A Concise Lecture Note on Differential Equations

1 Introduction

Definition 1.1. A differential equation is a mathematical equation that relates some unknown
function with its derivatives. A differential equation is called an ordinary differential equation (ODE)
if it contains an unknown function of one independent variable and its derivatives. A differential
equation is called a partial differential equation (PDE) if it contains unknown multi-variable functions

and their partial derivatives.

Definition 1.2. A solution to a differential equation is a function that validates the differential

equations.

Example 1.3. The following three differential equations are identical (with different expression):

yt+y=xz+3,
d
—y+y:m+37
dx

f@)+ flz) =2 +3.

The function y(z) = z+2 (or f(z) =2z +2) and y(x) =x+2+¢e 7 (or f(x) =x+2+e ) are both

solutions to the differential equation above.

R? — R

be an unknown function. The differential equation
(x,t) — wu(zx,t)

Example 1.4. Let u : {
U — Uy =T —
is a partial differential equation, and u(x,t) = x? 4+ xt + t? is a solution to the PDE above.

Definition 1.5. The order of a differential equation is the order of the highest derivative that appears

in the equation. A differential equation of order 1 is called first order, order 2 second order, etc.

Example 1.6. The differential equations in Example I3 and I are both first order differential

equations, while the equation y” + zy?® = 27 and w; — uy, = 2% + t° are second order equations.
Definition 1.7. The ordinary differential equation
F<t7yay/7 o 7y(n)) =0

is said to be linear if F' is linear (or more precise, affine) function of the variable y, ¢/, ---, y™. A

similar definition applied to partial differential equations.



1.1 Why do we need to study differential equations?

Example 1.8 (Spring with or without Friction).

mi = —kxr —ra.
Example 1.9 (Oscillating pendulum).

mLl = —mgsin 6

Example 1.10 (System of ODEs). Let p: [0,00) — R denote the population of certain species. If
there are plenty of resource for the growth of the population, the growth rate (the rate of change of
the population) is proportion to the population. In other words, there exists constant v > 0 such

that q
—n(t) = t).
dtp< ) = yp(t)

The LotkaVolterra equation or the predator-prey equation:

p=7p—apq,
¢ = Bq+opq.

Example 1.11. A brachistochrone curve, meaning "shortest time" or curve of fastest descent, is the
curve that would carry an idealized point-like body, starting at rest and moving along the curve,
without friction, under constant gravity, to a given end point in the shortest time. For given two
point (0,0) and (a,b), where b < 0, what is the brachistochrone curve connecting (0,0) and (a, b)?
Define
X ={h:[0,0] > R|h(0) =0,h(b) = a, his differentiable on (0,b)}

and
A={p:[0,b] > R|p(0) =0,9(b) =0, his differentiable on (0,b)},

and suppose that the brachistochrone curve can be expressed as © = f(y) for some f € A. Then f

f VIt Ry

the minimizer of the functional

or equivalently,

= min

b T+ R (y
heX —29
If ¢ : [0,b] — R is differentiable such that ¢ O) ©(b) = 0. Then for ¢ in a neighborhood of 0,

f+tpe X; thus
L+ (f +ty)
F(t) J \/ f—2gt Uk dy

attains its minimum at ¢ = 0. Therefore,

\/1+ (f +to) (y)?
vV =29y

F'(0

dy =0 VoeA.



By the chain rule,
WY
o vV=29y\/1+ f'(y)?

Suppose in addition that f is twice differentiable, then integration-by-parts implies that

dy =0 VoeA.

[ f'w) : -
L [\/Tgy\/w] p(y)dy =0 Voe A

which further implies that

/') '
=0

[v—2gyx/1 + f’(y)Q]
since ¢ € A is chosen arbitrarily.

Question: What if we assume that y = f(z) to start with? What equation must f satisfy?

Example 1.12 (Euler-Lagrange equation). In general, we often encounter problems of the type

ml}\lj L(y,y',t)dt, where A= {y:[0,a] - R|y(0) =y(a) =0}.
ye 0

Write L = L(p,q,t). Then the minimizer y € A satisfies
L) = Ly t)
dt qy7y7 - pyayv .

The equation above is called the Euler-Lagrange equation.

Example 1.13 (Heat equations). Let u(z,t) defined on Q x (0, 7] be the temperature of a material
body at point z €  at time t € (0,7], and ¢(z), o(x), k(x) be the specific heat, density, and the
inner thermal conductivity of the material body at x. Then by the conservation of heat, for any

open set U < €,

% ) c(x)o(x)u(x,t) de = Lu k(x)Vu(x,t) - N(z)dS, (1.1)

where N denotes the outward-pointing unit normal of /. Assume that u is smooth, and U is a

Lipschitz domain. By the divergence theorem, (I) implies

J c(x)o(x)u(z, t)dr = f div(k(z)Vu(z,t))dz.
u

u
Since U is arbitrary, the equation above implies
c(z)o(x)u(z,t) — div(k(z)Vu(z,t)) =0 VYxeQ,te(0,T].
If k£ is constant, then
co 5 0%

?Ut:AUEiZIa—x?.

If furthermore ¢ and p are constants, then after rescaling of time we have
up = Au. (1.2)

This is the standard heat equation, the prototype equation of parabolic equations.



Example 1.14 (Minimal surfaces). Let T' be a closed curve in R?. We would like to find a surface
which has minimal surface area while at the same time it has boundary I'.

Suppose that Q € R? is a bounded set with boundary parametrized by (z(t),y(t)) for ¢t € I, and
' is a closed curve parametrized by (z(t),y(t), f(z(t),y(t))). We want to find a surface having C' as
its boundary with minimal surface area. Then the goal is to find a function u with the property that

u = f on 0f2 that minimizes the functional

o (w) = Lm FVwPdA.

Let p € €(Q), and define

L A(u+tp) — A(u) Vu -V
0A(u; ) = lim / N L VIt V2 dx

If u minimize A, then §A(u;¢) = 0 for all p € €(Q). Assuming that u € €3(Q), we find that u

satisfies

Vu
av( Yy
V14 |Vul?
or expanding the bracket using the Leibnitz rule, we obtain the minimal surface equation

(1 + w2 tgr — 2uptygy + (1 4+ ud)uy, =0 V(z,y) € Q. (1.3)

Example 1.15 (System of PDEs - the Euler equations). Let 2 € R? denote a fluid container, and
o(z,t), u(x,t),p(x,t) denotes the fluid density, velocity and pressure at position x and time ¢. For a
given an open subset O < () with smooth boundary, the rate of change of the mass in O is the same

as the mass flux through the boundary; thus

o(z,t)dx = —f (ou)(x,t) - NdS,

dt Jo 00

where N is the outward-pointing unit normal of ¢O. The divergence theorem then implies that

i), o(z,t)dx = — J;) div(ou)(z,t)dS .

If p is a smooth function, then df
dt Jo

o(z,t)dr = f ot(z, t)dx; thus
o
J [0 + div(ou)] (2, t)dz = 0.
o
Since O is chosen arbitrarily, we must have

or + div(pu) =0 in . (1.4)

Equation (I) is called the equation of continuity.
Now we consider that conservation of momentum. Let m = pu be the momentum. The conser-

vation of momentum states that

ij mdw:—f m(u-N)dS—f deS-FJ of dz,
dt Jo 00 o0 o



here we use the fact that the rate of change of momentum of a body is equal to the resultant force
acting on the body, and with p denoting the pressure the buoyancy force is given by pNdS.

20
Here we assume that the fluid is invicid so that no friction force is presented in the fluid. Therefore,

assuming the smoothness of the variables, the divergence theorem implies that
N :
J(mu?
f [mt+2¥+Vp—gf der =0.
o — 3xj
7=1
Since O is chosen arbitrarity, we obtain the momentum equation

(ou): +div(ou ® u) = —Vp+ of . (1.5)

Initial conditions: o(x,0) = go(x) and u(x,0) = uy(z) for all z € Q.
Boundary condition: w-N = 0 on 0f).

1. If the density is constant (such as water), then (I4) and (I23) reduce to
u+u-Vu=-Vp+f in Qx(0,7), (1.6a)
dive =0 in Qx(0,7). (1.6b)

Equation (ICA) together with the initial and the boundary condition are called the incompress-

ible Euler equations.

2. If the pressure p solely depends on the density; that is, p = p(o) (the equation of state), then
() and (I3) together with are called the isentropic Euler equations.

1.2 Direction Fields

A direction field is in particular very useful in the study of first order differential equations of the
type:

dy

VT ta 5

e ACY)
where f is a scalar function. A direction field is a vector-field on the (¢, y)-plane on which a vector
(1, f(t,y)) is associated with each point (¢,y).

Example 1.16. Consider a falling object whose velocity satisfies the ODE

m@_m_ v

1.3 Initial and Boundary Conditions
Given y satisfies f (t, Yy, ,y(")) = 0, the initial condition for the ODE is of the form

y(a) = b,y (a) = by, 4" V(a) =0,

which specify the derivative of y at a up to (n — 1)-th derivative of y.
If we are interested in an ODE of the form f(x, y, Yy, y(Q")) = 0 on a particular
interval [a, b], the boundary condition for an ODE of this type is of the form

iU(a) = Clyy(b) = dhy,(a) = Cz,y/(b> =dy,- - ,?J(n)(a) = Cn+17?/(n)(b) = dpt1 -



2 First Order Differential Equations

In general, a first order ODE can be written as

%zf(t,y)

for some function f. In this chapter, we are going to solve the linear equation above explicitly with
L f(t,y) = p(t)y + q(t);

2. f(t,y) = g(y)h(t),

and also provide some insight of nonlinear equations.

2.1 Linear Equations; Method of Integrating Factors

Suppose that we are given a first order linear equation

d
d_i{ + p(t)y = q(t) with initial condition y(a) =b.

Let P(t) be an anti-derivative of p(t); that is, P'(t) = p(t). Then

d d
t)( Y —|—Pl( ) ) _ eP(t)q(t) - %< P(t)y(t)> — eP(t)q(t)
= J % )ds = L ePOQ(s)ds = ePWDy(t) — P Vy(a) = L ePPQ(s)ds
=y(t) = eP@—-PMy 4 Jt eP(S)_P(t)Q(S)ds.

How about if we do not know what the initial data is? Then

d d
PO (S04 P)y) = e"Oq(t) = = (" Vy(1)) = e"Vq(t) = " Vy(t) = € + f " Oq(t)dt,

where Jep ®g(t)dt denotes an anti-derivative of ¢”’Q. Therefore,
y(t) = Ce PO 4 =P Jep(t)q(t)dt
Example 2.1. Solve & + Ly — Les Answer: y(t) = get/?’ + Ce™/2,

at T 27 7 2

Example 2.2. Solve % — 2y =4 —t. Answer: y(t) = —Z + %t + Ce*.

Example 2.3. Solve ty’ + 2y = 4t* with y(1) = 2. Answer: y(t) = t* + %2



2.2 Separable Equations

Suppose that we are given a first order linear equation

d
d—‘z = g(y)h(t) with initial condition y(a) =0,

where 1/g is assume to be integrable. Let G be an anti-derivative of 1/g. Then

%zg(y) ():» 1 dy = h(t) = G'(y )f;i h(t)
CZG( B =~ J ds = h(t) = G(y(t)) — G(y(a) = L h(s)ds

~ Gy(t) = G(b) + f h(s)ds

a

and y can be solved if the inverse function of G is known.

dy z?

Example 2.4. Let y be a solution to the ODE 5. Then z,y satisfies 2° + y* — 3y = C

de 1-— Y
for some constant C'.
2r4x+2
Example 2.5. Let y be a solution to the ODE dy _ m with initial data y(0) = —1. Then

y=1— a3+ 222+ 2x + 4.

Definition 2.6 (Integral Curves). Let F = (Fy,---,F,) be a vector field. A parametric curve

z(t) = (x1(t), -+ ,za(t)) is said to be an integral curve of F if it is a solution of the following
autonomous system of ODEs:

dx
d_tl:Fl(xla'” 7‘rn)7
dx,
E:Fn(mly'” 7-7371)-

In particular, when n = 2, the autonomous system above is reduced to

dx dy
—=F = 2.1
Y Py, WG (2.)
for some function F,G. Since at each point (2o, y0) = (z(to),y(to)) on the integral curve,

dy _dy/dt
dlE (z,y)=(z0,y0) n d[E/dt

t=to

if CC% # 0, instead of finding solutions to (E-1) we often solve
t=to

dy  G(z,y)

dv F(z,y)’

Example 2.7. Find the integral curve of the vector field F(x,y) = (4 +4?, 4z — 23) passing through
(0,1). Answer: y! + 16y + z* — 82% = 17.



2.3 Modelling with First Order Equations

Example 2.8 (Mixing). At the very beginning, )y Kgs salt were dissolved in 100 liters of water.
Afterward, salty water containing 1/4 Kg salt per liter enter the container at the speed r liters per
minute, while at the same time 7 liters of the well-mixed solution leaves the tank every minute. If

Q(t) is the quantity (in Kgs) of salt in the container at time ¢, then

aQ —r  rQ B
1 100" Q(0) = Qo

To solve this ODE, we use the integrating factor and obtain that
dQ  rQ

r d
at + 100 4_1 = dt( rt/looQ( )) _ 46rt/loo - ert/100Q<t) _ 25€rt/100+0
= Q(t) = 25 + CeT/100

and the initial data implies that C' = Q)¢ — 25. Therefore,
Q(t) = 25+ (Qg — 25)e /100,

Using the separation of variables,

dQ r dQ rt
o 10 P 97 50 1oodt = ~log25 = Q) = 755 + ¢

and the initial data implies that C' = —log|25 — Qo|. Therefore,

125 — Qo £/100 —rt/100
— = or Q(t) =25+ (Qy — 25)e /100
Example 2.9 (Escape Velocity). By Newton’s second law of motion F' = ma, we consider the
GMm

M
Note that on the surface x = 0, the forcing equals —mg; thus M =g

. dv
equation m— = 2

dt ~  (R+x)? i mgR?

In other words, the equation becomes mo = “Ria?

Suppose that v can be written as a function of the position x, then

dv mgR? dv dx gR? dv gR? J gR? d
m—=—-——=———=——— = y—=——— = vdv = ————dx
dt (R+ x)? dx dt (R+x)? dx (R+ z)? (R+ x)?
1, gR? \/ 29 R?
SvT = C = +7/vg —29R
2" TRya = vle) = v~ 29 TRya
where vy = v(0) is the initial data. For a given vy, the maximum attitude £ that the body reaches is
2
given by & = % ;0]_?” 7 and to escape the gravity of the earth, the initial velocity vy should be not

less than /2¢gR.

2.4 Differences b/w Linear and Nonlinear Equations

Concerns in differential equations: existence and uniqueness of solutions to differential equations.



Theorem 2.10. Let the function f be functions of t and y such that f and its partial derivative %

is continuous in some rectangular domain (t,y) € R = (a, ) x (v, 9). Suppose that (to,yo) € R. Then
in some interval t € (to — h,to + h) < («a, ), there exists a unique solution y = ¢(t) to the initial

value problem
y'=fty)  ylto) =wo-

Example 2.11. Consider % = y'/3 with initial data y(0) = 0. There are infinitely many solutions

t) = s
() i[%(t—to)}g if t > to.

of

The reason for non-uniqueness of the solutions is that 5 is not continuous near (0, 0).

Y
Let us look at what separation of variables implies. Using the separation of variables, with
_ 3.3
G(y) = Sy" we have

dy

dt

dy _ dG
dt

dt

1/3 - y71/3@ -1 = G/(y)

1
dt =

Y 1.

dG
We cannot apply the fundamental theorem to conclude that G(t) = t + C here since r is not

continuous in the time interval containing ¢ = 0 (in fact, %dt is an improper integral). However,

if we apply the fundamental theorem of calculus, we obtain that
Gy(t)) =t+C = y(t) = 1]

which is one of the solutions.

2.5 Autonomous Equations and Population Dynamics

Definition 2.12. A first order ODE f(¢,y,vy’) = 0 is called autonomous if it can be rewritten as
dy
a fy)-

Example 2.13 (Exponential Growth). In Chapter 1 we have discussed the equation

dp

a:’ypu

where p is the population of certain species and « is the rate of growth (or decline). Solving the
ODE with the initial data p(0) = po, we obtain that

p(t) = poe™.

Example 2.14 (Logistic Growth). Instead of the purely theoretical model in Example 13, we

consider the equation
dp

—h
o (p)p,



where the growth rate depends on the population. The simplest function for h is h(p) = v — ap for
some positive constant «. Then

% =(y—ap)p or equivalently — = 7( — —)p (2.2)
in which K = g Equation (272) is called the logistic equation.

Equilibrium solution: An equilibrium solution to a differential equation is a solution which does
not vary with its independent variable (usually time). Therefore, there are two equilibrium solutions
to (Z2): p=¢1(t) = 0 and p = po(t) = K.

General solution: Let py = p(0) > 0 be the initial data. If py # 0 or K, using separation of

variables:

Kdp

1 1
mzvdt = (K——])+g_9>dp:7dt = —log|K —p|+log|p| =+t +C

= = e’ .
K —pl  [K—po

Kpo

po + (K —po)e
0 < po < K. The solution p = ps(t) = K is then called an asymptotically stable solution, while

Therefore, p(t) = which implies that p — K as t — o0, no matter py > K or

p = ¢1(t) = 0 is an unstable equilibrium solution. The number K is called the saturation
level or the environmental carrying capacity.
Note that since

d*’p ddp

d ;o Ndp
Fr ik Ef(p) =f (p)% = f'(n)f(p),

the graph of p versus ¢ is concave up when f and f’ have the same sign, while the graph is concave

down when f and f’ have opposite signs. Therefore, solutions are concave up for 0 < y < g

andy > K, while the solutions are concave down for % <y< K.

Example 2.15 (A Critical Threshold). In Example 214, what happened if v < 07 In this case, we

instead consider p
= 0-7)
L A1 £ 2.3
= )P (2.3)
where v > 0 and 7" > 0. This time the solution is

_ Tpo
po + (T' — po)et

p(t)

Unless py = T, the population decays to zero; thus 7' is called the threshold level which means

1
below this level the growth of population does not occur. When py > T', the time T* = - log pop_o T

to which the population tends to infinite; thus the population becomes unbounded in a finite time.

The equilibrium solution p(t) = 0 is an asymptotically stable solution, while the equilibrium

solution p(t) = T' is an asymptotically unstable solution.

Example 2.16 (Logistic Growth with a Threshold). Combining the experiences from the previous

two examples, we design an model which cooperates the two phenomena:



1. the population will not grow if the initial population is below certain threshold;

2. the population will not blow up in a finite time if the population will grow.

Instead of letting h(p) = v — ap, we consider the following more complicated situation: h(p) =
~(1-PYy1 -2
7(1 T)(l K) for some v >0and 0 < 7T < K.

Equilibrium solution: ¢(t) = 0, po(t) = T, ¢3(t) = K. ¢; and @3 are asymptotically stable,
while ¢, is asymptotically unstable.

General solution: (Important or not?)

2.6 Exact Equations and Integrating Factors
Recall vector calculus:

Definition 2.17 (Vector fields). A vector field is a vector-valued function whose domain and range

are subsets of Euclidean space R™.

Definition 2.18 (Conservative vector fields). A vector field F : D < R" — R" is said to be
conservative if F = Vo for some scalar function ¢. Such a ¢ is called a (scalar) potential for F on
D.

Theorem 2.19. IfF = (M, N) is a conservative vector field in a domain D, then N, = M, in D.

Theorem 2.20. Let D be an open, connected domain, and let ' be a smooth vector field defined on

D. Then the following three statements are equivalent:

1. F is conservative in D.

2. § F - dr = 0 for every piecewise smooth, closed curve C' in D.
c

3. Given and two point Py, P, € D, f F - dr has the same value for all piecewise smooth curves
c
in D starting at Py and ending at P;.

Definition 2.21. A connected domain D is said to be simply connected if every simple closed

curve can be continuously shrunk to a point in D without any part ever passing out of D.

Theorem 2.22. Let D be a simply connected domain, and M,N,M,, N, be continuous in D. If
M, = N,, then ¥ = (M, N) is conservative.

Sketch of the proof. Since N, = M,,

T

("/) T
N(z,y) = N(wo,y) + | M, (,9) dz = N(wo,y) + a—yf M(z,y) dz
(’3 T
= S+ | i),

where W(y) is an anti-derivative of N(zg,y). Let p(z,y) = V(y) + f M(z,y)dz. Then clearly
(M, N) = V¢ which implies that F = (M, N) is conservative. ’ D



Combining Theorem ZT9 and 222, in a simply connected domain a vector field F = (M, M) is

conservative if and only if M, = N,.

Example 2.23. Let D = R?\{(0,0)}, and M(z,y) =

T
: N(x,y)—m. Then M, = N, =

22 +y?’

2 _
A Y D; however, ' # V¢ for some scalar function ¢ for it there exists such a ¢, ¢, up to

(@2 1 2)2
adding a constant, must be identical to the polar angle 6(x,y) € [0, 27).

Now suppose that we are given a differential equation of the form

dy _ M(z,y)
dv N(z,y)’

in which separation of variables is not possible. We would like to find integral curves of the vector
field F = (—N, M). Note that the ODE above is equivalent to that

d
M(%?JHN(L?J)%:U

Definition 2.24. An ODE of the form M(x,y) + N(a:,y)% = 0 is called exact if there exists a

continuously differentiable function ¢, called the potential function, such that ¢, = M and ¢, = N.

To solve the ODE

M(z,y) + N(x,y)j—i =0, (2.4)

the following two possibilities are most possible situations:

1. If M, = N, in a simply connected domain D, then Theorem P22 implies that the ODE (22)
is exact in a simply connected domain D < R?; that is, there exists a potential function ¢ such
that Vo = (M, N). Then (24) can be rewritten as

d

Y
pr(w7y) + gay(x,y)% = 0;

and if (z(t),y(t)) is an integral curve, we must have

dx @

Pl (t), (1) S+ ol (t), y(6)

d
0t =0 or equivalently, agp(z(t), y(t)) =0.

Therefore, integral curve satisfies p(z,y) = C.

2. If M, # N,, we look for a function p such that (uM), = (uN), in a simply connected domain
D < R2. Such a p always exists (in theory, but may be hard to find the explicit expression),

and such a p is called an integrating factor.

If such a p exists, then u satisfies
Mpy — Npig + (My — N )u=0.

Usually solving a PDE as above is as difficult as solving the original ODE.



Example 2.25. Solve (ycosz + 2ze?) + (sinz + z%e¥ — 1)2& = 0.
X

Let M(z,y) = ycosx + 2ze¥ and N(z,y) = sinz + 2%e¥ — 1. Then M,(z,y) = cosx + 2ze¥ =
N, (x,y); thus the ODE above is exact. To find the potential function ¢, due to the fact that ¢, = M
we find that

P(r.9) = W) + | Mz, )ds = B(y) + ysing + e

for some function ¥. By ¢, = N, we must have ¥'(y) = —1. Therefore, ¥(y) = —y + C; thus the
potential function ¢ is

o(z,y) = ysinx + 2%e¥ —y +C.

Example 2.26. Solve (3zy + y?) + (z* + xy)%yc = 0.
Let M(z,y) = 3zy + y* and N(z,y) = 2 + zy. Then M, — N, = z + y. Assuming that the

integrating factor p is only a function of x, then pu satisfies

dp M, — N, 1

i
thus p(x) = .
Multiplying both side of the ODE by g, we then obtain
d
(32%y + zy?) + (2 + :BQy)d—y =0
x

which is exact, and the integral curves of the ODE above, by finding the potential, satisfies

2,2
x?’y—i-—xzy =C.

One can also verify that the function p(z,y) = is also a valid integrating factor.

xy(2z +y)

2.7 Numerical Approximations: Euler’s Method
The goal in this section is to solve the ODE

dy _

i fty)  ylto) = yo (2.5)

numerically (meaning, programming in computer to produce an approximation of the solution) in
the time interval [to, to + T.

Let At denote the time step (which mean we only care what the approximated solution is at time
ty = to + kAt for all k € N), and y, = y(to + kAt). Since @(tk) ~ S Uk Ghen At ~ 0, we

p dt At
substitute yk%tyk for d—?(tk) and obtain
Yp+1 =~ yk—i-f(tk,yk)At VkeN.
The forward/explicit Euler method is the iterative scheme
U1 = up + f(tg, ugp) At Vke {1,2,--- , [Zt] — 1},u0 = 1o (in theory). (2.6)



Assume that f is bounded and has bounded continuous partial derivatives f; and f,; that is, f;
and f, are continuous and for some constant M > 0 |f(¢,y)| + |fe(t,y)| + | f,(t,y)| < M for all ¢, y.
Then the mean value theorem implies that the fundamental theorem of ODE (which will be provided
in the next section) provides a unique continuously differentiable solution y = y(t) to (23). Since f;

and f, are continuous, we must have that y is twice continuously differentiable since

"= ft(tay) + fy(tvy)y,

By Taylor’s theorem, for some 6 € (0, 1) we have

Y(ther) = y(tn) +y' () AL + (At)2 "(tk + OxAl)

At)?
= yr + f(tr, yr) At + ( 2) [fe 4 fof ] (b + 0D, y(t), + 6 AL)) 5
thus we conclude that A
Yk+1 = Y + f (e, yn) At + - Tk

for some 7, satisfying |7,| < LAt for some constant L.

With e, denoting uy — yi, we have
A
Ck+1 = €k + [f(tkauk) — f(tr, ykﬂAt + 7% .
The mean value theorem then implies that
L
leps1| < lew| + (MAL)|ey| + 5( t)? = (1 4+ MAt)|ex| + = (At)
thus by iteration we have
L 2 L 2 L 2
lerst| < (14 MAt)|ex| + —(At) < (1+ MAY[(1+ MAt)|ep—q| + §(At) ]+ §(At)

= (14+ MAt)?|ep_1| + L(At) [1+ (1+ MAY)]

< (1+ MAH)*eo| + E(At)2 [1+(1+ MAt) + (1+ MAt)?> + -+ (1 + MAt)¥]
= (1 4+ MA)eo| + —At[(l + MAtF —1]

< +MAt)k+1<|eo| + mm)

for all k e {1, 2, [Kt] — 1} Since (1 + MAt) < eMA! we conclude that

L
< MUk+1) At( —At) < MT( —At)
leni1] <e leo| + oYi e leo| + oYi

which further implies that

L
max |e e —i——At)
e < M7 (leo| + 577



2.8 The Existence and Uniqueness Theorem

In this section we prove Theorem ZI0. Recall that

Theorem ZT0. Let f be a function of t and y such that f and its partial derivative % is continuous
in some rectangular domain (t,y) € R = («, ) x (v,0). Suppose that (to,yo) € R. Then in some
interval t € (to — h,ty + h) < (o, 3), there exists a unique solution y = @(t) to the initial value

problem
y'=fty)  ylto) =wo- (2.7)

Proof. The proof is separated into two parts.

Existence: Choose a constant k € (0,1) such that [ x J = [tg—k,to+ k] x [yo—k, yo+ k] S R. Since
I x J is closed and bounded, |f| and |f,| attain their maximum in I x J. Assume that for some
M =1, |f(t,y)] + |f,(ty)| < M for all (t,y) € I x J. Let h = k/M and I, = [to — h, to + h).

Then for t € I}, define the iterative scheme (called Picard’s iteration)
t
pi®) =+ | F(s.on(®)ds. o) =m0 (2.9
to

Note that ¢, is continuous for all n € N. We show that the sequence of functions {px}72,

converges to a solution to (272).

Claim 1: For all n e N u {0},

lon(t) —wo| <k Viel,. (2.9)

Proof of claim 1: We prove claim 1 by induction. Clearly (229) holds for n = 0. Now suppose
that (Z9) holds for n = N. Then for n =N + 1 and t € I,

t
‘(pN+1(t) — y()’ < f f(S,(PN(S)> dS‘ < M‘t —t0| <k.
to

Claim 2: For all n e N u {0},

max ’()On—i-l(t) - @n(tﬂ < kn+1 :

tEIh
Proof of claim 2: Let e,1(t) = ¢n+1(t) — ©n(t). Using (Z3) and the mean value theorem,
we find that

t t

cons(®) = [ [F(sp0n(9) = Fspa@)] ds = | £(s.60(6))enls)ds
to to

for some function &, satisfying |§n(t) - yo‘ < k in I, (by claim 1); thus with ¢, denoting

max‘en(tﬂ,

tely
€nt1 < kep VneN;



thus

€ni1 < ken_1 < K6y <--- < k"e; = k" max
telh

t
J £(5,90) ds‘ < Mhk" = K™+
to

Claim 3: The sequence of functions {¢, (t)}:f:l converges for each t € I;.

Proof of claim 3: Note that

Pr1(t Z pipa(t) —o;(t)] .

0
For each fixed ¢ € I, the series Y [¢;41(t) — @;(t)] converges absolutely (by claim 2 with the
j=0

comparison test). Therefore, {gon(t)}:):l converges for each t € Ij,.
Claim 4: The limit function ¢ is continuous in 7.

Proof of Claim 4: Let ¢ > 0 be given. Choose § = ﬁ Then if ty,t5 € I satisfying

[t1 — to] < 0, we must have

to
[Pnir(tr) = Pria(tz)] < f F(s,0u(s)) ds| < Mlty —ta] < 5.

t1

Passing to the limit as n — oo, we conclude that
€
|g0(t1)—90(t2>‘ < 5 <e€ th,tge[h and ’tl—t2’ <0

which implies that ¢ is continuous in [j,.

t
Claim 5: The limit function ¢ satisfies ¢(t) = yo + J f(s, gp(s)) ds for all t € I),.
t

0
Proof of claim 5: It suffices to show that

lim [ f(s,pn(s))ds = L f(s,0(s))ds Vtely,.

n—0o0
to 0

N+2
k < €. Then by claim 2 and the mean value

Let € > 0 be given. Choose N > 0 such that lf

theorem, for n > N,

‘LO S, @n(s)) ds — J f(s,0(s)) ds‘ = ‘ t: Fy(5,€(5)) [pn(s) = ©(s)] ds’

N+2

o0
, k
ft Z |0j41(s) — @j(s)\ds‘ < Mt _t[)’;:vkjﬂ <{ 7 <¢

0 j=n

Claim 6: y = ¢(t) is a solution to (272).

Proof of claim 6: Since ¢ is continuous, by the fundamental theorem of Calculus,

i[ywrf f(s,90(s)) ds} = f(t,¢(t))

0

which implies that ¢’(t) = f (¢, ¢(t)). Moreover, ¢(0) = yo; thus y = ¢(¢) is a solution to (2-2).



Uniqueness: Suppose that y = 9(t) is a solution to the ODE (E70) in the time interval I;, such that
W(t) — y0| < k in Ij,. Let ¥ = ¢ — 1. Then ¢ solves

0= [(t9) — Ft6) = £,(1ED)D O(to) =0

for some £ in between ¢ and v satisfying |£(t) — yo| < k. Integrating in ¢ over the time interval

[to, t] we find that
a(t) = f Fy(5,€(5))0(s) ds

)o(s)] ds] < MJ 19(s)] ds

(a) Ift> to,

thus the fundamental theorem of Calculus implies that

g Mtf [9(s)] ds ) = e (ot \—Mf 9(s)[) <0

t 1
-t f [9(s)| ds < M0 f "9(s)] ds = 0
to to

which implies that 9(t) = 0 for all ¢ € I;.
(b) Ift < to,

Therefore,

(s,£(5))||0(s |ds MJ |ds-—Mf [9(s)| ds;

thus the fundamental theorem of Calculus implies that

%(eMt f: [9(s)] ds) = 6Mt<|79(t)| + MJ: |19<5)|> <0.

t to
Mtf [9(s)| ds = eMtOJ [9(s)|ds =0
to to

which implies that ¥(t) = 0 for all t € Ij.

Therefore,

Finally, we need to argue if it is possible to have a solution y = y(¢) in the time interval I,
but |y(t) — yo‘ > k for some t € Ij,. If so, by the continuity of the solution there must be some
t; € I, such that |y(t1) — yo‘ = k. We then can solve the ODE

V= fty)  Y(t) =yt),

and the previous argument implies that there is a time interval I in which the solution is unique.

Since y = ¢(t) is a solution in the time interval I, we must have ¢ = ¢ in I, N I. This

concludes the uniqueness of the solution to (22). a



Remark 2.27. In the proof of the existence and the uniqueness theorem, the condition that f, is
continuous is not essential. This condition can be replaced by that f is (local) Lipschitz in its second

variable; that is, there exists L > 0 such that

|f(t7y1) - f(tayQ)‘ < L‘yl - y2| :

Example 2.28. Solve the initial value problem y’ = 2¢(1 4 y) with initial data y(0) = 0 using the
Picard iteration.

Recall the Picard iteration

orr1(t) = Jt 25(1 4 ¢i(s)) ds with ¢g(t) = 0. (2.10)

0

Then ¢y (t) = fQSdS:tQ and ¢(t) JQS 1+S)d5—t2+— and then ¢3(t) = f25(1+5 +
0

4 4 tG
%) ds =t? + 5 + —. To see a general rule, we observe that ¢ (t) must be a polynomial of the form

6
k .
= Z Cth2] s
j=1

and @p11(t) = or(t) + ap1t2*+Y). Therefore, we only need to determine the coefficients ay, in order
to find the solution. Note that using (Z10) we have

k+1 t k+1a
Ea]tQJ—JZS 1—|—Za]t2j ds_t2+22 +2t23+2—t2+2 42

= = P

1
J__ . Therefore,

thus the comparison of coefficients implies that a; =1, a; =

Tk k(k—1) k(k—1)---2 Kl
ko 42 ko 42
which implies that () = - = — — 1. Using the Maclaurin series of the exponential
j=1J: j=0 J:

function, we find that ¢g(t) converges to e — 1. The function o(t) = " — 1 is indeed a solution of

the ODE under consideration.

Remark 2.29. Usually the Picard iteration can be used to find the solution to those ODEs that we
can solve using the techniques introduced in Section 21, P22 and 28.

2.9 First Order Difference Equations

Definition 2.30 (Difference Equations). A k-th order difference equation is of the form

Yn+k = f(ka Ny Ynt+k—1, Ynt+k—2, " - 7yn) VneNu {0} : (211)

The initial condition for a k-th order difference equation is some given numbers yo, y1, - ,Yp_1. A
solution to the difference equation with given initial data is a sequence {yi};2, that satisfies the

difference equation.



The difference equation (Z7I) is said to be linear if f is linear in (Yn1x—1, Ynik—2," " ,Yn). 1t is
called nonlinear if it is no linear. The difference equation (ZI1) is said to be autonomous if f is

independent of n and k.

A constant solution to an autonomous difference equation is called an equilibrium solution.

2.9.1 Linear first order difference equation

n—1

e Consider y,+1 = pyn for all n € N U {0}. Then y, = yo [ [ pr-
k=0

Equilibrium solution: Solve ¢ = p,c for all n € N.
1. If p, depends on n, then the only equilibrium solution is 0.
2. If p, is independent of n; that is, p, = p for all n € N, then

(a) if p # 1, 0 is the only equilibrium solution.

(b) if p =1, any constant is a equilibrium solution.
Moreover,
0 if|p] <1,
lim y,, = Yo ifp=1,
n—0o0
DNE otherwise;

thus y = 0 is an asymptotically stable solution if |p| < 1.

e Next, consider a more complicated first order linear difference equation: y,11 = pnyn + bn.
Yn = Pn—1Yn—1 + bn—l = Pn—-1 (pn—Zyn—2 + bn—2) + bn—l = Pn—1Pn—-2Yn—2 + pn—lbn—2 + bn—l

n—1

= :Z/OHPk—i- (bnfl +pn71bn72+"'+pn*1"'p1b0> :
k=0

If p, = pand b, = b for all n € N U {0}, then

p"(yo+ )+ ifp#1,
Yo =p"yo+ (b+pb+ -+ p" ') = p—1/  1-p (2.12)

P Yo +nb ifp=1.

In general, there is no equilibrium solution. However, if p,, = p and b, = b for all n € NuU {0}, then
Y= E p is an equilibrium solution if p # 1. Using (Z12), we find that

stable solution if |p| < 1.

. is an asymptotically
-p

2.9.2 Nonlinear first order difference equations

e Consider y,+1 = pyn (1 — %) Noting that using Euler’s method to discretize the logistic equation
dy y
i ry(l — ?), we have
Uyt — Un, Uy, rAt
+1At L run<1 - ?) = Uy = (1 —H’At)un(l T KO +rAD —i—rAt)u") .



