
A Concise Lecture Note on Differential Equations

1 Introduction

Definition 1.1. A differential equation is a mathematical equation that relates some unknown
function with its derivatives. A differential equation is called an ordinary differential equation (ODE)
if it contains an unknown function of one independent variable and its derivatives. A differential
equation is called a partial differential equation (PDE) if it contains unknown multi-variable functions
and their partial derivatives.

Definition 1.2. A solution to a differential equation is a function that validates the differential
equations.

Example 1.3. The following three differential equations are identical (with different expression):

y1 + y = x+ 3 ,

dy

dx
+ y = x+ 3 ,

f 1(x) + f(x) = x+ 3 .

The function y(x) = x+2 (or f(x) = x+2) and y(x) = x+2+ e´x (or f(x) = x+2+ e´x) are both
solutions to the differential equation above.

Example 1.4. Let u :

"

R2 Ñ R
(x, t) ÞÑ u(x, t)

be an unknown function. The differential equation

ut ´ ux = t ´ x

is a partial differential equation, and u(x, t) = x2 + xt+ t2 is a solution to the PDE above.

Definition 1.5. The order of a differential equation is the order of the highest derivative that appears
in the equation. A differential equation of order 1 is called first order, order 2 second order, etc.

Example 1.6. The differential equations in Example 1.3 and 1.4 are both first order differential
equations, while the equation y2 + xy13 = x7 and ut ´ uxx = x3 + t5 are second order equations.

Definition 1.7. The ordinary differential equation

F (t, y, y1, ¨ ¨ ¨ , y(n)) = 0

is said to be linear if F is linear (or more precise, affine) function of the variable y, y1, ¨ ¨ ¨ , y(n). A
similar definition applied to partial differential equations.



1.1 Why do we need to study differential equations?

Example 1.8 (Spring with or without Friction).

mẍ = ´kx ´ rẋ .

Example 1.9 (Oscillating pendulum).

mLθ̈ = ´mg sin θ

Example 1.10 (System of ODEs). Let p : [0,8) Ñ R+ denote the population of certain species. If
there are plenty of resource for the growth of the population, the growth rate (the rate of change of
the population) is proportion to the population. In other words, there exists constant γ ą 0 such
that

d

dt
p(t) = γp(t) .

The LotkaVolterra equation or the predator-prey equation:

p1 = γp ´ αpq ,

q1 = βq + δpq .

Example 1.11. A brachistochrone curve, meaning "shortest time" or curve of fastest descent, is the
curve that would carry an idealized point-like body, starting at rest and moving along the curve,
without friction, under constant gravity, to a given end point in the shortest time. For given two
point (0, 0) and (a, b), where b ă 0, what is the brachistochrone curve connecting (0, 0) and (a, b)?

Define
X =

␣

h : [0, b] Ñ R
ˇ

ˇh(0) = 0, h(b) = a, h is differentiable on (0,b)
(

and
A =

␣

φ : [0, b] Ñ R
ˇ

ˇφ(0) = 0, φ(b) = 0, h is differentiable on (0,b)
(

,

and suppose that the brachistochrone curve can be expressed as x = f(y) for some f P A. Then f

the minimizer of the functional
T (h) =

ż b

0

a

1 + h1(y)2
?

´2gy
dy

or equivalently,

T (f) = min
hPX

ż b

0

a

1 + h1(y)2
?

´2gy
dy .

If φ : [0, b] Ñ R is differentiable such that φ(0) = φ(b) = 0. Then for t in a neighborhood of 0,
f + tφ P X ; thus

F (t) ”

ż b

0

a

1 + (f + tφ)1(y)2
?

´2gy
dy

attains its minimum at t = 0. Therefore,

F 1(0) =
d

dt

ˇ

ˇ

ˇ

t=0

ż b

0

a

1 + (f + tφ)1(y)2
?

´2gy
dy = 0 @φ P A .



By the chain rule,
ż b

0

f 1(y)φ1(y)
?

´2gy
a

1 + f 1(y)2
dy = 0 @φ P A .

Suppose in addition that f is twice differentiable, then integration-by-parts implies that

´

ż b

0

[
f 1(y)

?
´2gy

a

1 + f 1(y)2

]1

φ(y) dy = 0 @φ P A

which further implies that [
f 1(y)

?
´2gy

a

1 + f 1(y)2

]1

= 0

since φ P A is chosen arbitrarily.
Question: What if we assume that y = f(x) to start with? What equation must f satisfy?

Example 1.12 (Euler-Lagrange equation). In general, we often encounter problems of the type

min
yPA

ż a

0

L(y, y1, t) dt , where A =
␣

y : [0, a] Ñ R
ˇ

ˇ y(0) = y(a) = 0
(

.

Write L = L(p, q, t). Then the minimizer y P A satisfies

d

dt
Lq(y, y

1, t) = Lp(y, y
1, t) .

The equation above is called the Euler-Lagrange equation.

Example 1.13 (Heat equations). Let u(x, t) defined on Ωˆ (0, T ] be the temperature of a material
body at point x P Ω at time t P (0, T ], and c(x), ϱ(x), k(x) be the specific heat, density, and the
inner thermal conductivity of the material body at x. Then by the conservation of heat, for any
open set U Ď Ω,

d

dt

ż

U
c(x)ϱ(x)u(x, t) dx =

ż

BU
k(x)∇u(x, t) ¨ N(x) dS , (1.1)

where N denotes the outward-pointing unit normal of U . Assume that u is smooth, and U is a
Lipschitz domain. By the divergence theorem, (1.1) implies

ż

U
c(x)ϱ(x)ut(x, t)dx =

ż

U
div

(
k(x)∇u(x, t)

)
dx .

Since U is arbitrary, the equation above implies

c(x)ϱ(x)ut(x, t) ´ div(k(x)∇u(x, t)) = 0 @ x P Ω , t P (0, T ].

If k is constant, then
cϱ

k
ut = ∆u ”

n
ÿ

i=1

B 2u

Bx2i
.

If furthermore c and ϱ are constants, then after rescaling of time we have

ut = ∆u . (1.2)

This is the standard heat equation, the prototype equation of parabolic equations.



Example 1.14 (Minimal surfaces). Let Γ be a closed curve in R3. We would like to find a surface
which has minimal surface area while at the same time it has boundary Γ.

Suppose that Ω Ď R2 is a bounded set with boundary parametrized by (x(t), y(t)) for t P I, and
Γ is a closed curve parametrized by (x(t), y(t), f(x(t), y(t))). We want to find a surface having C as
its boundary with minimal surface area. Then the goal is to find a function u with the property that
u = f on BΩ that minimizes the functional

A (w) =

ż

Ω

a

1 + |∇w|2 dA .

Let φ P C 1(Ω), and define

δA(u;φ) = lim
tÑ0

A(u+ tφ) ´ A(u)

t
=

ż

Ω

∇u ¨ ∇φ
a

1 + |∇u|2
dx .

If u minimize A, then δA(u;φ) = 0 for all φ P C 1
c (Ω). Assuming that u P C 2(Ω), we find that u

satisfies
div

( ∇u
a

1 + |∇u|2

)
= 0 ,

or expanding the bracket using the Leibnitz rule, we obtain the minimal surface equation

(1 + u2y)uxx ´ 2uxuyuxy + (1 + u2x)uyy = 0 @ (x, y) P Ω . (1.3)

Example 1.15 (System of PDEs - the Euler equations). Let Ω Ď R3 denote a fluid container, and
ϱ(x, t),u(x, t), p(x, t) denotes the fluid density, velocity and pressure at position x and time t. For a
given an open subset O Ď Ω with smooth boundary, the rate of change of the mass in O is the same
as the mass flux through the boundary; thus

d

dt

ż

O
ϱ(x, t)dx = ´

ż

BO
(ϱu)(x, t) ¨ N dS ,

where N is the outward-pointing unit normal of BO. The divergence theorem then implies that

d

dt

ż

O
ϱ(x, t)dx = ´

ż

O
div(ϱu)(x, t) dS .

If ϱ is a smooth function, then d

dt

ż

O
ϱ(x, t)dx =

ż

O
ϱt(x, t)dx; thus

ż

O

[
ϱt + div(ϱu)

]
(x, t)dx = 0 .

Since O is chosen arbitrarily, we must have

ϱt + div(ϱu) = 0 in Ω . (1.4)

Equation (1.4) is called the equation of continuity.
Now we consider that conservation of momentum. Let m = ϱu be the momentum. The conser-

vation of momentum states that
d

dt

ż

O
m dx = ´

ż

BO
m(u ¨ N) dS ´

ż

BO
pN dS +

ż

O
ϱf dx ,



here we use the fact that the rate of change of momentum of a body is equal to the resultant force
acting on the body, and with p denoting the pressure the buoyancy force is given by

ż

BO
pN dS.

