: [, 5] — R is
continuously differentiable, and q : [a, 5] — R is continuous. Then

Y+ pR)y +qx)y=gx) Yxe (a,f), y(a)=y(B) =0

has a solution if and only if g : o, ] — R is integrable and
B
| et0pt0 dx=o0
for all function ¢ satisfying
" =p(x)p'+(a(x)=p'(x)p =0 Vxe (af), p(a)=p(B)=0.

The solution is unique if the ODE y" + p(x)y’ + q(x)y = 0 with
y(a) = y(B) = 0 has only trivial solution y = 0.

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Consider the ODE x’ = f(t, x). Then the chain rule can be used to
compute x ¥ (t):
X//(t) = ﬂ(tv X) + fX(ta X)X/7
X"() = Fre(t, X) + 2Fu(t, X)X + Fox(t, X) (x7)? + £(t, )x"”,
XxB () = Fore(t, X) + 3fe(t, X)X + 3fo(t, X) (X)) 4 Frox(t, X) (x7)?
+ex(t, X)X + Fex(t, x)x 5" + f(t, x)x""
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Consider the ODE x’ = f(t, x). Then the chain rule can be used to
compute x ¥ (t):
X//(t) = ﬂ(tv X) + fX(ta X)X/7
X"() = Fre(t, X) + 2Fu(t, X)X + Fox(t, X) (x7)? + £(t, )x"”,
XxB () = Fore(t, X) + 3fe(t, X)X + 3fo(t, X) (X)) 4 Frox(t, X) (x7)?
+ex(t, X)X + Fex(t, x)x 5" + f(t, x)x""

thus Taylor's Theorem implies that
2
x(t+ h) = x(t) + hf(t, ) + 7 [A(t, ) + £t ) F(E, X)]
3
+% [ et ) + 2onlt, X7 %) + et 9 %)

(%) (R, %) + £t 9 F(E, x))} T
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Depending on the smoothness of fand how many terms one wants

to keep (deleting high order terms), we can obtain various Taylor's
Method:

@ Taylor's method of order one:
Xn+1 = Xp + hf(tn, Xn).

@ Taylor's method of order two:
o1 =X+ At ) 4 1 [Follns X0) el 30t X))
© Taylor's method of order three:
X1 = X+ Bt x0) - 1 [Feltn, x0) 4 ultns )t x0)]
I [ Ftn )+ 2faltn x0) e x0) + ol 30t 30
ity Xn) (Faltn, Xm) + fx(tn,xn)f(tn,x,,))]
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

We use a concrete example to illustrate the method. Consider the
following IVP

x'(t) = cost —sinx+ t%,  x(—1) = 3.
By the Fundamental Theorem of ODE, the solution x is infinitely
many times differentiable. By the Taylor series for x, we have

h? h3 h4 -
o (4) 5)
x(t+h)=x(t)+hx'(t)+ o x"(t)+ = 3 x"(t)+—xY () +O(K°).

4!
Since x (t = cos t — sin x + t2,
) = —sint — (cos x)x’ + 2t,
t) = —cos t + sin x (x’)? — (cos x)x" + 2,
xB(t) = sin t + (cos x)(x")3 + 3(sin x)x'x" — (cos x)x"".
thus by truncating at h*, the local truncation error for obtaining
x(t+ h) is O(h®). Such a method is of order 4.

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Example (cont'd)

Starting t = —1 with h = 0.01, we can compute the solution in
[—1,1] with 200 steps:

input M <— 200, h<—0.01, t — —1, x< 3

output 0, t, x

for k=1 to M do

x!" <« cost—sinx+ t2

x" —sint — (cos x)x’ + 2t

— cos t + sin x(x')? — (cos x)x” + 2

x®  — sint+ (cosx)(x’)? 4 3(sin x)x"x" — (cos x)x""

X x+ h(x' + g(x" n g(x'” n gx(A‘)))))
t t+ h
output k, t, x

end do
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Example (cont'd)

@ The local truncation error can be estimated by looking at

E,= ﬁh”“x(”“)(t +6h) for some § € (0,1).
Hence

Es= =mx®(t+0n) 0¢€(0,1).

5!
@ Replace x®)(t+0h) by a simple finite-difference approximation

1,5 (4) h) — x4 h
Ev~ Lh (x (t+ 11 X (t)) = <X(4)(t—|—h) _X(4)(t))_

© Suppose that the local truncation error (LTE) is O(h™1). The
accumulation of all many LTEs gives rise the global truncation
error (GTE):

2

GTE~ T-R2o(h1) = O(h").
And we say the numerical method is of O(h").
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Taylor-Series method for systems:

For each 1 < i < n, by the Taylor Theorem

2 n
xi(t+ h) = xi(t) + hx/()) + T x/(®) + - + TP () + O(hY)
which implies the vector form

x(t+ h) = x(t) + hx'(t) + %Zx”(t) T I:T:X(n)(t) + O(h")
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Taylor-Series method for systems:

For each 1 < i < n, by the Taylor Theorem

it ) = xi(®) + bel(8) + Tx'(0) -+ X0 + oY
which implies the vector form

x(t+ h) = x(®) + hx'()) + 2x(0) -+ A @) + O(h )
Using x’ = f(t, x), we find that

x(t+ h) = x(t) + hf(t, x(t)) + =x"(t) +--- + %"x(”) (t) + O(h").
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Taylor-Series method for systems:

For each 1 < i < n, by the Taylor Theorem

it ) = xi(®) + bel(8) + Tx'(0) -+ X0 + oY
which implies the vector form

x(t+ h) = x(®) + hx'()) + 2x(0) -+ A @) + O(h )

Using x’ = f(t, x), we find that

x(t+ h) = x(t) + hf(t, x(t)) + h;x”(t) +o 4 :—;x(”) (t) + O(h").
Since x”(t) = fi(t, x) + é}l aa—xi(t, x)x/(t) = [f+ (F- V)Ff](t, x), we
have N

x(t+ h) = x(t) -+ hf(t, x(8)) + [+ (F- V)] (£ x(0) + O(H?)
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Disadvantages:

@ The method depends on repeated differentiation of the differen-
tial equation, unless we intend to use only the method of order
1.
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Disadvantages:

@ The method depends on repeated differentiation of the differen-
tial equation, unless we intend to use only the method of order
1. For high order methods, f(t, x) must have partial derivatives
of sufficient high order in the region where are solving the prob-
lem. Such an assumption is not necessary for the existence of
a solution.
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Disadvantages:

@ The method depends on repeated differentiation of the differen-
tial equation, unless we intend to use only the method of order
1. For high order methods, f(t, x) must have partial derivatives
of sufficient high order in the region where are solving the prob-
lem. Such an assumption is not necessary for the existence of
a solution.