Letting x,, = y,/k, we have
Tpi1 = prp(l —x,) . (2.13)
Equilibrium solution: Solving ¢ = pc(1 — ¢), we obtain that ¢ =0 and ¢ =1 — 1 are equilibrium
p

solutions to (213).

Definition 2.31. A equilibrium solution y = c is called an asymptotically stable equilibrium solution
to the difference equation y,+1 = f(y,) if there exists 6 > 0 such that if yo € (c— 9, c+3), the solution

Yn approaches c as n — 0.
To check the (linear) stability of these equilibrium solution, we rely on the following

Theorem 2.32. Let f be a twice differentiable function, and ¢ be a solution to ¢ = f(c). Then c is
an asymptotically stable equilibrium to y,1 = f(yn) if ‘f’(c)’ < 1.

Proof. By that f is twice continuously differentiable,
. 0
lim (1) + 5 _max |f"(@)]) = 7)< 1;

6—0t+ z€[c—d,c+4]

thus there exists § > 0 such that p(d) = |f'(c)| + g [mgx . |f"(z)] < 1. Fix such § > 0 and let
T€|c—0,c+

p=p(0). If 0 < |y, —c| <0, then Taylor’s theorem implies that for some d,, in between y, and c,

Yot = Fn) = F0) + PO~ + 3 (@)~ = e+ £y — )+ 38 ()3 — )

which further implies that

1
Y1 =l <[ (@)llyn — el + 5 max [f"(@)llys —c[* < pd < 9.
z€(c—0,c+9)
In other words, if |y — ¢| < J, then |y, — ¢| < § for all n € N. As a consequence,
1
[Ynir = el < [F(O)llgn — | + 5 _max | f"(@)llyn = c]” < plyn —cl;
z€(c—d,c+9)

hence |y, — ¢| < p"|yo — ¢| which implies that y,, — c as n — o0 if |yo — ¢| < 0. o

Remark 2.33. Theorem 2232 only provides a sufficient condition for determining the (linear) stability

for the difference equation y, 11 = f(y,) near the equilibrium solution. When the derivative of f at

the equilibrium solution is 1, no conclusion can be drawn and it has to be discussed case by case.
Let f(z) = pz(1 —z) = px — pz*. Then f'(z) = p — 2pz.

The equilibrium solution y,, = 0: Since f'(0) = p, the equilibrium solution ¢ = 0 is asymptotically

stable if |p| < 1.

The equilibrium solution y,, = 1—1: Since f’(l—p‘l) = 2—p, the equilibrium solution ¢ = 1—p~*

is asymptotically stable if |2 — p| < 1p0r equivalently, 1 < p < 3.

Exchange of stability: As p increases (from 0), the equilibrium solution y = 0 becomes unstable

when p = 1.

Other cases:

1. If p = 3.2, there is a “periodic” solution of period 2.

2. If p = 3.5, there is a “periodic” solution of period 4.



3 Second Order Linear Equations

Definition 3.1. A second order ordinary differential equation has the form

dy d*y
t,y, —,— ) =0 3.1

for some given function f. The ODE (B1) is called linear if the function f takes the form

dy d*yy\ _ 4%y dy
Pt 5 ) = PO + QWG+ Rty - G(0).

where P is a function which never vanishes for all ¢ > 0. The ODE (BO) is called nonlinear if
it is not linear. The functions P, (), R are called the coefficients of the ODE, and G is called the
forcing of the ODE. The énitial condition for (81) is (y(to), y'(to)) = (Yo, ¥1)-

3.1 Homogeneous Equations with Constant Coefficients

Definition 3.2. The ODE (B is called homogeneous if g = 0, otherwise it is called nomn-
homogeneous. When g # 0, the term g¢(¢) in (8) is called the non-homogeneous term.

In this section, we consider homogeneous second order linear ODE with constant coefficients
Py"+Qy +Ry=0,
where P, (@, R are independent of ¢t. Since P # 0, the ODE reduces to
y' +by +cy=0. (3.2)
Let X be the solution to the equation A\? + b\ + ¢ = 0.

1. Suppose that there are two distinct real roots Ay and Ay. Then

(GG )=o.

Therefore, if z = (% — A2)y, then (% — A1)z = 0 which further implies that z = c;e*? for

some constant ¢;. Then

Alf/\z)t - e*)\2ty —
Al — Ao

C1 ()\17/\2)1‘,

Y — Xy = creMt = (e”\Qty)/ = ¢yl e + ¢y

C1

At Aot
= ———¢€"" e
Al — Ao

=Y

In other words, a solution to the ODE (B22) is a linear combination of e*? and e*?! if \; and
)\ are distinct real roots of A2 4+ b\ + ¢ = 0.

2. Suppose that there is a real double root A. Then the argument show that y satisfies

—At

Yy = y=ceM= (eMy) =c; = e My =cit +cy =y = crte™ + e

In other words, a solution to the ODE (B3) is a linear combination of te and e if ) is the

real double root of A\? + b\ + ¢ = 0.



Question: What happened if there are complex roots for A2 + b\ + ¢ = 07
Definition 3.3. The characteristic equation for the ODE (B822) is A\* + b\ + ¢ = 0.

Another way to derive the characteristic equations: Consider 3" + by’ + cy = 0. Let ¢/ = z.

- [ 00

0 1}. Then =’ = Azx.

—c —=b
Suppose that A = PAP~! for some diagonal matrix A; that is, A is diagonalizable (with eigenvec-

Write = [y, 2]" and A = [

tors of A form the columns of P and eigenvalues forms the diagonal entry of A), then P~'z’ = AP 1.

Letting w = P~'a, then u’ = Au or equivalently,

i | )\1 0 Uy

dt (ua] |0 Ao |uz|
Therefore, u; = Au; and uy = Auy that further imply that u; = cie
A1t Aot

At Aot

and uy = coe€ Since

x = Pu, we conclude that y is a linear combination of e*'* and e

What are eigenvalues of A? Let A\ be an eigenvalue of A. Then

‘—A 1

_ 2 _
e _b_)\'—() = XN4+b\+c=0

which is the characteristic equation. Therefore, eigenvalues of A are the roots of the characteristic
equation for the ODE (B32).

3.2 Solutions of Linear Homogeneous Equations; the Wronskian
In this section, we consider the ODE
Lyl =y"+py' +qy =0
with initial condition y(tg) = yo and y'(to) = y1.
Theorem 3.4. Consider the initial value problem
v +r0)y +at)y =9@),  ylto) = yo,y'(to) =1,

where p,q and g are continuous on an open interval I that contains the point ty. Then there is exactly

one solution y = @(t) of this problem, and the solution exists throughout the interval I.
In the following, we assume that p,q are continuous in the interval of interests.

Theorem 3.5 (Principle of Superposition). If y = @1 and y = py are two solutions of the differential
equation

Lyl =y"+py +qy =0, (3.3)
then the linear combination cip1 + caps s also a solution for any values of the constants ¢y and cs.

In other words, the collection of solutions to (B33) is a vector spaces.



Question: Given two solutions y = @1 and y = s of the differential equation (B33), can the solution

to the differential equation
Lyl =vy" +py' + qy =0 with initial condition y(ty) = yo and y'(to) = 1 (3.4)

can be written as a linear combination of p; and s (for whatever given initial data)? If this is true,
then
the vector spaces consisting of solutions to (B3) is two-dimensional,

~
called the solution space

and {¢1, g2} is a basis of the solution space of (B33).
How do one know if the solution to (B2) can be written as a linear combination of ¢; and @57

Suppose that for given initial data yo, y; there exist constants ¢y, ¢ such that y(t) = c1p1(t) + capa(t)
is a solution to (B4). Then

[901@0) 902(750)] {Cl} _ [yo}

e1(to) @a(to)] |2 Y]

So for any given initial data (yo,y1) the solution to (B2) can be written as a linear combination of

p1(to) pa(to)
@1(to) @5(to)

Definition 3.6. Let ¢; and ¢y be two differentiable functions. The Wronskian or Wronskian

1 and 9 if the matrix { } is non-singular. This induces the following

determinant of p; and ¢, at point ¢y is the number

Wpnpal(ta) = et (| 24000 220 ) — oataleitn) - patta (o)

The collection of functions {¢1, po} is called a fundamental set of equation (833) if W (1, 2)(t) # 0

for some t in the interval of interest.
Moreover, we also establish the following

Theorem 3.7. Suppose that y = ¢1 and y = ps are two solutions of the ODE (B33). Then for any
arbitrarily given (yo,v1), the solution to the ODE

Lyl =" +py +qy=0 with initial condition y(ty) = yo and y'(ty) = y1,

can be written as a linear combination of ¢, and s if and only if the Wronskian of ¢1 and s at ty

does not vanish.

Theorem 3.8. Let ¢, and gy be solutions to the differential equation (B3) satisfying the initial
conditions (¢1(to), ¢1(to)) = (1,0) and (p2(to), p4(te)) = (0,1). Then {p1, 2} is a fundamental set
of equation (833), and for any (yo,y1), the solution to (BA) can be written as y = yop1 + Y102

Theorem 3.9. If a complez-valued function u + iv is a solution to (B33), so is its real part u and

maginary part v.



Next, suppose that ¢1, 9 are solutions to (B33) and W (p1, ¢2)(ty) # 0. We would like to know

if {¢1, 2} can be used to construct solutions to the differential equation
Lyl =y" +py +qy =0 with initial condition y(t;) = yo and y'(t1) = y1 (3.5)

for some t; # to. In other words, we would like to know if W (py, ¢2)(t1) vanishes or not. This

question is answered by the following

Theorem 3.10 (Abel). Let p; and ¢y be two solutions of (B33) in which p,q are continuous in an
open interval I, and the Wronskian W (p1,ps2) does not vanish at to € I. Then

p(s)ds) :

t

W (rea) 1) = W (on,)to) exo = |

to

In particular, W (p1, p2)(t) is never zero for allt € I.

Proof. Since ¢ and 9 are solutions to (B33), we have

@1 (t) +p(t)pi(t) +a(t)er(t) = 0, (3.6a)
@3 (1) + p(t)ps(t) + q(t)pa(t) = 0 (3.6b)

Computing (818b) x ¢ — (BBa) x 2, we obtain that
(0201 = 1005) + pip2ipr — p1ip3) = 0

Therefore, letting W = @07 — w195 be the Wronskian of ¢y and 9. Then W' + pW = 0; thus

W (t) :W(to)exp<— f p<s)ds>.

to

t

t
Since p is continuous on [tg, t] (or [t,to]), the integral | p(s)ds is finite; thus W (t) # 0. o
to

3.3 Complex Roots of the Characteristic Equation

Consider again the 2nd order linear homogeneous ordinary differential equation

y' +by +cy=0 (@)

where b and ¢ are both constants. Suppose that the characteristic equation 72 + br + ¢ = 0 has two
complex roots A +iu. We expect that the solution to (B=2) can be written as a linear combination of

Wit and eA—imt,

What is ¢#*? The Euler identity says that e? = cosf + isin ; thus
Mt = eM[ cos(ut) + isin(ut)] .

By Theorem B, we see that ¢;(t) = e* cos(ut) and e sin(ut) are also solutions to (B2).

Checking the linear independence: Computing the Wronskian of ¢, and (5, we find that

e cos(put) eMsin(put)
Acos(ut) — wsin(ut)) e (Asin(ut) + pcos(ut))

which is non-zero if p # 0. Therefore, any solution to (B22) can be written as a linear combination

W1, 92)(t) = e,\t( = e

of vy and s if b* — 4c < 0.



Example 3.11. Consider the motion of an object attached to a spring. The dynamics is described
by the 2nd order ODE:

mi = —kx —ri, (3.7)
where m is the mass of the object, k£ is the Hooke constant of the spring, and r is the friction
coefficient.

.. . —r + /1?2 —4dmk .
1. If 2 — 4mk > 0: There are two distinct negative roots ! ; "% to the characteristic
m

equation, and the solution of (BZ) can be written as

T dmk 7T dmk
a:(t):CleXp< rt 27;71 o t>+C’2exp< T 27;71 e t).

The solution z(t) approaches zero as t — 0.

I re—4mk = 0: ere is one negative double root — to the characteristic equation, and the
2. If r? —4mk = 0: Th gative doubl t 5
m

solution of (BZ7) can be written as
z(t) = Cyex (ﬂ) + Cytex <_—ﬁ>
= exXp o LEXP 5 |-

The solution x(t) approaches zero as t — o0.

—r + iv4dmk — r2

2m

3. If r — 4mk < 0: There are two complex roots to the characteristic equation,

and the solution of (871) can be written as

. J/ — 2 . / 2
x(t) = Che #n cos (Mt) + Che ™ %m sin (Mt) .
2m 2m
dmm

(a) If r = 0, the motion of the object is periodic with period =, and is called simple

dmk —r
harmonic motion.

(b) If r > 0, the object oscillates about the equilibrium point (z = 0) but approaches to zero

exponentially.

3.4 Repeated Roots; Reduction of Order

In Section B we have discussed the case that the characteristic equation of the homogeneous equation

with constant coefficients

y// + by/ toey = 0 (@)
has one double root. We recall that in such case b* = 4c, and ¢, () = exp (_7), po(t) = texp (_Tbt)

together form a fundamental set of (B2).

Suppose that we are given a solution ¢ (t). Since (82) is a second order equation, there should
be two linearly independent solutions. One way of finding another solution, using information that
¢1 provides, is the variation of constant: suppose another solution is given by @s(t) = v(t)¢1(t).
Then

v" o1+ 20"p1 + vp] + b(v'p1 4+ vpy) + cvpr = 0.



Since y = ¢ (t) verifies (B2), we find that
v" o1+ 20" 0] + bv'py = 0;
thus using i (t) = exp (_Tbt) we obtain v”¢; = 0. Since ¢; never vanishes, v”(t) = 0 for all ¢.
Therefore, v(t) = C1t + Cy for some constant Cy and Cy. Therefore, another solution to (B2), when
—bt
2 _ A i _
b* =dc, is po(t) = texp (7)

The idea of the variation of constant can be generalize to homogeneous equations with variable
coefficients. Suppose that we have found a solution y = ¢;(t) to the second order homogeneous
equation

y" + o)y’ +a(t)y=0. (3.8)
Assume that another solution is given by y = v(t)¢1(t). Then v satisfies
o1+ 2001 + ey + p(v'er + vep) + quer = 0.
By the fact that ¢ solves (BR), we find that v satisfies
v"p1 + 20" ] + pu'pr =0 or equivalently, v"p1 +v'(2¢] + pp1) =0. (3.9)

The equation above can be solved (for v’) using the method of integrating factor, and is essentially
a first order equation.
Let P be an anti-derivative of p. If ¢1(t) # 0 for all ¢ € I, then (89) implies that

(P2’ (1) =0 = Q) =C = @' () =0T viel,

As a consequence,

e e | @@ 0 2
Wler@d® =1 ) vy + v(t)wi(t)‘ - ‘s@i(t)

v
which implies that {¢1,vp1} is indeed a fundamental set of (BR).
Example 3.12. Given that y = ¢1(t) = % is a solution of

20%y" + 3ty —y =0 fort >0, (3.10)

find a fundamental set of the equation.

Suppose another solution is given by y = v(t)p1(t) = v(¢)/t. Then (8B9) implies that v satisfies
1 2 31
")+ (—= + =) =0.
v e T gy

/

Therefore, v" = %; thus v'(t) = Cy+/t which further implies that v(t) = %C’lt% + (5. Therefore, one
solution to (B1M) is
2 1
Y= 501\/;5 + 022
which also implies that y = ,(t) = v/t is a solution to (810). Note that the Wronskian
LN
Wipnp))=| "1 1 |=
2 24/t
thus {¢1, pa} is indeed a fundamental set of (B10).

72 #£0 fort>0; (3.11)

DN W



3.5 Nonhomogeneous Equations

In this section, we focus on solving the second order nonhomogeneous ODE

y" +pt)y +aq(t)y =g(t). (3.12)

Definition 3.13. A particular solution to (B12) is a twice differentiable function validating
(B12). In other words, a particular solution is a solution of (BI2). The space of complementary

solutions to (B12) is the collection of solutions to the corresponding homogeneous equation

y" +pt)y" +q(t)y=0. (3.13)

Let y = Y(t) be a particular solution to (B2). If y = ¢(t) is another solution to (B12), then
y = @(t) =Y (t) is function in the space of complementary solutions to (812). By Theorem B8, there
exist two function ¢y and ¢, such that y = ¢;(t), j = 1,2, are linearly independent solutions to
(B13), and @(t) — Y(t) = C1p1(t) + Capa(t) for some constants Cy and Cy. This observation shows
the following

Theorem 3.14. The general solution of the nonhomogeneous equation (812) can be written in the

form
y=p(t) = Cipi(t) + Copa(t) + Y(t),

where {p1, 2} is a fundamental set of (B13), Cy and Cy are arbitrary constants, and y =Y (t) is a

particular solution of the nonhomogeneous equation (812).
General strategy of solving nonhomogeneous equation (312):

1. Find the space of complementary solution to (BI2); that is, find the general solution y =
Cr1(t) + Copa(t) of the homogeneous equation (BI3).

2. Find a particular solution y = Y'(¢) of the nonhomogeneous equation (B12).

3. Apply Theorem B—T4.

3.5.1 Method of Variation of Parameters

This method can be used to solve a nonhomogeneous ODE when one solution to the corresponding
homogeneous equation is known.

Consider
y" +p(t)y" +alt)y = g(t). (.12)
Suppose that we are given one solution y = ¢;(t) to the corresponding homogeneous euqation

Y+ pt)y + q(t)y = 0. (B.13)

Using the procedure in Section B4, we can find another solution y = ¢s(t) to (813) so that {1, 2}

forms a fundamental set of (B13). Our goal next is to obtain a particular solution to (B12).



Suppose a particular solution y = Y'(¢) can be written as the product of two functions v and ¢q;

that is, Y(t) = u(t)e1(t). Then similar computations as in Section B4 show that

u"or+u' 29 +pp1) =g = (pietu) = piey,

where P is an anti-derivative of p. Therefore,

G2(t)eP O (1) = j o1 ()P Dty di.

and further computations yield that

J¢1(t P(t)g
o [z,
1

o1(
Therefore, a particular solution is of the form

[ er0erOg(t)a

Y(t) = o1 (t) J dt . (3.14)

@3 (t)el®

Example 3.15. As in Example B2, let y = ¢4(t) = % be a given solution to
2%y" + 3ty —y =0 fort >0, ()
Suppose that we are looking for solutions to
2wy" + 3ty —y=2t> fort>0. (3.15)
Using (Bd4) (noting that in this case g(t) = 1), we know that a particular solution is given by

Jt—1€3/210gtdt

1 1 1 [ 1
Yt) = ;J t—2¢3/2logt dt = n f (tz Jtzdt)dt =9

Therefore, combining with the fact that (,(t) = v/t is a solution to (BI0), we find that a general
solution to (BIH) is given by

C 2
y=71+02\/¥+§t2.

Let {¢1, v2} be a fundamental set of (8713) (here (s is either given or obtained using the procedure

in previous section), we can also look for a particular solution to (BI2) of the form
Y(t) = c1r(t)ei(t) + calt) (1) -
Plugging such Y in (B12)), we find that
crpr+ 1201 +ppr) + cpa + (205 + pea) = g (3.16)

Since we increase the degree of freedom (by adding another function ¢;), we can impose an additional

constraint. Assume that the additional constraint is

c1p1 + cppa = 0. (3.17)



Then c¢f 1 + cfpa = —cip; — chs; thus (B8) reduces to

ciprt oy =g. (3.18)
Solving (BT1) and (BIR), we find that
/ —4¥2 / g¥1
] = ——"T—— and Cy = ——.
! W(SOI, QOQ) ? W(‘Pl» @2)

The discussion above establishes the following

Theorem 3.16. If the function p, q and g are continuous in an open interval I, and {1, p2} be a
fundamental set of the ODE (813). Then a particular solution to (B12) is

=~ J Wsol,soz )d ol #2)2)‘“’ (319)
where tg € I can be arbitrarily chosen, and the general solution to (B12) is
y = Cro1(t) + Copa(t) + Y (2).
Example 3.17. Given two solutions ¢ (t) = % and @y(t) = v/t to the ODE
20%y" + 3ty —y =0  fort>0. ()

To solve
2t%y" + 3ty —y = 212 fort >0, ()
we use (B19) and (BI) to obtain that a particular solution to (BTH) is given by

Y(t):—1 Vi dt+\/f gt = 22

t 3t 3/2 3t 3/2 9

Therefore, a general solution to (B-I3) is given by

C
y = t1+02x/+ 2p

3.5.2 Method of Undetermined Coefficients

In addition to the method of variation of parameters, some tricks can be made to solve nonhomoge-
neous equations with constant coefficients and special forcing functions. In this sub-section, we focus
on solving

y" + by +cy=g(t). (3.20)

Suppose that A\; and Ay are two roots of r2 + br + ¢ = 0 (A\; and Xy could be identical or complex-
valued). Then (B=20) can be written as



Letting y' — Aoy = 2, we have 2’ — \jz = g(t); thus

2(t) = eM! fe_)‘ltg(t) dt .

Solving for y we obtain that

y(t) = e f (e(’\l_AQ)t Je_)‘ltg(t) dt) dt . (3.21)

Consider the following three types of forcing function g:

1. g(t) = pu(t)e™ for some polynomial p,(t) = a,t™ + - -+ + a1t + ag of degree n: note that
1 k

—eith — 2 Je'yttk_ldt ify#0,
Y

J tthdr =13 7 (3.22)

L e e
7k+1t +C ify=0.

Therefore, in this case a particular solution is of the form
Y(t) =t (Apt™ + -+ At + Ag)e™

for some unknown s and coefficients A}s, and we need to determine the values of these un-
knowns.
(a) If Ay # @ and Ay # «, then s = 0.
(b) If Ay = o but Ay # «, then s = 1.
(¢) If Ay = Ay = @, then s = 2.
2. g(t) = pu(t)e* cos(Bt) or g(t) = pu(t)e™ sin(St) for some polynomial p,, of degree n and 3 # 0:

note that (B222) also holds for v € C. Therefore, in this case we assume that a particular

solution is of the form
Y(t) = 3| (Apt" + -+ At + Ag)e* cos(ft) + (But" + - - + Byt + By)e™ sin(ﬁt)]

for some unknown s and coefficients A}s, Bls, and we need to determine the values of these

unknowns.

(a) If Ay, Ay € R, then s = 0.

(b) If A1, A2 ¢ R; that is, A\; = v+ i and Ay = v —id for some 9§ # 0:
(1) If Ay =y +id and Ay =y — i for some v # « or § # 3, then s = 0.
(2) If Ay = a+if and Ay = a — i3, then s = 1.

Example 3.18. Find a particular solution of y” — 3y’ — 4y = 3e*.
Since the roots of the characteristic equation 1% — 3r — 4 are different from —1, we expect that a
1
particular solution to the ODE above is of the form Ae?'. Solving for A, we find that A = Bt thus

1
_Ze2t

a particular solution is Y (¢) = 5



Example 3.19. Find a particular solution of y” — 3y’ — 4y = 2sint.
Since the roots of 72 — 3r — 4 = 0 are real, we expect that a particular solution is of the form
Y (t) = Acost + Bsint for some constants A, B to be determined. In other words, we look for A, B
such that
(Acost+ Bsint)” — 3(Acost + Bsint)' — 4(Acost + Bsint) = 2sint.

By expanding the derivatives and comparing the coefficients, we find that (A, B) satisfies

3A—-5B=2,
5A+3B=0,

3 =95 . .
). Therefore, a particular solution is

and the solution to the equation above is (A, B) = (1—7, T

3
Y (t) = — cost — —sint.

17 17
Example 3.20. Find a particular solution of y” — 3y’ — 4y = —8e' cos 2t.
Since the roots of r? — 3r — 4 = 0 are real, we expect that a particular solution is of the form

Y (t) = A€’ cos 2t + Be' sin 2t for some constants A, B to be determined. In other words, we look for
A, B such that

(Aef cos 2t + Be'sin 2t)” — 3(Ae’ cos 2t + Be'sin2t)’ — 4(Ae' cos 2t + Be'sin 2t) = —8e’ cos 2t .

By expanding the derivatives,

(e'cos2t)” (e'sin2t)” (e'cos2t)’ (e'sin2t)’ e'cos2t e'sint
e' cos 2t -3 4 1 2 1 0
e’ sin 2t —4 -3 -2 1 0 1

thus

~3A+4B —3A— 6B —4A = -8,
~4A-3B+6A—3B—4B=0.

10 2

Therefore, (A, B) = (E’ T3)

; thus a particular solution is

10 2
Y(t) = 1—36t cos 2t + 1—36t sin 2t .

Example 3.21. Find a particular solution of y” — 3y’ — 4y = 2¢~%.
Since one of the roots of the characteristic equation r> — 3r —4 is —1, we expect that a particular
solution to the ODE above is of the form Ate™" for some constant A to be determined. In other

words, we look for A such that
(Ate™")" — 3(Ate™)' — 4Ate " =2¢e7".
By expanding the derivatives, we find that —5A = 2 which implies that A = —%. Therefore, a

2
particular solution is given by Y (t) = —gte_t.



How about if we forget what s is? - By trial and error! Starting from s = 0. If a particular of

the form with s = 0 cannot be found, then try s = 1, and so on.

Example 3.22. Find a particular solution of y” — 4y’ + 5y = —2e* sint.

We first look for a particular solution of the form Y (t) = Ae* cost + Be* sint, and find that this
leads to that 0 = €?' sint which is impossible. Therefore, we look for a particular solution of the form
Y (t) = t(Ae* cost + Be* sint). Note that

(te* cost)” (te?*sint)” (te* cost)’ (te*sint)’ te* cost te*sint

te? cost 3 4 2 1 1 0
te? sint —4 3 -1 2 0 1
e? cost 4 2 1 0 0 0
e sint —2 4 0 1 0 0

thus by assuming this form of particular solutions we find that

3A+ 4B —8A— 4B +5A=0,

—4A+3B+4A—8B+5B =0,

AA+2B —4A =0,
—9A+4B —4B = -2.

Therefore, (A, B) = (1,0), and a particular solution is Y (t) = te cost.
We also note that using (B19) we find another particular solution

in 2t 2t
sin )etc oS

. 1y .
y:(t— ost + €tSIDt:t6tCOSt—§6tSIHt.

If the forcing g is the sum of functions of different types, the construction of a particular solution

relies on the following

Theorem 3.23. If y = ¢,(t) is a particular solution to the ODE

y" +pt)y" + q(t)y = g;(t)

forall j =1,---n, then the function y = 3, ¢;(t) is a particular to the ODE
j=1

y" +pt)y +a(t)y =g(t) = i g;(t) -

Example 3.24. Find a particular solution of y” — 3y’ — 4y = 3e?' — 8¢’ cos 2t + 2e~".
By Example BI8, and B2, a particular solution to the ODE above is

1 10 2 2
Y(t) = —56% + 1—3€t cos 2t + Bet sin 2t — 5t6_t .



3.6 Mechanical and Electrical Vibrations

We have been discussing the motion of an object attached to a spring without external force in

Example BTT0. Now we explain what if there are presence of external forcings. We consider
mi = —kx —ri + g(t), (3.23)

where m, k,r are positive constants. We remark that the term —rz is sometimes called a damping

or reststive force, and r is called the damping coefficient.

1. Undamped Free Vibrations: This case refers to that ¢ = 0 and r = 0. The solution to
(B223) is then
z(t) = C} coswopt + Cysinwt = R cos(wot — ¢) ,

where R = /C? + C2 is called the amplitude, wy = 4 /E is called the natural frequency
m
2
and ¢ = arctan % is called the phase angle. The period of this vibration is T' = w—ﬂ
1 0

2. Dampled Free Vibrations: This case refers to that g = 0 and r > 0. The solution to (B=23)

is then
I(t) = Cle*% cos ut + C’Qe’% sin ut = Re*% cos(ut _ Qg) 7
4km — r2 C _ '
where R = /C?+C2, u = \/T, and ¢ = arctan 52 Here g is called the quasi
1

frequency, and we note that

1
7‘2 2 r

2
— 1— ) ~1—
wo ( 4km 8km’

2

2
where the last approximation holds if ﬁ « 1. The period of this vibration T is called the
m I

quast pertod.

(a) Critical damped: In this case, r? = 4km.

(b) Overdamped: This case refers to that > > 4km, and in this case the attached object

pass the equilibrium at most once and does not oscillate about equilibrium.

3. Forced Vibrations with Damping: We only consider
mi + ra + kx = Fycoswt (3.24)

for some non-zero r, Fy and w. Let {¢1, 92} be a fundamental set of the corresponding ho-
mogeneous equation of (B224). From the discussion above, ¢; and ¢y both decay to zero (die
out) as t — o0. Using what we learn from the method of undetermined coefficients, the general
solution to (B=24) is

r = glgol(t) + Cg@z(tz + Acoswt + Bsinwt,

—ou(t) =X (1)




where C and C5 are chosen to satisfy the initial condition, and A and B are some constants so
that X (t) = Acoswt + Bsinwt is a particular solution to (B=24). The part x.(t) is called the
transient solution and it decays to zero (die out) as t — o0; thus as t — o0, one sees that
only a steady oscillation with the same frequency as the external force remains in the motion.

x = X(t) is called the steady state solution or the forced response.

Since z = X (t) is a particular solution to (B224), (A, B) satisfies

(k —w’m)A+rwB = Fy,
—rwA+ (k —w?m)B = 0;

thus with wy denoting the natural frequency; that is, wy = o we have

4,5) = (Pt =) e )
’ - m?(wg — w?)? + r2w?’ m2(wi — w?)?2 +r2w?/
2
Let a = i, and T' = _—. Then
wo mk

9
(A, B) = &< L—a : vTa ) ;

E\N(1—-a?)?+4+Ta? (1—-a?)?+Ta?
thus

X(t) = Rcos(wt — @),

where with A denoting the number 4/(1 — a2)? + F'a2, we have

2

A

R=+vVA?>+ B?= 5—2 and ¢ = arccos

F
Then if a « 1,R%?Oandq5m0,whﬂeifa>> 1, R« 1and ¢ ~ 7.
In the intermediate region, some «, called .y, maximize the amplitude R. Then agax
minimize (1 — a?)? + T'a? which implies that qu., satisfies

9 r

Oémale_i

and, when I' < 1, the corresponding maximum amplitude Ry, is

Rmax =

FO 1 N FO <1 F)
k yTy/1-T/4 kyT\ 8
where the last approximation holds if I' « 1. If I' > 2, the maximum of R occurs at a = 0 (and
Fo
%

For lightly damped system; that is, » « 1 (which implies that I' « 1), the maximum am-

the maximum amplitude is Ry =

plitude R,.. is closed to a very large number In this case amax & 1, and this implies

Fy
VT
that the frequency wpax, where the maximum of R occurs, is very close to wy. We call such a

phenomena (that R.x » 1 when w ~ wy) resonance. In such a case, aya ~ 1; thus ¢ = g

which means the response occur g later than the peaks of the excitation.



4. Forced Vibrations without Damping:

(a) When r = 0, if w # wy, then general solution to (B=24) is

x = C} coswyt + Cs sinwgt + coswt ,

m(wg — w?)
where €} and C5 depends on the initial data. We are interested in the case that x(0) =
z'(0) = 0. In this case,

Fy
Ci=——2 and C,=0

so the solution to (BZ) (with initial condition z(0) = x’(0) = 0) is

Fo 2Fy L Wo—w, . wotw
rT=—F—5 ( cos wt — cos wot) = 5 sin tsin t.
m(ws — w?) m(wg — w?) 2 2
2F0 . Wy —w . . . .
When w ~ wg, R = 5 sin t presents a slowly varying sinusoidal amplitude.
m(ws — w?) 2

This type of motion, possessing a periodic variation of amplitude, is called a beat.
(b) When r = 0 and w = wy, the general solution to (B=4) is

Fy

x = C] coswot + Cy sinwpt + 5 tsin wyt .

mwy
4 Higher Order Linear Equations

4.1 General Theory of n-th Order Linear Equations

An n-th order linear ordinary differential equations is an equation of the form

d"y A"y dy
Y p 0 PY Py =G
dtn + n 1( )dtn,]_ + _I_ 1dt _I_ 0( )y G( )7

where P, is never zero in the time interval of interest. Divide both sides by P,(t), we obtain

Bu(t)

dn dn—l d
Llyl = =2 4 pua (g + -+ pat) 5 + oty = 9(t). (4.1)

Suppose that p; =0 for all 0 < 7 <n — 1. Then to determine y, it requires n times integration and
each integration produce an arbitrary constant. Therefore, we expect that to determine the solution

y to (BZD) uniquely, it requires n initial conditions

y(to) =vo, y'(to) =v1, -, y" V(o) = yn1, (4.2)

where t is some point in an open interval I, and yo, Y1, ,yn_1 are some given constants.

Equation (E1) is called homogeneous if g = 0.

Theorem 4.1. If the functions py, -+ ,pn_1 and g are continuous on an open interval I, then there
exists exactly one solution y = ¢(t) of the differential equation (B1) with initial condition (B22), where

to is any point in 1. This solution exists throughout the interval I.



Definition 4.2. Let {¢1, -, n} be a collection of n differentiable functions defined on an open

interval 1. The Wronskian of ¢, @9, -+, ¢, at tg € I, denoted by W (w1, -+, n)(to), is the number

¢1(to) pa(to) -+ walto)
1 (to) w5(to) - pn(to)
W(p1, -, on)(to) = : : - :
P V(o) oV (te) e ol (k)

Theorem 4.3. Let y = ¢1(t), y = @a2(t), -+, y = @u(t) be solutions to the homogeneous equation

d”y dn_ly dy
Lly] = WﬂLpnfl(t)WﬂL""i‘Pl(t)E +po(t)y =0. (4.3)

Then the Wronskian of p1,@s, -+ ,p, satisfies

d
Proof. By the differentiation of the determinant, we find that
Y1 P2 T ¥n
1 pato) o pn
d . )
aw(%»”' ,Pn) = :
n—2 n—2 n—2
A A
oV oy e
(pl 902 e (pn
®1 @5 (to) ©n
n—2 n—2 n—2
o4 o o
_ (n=1) _  _ _ (n—1) . _ e (n—1) . _
Pn-1¢1 Po¥1r —Pn-1¥2 Pop2 Pn—-1¥n PoPn
::'—pn—1VV(¢17'“ 7¢n)- g
Theorem 4.4. Suppose that the functions pg,--- ,pp_1 are continuous on an open interval I. If
y = p1(t), y = waolt), -+, y = @n(t) are solutions to the homogeneous equation (E=3) and the

Wronskian W (p1, -+ ,pn)(t) # 0 for at least one point t € I, then every solution of (E33) can be

expressed as a linear combination of o1, , ©,.

Proof. Let y = ¢(t) be a solution to (B=3), and suppose that W (p1, -+ ,¢n)(ts) # 0. Define
(Yo, Y1, "+, Yn-1) = (gO(tg), ©'(to), - - - ,4,0("’1)(t0)), and let C1,---,C, € R be the solution to

¢1(to) palto) -+ walto) Cy Yo
¢1(to) psto) - pplto) Cy Y1

n— n—1
eV (te) o8 V) - e o) | | Ca U1



We note that the system above has a unique solution since W (g1, -, ¢,)(to) # 0.

Claim: ¢(t) = Cyp1(t) + - - + Cron(t).

Proof of Claim: Note that y = ¢(t) and y = Cyp1(t) + - - - + Crn(t) are both solutions to (B=3)
satisfying the same initial condition. Therefore, by Theorem Bl the solution is unique, so the claim

is concluded. o

Definition 4.5. A collection of solutions {y1, - , ¢, } to (E33) is called a fundamental set of equation
(B33) if W (1, -+ ,pn)(t) # 0 for some ¢ in the interval of interest.

4.1.1 Linear Independence of Functions

Recall that in a vector space (V,+, ) over scalar field F, a collection of vectors {vy,--- , v,} is called
n

linearly dependent if there exist constants ¢y, - -+, ¢, in F such that [[¢;=¢1-co - -1y #0
i=1

and

-4+ v, =0.

Ifnosuch ey, - -+, ¢, exists, {vy, -+, v,} is called linearly independent. In other words, {vy, -+ ,v,} <

V is linearly independent if and only if
Cl'v1+"'+cn‘vn:0 <= 612022"'2%20.