Here we assume that the fluid is invicid so that no friction force is presented in the fluid. Therefore,
assuming the smoothness of the variables, the divergence theorem implies that

ż

O

[
mt +

n
ÿ

j=1

B (muj)

Bxj
+∇p ´ ϱf

]
dx = 0 .

Since O is chosen arbitrarity, we obtain the momentum equation

(ϱu)t + div(ϱu b u) = ´∇p+ ϱf . (1.5)

Initial conditions: ϱ(x, 0) = ϱ0(x) and u(x, 0) = u0(x) for all x P Ω.
Boundary condition: u ¨ N = 0 on BΩ.

1. If the density is constant (such as water), then (1.4) and (1.5) reduce to

ut + u ¨ ∇u = ´∇p+ f in Ω ˆ (0, T ) , (1.6a)

divu = 0 in Ω ˆ (0, T ) . (1.6b)

Equation (1.6) together with the initial and the boundary condition are called the incompress-
ible Euler equations.

2. If the pressure p solely depends on the density; that is, p = p(ϱ) (the equation of state), then
(1.4) and (1.5) together with are called the isentropic Euler equations.

1.2 Direction Fields

A direction field is in particular very useful in the study of first order differential equations of the
type:

dy

dt
= f(t, y) ,

where f is a scalar function. A direction field is a vector-field on the (t, y)-plane on which a vector
(1, f(t, y)) is associated with each point (t, y).

Example 1.16. Consider a falling object whose velocity satisfies the ODE

m
dv

dt
= mg ´ γv .

1.3 Initial and Boundary Conditions

Given y satisfies f
(
t, y, y1, ¨ ¨ ¨ , y(n)

)
= 0, the initial condition for the ODE is of the form

y(a) = b1 , y
1(a) = b2 , ¨ ¨ ¨ , y(n´1)(a) = bn

which specify the derivative of y at a up to (n ´ 1)-th derivative of y.
If we are interested in an ODE of the form f

(
x, y, y1, y2, ¨ ¨ ¨ , y(2n´1), y(2n)

)
= 0 on a particular

interval [a, b], the boundary condition for an ODE of this type is of the form

y(a) = c1, y(b) = d1, y
1(a) = c2, y

1(b) = d2, ¨ ¨ ¨ , y(n)(a) = cn+1, y
(n)(b) = dn+1 .



2 First Order Differential Equations

In general, a first order ODE can be written as

dy

dt
= f(t, y)

for some function f . In this chapter, we are going to solve the linear equation above explicitly with

1. f(t, y) = p(t)y + q(t);

2. f(t, y) = g(y)h(t),

and also provide some insight of nonlinear equations.

2.1 Linear Equations; Method of Integrating Factors

Suppose that we are given a first order linear equation

dy

dt
+ p(t)y = q(t) with initial condition y(a) = b .

Let P (t) be an anti-derivative of p(t); that is, P 1(t) = p(t). Then

eP (t)
(dy
dt

+ P 1(t)y
)
= eP (t)q(t) ñ

d

dt

(
eP (t)y(t)

)
= eP (t)q(t)

ñ

ż t

a

d

ds

(
eP (s)y(s)

)
ds =

ż t

a

eP (s)Q(s)ds ñ eP (t)y(t) ´ eP (a)y(a) =

ż t

a

eP (s)Q(s)ds

ñ y(t) = eP (a)´P (t)b+

ż t

a

eP (s)´P (t)Q(s)ds .

How about if we do not know what the initial data is? Then

eP (t)
(dy
dt

+ P 1(t)y
)
= eP (t)q(t) ñ

d

dt

(
eP (t)y(t)

)
= eP (t)q(t) ñ eP (t)y(t) = C +

ż

eP (t)q(t)dt ,

where
ż

eP (t)q(t)dt denotes an anti-derivative of ePQ. Therefore,

y(t) = Ce´P (t) + e´P (t)

ż

eP (t)q(t)dt

Example 2.1. Solve dy

dt
+

1

2
y =

1

2
et/3. Answer: y(t) = 3

5
et/3 + Ce´t/2.

Example 2.2. Solve dy

dt
´ 2y = 4 ´ t. Answer: y(t) = ´

7

4
+

1

2
t+ Ce2t.

Example 2.3. Solve ty 1 + 2y = 4t2 with y(1) = 2. Answer: y(t) = t2 +
1

t2
.



2.2 Separable Equations

Suppose that we are given a first order linear equation

dy

dt
= g(y)h(t) with initial condition y(a) = b ,

where 1/g is assume to be integrable. Let G be an anti-derivative of 1/g. Then

dy

dt
= g(y)h(t) ñ

1

g(y)

dy

dt
= h(t) ñ G1(y)

dy

dt
= h(t)

ñ
d

dt
G(y(t)) = h(t) ñ

ż t

a

d

ds
G(y(s))ds = h(t) ñ G(y(t)) ´ G(y(a)) =

ż t

a

h(s)ds

ñG(y(t)) = G(b) +

ż t

a

h(s)ds ,

and y can be solved if the inverse function of G is known.

Example 2.4. Let y be a solution to the ODE dy

dx
=

x2

1 ´ y2
. Then x, y satisfies x3 + y3 ´ 3y = C

for some constant C.

Example 2.5. Let y be a solution to the ODE dy

dx
=

3x2 + 4x+ 2

2(y ´ 1)
with initial data y(0) = ´1. Then

y = 1 ´
?
x3 + 2x2 + 2x+ 4.

Definition 2.6 (Integral Curves). Let F = (F1, ¨ ¨ ¨ , Fn) be a vector field. A parametric curve
x(t) =

(
x1(t), ¨ ¨ ¨ , xn(t)

)
is said to be an integral curve of F if it is a solution of the following

autonomous system of ODEs:

dx1
dt

= F1(x1, ¨ ¨ ¨ , xn) ,

...
dxn
dt

= Fn(x1, ¨ ¨ ¨ , xn) .

In particular, when n = 2, the autonomous system above is reduced to

dx

dt
= F (x, y) ,

dy

dt
= G(x, y) (2.1)

for some function F,G. Since at each point (x0, y0) =
(
x(t0), y(t0)

)
on the integral curve,

dy

dx

ˇ

ˇ

ˇ

(x,y)=(x0,y0)
=
dy/dt

dx/dt

ˇ

ˇ

ˇ

t=t0

if dx

dt

ˇ

ˇ

ˇ

t=t0
‰ 0, instead of finding solutions to (2.1) we often solve

dy

dx
=
G(x, y)

F (x, y)
.

Example 2.7. Find the integral curve of the vector field F(x, y) = (4+ y3, 4x´x3) passing through
(0, 1). Answer: y4 + 16y + x4 ´ 8x2 = 17.



2.3 Modelling with First Order Equations

Example 2.8 (Mixing). At the very beginning, Q0 Kgs salt were dissolved in 100 liters of water.
Afterward, salty water containing 1/4 Kg salt per liter enter the container at the speed r liters per
minute, while at the same time r liters of the well-mixed solution leaves the tank every minute. If
Q(t) is the quantity (in Kgs) of salt in the container at time t, then

dQ

dt
=
r

4
´
rQ

100
, Q(0) = Q0 .

To solve this ODE, we use the integrating factor and obtain that

dQ

dt
+
rQ

100
=
r

4
ñ

d

dt

(
ert/100Q(t)

)
=
r

4
ert/100 ñ ert/100Q(t) = 25ert/100 + C

ñ Q(t) = 25 + Ce´rt/100

and the initial data implies that C = Q0 ´ 25. Therefore,

Q(t) = 25 + (Q0 ´ 25)e´rt/100 .

Using the separation of variables,

dQ

dt
=

r

100
(25 ´ Q) ñ

dQ

25 ´Q
=

r

100
dt ñ ´ log |25 ´ Q(t)| =

rt

100
+ C

and the initial data implies that C = ´ log |25 ´ Q0|. Therefore,

|25 ´Q0|

|25 ´Q(t)|
= ert/100 or Q(t) = 25 + (Q0 ´ 25)e´rt/100 .

Example 2.9 (Escape Velocity). By Newton’s second law of motion F = ma, we consider the

equation mdv

dt
= ´

GMm

(R+ x)2
. Note that on the surface x = 0, the forcing equals ´mg; thus GM

R2
= g.

In other words, the equation becomes mdv

dt
= ´

mgR2

(R+ x)2
.