@ The various derivatives formula need to be programmed.
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Chapter 6. Numerical Ordinary Differential Equations

§6.2 Taylor-Series Method

Disadvantages:

@ The method depends on repeated differentiation of the differen-
tial equation, unless we intend to use only the method of order
1. For high order methods, f(t, x) must have partial derivatives
of sufficient high order in the region where are solving the prob-
lem. Such an assumption is not necessary for the existence of
a solution.

@ The various derivatives formula need to be programmed.

Advantages:

@ Conceptually simple.

@ Potential for high precision. For example, if we get 20 deriva-
tives of x(t), then the method is order 20 (that is, terms up to
and including the one involving h?°).
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Chapter 6. Numerical Ordinary Differential Equations

§6.3 Euler's Method

Q If n =1, the Taylor series method reduces to (forward/explicit)

Euler's method:
X1 = Xn + hf(tn, Xn) .

@ Advantage of the method is not to require any differentiation
of f.

© Disadvantage of the method is that the necessity of taking small
value for h to gain acceptable precision.

© One can also consider the backward /implicit Euler's method:
Xnt1 = Xn + hf(tn+h, Xnt1) -

To obtain x,41, it is required to solve a nonlinear equation.
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

The concept of the Runge-Kutta method is to provide a general pro-

cedure of deriving higher order methods, which does NOT involve
the derivatives of f, of solving the IVP
x" = f(t, x), x(tp) = xo.
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

The concept of the Runge-Kutta method is to provide a general pro-

cedure of deriving higher order methods, which does NOT involve
the derivatives of f, of solving the IVP
x" = f(t, x), x(tp) = xo.

To see that this is possible, we note that Taylor's method of order
2 provides that

x(t+ h) = x(©) + hf(e, ) + = [f(t, ) + il (8, 2)] + O().
On the other hand, Taylor's Theorem implies that

F(t+ h,x+ hf(t,x)) = f(t, x) + f(t, x)h + f(t, x) hf(t, x) + O(h*);
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

The concept of the Runge-Kutta method is to provide a general pro-

cedure of deriving higher order methods, which does NOT involve
the derivatives of f, of solving the IVP
x" = f(t, x), x(ty) = xo.
To see that this is possible, we note that Taylor's method of order
2 provides that
x(t+ h) = x(©) + hf(e, ) + = [f(t, ) + il (8, 2)] + O().
On the other hand, Taylor's Theorem implies that
f(t+ h,x+ hf(t,x)) = f(t,x) + fe(t, x) h + f(t, x) hf(t, x) + O(h);
thus
x(t+ h) = x(t) + hf(t, x) + g [F(t+h, x+ hf(t,x)) — f(t, x)] + O(h)
which provides “a" second order Runge-Kutta method
Xn41 = Xn + hf(tn, X0) + 0 [F{tns1, X0 + hF(tn, Xn)) = F(tn, x0)]
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

The concept of the Runge-Kutta method is to provide a general pro-

cedure of deriving higher order methods, which does NOT involve
the derivatives of f, of solving the IVP
x" = f(t, x), x(ty) = xo.
To see that this is possible, we note that Taylor's method of order
2 provides that
x(t+ h) = x(©) + hf(e, ) + = [f(t, ) + Fult, (8, 2)] + O(°).
On the other hand, Taylor's Theorem implies that
f(t+ h,x+ hf(t,x)) = f(t,x) + fe(t, x) h + fi(t, x) hf(t, x) + O(h?);
thus
x(t+ h) = x(t) + hf(t, x) + g [F(t+h, x+ hf(t,x)) — f(t, x)] + O(h)
which provides “a" second order Runge-Kutta method
Xp+1 = Xp + + g[f(tn+1,xn + hf(t,, Xn)) + f(tn, X,,)] :
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

The 2nd-order Runge-Kutta (RK) method derived previously is often
written as the following alternative form
Xpt1 = Xp + g(kl + /(2),
where
ki = f(tn, xn), ko = f(tn + h, xn + hky).
This is also known as Heun's method.
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

The 2nd-order Runge-Kutta (RK) method derived previously is often
written as the following alternative form

Xat1 = n+ 3 (ki + ko),
where
ki = f(tn, xn), ko = f(tn + h, xn + hky).
This is also known as Heun's method.
Remark: Heun's method can be viewed as evaluating the number

Jt"“ f(t, x(t)) dt using the trapezoidal rule, while the exact value of

X(tp4+1) is unknown and is replaced by the forward Euler formula
Xn + hf(tn, xn):
Xtner) =x(tn) = [ X' de= [ (e x(0) dt

th
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

The 2nd-order Runge-Kutta (RK) method derived previously is often
written as the following alternative form
Xpt1 = Xp + g(kl + /(2),
where
ki = f(tn, xn), ko = f(tn + h, xn + hky).
This is also known as Heun's method.
Remark: Heun's method can be viewed as evaluating the number

Jt"“ f(t, x(t)) dt using the trapezoidal rule, while the exact value of

X(tp4+1) is unknown and is replaced by the forward Euler formula
Xn + hf(tn, xn):
Xtner) =x(tn) = [ X' de= [ (e x(0) dt

~ tn+1 - tn

2 [f(tna X(tn)) + f(tns1, X(tn—i_l))}
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

The 2nd-order Runge-Kutta (RK) method derived previously is often
written as the following alternative form
Xpt1 = Xp + g(kl + /(2),
where
ki = f(tn, xn), ko = f(tn + h, xn + hky).
This is also known as Heun's method.
Remark: Heun's method can be viewed as evaluating the number

Jt"“ f(t, x(t)) dt using the trapezoidal rule, while the exact value of

tn
X(tp4+1) is unknown and is replaced by the forward Euler formula
Xn + hf(tn, xn):

X(tny1) — x(tn) = L :"H x'(t) dt = J:“ f(t, x(t)) dt

~ tn+1 - tn

2 [f(tna X(tn)) + f(tns1, X(tn—i_l))}

~ tn+1 — tn

- [A(tn, x(tn)) + f(tnt1, x(tn) + hf(tn, xn))]
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