Now let V denote the collection of all (n — 1)-times differentiable functions defined on an open
interval I. Then (V,+,-) clearly is a vector space over R. Given {fi, --, fn} €V, we would like to

determine the linear dependence or independence of the n-functions {f1,--- , f,}. Suppose that
cfilt)+--4cnfa(t) =0 Vtel.
Since each f; are (n — 1)-times differentiable, we have for 1 <k <n —1,

afP)+- e fP)y=0 Viel.

In other words, ¢y, - , ¢, satisfy
fi(t) L) fuld) ¢ 0
fi() @) - 1) ¢ 0
: : . = . Vtel.
170w 0w - 0w e o
f1(to) folto) -+ fal(to)
fi(to) falto) - falto)
If there exists ty € I such that the matrix ! : ’ 2 : ’ is non-singular,
A t) £ t) - S ()
then ¢; = ¢o = --- = ¢, = 0. Therefore, a collection of solutions {¢1, -, ¢,} is a fundamental set of

equation (A33) if and only if {1, -+ ,p,} is linearly independent.



4.1.2 The Homogeneous Equations - Reduction of Orders

Suppose that y = 1(¢) is a solution to (E3). Now we look for a function v such that y = v(t)p1(t) is
also a solution to (B23). The derivative of this v satisfies an (n — 1)-th order homogeneous ordinary

differential equation.
Example 4.6. Suppose that we are given y = () = €' as a solution to
2=t)y"+@2t-3)y" —ty' +y=0 for t<2. (4.4)
Suppose that y = v(t)e’ is also a solution to (E2). Then
(2 —t)(v"e" + 3v"e" + 3v'e" +vet) + (2t — 3)(v"e" + 2v'e! + ve') — t(v'e + vel) + vet =0

which implies that v satisfies

(2—t)" + [32—1t)+ (2t = 3)]v" + [3(2—t) +2(2t — 3) — t]v' =0
or equivalently, with u denoting v”,

2-thu'"+(B3—-tu=0.
Solving the ODE above, we find that u(t) = C1(2 — t)e™" for some constant C;; thus
v(t) = Cs + Cot + Cre™" = Cy(t + 1)e ™ = Cs + Cot — Cite™".

Therefore, a fundamental set of (£3) is {e’, te’, t}.

4.1.3 The Nonhomogeneous Equations

Let y = Yi(t) and y = Y3(¢) be solutions to (B). Then y = Yi(t) — Ya2(t) is a solution to the
homogeneous equation (B23); thus if {¢1, -+, p,} is a fundamental set of (E33), then

Yi(t) = Ya(t) = Crpr(t) -+ + Cripn(t) -
Therefore, we establish the following theorem which is similar to Theorem BT4.

Theorem 4.7. The general solution of the nonhomogeneous equation (E) can be written in the
form
y = ¢(t) = Crp1(t) + Cagpa(t) + -+ + Crgpn(t) + Y (1),

where {p1,- -+ ,pn} is a fundamental set of (B23), C4,---,C, are arbitrary constants, and y = Y (t)

is a particular solution of the nonhomogeneous equation (E1).
In general, in order to solve (E), we follow the procedure listed below:

1. Find the space of complementary solution to (E=3); that is, find the general solution y =
Cro1(t) + Copa(t) + - - - + Cp,, of the homogeneous equation (E=3).

2. Find a particular solution y = Y () of the nonhomogeneous equation (2.

3. Apply Theorem B2



4.2 Homogeneous Equations with Constant Coefficients

We now consider the n-th order linear homogeneous ODE with constant coefficients
Lyl = y™ + anay™ Y+ +ary’ +agy =0, (4.5)

where a;’s are constants for all j € {0,1,--- ,n — 1}. Suppose that 1,7, - , 7, are solutions to the

characteristic equation of (E3)
P4 " ar +ag=0.
Then (B3) can be written as
()G (oo
at "\ae ") e )Y
1. If the characteristic equation of (A=) has distinct roots, then

y(t) = Cre™ + Coe™ 4 -+ 4 Clpe™ . (4.6)

d d
Reason: Let z; = (E — r2) (% — rn)y. Then z{ — ri2; = 0; thus 2;(t) = cre™’.

d d
Let 2z, = (% - 7“3) . (£ — rn)y. Then 2) — roze = ¢121; thus using the method of integrating

factors, we find that

d —T T1—T: c T T
E( 2a) =T = (t) = p— _1r26 Uy cge™t (4.7)
Repeating the process, we conclude (E3).

How about if there are complex roots? Suppose that r; = a + bi and r, = a — bi, then

the Euler identity implies that, by choosing complex ¢; and ¢y in (E22), we find that
25(t) = c1e™ cos bt + coe™ sin bt

for some constants ¢; and cy. Therefore, suppose that we have complex roots a; + byi for

k=1,---, ¢ and real roots rop41,- - ,7,. Then the general solution to (1) is

y(t) = Cre™ cos byt + Coe™'sin byt + - - - + Chy_1€" cos byt + Chpe®" sin byt
+ Chppr €+ 4o 4 Ce™t

2. If the characteristic equation of (B53) has repeated roots, we group the roots in such a way that
ry =1ry = --- =1, and so on; that is, repeated roots appear in a successive order. Then the

implication in (E77) is modified to



. d d
(a) Suppose that r3 =y =1 = r. Letting 23 = (% — r4) _ ($ — rn)y, we find that

zy —rzy = (et + co)e’™;

thus the method of integrating factor implies that

d

E(e’”zy,) =cat+c = z(t)= (%t2 + cot + c3)e’ .

(b) Suppose that r; = ro = r and r3 # ry. Letting z3 = (% — 7’4) e (% — rn)y, we find that

24 — 1323 = (et + co)e™;

thus the method of integrating factor implies that

d

7 (e 23) = (crt + c)e" I = a(t) = (Cit + &)e™ + cze™".

From the discussion above, we “conjecture” that if r;’s are roots of the characteristic equation of

(A753) with multiplicity n; (so that ny + - -- 4+ n, = n), then the general solution to (A=3) is

y(t) = Y p(t)e,

where p;(t)’s are some polynomials of degree n; — 1. Note that in each p; there are n; constants to
be determined by the initial conditions.
If there are repeated complex roots, say r;1 = a+ bi and ro = a — bi with ny = ns. Then p; and ps

are polynomials of degree n; thus by adjusting constants in the polynomials properly, we find that
p1(t)e™ + po(t)e™" = Py (t)e™ cos bt + Da(t)e™ sin bt .

In other words, if r; are real roots of the characteristic equation of (3) with multiplicity n; and
ar + iby are complex roots of the characteristic equation of (B2H) with multiplicity my (so that

Y. n; + >, 2my, = n), then the general solution to (A=3) is
j k

y(t) = Y ps(6)er + Y™ (qi(t) cos byt + gi(¢) sin byt) |
j k

where p;(t)’s are some polynomials of degree n; —1 and g}, ¢’s are some polynomials of degree my, —1.
Example 4.8. Find the general solution of
y W +y" =Ty —y' +6y=0.

The roots of the characteristic equation is r = £1, r = 2 and r = —3; thus the general solution to
the ODE above is

y = Chet + Che ™ 4+ Cse® + Cre .



If we are looking for a solution to the ODE above satisfying the initial conditions y(0) = 1, y’(0) = 0,
y”(0) = —1 and y”(0) = —1, then C1, Cs, Cs, Cy have to satisfy

1 1 1 1 4 1
1 -1 2 =3[|C| |0
1 1 4 9 Oy | | -1
1 -1 8 27| |¢C, —1

Solving the linear system above, we find that the solution solving the ODE with the given initial

data is

Example 4.9. Find the general solution of
y(4) —y=0.

Also find the solution that satisfies the initial condition

The roots of the characteristic equation are r = £1 and r = +i. Therefore, the general solution
to the ODE above is
y = Cre' + Coe ' + Cycost + Cysint .

To satisfy the initial condition, C,--- , Cy has to satisfy
7
11 1 o0][a 3
1 -1 0 1 ||| |-4
1 1 -1 0 cs| | ?
1 =1 0 —=1|[Cy 22

Solving the linear system above, we find that the solution solving the ODE with the given initial
data is

1
y=3e "+ §Cost—sint.

Example 4.10. Find the general solution of

yW+y=0.
The roots of the characteristic equation are r = i(7 + 72). Therefore, the general solution

to the ODE above is

Y = exp (\/7515) (C1 cos \ft + Cysin \ft) +exp (— ﬁt) (Cscos \ft + O, sin \ft) .



4.3 The Method of Variation of Parameters

To solve a non-homogeneous ODE
dny n—ly dy
Lly] = — () —2 _
Y] = =7+ poa(O) g A+ o)y = 9(t) (1)

often times we apply the method of variation of parameters to find a particular solution. Suppose that
{©1,-+ ,on} is a fundamental set of the homogeneous equation (E=3), we assume that a particular

solution can be written as

y=Y({) =ur()pr(t) + -+ un(t)on(t)

Assume that uq, - - -, u, satisfy
uppy + el =0

for j=0,---,1,n— 2. Then

Y =y + -+ iy,
V" =wp] + +unipy

Y(nfl) _ ulgpgn—l) 4o un(p(nfl) ’

n

and

Y = ol 4wl oD fuy o™ 4 ™

Since y = Y'(¢) is assumed to be a particular solution of (E=), we have

ul " ke = g(1)

Therefore, uq, - - -, u, satisfy
1 0 T2 uf 0
I N N N RN N
: . : : 0
n—1 n—1 n—1
T R S I KU B

Let W,,, denote the Wronskian of {¢1,- -, ©m—1, Pms1, -, @n}; that is

801 e gpmil 90m+1 e (pn
oo | P Pmo P
-2 n-2)  (n—2 n—2
I 2
A W,
Then u/ = (—1)"""—————— which implies that
=1 W(p1, -+, ¢n)

n

Y(t) = Z(—l)nJri(Pz‘(t)L W(QZ/Z(S)Q(;i)(S) ds.




Example 4.11. Find the general solution to

n

y" =y =y +y=g(). (4.8)

3

Note the the roots of the characteristic equation r* —r? —r +1 = 0 of the homogeneous equation

n

y" =y =y +y=0 (4.9)
are r = 1 (double) and r = —1; thus we have a fundamental set {e’,te’, e™*} of equation (EH). Let
1(t) = €', po(t) = te! and p3(t) = e, Then

W(p1, 02, 03)(t) = | (t+1)e" —et|=[t+1)+(t+2)—t—(t+1)—t+ (t+2)]e" =4,
el (t+2)e et

and Wy (t) = —2t — 1, Wy(t) = —2 and Wi(t) = €?*. Therefore, a particular solution is

Y(t) = ¢t f (22521 oyds — te! J 2 4(s)ds + et f ezsg(s)ds

0 4es o 4e’ o 4es

1

= ZL [2(t — s) = 1)e"* + e ] g(s)ds,

and the general solution to (AR) is

y = Cie' + Cyte' + Cze™" + Y (t).

5 Series Solutions of Second Order Linear Equations

5.1 Properties of Power Series

©¢]
Definition 5.1. A power series about c is a series of the form Y ai(z — ¢)* for some sequence

k=0
{ar}>g € R (or C) and ce R (or C).

Proposition 5.2. If a power series centered at ¢ is convergent at some point b # ¢, then the power

series converges absolutely for all points in (¢ — |b— c|,c+ b — cl).

0¢]
Proof. Since the series > ax(b — ¢)F converges, |ag||b — c|¥ — 0 as k — o0; thus there exists M > 0

k=0
Q0
such that |ag||b — ¢|* < M for all k. Then if x € (¢ — |b — ¢|,c + |b — c|), the series ] ap(z — ¢)*
k=0
converges absolutely since
S k S F_ N wlz—clf O ([T — e\
O lan(e =) = Y laulle — el = Y Jaellp = el T < M Y (=)
k=0 k=0 k=0 |b—¢] k=0 |b—¢]

which converges (because of the geometric series test or ratio test). a



0
Definition 5.3. A number R is called the radius of convergence of the power series Y. ay(z—c)*
k=0
if the series converges for all z € (¢ — R,c + R) but diverges if x > ¢+ R or x < ¢ — R. In other

words,
a0

R=sup{r=0] Z ai(z — ¢)* converges in [c — r,c+ 7]} .
k=0

The interval of convergence or convergence interval of a power series is the collection of all

x at which the power series converges.

We remark that Proposition b2 implies that a power series converges absolutely in the interior

of the interval of convergence.

Proposition 5.4. A power series is continuous in the interior of the convergence interval; that is, if
0 o0

k

R > 0 is the radius of convergence of the power series Y, aj(z —c)¥, then Y ap(z —c)¥ is continuous

k=0 k=0
in (c—R,c+ R).
Proof. W.L.O.G., we prove that the power series is continuous at xq € [¢,c+ R). Let € > 0 be given.
Define r = M%:UO. Then |r| < R; thus there exists N > 0 such that
0
Z lag|r™ < =
k=N+1 4
N
Moreover, since Y. ay(z — ¢)¥ is continuous at xg, there exists 0 < § < 7 such that
k=0
N N -
‘Zak(x—c)k—z%(xo—c)k)<— Ve — x| <.
2
k=0 k=0
Therefore, if | — x¢| < J, we have
a0 Qo0
‘ Z ap(x — ) — Z ag(zo — ) ’
k=0 k=0
- k - k S wlz— S klzo —cff
< ‘Zak(x—c) —Zak(xo—c) ‘+ Z |ag|r T+ Z lag|r —
k=0 k=0 k=N-+1 k=N-+1
N 0
< ’ 2 ap(r — c)* — Z ap(ro — )| +2 2 |ag|r® < e
k=0 k=0 k=N+1
0
which implies that > ax(x — ¢)¥ is continuous at . a
k=0
0
Theorem 5.5. Let R > 0 be the radius of convergence of the power series Y. ay(z — c)*. Then
k=0

xr 0O 0
ks _ Ok k+1
Lkz_]oak(t—c) dt—kZ::ijLl(x—c) Vre(c—R,c+ R).



Proof. W.L.O.G., we assume that x € (¢,c+ R). Let € > 0 be given. Choose 7o € (c—R,c+ R) such

t—
that |z — ¢| < |zg — ¢|. Then for t € [c, 2], ‘L l’ 1. Moreover, since Z ar(zo — ¢)* converges
U k=1
absolutely, there exists N > 0 such that
= €
1 laxllzo — o < .
k=N-+1 |20 — ¢l

Since

fiak(t—c)’fdt:f Zn] (t —c)kdt + i ar(t — c)Fdt

¢ k=0 k=0 ¢ k= N+1
n
ay
=27 (z — )" + Z ap(t — c)kdt,
k=0 +1 € k=n+1

we have for n > N,

a —c
JZakt—c dt—Zk k kH Z ’ClkaO—C’k‘( )

k=0 ¢ k=n+1
J S Jaulloo — et < ro—c| Y Jagllan — o <.
¢ k=N+1 k=N+1
n T Q0
In other words, lim Z kak (x — )l = J > ag(t — ¢)*dt which concludes the corollary. o
0
Theorem 5.6. Let R > 0 be the radius of convergence of the power series Y, aj(x — ¢)*. Then
k=0
d o0
%I;O x —c)f Zkakx—ckl Vxe(c—R,c+R).

o0

Proof. We first show that the series Y] kay(x — ¢)*~! also converges for all x € (¢ — R,c + R). Let
k=1

€ (¢ — R,c+ R). Then there exists zy € (¢ — R, ¢+ R) such that |x — ¢| < |xg — ¢|]. Choose N >0

such that
|z — ¢ff

A

o<1 if k=N,
|20 — clf

We note that it is possible to find such an N since ]}Hn k || — c|’ - = 0. Therefore,
—0 g —C

0 N 0
D klaglle —cff = Y klaglle —cff + ) klaglle - ¢ff
k=0 k=0

k=N+1
3 R opdz =t

< Zk|ak||x—c| + Z |ag||zo — e h———r
k=0 k=N-+1 |20 — ¢

0

N
< D klaglle — e+ ] Jagllzo — o < o0
k=0

k=N+1



which implies that the series Z k|ax||z — c|* converges absolutely.
k=
Now, Theorem B3 implies that

o] o0
JZkakt—ckldt JZk—l—lakH(t—c) dt = Zak+1x—ck+l Zakx—c
¢ k= ¢ k= k=0 k=1

thus we have
e0)

aoJrf Zkakt—ck Ydt = Zak(x—c)k.

k=0

Q0
Moreover, Proposition 52 implies that the power series Y k|ax||z —c|* is continuous in (¢c— R, c+ R).

=0
As a consequence, the fundamental theorem of Calculus implies that

0 d (*& d &
k=1 _ k=17, _ k
l;lkak(x—c) = Zkak(t—c) dt—%Zak(:ﬁ—c)

¢ k=1 k=0

which concludes the theorem. o

Definition 5.7. A function f : (a,b) — R is said to be analytic at c € (a,b) if f is infinitely many
times differentiable at ¢ and there exists R > 0 such that

f(x):Zak(x—c)k Vre(c—R,c+ R) < (a,b)

for some sequence {ax}{ -

Remark 5.8. If f: (a,b) — R is analytic at ¢ € (a,b), then Theorem 58 implies that

2R
:ka‘()(x—c)k Vaze(c—R,c+R) < (a,b)
k=0

for some R > 0.
A function which is infinitely many times differentiable at a point ¢ might not be analytic at c.

For example, consider the function

1 .
fla) = exp(—ﬁ) ifx+#0,
0 ifxr=20.

Then f*)(0) = 0 for all k € N which implies that f cannot be analytic at 0.

5.1.1 Product of Power Series

Q0 Q0 0 n
Definition 5.9. Given two series ), a, and Y] b,, the series )] ¢,, where ¢, = >} apb,_y for all
n=0 n=0 n=0 k=0

o0 o0
n € N u {0}, is called the Cauchy product of >, a, and > b,.
n=0 n=0



0 0
Theorem 5.10. Suppose that the two series Y, a, and . b, converge absolutely. Then the Cauchy
n=0 n=0

0 0 0 0
product of > a, and >, b, converges absolutely to ( > an)( > bn>; that is,
n=0

5 (S ehs) = (S o) (50)
n=0 n=0
o0
Proof. Claim: If ] a, converges absolutely and 7 : N — N is bijective (that is, one-to-one and
Q0 =0 Q0
onto), then »} ar,) converges absolutely to Y, ay.
n=0 n=0
o0 0
Proof of claim: Let }] a, = a and € > 0 be given. Since ). a, converges absolutely, there exists
n=0 n=0
N > 0 such that o
€
1 el < 5
n=N+1

Let K = max {7~ !(1),--- , 7 "(N)} + 1. Then if k > K, w(k) > N + 1; thus if k > K,

o0 0¢]

D lasml < Y] lanl <5

n=k+1 n=N+1

and

0
—a‘é? Z la,| <¢.

n=N-+1

k k N
’Zaﬂ'(n)_a‘ <’Zaﬂ(n)_2an
n=0 n=0 n=0

Therefore, ) ar@n) converges absolutely to a.

n 0
a0
Claim: If Z a, and Z b, converge absolutely, then > a,b,, converges absolutely and
n=0 n,m=1

0

5= (S0) ().

=1 =1

o0
where > a,b,, denotes the limit hm Z Z Qb

n,m=1 M- 321 m=1

Proof of claim: If N; < Ny and M; < Ms,

Ny My No Mo N1 Mo No Mo
((Ean)(zbm)—(zan)(me)]<Z|an| SNl Y Janl Y bl
n=1 m=0 n=1 m=0 n=1 m=Mi+1 n=N1+1 m=1
thus
N1 M, o0
(L) (om) = X ot
n=1 m=0 n,m=1

i (S e) (Do) - (Se) (L)

<(nil\an|+mi|bmo( i |an| + i |bm’)-

n=N1+1 m=Mi;+1



The claim is then concluded by passing to the limit as M; — oo and then N; — 0.

The theorem follows from the fact that the Cauchy product is a special rearrangement of the
e}

series Y. anbp,. o
n,m=1

e¢]
Corollary 5.11. Let Ry, Ry > 0 be the radius of convergence of the power series Y. ay(z — c)* and

k=0
0

S bp(z — ¢)F, respectively. Then with R denoting min{Ry, Ry}, we have
k=0

o0]

<iak (x —c¢) )(Zbk T —c) >:Z_: (Zn:akbn_k>(x—c)” Vze(c—R,c+R).

5.1.2 General Theory

The discussion of the power series is for the purpose of solving ODE with analytic coefficients and

forcings.

Theorem 5.12 (Cauchy-Kowalevski, Special case). Let Q@ < R™ be an open set, and f : Q x (to —
h,to + h) — R™ be an analytic function in some neighborhood (xo,ty) for some xy € Q; that is, for

some r > 0,

Fw.t) = flyo.to) + D>, > cag(y—wo)*(t—ta) ¥ (y.t) € B((yo,t0),7)

k=1 |a|+j=k
where a = (aq, -+, ay) s a multi-index satisfying y* = yi* - y°™ and |a] = ag + -+ . Then there
exists 0 < 0 < h such that the ODE y'(t) = f(y,t) with initial condition y(ty) = yo has a unique

analytic solution in the interval (ty — d,to + 0).

Remark 5.13. If f is continuous at (yo — k,yo + k) x (to — h,to + h), then the general existence
and uniqueness theorem guarantees the existence of a unique solution of y'(t) = f(y,t) with initial
condition y(ty) = yo in some time interval (ty — d,tg + d). Theorem further implies that the

solution is analytic if the “forcing” function f is analytic.

5.2 Series Solutions Near an Ordinary Point: Part 1

In the remaining chapter we focus on the second order linear homogeneous ODE
d2
dx?

where P, (), R are assumed to have no common factors. We note that we change the independent

P(z)55 + Qx )—+R( Jy =0, (5.1)

variable from ¢ to z.

Definition 5.14. A point z; is said to be a ordinary point to ODE (670) if P(zy) # 0, and the
two functions @)/ P, R/ P are analytic at zg. It is called a singluar point if it is not a regular point.
It is called a regular singular point if the two limits

Jim (- %)% and - lim (@ = >§E§




both exist and are finite. Any singular point that is not a regular singular point is called an irregular

singular point.

If xo is a regular point to ODE (B), then

y" + o)y’ +q(z)y =0
for some function p and ¢ that are analytic at zo. Write y’ = z. Then the vector w = (y, z) satisfies

z

w' = d% {z} - {—p(w)z - Q(w)y} = f(@w).

It is clear that f is analytic at x( if p,q are analytic at xg; thus the Cauchy-Kowalevski theorem

implies that there exists a unique analytic solution.

Example 5.15. Find a series solution to y” +y = 0.
a0
Suppose that the solution can be written as y = Y. axz”. Then Theorem 58 implies that

k=0
0 0
y" = k(k = Dape®* = Y (k+2)(k + Daga”;
k=2 k=0
thus y” + y = 0 implies that
a0
DUk +2)(k + Dagss + a]2* = 0.
k=0
o0
Since the power series (representation) associated to the zero function is . 0 - 2*, we must have
k=0
Apro = % for all k € N U {0}; thus we conclude that
R S A2k —4 _ (—=1)*aq
FTRK)(2k—1)  (2k)(2k — 1)(2k — 2)(2k — 3) (2k)!
and
a __ TGk _ A2k4+1 L (—Dfay
T2k 1)(2k)  (2k)(2k — 1)(2k — 2)(2k — 3) 2k + 1)
Therefore,

y = i ez + i o2 = ag i ﬂx% +a i ﬂxﬂﬁ-l
k=0 k=0 = (2k)! = 2k + 1)
o0 o0
Let C(z) = Y anr® and S(z) = > agy 12T, Then it is clear that C'(z) = —S(z) and
k=0 k=0
S'(z) = C(x). Moreover, the Wronskian of {C, S} at x =0 is

‘0(0) S(O)’_‘l 0

') s o 1' =1

which implies that {C, S} is a fundamental set of equation y” +y = 0.



Example 5.16. Find a series solution to Airy’s equation y” — zy = 0.
ee}

Suppose that the solution can be written as y = Y. azz*. Then

k=0
o0 o0
y" = Z k(k —1)azaz"? = Z(k‘ +2)(k + Dagyo2™;
k=2 k=0
and
0 0
Ty = Z apzt Tt = Z ap_1*
k=0 k=1
Therefore,
o0
az+ Y [(k+2)(k + Darsz — ap]a* =0
k=1
which implies that a; = 0 and ag,o = Mﬁ for all k¥ € N. The recurrence relation further
implies that a5 = ag =ay; = --- = asp_1 = --- = 0 for all £ € N. Furthermore, we have
P a3k—3 _ a3k—6 _
FTBE)GBE—1)  (3k)(3k — 1)(3k — 3)(3k — 4)
B ap ~ (Bk—2)(3k —5)---4-1ag
- (BK)Bk —1)(3k —3)(3k —4)---3-2 (3k)!
2 5 1
k=) (k= 3) 500 3k + 1/3)
B (3k)! - T(1/3)(3k)!
and
a _ a3k—2 _ ask—5 _
FHT Bk +1)(3k)  (3k + 1)(3k)(3k — 2)(3k — 3)
B aq (B —1)(3k —4)---2a,
- (Bk+1)(3k)(3k —2)(3k —3)---4-3 (3k + 1)!
1 4 2
Bk —3)(k—5) 301 3D(k +2/3)
_ 3 3/ 3! _ a
(3k +1)! ['(2/3)(3k + 1)!

Therefore, the solution of Airy’s equation is of the form

3ET(k +1/3) S 3D (k+2/3
Z 3k Z x3k+1
0 L T(1/3)(3k)! LT (2/3)(3k + 1)

Example 5.17. In this example, instead of considering a series solutlon of Airy’s equation y”—zy = 0

of the form y = Z apx®, we look for a solution of the form y = 2 ap(z — 1)*.
k=0 k=0

Since
o0 o0

y" = Y k(k = Darle = 1) = 3 (k+2)(k + Dagso(e — 1)"

k=2 k=0
and

e¢] o0

ry=(x—1y+y= Z ap(z — 1)F + 2 ap(z —1)* = Z ap_1(z —1)F + Z ap(z — 1)7,

k=0 k=0 k=1 k=0



we have

0

(2a2 — ag) + [6a3 — (a1 + ao)} (z—1)+ Z [(k' +2)(k + Dagse — (ag—1 + ak)} (x-1)"=0.

Therefore, 2a5 = ag, 6az = a1 + ag, 12a4 = as + aq, 20a5 = az + as, and in general,
(k’ + 2)(]6 —I— 1)ak+2 = ak+1 —I— Qg .

Solving for a few terms, we find that

1 1 +1 1 +1 1 n 1
ay = —a as = =ayp + =a ay = —a a5 = =—=ap + —=a
2= 500, 03 = o El1, 44 = 5700 12 5= 30% T 150

It seems not possible to find a general form the the series solution. Nevertheless, we have

(-1 (@-1° (@-D' (z-1p
y:ao[l—i- 5 + G + 1 + 30 —l—}
+a1[(m—1)+<x_61) +<x121) +(x1_201> +]

5.3 Series Solution Near an Ordinary Point: Part 11

There is another way to computed the coefficients ay, of the series solution to ODE (&I). The idea is
to differentiate the equation (60) k-times and then evaluate at an ordinary point zq so that y*2(x)
can be obtained once y’(xg)’s are known for 0 < j < k+ 1. To be more precise, we differentiate (51)
k-times and use the Leibniz rule to obtain that

k-1

p(xo)y(kw)(%) + Z le;cp(k—j)( ]+2) )+ Z Ck o)y 1+j)(x0) + R(kfj)(x(])y(j) (370)) =0;
j=0
thus
k+1 k+1
Pz )y(k—l— Z plk— g+2 ]) (o) Z le J+1) (xo)y(])(ivo)

— Z C’fR(’“_j)(xo)y(j)(xo)

J=0

- [k’Pl(l‘o) + Q(xo)}?/(kﬂ)(xo) - [Q(k) (zo0) + k?R(k_l)(xo)}y,(Io) — R (z0)y(z0)

k
_ Z [C]l;_ZP(k—j-i-Q)(xO) + le?_lQ(k—j-i-l)(xO) + C]’?R(’“‘j)(xo)] y(j)(a:o) )
j=2

(k+2)
The recurrence relation above can be used to obtain the coefficients a; o = w of the series
o0
solution y = > ag(x — x0)* to (E) once y*(xg), -+, f(xg) are known.
k=0

Example 5.18. Find the series solution about 1 of Airy’s equation y” — xy = 0.
0
Assume that the series solution is y = Y. az(z — 1)*. First, we know that y”(1) —y(1) = 0. Since

k=0
14
1 . .. . . .
y"(1) =% Differentiating Airy’s equation k-times, we find that

y(1) = ag, we know that as = 5 5




Y+ ) -1 _ g
thus
(k + 2)larpz = y" (1) =y (1) + ky™ Y = Kla + k(k — 1)lax—1 = k!(ax + ax1) -

Therefore, (k + 2)(k + 1)ag1o = ay + ax_1 which is exactly what we use to obtain the series solution

about 1 to Airy’s equation.

Theorem 5.19. Let xy be an ordinary point of ODE (1), and Ry and Ry are the radius of conver-

(z) R(x) J- k
and about xy. Suppose that y = ap(x—x
) () 0. Supp y = > ar(r—10)

Hitial condition y(xo) = ao and y'(xy) ="a}. Then the

gence of the power series representation of @
is the unique analytic solution to (B) wit

o6}
radius of convergence of convergence of the power series Y, ap(x — x0)¥ is the at least as large as

k=0

min{Ry, Ry}.

Example 5.20. The radius of convergence of series solutions about any point x = z( of the ODE
y" + (sinz)y’ + (1 +2%)y =0

is infinite; that is, for any xg € R, series solutions about z = x4 of the ODE above converge for all
r e R.

Example 5.21. Find a lower bound for the radius of convergence of series solutions about x = 0 of
the Legendre equation
(1—2%)y” —22y" +ala+1)y=0.

about 0 converges for all x € (—1,1), the power series

Since the Taylor series expansion of .2
— X

. 2 .
representation of . x 5 about 0 converges for all z € (—1, 1); thus the radius of convergence of ]
—x -z

is 1. Therefore, the radius of convergence of the series solution about 0 of the Legendre equation is

2

at least 1. We also note that +1 are both regular singular point of the Legendre equation.

Example 5.22. Find a lower bound for the radius of convergence of series solutions about x = 0 or
about x = —% of the ODE

(14 2%)y" + 22y’ + 42’y = 0.
1
Similar to the previous example, since the Taylor series expansion of 5.2 about 0 converges for
xr

all z € (—1,1), the radius of convergence of the series solution of the ODE is at least 1.

Next, consider the series solution about —%. Since both z and z? are polynomials, it suffices to

. . . 1
find the radius of convergence of the power series representation of o2 about —%. Nevertheless,
T
. . . 1 1. /5
the radius of convergence of the power series representation of a2 about —5 I8 5
x



5.4 Euler Equations; Regular Singular Points

In this section we consider the Euler equation
2*y" + ary’ + By =0. (5.2)
Note that xy = 0 is a regular singular point of (52).

Assume that we only consider the solution of the Euler equation in the region x > 0. Let
2(t) = y(e'). Then 2'(t) = y'(e')e! and 2”(t) = y"(e')e* + y'(e')e’ which implies that y”(ef)e? =
2"(t) — 2'(t). Therefore,

2"(t) + (= 1)z2'(t) + Bz(t) =0. (5.3)
This is a second order ODE with constant coefficients, and can be solved by looking at the multiplicity

and complexity of the roots of the characteristic equation
P +(a-1)r+8=0. (5.4)
We note that (64) can also be written as 7(r — 1) +ar+ 3 = 0, and is called the indicial equation.

1. Suppose the roots of the characteristic equation are distinct real numbers r; and 7. Then the
solution to (533) is z(t) = Cre™ 4+ Cye™"; thus the solution to the Euler equation is

y(x) = Cre™18% 4 Che108™ = Cha™ + Cha™ .
2. Suppose the characteristic equation has a real double root r. Then the solution to (53) is
z(t) = (Cit + Cy)e™; thus the solution to the Euler equation is
y(x) = (Clogx + Cy)e"°8* = (Clogx + Cy)a" .
3. Suppose the roots of the characteristic equation are complex numbers vy = a+bi and ro = a—br.

Then the solution to (633) is z(t) = C1e™ cos(bt) + Cae™ sin(bt); thus the solution to the Euler

equation is
y(x) = Cre*'8% cos(blog x) + C1e*°8” sin(blog ) = C12* cos(blog ) + Cox®sin(blogx) .
Now we consider the solution to (62) in the region # < 0. We then let z(z) = y(—x) and find
that z satisfies also satisfies the same Euler equation; that is,
222" +oxz +B2=0.

We can then solve for z by looking at the multiplicity and complexity of the roots of the characteristic

equation, and conclude that
1. Case 1 - Distinct real roots r; and rs:
y(x) = Ch|z|™ + Cy|x|™ .
2. Case 2 - Double real root 7:
y(x) = (Cilz] + C)lal".
3. Case 3 - Complex roots a =+ bi:
y(z) = Cy|z|™ cos(blog|z|) + Colx|* sin(blog |z]) .



5.5 Series Solutions Near a Regular Singular Point: Part I

Suppose that xg is a regular singular point of (B1); that is, P(zg) = 0, and both limits

wlgilo(x — xo)% and zli_)I?O(x — x0)2ﬁgg

exist. W.L.O.G., we can assume that o = 0 (otherwise make a change of variable ¥ = = — z;), and

only focus the discussion of the solution in the region = > 0. Suppose that

Qz) < k 2 R(z) S k
Pl) —kZ:Opkx and =z P() —kzzoqu

2

in some interval (—R, R). Then by multiplying both side of (£1) by %, we obtain that

o0 e}
T x( 2 pkmk>y’ + (Z quk>y =0. (5.5)
k=0 k=0

We note that if pp = qx = 0 for all k € N, the equation above is the Euler equation

22y" 4+ poxy’ + qoy =0 (5.6)

that we discussed in previous section.
For x near 0, it is “reasonable” to expect that the solution to (633) will behave like the solution
to the Euler equation

2*y" + poxy’ + qoy = 0.

The idea (due to Frobenius) of solving (63) is that the solution of (53) should be of the form z”

times an analytic function. Hence we look for solutions of (633) of the form

==z Z apz® = Z apztr x>0, (5.7)

k=0

where ag is assumed to be non-zero (otherwise we replace r by 1+ r if a; # 0). Since

oo [oe} e}
y'(z) =ra"? Z apr® + 2" Z kaga" = Z(k + r)aga !
k=0 k=0 k=0
and accordingly,
o0
y"(x) =D (k+r)(k+r— Va2,
k=0
we obtain
0 o0 e}
Z(/{;—i-r)(k—i-r—l Japa T 4 (Zpkx )(2 (k +r)apz” ) (qux ><Zakmk”> =0,
k=0 k=0 k=0
or cancelling x",
o0 e} o0 o0

Z(k+r)(k+r—1)akxk+ (Zpkxk><2(k:+r apx ) (qux >< akxk) =0.

k=0 k=0 k=0 k=0



Using the Cauchy product, we further conclude that

k

i(/{; +7r)(k+r — Dagz® + i (Z(] —i—r)ajpk,j)xk + i (i qk,jaj>mk =0.

k=0 k=0  j=0 k=0  j=0
Therefore, we obtain the following recurrence relation:

k k
(k+7)(k+r—Dag+ > (G +r)ajpe—j + >, aeja; =0  VkeNu{0}. (5.8)

=0 =0
Therefore, with F' denoting the function F(r) = r(r — 1) + rpo + qo, we have

k—1
F(r+k)ag+ Y [ +7)prj + @—j]a; =0 VkeN. (5.9)

J=0

The case k = 0 induces the following

Definition 5.23. If zy is a regular singular point of (60), then the éndicial equation for the
regular singular point zy is

r(r—1)+por+gq =0, (5.10)
where py = :}erxlo(m — xg)ggii and ¢y = Q}Lrgo(x — xo)zﬁgi;.
called the exponents (indices) of the singularity z.

The roots of the indicial equation are

Now assume that rq, 79 are roots of the indicial equations for a regular singular point x;.

1. If 1,79 € R and r; > 7. Since F' only has two roots, F'(k+1) # 0 for all kK € N. Therefore, for
r =ry, (69) indeed is a recurrence relation which implies that a; depends on ag,- - ,ax_; and

this, in principle, provides a series solution

yi(x) = 2™ [1 + i a’“(”)x’“] (5.11)

=1 20
to (B3), in which ay(r1) denotes the coefficients when r = ;.
(a) If in addition 79 # r1 and r, — ry ¢ N, the F(k + 1) # 0 for all k& € N; thus for r = r,

(1) is also a recurrence relation, and this provides another series solution

0
yo(x) = 2 [1 + Z ak(m)xk] . (5.12)
ag
k=1
(b) If 1y =79 or r; — ro € N, we will discuss later in the next section.