Suppose that v can be written as a function of the position x, then

m
dv

dt
= ´

mgR2

(R + x)2
ñ

dv

dx

dx

dt
= ´

gR2

(R + x)2
ñ v

dv

dx
= ´

gR2

(R + x)2
ñ vdv = ´

gR2

(R + x)2
dx

ñ
1

2
v2 =

gR2

R + x
+ C ñ v(x) = ˘

c

v20 ´ 2gR +
2gR2

R + x
,

where v0 = v(0) is the initial data. For a given v0, the maximum attitude ξ that the body reaches is

given by ξ =
v20R

2gR ´ v20
, and to escape the gravity of the earth, the initial velocity v0 should be not

less than
?
2gR.

2.4 Differences b/w Linear and Nonlinear Equations

Concerns in differential equations: existence and uniqueness of solutions to differential equations.



Theorem 2.10. Let the function f be functions of t and y such that f and its partial derivative Bf

By

is continuous in some rectangular domain (t, y) P R ” (α, β)ˆ(γ, δ). Suppose that (t0, y0) P R. Then
in some interval t P (t0 ´ h, t0 + h) Ď (α, β), there exists a unique solution y = φ(t) to the initial
value problem

y 1 = f(t, y) y(t0) = y0 .

Example 2.11. Consider dy

dt
= y1/3 with initial data y(0) = 0. There are infinitely many solutions

y(t) =

#

0 if 0 ď t ă t0 ,

˘
[2
3
(t ´ t0)

] 3
2 if t ě t0 .

The reason for non-uniqueness of the solutions is that Bf

By
is not continuous near (0, 0).

Let us look at what separation of variables implies. Using the separation of variables, with
G(y) =

3

2
y3/2 we have

dy

dt
= y1/3 ñ y´1/3dy

dt
= 1 ñ G 1(y)

dy

dt
= 1 ñ

dG

dt
= 1 .

We cannot apply the fundamental theorem to conclude that G(t) = t + C here since dG

dt
is not

continuous in the time interval containing t = 0 (in fact,
ż

dG

dt
dt is an improper integral). However,

if we apply the fundamental theorem of calculus, we obtain that

G(y(t)) = t+ C ñ y(t) =
[2
3
t
] 3

2

which is one of the solutions.

2.5 Autonomous Equations and Population Dynamics

Definition 2.12. A first order ODE f(t, y, y1) = 0 is called autonomous if it can be rewritten as

dy

dt
= f(y) .

Example 2.13 (Exponential Growth). In Chapter 1 we have discussed the equation

dp

dt
= γp ,

where p is the population of certain species and γ is the rate of growth (or decline). Solving the
ODE with the initial data p(0) = p0, we obtain that

p(t) = p0e
γt .

Example 2.14 (Logistic Growth). Instead of the purely theoretical model in Example 2.13, we
consider the equation

dp

dt
= h(p)p ,



where the growth rate depends on the population. The simplest function for h is h(p) = γ ´ αp for
some positive constant α. Then

dp

dt
= (γ ´ αp)p or equivalently dp

dt
= γ

(
1 ´

p

K

)
p (2.2)

in which K =
γ

α
. Equation (2.2) is called the logistic equation.

Equilibrium solution: An equilibrium solution to a differential equation is a solution which does
not vary with its independent variable (usually time). Therefore, there are two equilibrium solutions
to (2.2): p = φ1(t) = 0 and p = φ2(t) = K.
General solution: Let p0 = p(0) ą 0 be the initial data. If p0 ‰ 0 or K, using separation of
variables:

Kdp

(K ´ p)p
= γdt ñ

( 1

K ´ p
+

1

p

)
dp = γdt ñ ´ log |K ´ p| + log |p| = γt+ C

ñ
p

|K ´ p|
=

p0
|K ´ p0|

eγt .

Therefore, p(t) =
Kp0

p0 + (K ´ p0)e´γt
which implies that p Ñ K as t Ñ 8, no matter p0 ą K or

0 ă p0 ă K. The solution p = φ2(t) = K is then called an asymptotically stable solution, while
p = φ1(t) = 0 is an unstable equilibrium solution. The number K is called the saturation
level or the environmental carrying capacity.

Note that since
d2p

dt2
=

d

dt

dp

dt
=

d

dt
f(p) = f 1(p)

dp

dt
= f 1(p)f(p) ,

the graph of p versus t is concave up when f and f 1 have the same sign, while the graph is concave
down when f and f 1 have opposite signs. Therefore, solutions are concave up for 0 ă y ă

K

2

andy ą K, while the solutions are concave down for K

2
ă y ă K.

Example 2.15 (A Critical Threshold). In Example 2.14, what happened if γ ă 0? In this case, we
instead consider

dp

dt
= ´γ

(
1 ´

p

T

)
p , (2.3)

where γ ą 0 and T ą 0. This time the solution is

p(t) =
Tp0

p0 + (T ´ p0)eγt

Unless p0 ě T , the population decays to zero; thus T is called the threshold level which means

below this level the growth of population does not occur. When p0 ą T , the time T ˚ =
1

r
log p0

p0 ´ T
to which the population tends to infinite; thus the population becomes unbounded in a finite time.

The equilibrium solution p(t) = 0 is an asymptotically stable solution, while the equilibrium
solution p(t) = T is an asymptotically unstable solution.

Example 2.16 (Logistic Growth with a Threshold). Combining the experiences from the previous
two examples, we design an model which cooperates the two phenomena:



1. the population will not grow if the initial population is below certain threshold;

2. the population will not blow up in a finite time if the population will grow.

Instead of letting h(p) = γ ´ αp, we consider the following more complicated situation: h(p) =

´γ
(
1 ´

p

T

)(
1 ´

p

K

)
for some γ ą 0 and 0 ă T ă K.

Equilibrium solution: φ1(t) = 0, φ2(t) = T , φ3(t) = K. φ1 and φ3 are asymptotically stable,
while φ2 is asymptotically unstable.
General solution: (Important or not?)

2.6 Exact Equations and Integrating Factors

Recall vector calculus:

Definition 2.17 (Vector fields). A vector field is a vector-valued function whose domain and range
are subsets of Euclidean space Rn.

Definition 2.18 (Conservative vector fields). A vector field F : D Ď Rn Ñ Rn is said to be
conservative if F = ∇φ for some scalar function φ. Such a φ is called a (scalar) potential for F on
D.

Theorem 2.19. If F = (M,N) is a conservative vector field in a domain D, then Nx =My in D.

Theorem 2.20. Let D be an open, connected domain, and let F be a smooth vector field defined on
D. Then the following three statements are equivalent:

1. F is conservative in D.

2.
¿

C
F ¨ dr = 0 for every piecewise smooth, closed curve C in D.

3. Given and two point P0, P1 P D,
ż

C
F ¨ dr has the same value for all piecewise smooth curves

in D starting at P0 and ending at P1.

Definition 2.21. A connected domain D is said to be simply connected if every simple closed
curve can be continuously shrunk to a point in D without any part ever passing out of D.

Theorem 2.22. Let D be a simply connected domain, and M,N,My, Nx be continuous in D. If
My = Nx, then F = (M,N) is conservative.

Sketch of the proof. Since Nx =My,

N(x, y) = N(x0, y) +

ż x

x0

My(z, y) dz = N(x0, y) +
B

By

ż x

x0

M(z, y) dz

=
B

By

[
Ψ(y) +

ż x

x0

M(z, y) dz
]
,

where Ψ(y) is an anti-derivative of N(x0, y). Let φ(x, y) = Ψ(y) +
ż x

x0

M(z, y) dz. Then clearly

(M,N) = ∇φ which implies that F = (M,N) is conservative. ˝



Combining Theorem 2.19 and 2.22, in a simply connected domain a vector field F = (M,M) is
conservative if and only if My = Nx.

Example 2.23. Let D = R2zt(0, 0)u, and M(x, y) =
´y

x2 + y2
, N(x, y) =

x

x2 + y2
. Then My = Nx =

y2 ´ x2

(x2 + y2)2
in D; however, F ‰ ∇φ for some scalar function φ for it there exists such a φ, φ, up to

adding a constant, must be identical to the polar angle θ(x, y) P [0, 2π).

Now suppose that we are given a differential equation of the form

dy

dx
= ´

M(x, y)

N(x, y)
,

in which separation of variables is not possible. We would like to find integral curves of the vector
field F = (´N,M). Note that the ODE above is equivalent to that

M(x, y) +N(x, y)
dy

dx
= 0 .

Definition 2.24. An ODE of the form M(x, y) + N(x, y)
dy

dx
= 0 is called exact if there exists a

continuously differentiable function φ, called the potential function, such that φx =M and φy = N .