In general, a 2nd order Runge-Kutta method is of to choose real

numbers wi,ws and «, B so that
x(t+ h)
= x(t) + w1 hf(t, x) + wahf(t + ah, x + Bhf(t, x)) + O(h3),
= x(t) + w1 hf(t, X) + wah]| (t, x) + ahfi(t, x) + BhA(t, X (t, xﬂ
+0O(h3)
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

In general, a 2nd order Runge-Kutta method is of to choose real

numbers wi,ws and «a, B so that
x(t+ h)
= x(t) + w1 hf(t, x) + wahf(t + ah, x + Bhf(t, x)) + O(h3),
= x(t) + w1 hf(t, X) + wah [f(t, X) + ahfi(t, x) + BhF(t, X, xﬂ
+0O(h3)
— x(t) + (w1 + wa)hf(t, x) + h? [wgaft(t, X) + waBF(t, ) fult, x)}
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

In general, a 2nd order Runge-Kutta method is of to choose real

numbers wi,ws and «a, B so that
x(t+ h)
= x(t) + w1 hf(t, x) + wahf(t + ah, x + Bhf(t, x)) + O(h3),
= x(t) + w1 hf(t, X) + wah [f(t, X) + ahfi(t, x) + BhF(t, X, xﬂ
+O(h%)
— x(£) + (W1 + wo)hA(E, X) + K2 [wgaft(t, X) + wa Bt X)fult, x)}
+ O(h?).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

In general, a 2nd order Runge-Kutta method is of to choose real

numbers wi,ws and «a, B so that
x(t+ h)
= x(t) + w1 hf(t, x) + wahf(t + ah, x + Bhf(t, x)) + O(h3),
= x(t) + w1 hf(t, X) + wah [f(t, X) + ahfi(t, x) + BhF(t, X, xﬂ
+O(h%)
— x(£) + (W1 + wo)hA(E, X) + K2 [wgaft(t, X) + wa Bt X)fult, x)}
+ O(h?).

Comparing with
2
x(t+ h) = x(t) + hf+ 0 [f(t, %) + £lt, DAL )] + O(H),
we have

w1 twy =1,
woax = wefB =1/2.

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

@ The previous method (Heun's method) is obtained by setting

w1:w2:1/2,
a=p0=1.

@ The modified Euler method is obtained by setting

w1 =0,
W2:1,
a=08=1/2,

we obtain the following :
x(t+ h) ~ x(t) + hks,

where
k= ftx), k=ft+ 1 x+ k).

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

@ The derivations of higher order RK methods are tedious. How-
ever, the formulas are rather elegant and easily programmed
once they have been derived.

@ The most popular 4th order Runge-Kutta method is based on
x(t+ h) = x(t) + 1 (ki + 2ks + 2ks + ka) + O(H),

where
ta X)v

(

h h
f(t—i-f X+ 5 kz)
ki _f(t+ h,x+ hkg).

We note that ki, ko, k3, k4 are all approximated value of x’(t).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

@ The derivations of higher order RK methods are tedious. How-
ever, the formulas are rather elegant and easily programmed
once they have been derived.

@ The most popular 4th order Runge-Kutta method is given by

h
Xp+1 = Xp + 6(/(”1 + 2kpa + 2kn3 + kn4)a

where
(tn; Xn)
h h
Kn2 = (t 3 Xn+2kn1)
n3*f( *:Xn+gkn2)-/

kna = f(tn + h, xn + hkp3).
We note that kpi1, kno, kn3, kna are all approximated value of

x'(tp).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

To see that the method provided in the previous page is indeed

fourth order, we apply Taylor's Theorem and obtain that
h h
ko = f(t + 5o X+ §k1)
= f(t, ) + ;) - 3 + £(EX) - Th

2
3 |6 o+ 2t - 7 - % + it X

+é [fttt(t; X) - + 3feex(t, X) -

3
+fxxx(t,x) h kl} + O(h*
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

To see that the method provided in the previous page is indeed
fourth order, we apply Taylor's Theorem and obtain that

h h
ke = flt+ 2, x+ k1)

= f(t, ) + ;) - 3 + £(EX) - Th

2 202
3 |6 o+ 2t - 7 - ﬁkl + fot, x) - T8

2k2

N\:—

4
1 h3
g [fre6 ) - I+ Bhaelt %) I+ Tt Bfoee(t, )

—i—fxxx(t,x) PR (’)(h4)

The reason why we truncate at the order O(h*) is that we are going

to prove that
x(t+ h) = x(t) + g(kl + 2k 4 2k3 + k) + O(h°),

is an order four numerical method for solving ODE.
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

ko = (£, )+ Sty %)+ Sk fult,

2
+% [ftt(t, X)+2ki fix(t, X) + k? fiux(t, x)}

3
+Z—8 [fm(t, X) 43 k1 Frax(t, X) + 3k fooc(t, X) + ki Froxx(t, X)} +O(HY,
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

ko = (£, )+ Sty %)+ Sk fult,

+— -ftt(t, X)+2ki fix(t, X) + k? fiux(t, x)}
+ZS -ﬁftt(t, X) +3ky fttx(t, X) +3k12 ftxx(t, X) + k13 f;(xx(ta X):| +O(h4),
ks = f(t, x)—i-gft(t, x)+gk2 fi(t, x)

0 [ Falt %)+ 2k foelt, X)+ K3 Feelt, )|

== fttt(t’ X) +3ko f;.‘tx(t, X) +3k22 ftxx(t, X) + k23 fxxx(ta X)i| +O(h4),
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

ko = (£, )+ Sty %)+ Sk fult,

et X)+ 2K Fx(t, )+ kP (89|

_ﬂtt(ty X) +3k; fttx(t, X) +3k12 ftxx(t, X) + k13 f;(xx(ta X):| +O(h4),

ks = F(t, )+ 3 flt, X) + 5 ko (2, %)

folt, X)+ 2o (£, )+ K3 Finlt, )|

Fse(t, )+ Bharon(6, %)+ 3KE foxe(t, X)+ K (£, )| + O(HY),

ky = f(t, x) + hfe(t, x) + hksf(t, x)

frelt, X)+ 2Kt )+ (89|

-fm(t, X) + 3 ks Frax(t, X) +3k3 foo(t, X) + k3 Froux(t, x)] +O(h).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