2. If r1, ro are complex roots, then r; —ry ¢ Nand F(k+r) # 0 for all k € N for r = ry, ro. Letting

gt = 2% o = 298" = 2% cos(blog ) + isin(blogz)]

then (B10) and (B12) provide two solutions of (B3).



Example 5.24. Solve the differential equation
22%y" —ay' + (1 +2)y =0. (5.13)

We note that 0 is a regular singular point of the ODE above; thus we look for a series solution to
the ODE above of the form

6]
y(x) =a" Z arz® .
k=0
Then r satisfies the indicial equation for 0
2r(r—1)—r+1=0
which implies that r =1 or r = % Since

o0 o0

y'(z) = Z(k: +r)arz™ ! and  y'(z) = Z(k +r)(k+r — Daga™ 2,
k=0 k=0
we obtain that
o0 o0
D2k +r)(k+r—1) = (k+7r)+ aa™" + > a2 =0
k=0 k=0
or cancelling z",
0 0
Z 2k +7)(k+r—1)— (k+7r)+1]apz” + Zak,lxk =0.
k=0 k=1
Therefore,
ar—1
= — VkeN.
)kt —1)— (k+tr) +1 ©
_ . _ Gk
1.r=1a, = Kok 1) for all £ € N. Therefore,
a = — Q-1 _ Q-2 _ Q-3
"TURQE+1) k(- DR+ 1D)2k—1)  k(k—1)(k—2)(2k + 1)(2k — 1)(2k — 3)
B (—1)* - (2k)(2k —2)(2k — 4) - - 2(—1)’“@ _(—1)k2k .
TRk +1)2k—1)-1° k(2K +1)! T 2k+ D)
. . . . o (=1)k2k . .
This provides a series solution y;(z) = )] "1 whose radius of convergence is .
i=o (2k+1)!
I N |
2. r= 5 @k = RETY) for all k € N. Therefore,
= — Qp—1 _ ag—2 _ Q-3
g k(2k—1)  k(k—1)(2k —1)(2k — 3) k(k —1)(k —2)(2k — 1)(2k — 3)(2k — 5)
(—1)k (—=1)k(2k)(2k —2)---2 (—1)k2k
El(2k—1)(2k—3)---1 k!(2k)! (2k)!

1 . .
¥z whose radius of convergence is .

©¢]
This provides a series solution ys(x) = >



Therefore, the general solution to (A-L3) in the series form is y = Cy;1(x) + Coys(x)

Example 5.25. Find a series solution about the regular singular point = 0 of

(z +2)2%y" (z) — 2y'(z) + (1 + 2)y(z) =0,

r>0.
Let p(x) = — ! and () = 1T hen
P = x+2 ar) = )
( ) 1 1 1i (—:U)k i( 1)k+1xk
plx) =—= —_ A — k+1 )
21—2 R A
q = T+ 2 21_ ¢ - = ok+1 2 Pt ok-+1
11 1 k+1
Therefore, (po, qo) = ( 2 2) and pr = qx =

T for all £ € N. The indicial equation for 0 is
1 1

—1)—=r+=-=0

r(r—1) 5" + 5

which implies that r =1 or r = 1

oe} o0
1. r = 1: Suppose the series solution to the ODE is y = 2 . apz* = >} apx

F1 Then
k=0 k=0

0 0 0
(z 4 2)2 Z(k + Dkapa™* — Z(k: + Dagz® + (1 + 2) 2 apz = 0

k=0 k=0 k=0

© o9)
= Y (K + k4 Daga™? + (26 + k)apa*™! = 0
k=0 k=0

= 3 (106 =124 (b = 1) + o s + (282 + K)ag )+ = 0.

K2 —k+1
Therefore, ay = —m ar,—1 for all k € N. Note that

. aj
lim
k—00

’__ k—%l‘__
Qp—1 B k—>OO k' 2k+1

thus the radius of convergence of the series solution y = Z apzttl s 2.
k=0
2. r = —: Suppose the series solution to the ODE is y = z2 Z apxh = Z apxht

. Then
k=0 k=0

w0 o o .
(z+2) Z (k + %) (k B %)akx’“r% — Z (k T %)akkar% + 2 apatts Z apztte =0
k=0 k=0

k=0 k=0

3

k? + 3 aprtte + 2% — KagzFt: =0
4
k—1 Nap_1 + (2K* — k)ay, M =0,
4

( -

12
Therefore, a;, = —W ap_q for all £ € N. The radius of convergence of this series

0
2,
k=0
a0
= Z 2+
k=0

solution is also 2.



5.6 Series Solutions Near a Regular Singular Point: Part 11

5.6.1 The case that the difference of roots of indicial equation is an integer

Suppose that r; and 7 are the roots of the indicial equation for a regular singular point.

e 11 =19 Let ag(r), k € N, be defined by the recurrence relation (69) (with ag and r given), and

o(r,x) =" Z ap(r)z® .
Then the computation leading to the recurrence relation (59) also yields that
*Qua(r,7) + 2p(2) s (r, 2) + q(2)¢(r, )
= aoF(r x+2< (k + 7)ag(r (Z (G + )Py + @ J%(?“))xw
=ag(r —ry)*x" =0,

where ¢, and ¢,, denote the first and the second partial derivatives of ¢ w.r.t. z. Differentiating the

equation above w.r.t.r variable at r = rq, we find that

=0.

r=0

2 Quar (1 @) + 2p(2)ar (1, 7) + q(2) @1 (r, @) = [2a0(r — 11)*2" + ag(r — r1)*2" log 2]

0 _ /0p 0 ) L . . o
It 5 Pae = (E)m and 5P = (E)x (which in general is not true since it involves exchange of

orders of limits), then the equation above implies that

2 (52(r1, )"+ ap(@) (G201, ) + a(@)e,(r1,) = 0.

op ) 0 o op 0y . .
(?r)-'m' and 5 Pa = (E)w’ Yy = E(Tl’@ is also a solution

i
In other words, assuming that :—99,1 = (
or
to the ODE (53). Formally, we switch the order of the differentiation in r and the infinite sum to
obtain that

: - S 3
a_f(n, r) =" log£C< 2 ak(T)xk> a2 ) ag(r)at = y()logw + 3 ag(r)at
k=0 k=0 k=0

Now let us verify that

0
ya(z) = y1(z) logz + Z ag,(ry)z (5.14)
k=0
0
is indeed a solution to (533) (if the radius of convergence of the power series . aj(r)x* is not zero).

k=0
We note that y, satisfies

ys = zy)(x) logz + y1(x) + D (k + ri)ag(r)a*,

vy = 2*y) (z)logz + 2y’ (z) — y1 () + Z(l{; + 7)) (k + 711 — Dag(ry)z .
k=0



Moreover, differentiating (58) w.r.t.r variable, we find that

k k
[2(k +71) — 1] ag(r) +2pk ja;(ry) Zpk]j—l—h + qr—j)aj(r1) =0 VkeNu{0}.

7=0
Therefore, by the fact that y; is a solution to (53), we have

?yy + xp(x)ys + q(x)ys

0

= 2’y/ () logz + 2zy;(x) — yi(2 —I-Z (k+71)(k+7r —1aj(r))a"t"

+ ap(x)y; (z)logx + p(x)y: (v +(ipkx )(i (k+r1)ag(r)x k’*’”)

o0

+ q(z)y1(x) logx + < Z Qka) ( Z aé(rl)xk”l)

k=0 k=0

0 0 k
:Z k+7°1)—1]ak k+r1+2<2 Pk—ja 771) S
k=0 k=0  j=0

k
+Z(k+71)(/<—|—7—1(1k 71 Z Die— 7J_|_71 + Qi }]a( )):1;k+7’1:0;
7=0

thus yo(z) is a solution to (B3).
e 1y —r9 = N € N: using the recurrence relation (59) for r = ry, by the fact that F(ro + N) =
F(ry) = 0 we cannot find ax(rs) so that ayi1(rs), ayi2(re) and so on cannot be determined.

N-1

1. Suppose that Y (j+7)py—; +qn—; is divisible by r —ry = r+ N —r;. Since (59) implies that
=0
’ N-1
(r=r2)(r+ N —ra)an(r) == > [(G +r)pn—j + av—i]a;(r).
7=0

we can compute ay(r2) by

N-1
2 (G+r)pv—j+an—;
j=0

N-1
2 (J+7r)pn—j +an-;

_ 1 0
::1. ::__1. T T2 _ = r J )
an(rz) = lim ax(r) = — lim F(r+ N) N 7o r—rs ’
rT—17T9

thus the recurrence relation can be used to determine ayi1(r1), ays2(r1) and so on. In such a
case, another solution can be written by (512) as well.
N-1

2. In general (which includes the case that Y (j 4+ r)py—; + qn—; is divisible by r —73), we let
7=0

0
(ryx) =2a" Z ar(r)zk
k=0
where ay(r) is given by the recurrence relation (59). Then

22 Gua(r,7) + 2p(@)pu (1, 2) + q(2)p(r, 7) = ag(r — 1) (r —r2)a” .



Multiplying both sides of the equation above by (r —ry) then differentiating in r variable, with
Y(r, z) denoting the function (r — r9)¢(r, x), we find that

w2¢xxr(r27 7) + 2p(2) ey (12, ) + q(2) (12, 7) = 0,

which, as discussed before, under certain assumptions we find that

((7“ —T3) i ak(r)xk”)

k=0

wr<7a27 x) = i

or

r=ro

is also a solution to (63). Note that if N # 1, the recurrence relation (59) implies that

=0.

TILI%(T —1r9)ai(r) = —Thj% (Tp1 +Fq(;)jfl_) T2)ag

Similarly, for £k < N,

kg (G + )P + an—j]a; (1) (r —12)

lim (r — = — lim = ~0.
Jim (r = ro)ar(r)] = - lim Flier)
Now we consider lim (r — r9)an(r). Since F(r + N) = (r — ro)(r + N —r3), we have
r—ro
N1
, [(J + 7)pr—j + @rj ] a;(7)
(r = ra)an(r) = == ;
(r4+ N —ry)
thus
1 =
7]1512(7“ —ry)an(r) = N Z (J + )iy + qu—j] a;(r2)
7=0

which exists and might not vanish. Let by = lim (r — ry)an(r). Then for £k > N, with by

T—T2
denoting the limit hm (7“ — r9)agn (1), we have
ZJO [+ 7)Preg + Q] a; (r) (r = 12)
by = Jimr = ra)an(r) = = Jim = Fe 1)
k-1 k-1
> [+ 7)ok + aej)a;(r)(r —72) > G +ra)pr + ae-5]bj-n
— _ lim =¥ = =N
s Flk+1) Flk+12)
R-N-1
& (G + 71)pr—jon + Ge—j—n]b;
]:

F(k? — N + 7"1)
which implies that the sequence {b;}72, satisfies

k-1
F(/f-i‘ﬁ)bk—l-z[(j+r1)pk,j+qk,j}bj20 VkeN.

J=0



As a consequence, by the fact that a];(r) is independent of ag, we have Z—k = akyl) and
0 0 0
0 bo S k+ro
yo(x) = Y(r,z) = —uyi(x)logx + Z cp(re)x™? (5.15)
or r=ro Qao =0

where by = lim (1 — r9)ay(r) and ¢ = 2

Am . (r —ro)ag(r).

r=ro

Example 5.26. Find a series solution about 0 to xy” +y = 0.
First, we note that

1
po=limz-—=0 and ¢y =lima* —=0;
x—0 x z—0 xX

thus 0 is a regular singular point of the ODE and the indicial equation for 0 is r(r — 1) = 0. There

are two distinct roots r1 = 1 and ro = 0 to the indicial equation for 0.

0
Let o(r,x) = Y. ax(r)z**" be the solution to the ODE above. Then

00] o0
k4 )k 47— Dag(r) ™ + Y ap(r)a* =0,
k=0 k=0
which implies that
o0
aor(r — 1)z" 1 + Z [(k 47+ 1) (k+7)aps(r) + ap(r) ]2 =0.
k=0
Therefore,
1
wrilr) = = e ) (5.16)
thus
1 1

ap(r) = —( )ak—l(r) = (

— = (=1 .
(k+r)(k+r—12- (r+1)2r

)(Zk_2<7“)

E+r)k+r—1 E+r)k+r—12k+r—2

(=n*

Then ay(ry) = 7(]{;1)”{!

ao which implies that a series solution is given by

LD
Y (x) = kz:;] i+ 1))!k!xk+ .

We also note that the recurrence relation (A1) can be obtained by (53): write the ODE as
2?y” + 2y = 0. Therefore, p,, = 0 for all k € NuU {0} and ¢ = 61 for k € N U {0}, where 4.. is the
Kronecker delta. Using (59), we have

ko1
0=F(k+r)ap(r) + > [(+ r)prj + aujla;(r) = F(k + r)ap(r) + ar_1(r) .

J=0



We summarize the discussions above into the following

Theorem 5.27. Let zq = 0 be a reqular singular point of the differential equation (63), and ri and
ro be the roots of the indicial equation (B0) with ry = 1o if 1,79 € R. Then there exists a series

solution given by (B1).
1. If 1 — 1o ¢ N U {0}, then another solution is given by (512).
2. If ry = ry, then another solution is given by (B14).
3. If ry —ry = N € N, then another solution is given by (B1H).

In all three cases, the two solutions y; and ys form a fundamental set of solutions of the given

differential equation.

5.6.2 The radius of convergence of series solutions

The radius of convergence of the series solution (6-4) cannot be guaranteed by Theorem 6T9; however,

we have the following

Theorem 5.28 (Frobenius). If xg is a reqular singular point of ODE (610), then there exists at least

one series solution of the form

0

y(@) = (@ —20)" Y anle — a0)",

k=0

where r is the largest root of the associated indicial equation. Moreover, the series solution converges
forallx € 0 < x —xy < R, where R is the distance from xy to the nearest other singular point (real

or complex) of (B).

5.7 Bessel’s Equation

We consider three special cases of Bessel’s equation
2.1 / 2 2 _
7y +ay' + (2 —v)y =0, (5.17)

where v is a constant. It is easy to see that z = 0 is a regular singular point of (5I7) since

2 2
. x ) x°—v
lmz-— =1=pg and lim 2 - =—1t=yq.
2 2
z—0 T z—0 T

Therefore, the indicial equation for the regular singular point z = 0 is
rir—1)+r—1v*=0

which implies that r = +v. The ODE (517) is called Bessel’s equation of order v.
To find series solution to (6I17), we first note that in the case of Bessel’s equation of order v,
F(r) =r*— 12, p(x) = 1 (which implies that py = 1 while p; = 0 for all k € N) and ¢(z) = 2* — v/?



(which implies that gy = —v? and ¢ = 1 and ¢z = 0 otherwise). Therefore, the recurrence relation
(69) implies that

k—1
[(k+r)* = v?]a(r) + Z Qr—jaj(r)=0  VkeN.
5=0
This implies that

[(1+7)? = v?]ai(r) =0 (5.18a)
[(k+7)* = v*]an(r) + ax—a(r) = 0 Vk>2 (5.18b)

5.7.1 Bessel’s Equation of Order Zero

Consider the case v = 0. Then the roots of the indicial equation are identical: r; = ro = 0. Using
(BI8a), ay(r) = 0 (in a small neighborhood of 0) and (618b) implies that

ag(r) = —makg(r) Vk>2; (5.19)

thus as(r) = as(r) = -+ = agm1(r) = --- = 0 for all m € N. Note that agy,—1(r) =0 for all m e N

also implies that aj,, ,(r) = 0 for all m € N.

On the other hand, recurrence relation (619) also implies that

1 1
) = =) = G pem g
= (=" as(r)
2m+7r)2@2m+r —2)2--- (4 +7)2 2

_ ()" N
C@2mAEr)2@2m A —2)2- - (4+7)2(2 +1)2 0

thus ag,(0) = Wao and rearranging terms, we obtain that
<_1)ma2m<r) .
log ~————— = —2[log(2m + r) 4+ log(2m +r — 2) + - - - + log(4 + r) + log(2 + r)] .
0

Differentiating both sides above in 7,

aém(r)__[ 1 N 1 N 1 N 1]
aom (1) om+r 2m4+r—2 44r 2471l

and evaluating the equation above at » = 0 we conclude that

(_1)m+1H
2, (0) = = Hyp 9 (0) = Wm!)gmaoa
where H,, = > s As a consequence, the first series solution is given by
k=1

na) = X 0™ = au[1+ 3 e



and the second solution is given by

(=1 Hpx?
ya(z) = ag [Jo(x) logz + ) (2217,’32 :
k=1 '

where Jy = ag 'y, is called the Bessel function of the first kind of order zero. We note that
y; and y, can be defined for all z > 0 since the radius of convergence of the series involved in y; and
Yo are infinite.

Any linear combinations of y; and y, is also a solution to Bessel’s equation (5I7) of order zero.

Consider the Bessel function of the second kind of order zero

Yo(z) = %[aioym) F(y— log2)y(x)] . (5.20)

where v = klim (Hy —logk) ~ 0.5772 is called the Euler-Mdscheroni constant. Substituting for
—00

Yo in (B220), we obtain

Yo(x)

© -1 k—HH
(=) ’“2’9}, 2>0. (5.21)

~[ (3 +1083 ) ote) + L

s
A general solution to Bessel’s equation (5I7) of order zero then can be written as
y(x) = Crdo(z) + CoYo() -

e Properties of Jy and Yj:

2

Jo(x)%q/gcos@—%) as r — o0,
2 . T

Yo(z) ~ E&n(:c—Z) as r — 0.

5.7.2 Bessel’s Equation of Order One-Half

Now suppose that v = % (thus r; = % and 7y = —%) To obtain solutions to Bessel’s equation
(617) of order one-half, we need to compute the coefficients a(r) for all k£ € N (given ap), and
bo = lim (r —rz)ai(r) as well as ¢, = 63 (r —ro)ag(r).

ro—1 Tlr=rg

Using (618b), we find that

e S (r) = —1
(k+r)2—;1la’“*2 E k+r+Hk+r-1)

ay(r) = ap—2(r)  Vk=2,

while if » ~ r = =, (B08a) implies that a,(r) = 0 which further implies that az(r) = as(r) = --- =

S o=

1
agm—1(r)=---=0forallme Nif r ~ 3 In particular, we have



thus a series solution of (517) is

0 k2K » ko 2k+1 -
1o (1) 1o (D) sin
yl(l'):a()l‘?z_:aog} 22 ' = ag .
! = (2k+1)! NET

The Bessel function of the first kind of order one-half is defined by (letting ag = \/g in

the expression of y; above)
2sinx 2
Ji(x) =] — =4A/—sinz.
%( ) T AT T

Now we compute the limit of (r — rg)ai(r) as r approaches ry. Since (61Ra) implies that (r +

3

5)(7‘ + %)al(r) =0, we have (r — ry)ai(r) =0 for all r ~ ry = —3 Therefore,

bo = lim (r — r9)as(r) =0

roro
which implies that there will be no logarithmic term in the second solution yy given by (512).
Now we compute % r:m(r —r9)ag(r). Since
-1
@Cm+r+3)2m+r—3
=™
Cm+r+HEm+r—3-2+r+H2+r-1)
(=™

Cm+r+HEm+r—15)-r+3r+3)

agm (1) = )agm_Q(r) =...

Qo

Qo

which implies that |al,, (r2)| < 00. Therefore,
0 —1)m
(r — r9)ag,(r) = agm(re) = ((Qm))'
On the other hand, using (518a) again, we find that a;(rs) is not necessary zero; thus we let a,
be a free constant and use (BI8b) to obtain that

sz(@) = ag .

(37" r=ro

(=D

2m+1+r+HCm+1+r—3)-- B+r+3HB+r-1)

Agmi1(1) = ( ay .

Since |ag,,,1(r2)| < o, we find that

0
C2m+1(7"2) =

_ 7 =)™
or

(1 —ra)agmy1(r) = agm(r2) = 2m + 1)!a1 .

r=ro

Therefore,

0 ) O (1™ 9 = —1)* 2k—1
yg(l') _ kZ_OCk(TQ):EIH_m =1 2 [aokzl ((Qk))l %k + aq kzl (Q(k _)1)';p k ]

This produces the Bessel function of the second kind of order one-half

2
Joa(z) = 4]
_E(x) —CosT,

and the general solution of Bessel’s equation of order one-half can be written as y = CJ 1 (z) +
02:] 1(1’)

T2



5.7.3 Bessel’s Equation of Order One

Now we consider the case that v = 1 (thus 7y = 1 and r, = —1). Again, we need to compute
. 0

{ak(rl)}zo:l, hm2(r —1ry)ag(r) and ¢k (ry) = Em (r —ro)ag(r).
T—>T r=ro

Note that (5IR8a) implies that a;(r;) = 0 (which implies that ag,—1(r1) = 0 for all m € N).

Moreover,

Cl2m—4(7‘ )

—1 1
agm(r1) = mazm—2(7’) = (2m + 2)(2m)?(2m — 2)

(=D R Gt O

T em+2)emem — 4242270 2m(m + 1)im

!ao;

thus . .
_ (1) 2k
() = aoxk; 22 (k+ 1)k

Now we focus on finding by and {Ck(rg)}km:[). Note that by (613a),

F(2+r)ay(r) = —aop;

1 . . . o . . B _@
0 +3) which implies that by = Th_)% (r —73)as(r) = 0.
To compute {Ck(rz)}zozo, we first note that (618a) implies that ay(r) = 0; thus we use (5I8b) to

conclude that as,,_1(r) = 0 for all m € N and r ~ ry. This implies that cy,,_1(r2) = 0 for all m € N.

thus (r + 1)as(r) = —

On the other hand, for m € N and r ~ ro,

(=D
2m+r+1)2m+r—1)2---(r+3)2(r+1)

azm (1) = ( aop;

thus
(=D)"
2m+r+1)2m+r—1)2---(r + 3)

(T - r2)a2m(r> - ( 2a0 .

Therefore, using the formula %f(r) = f(r)d% log f(r) if f(r) > 0, we find that

(—1)™ 1 2 2
CQm(rz):(2m)(2m—2)2--~22[2m+r+1+2m+7’—1+.”+r+3} r—rs
— (=1)"ag [LJF 2 +...+g]
22m=lml(m — )!'L2m  2m — 2 2
ETCCTE FURE S VU7 )
 2mml(m —1)!lm  om —1 1 22mml(m — 1)! 0

(r —ry)ag = ag. Then the second solution to Bessel’s equation of order
r=ro

Moreover, cy(rs) = a

one is

b o0 0
ya(z) = = (2) log x + Z cr(r) T = —Jy(z)logw + o7 [ao + Z CQk(TQ)ka:|
0

a k=0 k=1

(—=1)"(Hy, + Hy_1) Qk]

1 Qg =
= —g(@)logw + - [1 -2 221 (k — 1)

k=1



This produces the Bessel function of the first kind of order one:

0

1 _ T (_1)k 2k
s =5 ;} 22K (f+ 1)k

J1<LL’>

and the Bessel function of the second kind of order one:

Vile) = 2 [~ (o) + (3~ log2) 4 (@)

where 7 is again the Euler-Mascheroni constant. The general solution to Bessel’s equation of order

one then can be written as

6 System of First Order Linear Equations

6.1 Introduction

There are several reasons that we should consider system of first order ODEs, and here we provide

two of them.

1. In real life, a lot of phenomena can be modelled by system of first order ODE. For example,

the LotkaVolterra equation or the predator-prey equation:
p'="p—apq,
q = Bq+dpq.

in Example 10 can be used to described a predator-prey system. Let ¢ = (21, 22) = (p,q)T
and F(t,z) = (yr, — aw129, By + dx175)". Then the Lotka-Volterra equation can also be

written as

z'(t) = F(t, z(t)) . (6.1)
2. Suppose that we are considering a scalar n-th order ODE

y "Mt = f(Ey)y' (), y" ().

Let (1) = y(t), z2(t) = y'(t), ---, 2,(t) =y V(t). Then (x1,--- ,z,) satisfies
) = aalt), (6.20)
wy(t) = ws(t), (6.2b)
= (6.2¢)
2 (t) = f(t,2i(t), 22(t), -, 2a(t)) - (6.2d)
Let £ = (z1, - ,7,)T be an n-vector, and F(t,x) = (xQ, T3, T, f(E 21,29, - ,:En))T be a

vector-valued function. Then (B22) can also be written as (61).



Definition 6.1. The system of ODE (B1) is said to be linear if F is of the form
F(t,z) = P(t)x + g(t)

for some matrix-valued function P = [p;;(t)] (BD) is said to be homogeneous if g(¢) = 0.

nxn’

Example 6.2. Consider the second order ODE
" / .
y" —y' —2y =sint. (6.3)

Let x1(t) = y(t) and x5(t) = y'(t). Then & = (21, 22)T satisfies

2(t) = B ﬂ 2(t) + [ ¥ } | (6.4)

sint

Therefore, the second order linear ODE (B33) corresponds to a system of first order linear ODE (B63).
Review: to solve (633), we use the method of variation of parameters and assume that the solution
to (B33) can be written as

y(t) = uy(t)e* +ua(t)e™,

where {e?' e~} is a fundamental set of (623). By the additional assumption u{()e* + use™ = 0, we
find that
e et fug]l O
2e%  —e7t| |ub|  |sint]|
Therefore, with W (t) denoting the Wronskian of {€*,e~*}, we have
1 0 et —etsint 1
/ _ - - - —2t _:
uy(t) = W@ det < [sint —e‘t] ) 3 3¢ sin ¢
and . o 0 % i g .
b e _efsint 1,
uy(t) = W det < {26% sin t} ) =5 3¢ sint
which further implies that a particular solution is
2e ?'sint + e *cost , e'cost—esint
= _ ¢ —t
_ 2sint+cost cost—sint  cost — 3sint
B 15 6 - 10
This particular solution provides a particular solution to (62):
cost — 3sint
_ @) ] _ 10
2(t) = {y’(t)} | _sint+3cost
10
Example 6.3. The ODE
11
I __
x' = [ 4 1] x (6.5)

is a system of first order linear homogeneous ODE. Suppose the initial condition is given by x(0) =

(27610, -’Ezo)T-



1. Let £ = (z1,29)". Then
z1(t) = z1(t) + 2o(2), (6.6a)
x(t) = 4da1(t) + xo(t) . (6.6b)
Note that (6Ba) implies x5 = x{ — x1; thus replacing z» in (68) by z2 = ] — x; we find that
v —a2)=4dxy+x; -2y or  x{ —2x; -3, =0.

Therefore, z;(t) = C1e3* + Cye™ and this further implies that z5(t) = 2C)e3 — 2Cye™?; thus

the solution to (63) can be expressed as

_ (=) _ L s 1 —t
- E)-aljee )
2. Let zy(k) ~ x(kh) = (z1(kh), zo(kh))T be the approximated value of z at the k-th step. Since

2((k + 1)) ~ z(kh) + h Lll ﬂ (k) |

we consider the (explicit) Euler scheme

wh(kjul):a;h(k)—i—h{i ﬂ (k) = <Id+h[i ﬂ)k[i;g] ,

and we expect that for ¢ > 0 and k = t/h, then (k) — x(t) as h — 0.

To compute the k-th power of the matrix Id + h [411 ﬂ, we diagonize the matrix and obtain
that ) 1
d+h 1 1y (1+h R | |1 1]|1—=h 0 1 1)
4 1] | 4h 1+4+h] |2 2 0 14+3h||—2 2 ’
thus

R DA S | N | O

As a consequence, using the limit (1 — h)% — e tand (1+ 3h)% — 3t as t — 0, we find that
L i [1 1]fet 071 117" [
2(t) = i @n () = {—2 2} { 0 e3t] {—2 2] cho

(1 1] fet 0 2 —1| |z
_—2 2 0 €3t 2 1 T20
[ 2e7t +2e%  —et 4 €3t:| {1‘10]

|—de™! + 4e3t 2e~t 4 2e3

[ 2210 + 220 o3t 1| 2219 — wa ot
_4%10 + 2%20 —45610 + 2.1’20 '

T20

e M B N

4

Choose zg = (1,2)" and xy = (1, —2)T, we find that

are both solution to (E33).



Remark 6.4. For a,b,c,d € R being given constants, suppose that x; and z, satisfy the system of
first order linear ODE

x] = axy + bxg, (6.7a)

xy = cxy + dxs . (6.7b)
Using (BZ0a), we have bzy = x] — axy; thus (B20b) implies that z; satisfies
zy — (a4 d)z] + (ad — bc)xzy = 0.

We note that the characteristic equation for the ODE above is exactly the characteristic equation of
the matrix [a b] )
c d

Moreover, suppose that A\; # A\ are distinct zeros of the characteristic equation, then
.Tl(t) = C’le)‘lt + 026)\2t .
Similarly, zo(t) = Cze*? + Cye? for some Cs, C satisfying

MC1eMt 4+ X 0he?? = (a0 4 bC3)eM! 4 (aCy 4 bCy)e?! |
)\1036)\1t + )\2026A2t = (CCl -+ ng)e)\lt + (CCQ + dC4)€)\2t .

Mt eA2t) are linearly independent, we must have that C;, Cy, Cs, C, satisf
y y

Flel=rle] e [alE] e

In other words, (Cy,C5)™ and (Cy, Cy)" are the eigenvectors of [(CZ Z} associated with eigenvalues

Since {e

A1 and Ao, respectively. Therefore,

. C’le>‘1t+C'ge>‘2t - 4 At Co Aot __ At Aot
x(t) = {036A1t+046>\2f |y SN Cy €7 = heT 4w,

where U = (01703)T and Uy = (02704)T-

6.2 Basic Theory of Systems of First Order Equations

Similar to Theorem 210, we have the following

Theorem 6.5. Let ¢y = (19,220, - ,Tno) be a point in R™, V < R™ be an open set containing x,
and F : (o, B) x V — R™ be a vector-valued function of t and x such that F = (Fy,--- , F,) and the

(?.’Ej
te (to—h,to+h) < (a, ), there exists a unique solution x = p(t) to the initial value problem

partial derivative is continuous in (o, B) x V for alli,j e {1,2,--- ,n}. Then in some interval

z' = F(t, x) x(ty) = xo . (6.8)

Moreover, if (B38) is linear and V = R", then the solution ezists throughout the interval (o, 3).



The proof of this theorem is almost the same as the proof of Theorem 210 (by simply replacing

| - | with | - |gn), and is omitted.

Corollary 6.6. Let (yo,¥1, ,Yn—1) be a point in R™, V < R™ be an open set containing o, and
f:(a,B)xV — R be a function such that f : (a, ) xV — R be real-valued function such that f and

F is continuous in (cv, B)xV. Then in some interval t € (to—h,to+h) < («, §),

its partial derivatives

there exists a unique solution y = @(t) to the initial value problem

y(n) = f(t7 Y, y/7 e 7y(n_1)) y(tO) = Yo, y/(tO) =Y, 7y(n_1)<t0) = Yn-1-
In particular, the solution y is n-times continuously differentiable in (to — h,to+ h).

Theorem 6.7 (Principle of Superposition). If the vector x; and x4 are solutions of the linear system

x' = P(t)x, then the linear combination c;x1 + cay s also a solution for any constants ¢ and cs.

Example 6.8. Consider the system of ODE

e %)

3t —t
and note that z,(t) = [Qeeiﬁ] = B} e and xo(t) = [—Zet] = {_12} e~" are solutions to this ODE;
that is,
P 1 BT Y S I IV B |
() = Me =4 1| |2 T |1 1| ™
and

N | L 1

Therefore, y = c1@,(t) + cax2(t) is also a solution to (B3).

Theorem 6.9. Let M, denote space of n x n real matrices, and P : (o, ) — Myxn be a matriz-

valued function. If the vector function xy, o, --- , x, are linearly independent solutions to
z'(t) = P(t)x(t) (6.9)
then each solution © = p(t) to (69) can be expressed as a linear combination of xy,--- , &, in exact
one way; that is, there exists a unique vector (ci,--- ,c¢,) such that
p(t) =crzy(t) + - + chxn(t) . (6.10)
Proof. By Theorem B3, for each e; = (0,---,0,1,0,---,0), there exists a unique solution & = ¢,(t)
—
(i — 1) slots

to (B3) satisfying the initial data x(0) = e;. The set {¢, ¢, , ¢, } are linearly independent for

otherwise there exists non-zero vectors (cy, - ,¢,) such that

c1pi(t) + capy(t) + -+ cap, (1) = 0

which, by setting ¢t = 0, would imply that (¢, co, -+, ¢,) = 0, a contradiction.



We note that {¢,- -, ¢, } is a fundamental set since every solution x(t) to (6) can be uniquely

expressed by
z(t) = ©1(0)py (1) + 22(0)p,(t) + - - - + 2 (0)p,, () - (6.11)
In fact, x(t) and x1(0)¢,(t) + - - - + 2,(0),,(t) are both solutions to (63) satisfying the initial data

iB(O) = (l‘1<0), Y 7In<0)) ;

thus by uniqueness of the solution, (611 holds.

Now, since i, - - - , @, are solution to (6), we find that

Span<$1, T 7wn) = Span(‘Ph e 7(pn) :

Since {xj,---,x,} are linearly independent, dim (span(ml, e ,:Bn)) = n; thus by the fact that

dim (span(cpl, e ,gon)) = n, we must have

span(zy, -+, @,) = span(py, -+, @,) .
Therefore, every solution & = ¢(t) of (69) can be (uniquely) expressed by (610). o

Definition 6.10. Let P(t) € M,,«p, and @y, -- , @, be linearly independent solutions to (E9). Then
{1, -, x,} is called a fundamental set of (69), the matrix ¥(t) = [[ml(t)] e ()] [azn(t)]]
is called the fundamental matriz of (69), and ¢(t) = cix1(t) + - - -+ ¢, @, () is called the general
solution of (69).

Theorem 6.11. If ¢, ¢,, - , ¢, are solutions to (69), then

n

det([[1] : [iea] i+ [0a]])
is either identically zero or else never vanishes.

Recall Theorem B=3 that for a collection of solutions {¢1,- -, ¢,} to a n-th order ODE

Y™ 4+ D Wy iy Fpoy =0,

('01 @2 e 9071
1 wo o on
the derivative of Wronskian W (t) = :1 ? Ny : satisfies
SDgn—l) (pgn—l) o S07(171—1)
d
—W(t) = —pna (YW (1)
dt
which can be used to show that W (t) is identically zero or else never vanishes. We use the same idea
and try to find the derivative of the determinant W(t) = det( [[QDJ o] e [gon]] ). In view of
Remark B4, we expect that we can derive
d

W) = tr(P)W(t)



Proof. Let W(t) = det( [[cpl} [~ N EEERE [gon]] ), P = [Pijlnxn, and the i-th component of ¢; be <,0§-i);
that is,

T
o] = o]

Since <p§-i)/ = > pikgp§k), using the properties of the determinants we find that
k=1
(1) (1) o (1)
soﬁ” SOS) . gog) 90‘1 90? 907.1
G-1 G0 D) oY R A
Spgj"‘rl) ngj'f'l) . Ce g0%74‘1) _gpgj+1) _gongrl) o o _80534,1)
1 1 1
oA oA
(pgj(l)) (pgj(l)) - 907(5(1))
“row operations” j j j
= Pijpi’ Pigps. o Dipn | = pi;W
ji+1 ji+1 i+1
SOYD QU  Ge
T " & or
Therefore,
1 1 1 1 1 1
(17 (1) (1)1 @g : SDé b 907(1) @g : @é b 907(1)
Y1 Pa Pn @ (2 (2) (2) (2) (2)
d 90(2) g0é2) o %(12) SO%S) 802(3) 90723) $1 P2 ¥n
—W= " , K2 R SRRl I S o B SRR
dt : U : . : (n-1)  (n—1) (n—1)
T R ST N (S RS oy ey Ty
¥1 P2 o Pn ¥1 P2 o Pn

thus

W(t) = exp (f: tr(P)(s) ds)W(to)

which implies that W is identically zero (if W(ty) is zero) or else never vanishes (if W(tg) #0). o

Definition 6.12. If ¢, ¢,, -+ , ¢, are n solutions to (69), the determinant

Wi+ 0,)(0) = det(|[e] F [o] - [0,]])

is called the Wronskian of {¢,, -, ¢, }.

Theorem 6.13. Let u,v : (o, 3) > R" be real-valued functions. If x(t) = u(t) +iv(t) is a solution

to (B9), so are u and v.