To solve the ODE
M(x, y) +N(x, y)

dy

dx
= 0 , (2.4)

the following two possibilities are most possible situations:

1. If My = Nx in a simply connected domain D, then Theorem 2.22 implies that the ODE (2.4)
is exact in a simply connected domain D Ď R2; that is, there exists a potential function φ such
that ∇φ = (M,N). Then (2.4) can be rewritten as

φx(x, y) + φy(x, y)
dy

dx
= 0 ;

and if (x(t), y(t)) is an integral curve, we must have

φx(x(t), y(t))
dx

dt
+ φy(x(t), y(t))

dy

dt
= 0 or equivalently, d

dt
φ(x(t), y(t)) = 0 .

Therefore, integral curve satisfies φ(x, y) = C.

2. If My ‰ Nx, we look for a function µ such that (µM)y = (µN)x in a simply connected domain
D Ď R2. Such a µ always exists (in theory, but may be hard to find the explicit expression),
and such a µ is called an integrating factor .

If such a µ exists, then µ satisfies

Mµy ´ Nµx + (My ´ Nx)µ = 0 .

Usually solving a PDE as above is as difficult as solving the original ODE.



Example 2.25. Solve (y cosx+ 2xey) + (sin x+ x2ey ´ 1)
dy

dx
= 0.

Let M(x, y) = y cosx + 2xey and N(x, y) = sinx + x2ey ´ 1. Then My(x, y) = cos x + 2xey =

Nx(x, y); thus the ODE above is exact. To find the potential function φ, due to the fact that φx =M

we find that
φ(x, y) = Ψ(y) +

ż

M(x, y)dx = Ψ(y) + y sinx+ x2ey

for some function Ψ. By φy = N , we must have Ψ 1(y) = ´1. Therefore, Ψ(y) = ´y + C; thus the
potential function φ is

φ(x, y) = y sinx+ x2ey ´ y + C .

Example 2.26. Solve (3xy + y2) + (x2 + xy)
dy

dx
= 0.

Let M(x, y) = 3xy + y2 and N(x, y) = x2 + xy. Then My ´ Nx = x + y. Assuming that the
integrating factor µ is only a function of x, then µ satisfies

dµ

dx
=
My ´ Nx

N
µ =

1

x
µ ;

thus µ(x) = x.
Multiplying both side of the ODE by µ, we then obtain

(3x2y + xy2) + (x3 + x2y)
dy

dx
= 0

which is exact, and the integral curves of the ODE above, by finding the potential, satisfies

x3y +
x2y2

2
= C .

One can also verify that the function µ(x, y) =
1

xy(2x+ y)
is also a valid integrating factor.

2.7 Numerical Approximations: Euler’s Method

The goal in this section is to solve the ODE

dy

dt
= f(t, y) y(t0) = y0 (2.5)

numerically (meaning, programming in computer to produce an approximation of the solution) in
the time interval [t0, t0 + T ].

Let ∆t denote the time step (which mean we only care what the approximated solution is at time
tk = t0 + k∆t for all k P N), and yk = y(t0 + k∆t). Since dy

dt
(tk) «

yk+1 ´ yk
∆t

when ∆t « 0, we

substitute yk+1 ´ yk
∆t

for dy

dt
(tk) and obtain

yk+1 « yk + f(tk, yk)∆t @ k P N .

The forward/explicit Euler method is the iterative scheme

uk+1 = uk + f(tk, uk)∆t @ k P
␣

1, 2, ¨ ¨ ¨ ,
[ T

∆t

]
´ 1

(

, u0 = y0 (in theory) . (2.6)



Assume that f is bounded and has bounded continuous partial derivatives ft and fy; that is, ft
and fy are continuous and for some constant M ą 0 |f(t, y)| + |ft(t, y)| + |fy(t, y)| ď M for all t, y.
Then the mean value theorem implies that the fundamental theorem of ODE (which will be provided
in the next section) provides a unique continuously differentiable solution y = y(t) to (2.5). Since ft
and fy are continuous, we must have that y is twice continuously differentiable since

y 11 = ft(t, y) + fy(t, y)y
1 .

By Taylor’s theorem, for some θk P (0, 1) we have

y(tk+1) = y(tk) + y 1(tk)∆t+
1

2
(∆t)2y 11(tk + θk∆t)

= yk + f(tk, yk)∆t+
(∆t)2

2

[
ft + fyf

]
(tk + θk∆t, y(tk + θk∆t)) ;

thus we conclude that
yk+1 = yk + f(tk, yk)∆t+

∆t

2
τk

for some τk satisfying |τk| ď L∆t for some constant L.
With ek denoting uk ´ yk, we have

ek+1 = ek +
[
f(tk, uk) ´ f(tk, yk)

]
∆t+

∆t

2
τk .

The mean value theorem then implies that

|ek+1| ď |ek| + (M∆t)|ek| +
L

2
(∆t)2 = (1 +M∆t)|ek| +

L

2
(∆t)2 ;

thus by iteration we have

|ek+1| ď (1 +M∆t)|ek| +
L

2
(∆t)2 ď (1 +M∆t)

[
(1 +M∆t)|ek´1| +

L

2
(∆t)2

]
+
L

2
(∆t)2

= (1 +M∆t)2|ek´1| +
L

2
(∆t)2

[
1 + (1 +M∆t)

]
ď ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

ď (1 +M∆t)k+1|e0| +
L

2
(∆t)2

[
1 + (1 +M∆t) + (1 +M∆t)2 + ¨ ¨ ¨ + (1 +M∆t)k

]
= (1 +M∆t)k+1|e0| +

L

2M
∆t

[
(1 +M∆t)k+1 ´ 1

]
ď (1 +M∆t)k+1

(
|e0| +

L

2M
∆t

)
for all k P

␣

1, 2, ¨ ¨ ¨ ,
[ T

∆t

]
´ 1

(

. Since (1 +M∆t) ď eM∆t, we conclude that

|ek+1| ď eM(k+1)∆t
(

|e0| +
L

2M
∆t

)
ď eMT

(
|e0| +

L

2M
∆t

)
which further implies that

max
kPt1,¨¨¨ ,[ T

∆
]u

|ek| ď eMT
(

|e0| +
L

2M
∆t

)
.



2.8 The Existence and Uniqueness Theorem

In this section we prove Theorem 2.10. Recall that
Theorem 2.10. Let f be a function of t and y such that f and its partial derivative Bf

By
is continuous

in some rectangular domain (t, y) P R ” (α, β) ˆ (γ, δ). Suppose that (t0, y0) P R. Then in some
interval t P (t0 ´ h, t0 + h) Ď (α, β), there exists a unique solution y = φ(t) to the initial value
problem

y 1 = f(t, y) y(t0) = y0 . (2.7)

Proof. The proof is separated into two parts.

Existence: Choose a constant k P (0, 1) such that IˆJ = [t0 ´k, t0+k]ˆ [y0 ´k, y0+k] Ď R. Since
IˆJ is closed and bounded, |f | and |fy| attain their maximum in IˆJ . Assume that for some
M ě 1,

ˇ

ˇf(t, y)
ˇ

ˇ +
ˇ

ˇfy(t, y)
ˇ

ˇ ď M for all (t, y) P I ˆ J . Let h = k/M and Ih = [t0 ´ h, t0 + h].
Then for t P Ih, define the iterative scheme (called Picard’s iteration)

φn+1(t) = y0 +

ż t

t0

f
(
s, φn(s)

)
ds , φ0(t) = y0 . (2.8)

Note that φn is continuous for all n P N. We show that the sequence of functions tφku8
k=1

converges to a solution to (2.7).

Claim 1: For all n P N Y t0u,
ˇ

ˇφn(t) ´ y0
ˇ

ˇ ď k @ t P Ih . (2.9)

Proof of claim 1: We prove claim 1 by induction. Clearly (2.9) holds for n = 0. Now suppose
that (2.9) holds for n = N . Then for n = N + 1 and t P Ih,

ˇ

ˇφN+1(t) ´ y0
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż t

t0

f(s, φN(s)
)
ds
ˇ

ˇ

ˇ
ď M |t ´ t0| ď k .

Claim 2: For all n P N Y t0u,

max
tPIh

ˇ

ˇφn+1(t) ´ φn(t)
ˇ

ˇ ď kn+1 .

Proof of claim 2: Let en+1(t) = φn+1(t) ´ φn(t). Using (2.8) and the mean value theorem,
we find that

en+1(t) =

ż t

t0

[
f
(
s, φn+1(s)

)
´ f

(
s, φn(s)

)]
ds =

ż t

t0

fy
(
s, ξn(s)

)
en(s) ds

for some function ξn satisfying
ˇ

ˇξn(t) ´ y0
ˇ

ˇ ď k in Ih (by claim 1); thus with ϵn denoting
max
tPIh

ˇ

ˇen(t)
ˇ

ˇ,
ϵn+1 ď kϵn @n P N ;



thus

ϵn+1 ď kϵn´1 ď k2ϵn´1 ď ¨ ¨ ¨ ď knϵ1 = kn max
tPIh

ˇ

ˇ

ˇ

ż t

t0

f(s, y0) ds
ˇ

ˇ

ˇ
ď Mhkn = kn+1 .