Therefore,
ki + 2ko + 2ks + ky
= 6f(t7 X) + 3hft(ta X) + h(kl + k2 + k3)fx(t> X)
2
+h2 felt, X) + (Kt + ko + 2ks) fee(t, X)
2 3
Jrhz(kl2 + ki + 2k3) fiue(t, x) + hzfm(t, X)
3 3
+%(k1 + ko + 4ks) ferx(t, X) + %(kf + k2 + 4k32) fixx(t, X)

3
+ (K + K3+ 4k3) fooc(t, X) + O(hY).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

Therefore,
ki + 2ko + 2ks + ky
= 6f(t7 X) + 3hft(ta X) -+ h(kl + k2 + k3)fx(t> X)
2
+h2 felt, X) + (Kt + ko + 2ks) fee(t, X)
2 3
Jrhz(kl2 + ki + 2k3) fiue(t, x) + hzfm(t, X)
3 3
+%(k1 + ko + 4ks) ferx(t, X) + %(kf + k2 + 4k32) fixx(t, X)
3
+ (K + K3+ 4k3) fooc(t, X) + O(hY).
Next, we need to compute
© ki + ko + k3 accurate at least of order O(h?).

Q ki+ko+2ks and kZ+ k3 +2k3 accurate at least of order O(h).

Q ki + ko + 4ks, ki + ki + 4kZ and ki + k3 + 4k$ accurate at
least of order O(1).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

Using the formula for ko, k3, and kg4, we find that
K-t kot ks = BF(E,X)hfu(t, )1 (R k)t X) - et )
1 k) o, )+ P (-2 ) (8,2 + O (),
i+ ko +2ks = 4F(t, )+ 2 £(t, %)+ 1 (k1 +2ko )it )+ O(),
ki +k3+2k3 = Af(t, x)?+hi(t, x) [3f(t, x) + (ki +2ka) fx(t, %)
+O(K?),
ki + ko+4ks = 6£(t, x)+O(h),
kZ+k3+4k3 = 6f(t,x)>+O(h),
K3+ k3 +4k3 = 6£(t, x)3+O(h).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

Using the formula for ko, k3, and kg4, we find that
ki+ko+kz = 3f(t x)+ hfy(t, x)+ (k1+k2)f (t, x)+ ftt(t X)
P (ko) it 9+ P k24 KDl +O(),
ki +ko+2ks = 4f(t, x)+7ft(t, x)+ §(k1+2k2)fx(t, x)+O(h?),
ki +k3+2k3 = Af(t, x)?+hi(t, x) [3f(t, x) + (ki +2ka) fx(t, %)
+O(h?),
ki+ ke +4ks = 6£(t,x)+O(h),
kZ+k3+4k3 = 6f(t,x)>+O(h),
K3+ k3 +4k3 = 6£(t, x)3+O(h).
Since ki + 2ko = 3f(t,x) + O(h), to continue we compute
@ ki + ko accurate at least of order O(h?).
@ k? + k accurate at least of order O(h).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

Since
ki + ko = 2f(8,%) + 1 [fit, ) + (£, ) (£, x)] + O(H)
ki + k3 = 2f(t,x)2 + hf(t,x) [f(t, x) + f(t, X) f (t, x)] + O(h?)
we obtain that
ki+ko+ks = 3f(t x)+h[f(t, )+ f(t, ) fi(t, X) ]
P T30 + ol XAl )+ F(E Xt X)?
+2f(t x)ftx(t x) + f(t, x)% fu(t, x)] +C’)(h3)
ki+ko+2ks = 4f(t, x)+ [ft(t x)+f(t, x)f(t, x)| +O(h
K2+ k3 +2k2 = 4f(t, x)? —|—3hf(t X) [fe(t, x) + (t, x) £i(t, X) | +0(h2),
ki+ko+4ks = 6£(t, x)+O(h),
k4 k3 +4k2 = 6f(t, x)2+O(h),
K3+ k3 +4k3 = 6£(t, x)3+O(h).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

Therefore,
ki + 2ka + 2k3 + ky
= 6f(t, x) + 3h[fe(t, x) + f(t, x) (£, )]

+h? [f(t, x) + F(t, x) fi(t, X)] £t X)

1 [t ) + Flt, XAt %) + At At )2
+21(t, x) fx(t, X) + F(t, X)% Fe(t, X) | £l(t, X) + B Fie(t, X)

2R X) ol ) + 2 [t )+ (8 X) il )] Fx(E, )

+h2f(t 9 falt ) + S At [l )1t )t )] )
fm(t x) + —f(t X) feex(t, X) + —f(t X)2 foee(t, X)

4
de(t X)? Foux(t, X) + O(hY) .
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

Therefore,
ki + 2ko + 2k3 + ky
= 6f(t, x)+3h|[f(t, x)+ (t, x) fx(t, )|

+h? [Fre(t, )+ fe(t, X) Fult, )+ F(t, X)Felt, ) +26(t, %) fex (£, )
+F(t, )2 it ,x)]

1 a0+ For(t, XVt X Felt )l )2+ F(E X) il )
+(t, X) Fo(t, X) +2F(t, X) Fe(t, X) fix(t, X)
+3£(t, X) frx(t, X) +3fe(t, X) Fiex(t, X)
+31(t, X) fi(t, X) Fixc(t, X) +31(t, x) Fe(t, x) Fex(t, X)
+3(t, %)% o (t, X) +41(t, X) 2 f(t, X) fx(t, X)] + O ()
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

which implies that

x(8) + ¢ [k + 2ko + 2ks + ki
= x(8)+h(t, )+ (6, )4 (8, x) £,

I [l )+ b, )Rl ) (8, )Rl X2+ 28 ) ol )
+1(t, x)* fx(t, X) |

+£ [ Feee(t, %) + Fee(t, X) (t, X) + Felt, X) (t, x)2 4 (8, %) f(t, )
+F(t, X)3 Fooc(t, X) +2f(t, X) f(t, X) Fix(t, X)
+31(t, X) frex(t, X) +3Fe(t, X) Fixc(t, X)
+31(t, x) fi(t, X) Fex(t, X) +3F(t, x) fe(t, x) (2, X)
+31(t, x)? fox(t, ) +41(t, )2 £(t, X) fux(t, X) | + O(K°)
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