Proof. Since x(t) = u(t) + iv(t) is a solution to (69), «'(¢t) — P(t)x(t) = 0; thus

0=u'(t)+iv'(t) — P(t)(u(t) + iv(t)) = u'(t) +iv'(t) — P(t)u(t) — iP(t)v(t)

u'(t) — P(t)u(t) +i(v'(t) — P(t)v(t)) .
Since u'(t) — P(t)u(t) and v'(t) — P(t)v(t) are both real vectors, we must have
u'(t) — P(t)u(t) = v'(t) — P(t)v(t) = 0.

Therefore, u and v are both solutions to (69). o

6.3 Homogeneous Linear Systems with Constant Coefficients

In this section, we consider the equation
z'(t) = Ax(t), (6.12)
where A is a constant n X n matrix.

6.3.1 The case that A has distinct real eigenvalues

By Remark 63, it is natural to first look at the eigenvalues and eigenvectors of A. Suppose that

A has distinct real eigenvalues A{,---,\, with corresponding eigenvectors vy, ---,v,. Let A =

A

A
diag( A, Aoy -+ 3 An) = 2 and P = [['vﬂ o)t [, ] Then A = PAP~! which

An
implies that

z'(t) = PAP 'x(t).

Therefore, with y(t) denoting the vector P~ 'x(t), by the fact that y'(t) = Pz’'(t) (since P is a

constant matrix), we have

y'(t) = Ay(t). (6.13)
In components, we obtain that for 1 < j < n,

y;(t) = Ajy;(t)
if y(t) = (ya(t),--- ,yn(t))T. As a consequence, if y(ty) = yo = (o1, - ,Yon) " is given, we obtain
that the solution to (6I3) (with initial data y(to) = y,) can be written as

6)\1 (t—to)y()l €>\1 (t—to)
A2 (t—to) A2(t—to)
€ Yo2 e
y(t) = : = - Yo'

e)\n(t—to)yOn e)\n(t—to)



thus the solution of (EI2) with initial data x(t;) = @ (which implies that y, = P~ 'x) can be

written as
e)\l(t—to)
e)\Q(t—to)
x(t) = Py(t) = P _ Pz, (6.14)
. e)\ (t—to)
Defining the exponential of an n x n matrix M by
M =1 +M+1M2+1M3 +1Mk Z M’“
(Ait)*
by the fact that (tA)* = , we find that
(Ant)*
el
=k eMit
oA _ .
o0 1 eAnt
S L
k=0 K

Therefore, (64) implies that the solution to (612) with initial data x(tg) = @y can be expressed as
x(t) = Pl 0A Py,

Moreover, (E14) also implies that the solution to (E12) with initial data @(ty) = @y can be written

as

6)\1(t_t0)
6)\2(t7t0) Yo1
2(t) = |[v1] -+ v, -
eAn(t—to) Yon
Yo1
— [eAl(t—to)[,Ul] L. 36>\"(t_t0)[’vn]] .
Yon
= yo1M Ty 4yt gy 1oy M)y (6.15)
In other words, solutions to (6I2) are linear combination of vectors {e* =0y, ... A=ty 1.

On the other hand, using that tA = P(tA)P~", we have (tA)* = P(tA)* P~"; thus the definition
of exponential of matrices provides that

0

ot—t0) A Z ki i tO)A)k _ Z %(P((t —to)A)kal) - P[Z %((t — to)A)k} 2

k=0 """ k=0
= PemA P!



Therefore, the solution to (6B12) with initial data x(ty) = @y can also be expressed as
x(t) = et Ay, (6.16)
We remark that in contrast the solution to x'(t) = ax(t), where a is a constant, can be written as
z(t) = et gy
where g = 2(t) is the initial condition.

e Stability: Recall from Section 223 that an equilibrium solution to an autonomous ODE

v =) (6.17)

is a time-independent solution y(¢) = y. (thus y. satisfies f(y.) = 0), and the equilibrium solution
y(t) = y. is said to be asymptotically stable if there exists 6 > 0 such that the solution y to (612)
with initial data y(to) = yo, where |yo — ye| < 6, satisfies

y(t) = ye as t— oo,

while the equilibrium solution y(t) = vy, is said to be unstable if there exists > 0 such that for
all n € N there exists y, in the ball B(ye, %) such that the solution y to (6I7) with initial data
y(to) = yo satisfies

ligglf‘y(t) —ye| =7

Similarly, we can look at the stability of an equilibrium solution to the autonomous system (612).
An equilibrium solution to (612) is a time-independent solution x(t) = x. for some constant vector
Z.. In other words, z(t) = x. is an equilibrium solution if Az, = 0. An equilibrium solution
x(t) = x. to (B12) is said to be asymptotically stable if there exists 6 > 0 such that the solution x
to (E02) with initial data x(ty) = xo, where |xg — x| < J, satisfies

z(t) —> . as t— .

If all the eigenvalues A;’s are non-zero, then y(t) = . = 0 is the only equilibrium solution,
and using (613) we find that . = 0 is an asymptotically stable equilibrium if and only if all the

eigenvalues of A are negative.

e Phase plane: When A € M,,», a special methodology, called the phase plane analysis, can
be applied to determine the stability of an equilibrium to (612). Note that for the case under

consideration, (E12) can, with = (z1,22)T, be written as

ixl :Al’lzan aiz| |1
dt |2 T a1 am| |T2f
1. Phase plane: The z;-z5 plane is called the phase plane.
2. Direction field: The direction field of the system ' = Az is a normalized vector field v (that

is, |v| = 1) such that for each point « in the phase plane v(z) is in the same direction as the

vector Azx.



3. Trajectory: A trajectory of the system &’ = Az is a solution curve x(t).

4. Phase portrait: A phase portrait of the system ' = Ax is a collection of representative

trajectories.

Example 6.14. Let A = x, and we consider the system &’ = Ax. By looking at the direction

11
4 1
field (on the next page), it is not difficult to see that 0 is not a stable equilibrium.

Figure 1: A direction field and a phase portrait of the system ¢’ = Ax

On the other hand, we note that the eigenvalues of A are 3 and —1. Since not all the eigenvalues

of A are negative, we also can conclude that 0 is not a stable equilibrium.

6.3.2 The case that A has complex eigenvalues
Now we consider the system &’ = Az when A has complex eigenvalues.

Example 6.15. Find a fundamental set of real-valued solution of the system

x = {__1{2 _11/2} . (6.18)

~1/2 1
-1 —1/2

2L Al

Therefore, Remark 64 implies that

We first diagonalize the matrix A = [ } and find that

N[

] [ -1 _t .
(1) = [1 e/ = 1] e 2(cost+isint) = { ¢ 2 cost } + 1 [6 ;S t]

_t . _t
—e 2s8int e 2cost

and

Nl

2(t) = [ 1' p(—1/2-0)t _ _14 o

_t o
(cost —isint) = [6 200875} o [e 2smt]

_t . Tl _t
—e 2s8int e~ 2cost

are both solutions to the ODE. By Theorem 613, ¢, (t) = [ ¢ _iCO-St } and ,(t) = [6_2 S t] are
—e 2

also solutions to (BI3).



To see the linear independence of ¢, and ¢,, we note that the Wronskian of ¢, and ¢, is

_t _t .
W(t) = e _2;;0'515 e_j sint ot
—e " 2zsint e 2cost
which never vanishes. Therefore, {¢;, ,} is a fundamental set of (EIR).
Since det(A) # 0, 0 is the only equilibrium. By looking at the direction field and phase portrait

of (B18), we can image that 0 is a stable equilibrium.

Figure 2: The direction field and phase portrait of (61)

In fact, since ¢,(t),p,(t) — 0 as t — o0, any solution (which can be expressed as a linear

combination of ¢, and ¢,) to (BIX) converges to 0 as t — 0.

In general, if the constant matrix A has complex eigenvalues r. = A\ + iy with corresponding

eigenvectors u4. Then

(A—riJuy =0 (A—-71)u; =0« (A —r:)u; =0.

I+’

Therefore, u_ could be chosen as the complex conjugate of u.. Let uy = a+iband u_ = a—ib be
eigenvectors associated with r, and r_, respective, where a, b are real vectors. Let x1(t) = u,e’+*
and x,(t) = a_e""'. Then @, ¢y are both solutions to ' = Az since

z)(t) =riuse = (Auy) = Az (1),

zh(t) =r_u_ e =c"(Au_) = Azy(t).

On the other hand, using the Euler identity we have

z,(t) = (a+ib)e W = (a +ib)eM(cos ut + isin ut)
= (a@cos ut — bsin ut)e™ +i(asin ut + beos ut)eM

x5(t) = (@ — ib)e? "M = (@ — ib)eM(cos ut — isin pt)
= (acos ut — bsin ut)eM — i(asin ut + bcos ut)e

At

Therefore, Theorem BI3 implies that ¢,(t) = (acosut — bsinput)e™ and ¢,(t) = (asinut +

b cos ut)eM are also solutions to ' = Ax.



Now suppose that A is an n x n matrix which has k£ distinct complex eigenvalues denoted by
1 @ (k)

ry’,ry’,---,ry’ and n — 2k distinct real eigenvalues ropy1,--- , 1, with corresponding eigenvectors
k

’u'(i)a ’u'(i)a B ’u,g_), Uzk+1, """, Uk, where
'r'+ = \; +ip; for some Aj, u; € R, and u =4 = a1 pV)

Then the general solutions of &’ = Ax is of the form

k n
z(t) = Z [C’(J)( ) cos it — b9 sin put) + CF (a9 sin gt + Y cos t)] Aty Z Ciu e’
= j=2k+1

If Ais a 2 x 2 matrix which has complex eigenvalues, then det(A) # 0; thus 0 is the only
equilibrium of the system ' = Ax. Now we check the stability of this equilibrium. Let u,v be

given as above. Then the Wronskian of u, v never vanishes. In fact,

W (u, v)(t)

(ay cos ut — by sin pt)eM  (ay sin ut + by cos ut)e
(ay cos put — by sin ut)e  (ag sin ut + by cos ut )e

= e [(ay cos ut — by sin pit)(as sin pt + by cos pt) — (az cos pt — b sin pt)(ay sin pit + by cos ut)]
= e (ayby — aghy) # 0;

thus {u, v} is a linearly independent set. Moreover, Theorem B implies that every solution to
x' = Az can be expressed as a unique linear combination of w and v (thus every solution to
x’ = Ax can be expressed as a unique linear combination of ¢, and ¢,). Therefore, we immediately

find that 0 is an asymptotically stable equilibrium if and only if A < 0.

Example 6.16. Consider the two-mass three-spring system

d2

mlel = —(k‘l + ]{12)1}1 + k’Ql’Q + Fl(t) s
d2x2

mQW = kzl’l — (k/‘g -+ kg)xz -+ Fg(t)

which is used to model the motion of two objects shown in the figure below.

Figure 3: A two-mass three-spring system

Letting 1 = 21, yo = @9, y3 = x| and y4 = x5, we find that y = (y1, 99,93, y4)" satisfies

[0 0 1 0]
0 0 0 1
mq mq m
L M2 ma i | mo ]



1
Now suppose that Fi(t) = Fy(t) = 0, and my; = 2, mg = %, ki =1, ky =3, kg = Z5 Letting

0 0 1 0
0 0 01
A=|_, ; 0 ol then y' = Ay. The eigenvalue r of A satisfies
4
3 -3 0 0
- 0 1 0
—r 0 1 0 —r 1
RS N R L S olsl-2 2 o
e( _T)_ 2 5 —r 0 = —-T 5 —-Tr + 9

= —r(—r’ =3r)+ (6 —2+2r*) =r' + 5 +4=0.

Therefore, +1, +2¢ are eigenvalues of A. Let r; =4, 1o = —i, r3 = 2i and r4 = —2¢. Corresponding

eigenvectors can be chosen as

3 3 0 3 0 3 3 0 3 0
2 2l o 2l 10 4 4| o 4 o
W= gl = o T sl = o] T s T e | T o | T e | A ms g | T g
2| o 2 0 9 _8i 0 -8 0 -8

Therefore, with a, b, ¢, d denoting the vectors (3,2,0,0)*, (0,0,3,2)T, (3, —4,0,0)T and (0,0,6,—8)",

respectively, the general solution to y’ = Ay is
y(t) = Ci(acost — bsint) + Cy(asint + beost) + Cs(ccos2t — dsin2t) + Cy(esin2t + d cos 2t) .

In particular,

| \wn| 3cost 3sint 3cos 2t 3sin 2t
|::E2:| o {yg] =G [2 cos t} +C [2 sin t} +Cs {—4 cos 2t +Cl —4sin2t|
e Some conclusions:

1. The phase space is four dimensional.

2. Each (Cy, Cy, C3,Cy) corresponds to a trajectory in the phase space, and by the periodicity of
the solution, each trajectory is a closed curve. Therefore, we know that the equilibrium 0 is

not asymptotically stable.

. 2
3. When the the motion of the two masses corresponds to that (Cs,Cy) = (0,0), 23 = Frat thus
for these kind of motions the two masses move back and forth together and always moves in
the same direction, but the second mass only move two-thirds as far as the first mass.
. 4
4. When the the motion of the two masses corresponds to that (Cy,Cy) = (0,0), o = —3%
thus for these kind of motions the two masses move in opposite direction, and the second mass

moves four-thirds as far as the first mass.

5. The two kinds of motions described above are called fundamental modes of vibration for
the two-mass system, and for general initial conditions the solution is a combination of two

fundamental modes.



6.3.3 The case that A has repeated eigenvalues

When A is diagonalizable, the discussion is pretty much the same as in the previous two sub-sections:
if A= PAP™", then the solution to &’ = Az with initial data x(ty) = &, can be written as

x(t) = Pexp((t — to)A)P 'xy.

So we focus on the case that A is an n x n matrix which is not diagonalizable. In this case, there must
be at least one eigenvalue A of A such that the dimension of the eigenspace {v € C" ’ (A= A)v =0}
is smaller than the algebraic multiplicity of .

1 -1
1 3
eigenvalues (and the corresponding eigenvectors) and find that 2 is the only eigenvalue (with algebraic

Example 6.17. Let A = [ } and consider the system x’ = Axz. We first compute the

multiplicity 2), while u = [1, —1]" is the only eigenvector associated with this eigenvalue. Therefore,
A is not diagonalizable.

Let © = [z,y]". Then z,y satisfy

=x-—y, (6.19a)
y' =x+3y. (6.19Db)

Using (619a) we obtain y = z — z’; thus applying this identity to (6219b) we find that x satisfies
=" =243z -1 or equivalently, 2" —4x' +4x =0.

The characteristic equation to the ODE above is r* — 4r + 4 = 0 (which should be the same as the
characteristic equation for the matrix A); thus 2 is the only zero. From the discussion in Section
B4, we find that the solution to ODE (that x satisfies) is

l’(t) = Cle2t + 02t€2t .

Using y = = — z’, we find that the general solution to &’ = Ax is

_ T _ Cre?t 4 Oyte? B 17 o 0] o 1 N
v [y} a [_(Cl+02)€2t—02t62t =G 1€ + G 11¢€ + Oy _q| e

Letting v = [0, 1]T, we have z = (C + Cat)e**u + Che* v,

Given an large non-diagonalizable square matrix A, it is almost impossible to carry out the same
computation as in Example 611, so we need to find another systematic way to find the solution to
' = Axz. The following theorem states that x(t) given by (BIM) is always the solution to '’ = Ax

with initial data x(ty) = o, even if A is not diagonalizable.

Theorem 6.18. Let A be a square real constant matriz. Then the solution to ' = Ax with initial
data x(ty) = o is given by

x(t) = et Ay, (

o
QD
~—



Proof. Let y(t) = e*%)42,. Then

y(t) = <I+(t—t0)A—|—(t Wl g v

2
—yo—i—(t—tO)Ayo—i-%Agyo—i----jL(t_k—!to)kAkyo—i—
Therefore,
y'(t) = Ayy + (t —to) Ay + - +%Akyo+---
—A(I+(t—t0)A+( 2 o) g2 4. )yosz

which implies that y is a solution to ' = Az with initial data y(ty) = ¢*4xy, = x,. By the
uniqueness of the solution, we know that the solution to (612) with initial data x(ty) = xo is given

by (618). 5

Having established Theorem BIR, we now focus on how to compute the exponential of a square
matrix if it is not diagonizable.

For a 2 x 2 matrix A with repeated eigenvalue A\ whose corresponding eigenvector is w (but not
more linearly independent eigenvector), by Example B2 we can conjecture that the general solution
to ' = Ax is

z(t) = (C) + Cot)eMu + CoeMo

for some unknown vector v. Now let us see what role v plays.

Since &' = Az, we must have
MOy + Cot)eMu + CoeMu + CydeMv = (C) + Cot)eM Au + Che™ Aw.
By the fact that Au = Au and (5 is a general constant, the identity above implies that
=(A- v

As a consequence, v satisfies (A — A\I)?v = 0. Moreover, we must have v }f u (for otherwise u = 0)

which implies that u, v are linearly independent.

Let P = [uiv], and A = P L

0 )\]. Then AP = PA. Since u, v are linearly independent, P is
invertible; thus

A=PAP".
Therefore, the same computations used in Section 62371 shows that

e(tfto)A —_ Pe(tfto)AP—l )

Finally, taking to = 0 (since the initial time could be translated to 0), then observing that

AF R
AP = [o N } , (6.20)



we conclude that

0 tk X o0 tk b1
—A AT
h_ N ﬁA’“— kgo k! 1;1 (k—1)! _ e teM 6.91
(=Y A s =% o (6:21)
k=0 0 kgog/\

Having obtained the identity above, using (610) one immediately see that the general solution to

(1) = [uiv] {egt t::] {gj '

In the following, we develop a general theory to compute el*"t0)4 for a square matrix A.

x' = Ax is given by

Definition 6.19. A square matrix A is said to be of Jordan canonical form if

A, O -+ O
A Q 42 Q , (6.22)
o -~ 0 A,

where each O is zero matrix, and each A; is a square matrix of the form [A] or

A1 0 0
O N 1 0 - - 0
: 0 :
: 0

: 1 0
: 0 X 1
0 - 0 A

for some eigenvalue A of A.

We note that the diagonal elements of different A; might be the same, and a diagonal matrix is

of Jordan canonical form. Moreover, if A is of Jordan canonical form given by (6222), then

A o .. 0O A 0 ... O
ko -, Ay -
A= | © f42 o o ond 4= 9 © o (6.23)
O --- 0 A O .- 0O e
A0 0
Example 6.20. Let A = |0 A 1|. Then A is of Jordan canonical form, and using (6220) and
0 0 A
(WA lude that
(6221) we conclude tha Mo 0
A — |0 oM et

0 0 e



Example 6.21. Let A = . Then A is of Jordan canonical form, and

o O >
S > =
> = O

)\k kj)\kfl k(k — 1) /\k72
2
k
A= 0 )\k: k)\k—l
0 0 AF
Therefore,
_i Lk i L ke i #tk/\k—l-
j=o k! =1 (B —1)! j=n 2(k —2)! A gert Lo
A o L okyk - 1 kyk—1 2
et = 0 Z Et )\ Z (k — 1)'t )\ = O e)\t te/\t
k=0 R k=1 \
E 1 g 0 O e
0 0 > T
i k=0 k i
A 1 0 0]
o X 1 0 0
’ 0
In general, if A = 0 is an m x m matrix, then with C* denoting
1 0
; 0 XX 1
0 0 A
| L i
the number l(kk)' (if k£ = m, and 0 if £ < m), we have
m: —m).
(AR EAL CRN2 o Ok N
0 )\k ]{])\k_l e Cﬂ_Q}\k—m—f—?
o . . . : . )
: e e O )\k k)\ki—l
I 0 .. .. ) 2\F |

(which can be shown by induction using Pascal’s formula). As a consequence,

-eAt et 1t2eAt ot eAt-
2 (m—1)!
0 M e 2 Y
(m —2)!
= : : (6.24)
: e e 0 6)‘t te)‘t
0 - . 0 e |

The reason for introducing the Jordan canonical form and computing the exponential of matrices

of Jordan canonical form is because of the following



Theorem 6.22. Fvery square matrixz is similar to a matrix of Jordan canonical form. In other
words, if A € M, xn, then there exists an invertible n x n matriz P and a matriz A of Jordan
canonical form such that

A=PAP".

Given a Jordan decomposition A = PAP ™!, we have ¢4 = Pe!* P~! in which the exponential
of ' can be obtained using (623) and (6224); thus the computation of the exponential of a general

square matrix A becomes easier as long as we know how to find the decomposition A = PAP™!.

e How to obtain a Jordan decomposition of a square matrix A?

Definition 6.23 (Generalized Eigenvectors). Let A € M,,«,,. A vector v € C" is called a generalized

eigenvector of A associated with A if (A — AI)Pv = 0 for some positive integer p.

If v is a generalized eigenvector of A associated with A, and p is the smallest positive integer for
which (A — AI)Pv = 0, then (A — AI)P'v is an eigenvector of A associated with A. Therefore, X is

an eigenvalue of A.

Definition 6.24 (Generalized Eigenspaces). Let A € M,,«, and A be an eigenvalue of A. The
generalized eigenspace of A associated with A, denoted by K, is the subset of C" given by

K, = {veC"|(A — AI)’v = 0 for some positive integer p} .

e The construction of Jordan decompositions: Let A € M,,,, be given.

Step 1: Let Aj, Ao, -+ -, A\x be all the eigenvalues of A with multiplicity mq, mo, - -+, my. We first
focus on how to determine the block
AYD o ... o
J
2 -
Aj= 0 j_‘j N 0 )
O .- O Ag.”)
whose diagonal is a fixed eigenvalue \; with multiplicity m; for some j € {1,2,--- , k}, and the
size of Ag-i) is not smaller than the size of A?H) fort =1,---,r;—1. Once all A;s are obtained,
then
A, O -+ O
A O A, . O
O - 0 A,

Step 2: Let E; and K, denote the eigenspace and the generalized eigenspace associated with A;,
respectively. Then r; = dim(E;) and m; = dim(K;). Determine the smallest integer n; such
that

m; = dim (Ker(A — A\,I)™).



Find the value

pgz) = dim(Ker(A — \,I)*) for (e {1,2,--- ,n;}
and set p;~ = 0. Construct an r; x n; matrix whose entries only takes the value 0 or 1 and
(£-1)
‘ i .
of this matrix. Let S§-Z) be the sum of the i-th row of the matrix just obtained. Then Aél) is a
S 0

j J

)
J

for each ¢ € {1,--- ,n;} only the first py) — components takes value 1 in the /-th column

matrix.

Step 3: Next, let us determine matrix P. Suppose that

P=[uli o taf™ i il (Y]
Then A[ug.l) D fugmj)] = [u}l) R fug-mj)}Aj. Divide {ug»l), e ,u§mj)} into r; groups:
(rj—1)
1 (8(1)) (s(,1)+1) (5(1)+s(2)) (5(,1)+---+s, T4 (m;)
{’u,(.j...7uj7 , ’U’jj ,"','U,]-J J }’...7and{ujj J ’...7uj7}‘

For each ¢ € {1,---,r;}, we let the (-th group refer to the group of vectors

(s§1)+--~+s§£71)+1) (s;l)+“'+s§-@)
uj s .« e s uj .

We then set up the first group by picking up an arbitrary non-zero vectors v; € Ker((A —
A5 \Ker (A — A% 1) and let

uéi) =(A - /\jI)Sﬁl)_ivl for i e {1,--- ,sgl) —1}.

Inductively, once the first £ groups of vectors are set up, pick up an arbitrary non-zero vectors
(6+1) (6+1)
v € Ker((A—NI)%  \Ker((A—X1)% ') such that vy is not in the span of the vectors
from the first ¢ groups, and define
(589451 +4)
J

(e+1) _

= (A - \I)% ‘wpyy forie{l,--- ,S(Z—H) —1}.

J
This defines the (¢ 4 1)-th group. Keep on doing so for all £ < r; and for j € {1,--- ,k}, we

complete the construction of P.

4 =2 0 2
: . . 0 6 -2 0

Example 6.25. Find the Jordan decomposition of the matrix A = 0 2 2 ol
0 -2 0 6

If X is an eigenvalue of A, then \ satisfies

— 2
0 6-X =2 0
0 2 2=Xx 0
0 -2 0 6-—2A

—@4-N| 2 2-Xx 0
—2 0 6-A



Let Ay =4, Ay =6, m; = 3 and my = 1. Note that

dim (Ker(A —4I)) =2 and dim (Ker(A —4I)*) = 3.
Therefore, n; = 2 and pgl) = 2, p§2) = 4. We then construct the matrix according to Step 2 above,

and the matrix is a 2 x 2 matrix given by E é] . This matrix provides that s; = 2 and s, = 1; thus

4 1 00

410 0400

the block associated with the eigenvalue A =4,is |0 4 0| . Therefore, A = 00 4 0
004 0006

First, we note that the eigenvector associated with A = 6 can be chosen as (1,0,0,1)T. Computing
Ker((A — 4I)) and Ker((A — 4I)?), we find that

Ker((A —4I)) = span((1,0,0,0)",(0,1,1,1)"),
Ker((A — 41)*) = span((1,0,0,0)",(0,1,0,2)",(0,1,2,0)") .

We note that either (0,1,0,2)T or (0,1,2,0)" is in Ker((A — 4I)), we can choose v = (0,1,0,2)".
Then (A —41)v = (2,2,2,2)". Finally, for the third column of P we can choose either (1,0,0,0)T or
(0,1,1,1)T (or even their linear combination) since these vectors are not in the span of (2,2,2,2)T
and (0,1,0,2). Therefore,

or P=

N DO DN DO
DO~ O
OO O
_— o O =
NN DN DN
N O = O
— == O
_— o O =

satisfies A = PAP~!.

Example 6.26. Let A be given in Example 6224, and consider the system &' = Ax. Let u; =
(2,2,2,2)T, uy = (0,1,0,2)%, us = (1,0,0,0) and uy = (1,0,0,1)T. Then the general solution to

x' = Ax is given by

o(t) = [uriusiugiug)e™ (P o)
[t te®* 0 0] [C)
0 e* 0 0 Cy
0 0 e* 0 Cs
0 0 0 ) |c
-Cl€4t + 02t64t

0264t

036415

C466t

= (Cre* 4 Cote™)uy + Coe*uy + Cse*us + Cyeuy,

= [uﬁuﬁu@ud

= [ulfuzfug.ud

where A is given in Example 623, x, is the value of & at ¢ = 0 (which can be arbitrarily given), and
(017 027 037 04)T = P_lm()'



a 01 0 0
0 a 010
Example 6.27. Let A= |0 0 a 0 1|. Then the characteristic equation of A is (a — \)?; thus
000 a O
00 00 a

A = a is the only eigenvalue of A. First we compute the kernel of (A — al)? for various p. With
e;=(0,---,0,1,0,---,0)T denoting the i-th vector in the standard basis of R%, we find that
—_——
(i — 1)-slots
Ker((A — al)) = {e; | 21,25 € R} = span(ey, e3),
Ker((A — al)?) = {(:El,xg, T3, 74,0)T ‘ X1, X9, XT3, Ty € R} = span(ey, ez, €3, €4) ,

Ker((A — al)®) = R® = span(ey, ey, €3, 4, €5) .

The matrix obtained by Step 2 is E 1 (1)] which implies that the two Jordan blocks is of size 3 x 3
and 2 x 2. Therefore,

a 1 0 0 O
0O al 00
A=10 0 a 0 O
000 al
0000 a

We note that e; € Ker((A —al)?)\Ker((A —alI)?); thus the first three column of P can be chosen
as
P(l : 3) = [(A - CLI)2€5 (A — CLI)65 65} = [61 e3 65} .

To find the last two columns, we try to find a vector w € Ker((A — aI)?)\Ker((A — aI)) so that w is

not in the span of {ej, e, e5}. Therefore, we may choose w = ey; thus the last two columns of P is
P<4 . 5) = [(A — CLI€4E 64} = [62564]

which implies that

10000
00010
P=1010 00
000O01
00100

Example 6.28. Let A be given in Example 6223, and consider the system &’ = Az. Following the
procedure in Example 628, we find that the general solution to ' = Az is given by

- 2 —_

et feat Leat Ch

e 0 e® te® (0 0 Cy
x(l) = [61:63165:62164} 0
0

0
0 0 e¥ tett Ci
0

0 0 0 e| LG

= (Cleat + Cgte“t + %tQQGt) e + (Cge“t + Cgt@at)eg + Cgeat€5 + (C4€at + C5t€at)62 + C5€at€4 .



6.4 Fundamental Matrices

In Definition B10 we have talked about the fundamental matrix of system &’ = P(t)z. It is defined as
a square matrix whose columns form an linearly independent set of solutions to the ODE ¢’ = P(t).
Let ¥ be a fundamental matrix of &’ = P(t)x. Since each column of W is a solution to the ODE,

we must have

U'(t)=Pt)®(t).
By the linearly independence of columns of ¥, we must have

V(W) = P(t) for all ¢t in the interval of interest. (6.25)

A special kind of fundamental matrix ®, whose initial value ®(%() is the identity matrix, is in
particular helpful for constructing solutions to

' =P(t)x, (6.26a)

In fact, if ® is a fundamental matrix of system &’ = P(t)x satisfying ®(ty) = I, then the solution

to (B228) is given by
x(t) = ®(t)x .

It should be clear to the readers that the i-th column of ® is the solution to

' =P(t)x,
$(t0) = €;,
where €; = (0,---,0,1,0,---,0)T is the i-th vector in the standard basis of R" (here we assume that
—_——
(i — 1)-slots

the size of P is n x n). Moreover, for each fundamental matrix ¥ of (620a), we have the relation
W(t) = ®(t)P(to) -
Therefore, given a fundamental matrix ¥, we can easily construct the fundamental matrix ®(¢) by
O(t) = U(1)W(ty) .
Caution: Based on the discussions above and the information that the solution to the scalar equation
' = p(t)xz with initial data z(ty) = xo is x(t) = exp (Jf p(s)ds)zo, one might start guessing that
the solution to (E22M) is ’

x(t) = exp ( t P(s) ds) xo . (6.27)

to

This is in fact NOT TRUE because in general P(s)P(t) # P(t)P(s). Nevertheless, if P(s)P(t) =
P(t)P(s) for all s and ¢, then the solution to (B28) is indeed given by (E2Z@). To see this, we first

notice that
t

P(t)( P(s) ds) - L t P(t)P(s)ds = L t P(s)P(t) ds:<

t P(s) ds)P(t) :

to



thus

—1 D

(i(fﬂs)d(g)kzp(t)( tP(S)“)k + P()ds)P(t)( tP(S)ds)k L

to tO to
k—2 k—1
( P( )ds) P(t )( P(s )ds) ( ' P(s )ds) P(t)
to to to
t k—1
- kP(t)( P(s) ds) .
to
Therefore, the function given by (6227) satisfies that
d t k - t k—1
ﬁexp< . P(s) ds):co k' J P(s ds) Ty = 27 < . P(s )ds) T

:P(f)(Z kl,< P(s)ds >k>m0—P(t)eXp< P(s )ds)

to to

On the other hand, x(ty) = ©o. As a consequence, x(t) given by (B222) is the solution to (E=Z3).
Now suppose that P(t) = A is time-independent. Then by Theorem BI8 we find that the

fundamental matrix ®(t) is given by
O (t) = Pell7OAPTL
where PAP ™! is a Jordan decomposition of A. Moreover,
B(t)P(s) = P(t)P(s) Vt,seR. (6.28)

To see this, let t1,ty be given real number, and xy € R™ be a vector. By the existence and uniqueness
theorem (Theorem B3), the solution to system ' = Az with initial data x(ty) = xy is given by
x(t) = ®(t)x, for all t € R.

On the other hand, again by the uniqueness of the solution, the solution ¢; to

o' =Ap,
p(to) = z(t1)

and the solution ¢, to

o' = Agp,
QO(t()) = ZB(tg),

satisfy that ¢, (t) = x(t —to+1t1) and @, (t) = x(t —to+1t2). Moreover, using the fundamental matrix
® we also have ¢, (t) = ®(t)x(t1) and ¢,(t) = ®(t)x(t2). Therefore,

D(t2)P(t1) o = B(t2)x(t1) = py(t2) = @(t1 + t2 — o) = p,(t1) = P(t1) B (t2)To

Since x is arbitrary, we must have ®(to)®(t;) = ®(t;)P(t2); thus (628) is concluded.



6.5 Non-homogeneous Linear Systems

Now we consider the non-homogeneous linear system

' =Pt)z+g(t), (6.29a)

for some non-zero vector-valued forcing g. As in Definition we said that a vector-valued function
x,(t) is called a particular solution to (E29a) if x, satisfies (EEZ9a). As long as a particular solution
to (E229a) is obtained, then the general solution to (6229a) is given by

2(t) = W()C + x, (1),

where W is a fundamental matrix of &’ = P(t)x, and C is an arbitrary constant vector. to satisfy
the initial data (6229b), we let C' = ®¥(to) ' (wo — x,(to)) and the solution to (B29) is

z(t) = T()¥(to) " (@0 — @p(to)) + (1)

To get some insight of solving (629), let us first assume that P(t) = A is a time-independent

matrix. In such a case,
ez =e M (Az+g(t)) or e (z'— Az)=eg(t).

d
Since %6_“‘ = —Ae 4 = —¢7" A, the equality above implies that

(e’tAzc)/ —eMgt) = e () —ex(ty) = ft e *4g(s)ds.

0

Therefore, the solution to (E229) is
t
z(t) = e'e A, +f ee54g(s)ds.
to

Using fundamental matrices W of system &’ = P(t)x, we have the following similar result.

Theorem 6.29. Let W(t) be a fundamental matriz of system &' = P(t)x, and @(t) be the solution

to the non-homogeneous linear system

' =Pt)z+g(t), (6.30a)
x(ty) = xg . (6.30b)
Then p(t) = O ()W (ty) txy + t ()W (s) tg(s)ds.

to

Proof. We directly check that the solution ¢ given above satisfies (6230). It holds trivially that
p(ty) = xo, so it suffices to show the validity of (6330a) with ¢ replacing .



Differentiating ¢ and using (6223), we find that
(1) = W ()W (k) o + B ()W j (1) (s) L g(s) ds
_ \Il’(t)\Il(t)_l(\Il(t)\Il(to)_lmg + L W()W(s) g(s) ds) +g(t)
= P(t)p(t) + g(t)
which shows that ¢ satisfies (6230a). o

e Another point of view - variation of parameters: Let ¥ be a fundamental matrix of ' = P(t)x.
We look for a particular solution to ' = P(t)x + g(t). By the method of variation of parameters

we can assume that a particular solution can be expressed as

for some vector-valued function w. Since x is a solution, we must have

U'(Hu(t) +P(t)u'(t) = Pt)P(tH)u(t) + g(t) .

Since ¥’ = P(t)¥, we obtain that u satisfies

w'(t) = W(t) "g(t). (6.31)

Therefore, we can choose wu(t f W(t t)dt and a particular solution to &’ = P(t)x + g(t) is
given by

f\p(t)—lg(t) ). (6.32)

On the other hand, (6331) implies that u J P(s s)ds + u(ty), where u(ty) is the value

of w at the initial time given by wu(ty) = \Il(to) x(to); thus the solution to z’ = P(t)x + g(t) with
initial data x(tg) = o is

t

(1) = \Il(t)( W(s) Lg(s)ds + 'u,(to))

to

W)W (t) ao+ | B()W(s) gls) ds.

to

2 -t
3t
We first find the Jordan decomposition of A. The characteristic equation of A is (=2—7)>—1 =0

which implies that A = —1 and A = —3 are eigenvalues of A. The corresponding eigenvectors are

(1,1)" and (1,—1)T; thus
- - T
1 1 -1 0|1 1
[ AL S0 A

Example 6.30. Let A = [_12 _12} and g(t) = [ } . Find a particular solution of ' = Ax+g(t).

thus




The general solution to ' = Ax is

- 2[5 2fg-efel]

1. To obtain a particular solution, we can use (6232) and find that

et o3t [t o3t -1 90—t
T,(t) = [ —t —St} ( ot _6—34 3¢ dt
B 1let 37 [[et ot 90—t "
9 et _€—3t_ ] et o3t 3t

1{et et ] ([ 24 3tet
=5 | .-t —3t 22t _ 3tedt dt.