Claim 3: The sequence of functions
␣

φn(t)
(8

n=1
converges for each t P Ih.

Proof of claim 3: Note that

φn+1(t) = y0 +
n
ÿ

j=0

[
φj+1(t) ´ φj(t)

]
.

For each fixed t P Ih, the series
8
ř

j=0

[
φj+1(t) ´ φj(t)

]
converges absolutely (by claim 2 with the

comparison test). Therefore, tφn(t)
(8

n=1
converges for each t P Ih.

Claim 4: The limit function φ is continuous in Ih.

Proof of Claim 4: Let ε ą 0 be given. Choose δ =
ε

2M
. Then if t1, t2 P Ih satisfying

|t1 ´ t2| ă δ, we must have

ˇ

ˇφn+1(t1) ´ φn+1(t2)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż t2

t1

f
(
s, φn(s)

)
ds
ˇ

ˇ

ˇ
ď M |t1 ´ t2| ă

ε

2
.

Passing to the limit as n Ñ 8, we conclude that
ˇ

ˇφ(t1) ´ φ(t2)
ˇ

ˇ ď
ε

2
ă ε @ t1, t2 P Ih and |t1 ´ t2| ă δ

which implies that φ is continuous in Ih.

Claim 5: The limit function φ satisfies φ(t) = y0 +
ż t

t0

f
(
s, φ(s)

)
ds for all t P Ih.

Proof of claim 5: It suffices to show that

lim
nÑ8

ż t

t0

f
(
s, φn(s)

)
ds =

ż t

t0

f
(
s, φ(s)

)
ds @ t P Ih .

Let ε ą 0 be given. Choose N ą 0 such that kN+2

1 ´ k
ă ε. Then by claim 2 and the mean value

theorem, for n ě N ,
ˇ

ˇ

ˇ

ż t

t0

f
(
s, φn(s)

)
ds ´

ż t

t0

f
(
s, φ(s)

)
ds
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

ż t

t0

fy
(
s, ξ(s)

)[
φn(s) ´ φ(s)

]
ds
ˇ

ˇ

ˇ

ď M
ˇ

ˇ

ˇ

ż t

t0

8
ÿ

j=n

ˇ

ˇφj+1(s) ´ φj(s)
ˇ

ˇ ds
ˇ

ˇ

ˇ
ď M |t ´ t0|

8
ÿ

j=N

kj+1 ď
kN+2

1 ´ k
ă ε .

Claim 6: y = φ(t) is a solution to (2.7).

Proof of claim 6: Since φ is continuous, by the fundamental theorem of Calculus,

d

dt

[
y0 +

ż t

t0

f
(
s, φ(s)

)
ds
]
= f

(
t, φ(t)

)
which implies that φ 1(t) = f

(
t, φ(t)

)
. Moreover, φ(0) = y0; thus y = φ(t) is a solution to (2.7).



Uniqueness: Suppose that y = ψ(t) is a solution to the ODE (2.7) in the time interval Ih such that
ˇ

ˇψ(t) ´ y0
ˇ

ˇ ď k in Ih. Let ϑ = φ ´ ψ. Then ϑ solves

ϑ 1 = f(t, φ) ´ f(t, ψ) = fy
(
t, ξ(t)

)
ϑ ϑ(t0) = 0

for some ξ in between φ and ψ satisfying |ξ(t)´ y0| ď k. Integrating in t over the time interval
[t0, t] we find that

ϑ(t) =

ż t

t0

fy(s, ξ(s))ϑ(s) ds .

(a) If t ą t0,

|ϑ(t)| ď

ˇ

ˇ

ˇ

ż t

t0

ˇ

ˇfy(s, ξ(s)
)ˇ
ˇ|ϑ(s)| ds

ˇ

ˇ

ˇ
ď M

ż t

t0

|ϑ(s)| ds ;

thus the fundamental theorem of Calculus implies that

d

dt

(
e´Mt

ż t

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds
)
= e´Mt

(
|ϑ(t)| ´ M

ż t

t0

|ϑ(s)|
)

ď 0 .

Therefore,

e´Mt

ż t

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds ď e´Mt0

ż t0

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds = 0

which implies that ϑ(t) = 0 for all t P Ih.

(b) If t ă t0,

|ϑ(t)| ď

ˇ

ˇ

ˇ

ż t

t0

ˇ

ˇfy(s, ξ(s)
)ˇ
ˇ|ϑ(s)| ds

ˇ

ˇ

ˇ
ď M

ż t0

t

|ϑ(s)| ds = ´M

ż t

t0

|ϑ(s)| ds ;

thus the fundamental theorem of Calculus implies that

d

dt

(
eMt

ż t

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds
)
= eMt

(
|ϑ(t)| +M

ż t

t0

|ϑ(s)|
)

ď 0 .

Therefore,

e´Mt

ż t

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds ě e´Mt0

ż t0

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds = 0

which implies that ϑ(t) = 0 for all t P Ih.

Finally, we need to argue if it is possible to have a solution y = y(t) in the time interval Ih
but

ˇ

ˇy(t) ´ y0
ˇ

ˇ ą k for some t P Ih. If so, by the continuity of the solution there must be some
t1 P Ih such that

ˇ

ˇy(t1) ´ y0
ˇ

ˇ = k. We then can solve the ODE

ψ 1 = f(t, ψ) ψ(t1) = y(t1) ,

and the previous argument implies that there is a time interval rI in which the solution is unique.
Since y = φ(t) is a solution in the time interval Ih, we must have φ = ψ in Ih X rI. This
concludes the uniqueness of the solution to (2.7). ˝



Remark 2.27. In the proof of the existence and the uniqueness theorem, the condition that fy is
continuous is not essential. This condition can be replaced by that f is (local) Lipschitz in its second
variable; that is, there exists L ą 0 such that

ˇ

ˇf(t, y1) ´ f(t, y2)
ˇ

ˇ ď L|y1 ´ y2| .

Example 2.28. Solve the initial value problem y 1 = 2t(1 + y) with initial data y(0) = 0 using the
Picard iteration.

Recall the Picard iteration

φk+1(t) =

ż t

0

2s(1 + φk(s)
)
ds with φ0(t) = 0. (2.10)

Then φ1(t) =
ż t

0
2s ds = t2, and φ2(t) =

ż t

0
2s(1 + s2) ds = t2 +

t4

2
, and then φ3(t) =

ż t

0
2s
(
1 + s2 +

s4

2

)
ds = t2 +

t4

2
+

t6

6
. To see a general rule, we observe that φk(t) must be a polynomial of the form

φk(t) =
k
ÿ

j=1

ajt
2j ,

and φk+1(t) = φk(t) + ak+1t
2(k+1). Therefore, we only need to determine the coefficients ak in order

to find the solution. Note that using (2.10) we have
k+1
ÿ

j=1

ajt
2j =

ż t

0

2s
(
1 +

k
ÿ

j=1

ajt
2j
)
ds = t2 +

k
ÿ

j=1

2aj
2j + 2

t2j+2 = t2 +
k+1
ÿ

j=2

aj´1

j
t2j ;

thus the comparison of coefficients implies that a1 = 1, aj =
aj´1

j
. Therefore,

ak =
ak´1

k
=

ak´2

k(k ´ 1)
= ¨ ¨ ¨ =

a1
k(k ´ 1) ¨ ¨ ¨ 2

=
1

k!

which implies that φk(t) =
k
ř

j=1

t2j

j!
=

k
ř

j=0

t2j

j!
´ 1. Using the Maclaurin series of the exponential

function, we find that φk(t) converges to et2 ´ 1. The function φ(t) = et
2

´ 1 is indeed a solution of
the ODE under consideration.

Remark 2.29. Usually the Picard iteration can be used to find the solution to those ODEs that we
can solve using the techniques introduced in Section 2.1, 2.2 and 2.6.

2.9 First Order Difference Equations

Definition 2.30 (Difference Equations). A k-th order difference equation is of the form

yn+k = f(k, n, yn+k´1, yn+k´2, ¨ ¨ ¨ , yn) @n P N Y t0u . (2.11)

The initial condition for a k-th order difference equation is some given numbers y0, y1, ¨ ¨ ¨ , yk´1. A
solution to the difference equation with given initial data is a sequence tyku8

k=0 that satisfies the
difference equation.



The difference equation (2.11) is said to be linear if f is linear in (yn+k´1, yn+k´2, ¨ ¨ ¨ , yn). It is
called nonlinear if it is no linear. The difference equation (2.11) is said to be autonomous if f is
independent of n and k.