which implies that

x(8) + ¢ [k + 2ko + 2ks + ki
= x(8)+h(t, )+ (6, )4 (8, x) £,
I [l )+ b, )Rl ) (8, )Rl X2+ 28 ) ol )
+1(t, x)* fx(t, X) |
+£ [ Feee(t, %) + Fee(t, X) (t, X) + Felt, X) (t, x)2 4 (8, %) f(t, )
+F(t, X)3 Fro(t, X) +2F(t, X) F(t, X) Fix (£, X)
+3£(t, X) frax(t, X) + 3e(t, X) fiex (£, X)
+31(t, x) fi(t, X) Fex(t, X) +3F(t, x) fe(t, x) (2, X)
+3£(t, X)% Foxx (t, X) +4F(t, )2 £, (t X) fx(t, X)] + O(h°)
- x(t)+hx’(t)+%X”(t)+€x”’( t+0; x< )(H)+O(K).
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

which implies that

x(8) + ¢ [k + 2ko + 2ks + ki
= x(B) - (t, )+ (6, 204 (8, ) (£,

2 ot )+ ol )Rl ) (8, )Rl )2+ 28 ) ol )
+£(t, x)* fx(t, X) |
+£ [ Feee(t, %)+ Fee(t, X) e (t, X) + Felt, X) (t, x) 2+ (8, x) f(t, )
+F(t, X)2 Foo(t, X) +2£(t, X) F(t, X) Fux (t, X)
+3£(t, X) frex(t, X) + 31e(t, X) fix (£, X)
+31(t, x) fi(t, X) Fex(t, X) +3F(t, x) fe(t, x) (2, X)
+3£(t, X)% foex(t, X)+4f(t x)2f, (t X) fx(t, X)| + O(h°)
)

= x(t) 4 hx’ (040X ()4 2 (6)+- 2 x D) (1) + O ().

24
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

Computer Project:

@ Use the most popular 4th order Runge-Kutta with h = 1/128,
h = 1/256 and h = 1/512 to solve the following IVP for t €

[1,3] and then plot the piecewise linear approximate solution:
{ x'(t) = t2(tx — x%),
x(1) =2.
@ Also plot the exact solution:
x(t)=(1/2+Int) 't
© Find the global truncation error E(h) and “verify” numerically

that the 4th order Runge-Kutta is indeed a fourth order numer-

ical method of solving IVPs.
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

input M < 256, t < 1.0, h < 0.0078125, x < 2.0
define f(t,x) = (tx — x2)/t2, u(t) = t/(1/2 + In t)
e« |u(t) — X
output 0, t, x, e
for k=1 to Mdo
ki <« f(t, X)
ky «— f(t+
ks <« f(t+ =
ky <« f(t+ h,X+ hkg)
X <« X+g(k1 +2k2+2k3—|—k4)

t « t+h

e — |u(t) —x|
output k, t, x, e
end do
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Chapter 6. Numerical Ordinary Differential Equations

§6.4 The Runge-Kutta Method

For a system of equations x'(t) = f(t, x), we have 4th-order Runge-

Kutta method:

x(t+ h) = x(t) + g(kl + 2ky + 2ks + ki) + O(h*),
where ki = f(t,x(t + h)),
ky = f(t+ g x(t) + ;’kl)
ks = f(t+ g x(t) + hkz)

ky = F(t+ h,x(t) + hks).

Other methods, they are all similar to the single equation case.
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Chapter 6. Numerical Ordinary Differential Equations

§6.5 Collocation Method

The idea of collocation methods is to choose a finite-dimensional
space of candidate solutions (usually polynomials up to a certain
degree) and a number of points in the domain (called collocation
points), and to select that solution which satisfies the given equation
at the collocation points.
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Chapter 6. Numerical Ordinary Differential Equations

§6.5 Collocation Method

The idea of collocation methods is to choose a finite-dimensional
space of candidate solutions (usually polynomials up to a certain
degree) and a number of points in the domain (called collocation
points), and to select that solution which satisfies the given equation
at the collocation points.

Suppose that the ordinary differential equation

y'(O) =fltyt),  y(to) =y

is to be solved over the interval [to,to =+ ckh}. Choose ¢ from
0 <c < <. <c <1 The corresponding (polynomial)
collocation method approximates the solution y by the polynomial
p of degree n which satisfies the initial condition p(ty) = yp and the
differential equation p’(tx) = f(t, p(tx))-
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Chapter 6. Numerical Ordinary Differential Equations

§6.5 Collocation Method

Example

Pick to collocation points ¢; = 0 and ¢ = 1. The collocation
method is then looking for a polynomial p of degree 2 satisfying the
collocation conditions

p(to) = Yo,
p'(to) = f(to, p(to)),
p'(t1) = f(t1, p(t1))
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Chapter 6. Numerical Ordinary Differential Equations

§6.5 Collocation Method

Example

Pick to collocation points ¢; = 0 and ¢ = 1. The collocation
method is then looking for a polynomial p of degree 2 satisfying the
collocation conditions

p(to) = yo,
p'(to) = f(to, p(to)),
p'(t) = f(t1, p(t1)).
If p(t) = a(t— tg)% + B(t— ty) + ~, then the collocation conditions

above become

Y = Yo,
B = f(to,7),
a= % [f(to + h,ah® + Bh+ ) — f(to,'y)} :

It remains to solve for & from a nonlinear equation.
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Chapter 6. Numerical Ordinary Differential Equations

§6.5 Collocation Method

Suppose that we have a linear differential operator L and we wish to
solve the equation: given a function f, find the function u satisfying

Lu(t)=f(t), a<t<bh.

Q Let {v1,va, -, vy} be a set of functions that are linearly inde-
pendent. Suppose that u(t) ~ cjvi(t) + cava(t) + - - - + cpva(t).

n
@ Then solve L( Y] ¢vj(t)) = f(t). How to determine ¢;?
j=1
© Let ty,t9, -, t, be n prescribed points (collocation points) in

the domain of u and . Then we require that

n

Z Cj(LVj)(f/) = f(t,'), i=1,2,---,n.

j=1
© This is a system of n linear equations in n unknowns c;. The

functions v; and the points t; should be chosen so that the

matrix with entries (Lv;)(t;) is non-singular.
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Chapter 6. Numerical Ordinary Differential Equations

§6.5 Collocation Method

Example (Collocation method for Sturm-Liouville BVPs)

Consider a Sturm-Liouville two-point BVP:

u”(t) + p(t)u’(t) + q()u(t) = f(t) Ve (0,1), (©)
u(0) = u(l) =0,
where p, g, f are given continuous functions on [0, 1]

Q Let Lu:= u” + pu’ + qu. Define the vector space
V= {ue C2((0,1)) A €([0,1]) | u(0) = u(1) = o}.
If uis an exact solution of (o), then ue V.