. t 1 .
Since Jte)‘t dt = Xe’\t - ﬁeﬁ, we obtain that

1
1 et o3 2t + 3(te’ — ) 1 [2te " +3(t—1)+e ' —(t— §>

t = — 1 — —
=3 [ o] et 73 L
3

2. Without memorizing the formula (6232) for a particular solution, we can use the method of

variation of parameters by assuming that

1 1
zy(t) = Ci(t)e™ M + Ca(t)e™ [_1]
for some scalar functions C1, C. Then the equation x, = Az, + g(t) implies that

C!(t)e m —Cy(t)e! H +Cy(t)e™ [_11] —3Cy(t)e™™ [_11]

——Gy(t)e H ~ 3G H " [th_ } |

As a consequence

Cl(t)e™ m +Cy(t)e™ [_11] = {2;1

B ]

The computation above (in 1) can be used to conclude that

which implies that

1
Cy(t) = 2t + 3(te! — €') and Cs(t) = e — (te® — §e3t) ;

thus a particular solution is given by

2,(t) = [2 4 3(te! — )] M b (1~ Seny]er [_11} |



6.6 Numerical Methods

So far we only talk about how to find a solution to @’ = Ax+g(t) for constant matrix A. In general, it
is very hard to compute (by hand) the general solution to &’ = F(t, ) even if F(t,z) = P(t)x+g(t).
In this section, we focus on solving the general system (63) numerically.

In the following discussion, we do not specify the size of the sysmte ' = F(t, x); thus n no longer

denote the length of the vector .

Definition 6.31 (Informal definition). A numerical method of solving the ODE ' = F(¢, ) with
x(ty) = xp is an iterative scheme which, when the step size h > 0 is given, generates a unique
sequence of vectors {xy,- -, zy} (for some N which in general depends on k) such that the piecewise

linear function ¢ satisfying

o(t) = WQ—%) V@, Vteltnto]andne (0,1, N —1},
where t,, = ty + nh, resembles the solution to &’ = F(t, ) with initial condition x(t;) = o in the
time interval [to, tx]. The function ¢ is called the numerical solution generated by this numerical
method with step size h.
A numerical method of solving the ODE &’ = F(t, ) is called a k-step method if it requires
Ty, Tot1, ", Lnak_1 to determine @, for all n € {0,--- , N — k}. A numerical method of solving
the ODE &’ = F(t, x) is said to be explicit if it does not require “nonlinear procedures” to obtain

some x,’s, and is said to be implicit if it is not explicit.

Example 6.32. The forward Euler method of solving the ordinary differential equations y’ = F(t, y)

is an explicit one-step method given by
Ty, =Xy 1 +hF(ty_1, T, 1) Vne{l,2,---,N},
while the backward Euler method is an implicit one-step method given by
T, =X, 1+ hF(t,, x,) Vne{l,2,--- ,N}.

Example 6.33. The Runge-Kutta method involves a weighted average of values of F(t, ) at different

points in the interval ¢,, <t < ¢,.41, and is given by

knl + 2kn2 + 2kn3 + kn4> (6 33)

wn+1:wn+h< 6

where

knl = F(tna wn) s kn2 = F(tn + %ha x, + %hkrﬂ) )

bins = Flto + 3D, @+ Shkw) s b = Flty +h,y + hhns).
We note that the Runge-Kutta method is a one-step explicit method.

In this lecture we only consider explicit method.



Remark 6.34. A one-step explicit method is often (but not always) given in the form

Tpi1 = Ty + hq)<tn7 wn)

for some function ®, while a k-step explicit method is often (but not always) given in the form

Tpi1 =0T, + &y 1+ -+ QpTp_pi1

(6.34)
+h [ﬁlf(tm x,) + Bof(tn-1, Tpo1) + - + Bif (b1, Tors1)
There are three fundamental sources of error of a numerical solution:
1. The iterative scheme used to produce the sequence {x;,---,zx} is an approximate one. In

other words, at each step the numerical method does not produce the correct value of the

solution at the next time step. This relates to the local/global truncation error.

. The input data used in the iterative scheme are only approximations to the actual values of

the solution at each t;. For example, one should use x(t)) to generate x;; but we are forced

to start with «;. This relates to the global truncation error.

. The precision of calculations of the computer is finite. In other words, at each step only a finite

number of digits can be retained. This relates to the round-off error (or machine error).

Definition 6.35. Let ¢ be a numerical solution obtained by a specific numerical method (with step
size h > 0 fixed) of solving ODE z’ = F(t, ) with initial data x(ty) = xy. At each time step t,,

1.

the global truncation error (associated with this numerical method) is the number E,, (h) =
T(tn) — @(tn);

. the local truncation error (associated with this numerical method) is the number 7,(h) =

T(tns1) — Tni
h
scheme with &; = x(t;) for all j € {0,1,--- ,n}.

, where x(-) is the exact solution and @, is obtained according to the iterative

. the round-off error or machine error (associated with this numerical method) is the

number R,, = ¢(t,) — X,,, where X, is the actual value computed from the numerical method.

In other words, the local truncation error measures the accuracy of the numerical method for

each time step, while the global truncation error measure the errors accumulated from the beginning

of this iterative scheme.

Definition 6.36. A numerical method is said to be consistent if

ilzlir(l) osrnnsajfr{—l [Tu(h)] =0,

where 7, (h) is the local truncation error associated with the numerical method with step size h.



Example 6.37. Consider the forward Euler method of solving ' = F(t,x). If () is the solution
to ¢’ = F(t,x) with initial data x(t,), then the Euler method provides an approximated value of
x(t,11) given by

Tyy1 = z(t,) + hF (L, @(ty)) .

The local truncation error is then computed by

o) = Zte) Z @ ) Z2lle) ZWEboalla)) _ alte) Zall) g, o)

m(tn—I—l) - m(tn)
h

In other words, the local truncation 7,(h) (of the forward Euler method) measures the difference
between the real derivative and the “discrete derivative” (which allows us to design the numerical
scheme).

Now consider the backward Euler method. Similar computation shows that the local truncation

error 7,(h) associated with the backward Euler method is given by

Z(tpg1) — 2(ty)
h

rah) = — 2/ (th).

Example 6.38. Consider the Runge-Kutta method given in Example E233. The local truncation

error 7,(h) is given by

T(thi1) — Tny1 x(tn1) — x(ty) + h( 1 2 3 4>

_ 6
h h
_ @(ar1) —@(tn) ki + 2kn2 4 2K + kg
B h 6 ’
where
kni = F(tna m(tn» ) kno = F<tn + %ha w(tn) + %hknl) )

ks = F(t, + %h, z(t,) + %hkm) ki = F(ty + hoty) + hkas)

Assume that F' is a scalar function (so that it is easy for the purpose of demonstration) and F is of

class € (that is, F is twice continuously differentiable). Then k,; = '(t,), and

ko = F(t,, x(t,)) + Fy(tn, z(t ))Z + Fo(t, (tn))h];”1 +O(h?)
)+ g[Ft (tn, (tn)) + Fy(tn, (t,))kn] + O(R?),
kns = F(to, z(t,)) + Fy(t,, =t ))g + Fy(tn, (1)) h];“ + O(h?)
#(1) + 0 [Pyt 2(6) + Fa(t. 2(t) k] +O(2).

bnt = F(tn, 2(t,)) + Fi(tn, 2(ty))h + Futn, 2(t,)) hkas + O(h?)
= ' (t,) + h[Fy(tn, 2(tn)) + Fu(tn, ®(tn))kns] + O(R?).



Therefore,

Pt + 2Knz *6? 2k + Kt _ z(t,) + gzrt (tn, 2(tn)) + %F (tn, 2(tn)) [®(tn) + Kna + Knz] + O(h?)
=z'(t,) + g [Fy(tn, x(tn)) + Fu(tn, x(tn)) @' (t,)] + O(R?)

=z'(t,) + gm”(tn) + O(h?)

which implies that

Tn(h) _ w(tn-i-l)h_ Il:(tn) . knl —+ 2]{;n2 _g 2kn3 + kn4
= m(tn+1) — w(t”> ’ h " 2
- I z'(tn) = " (tn) + O(h).

Since F is of class €2, « is of class €3; thus the Taylor theorem implies that

2

Z(tni1) = x(t,) + ha'(t,) + %az’(tn) + O(h%).

As a consequence,

ha'(t) + e (t) + O(h?)
) = L — /() = 5"(12) + O) = OU?).

Remark 6.39. If one assume that F is of class €, then the Runge-Kutta method provides numerical

solutions with local truncation error of order 4; that is, 7,,(h) = O(h?).

e Further look at the local truncation error and the consistency: Now we take a look at

what the local truncation error for an one-step numerical scheme
ZTpi1 = Ty + hP(h, 1y, T,) (6.35)

really means. We remark that here ®(h,t,, x,) can be viewed as a way to approximate the derivative
in the time interval [t,,t,1]. Moreover, both Euler method and Runge-Kutta scheme are one-step
methods under this definition.

Before continuing the discussion, let us use the convention that for A > 0 and fixed T > 0, we

define N = [T

—] and the numerical solution ¢ generated by the one-step scheme (E233) on the time
interval [ty,to + 7] (on which ¢ is not defined) has value ¢(ty).

h

Suppose that there exists a unique solution  to (B8) on the time interval [tg, to+7]. By definition

of the local truncation error,

Tn<h) _ m(tn+1)h_ Tni1 _ m(tn-‘rl)h_ Zlf(tn) . (I)(h,tn, Il?(tn))
T(tni1) — 2(tn)

_ ) — &/ (t) + F(tn, z(t,)) + @ (h,t,, z(t,)) .

If F is continuous on K = [tg,to + T] % [ min _x(t), max m(t)}, then & must be €' which
tG[to,t0+T] tE[t(),to-‘rT]



implies that ¢’ is uniformly continuous on [tg, %y + T]. Therefore, the mean value theorem implies

that

lim max ‘m<tn+1) —alt) _ z'(t,)| = 0;
h—01<n<N h
thus
}ILIL% nax, |7 (R)| = fllli% max |F (tn, @(tn)) — @ (h, tn, (tn))] - (6.36)

If we further assume the uniform continuity of ® on its variables, then (6z38) further implies that

lim max |7,(h)| =lim sup |F(t, z(t)) — ®(h,t, z(t))] (6.37)

h—01<n<N h—0 telto,to+T]

Therefore, assuming that F'is Lipchitz continuous (which guarantees the existence and uniqueness
of the solution  to (63) by Theorem B3) and ¢ is uniformly continuous, then the consistency of the
one-step numerical scheme (633) is equivalent to that ®(h, -, z(-)) converges uniformly to F (-, z(-))

as h — 0 (that is, (E232)).

Remark 6.40. To see (6238), let ¢ > 0 and t € [tg,to + T] be given. Since &’ is continuous on
[to, to + T, for some M > 0 we have |@’(t)| < M for all ¢ € [ty, to + T]. Then

1. the uniform continuity of F provides a 9; > 0 such that
|F(t,y) — F(s,z)| < g whenever (¢,y), (s, z) € K satisfying |t — s|* + |y — 2|* < 67 ;
2. the uniform continuity of ® provides a d5 > 0 such that
|®(h,t,y) — ®(h,s, 2)| < % whenever |t — s> + |y — z|* < 63.
min{dy, do}

M2 +1
(t, z(t))| < min{dy, d>}; thus

Let 6§ = . If 0 < h < 4, there exists ¢, such that |¢, — t| < §. Therefore,

(tn, 2(tn)) —

|F (tn, @(t)) — F(t, 2(t))| + | (h, tn, 2(tn)) — ®(h,t,2(t))| < e.

6.6.1 Convergence of Bounded Consistent Schemes

We first consider the convergence of numerical solutions obtained from a bounded (which is defined

in Theorem B624) numerical scheme as the step size approaches zero.

Definition 6.41. Let a,b € R and a < b. A family .% of functions in € ([a, b]; R") (which means for

each f e .Z, f :]a,b] - R" is a continuous vector-valued function) is said to be

1. uniformly bounded if

AM>0s3|f(t)) <M Vtela,b] and fe.F;

2. equi-continuous if

Ve>0,36>053|f(t) - f(s)| <e whenever [t —s| <§,t,s€a,b], and ke N.



Now we introduce the Arzela-Ascoli Theorem which can be applied to extract a uniformly con-
vergent subsequence from a sequence of continuous functions as long as those functions are equi-

continuous and uniformly bounded.

Theorem 6.42 (Arzela-Ascoli). Let a,b e R with a < b, and {fi}; S € ([a,b];R") be a uniformly
bounded, equi-continuous sequence of functions. Then there exists a subsequence { Ix; };il which
converges uniformly (to some function f € €([a,b]; R™)).

Remark 6.43. The uniform convergence of the sequence {f;};>, to f on [a, b] means that

lim sup |fi(x) — f(x)] = 0.

k=0 zefa,b]
Theorem 6.44. For each h > 0, let ¢, : [to,to + T| — R™ be the numerical solution generated by
the one-step scheme (B233) for some functions ®. If ® is bounded near h = 0; that is, there exists
6 >0 and M > 0 such that |®(h,t,x)| < M for all (h,t,x) € (0,0] x [to,to + T] x R, then every
subsequence {gohj};OZI of {@n}n=0 possesses a uniformly convergent subsequence {‘Phu};ip’ that 1s,
for some continuous function ¢ : [to,tg +T] — R™, we have

(D) — ()] = 0.

Je

lim sup ‘go

=00 4e g to+T]
Proof. By Arzela-Ascoli Theorem, it suffices to prove that the family of functions {¢}, }1~0 is uniformly
bounded and equi-continuous.

First, since ® is bounded by M, the numerical scheme implies that

tn1)| + M < |y (tas)| + 20 M < -+

|‘Ph<tn)‘ < |‘Ph
< |@n(0)] + nhM < |zg) + MT — Yne{1,--- [=]}.

(
@
Since ¢, are piecewise linear for all h > 0, we find that |, (t)| < |zo|e™” for all t € [to, to + T and
for all h > 0. Therefore, {¢},}r=0 is a uniformly bounded family of continuous functions.

On the other hand, by the boundedness of ® again, we find that

en(t) — en(s) T
S <M Vt, s € [th1,t,) for somene{l,-'- ,[E”.
Therefore, by the fact that
en(t) — @n(s) < max {“Ph(t) — n(r) ’ (1) — pn(s) } Vs<r<t,
t—s t—r r—s

we find that {¢p}n=0 is uniformly Lipschitz (with Lipschitz constant M) which implies that {},}r=0

is an equi-continuous family of continuous functions. O

Therefore, every bounded numerical scheme produces a limit function which is a candidate of
the exact solution. Next, we consider the convergence (to the exact solution) of numerical solutions

generated by a bounded consistent numerical scheme.



Theorem 6.45. Suppose that F : [to,to + T] x R™ be uniformly continuous such that the system
(BR) has a unique solution x : [to,to + T] — R™. For each h > 0, let ¢, : [to,to +T] — R™ be the
numerical solution generated by the one-step scheme (B33) for some functions ®. If for some 6 > 0,
® is bounded uniformly continuous on (0, 8] x [to, to+ T x R™, and ®(h, -, -) converges to F uniformly
on [to,to + T] x R™ as h — 0, then the sequence {@},}n=0 converges uniformly to the exact solution x

to (EXR).

Proof. If suffices to show that if the sequence {gohj}j,ozl converges to some function ¢ uniformly on
[to, to + T'], then ¢ must be the solution z to (63).
Let € > 0 be given. Then the uniform continuity of ® implies that there exists 9; > 0 such that
if |y — z| < 01, then
sup  [@(h, kh,y) — (h, kh, 2)| < — .
h>0,ke{0,- ¢} 3T
The uniform convergence of ®(h,-, ) to F as h — 0 implies that there exists d; > 0 such that if

0 < h < 0o, -
F(t,y) — ®(h,t, -
i [F(ty) =@ (bt y)| < 35

Moreover, since F' (-, ¢(+)) is continuous on [to, to+ T, it is Riemann integrable over [to, to + 7']; thus
there exists d3 > 0 such that if 0 < h < 93,

t {—1
f F(s,¢(s))ds — Z F(ty + kh, p(to + kh))h’ < % :
to k=0

Let t € [to,to + T'] be given. For h; > 0, we define ¢; = [hi} Then ¢, satisfies that

J

ep,(to + hj) — ¢y, (to) = N;® (hy, to, e, (o)) ,
@, (to + 2h;) — @y, (Lo + hy) = h®(hy,to + hy, py, (to + hy))

e, (te, = hy) — @, (te, — 2h;) = hy®(hy,to + (£; = 2)hj, oy, (to + (4 — 2)hy))
e, (te,) =, (te, = hy) = 0@ (hy,to + (& — Dhy, e, (to + (6 — 1Dhy)) -

Summing all the equalities, we find that

£;—1

i, (te;) = i, (to) + Y ®(hy.to + khy, oy (to + khy)) b

k=0
= o+ Z @(hj, to + k?hj, (phj (to + k’h]))hj . (638)

Now, by the uniform convergence of {gahj}oo

i1 and h; — 0 as j — oo, there exists N > 0 such
that if j > N,

sup ‘cphj (t) —@(t)| <61 and 0 < h; < min{dy,ds}.
te[0,7]



Therefore, if j > N, identity (6238) yields that

o, (1)~ 70— [ F(ssp5)

to

: -1
< f F(s,(s))ds — Z F(to + khj, o(to + kh;))h;
to k=0
-1
+ 3| F(to + khy, @(to + khy)) — ®(hy,to + khy, @(to + khy)) |y
k=0
-1
+ 2 |®(hy, to + khy, p(to + khy;)) — ©(hy, to + khy, ey, (to + kh;))|h;
k=0
-1
5
< —

s
2. = Nh <e.
3" 3TkZOJ c

Passing to the limit as j — oo, by the fact that ¢,, — ¢ as j — 0 and ¥, converges to ¢ uniformly

as j — oo, we find that
t

)cp(t) —xy — L F(s,¢(s)) ds‘ <e.

(0]

Since € > 0 is given arbitrarily, we conclude that
t
p(t) = $0+J F(s,¢(s)) ds Vte [ty to+T].
to

The identity above implies that ¢ is differentiable and ¢’ = F(t, ) and ¢(ty) = xg. Since x is the
unique solution to (63X), we must have ¢(t) = (). o

Example 6.46. If F : [ty,to+ T] x R™ is bounded and Lipschitz continuous, then the forward Euler
method provides a sequence of numerical solutions {;,}1~0 which converges to the exact solution to
x' = F(t, x).

Example 6.47. Consider the ODE 2z’ = sin(2?) with initial data z(0) = 5. One can use the following
matlab® code

T = 1; % the duration of time

h = 0.01; % the step size

N = floor(T/h); % the number of total steps
x = zeros(length(N+1));

x(1) = 5; % assign the initial data

for j=1:1:N
x(j+1) = x(j) + h*sin(x(j)A2);

end

t = 0:h:N*h;
plot (t,x);

to generate a numerical solution.



6.6.2 The Rate of Convergence

In this sub-section, we focus on how fast a sequence of numerical solutions converges to the exact
solution (given that the assumptions in Theorem 623 and probably more assumptions hold). To see
the rate of convergence, we have to look at the convergence behavior of the global truncation error.

By the mean value theorem (for functions of several variables),

E,.(h) = z(t) - z(tn) — @p1 — h®(h, tp1, Tn-1)
(tn) — ( 1) = h®(h, ty 1, @(tn-1)) + T(tn-1) — T
+ h[®(h, ty—1, T(tn-1)) — ®(h, tn—1, Tp_1)]
=ht,_1(h) + E,_1(h) + h(VzP)(h, tn_1,60-1) [m(tn,l) — wn,l}
= h1p-1(h) + Eno1(h) + W(V @) (M th-1,§n-1) By (h)

for some &, on the line segment joining x(¢,_1) and x,_;. If we assume that chb‘ is bounded by

K, then the equality above implies that
|E(h)| < hlra-1(h)| + (1 + hK)|E,1(h)].

Therefore,
|E,.(R)| < h|Tpi(h)] + (1 + hK)[E, 1(h)],
(1+hEK)| Epi(h)] < h(1+ hE)|Tn-a(h)| + (1 + hK)* | Epa(h)]

N

(14 hEK)"YE(h)| < h(1 +hK)" H1o(h)| + (1 + hK)"|Ey(R)] .

Summing all the inequalities above, we find that
<h i(1 + hK)* 1 (h)| 4+ (1 4+ hK)"|Eo(h)] . (6.39)
k=1
Suppose that the local truncation error satisfies
ira(h)] < A" ¥ne{01,---, [%} ~1}

for some constant A and r > 0. Then by the fact Ey(h) = 0, we conclude that

" 14+ hE)* -1
<h Y (1+hK)" AR + (1 + hK)"| Eo(h <h( An"
;;1 + + (14 hK)"| Eo(h)| e
1 T 1
< =[1+hK)% —1]AW < = (5T — 1)AR".
52 (L RE)E = T]AR™ < o (" = 1) AR

Therefore, we establish the following

Theorem 6.48. Assume the conditions in Theorem BZA. If V,® is bounded by K and the local

truncation error T,(h) satisfies

|Tn(h)| < AR" Vne{(),l,---,[%}—l} and h >0



for some constant A > 0, then the global truncation error E, (h) satisfies

1
|E,(h)| < K(eKT — A" Yh>0.

Example 6.49. If F : [ty,to+ T] x R™ is bounded and Lipschitz continuous, then the forward Euler
method provides a sequence of numerical solutions {;,}1~0 which converges to the exact solution to
x' = F(t,x) with rate

sup | (t) —x(t)| <Ch  Vh>0

tE[to,t0+T]
for some constant C' > 0. To see this, we first note that Theorem G628 implies that there exists
M > 0 such that

sup |y (tn) — ®(t,)| < Mh Vh>0.
0<n<([T/h]

Suppose that |F| is bounded by L. For t € [ty,ty + T|, choose n € {0,1,--- N — 1} such that
tp, <t <tpy1. Then

“Ph(t) - Qoh(tn)‘ < |‘Ph(tn+1) - Soh(tn)‘ = h‘F(thoh(tn))‘ < Lh
and the mean value theorem implies that
|2(t) = @(ta)] < |2/ (€)[It — tul = [F(& @(€))[It — ta] < Lh.
Therefore,

(1) — (1)) < [@(t) = @(t)] + |2(t) — @n(tn)] + |(ta) — 04 ()] < (M +20)h VI > 0.

7 The Laplace Transform

7.1 Definition of the Laplace Transform

Definition 7.1 (Integral transform). An integral transform is a relation between two functions
f and F of the form

B
F(s) = J K(s,0)f(t) dt . (7.1)

where K (-, -) is a given function, called the kernel of the transformation, and the limits of integration
a, [ are also given (here o, § could be oo and in such cases the integral above is an improper integral).

The relation (1) transforms function f into another function F called the transformation of f.

Proposition 7.2. Every integral transform is linear; that is, for all functions f and g (defined on

(ar, B)) and constant a,

B

B B
JK(s,t)(af(t)Jrg(t))dt:aJ K(s,t)f(t)dtqtf K(s,8)g(t) dt

67



o0

Example 7.3. Let f : R — R be a function such that j |f(z)| dx < . The Fourier transform

-0
of f, denoted by .Z(f), is defined by
B

FN6 == [ ema (= i [ o),

where the kernel K is a complex function (i.e., the value of K is complex). We will discuss the

Fourier transform later.

Definition 7.4 (Laplace transform). Let f : [0,20] — R be a function. The Laplace transform
of f, denoted by Z(f), is defined by

26 = |

0

0 R

e (L) di (: lim | et f(t)dt),
R—0 0
provided that the improper integral exists.
Example 7.5. Let f : [0,00) — R be defined by f(t) = e*, where a € R is a constant. Since the
improper integral

0 R sta (a—s)t
J el 4t = lim ele=)t gy (ea) lim (— ¢

= lim
0 R—w Jg R—o (s —a)

R—o0 sS—a

tR) 1 elas)R

t=0

exists for s > a, we find that
1

iﬂ(f)(s)zs_a Vs>a.
Example 7.6. Let f :[0,00) — R be defined by
1 f0<t<1,
f)y=<X k ift=1,
0 ift>1,

where k is a given constant. Since the improper integral

o0 1 1 _ —8
J e f (1) dt:f e~Stdt = — <
0 0 S

exists as long as s # 0, we find that

L(f)(s) = — Vs#0.

S
We note that the Laplace transform in this case is independent of the choice of k; thus the Laplace

transform is not one-to-one (in the classical /pointwise sense).

Example 7.7. Let f :[0,00) — R be given by f(¢) = sin(at). Note that

R _ R
£)t=R t
J e ' sin(at)dt = — _Stcos(a) +J (—s)e_Stht
0 T a lt=0 0 a
=u =dv

1
= —(1 —e “cos(aR)) —
a

B 1 _Stsm

)
(1 e ™ cos(aR)) -
) -

s

— 2

" J " cos(at) dt (7.2)
R

S f —st _:

. < —I— f e sin(at) dt>

a

a 0

52 R
“sin(aR) — —f e *'sin(at) dt ;

1
:—<1—e *cos(aR)
a a? ),



thus we obtain that

(1+32)JR ~*sin(at) dt 1(1 e (R)) ~ e sin(aR)
— e *'sin(a =—(1—-e"cos(a — —e “sin(aR).
a?’ Jo a a?
Therefore, the improper integral

0 R

J e *'sin(at)dt = lim | e *'sin(at) dt

0 R=® Jo

= lim [L (1 —e B cos(aR)) — % e Rs sin(aR)
R—w Ls? + a? s? + a?

exists for all s > 0 which implies that
ZL(f)(s) = —— Vs>0.

Moreover, (I2) further implies that

foo e * cos(at) dt = a4 (1 a ) -0

0 s\a s*+a? s?+a?’

Proposition 7.8. Suppose that
1. f is piecewise continuous on the interval 0 < t < R for all positive R € R;
2. f is of exponential order a; that is, |f(t)| < Me™ for some M and a.

Then the Laplace transform of f exists for s > a.

R

Proof. Since f is piecewise continuous on [0, R], the integral f e S f(t)dt exists. If 0 < Ry < Ry,
0

by the fact that |f(t)| < Me™ for some M and a, we find that

e(a—s)RQ o 6(a—s)R1

Ro Ro
‘ f e " f(t) dt‘ < J e tMe dt = M
Ry Ry a—sSs
Q0
which converges to 0 as Ry, Ry — o0 if s > a. Therefore, the improper integral J e S f(t) dt exists.
0

[m]

Example 7.9. Let f :[0,00) — R be given by f(t) = t” for some p > —1. Recall that the Gamma
function I": (0,00) — R is defined by

©¢]
['(x) = f e ' dt .
0

We note that if —1 < p < 0, f is not of exponential order a for all a € R; however, the Laplace

transform of f exists the Laplace transform of f exists. In fact, for s > 0,
R sR
: _ _ /tyedt T(p+1)
_ st _ t _
Z(f)(s) = lim e S dt = lim ) e (—) — =

R—0 0 R— S

In particular, if p = n € N u {0}, then




7.1.1 The Inverse Laplace Transform

Even though Example @ shows that the Laplace transform is not one-to-one in the classical sense,

we are still able to talk about the “inverse” of the Laplace transform because of the following

Theorem 7.10 (Lerch). Suppose that f,g : [0,0) — R are continuous and of exponential order a.
If Z(f)(s) = Z(g)(s) for all s > a, then f(t) = g(t) for allt = 0.

Remark 7.11. The inverse Laplace transform of a function F' is given by

1 Y+iR
LHF)(t) = =— lim e F(s)ds,

271 R—»o ~—iR

where the integration is done along the vertical line Re(s) = 7 in the complex plane such that ~ is

greater than the real part of all singularities of F'.

7.2 Solution of Initial Value Problems

Theorem 7.12. Suppose that f : [0,00) — R is continuous with piecewise continuous derivative,

and f is of exponential order a. Then the Laplace transform of f' exist for s > a, and

ZL(f')(s) = sZL(f)(s) = f(0).

Proof. Since f is of exponential order, the Laplace transform of f exists. Since f is continuous,

integrating by parts we find that

R t=R R R
J () dt = e f(B)] - f (=s)e™f(t)dt = e f(R) — f(O)Sf e f(t)dt.
0 t= 0 0
Since f is of exponential order a, e T f(R) — 0 as s — o0; thus
R R
L(f(s)= lim | e *f'(t)dt =—f(0)+s lim [ e f(t)dt =sZL(f)(s)— f(0). o
R—w J, R—w J
Corollary 7.13. Suppose that f : [0,0) — R is a function such that f, f', f",---, f"=V are contin-

uous of exponential order a, and f™ is piecewise continuous. Then L (f™(s) exists for all s > a,

and

L(fM)(s) = s"ZL(f)(s) = "L f(0) = 8" 2f(0) =+ = s 7D (0) = fF7D(0).

Example 7.14. Consider the ODE
y//_y/_Qy:O.

If the solution y and its derivative y’ are of exponential order a for some a € R, then by taking the

Laplace transform of the equation above we find that

[°Z(y) — sy(0) —y'(0)] — [s:L(y) — y(0)] —2L(y) = 0;



thus

L)) = MO YO ~y(0) _ 5y(0) +5'(0) = y(0)

s2—s5—2 (s —2)(s+1)
_y(0) | y'(0)+y(0) _ y(0) y’(0)+y(0)< 11 )
s+l (s—2)(s+1) s+1 3 s—2 s+1/°

By Example [ and Theorem 10, we find that

y'(0) +y(0) (th . eft) .

(1) = y(0)e + 2

The procedure listed in Example [I4 provides a way of solving of an ODE with constant coeffi-

cients. In fact, suppose that we are looking for solutions to
y"+by' +ey=f(t).

Then taking the Laplace transform of the equation above (here we assume that y and y’ are of

exponential order a for some a € R), we find that

5?2 (y)(s) — sy(0) — y'(0) + b(sZL(y)(s) — y(0)) + L (y)(s) = L(f)(s)
which implies that the Laplace transform of the solution y satisfies

(s +0)y(0) +y'(0)  Z(f)(s)
s24+bs+c s24+bs+c’

Z(y)(s) =

(7.3)

The ODE is then solved provided that we can find the function y = ¢(t) whose Laplace transform is
the right-hand side of (I3).

Example 7.15. Find the solution of the ODE y” + y = sin 2¢ with initial condition y(0) = 2 and
y’'(0) = 1. If y is the solution to the ODE and y, 3y’ are of exponential order a for some a € R, then
(3) and Example 7 imply that the Laplace transform of y is given by

25 +1 2
Z(y)(s) = 2+ 1 + (2+1)(s2+4)

Using partial fractions, we expect that

2 _as+b  es+d  (a+0)s*+ (b+d)s® + (4a+c)s + (4b+d)

(s2+1)(s?2+4) s2+1 * s24+4 (s2+1)(s®>+4)

Therefore, a+c=b+d=4a+c=0and 4b+d =2; thusa=c=0and b = —d = ; This provides

that
_23+1 2 1 2 1 2s 5 1 1 2

Z = - - = = — — = )
W) = 5T 3951 39244 241 39241 39244
By Proposition 2 and Example 4, we find that

5 . 1 .
y(t) = 2c0st—l—§smt— §s1n2t.



Example 7.16. Find the solution of the ODE y® — y = 0 with initial condition y(0) = y”(0) =
y”(0) = 0 and y’(0) = 1 and y,y’ are of exponential order a for some a € R. If y is the solution to
the ODE, then Corollary [Z13 implies that the Laplace transform of y satisfies

"2 (y)(s) — s°y(0) — s"y'(0) — sy"(0) —y"(0) — L (y)(s) = 0;

thus

2 2
Z = = :
W) = T = oG e )
Using partial fractions, we assume that
s a b cs+d  (a+bs+(a—0b) ecs+d
g = pumy pu—
W) =G 3= 51 T e 21 2+1
(a+b+c)s*+(a—b+d)s*>+ (a+b—c)s+ (a—b—d)
B st—1 '
Therefore,a+b—|—c:a+b—c:a—b—d:Oanda—b+d:1;thusa:i,b:—i,c:()and

d= % This provides that
1 1 1 1 1 1
< == - z )
W) =357 " 15571 Teea
By Example [3 and [Z4, we conclude that the solution to the ODE is

1 1 1
y(t) = Zet - Ze_t +3 sint.

e Advantages of the Laplace transform method:

1. Converting a problem of solving a differential equation to a problem of solving an algebraic

equation.

2. The dependence on the initial data is automatically build in. The task of determining values

of arbitrary constants in the general solution is avoided.

3. Non-homogeneous equations can be treated in exactly the same way as the homogeneous ones,

and it is not necessary to solving the corresponding homogeneous equation first.
e Difficulties of the Laplace transform method: Need to find the function whose Laplace
transform is given - the inverse Laplace transform has to be performed in general situations.

7.3 Step Functions

In the following two sections we are concerned with the Laplace transform of discontinuous functions
with jump discontinuities.
Definition 7.17. The unit step function or Heaviside function is the function

0 ift <0,
H(t):{1 ift>0.



Example 7.18.
1. For c e R, we define u.(t) = H(t — ¢). Then the graph of u. jumps up from 0 to 1 at ¢t = c.
2. The graph of —u, jumps down from 1 to 0 at ¢t = c.

3. Let a < b. The characteristic/indicator function 1,5 can be expressed by
Ly (£) = a(t) — us(1)

4. Let a; < by <as <by<---<a, <b,. The step function

n

F(t) = 3 filjassn () (7.4)

=1

can be expressed by
n

(1) = 3 filta, () = w, (1)] -

i=1

5. Let 0 =cy <y <--- < ¢, < cpy1 = 0. The step function

f(t) = Z fil[cmcz'ﬂ)(t) (7'5)

can be expressed by
n

F&) = folpoen(t) + D (Firr = fiue, (¢) .

k=0

e The Laplace transform of u.: To compute the Laplace transform of the step function given by

(), by Proposition 2 it suffices to find the Laplace transform of ..

1. If ¢ <0, then
0
1
.,?(uc)(s)zf e_Stdt:g Vs>0.

0

2. If ¢ > 0, then

a0 e—CS
Z(uc)(s):f e *tdt = Vs>0.

c S

Therefore,

e~ max{c,0}s

2 (uc)(s) =

S

Theorem 7.19. Let f : [0,00) — R be a function such that the Laplace transform Z(f)(s) of f

exists for s > a = 0. If ¢ is a positive constant and g(t) = u.(t) f(t — c), then

Z(9)(s) = "= ZL(f)(s).

Conversely, if G(s) = e L(f)(s), then u.(t)f(t —c) = L1 G)(t).



Proof. 1If ¢ > 0 and ¢g(t) = u.(t) f(t — ¢), then the change of variable formula implies that

R R—c
20)(s) = Jim, [ =yt = i [ e o)
R—c
=e I%im et ft)ydt = e ZL(f)(s). o
—00 0

Example 7.20. Let f:[0,00) — R be defined by

f(t) = 4’

sint ifo<t<
m
1

sint + cos (t—%) ift >

Then f(t) = sint + u=(t) cos (t - %), thus by Example [7 and Theorem 19 we find that

1 =, S 1+ se”i®
< = s = .
(£)() 32+1+e s2+1 s2+1
1— —2s
Example 7.21. Find the inverse Laplace transform of F(s) = Sz
By Example [Z9, the inverse Laplace transform of s72 is T (1: 0 = t; thus Theorem [T9 implies

that
LTHE)(t) =t —us(t)(t — 2).

We also have the following

Theorem 7.22. Let f : [0,00) — R be a function such that the Laplace transform Z(f)(s) of f

exists for s > a = 0. If ¢ is a constant and g(t) = e f(t), then
Z(9)(s)=Z(f)(s—c) Vs>a+c.

Conversely, if G(s) = Z(f)(s — ¢), then L7HG)(t) = e f(t).

Proof. By the definition of the Laplace transform,

z@ﬁﬁ{mf%wwﬁ=fz*”vww:fuw—@. :

0 0
1
2 —4s+5
By completing the square, s> —4s+5 = (s —2)% + 1; thus Example -0 and Theorem [Z22 implies
that

Example 7.23. Find the inverse Laplace transform of G(s) =

L7HG)(t) = e*sint.

7.4 Differential Equations with Discontinuous Forcing Functions

Let f:]0,00) — R be a function defined by

[ aw) fo<t<c,
f(t)_{ folt) ift >



where f1, fy are continuous and lin@r fa(t)—lim fi(t) = A (such a point c is called a jump discontinuity
t—c t—c—
of f). Define
fi(t) if 0
g(t) = .
fo(t) — Au(t) if ¢

Then g : [0,00) — R is continuous, and f = g+ Au,.. Similarly, if f is a piecewise continuous function

<t<ec,
=cC.

which only has jump discontinuities {cy,ca,--- ,¢,} such that f is continuous on [cg,cxiq) for all

ke{l,--- ,n—1}. Then By introducing ¢y = 0 and ¢,,; = 00, we can write

f = fl[CO,Cl) + f1[01702) + o+ f]'[Cn—LCn) + f1[0n70n+1) .