A constant solution to an autonomous difference equation is called an equilibrium solution.

2.9.1 Linear first order difference equation

‚ Consider yn+1 = ρnyn for all n P N Y t0u. Then yn = y0
n´1
ś

k=0

ρk.

Equilibrium solution: Solve c = ρnc for all n P N.

1. If ρn depends on n, then the only equilibrium solution is 0.

2. If ρn is independent of n; that is, ρn = ρ for all n P N, then

(a) if ρ ‰ 1, 0 is the only equilibrium solution.

(b) if ρ = 1, any constant is a equilibrium solution.

Moreover,

lim
nÑ8

yn =

$

&

%

0 if |ρ| ă 1 ,
y0 if ρ = 1 ,

DNE otherwise ;

thus y = 0 is an asymptotically stable solution if |ρ| ă 1.

‚ Next, consider a more complicated first order linear difference equation: yn+1 = ρnyn + bn.

yn = ρn´1yn´1 + bn´1 = ρn´1

(
ρn´2yn´2 + bn´2

)
+ bn´1 = ρn´1ρn´2yn´2 + ρn´1bn´2 + bn´1

= ¨ ¨ ¨ = y0

n´1
ź

k=0

ρk +
(
bn´1 + ρn´1bn´2 + ¨ ¨ ¨ + ρn´1 ¨ ¨ ¨ ρ1b0

)
.

If ρn = ρ and bn = b for all n P N Y t0u, then

yn = ρny0 +
(
b+ ρb+ ¨ ¨ ¨ + ρn´1b

)
=

$

&

%

ρn
(
y0 +

b

ρ ´ 1

)
+

b

1 ´ ρ
if ρ ‰ 1 ,

ρny0 + nb if ρ = 1 .

(2.12)

In general, there is no equilibrium solution. However, if ρn = ρ and bn = b for all n P NYt0u, then
y =

b

1 ´ ρ
is an equilibrium solution if ρ ‰ 1. Using (2.12), we find that b

1 ´ ρ
is an asymptotically

stable solution if |ρ| ă 1.

2.9.2 Nonlinear first order difference equations

‚ Consider yn+1 = ρyn

(
1´

yn
k

)
. Noting that using Euler’s method to discretize the logistic equation

dy

dt
= ry

(
1 ´

y

K

)
, we have

un+1 ´ un
∆t

= run

(
1 ´

un
K

)
ñ un+1 = (1 + r∆t)un

(
1 ´

r∆t

K(1 + r∆t)
un

)
.



Letting xn = yn/k, we have
xn+1 = ρxn(1 ´ xn) . (2.13)

Equilibrium solution: Solving c = ρc(1 ´ c), we obtain that c = 0 and c = 1 ´
1

ρ
are equilibrium

solutions to (2.13).

Definition 2.31. A equilibrium solution y = c is called an asymptotically stable equilibrium solution
to the difference equation yn+1 = f(yn) if there exists δ ą 0 such that if y0 P (c´δ, c+δ), the solution
yn approaches c as n Ñ 8.

To check the (linear) stability of these equilibrium solution, we rely on the following

Theorem 2.32. Let f be a twice differentiable function, and c be a solution to c = f(c). Then c is
an asymptotically stable equilibrium to yn+1 = f(yn) if

ˇ

ˇf 1(c)
ˇ

ˇ ă 1.

Proof. By that f is twice continuously differentiable,

lim
δÑ0+

(
|f 1(c)| +

δ

2
max

xP[c´δ,c+δ]
|f2(x)|

)
= |f 1(c)| ă 1 ;

thus there exists δ ą 0 such that ρ(δ) ” |f 1(c)| +
δ

2
max

xP[c´δ,c+δ]
|f2(x)| ă 1. Fix such δ ą 0 and let

ρ ” ρ(δ). If 0 ă |yn ´ c| ă δ, then Taylor’s theorem implies that for some dn in between yn and c,

yn+1 = f(yn) = f(c) + f 1(c)(yn ´ c) +
1

2
f2(dn)(yn ´ c)2 = c+ f 1(c)(yn ´ c) +

1

2
f 2(dn)(yn ´ c)2

which further implies that

|yn+1 ´ c| ď |f 1(c)||yn ´ c| +
1

2
max

xP(c´δ,c+δ)
|f2(x)||yn ´ c|2 ď ρδ ă δ .

In other words, if |y0 ´ c| ă δ, then |yn ´ c| ă δ for all n P N. As a consequence,

|yn+1 ´ c| ď |f 1(c)||yn ´ c| +
1

2
max

xP(c´δ,c+δ)
|f 2(x)||yn ´ c|2 ď ρ|yn ´ c| ;

hence |yn ´ c| ď ρn|y0 ´ c| which implies that yn Ñ c as n Ñ 8 if |y0 ´ c| ă δ. ˝

Remark 2.33. Theorem 2.32 only provides a sufficient condition for determining the (linear) stability
for the difference equation yn+1 = f(yn) near the equilibrium solution. When the derivative of f at
the equilibrium solution is 1, no conclusion can be drawn and it has to be discussed case by case.

Let f(x) = ρx(1 ´ x) = ρx ´ ρx2. Then f 1(x) = ρ ´ 2ρx.
The equilibrium solution yn = 0: Since f 1(0) = ρ, the equilibrium solution c = 0 is asymptotically
stable if |ρ| ă 1.
The equilibrium solution yn = 1´

1

ρ
: Since f 1

(
1´ρ´1

)
= 2´ρ, the equilibrium solution c = 1´ρ´1

is asymptotically stable if |2 ´ ρ| ă 1 or equivalently, 1 ă ρ ă 3.
Exchange of stability: As ρ increases (from 0), the equilibrium solution y = 0 becomes unstable
when ρ = 1.
Other cases:

1. If ρ = 3.2, there is a “periodic” solution of period 2.

2. If ρ = 3.5, there is a “periodic” solution of period 4.



3 Second Order Linear Equations

Definition 3.1. A second order ordinary differential equation has the form

f
(
t, y,

dy

dt
,
d2y

dt2

)
= 0 (3.1)

for some given function f . The ODE (3.1) is called linear if the function f takes the form

f
(
t, y,

dy

dt
,
d2y

dt2

)
= P (t)

d2y

dt2
+Q(t)

dy

dt
+R(t)y ´ G(t) ,

where P is a function which never vanishes for all t ą 0. The ODE (3.1) is called nonlinear if
it is not linear. The functions P,Q,R are called the coefficients of the ODE, and G is called the
forcing of the ODE. The initial condition for (3.1) is

(
y(t0), y

1(t0)
)
= (y0, y1).

3.1 Homogeneous Equations with Constant Coefficients

Definition 3.2. The ODE (3.1) is called homogeneous if g ” 0, otherwise it is called non-
homogeneous. When g ı 0, the term g(t) in (3.1) is called the non-homogeneous term.

In this section, we consider homogeneous second order linear ODE with constant coefficients

Py2 +Qy1 +Ry = 0 ,

where P,Q,R are independent of t. Since P ‰ 0, the ODE reduces to

y2 + by1 + cy = 0 . (3.2)

Let λ be the solution to the equation λ2 + bλ+ c = 0.

1. Suppose that there are two distinct real roots λ1 and λ2. Then( d
dt

´ λ1

)( d
dt

´ λ2

)
y = 0 .

Therefore, if z =
( d

dt
´ λ2

)
y, then

( d

dt
´ λ1)z = 0 which further implies that z = c1e

λ1t for
some constant c1. Then

y1 ´ λ2y = c1e
λ1t ñ (e´λ2ty

)1
= c1e

(λ1´λ2)t ñ e´λ2ty =
c1

λ1 ´ λ2
e(λ1´λ2)t + c2

ñ y =
c1

λ1 ´ λ2
eλ1t + c2e

λ2t .

In other words, a solution to the ODE (3.2) is a linear combination of eλ1t and eλ2t if λ1 and
λ2 are distinct real roots of λ2 + bλ+ c = 0.

2. Suppose that there is a real double root λ. Then the argument show that y satisfies

y1 ´ λy = c1e
λt ñ (e´λty)1 = c1 ñ e´λty = c1t+ c2 ñ y = c1te

λt + c2e
λt .

In other words, a solution to the ODE (3.2) is a linear combination of teλt and eλt if λ is the
real double root of λ2 + bλ+ c = 0.



Question: What happened if there are complex roots for λ2 + bλ+ c = 0?

Definition 3.3. The characteristic equation for the ODE (3.2) is λ2 + bλ+ c = 0.

Another way to derive the characteristic equations: Consider y2 + by1 + cy = 0. Let y1 = z.
Then

d

dt

[
y
z

]
=

[
0 1

´c ´b

] [
y
z

]
.