@ One set of functions is given by
vi(t) = /(1 — % e C*([0,1]), 1<j<ml<k<n,
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Chapter 6. Numerical Ordinary Differential Equations

§6.6 Finite Difference Method (FDM)

The finite-difference methods (FDM) are discretizations used for
solving differential equations by approximating them with difference
equations that finite differences approximate the derivatives.

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.6 Finite Difference Method (FDM)

The finite-difference methods (FDM) are discretizations used for
solving differential equations by approximating them with difference
equations that finite differences approximate the derivatives.

Example

Again we consider the Sturm-Liouville two-point BVP:

u”(t) + p(t)u'(t) + qt)u(t) = f(t) VYte (0,1), (©)
m]
u(0) = u(1) =0,
Let ty, = ﬁkl for k=0,1,--- ,n+ 1. Using the central difference

approximation, (o) implies that

U(tk_l)—2uh(2tk)+U(tk+1) + p(t) U(tk+1)2—hu(fk—1)

= f(tk)+0(h2) for k: ]_’2’... 7n’
u(ty) = u(tay1) = 0.

+ q(ti) u(te)
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Chapter 6. Numerical Ordinary Differential Equations

§6.6 Finite Difference Method (FDM)

The finite-difference methods (FDM) are discretizations used for
solving differential equations by approximating them with difference
equations that finite differences approximate the derivatives.

Example

Again we consider the Sturm-Liouville two-point BVP:

u”(t) + p(t)u'(t) + qt)u(t) = f(t) VYte (0,1), (©)
m]
u(0) = u(1) =0,
Let ty, = ﬁkl for k=0,1,--- ,n+ 1. Using the central difference

approximation, (o) implies that

u(te—1)—2u(ty) +u(tes 1) + p(te) ultir1) +2hq(tr) ulte) — p(tk) u(te—1)
- 2h
= f(t) + O(H)  for k=1,2,--,n.

U(t’o) = U(tn+1> = 0.

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.6 Finite Difference Method (FDM)

Example (Cont'd)

Define A(h) as the n x n matrix
-2 1 0 --- 0 [2hq(t1) p(t1) 0 . 0
. 1 -2 1 . 0 . —p(t2) 2hq(t2) p(t2) ' :
: 1 -2 1 : —p(tn-1) 2hq(tn—1) p(tn-1)
o --- 0 1 -2 | O e 0 —p(tn) 2hq(ts)
Then _
u(t1) f(t1)
u(t2) f(t2)
A(h) =| | +0o)
u(tn) f(tn)
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Chapter 6. Numerical Ordinary Differential Equations

§6.6 Finite Difference Method (FDM)

Example (Cont'd)

In particular, if p =0 and g < 0 on (0,1), then A(h) is diagonal

dominant:
==
Therefore, A(h) is invertible if p=0 and g < 0.

—2 2 1 1
FWLQ(tk)‘_*— (tk)>ﬁ+p-

o

Remark: Let f(t,y,y") = f(t) — q(t)y(t) — p(t)y’(t). Then the
condition g < 0 on (0, 1) corresponds to the condition

f, >0

in the statement of the existence theorem. This is an indication why
we need this condition in the existence theorem.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

We begin with considering the following two-point boundary value

problem:

{—u”(x):f(x) Vxe (0,1), )

where fis a given function in C(]0, 1]).

Remark: (D) has a unique classical solution.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

We begin with considering the following two-point boundary value

problem:

{—u”(x):f(x) Vxe (0,1),

where fis a given function in C(]0, 1]).

Remark: (D) has a unique classical solution.

Let v € C([0,1]), piecewise differentiable, and v(0) = v(1) = 0.
Then integration by parts implies that

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Note that if u is a solution to (D), then u also satisfy the identity
f dx—J v dx  VveV, (V)

where V is the collection of all continuous, piecewise differentiable
functions on [0,1] that vanish at x = 0 and x = 1.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Note that if u is a solution to (D), then u also satisfy the identity

f dx—J v dx  VveV, (V)

where V is the collection of all continuous, piecewise differentiable
functions on [0,1] that vanish at x = 0 and x = 1. Therefore,
instead of solving for (D), we first look for a function u € V satisfies
(V). (V) is called the variational form of (D).
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Note that if u is a solution to (D), then u also satisfy the identity
f dx—f v dx  VveV, (V)

where V is the collection of all continuous, piecewise differentiable
functions on [0,1] that vanish at x = 0 and x = 1. Therefore,
instead of solving for (D), we first look for a function u € V satisfies
(V). (V) is called the variational form of (D).

We also note that if (V) has a solution v, the function u might not
satisfy (D) because u may not be twice differentiable. However, if
ue C2((0,1)) NV satisfies (V), then for all ve V,

Ll [F(x) + u” (x)] v(x) dx = Jol [F)v(x) — u'(x)v'(x)] dx = 0;
thus —u”(x) = f(x) for all xe (0,1).
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Note that if u is a solution to (D), then u also satisfy the identity
f dx—f v dx  VveV, (V)

where V is the collection of all continuous, piecewise differentiable
functions on [0,1] that vanish at x = 0 and x = 1. Therefore,
instead of solving for (D), we first look for a function u € V satisfies
(V). (V) is called the variational form of (D).

We also note that if (V) has a solution v, the function u might not
satisfy (D) because u may not be twice differentiable. However, if
ue C2((0,1)) NV satisfies (V), then for all ve V,

Ll [F(x) + u” (x)] v(x) dx = Jol [F)v(x) — u'()v/(x)] dx =0

thus —u”(x) = f(x) for all xe (0,1). A solution of (V) is called a
weak solution of (D), and (V) is also called the weak form of (D).

Ching-hsiao Cheng #cie 17 | MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Let F: V — R be defined by
1 1
F(v) = %J ‘v'(x)’2 dx — j f(x)v(x) dx
0 0

and consider the problem of finding v € V such that
Flu) < F(v) VveV. (M)
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Let F: V — R be defined by
F(v) = ;Ll ‘v'(x)’2 dx — _[)1 f(x)v(x) dx
and consider the problem of finding v € V such that
Flu) < F(v) VveV. (M)

In the following, we prove that “if u€ V, then u satisfies (V) if and
only u satisfies (M). Moreover, (V) has at most one solution in V."