If A, = 1im+(f1[ck,ck+1)))(t) — lim (f1p,_, ¢.)(t), then the function g : [0,00) — F defined by

t%clc tﬂck

9(t) = £(t) = 3 A, (1
k=1

is continuous on R, and f =g+ > Axu,,.
k=1

Now suppose that we are looking for a solution to

y"+by' +cy=f(t), (7.6)

where f is a piecewise continuous function which only has jump discontinuities {c,cs, - ,c,} as
described above. We note that the existence theorem (Theorem PI0) cannot be applied due to the
discontinuity of the forcing function, so in general we do not know if a solution exists. However, if
there indeed exists a twice differentiable function y validating (IZ8), then the solution must be unique
since if y; and yy are two solutions with the same initial condition, then y = y; — ¥ is a solution
to y” + by’ 4+ cy = 0 with y(0) = y’(0) = 0; thus y must be zero which implies that the solution, if
it exists, must be unique. On the other hand, if (@) has a solution y, then y” must be piecewise
continuous. If in addition y and y’ are of exponential order a for some a € R, we can apply Theorem
[[13 to find the Laplace transform of the solution y as introduced in Section [Z2 which in principle
provides information of how the solution can be found.

Now we focus on solving the ODE

y"+ by’ +cy=Flyp(t), y(0) =vo, y'(0)=wui, (7.7)

where F' is a constant and 0 < o < 8. We only consider the case that ¢ # 0 for otherwise the ODE
can reduced to a first order ODE (by integrating the ODE). We note that the right-hand side can
also be written as F'[u(t) — us(t)].

If y is a twice differentiable solution to ([Z7), taking the Laplace transform of the ODE we find

that
s _ efﬁs

s ZL(y)(s) = syo — y1 +b[sL(y)(s) — o] + L (y)(s) = F——
thus
(s +b)yo+ e — e P8

Z)(s) = s24+bs+c s(s2+bs+c)’
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Using partial fractions, we obtain that ————— = [f __stb
s s2+4+bs+c

- ]; thus with z denoting the
s(s2+bs+c) ¢
solution to the ODE

2"+ b2 =0, 2(0)=1, 2(0)=0,

we find that 5 5
e~ _ o—Ps e—as _ o—Bs
= Z(1— )
s(s%2 + bs + c¢) c (1=2)(s)

Therefore, Theorem 19 implies that

y(t) = Y () + % a1 = 2(t = a)] = us(®)[1 = 2(t = B)]] (7.8)

here Y is the solution to (Z2) with F' = 0. The function y given in ([8) is the only possible solution
to (Z2). We note that even though u,, us are discontinuous at t = «, 8, the function y given in ()

is continuous for all ¢ since z(0) = 1.

e The first derivative of y: For ¢ # «, 3, it is clear that y’(t) exists and can be computed by

F
y'(t)=Y'(t) + - [ug(t)z'(t — B) — ua(t)z'(t — )] . (7.9)
Now we check the differentiability of y at ¢t = a and ¢t = 8 by looking at the limits

. y(c+h) —y(c) and  lim y(c+h) —y(c)
h—0— h h—0+ h

for c=a,f.

For |h| « 1, o+ h < 3. Therefore, by the differentiability of Y,

hli%l_ yla + h})L —y(a) — V(o) + ghlirg_ Ug (0 + h)(l — z(h)})l - ua(a)(l - z(O)) —Y'(a)
and
o VO =0(@) e 1) (1= 2(0) — na(0)(1 = 2(0)
h—0+ h ¢ h—0t h
o)+ E g 12200 gy E20) 500

Therefore, y’ exists at ¢ = a and y’(a) = Y'(«) which also validates () for ¢t = . Similarly,

V() = Y'(8) = - [uh()(1 — 2(5 ~ @) + ua(B)'(8 )] = V() = ~'(5 ~ o)
e i ug(B+h)(1 = 2(h)) —ug(8)(1 — 2(0)) 0
h—0 h '

In other words, (9) holds for all t > 0. We note that y’ given by (1) is continuous since

lim /(1) = Y'(a) = y'(a)

Yy—ao



and
: / / F / F . / !/ F / !/
limy'(t) =Y'(B) — —2'(F —a) + — limug(t)z'(t = B) =Y'(B) — =2 (B —a) =y'(B) .
y—p c c y—p c
e The second derivative of y: Now we turn our attention to the second derivative of y. As before,

it suffices to check the differentiability of y’ at ¢t = «, 8 since
F

y"(t) =Y"(t) + - [ug(0)z"(t = B) —ua(t)2"(t — )]  VE>0,t+#a,p. (7.10)
For t = a, we find that
o VO V@) e F o W) (@) 0)
h—0- h ¢ h—0- h
and
i VO @) e F L alact h)2(R) — wa(0)2'(0)
h—0+ h C h—0+ h
7 Fo Z/(h) — Z/(O) 7 F 7
=Y ——1 =Y
() = = 1im 20 (2) = =="(0)

=Y"(a) + %[bz'(()) +cz(0)] =Y"(a) + F.

Since F' # 0, we conclude that the second derivative of y at t = a does not exist. Similarly, the

second derivative of y at ¢ = 3 does not exist neither. Nevertheless, for ¢ # a, 3,
"(0) 4 by (1) + cult) = V(1) + = [ust)="(t — ) — ualt)2" (1 — )]
+bY(t) + %F [us(t)z'(t — B) — ua(t)z'(t — a)]
Yy (t) + F[[ua(tm — 2t — )] — ug(t)[1— 2t — 5)}]
_ % o (0)[02(t — ) + ex(t — )] — us(6)[b"(t — ) + ex(t — B)] ]
[bug(t)z'(t — B) — bua(t)2'(t — )]
+= [cua(t) (1= 2(t — @)] — cug(t)[1 — 2(t — ﬁ)”

= Flua(t) —us(t)] = Fljap)(t).

Summary: There is no function which validates (Z72) for all ¢ > 0. However, there exists a contin-
uously differentiable function whose second derivative is piecewise continuous which validates ([-2)
for all t > 0 except the discontinuities of the second derivative. We shall also call such a function a

solution to (7).

Definition 7.24. Let f : [0,00) — R be a function. A function y is said to be a solution to the ODE
y' by ey =f(6)  y(0) =0, y'(0) =w

if y is continuously differentiable, and y’’ exists at every continuity of f.



Example 7.25. Find the solution of the ODE y” + 4y = ¢(¢) with initial data y(0) = y’(0) = 0,

where the forcing function g is given by

0 ifo<st<b,
gt) =13 —= if5<t<10,
if t > 10.

We note that g(t) = é[uE,(t)(t —5) — u1o(t)(t — 10)]; thus Example 9 and Theorem T4 imply that
o5t _ o—10t
T 5

1
We also remark that ¢'(t) = g(’LLg)(t) —uyo(t)) if £ # 5,10. Since the value at ¢’ at two points does

not affect the Laplace transform, we can use Corollary I3 to compute the Laplace transform of g:

o5t _ =10t

sZ(9)(s) = sZ(9)(s) = 9(0) = L(g")(s) = ————;

—5s —10s

e —¢
552

Assume that a solution y to the ODE under consideration exists such that y, ¥’ are continuous

thus Z(g)(s) =

and y” are of exponential order a for some a € R. Then the Laplace transform implies that

6—55 _ 6—103
S*Z(y)(s) = sy(0) —y'(0) + 4L (y)(s) = —=3
Therefore,
6755 o 67105
2 = s
. . . 1 as+b cs+d .
Using partial fractions, we assume that TRy R + o where a, b, ¢, d satisfy a +c¢ = 0,
b+d=0,4a =0 and 4b = 1; thus
e —e 051 1 2
Lly)s) =" [— - -—} .
()(s) 20 2 25214

By Theorem [Z22, we find that

(1) = 55 [us(0)(t = 3) — wio(0)(¢ = 10) — 3 (ust) sim (20t — 5)) — ot sim (202~ 10)) )]

Remark 7.26. The Laplace transform picks up solutions whose derivative of the highest order
(which is the same as the order of the ODE under consideration) is of exponential order a for some
a € R.

7.5 Impulse Functions

In this section, we are interested in what happens if a moving object in a spring-mass system is

hit by an external force which only appears in a very short amount of time period (you can think



of hitting an object in a spring-mass system using a hammer in a very short amount of time). In
practice, we do not know the exact time period [«, 8] (with |5 — a| « 1) during which the force hits
the system, but can assume that the total amount of force which affects the system is known. This

kind of phenomena usually can be described by the system

y'+by +ey=f1t), y0) =y, y'(0)=wn
for some special kind of functions f which has the following properties:
1. f is sign-definite; that is, f(¢) > 0 for all t > 0 or f(¢) <0 for all £ < 0;

2. f is and is supported in [ty — T, to + 7] for some t; > 0 and some very small 7 > 0;

to+T7
3. f(t)dt = F, where F is a constant independent of 7.

to—T7

This kind of force is called an impulse.

Example 7.27. Let d, : R — R be a step function defined by

1 .
0.(t) = 5 ifte|-7,71), (7.11)
0 otherwise.

Figure 4: The graph of y = d,(t) as 7 — 07.

Then f(t) = Fd,(t) is an impulse function. We note that with d denoting the function %1[_171),

1./ . . . . . .
then d,(t) = —d(—). Moreover, if ¢ : R — R is continuous in an open interval containing 0, we must
T T

have "
lirgl+ d.(t)e(t)dt = (0). (7.12)
T —00
Example 7.28. Let
1 .

0 if [t =1,



where C'is chosen so that the integral of 7 is 1. Then the sequence {7, },~¢ defined by

1t
-(t) = —n(— 7.13
n-(t) = —n(-) (7.13)
also has the property that
a0
tim [ g, (0)(t)dt = £(0) (7.14)
70 J_

for all ¢ : R — R which is continuous in an open interval containing 0.

AY
T=1/8
7= il
=il
r=I1
0 [
. 111
Figure 5: The graph of n, for 7 =1, 1R

To see this, we notice that 7, is supported in [—7, 7] and the integral of 7, is still 1. Suppose that
¢ : R — R is continuous on (a,b) for some a < 0 < b. Then there exists 0 < § < min{—a, b} such

that
p(t) — (0)| < g whenever [t| <.

Therefore, if 0 < 7 < §, by the non-negativity of 1, we find that

[ oot -] = | [ wevra -0 |

T

17 (t) dt‘

— [ Ol - vo]

| wlee) - olar <5 [ vy <e

N
| ™

which validates (12).

Definition 7.29. A sequence of functions {(;},~o, where ¢, : R — R for all 7 > 0, is called an

approximation of the identity if {(,},-¢ satisfies

1. ¢-(t) = 0 for all t e R.

2. lim foo Gty dt = 1.

T—0t



3. For all § > 0, lim G (t)dt =0.

T=0F Jjt|>6
In particular, {d,;},~o and {n,},~o are approximations of identity.

Using the same technique of establishing (ZId), one can also prove that if {(,},~¢ is an approxi-

mation of the identity, then
0

i [ G@ele) dt = (0).
—0

T—0

Remark 7.30. An approximation of identities does not have to be compactly supported. For

2
example, let n(t) = \156_3 be the probability density function of the normal distribution N(0, 1),
T
1 2

then n,(t) = e~ 2 constitutes an approximation of the identity {n,},-o.

2T

For ty > 0, we consider the ODE

y'+by ey =Fd(t—to),  y(0)=wo, y;(0)=ur. (7.15)

For each 0 < 7 < 1, let y, be the solution to (IH). Using (Z8) we find that

U () = Yo (t) + % [t (D[1 = 2(t = to +7)] = g (D[1 = 2(t g~ 7)]|

where 1/, is the unique ¢?-function solving

/

Yoo T U0+ o =0, Yo(0) =50, 5(0) =u1.
and z is the unique €*-function solving
2" 4+ bz +ecz=0, Yo(0) =1, 5.(0)=0.

We remark here that v, y/,, 2 and z” are of exponential order a for some a € R. We also recall
that the discussion in Section [ shows that y, is continuously differentiable, and v is piecewise
continuous. Our “goal” here is to find a function y which is independent of 7 but |y — y,| « 1 when
7 « 1. In other words, our goal is to show that {y;},~¢ converges and find the limit of {y,},~o.

We claim that {y.},~0, viewing as functions defined on [0, 7], is uniformly bounded and equi-
continuous (so that we can extract a uniformly convergent subsequence). To see this, using the
identity that

Ugrb(t) = ug(t — b) (7.16)

we rewrite 1, as

) = ) + 2= [+ 7)1 = 20—t + 7)) — et = 7)1~ 2(t — 10 — 7]
B ) U G et T ) | e 1)

2c T
Fouy(t+7) [2(t —to) —2(t —to+7)] Foug(t—7) [2(t —to) — 2(t —to — 7)]
2c T 2c T '




By the mean value theorem,

1—z(t —tg) = 2(0) — z(t — tg) = (to — t)z'(&1) for some & in between 0 and ¢t — ¢,
2(t—tg) — 2(t —to+7) = 2'(&)7  for some & € (t — to,t —to+7),
z2(t —to) — 2(t —to—7) = 2'(&)7  for some &3 € (t —tog — 7, t — o) ;
thus

1. The case —7 <ty — t < 7: in this case we have uy, (t + 7) — uy, (t — 7) = 1; thus

0] < 0] + [ ] [0 = e + (6]
< lyo®) +| o] [|z' €01 +12/(6)| + 16|
(1)

<
mas o ()] + |5

t€[0,T]

2. The case to — t ¢ (—7,7]: in this case we have uy, (t + 7) — uy, (t — 7) = 0; thus

0] < lyn0)] + o @) + 12/ (@0)] < mux 0]+ [

max |z'(t)]. (7.17)

te[0,T]

Therefore, for all 7 > 0 we have

<
ma [y (1) < mas [ ()] + |5

max |2/ (t)| < Cre*”
t€[0,T

which implies that the sequence {y,(t)},~¢ is uniformly bounded on [0, 7] and {y,},~o are of expo-
nential order a.

On the other hand, using (79) and (Z18) we have

UA(E) = Lo (0) + o [t (= )2 (E — to — ) — g (£ + 7)2(t — to + 7))

2cT
(- o Ll D) Z ot Z ] )
+ % : s (= 7) [2'(t — tj__ ) —2'(t —to)]
F uto(t +7) [z’(t —to+71)—2'(t — to)}
2 T :

By the mean value theorem,

2/t —ty) = 2'(t —to) — 2'(0) = 2" (m)(t — to) for some 7 in between 0 and t — ¢,
2'(t—tg—7)—2'(t —tg) = —2'(me)7  for some ny in (t —tg — 7, t — to),
2t —to+7)—2'(t —to) = 2'(n3)7 for some n3 in (t —to,t —to+7),

where we use z’(0) = 0 to conclude the existence of 7. Similar argument used to conclude that
{4, }r=0 is uniformly bounded can then be applied to conclude that

max [y ()] < max |y, (1)

go aT‘
t€[0,T) t€[0,7) ‘ 2c masc |2 (1) 2¢

te[0,7




This implies that {y, },~¢ is uniformly Lipschitz and are of exponential order a; thus {y, },~¢, viewed as
a sequence of functions defined on [0, T, is equi-continuous. By the Arzela-Ascoli theorem (Theorem
6242), there exists a subsequence {yfj}j.oz
note that y is a function defined on [0, 7.

, Which converges to y uniformly on [0, 7] as j — oo. We

Now, by the uniform boundedness and equi-continuity of {yTj};il on [0, 7 + 1], there exists

a subsequence {ym};o:l which converges to y* uniformly on [0,7 + 1]. Same procedure provides a

further subsequence {ym }20—1 which converges to y** uniformly on [0, 7" + 2]. We note that y** = y*
k=

on [0,7 + 1] and y** = y on [0,7]). We continue this process and obtain a sequence, still denoted
by {yTj};il, and a continuous function y : [0,00) — R such that {yTj }jil
on [0,7] for all "> 0. We note that (1) implies that the limit function y is of exponential order

converges to y uniformly

a for some a > 0. Moreover, we also note that it is still possible that there is another convergent
subsequence which converges to another limit function, but we will show that there is only one
possible limit function.

Let ¢ : [0,00) — R be a twice continuously differentiable function which vanishes outside [0, 7]
for some T > to. Multiplying the equation above by ¢ and then integrating on [0, T, we find that

T

T
|z cnn)etyat=F | d(e- ety at.
0 0

Integrating by parts (twice if necessary) and making a change of variable on the right-hand side,

Q0 Q0

Uy (1) (" (1) — b (1) + cp(t)) di = F j A (D(t +to) dt (7.18)

—00

Yo' (0) — (y1 + byo) p(0) + f

0

for all twice continuously differentiable functions ¢ vanishing outside some interval [0, 7]. We note
that the integral in (I8) is not an improper integral but indeed an integral on a bounded interval.
Passing to the limit as j — o0 in (ZIX), the uniform convergence of {yTj};il to y on any closed
interval [0, 7] and (CI2) imply that

0

Yo' (0) — (y1 + byo) 0 (0) + f y(t) (" (t) — b’ (t) + cp(t)) dt = Fo(to) (7.19)

0

for all twice continuously differentiable functions ¢ vanishing outside some interval [0, 7). Since y is
of exponential order a, (Z19) in fact holds for all twice continuously differentiable function ¢ which
approaches 0 fast enough at infinity, here the sentence “¢ approaches 0 fast enough at infinity” means
that

()| + @' ()| + " ()] < Me™™ Vi1
for some a > a.

To see what a possible limit function y is, we let p(t) = e for s > a in (19) and obtain that

0

—syo — (y1 + byo) + (s° + bs +¢) f y(t)e "' dt = Fe "
0

which, by the definition of the Laplace transform, implies that

(s +bs+¢)ZL(y)(s) = (s +b)yo +y1 + Fe ™. (7.20)



Since every possible limit y of {y,},~o is continuous and is of exponential order a, by Theorem 10
we conclude that there is only one uniform limit of {y,},~0; thus {y,},~0 converges to y uniformly
on [0, 7] for every T' > 0. By Theorem 19 and 22, identity (Z=20) implies the following:

1. if 72 + br + ¢ = 0 has two distinct real roots r; and ro, then the solution y to (ZZ20) is

Uto (t) [67‘1 (t—to) o 6T2(t—t0)j|

) = galt) + ——

_ — F
_ U1 T2Y0 erlt + 1Yo Y1 ergt + Ut (t) [eTl(t_tO) _ eTQ(t_tO)] . (721)
Ty —To T — T2 'L — T2

2. if 72 4+ br + ¢ = 0 has a double root 71, then the solution y to (ZZ20) is

Y(t) = Yoo (t) + Fuy, () (t — to)erl(t—to)
= yoe"" + (y1 — m1yo)te™ + Fuy (t)(t — t())em(t—to) ' (7.22)

3. if 2 + br + ¢ = 0 has two complex roots A & iy, then the solution y to (Z=20) is

F
Y(t) = Yoo (1) + — g, () sin p(t — to)
I

- A
91— 20 xt A=to) gin pu(t — tq) . (7.23)

At . F

= yoe™ cos ut + sin pt + —uy, (t)e
1

The uniform convergence of {y,},~¢ to y implies that if the support of the impulse is really small,

even though we might not know the precise value of 7, the solution to (I3) is very closed to the

unique limit function y. We note that the three possible y’s given above are continuous but have

discontinuous derivatives, and are not differentiable at ¢g.

7.5.1 The Dirac delta function

Even though we can stop our discussion about second order ODEs with impulse forcing functions
here, we would like to go a little bit further by introducing the so-called “Dirac delta function”.

Taking ([3) into account, (Z20) motivates the following

Definition 7.31 (Informal definition of the Dirac delta function). For ¢, > 0, the Dirac delta

function at tq, denoted by dy,, is the function whose Laplace transform is the function G(s) = e~5%.

Therefore, (3) and (Z20) imply that y satisfies the ODE

y"+by' +cy = Fo,(t), y(0) =vo, y'(0)=w1. (7.24)

By Theorem [19, in order to obtain the precise form of d;, it suffices to find the function whose
Laplace transform is the constant 1. However, this d;, is not a function of non-negative real numbers
since we actually have

y" (&) + by’ (t) +ey(t) =0  Vi#t



if y is given by (IZ20), (=22) or (=22). If &, is a function of non-negative real numbers, no matter

what value is assigned to dy, (o), the Laplace transform of d;, cannot be constant 1.

e What does y"+by’+cy = Fd,,(t) really mean? Recall that our goal is to find a “representative”
of solutions of the sequence of ODEs (I13). The discussion above shows that such a representative
has to satisfies (Z20) which, under the assumption that

ZL(y" + by + cy)(s) = (s* + bs + )L (y) — sy(0) — y'(0). (7.25)

implies the equation y” + by’ + cy = Fé;,(t). As we can see from the precise form of the function y
in (21), (=22) and (=23), y’ is not even continuous; thus (-23) is in fact a false assumption.

The way that the ODE y” + by’ + cy = Fdy,(t) is understood is through the distribution theory,
in which both sides of the ODE are treated as “functions of functions”. Before our discussion, let us

first have the following two definitions.

Definition 7.32. The collection of all k-times continuously differentiable function defined on [0, o
and vanishing outside some interval [0,7] for some T' > 0 is denoted by %*([0,0)). A function
f :]0,00) — R is said to belong to the space €*([0,0)) if f € €*([0,0)) for all k € N. In other
words,

¢.>([0,00)) = {f :[0,00) > R| fe€*(0,0) Yk e N}.

Definition 7.33. Let f : [0,0) be a piecewise continuous function. The linear functional induced
by f, denoted by {f,-), is a function on €:°([0,0)) given by

(o) = f T ey Yoewr(0,0)).

Consider the following simple ODE

y"+oy +ey=f1t), yO0) =w, y'(0)=u, (7.26)

where f is a continuous function of exponential order a for some a € R. The existence theory

implies that there exists a unique twice continuously differentiable solution y to (=28). Moreover, if
o € 62(]0,0)),
o0 Q0
L [y (1) + by (t) + cy(t) | o(t) dt = L f@et)dt, y(0) =yo. y'(0) =y (7.27)

Since y is twice continuously differentiable on [0, 00), we can integrate by parts and find that the

solution y to (28) also satisfies

o]

Yo' (0) — (y1 + byo) (0) + JO y(t) (" (t) = bp'(t) + cp(t) dt = {f, ) Ve € ([0,20)). (7.28)

On the other hand, if y is a twice continuously differentiable function satisfying (28), we can

integrate by parts (to put the derivatives on ¢ back to y) and find that y satisfies
(yo - Z/(O))SO/(O) [3/1 +byo —y'(0) — by(O)}
© Ve . ([0,%)).
-I—J [y"(t) + by’ (t) + cy(t)] p(t) dt = J f(t)

0



In particular,

LOO [y"(t) + by'(t) + t)dt = J f@®)pt)dt YoeE2([0,0)) satisfying ¢(0) = ¢(0) = 0.

Therefore, y” + by’ + cy must be identical to f since they are both continuous. Having established
this, we find that

(%o = 9(0))@"(0) = [y1 + by — y'(0) — by(0)](0) =0 Ve E([0,0)).

Choose ¢ € €2([0,90)) such that ¢(0) = 0 and ¢’(0) = 1, we conclude that yo = y(0); thus we arrive
at the equality

[y1 + byo — y'(0) — by(0)](0) = Ve€(0,0)).
The identity above clearly shows that y; = y’(0). In other words, if y is twice continuously differen-
tiable and satisfies ("28), then y satisfies (Z28); thus we establish that given a continuous forcing
function f,

y is a solution to (=28) if and only if y satisfies (28).

Thus we change the problem of solving an ODE “in the pointwise sense” to a problem of solving
an integral equation which holds “in the sense of distribution” (a distribution means a function of
functions). We note that there is one particular advantage of defining solution to (28) using (I’28)
instead of (Z7): if f is discontinuous somewhere in [0,00) (for example, f = F1lp, g as in the
previous section), (Z28) provides a good alternative even if y” does not always exist.

The discussion above motivates the following

Definition 7.34 (Weak Solutions). Let f : [0,00) — R be a function of exponential order a for some
a € R. A function y : [0,00) — R is said to be a weak solution to ([C28) if y satisfies the integral
equation (28). The integral equation (Z28) is called the weak formulation of (28).

We remark that the discussion above shows that if f : [0, 00) — R is continuous and of exponential
order a for some a € R, the unique ¢*-solution y to (I=20) is also a weak solution.
In view of (Z28), if we define L : €2([0,00)) — R by

Q0

L(p) = yo'(0) — (y1 + byo) (0) + JO y(t) (9" (t) = b’ (t) + co(t)) dt (7.29)

then the integral equation (°28) is equivalent to that “the two linear functionals L and {(f,-) are the

same on the space €2([0,00))”. We also note that
L(p) =" + by’ + cy,p) if y” is piecewise continuous, and (y(0),3'(0)) = (yo,v1) ;

thus if y” is piecewise continuous, the statement “L = {f,-) on €2([0,00))” is the same as saying that
“the linear functional induced by y” + by’ + cy and the linear functional induced by f are identical”.
This is what it means by y” 4+ by’ + cy = f in the sense of distribution.

If the right-hand side {f,-) is replaced by a general linear functional ¢, we can still talk about

the possibility of finding an integrable function y validating the integral equation (Z28), or more



precisely, L = ¢ on €%(]0,0)). In particular, for F' € R and ¢y, > 0, it is reasonable to ask whether
or not there exists an integrable function y such that

o]

Yo' (0) — (y1 + byo) (0) + L y(t) (2" (t) — b (t) + cp(t)) dt = Fo(ty) Ve EX([0,0)), (7.19)

where the linear functional ¢ : ([0, 0)) — R is given by
Up) = Fo(t))  ¥Ype6([0,0). (7.30)

This is exactly the integral equation (Z19); thus the ODE y” + by’ + cy = Fd,(t) is understood as
L ={on %€*([0,00)), where L and ¢ are defined by (=29) and (I=30), respectively.

The definition of ¢ motivates the following

Definition 7.35 (Dirac Delta Function). For ¢, € R, let X' (¢y) denote the collection of functions
defined on R and continuous on an open interval containing ty. The Dirac delta function at t is
a map dy, : X(t9) — R defined by

01, () = (to) -

The map dy is usually denoted as §.

Under this definition, the ODE y” + by’ 4+ cy = Fd,, is understood as “the functional induced by
y” + by’ + cy (given by (Z29)) is the same as the functional induced by Fé;,”. The function y given
by (Z21), (C22) or ([23) is then a weak solution to (24).

Example 7.36. In this example, we would like to find the “anti-derivative” of the Dirac delta

function at ¢y > 0. In other words, we are looking for a solution to

y'=0(t),  y(0)=0, y'(0)=0.

Taking the Laplace transform, we find that

6*3t0

sZ(y)(s) = e or equivalently, Z(y)(s) = : (7.31)

S

As a consequence, by Example T3 and Theorem 19 we conclude that the (weak) solution to the
ODE above is

y(t) = g, (t) = H(t —to).
We again emphasize that in principle we are not allowed to use Theorem [12 or Corollary 13 to

compute the Laplace transform of y’; however, the functional induced by 3’ (by assuming that y is
a0 0
| voea =00 - | soe
0 0
so we are in fact solving 3y’ = d;,(¢) in the sense of distribution; that is, we look for y satisfying

—~ LOO y()e'(t)dt = p(t)) Ve lX.

Letting o(t) = e leads to (IZZ3T).



7.6 The Convolution Integrals

Definition 7.37. Let f, g be piecewise continuous on [0, 00). The convolution of f and g, denoted
by f * g, is defined by

(f *g)(t th—r (7.32)
Proposition 7.38. Let f, g, h be piecewise continuous on [0,0). Then
(@) f*g=ygx* [
(b) f*(g+h)=(f*g)+(f*h);
(c) (f*g)*h=Ffx(g%h)
(d) (f*0)=0.
Theorem 7.39. Let f and g be piecewise continuous on [0,00) and are of exponential order a. Then
L(f % 9)(s) =ZL(f)5)ZL(9)(s) Vs>a.

Proof. Since f is of exponential order a, for some M; > 0, |f(t)] < Mie® for all ¢ > 0. Therefore,

for s > a,
R o " M,
2(6) —f e f () d] <J ™| £(t)] dt < M, J e T < —LelamIR
0 R R s—a
Similarly, for some My > 0, |g(t)| < Moye® for all ¢ > 0 and
R
200 [ Homa] < Mocemvosa
0 s—a

By the Fubini theorem,

f *St th—r J th—r “dt)d
:L ~s7g f f(t=m)e " dr) dT—fOReSTg(T)<LR_Tf(t)eStdt) dr;

thus for s > a,
[ e ([ e -mutnyar) i - 216021006

= [Cemin ([ st a) i - 2162006

| ["emamn([ Tf(t)e‘“dt—éf(f)(S)) i+ 206)( [

0

R

eg(r)dr = Z(9)(5)))|

< MlMgf 05T e 8)‘6(a—s)R
S—a 0
My M.

— 172 pela=s)R M, L2(f) }e(a s)R
S—a —a

which converges to 0 as R — 0. O



Example 7.40. Find the inverse Laplace transform of H(s) = ‘
S

2(s2 4 a2)’
Method 1: Using the partial fractions,
a 171 17 11 1 a
s2(s24a?)  als® $2+a2l a 2 a?s?+a?’
thus Example [ and 9 imply
t 1
LV H){) == - = t
(H)(t) ~ — —sina
Method 2: By Theorem 239, with F, G denoting the functions F(s) = % and G(s) = %,
S S a

LU H) ) = (27(F) % 27(Q))(t) = f (t — ) sin(ar) dr

0

t t
:tJ sinaTdT—f Tsinar dr
0 0

t T=t T T=t 1 t
= ——cos(ar)] — [ — —cos(ar)|  + - f cos(ar) dT]
a 7=0 a 7=0 a 0
t 1 t sinar|™=t ¢ sinat
=——— | cos(ar)dr = - — —; =—=—
a al a a?> lr=0 a a

Taking the Laplace transform of the equation above, we find that

C3s—1 Zg)(s) 3 1 2 Z(g)(s) 2
f(y)(S)—82+4 244  s244 §S2+4+ 2 s24+4

Therefore, by Example [0 and Theorem [Z39,

t

1
y(t) = 3cos(2t) — 5 sin(2t) + g(t — 7)sin 27 dr

D —

t

g(T)sin2(t — 7)dr.

N = DN~
(=) ?

1
= 3cos(2t) — B sin(2t) +
In general, we can consider the second order ODE
y' +by' +ey=9g(1t), yO0)=wo, y'(0)=u.

As discussed before, we find that if y is a (weak) solution to the ODE above,

(s+dyp+y . Z9)(s)

< = .
W)(s) s24+bs+c s24+bs+c

Therefore,



1. if 72 + br 4+ ¢ = 0 has two distinct real roots r; and ry, then the solution y is

t LT ToT
—r 1Yo — e’ —e
y(t) = YL 7 T2Y0 e + T80 7 91 rat + f gt —7)———dr.
T —T2 =T 0 =T
2. if 72 4+ br + ¢ = 0 has a double root 71, then the solution y is

t

y(t) = yoeht + (Z/l — leo)teht + f g(t _ 7_>€r17'7_ dr .
0

3. if r2 4+ br + ¢ = 0 has two complex roots A + iu, then the solution y is

Y ¢ :
y(t) = yOeAt cos Mt + uekt sin Mt + J g(t _ T)GATSIH [ika dr .
p ; .

8 Partial Differential Equations and Fourier Series

8.1 Two-Point Boundary Value Problems

For a second order ODE y” +p(t)y’+q(t)y = g(t), instead of imposing the initial condition y(ty) = yo
and y'(tg) = y1 sometimes the boundary condition y(«) = yo and y(5) = y; are imposed. In this

section, we consider the two-point boundary value problem

y' @)y’ +a@y =g),  yl@) =y, yB)=u. (8.1)
Let z(x) = y(z) — Z:Zyl - 2:2%. Then z satisfies
4 p()e +q()e = Gla),  #a) = 2() =0, (52)
where G(z) = g(x) — p(m)y(i — %1 — q(m)(; — Zyl + z_’gyo). Therefore, in general we can assume

the homogeneous boundary condition yy = y; = 0 in (8d). Such a boundary condition is called
homogeneous Dirichlet boundary condition, while the boundary condition in (81) is called in-

homogeneous Dirichlet boundary conditions.
Remark 8.1. Even though the initial value problem
y"+py +a)y=9t),  ylt)=vo, y'(td) =wu (8.3)

looks quite similar to the boundary value problem (8), they actually differ in some very important
ways. For example, if p,q, g are continuous, the initial value problem (E3) always have a unique

solution, while the boundary value problem (Bd) might have no solution or infinitely many solutions:
1. y"+vy = 0 with boundary condition y(0) = y(7) = 0 has infinite many solutions y.(z) = ¢sin z.

2. y” +y = sinz with boundary condition y(0) = y(7) = 0 has no solution. To see this, we
assume that there is a solution y = y(x) to this ODE. Then 3’(0) = y; for some y; € R. Use
the Laplace transform (treating x as the variable t), we find that the solution y satisfies

L W)(s) = SQyle 1 * (s2 j— 1)2 ;




thus by Theorem we find that

xT

i : . . sinr —xcosx
y(x) = ylsmx—l—J sin(z — z)sinzdz = y; sinx + ——
0

It is impossible to have y(7) = 0 for any choice of y;.

On the other hand, there are cases that (&) has a unique solution. For example, the general solution
to the boundary value problem
y"+2y=0

is given by
y(z) = Cycos V2 + Cysin /2 ;

thus to validate the boundary condition y(0) = 1 and y(7) = 0, we must have C; = 1 and Cy =
— cot 4/27. In other words, the solution y(z) = cos 2z — cot A/27 sin /2.

The existence theory of the solution to (8Il) requires a totally different functional framework,
and will not be proved in this course. However, we will still state the existence theory and try to

explain the idea of why the theorem should be true.

Theorem 8.2. Let «, 8 be real numbers and o < [3. Suppose that p : [a, ] — R is continuously
differentiable, and q : [a, f] — R is continuous. Then (B) (with yo = y1 = 0) has a solution if and
only if g : [, B] — R is integrable and

B
J g(x)p(x)de =0 Vo satisfying " — p(x)e’ + (q(z) — p'(x))p = 0 and p(a) = ¢(B) = 0.

«

The solution is unique if the ODE y" + p(x)y’ + q(x)y = 0 with y(a) = y(B) = 0 has only trivial

solution y = 0.

Remark 8.3. The equation ¢” — p(z)¢’ + (¢(z) — p'(z))p = 0 is called the formal adjoint
equation of y" + p(z)y’ + q(z)y = 0.

Example 8.4. Consider y” + y = g(x) with boundary data y(0) = y(7w) = 0, where g(x) = sinz.
We have shown in Remark B that there is no solution to this boundary value problem. To see this

using Theorem B2, we first find the kernel of the formal adjoint equation

" +¢=0, ©(0) = p(m) =0.

Since the general solution to ¢” 4+ ¢ = 0 is ¢(t) = C} cosz + Cy sin z, to validate the boundary data

we must have C; = 0. Therefore, for the ODE under consideration to have a solution, we must have

J g(x)sinzdr =0.
0

This is impossible since g(x) = sin z.



Example 8.5. Again consider y” 4+ y = g(z) with boundary data y(0) = y(7) = 0, but this time we

let g(z) = cosx. As discussed above, since

" " 1 (" — 2 |x="
J g(x)sinxdx:f Sinxcosxdx:—f sin 2z dx = CoS 21 =0,
0 0 2 0 4 =0

by Theorem B2 this ODE has a solution.
To find a solution to the ODE above, we mimic the procedure in Remark 81 and find that

0= e

where y; = y’(0). Therefore, Theorem implies that

y(x) =y sinx + J cos(x — z)sinzdz = yy sinx +
0

rsinx

Reason/Idea for why Theorem is true: Suppose that A is a n x n matrix, b € R". Then
R"™ = R(A) ® Ker(AT), and R(A) L Ker(AT); that is,

z-y=0 VzxzeR(A) and ye Ker(AT).
Therefore,
beR(A) ifandonlyif b-y=0 VyeKer(4d").

Now, we treat

2
1. the differential operator % +p(m)di + q(x) as the role of A;
z x

2. the space of twice differentiable functions with vanishing boundary data as the role of R™;

3. the integral over [« 8] of product of functions f, g as the inner product of f and g.