Write x = [y, z]T and A =

[
0 1

´c ´b

]
. Then x 1 = Ax.

Suppose that A = PΛP´1 for some diagonal matrix Λ; that is, A is diagonalizable (with eigenvec-
tors of A form the columns of P and eigenvalues forms the diagonal entry of Λ), then P´1x 1 = ΛP´1x.
Letting u = P´1x, then u 1 = Λu or equivalently,

d

dt

[
u1
u2

]
=

[
λ1 0
0 λ2

] [
u1
u2

]
.

Therefore, u 1
1 = λ1u1 and u 1

2 = λ2u2 that further imply that u1 = c1e
λ1t and u2 = c2e

λ2t. Since
x = Pu, we conclude that y is a linear combination of eλ1t and eλ2t.
What are eigenvalues of A? Let λ be an eigenvalue of A. Then

ˇ

ˇ

ˇ

ˇ

´λ 1
´c ´b ´ λ

ˇ

ˇ

ˇ

ˇ

= 0 ñ λ2 + bλ+ c = 0

which is the characteristic equation. Therefore, eigenvalues of A are the roots of the characteristic
equation for the ODE (3.2).

3.2 Solutions of Linear Homogeneous Equations; the Wronskian

In this section, we consider the ODE

L[y] = y2 + py1 + qy = 0

with initial condition y(t0) = y0 and y 1(t0) = y1.

Theorem 3.4. Consider the initial value problem

y2 + p(t)y1 + q(t)y = g(t) , y(t0) = y0, y
1(t0) = y1 ,

where p, q and g are continuous on an open interval I that contains the point t0. Then there is exactly
one solution y = φ(t) of this problem, and the solution exists throughout the interval I.

In the following, we assume that p, q are continuous in the interval of interests.

Theorem 3.5 (Principle of Superposition). If y = φ1 and y = φ2 are two solutions of the differential
equation

L[y] = y2 + py1 + qy = 0 , (3.3)

then the linear combination c1φ1 + c2φ2 is also a solution for any values of the constants c1 and c2.
In other words, the collection of solutions to (3.3) is a vector spaces.



Question: Given two solutions y = φ1 and y = φ2 of the differential equation (3.3), can the solution
to the differential equation

L[y] = y2 + py1 + qy = 0 with initial condition y(t0) = y0 and y 1(t0) = y1 (3.4)

can be written as a linear combination of φ1 and φ2 (for whatever given initial data)? If this is true,
then

the vector spaces consisting of solutions
looooooooooooooooooooooomooooooooooooooooooooooon

called the solution space

to (3.3) is two-dimensional,

and tφ1, φ2u is a basis of the solution space of (3.3).
How do one know if the solution to (3.4) can be written as a linear combination of φ1 and φ2?

Suppose that for given initial data y0, y1 there exist constants c1, c2 such that y(t) = c1φ1(t)+ c2φ2(t)

is a solution to (3.4). Then [
φ1(t0) φ2(t0)
φ 1
1(t0) φ 1

2(t0)

] [
c1
c2

]
=

[
y0
y1

]
.

So for any given initial data (y0, y1) the solution to (3.4) can be written as a linear combination of

φ1 and φ2 if the matrix
[
φ1(t0) φ2(t0)
φ 1
1(t0) φ 1

2(t0)

]
is non-singular. This induces the following

Definition 3.6. Let φ1 and φ2 be two differentiable functions. The Wronskian or Wronskian
determinant of φ1 and φ2 at point t0 is the number

W (φ1, φ2)(t0) = det
( [φ1(t0) φ2(t0)
φ 1
1(t0) φ 1

2(t0)

] )
= φ1(t0)φ

1
2(t0) ´ φ2(t0)φ

1
1(t0) .

The collection of functions tφ1, φ2u is called a fundamental set of equation (3.3) if W (φ1, φ2)(t) ‰ 0

for some t in the interval of interest.

Moreover, we also establish the following

Theorem 3.7. Suppose that y = φ1 and y = φ2 are two solutions of the ODE (3.3). Then for any
arbitrarily given (y0, y1), the solution to the ODE

L[y] = y2 + py1 + qy = 0 with initial condition y(t0) = y0 and y 1(t0) = y1 ,

can be written as a linear combination of φ1 and φ2 if and only if the Wronskian of φ1 and φ2 at t0
does not vanish.

Theorem 3.8. Let φ1 and φ2 be solutions to the differential equation (3.3) satisfying the initial
conditions

(
φ1(t0), φ

1
1(t0)

)
= (1, 0) and

(
φ2(t0), φ

1
2(t0)

)
= (0, 1). Then tφ1, φ2u is a fundamental set

of equation (3.3), and for any (y0, y1), the solution to (3.4) can be written as y = y0φ1 + y1φ2.

Theorem 3.9. If a complex-valued function u + iv is a solution to (3.3), so is its real part u and
imaginary part v.



Next, suppose that φ1, φ2 are solutions to (3.3) and W (φ1, φ2)(t0) ‰ 0. We would like to know
if tφ1, φ2u can be used to construct solutions to the differential equation

L[y] = y2 + py1 + qy = 0 with initial condition y(t1) = y0 and y 1(t1) = y1 (3.5)

for some t1 ‰ t0. In other words, we would like to know if W (φ1, φ2)(t1) vanishes or not. This
question is answered by the following

Theorem 3.10 (Abel). Let φ1 and φ2 be two solutions of (3.3) in which p, q are continuous in an
open interval I, and the Wronskian W (φ1, φ2) does not vanish at t0 P I. Then

W (φ1, φ2)(t) = W (φ1, φ2)(t0) exp
(

´

ż t

t0

p(s)ds
)
.

In particular, W (φ1, φ2)(t) is never zero for all t P I.

Proof. Since φ1 and φ2 are solutions to (3.3), we have

φ 11
1 (t) + p(t)φ 1

1(t) + q(t)φ1(t) = 0 , (3.6a)

φ 11
2 (t) + p(t)φ 1

2(t) + q(t)φ2(t) = 0 . (3.6b)

Computing (3.6b) ˆ φ1 ´ (3.6a) ˆ φ2, we obtain that

(φ2φ
11
1 ´ φ1φ

11
2 ) + p(φ2φ

1
1 ´ φ1φ

1
2) = 0

Therefore, letting W = φ2φ
1
1 ´ φ1φ

1
2 be the Wronskian of φ1 and φ2. Then W 1 + pW = 0; thus

W (t) = W (t0) exp
(

´

ż t

t0

p(s)ds
)
.

Since p is continuous on [t0, t] (or [t, t0]), the integral
ż t

t0

p(s)ds is finite; thus W (t) ‰ 0. ˝

3.3 Complex Roots of the Characteristic Equation

Consider again the 2nd order linear homogeneous ordinary differential equation

y2 + by1 + cy = 0 (3.2)

where b and c are both constants. Suppose that the characteristic equation r2 + br + c = 0 has two
complex roots λ˘ iµ. We expect that the solution to (3.2) can be written as a linear combination of
e(λ+iµ)t and e(λ´iµ)t.
What is eiµt? The Euler identity says that eiθ = cos θ + i sin θ; thus

e(λ˘iµ)t = eλt
[

cos(µt) ˘ i sin(µt)
]
.

By Theorem 3.9, we see that φ1(t) = eλt cos(µt) and eλt sin(µt) are also solutions to (3.2).
Checking the linear independence: Computing the Wronskian of φ1 and φ2, we find that

W (φ1, φ2)(t) =

ˇ

ˇ

ˇ

ˇ

eλt cos(µt) eλt sin(µt)
eλt

(
λ cos(µt) ´ µ sin(µt)

)
eλt

(
λ sin(µt) + µ cos(µt)

)ˇˇˇ
ˇ

= µeλt

which is non-zero if µ ‰ 0. Therefore, any solution to (3.2) can be written as a linear combination
of φ1 and φ2 if b2 ´ 4c ă 0.



Example 3.11. Consider the motion of an object attached to a spring. The dynamics is described
by the 2nd order ODE:

mẍ = ´kx ´ rẋ , (3.7)

where m is the mass of the object, k is the Hooke constant of the spring, and r is the friction
coefficient.

1. If r2 ´ 4mk ą 0: There are two distinct negative roots ´r ˘
?
r2 ´ 4mk

2m
to the characteristic

equation, and the solution of (3.7) can be written as

x(t) = C1 exp
(

´r +
?
r2 ´ 4mk

2m
t
)
+ C2 exp

(
´r ´

?
r2 ´ 4mk

2m
t
)
.

The solution x(t) approaches zero as t Ñ 8.