Ching-hsiao Cheng #E A 47 1| MA-3021



Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Let F: V — R be defined by
F(v) = ;Ll ‘v'(x)’2 dx — _[)1 f(x)v(x) dx
and consider the problem of finding v € V such that
Flu) < F(v) VveV. (M)

In the following, we prove that “if u€ V, then u satisfies (V) if and
only u satisfies (M). Moreover, (V) has at most one solution in V."

Before proceeding, for the purpose of simplifying the notation, we
define an “inner product” on V:

ho = [ Fogte) o

Using this notation, (V) can be rewritten as

' vy —{fvy=0 VveV.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

@ (V) = (M): Let u be a solution of problem (V). Let ve V and

w=v—u€). Then v=u+ wand
F(v) = Flu+w) = S<(utw), (utw)'y—(F u+w)
= Ul A+ Wi W w'y = iy —(Fw)
= S u"y+ o w why—(fuy > L’ "y —(f ) = Fu).
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

@ (V) = (M): Let u be a solution of problem (V). Let ve V and
w=v—ue). Then v=u+ wand
F(v) = Flu+w) = S<(utw), (utw)'y—(F u+w)
= S Uyl Wy L w wy—(f iy —(f w)
= S u"y+ o w why—(fuy > L’ "y —(f ) = Fu).
@ (M) = (V): Let u be a solution of problem (M). Note that if
ve ), then u+eveV for all e > 0. Therefore,
Flu) < Flu+ev) VveVand eceR. (¢)
Define g(e) = F(u+ ev). Then (¢) implies that g attains its

global minimum at € = 0. Therefore,

0=g'(0) = W',y — (£ V)
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

© (V) has at most one solution in V: Suppose that uy,us € V
both satisfy (V). Then

(f, 'y = vy = (g vy =) =0 Vve.
Note that u; — us € V; thus letting v = u; — ug in the equality
above we find that

(uis (un — )y —{fiur —up) =0,

Cug, (1 — ug)") = {(fun — up) =0,
Therefore, forming the difference of the two equations above
shows that

1
f [1(x) — ()] dx = (g — ), (11 — us)'y = 0.
0
The identity above implies that [u;(x) — u2(x)]" = 0; thus
u1(x) — ua(x) = 0 for all x € [0, 1] which concludes that u; = ws.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

FEM for the model problem with piecewise linear functions:

Construct a finite-dimensional space V}, (finite element space) as
follows: let 0 = xg < x0 < --+ < Xy < Xuy1 = 1 be a partition of
[0,1], and set

°Ij::[xj7bxj]7 J:17271M+1

OhjZ:Xj—Xj_l, ji=12,--- M+ 1.

@ h:= max  hj, a measure of how fine the partition is.

J:17257M+1
Define
V= {vh eV ) vp is linear on each subinterval /j,
vh(0) = vi(1) =0},

Notice that V, < V.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)
For j=1,2,---, M, we define p; € Vj, by

(x) = 1 if i=,
D= 0 ifi=
Then every fe Vp, can be expressed as
M
fx) = 2 F05)i();
j=1

thus {npj}j’\il is a basis of the finite-dimensional vector space Vj,.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)
For j=1,2,---, M, we define p; € Vj, by

1 ifi=]
i) = { 0 ifi=j
Then every fe Vp, can be expressed as
) = 3 )0
thus {npj}j’\il is a basis of the finite-dimensional vector space Vj,.
Two numerical methods for approximating the solution of (D):
Q Ritz method:
Find up € V), such that F(up) < F(vy) for all vy, € Vi (My)
@ Galerkin method (finite element method):
Find upe V) such that (uf, viy={f, vp) for all v,eVy. (V)
Similar to the proof of (M) < (V), one can show that (My,) < (Vy).
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Next we focus on solving (Vy,). We first claim that

Find upe V) such that (uj, v/» = (f, vy for all v,e V).
< Find up, € Vj such that {uy, /) = (f ) forall 1 <j< M.

(=) Trivial! (Choosing test function v = ).

M
(<) For any vj, € Vi, vy = . njp; for some (1,12 -+ ,nu) € RM.
=1
Therefore, ’

M M
Cufo vy = (b S mef ) = 2wy o))
J= =

—Jﬁl i<t @)y = <ﬁj§1 771<PJ> = (fvm). :
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Note that a solution up € Vp, if exists, can be written as up(x) =

M
2. &pj(x) for some (€1,82,--- ,&m) € RM. Therefore,
j=1
Find up € Vi such that (up, /) = (fpp forall 1 <j< M

M
= <k21 Epppi)y =(fppforall l<j< M

M

< Y pneék=<fppforall L<j< M
k=1

< A€ = b for some matrix M x M matrix A.

Here, the matrix A = [aj]uxw is defined by a; = (p/,¢;) and is
called the stiffness matrix, while the vector b = [bj],«1 is defined

by b; = {f,p;y and is called the load vector.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

AE =b
o101y (pg,010) 0 Loty & {f,p1)
Colrp3) Kpg03) -+ Semen) || & | | (Fo2)
Remark:

O A is symmetric.
Q A'is tri-diagonal: (¢/, /) =0 if [i—j| > 1.
© A is positive-definitie: if n # 0, then
T M , M , 1 M
n An = <Z NiPis Y, 771<P1> = L (Z njtﬁj(X))
=1 =1 =1

@ Since A is SPD, A¢ = b has a unique solution.