Then conceptually we can expect that
geR(A) ifandonlyif g-¢p=0 VgeKer(A"). (8.4)

Now let us examine what Ker(A™) is. By definition, AT is the unique operator satisfying (Az) - y =
x - (ATy); thus for y,2 € Dom(A) (which is the collection of twice differentiable functions with
vanishing boundary data) A" has the property that

B8 B8
j (Ay)(2)(x) = f y(2) (AT2)(2) de

« «

Integrating by parts, by the fact that y(a) = y(8) = z(a) = 2(8) = 0,

8 8 8 ,
J (Ay)(z)z(z) = J [y" + p(x)y’ + q(z)y]2(z) do = f y(z)[z" = (p(x)2) + q(x)z] da

« «



2
Therefore, A" is the differential operator % - p(x)% + (g(z) — p’(z)). Note that g € R(A) means

Jy € Dom(A) 34" + p(z)y’ + q(x)y = g(z);

thus (B4) implies that

Jy € Dom(A) 34" +p(z)y’ + q(z)y = g(x)

B
< f g(z)p(z)de =0 Vo satisfying ¢” — p(z)¢’ + (q(z) — p'(z))p = 0.

This is exactly what Theorem B2 is talking about. However, we emphasize that the argument above

is purely conceptually but not rigorous.

8.1.1 Eigenfunctions

Recall that if A is a real symmetric n x n matrix, then it is diagonalizable and there exists an
orthonormal basis of R" consisting of eigenvectors of A. Similarly, if a second order differential

operator

A= pa) &+ ga) (8.5)

is self-adjoint (meaning A = AT, where A" is given by ATy = ¢” — p(x)¢’ + (q(z) — p'(2))p),
then the eigenvectors of A, called the eigenfunctions of A, can also form an orthonormal basis of
Dom(A). We note that for a differential operator A given by (83) being self-adjoint, it is sufficient

and necessary that p = 0. In particular, we consider the eigenfunctions u of the differential operator

2
A:d

) satisfying
XL

Au=u" = lu, wla) =u(f)=0 (a<p). (8.6)
If A > 0, then the general solution to (BB) is u(z) = C1eV*® + Che V™ which, to validate the
boundary data, implies that C; = Cy = 0. Therefore, the eigenvalue of the differential operator A
cannot be positive.

If A < 0, the general solution to (BH) is u(x) = Cjcosv/—Ax + Cysiny/—Az. To satisfy the
boundary data, it is required that

pevEsEa i BIN

Since we are interested in the case that C; or Cy # 0, we must have

dt< cosvV/—Aa  sinv/—\a )—O'
¢ cosvV/—=A\3 sinv/=Ag|/

thus sinv/—A(f — @) = 0. This implies that v/—A(f — o) = kx or some k; thus A = —

corresponding eigenfunction is then

. kma kmrx kra . knx . km(x — )
u(xr) = —sin Cos + cos sin = sin

f-a B-a f-a B-a f—a




For each k € N, define

- k*m? B 2 . kr(z—a)
)\k__(ﬁ—a)Q and eg(x) = Rl (8.7)

where the constant

is for the purpose that {e;};2; forms an orthonormal set; that is, we

have the property that ey - e; = d;;, or to be more precisely,

8 . .
1 itk=yg,
| ertaeoydo = { e

[0}

Then we expect that for twice differentiable function ¢ with vanishing Dirichlet boundary data,

o0 0 B
p(z) = ) (¢ e)en(z) = ZJ p(ylen(y) dyer(zr) Ve la, b (8.8)
k=1 k=1

and the “length” of the function ¢ should obey the Pythagorean Theorem; that is, one expects that

» B

fﬁ plr)de =) (f

« k=1 «

o(y)er(y) dy>2 (8.9)

Identity (BR), often called the Fourier series representation (for functions vanishing on the
boundary), in fact holds for all ¢ which satisfies p(a) = () and is Holder continuous with some
Holder exponent; that is, there is « € (0, 1] such that

‘80(351) - @(%)‘
sup -
vimlf]  |T1 — T2

while (B9), called the Parseval identity, even holds for a larger class of functions. We again
emphasize that the derivation of (8R) is not rigorous but purely conceptually.
Instead of considering the second order equation y” + p(t)y’ + q(t)y = g(t) with boundary y(a) =

y(B) = 0, we can also consider the following three type of boundary conditions:
1. y'(a) = a, y'(B) = b, called the inhomogeneous Neumann boundary condition, or
2. y(la) =0,y'(f) =bory'(a) =a, y'(B) =0, called the mized type boundary condition.

We note that in either cases, using similar technique to transform (Bd) to (B2) we can always

transform the boundary condition above to the homogeneous one; that is,
1. y'(a) =0, y'(8) =0, called the homogeneous Neumann boundary condition, or
2. y(a) =0,y'(B) =0or y'(a) =0, y'(8) = 0.
Now we consider the eigenfunctions for the differential operator A with different boundary conditions.

1. Homogeneous Neumann boundary conditions: We look for u : [a, ] — R satisfying

Upe = A In [, B8], u'(a)=u'(B)=0.



As in the previous section, if A > 0, then the only possible u is trivial, so we consider the case
A< 0. If A\ =0, we have u(x) = 1 being a non-trivial eigenfunction. If A < 0, the general

solution to the ODE (without specifying the boundary condition) is
u(x) = CycosV—Az + Cysin vV —Azx,

and to validate the boundary condition, the system

—siny/—=Xa  cos \/—7)@] [Cl} _ [O]
—siny/—\3 cosv/—\3 |0
must have non-trivial solution which implies sin v/=A(8 — a) = 0. As in the previous section,
we conclude that
kr(z — «)
B—a

k%2
A= “B-ap? and u(x) = CcosvV—Az —a) = Ccos

For each k € N, define

B k22 B 1 - 2 kr(z — «)

Then {ex}7, forms an orthonormal “basis” in the space

{ue € (o, 8]) | v/ (o) = w'(B) = 0};

that is, for twice differentiable function ¢ with vanishing Neumann boundary data,

0

o) = Yo ener(s ZJ W dyes(z) Ve (o f) (8.11)

k=0

and the “length” of the function ¢ should obey the Parseval identity

F p(r)? dv = i (JB p(y)er(y) dy)2 (8.12)

e k=1 «
. Mixed type boundary conditions: We first look for u : [a, 5] — R satisfying
Upe =M In [, f], ula)=u'(8)=0.

Similar computations show that A < 0 and cosv/—A(a — ) = 0. Therefore, v/—A( — a) =

(2k+1)m which implies that for some k € N,

\ = (2k —1)%x?
I ICEOR
Therefore, for each k € N, define
2k —1)*x? B 2 . (2k—1Drm(zr—«)
A = 15— ay and ex(x) = F—a5n 20— a)

Then {ey}i~, forms an orthonormal “basis” in the space {u € €*([a, 8]) | u(e) = u'(8) = 0}.

_ _ o0
Similarly, {4 /Bi cos (2 2(;)71(2) a)}k:1 forms an orthonormal “basis” in the space {u €

(o, 8]) | /() = u(B) = 0}.




8.2 Fourier Series

In the previous section, we discuss how one obtain an orthonormal basis in different spaces. In fact,

by the Stone-Weierstrass Theorem (abstract version) we can conclude the following

Theorem 8.6. Let € (T) be the collection of all 2m-periodic continuous functions, and 2, (T) be the

collection of all trigonometric polynomials of degree n; that is,

2,(T) = {%0 + Z cpcos kx + spsin kx| {cx}r_os {Sk}rey S R} :
k=1

Let 2(T) = U P, (T). Then P(T) is dense in €(T). In other words, if f € €(T) and e > 0 is
given, there exzsts pe P(T) such that

|f(x) —p(x)|<e  VzeR.

In other words, every period function with period 27 can be approximated by trigonometric
polynomials in the uniform sense. In this section, we would like to discuss how to approximate a

continuous period functions using trigonometric polynomials.

# F @k 1 Stone-Weierstrass IZ (concrete version ) 2 37 P 2 & & [0,1] F e ¥ f 7
* 538 ;% (b]4c Bernstein 7 ;%) 2 i1 (A3 e & ) A Ay J1 R T Bernstein %
FN o AP R Sdon D EN AR - BHEAS oF B e R ok G M e L&
F_Taylor 32 ¢ AP x Fa > $ 5 B RF W addic f (7 (#4750 Analytic functions )
TR dn N BNRBERE A RBEEN 2F e kT A RSk f hk S H
B (Fn&El) %71 AP Bioams > g B 883 i Sdkepr > §38 50
Gy LI g SRty B 3 R AN -

ip- &P o AP LRI ik Sfic o d Theorem BO # i 4vif iH#p 5 27 andodew *

P

pulz 2 (e ) coskx + s,(c " sin kzx)
1= & %38 3% (trigonometric polynomials) #7ig 17 (A3 3 feach &7 ) H ¥ 1k (n) R &
e S j\lﬁt‘rm & 5 ehiden 3K T o B - BT g .%m; o e F 32

1 FAEHGE 7T GEER T BEM = & SN2 T o M S = & 5

PGP

2. ¥R AA¥EE Y Gl :kgui Menz & 538583 BT P Sofic > 3 P A
EBIT? A om TP :':'~ RGP E T EkAM Oz £ SR A ERITAE L S
7 ]’Lﬁ‘(}ip 7&5.

Let f € €(T) be given. We first assume that the trigonometric polynomials used to approximate

f can be chosen in such a way that the coefficients does not depend on the degree of approximation;



that is, c,g”) = ¢, and s,(:) = sp. In this case, if p, — f uniformy on [—, 7], we must have

Y

lim pn(T) cos kx dx = f(z) cos kx dx Vke{0,1,---  n}

—
n—ow J__

and i i
lim pn(z)sinkz de = f(z)sin kx dx Vke{l,--- ,n}.
n—00 —r —r
Since i i
J cos kx coslx dx = J sin kz sinfx dx = woye VEk,/eN
and i
J sinkxcosledr =0  VkeN{eNu/{0},
we find that - -
k= — f(x)coskrdr and s, =— f(z)sinkzdz . (8.13)
TJ) . TJ) .
This induces the following
Definition 8.7. For a Riemann integrable function f : [—7, 7] — R, the Fourier series repre-

sentation of f, denoted by s(f, ), is given by
c ee}
s(f,z) = =+ Z(ck cos kx + sy sin kx)
2 4

whenever the sum makes sense, where sequences {cx}i, and {s;};2, given by (B13) are called the
Fourier coefficients associated with f. The n-th partial sum of the Fourier series representation

to f, denoted by s,(f,-), is given by
sn(f,x) = oy Z(ck cos kx + spsinkx) .
2 O

We note that for the Fourier series s(f,x) to be defined, f is not necessary continuous.

Example 8.8. Consider the periodic function f : R — R defined by

r if0<z<m,
—x if 1t<x<0,

)=

and f(x 4 2m) = f(z) for all z € R. To find the Fourier representation of f, we compute the Fourier
coefficients by

T 1 T 0
S = — f(x)sinkxdxz—(f xsinkxdw—f xsinkxdm)zo

T T\ Jo

and

1 (™ 1 T 0 92 (™
ck:—J f(x)cos/m:dx:—(f xcoskxdm—f xcoskxdx)z choskxdx.

T T\ Jo T Jo

—T



Ifk:o,thencozzfa;dx:w,whﬂeifkeN,
™ Jo

2<az:sin/’<;x7T J’r sinkxd> 2 cos kx
Cp = — - 0 —
* o Jo k T k2

I (E0) )
T k 0o mk? '
Therefore, co), = 0 and cop_1 = k1) for all £ € N. Therefore, the Fourier series representation
(2% —
of f is given by

s(f, :___Zcos2k—1

Example 8.9. Consider the periodic function f : R — R defined by

0

™

. T
1f—7r<x<—§or§<m<7r,

and f(z + 2m) =

f(z) for all x € R. We compute the Fourier coefficients of f and find that s, = 0
for all k € N and ¢y = 1, as well as

1 (2 2 (2 2sin k2”
= — coskxdr = — coskxdr =
™)z T Jo k
2(_1)k+1 ) ) )
Therefore, cop, = 0 and cop_1 = @k —1) for all £ € N; thus the Fourier series representation of f is
T(2k —
given by

1 2% (—1f
s(f,:v)25—;16212(]{_)1008(216—1):13.

Example 8.10. Consider the periodic function f : R — R defined by

flx)==z if

— T <ITIT

and f(x + 27) = f(x) for all x € R. Then the Fourier coefficients of f are computed as follows
¢, =0 for all k € N u {0} since f is (more or less) an odd function, and

T 2 (7 2 Ly m T L
—J xsinkxd:ﬁ:—J xsinkxdx:—<—xcos t +J cos B
T J_x ™ 0 0

0 s k

Therefore, the Fourier series representation of f is given by

dx>:2(+)k+l.

s(f,x) :22 (_1]2 .

sin kx .

Proposition 8.11. Let f : [—m, 7| be Riemann integrable and s, (f,xz) be the n-th partial sum of the
Fourier series representation of f. Then

f (@) = salfy ) de < f (@) - p(a)] da

Vpe Z,(T).

—T



Proof. We note that if p e &2,(T), then s,(p,-) = p and

| v = sattapterae =0,
Therefore, if p e £, (T),
| =p@ o= [ 156 = sulf) + sulf) o

—T —T

= F | f(z) = salf, a:)\2 dx + r |s.(f = p, x)f dx (8.14)

—T —Tr

which concludes the proposition. O

Theorem 8.12. Let f € €(T). Then

v

lim | [s(f,2) = f(2)[ de =0 (8.15)
n—w J__
and
0 2 ©
f ‘f(x)‘Q de =7 [50 + Z(CZ + si)} . (Parseval’s identity) (8.16)
—7 k=1

Proof. Let ¢ > 0 be given. By the denseness of the trigonometric polynomials in € (T), there exists

h e P(T) such that sup | f(z) — h(z)| < 4 /%. Suppose that h € &y (T). Then by Proposition BT,
zeR

e

fﬂ ‘f(x)_SN(f7x>’2d$<f \f(x)—h(x)‘de<5.

—T —T

Since sy(f, ) € Z,(T) if n = N, we must have

T

JW |f(2) —sn(f,x)Ide <J |f(z) —sN(f,x)‘Qda: <e VYn=N;

—T —T

thus (RTH) is concluded. Finally, using (804) with p = 0 we obtain that

s

| @far= ] jsrafaes | (5@ - sl ar

—T —T —T

T 2 n
thus passing to the limit as n — oo and using the fact that J s (f, a:)’Q de = [%0 + kzl(ci + si)]
we conclude (B1M). o

Remark 8.13. Identities (8&H) and (B8) also hold for Riemann integrable function f : [—m, 7] — R.
Assuming this, then Example 810 provides that

T 0 4
J xde:WZﬁ
k=1

7T2

a0
Sy . 1
which implies that k§1 R



8.3 The Fourier Convergence Theorem

Let f: R — R be a 27-period function and Riemann integrable over [—m, w]. The n-th partial sum

of the Fourier series representation of f is given by

sn(f,x) = il + Z (ck cos kx + sy sin k:x)

2 4O
- Jﬁ f(z)dr + i [(l fr f(y) cos ky d:c) cos kx + <l fﬂ f(y)sin ky dy> sin kx]
27 ) =1 " T Jem T J
1 (™ 1 (™
=5 f@)dz+ = | f(y)(coskycoskx + sin kysin kz) dy
™ J_n T J

_ %J_W f@)(% + ;COS k(x — y))dy-

- , we conclude that
2sin

. 1 <
Since = + >, coskx = .
2 0 2

sair = [ 1w sin(n )@ —y) 4,

P
x 27 sin =

This induces the following

Definition 8.14. The function .
sin(n + =)x
Do(z) = sin(n + 5)x (8.17)

27 sin %
is called the Dirichlet kernel.

Definition 8.15 (Convolutions). For 27-period functions f, g, the convolution of f and g, denoted
by f x g, is the function

(Fea)@) = [ S —vady.

Using this definition, we have s, (f,z) = (D, » f)(z). We note that similar to (a) of Proposition
[[238, by the periodicity of f and g we also have fxg=g~* f.

Theorem 8.16. For any f € €Y(T); that is, [ is 2w-periodic continuously differentiable function,
sn(f,) = Dy * f converges to f uniformly as n — o0.

Proof. Let & > 0 be given. Define § = £ , where | - ||, denotes the maximum of a function.

<
(1f Moo +1)

: 1 .
Since . — 0 asn — o and f, f’ are bounded, there exists N > 0 such that
n

2

i{( Afle 7o 7Sl

2rl(n+1)sing  (n+1)sing  (n+1)sin?

€
5] < 1 whenever n > N .
2 )

2
Since f D,(x —y)dy =1forall ze T,
T

s

sa(f,2) = f(2) = (Dux [ = f)(@) = | Dulz—y)(f(y) — f(2))dy

—Tr
s

= | D) (flz—y)— f(x))dy.

—T



We break the integral into two parts: one is the integral over |y| < § and the other is the integral
over § < |y| < w. Since f € €(T),

£ =) = F(@)] < s | @)ly] = 1 Lol

thus by the fact that g|x| < sin |z| for |z| < 7,
m

Da®)(f(w = y) = () dy

’ ly|<é

L fa=—yp—f@| I [° €
< — dy < dy < | f’ —. 1
2r )5 | sin ¥| 2m J(; sin & y <10 < 4 (8.18)

As for the integral over § < |y| < m, we have

fﬂsin(njté)yf(m_y)_f(z)dy

in ¥
5 Sln2

_cos (n+3)y flz—y) - f(x)

y=ﬂ+J”cos(n+%)ydf(ﬂi—y)—f(w)d

B n+ % sin § y=5 5 n+ % dy sin § y
_ cos(n+5)8 flx+0) — f(x) _ f cos(n + 3)y f'(z+y)
n+i sin § 5 n+i sin &
[ Dyt ) s,
5 n+s 2sin* 4 '

Therefore, if n >

N,
‘J{:sin(n—l—;)yf($_y)_f(x)dy

27 sin %
RN TS | S

S or n+3)sing  (n+3)sind  (n+ 1) sin®

g} < Z. (8.19)

Similarly, if n > N,

‘ J_é sin (n + ;)yﬂx —Y) = f(x)dy‘ << (8.20)

27 sin £ 4

—r 2

Therefore, the combination of (BI8)-(8=20) implies that

us 1 _
sup ‘ f sin(n + —)yf(x i y) f(x)dy‘ < e whenever n > N .
zeR | )y 2 sin ¥
This implies that lim sup |(Dn * f)(x) — f(x)‘ =0 or D, * f converges uniformly to f. D
n—=0 geR
Remark 8.17. Given a continuous function g with period 2L, let f(x) = g(@) Then f is a
T

continuous function with period 27, and the Fourier series representation of f is given by

s(f,x) = % + Z(ckcosk‘x + s sinkx) ,
k=1

where ¢;, and s are given by (813). Now, define the Fourier series representation of g by s(g,x) =

s( f, W—Lx) Then the Fourier series representation of g is given by



[ee}
C k .k
s(g,x) = 50 + Z (ckcos%x +sksm%$) ,
k=1

where {c,}72, and {s;};2, is also called the Fourier coefficients associated with g and are given by

1 (" 1 (™  La 1 (* kma
= B f(z)coskxdr = — f_ﬂg(7) cos kx dx = 17 f_L g(x) cos A dx
L
and similarly, s, = EJ g(x)sin lme dzx. Moreover, the change of variable formula implies that
-L
L 2 L T\ (2 L (" 2 &
fL l9(a)[ dz = JL P ar =~ f f@)f dr = [ D+ DCEY: I

Identity (8721 is the Parseval identity for 2L-periodic function g.

Definition 8.18. A function f is said to be piecewise continuous on an interval [« (] if the

interval can be partitioned by a finite number of points a = ¢y < z; < --- < x,, =  such that
1. f is continuous on each open sub-interval (z;_1, ;).

2. f approaches a finite limit as the end-points of each sub-interval are approached from within

the sub-interval.

Theorem 8.19. Suppose that f and f' are piecewise continuous on the interval [—L, L) and f(x +
L) = f(x) for all z € R. Then

fEt) +f=7)
2

e}
=24 :
f,r 5 Z:: ckcoskx+sk81nkx),

where f(xt) = lim_f(z) denotes the one-sided limit of f at x.

y—at

0 if-L<x<0,

2L) = for all z € R. Th
L if0<z< L, and f(z +2L) = f(z) for all z € en

Example 8.20. Let f(x) = {

_L 2L 1 . (2k — )7z

The following figure demonstrates the graph of f and the 8-th partial sum of f

Figure 6: The partial sum sg(f,x) =




One can use the following matlab® code to generate the picture above. The reader can change

the value of N and see how the Fourier series converges to the step function.

N = 8; % degree of trigonometric polynomial
L = 1; % half of the period
x = -2.2:0.01:2.2;

% Computing the N-th partial sum of the Fourier series
S = L/2%ones(1,length(x));

for k = 1:N
S =S + 2*L*sin((2*k-1)*pi*x/L)/(pi*(2*k-1));
end

% Plot the N-th partial sum of the Fourier series
plot(x,S);
hold on;

% Plot the step function
t =-2.5:0.01:2.5;
s = (t <-1).*(t > -2).*ones(1,length(t))...
+ (t < 1).%(t > 0).*ones(1,length(t)) + (t > 2).*ones(1,length(t));
plot(t,s);

Theorem 8.21 (Gibbs’ Phenomena). Let f and f' be piecewise continuous on the interval [—L, L)
and f(x + L) = f(x) for all x € R. Suppose that at some point xy the limit from the left f(zy) and
the limit from the right f(xg) of the function f exist and differ by a non-zero gap a:

flag) = flxg) =a#0,

. . . 1 (7 si 1
then there exists a constant ¢ > 0, independent of f, xy and L (in fact, ¢ = f ekl PN

mTJ)y X 2
0.089490), such that

) L
lim s, (f @0+ %) = f(xf) + ca, (8.22a)
L
lim s, (f,zo — 2—) = f(zg) —ca. (8.22Db)
n—00 n

8.4 Even and Odd Functions

In this section, we consider the Fourier series representation of 2L-periodic even or odd functions.
Recall that a function f : R — R is called an even (resp. odd) function if f(—z) = f(x) (resp.
f(=z) = —f(z)) for all x € R, and we note that if f: R — R is an even (resp. odd) function,

f\;f(:c) da::zLMf(x)da: <resp. J_A;f(a:)dxzo> VM >0.



Therefore, if f is a 2L-periodic even function, the Fourier series representation of f is given by

- krx
s(f, ):—+ Cp COS —— | (8.23)

2 A~ L

while if f is a 2L-periodic odd function, the Fourier series representation of f is given by

0

s(f,x) = Z sk sin k%x : (8.24)

k=1

where {cx}{0, {Sk}r2, are given by

k k
J f(z) cos ﬂ dx, J f(z)sin ﬂ dx . (8.25)

Definition 8.22. Let f: [0, L] — R be a function. Then even (resp. odd) extension of f is the
function f, : [-L, L] — R (resp. f,: [—L, L] — R) such that

flz) ifxel0,L], flz) ifzxel0,L],
fel@) :{ f—z) ifze|-L,0). (reSp‘ fol®) :{ ~f(—x) ifze[-L,0). >

The even (resp. odd) periodic extension of f is a 2L-periodic function which coincides with f,
(resp. f,) in the interval [—L, L.

Definition 8.23. Let f : [0, L] — R be a function. The Fourier series representation of the even

(resp. odd) extension of f is called the Fourier cosine (resp. sine) series of f.

Using (823)-(8=23), the Fourier cosine and sine series of f : [0, L] — R is

k
5(fe;s ) J fly dy—i—LZ J f(y COS—dg)COS%
and .
2 k
s(fo,x) = =7 Z J fly sm—dy) sm%,
respectively. By Theorem B9, if f : [0, L] — R is piecewise continuous with piecewise continuous
f’, then

f@®) + f(a7)

= $(fe,x) = s(fo, ) Vazel0,L].

Moreover, Remark B3 and (82‘2231) imply that
[Crwfar=3 [ nwfa= é[%(ff(y)dy)2+%g ([ 50005 52a0)’
[ rwa +%,§ ([ 7005 52a0)’

and similarly,



Example 8.24. By Example B8 and B0, we conclude that

0 0
(—1)k+L T 4 cos(2k— 1)z
=2 D .
x 2% sin kx 2w A (ko) Vael0,m)

The Parseval identity provides that

2m3 4 ™ 16 < 1
R Rk DM ol
8.5 Separation of Variables; Heat Conduction in a Rod

Consider the heat distribution on a rod of length L: Parameterize the rod by [0, L], and let ¢ be the
time variable. Let p(z), s(z), k(x) denote the density, specific heat, and the thermal conductivity
of the rod at position z € (0, L), respectively, and u(z,t) denote the temperature at position x and
time t. For 0 < x < L, and Az, At « 1,

T+Ax t+At
f p(y)s(y) [u(y, t+ At) — u(y, t)] dy = f [—m(x)uz(x, t) + k(x + Az)u,(x + Ax, t’)] dt’,

T t

where the left-hand side denotes the change of the total heat in the small section (z,z 4+ Ax), and
the right-hand side denotes the heat flows from outside. Divide both sides by AzAt and letting Ax
and At approach zero, if all the functions appearing in the equation above are smooth enough, we
find that

p(x)s(z)ue(a,t) = [K(z)ug(z,t)] O<z<L, t>0. (8.26)

Assuming uniform rod; that is, p, s, k are constant, then (828) reduces to that
U (7,1) = Uy (2, 1), O<z<L, t>0, (8.27a)

where a2 = s called the thermal diffusivity.
pS

To determine the state of the temperature, we need to impose that initial condition
wz,0) = flx) O<a<L (8.27b)
and a boundary condition. In this section, we consider the Dirichlet boundary condition
w(0,) = w(L, ) =0  t>0. (B.27¢)

Method of Separation of Variables: Assume that the solution u is a product of two functions,

one depending only on x and the other depending only on ¢; thus
u(z,t) = X(x)T(t).
Then (BZ7a) implies that

T'H)X(z)=*TH)X"(x) O<wx<L, t>0.



Rearranging terms, we obtain that
X"x) 1T
X(z) a2 T(t)"

Since the left-hand side is a function of x and the right-hand side is a function of ¢, we must have

X'x) 1T'(M) _
X(z)  a2T(t)

for some constant . In other words, X and T satisfy

X"z)+AX(x)=0 O<ax<L,
T't)+a?XT(t) =0 t>0.

Since u(0,t) = u(L,t) =0 for all t > 0, for X (z)T'(¢) to be a solution, we must have X (0) = X (L) =
0. As discussed before, in order to have non-trivial solution, A has to be positive and using (BZ7) we

find that

k272 . kmx
AL = 72 and Xi(z) = sin ——.
This in turn implies that
k*m?a?
T'(t) + 7 T(t)=0;
thus T'(t) = S5 Asa consequence, we conclude that

K222, kmx
= L2 'sin ——
ug(x,t) =e .

L

This uy, satisfies (827a) and (8Zic) for all k € N. By the superposition principle, we also expect that
the linear combination of uy’s satisfies (827a) and (B=27c).

To satisfy the initial condition u(z,0) = f(x), we first find the Fourier sine series of f and find
that

= kmx krx
flz) =) spsin —, f f(z sm—dx
L
k=1
Define
K2r2e?,  kmr 2 [ . kmx
Zske L7 smT, sk:LLf(:v)sdex.

Then if the differentiation in both z and ¢ commutes with the infinite sum, then u given above solves

8.6 Other Heat Conduction Problems

8.6.1 Non-homeogeneous Dirichlet boundary conditions

In this sub-section we consider the heat equation (827a,b) with non-homogeneous Dirichlet boundary

condition

w0,6) =T and w(L,t)=T, t>0. (8.274)



Define v(z) = (T — Tl)% + T1. Then v(0) =T} and v(L) = Ty. Letting w(z,t) = u(z,t) — v(x),
we find that w satisfies
wy(x,1) = 0Pwee(z,1) O<az<L, t>0,
w(z,0) = f(x) —v(x) O<z<L,
w(0,t) = w(L,t) =0 t>0.

By the discussion in the previous section, we find that

- 2202,k 2 (* k
:Zbke i tsm%, bk:ZL(ﬂx)_U( ))sm%dm
Therefore, the solution to (827a,b,d) is given by

u(z,t) = v(z) + w(zx,t)
2“2"21‘, krx

a0
+ T +Zbke 2 'gin —
k=1

T
= (- T\ -

L

where

2 (L x . kmx
bk = EL (f(l’) — (TQ — T1>z — T1> SIHT dr .

Since the temperature at the ends of the rod are fixed to be some constants, we expect that

u(z,t) — v(x) as t — 0. To see this mathematically, we consider the case that ¢ » 1. By the fact

x)
9 (L
that |by| < LJ |f(z) — v(z)|dz, we have
0

E2n2q2 2 L & E2n2q2
s ) (o) = Xl F = (2 [ 101 ot ar) 3 o5
7r a 2 L »© 27r2a2
<e 2 (7Y <ff |f(z) — v(2)] d:c) > e
0 k=1
a0 k27242
Since Y e~ 12 < oo, we conclude that

lim max |u(z,t) — v(z)| =0.
t—00 z€(0, L]

This shows that u(-,¢) — v uniformly on [0, L] as ¢ — oo, and this further shows that
L
. 2
tlirroéL lu(z, t) — v(z)| dz = 0.

On the other hand, for each fixed ¢t > 0, we can treat

as the Fourier sine series of u(x,t) — v(x); thus the Parseval identity implies that

J‘umt—v ‘dm—LZb ZwathZ

2r2a

= Le 12 tf |f(z)|*dz — 0 as t— 0.




8.6.2 Homogeneous Neumann boundary conditions

In this sub-section we consider the heat equation (§827a,b) with non-homogeneous Dirichlet boundary

condition
u(0,¢) =0 and wu,(L,t)=0 t>0. (e) .
We remark that this boundary condition means the end of the rod are insulated.

Now we apply the method of separation of variables. Suppose u(z,t) = X (x)7T(t) is a solution to
(RZ0a) and (8Z7e). Then again

X"(x)  1T'(t)

X(z) a2 T(t)

for some constant A, or equivalently, X and T satisfy

= -\

X"(z)+ XX (x)=0 O<z<L,
=0

T'(t) + > MT(2) t>0.

Since u,(0,t) = u,(L,t) = 0 for all t > 0, for X (z)T'(t) satisfying (8Z2e), we must have X'(0) =
X'(L) = 0. As discussed before, in order to have non-trivial solution, A has to be non-negative and

using (B7) we find that

k2m? kmx
A = 72 and Xk(x):cosT VkeNu{0}.
This in turn implies that
k2m2a?
T'(t) + 72 T(t)=0;

27r2a2
thus T'(t) = e 2t Asa consequence, we conclude that

7k2w2a2t k"ﬂ'm
ug(x,t) =e L2 "cos —.
L
This uy satisfies (82Z7a) and (82Z1e) for all k € N U {0}.
To satisfy the initial condition u(z,0) = f(z), we first find the Fourier cosine series of f and find

that

a0
k 2 (F k
f(x)z%o—l—klckcos%x, ck:LLf(x)coszmd:v.
Define "
k2242 krx 9 L k
u(.r,t):%+;cke i tcos%, ck:LLf(a:)coszmdx.

Then if the differentiation in both z and ¢ commutes with the infinite sum, then u given above solves
(RZ7a,b.e).
Since the ends of the rod are insulated, we expect that the temperature converges to the average

1t . . :
temperature Lf f(z)dzx. To see this, we note that %0 is the average temperature, and as in the
0

previous case we have

0
E2x2a?
2

| ( t) Co ’ < _7'2(52 (t—1)<2 L ‘f( )’ d > —
— L J— L
Ilél[é]:}L(} u\xr, B X € I . T T “ €

—-0 as t— .



8.7

The Wave Equations

In this section we consider the wave equations uy = *gy.

8.7.1 Models

1.

From Hooke’s law: imagine an array of little weights of mass m interconnected with massless
springs of length h, and the springs have a stiffness of k (see the figure).
k @ k
u(z — h) u(x) w(x + h)
If u(x) measures the distance from the equilibrium of the mass situated at x, then the forces

exerted on the mass m at the location x are

0%

FNewton = ma = mﬁ(a:, t)
Frooke = klu(x + h,t) —u(z,t)] — klu(z,t) — u(x — h,t)]
= klu(z + h,t) — 2u(x,t) + u(x — h,t)].

If the array of weights consists of N weights spaced evenly over the length L = Nh of total
mass M = Nm, and the total stiffness of the array K = k/N, then

@(xt)_KLQu(x—i-h,t)—2u(x,t)+u(x—h,t)
o M h?

Taking the limit N — o0, h — 0 (and assuming smoothness) we obtain

U (7, 1) = gy (z,1) . (8.28a)

Equation of vibrating string: let u(x,t) measure the distance of a string from its equilibrium.

Assuming only motion in the vertical direction, the horizontal component of tensions 77 and
T5 have to be the same:
Ticosa=Tycos B~ T.

The difference of the vertical component of T} and 75 induces the motion in the vertical direc-
tion:
o%u

mﬁ(m,t) ~ Tysin B —Tysina = (Tycos §) tan § — (T} cos ) tan «

~ [T(x 4 h)ug(x + h,t) — T(x)u,(x,t)].



If p is the density of the string, then m = ph; hence

0% T(x+ h)ug(x+ h,t) —T(x)u,(x,t
P rt) ~ ( )t ( h) (2)us(z,t)

Taking the limit ~ — 0, we obtain
puy(x,t) = [T(w)uw(x,t)}x (8.29)
If T is constant, then (829) reduces to

U (7, 1) = gy (z,1) . {;

(070

06)
~—

o

To determine the state of the displacement u, we need to impose that initial condition
w(z,0) = f(z), w(z,0)=g(x) O<az<L (B.27b)
and a boundary condition. In this section, we consider the Dirichlet boundary condition
u(0,t) =u(L,t) =0 t>0. (B.28¢)

Again, applying the method of separation of variables, we assume that u(z,t) = X (z)T(t) satis-
fying (828a,c) and find that

T")X(z) =*TH)X"(x) O<wz<L, t>0,
X(0)T(t)= X(L)T(t)=0 t>0.
Therefore,

LT X(x)
- — — 2 0 L, t>0
2T~ X(a) R

for some constant \. Taking the boundary condition X (0) = X (L) = 0 into account, we find that

k272  krx
A=A\ = T2 X (x) = Xp(x) = sin <
and ket ket
T(t) = Ti(t) = cx cos e + sp sin 720 ,

in which k € N. Define uy(z,t) = Xy (2)Tx(¢), then we look for ¢, s such that the “formal” solution
of (828a.,b,c) can be expressed by

oe]

(2.1) Z < ket . ) lmrct) . kmx
u\x = Ci. COS Sf S1I Sl —.
O S L

To satisfy the initial condition (8&28b), we have

2 (" k 2 (" k
ck—zL f(x)sin%dx and Sk = 1 ) g(x)sin%dx.



8.7.2 The d’Alembert formula

L o0
Let v(z,t) = chCOS@sm@aHd w(z,t) = Zsksm cts. lmri Then
k=1 L L = L L
S k t kr(z — ct F ) + F(z — ct
(z,t :2%<Sin@+3m W(xL c)>: (x+c);— (z —ct)
k=1
and .
Zf(cos :c—ct)_coskﬁ(xL+ct)>:H(m—ct);H(:c—l—ct)’

Q0 0
where F(x) = Z ¢k sin % and H(z) = Z S COS T We note that F' is the odd period extension
of f while -

1
is the odd period extension of —=g. Let G be the odd periodic extension of g. Then
C

G(§) d§;

2 - 2

H(x—ct)—H(x+ect) 1 J“Ct

x—ct

thus the formal solution to (8&28) is given by

T c T —c T+ct
wla, ) — Pt ct) + F t)+if

> % G(€)de . (8.30)

This is called the d’Alembert formula.
If F' is twice differentiable, G is differentiable, then u given by (B230) satisfies

uy(z,t) = g[F’(x +ct) = F'(xz —ct)] + %[H(z +ct) + H(z — ct)],

Uy (z,1) = %2 [F"(z+ct)+ F"(x+ct)] + g[H’(x +ct)— H'(z —ct)],
ug(w,t) = % [F'(z+ct) + F'(z — ct)] + i [H(z + ct) — H(z — ct)],
uy(x,t) = % [F"(z 4 ct)+ F"(x + ct)] + 2% [H'(z 4 ct) — H'(z — ct)] .

Therefore, us(r,t) = ugz(x,t) for 0 < x < L and t > 0. Moreover, u clearly satisfies (828b) and
(R28c); thus w given by (830)) solves (R2R).
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