/2
dx > 0.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)
For j=1,2,---, M, we have

& Xj1
<§0j,a90j :J gpj/(x)zdx—l—J gpj'(x)zdx
R RAR| 1 1
Lok [ o=l
Ll hj2 55 hf?+1 j i
i = oo == =1
PirPji—17 = \Pji—1n¥Pj/) = - =Ty
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)
For j=1,2,---, M, we have

Xj Xj+1
/ N /()2 /(2
efey= | eftotact | pjPax
| 2| 1 1
[ e [ =k,
Ll hj2 55 hf?+1 j i
PN et o [
ot =l == | poe=—p.
: . 1-0 .
For uniform partition: h;j = h = W Then A€ = b becomes
2 -1 0 Ol a 1 [&ey]
N 0 & (£, 02)
7o 0 : = :
: -1 2 -1 5 :
0 0 -1 2 | & | L[{few ]
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)
For j=1,2,---, M, we have

Xj Xj+1
/ N /()2 /()2
efey= | eftotact | pjPax
(7 Sl 1 1
= Llhfdx—i_L de_7+m’
S| 1
), 0110 =<1, 00> = —L_l =3
. ., 1-0 _
For uniform partition: h;j = h = YRR Then A€ = b becomes
2 -1 0 0 [ un(x) ] [ (o1 ]
NEEEEE. 0 up(x2) (£, p2)
I 0 : = :
: -1 2 -1 : :
0 0 -1 2 | [ubw) ] [ <Fomw |
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

2 -1 0 -0 [ un(x) ] [ <{fo1) ]
) 1 2 -1 -. 0 up(x2) (f,p2)
B 0 =|
. -1 2 -1 : -
0 - 0 -1 2 | Lubw) | | Few |

Taking into account that up(xp) = up(xw+1) = 0, the system above
shows that

1 1 .
— 73 [un(x-1) = 2un() + un(xe0)] = (F)  YI<j<M.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

2 -1 0 -0 [ un(x) ] [ <{fo1) ]
) 1 2 -1 -. 0 up(x2) (f,p2)
B 0 =|
. -1 2 -1 : -
0 - 0 -1 2 | Lubw) | | Few |

Taking into account that up(xp) = up(xw+1) = 0, the system above
shows that

1 1 .
— 73 [un(§-1) = 2un(g) + unOg1)] = (o VI<j< M,
Since we expect that uj approximates the solution u, the equality
above implies that

1 1 [xth
5 [ubg—h) = 2ulx) + ul+ M) = ¢ | i) dx V1<j<M.

xj—h
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)
Recall that if ue C*([x; — h,x; + h]),

1 1
u"(x)) = 75 [ulg + h) = 200x) + uly — )] = 5 HuD(E)
for some & € (x; — h, x; + h). Moreover, if fe C2([x; — h,x; + h]),
by Taylor's Theorem there exists 7); € (x; — h, xj + h) such that
£ (n:
£ = Fog) + F10g)(x— ) + T8 (x— 2

thus if fe C2(jxj— h, x;-+ h]), the fact that ; [ T 5(x) dx = 1 shows
xj—h

% LXjJrhh f(x)j(x) dx
- i17fjhh [f(xj) * f/(Xj) (X - XJ) + fﬂ(an) (X - Xj)Q] SO(X) dx

= f0g) + = [ () (x— x5)20()
X) T ap ), T WX T X)Tel) ax
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)
Recall that if ue C*([x; — h,x; + h]),

4" () = 5 [uy + B) — 2u0g) + u(y — B)] — T HUO(E)

for some & € (x; — h, x; + h). Moreover, if fe C2([x; — h,x; + h]),
by Taylor's Theorem there exists 7); € (x; — h, xj + h) such that

£ = Fog) + F10g)(x— ) + T8 (x— 2

thus if fe C2(jxj— h, x;-+ h]), the fact that ; [ T 5(x) dx = 1 shows
xj—h
1 [oth
o] e dx
xi—h

j

=177 [re) + = )+ S s
= o) + () [

X

2
(x = x7)%p(x) dx
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)
Recall that if ue C*([x; — h,x; + h]),

1 1
u"(x)) = 75 [ulg + h) = 200x) + uly — )] = ZHuD(g)
for some & € (x; — h, x; + h). Moreover, if fe C?([x; — h,x; + h]),
by Taylor's Theorem there exists 7); € (x; — h, xj + h) such that
£ (n:
£ = Fog) + F10g) (x— ) + T2 (x— 2

thus if fe C2(jx— h, xj-+ h]), the fact that ; [ T 0(x) dx = 1 shows
xj—h

% LXjJrhh f(x)j(x) dx
- i17fjhh [f(xj) * f/(Xj) (X - XJ) + f”(an) (X - Xj)Q] SO(X) dx
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§6.7 Finite Element Method (FEM)
Recall that if ue C*([x; — h,x; + h]),

1 1
u"(x)) = 75 [ulg + h) = 200x) + uly — )] = ZHuD(g)
for some & € (x; — h, x; + h). Moreover, if fe C?([x; — h,x; + h]),
by Taylor's Theorem there exists 7); € (x; — h, xj + h) such that
£ (n:
£ = Fog) + F10g) (x— ) + T2 (x— 2

thus if fe C2(jx— h, xj-+ h]), the fact that ; [ T 0(x) dx = 1 shows
xj—h

% LXjJrhh f(x)j(x) dx
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

Therefore, we conclude that if fe C2([0,1]) (so that ue C%([0,1])),
the finite element method introduced above indeed is a second order
approximation of the equation

at each node x;.
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

FDM different from the FEM methods in few aspects:

@ In the FDM methods, the discretization of the domain is done
as a set of nodes at which the results are determined, while in
the FEM method the results are known in every point of the
domain as the approximation is done with functions defined on

small triangular (or quadrilateral) areas in 2D.

@ Because of that, the algorithms used in FDM require generally
less computational power to solve the equations, but it results

also in less “refines” results (only at nodes).
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Chapter 6. Numerical Ordinary Differential Equations

§6.7 Finite Element Method (FEM)

The main difference between FEM and FDM (in simple terms):

@ FDM is an older method than FEM that requires less compu-
tational power but is also less accurate in some cases where

higher-order accuracy is required.

@ FEM permits to get a higher order of accuracy, but requires
more computational power and is also more exigent on the qual-

ity of the mesh.

Ching-hsiao Cheng #E A 47 1| MA-3021
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§6.7 Finite Element Method (FEM)

Computer project

Consider the following one-dimensional convection-diffusion prob-

lem:
—eu’(x)+ u'(x) =0 for xe (0,1), (*)
*
u(0) =1, u(l) =0.
Write the computer codes for numerical solution of problem () by
using the finite difference methods on the uniform mesh of [0, 1]

with mesh size h:
ir1 — 2U; i b — U
@ Replace u”(x) ~ % and u’(x;) ~ % and

consider (e, h) = (0.01,0.1), (¢, h) = (0.01,0.01). Plot up.
@ Replace U/I(X,') ~ Uit1 _thi“’ Ui U; _hUi—l (up—
winding) and consider (e, h) = (0.01,0.1), (e, h) = (0.01,0.01).

Plot uy,.

and u’(x) ~
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