2. If r2 ´ 4mk = 0: There is one negative double root ´r

2m
to the characteristic equation, and the

solution of (3.7) can be written as

x(t) = C1 exp
(

´rt

2m

)
+ C2t exp

(
´rt

2m

)
.

The solution x(t) approaches zero as t Ñ 8.

3. If r2 ´ 4mk ă 0: There are two complex roots ´r ˘ i
?
4mk ´ r2

2m
to the characteristic equation,

and the solution of (3.7) can be written as

x(t) = C1e
´ rt

2m cos
(?

4mk ´ r2

2m
t
)
+ C2e

´ rt
2m sin

(?
4mk ´ r2

2m
t
)
.

(a) If r = 0, the motion of the object is periodic with period 4mπ
?
4mk ´ r2

, and is called simple
harmonic motion.

(b) If r ą 0, the object oscillates about the equilibrium point (x = 0) but approaches to zero
exponentially.

3.4 Repeated Roots; Reduction of Order

In Section 3.1 we have discussed the case that the characteristic equation of the homogeneous equation
with constant coefficients

y 11 + by 1 + cy = 0 (3.2)

has one double root. We recall that in such case b2 = 4c, and φ1(t) = exp
(´bt

2

)
, φ2(t) = t exp

(´bt

2

)
together form a fundamental set of (3.2).

Suppose that we are given a solution φ1(t). Since (3.2) is a second order equation, there should
be two linearly independent solutions. One way of finding another solution, using information that
φ1 provides, is the variation of constant: suppose another solution is given by φ2(t) = v(t)φ1(t).
Then

v 11φ1 + 2v 1φ 1
1 + vφ 11

1 + b
(
v 1φ1 + vφ 1

1

)
+ cvφ1 = 0 .



Since y = φ1(t) verifies (3.2), we find that

v 11φ1 + 2v 1φ 1
1 + bv 1φ1 = 0 ;

thus using φ1(t) = exp
(´bt

2

)
we obtain v 11φ1 = 0. Since φ1 never vanishes, v 11(t) = 0 for all t.

Therefore, v(t) = C1t+ C2 for some constant C1 and C2. Therefore, another solution to (3.2), when

b2 = 4c, is φ2(t) = t exp
(´bt

2

)
.

The idea of the variation of constant can be generalize to homogeneous equations with variable
coefficients. Suppose that we have found a solution y = φ1(t) to the second order homogeneous
equation

y 11 + p(t)y 1 + q(t)y = 0 . (3.8)

Assume that another solution is given by y = v(t)φ1(t). Then v satisfies

v 11φ1 + 2v 1φ 1
1 + vφ 11

1 + p(v 1φ1 + vφ 1
1) + qvφ1 = 0 .

By the fact that φ1 solves (3.8), we find that v satisfies

v 11φ1 + 2v 1φ 1
1 + pv 1φ1 = 0 or equivalently, v 11φ1 + v 1(2φ 1

1 + pφ1) = 0 . (3.9)

The equation above can be solved (for v1) using the method of integrating factor, and is essentially
a first order equation.

Let P be an anti-derivative of p. If φ1(t) ‰ 0 for all t P I, then (3.9) implies that(
φ2
1(t)e

P (t)v 1(t)
)1
= 0 ñ φ2

1(t)e
P (t)v 1(t) = C ñ φ2

1(t)v
1(t) = Ce´P (t) @ t P I .

As a consequence,

W (φ1, φ2)(t) =

ˇ

ˇ

ˇ

ˇ

φ1(t) v(t)φ1(t)

φ 1
1(t) v 1(t)φ1(t) + v(t)φ 1

1(t)

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

φ1(t) 0

φ 1
1(t) v 1(t)φ1(t)

ˇ

ˇ

ˇ

ˇ

= φ2
1(t)v

1(t) = Ce´P (t) ‰ 0

which implies that tφ1, vφ1u is indeed a fundamental set of (3.8).

Example 3.12. Given that y = φ1(t) =
1

t
is a solution of

2t2y 11 + 3ty 1 ´ y = 0 for t ą 0 , (3.10)

find a fundamental set of the equation.
Suppose another solution is given by y = v(t)φ1(t) = v(t)/t. Then (3.9) implies that v satisfies

v 11(t)
1

t
+ v 1(´

2

t2
+

3

2t

1

t
) = 0 .

Therefore, v 11 =
v 1

2t
; thus v1(t) = C1

?
t which further implies that v(t) = 2

3
C1t

3
2 +C2. Therefore, one

solution to (3.10) is
y =

2

3
C1

?
t+ C2

1

t

which also implies that y = φ2(t) =
?
t is a solution to (3.10). Note that the Wronskian

W (φ1, φ2)(t) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

t

?
t

´
1

t2
1

2
?
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=
3

2
t´

3
2 ‰ 0 for t ą 0 ; (3.11)

thus tφ1, φ2u is indeed a fundamental set of (3.10).



3.5 Nonhomogeneous Equations

In this section, we focus on solving the second order nonhomogeneous ODE

y 11 + p(t)y 1 + q(t)y = g(t) . (3.12)

Definition 3.13. A particular solution to (3.12) is a twice differentiable function validating
(3.12). In other words, a particular solution is a solution of (3.12). The space of complementary
solutions to (3.12) is the collection of solutions to the corresponding homogeneous equation

y 11 + p(t)y 1 + q(t)y = 0 . (3.13)

Let y = Y (t) be a particular solution to (3.12). If y = φ(t) is another solution to (3.12), then
y = φ(t)´Y (t) is function in the space of complementary solutions to (3.12). By Theorem 3.8, there
exist two function φ1 and φ2 such that y = φj(t), j = 1, 2, are linearly independent solutions to
(3.13), and φ(t) ´ Y (t) = C1φ1(t) + C2φ2(t) for some constants C1 and C2. This observation shows
the following

Theorem 3.14. The general solution of the nonhomogeneous equation (3.12) can be written in the
form

y = φ(t) = C1φ1(t) + C2φ2(t) + Y (t) ,

where tφ1, φ2u is a fundamental set of (3.13), C1 and C2 are arbitrary constants, and y = Y (t) is a
particular solution of the nonhomogeneous equation (3.12).

General strategy of solving nonhomogeneous equation (3.12):

1. Find the space of complementary solution to (3.12); that is, find the general solution y =

C1φ1(t) + C2φ2(t) of the homogeneous equation (3.13).

2. Find a particular solution y = Y (t) of the nonhomogeneous equation (3.12).

3. Apply Theorem 3.14.

3.5.1 Method of Variation of Parameters

This method can be used to solve a nonhomogeneous ODE when one solution to the corresponding
homogeneous equation is known.

Consider
y 11 + p(t)y 1 + q(t)y = g(t) . (3.12)

Suppose that we are given one solution y = φ1(t) to the corresponding homogeneous euqation

y 11 + p(t)y 1 + q(t)y = 0 . (3.13)

Using the procedure in Section 3.4, we can find another solution y = φ2(t) to (3.13) so that tφ1, φ2u

forms a fundamental set of (3.13). Our goal next is to obtain a particular solution to (3.12).



Suppose a particular solution y = Y (t) can be written as the product of two functions u and φ1;
that is, Y (t) = u(t)φ1(t). Then similar computations as in Section 3.4 show that

u 11φ1 + u 1(2φ 1
1 + pφ1) = g ñ (φ2

1e
Pu 1)1 = φ1e

Pg ,

where P is an anti-derivative of p. Therefore,

φ2
1(t)e

P (t)u 1(t) =

ż

φ1(t)e
P (t)g(t) dt ,

and further computations yield that

u(t) =

ż

ż

φ1(t)e
P (t)g(t) dt

φ2
1(t)e

P (t)
dt .

Therefore, a particular solution is of the form

Y (t) = φ1(t)

ż

ż

φ1(t)e
P (t)g(t) dt

φ2
1(t)e

P (t)
dt . (3.14)

Example 3.15. As in Example 3.12, let y = φ1(t) =
1

t
be a given solution to

2t2y 11 + 3ty 1 ´ y = 0 for t ą 0 , (3.10)

Suppose that we are looking for solutions to

2t2y 11 + 3ty 1 ´ y = 2t2 for t ą 0 . (3.15)

Using (3.14) (noting that in this case g(t) = 1), we know that a particular solution is given by

Y (t) =
1

t

ż

ż

t´1e3/2 log tdt

t´2e3/2 log t
dt =

1

t

ż (
t
1
2

ż

t
1
2dt

)
dt =

2

9
t2 .

Therefore, combining with the fact that φ2(t) =
?
t is a solution to (3.10), we find that a general

solution to (3.15) is given by
y =

C1

t
+ C2

?
t+

2

9
t2 .

Let tφ1, φ2u be a fundamental set of (3.13) (here φ2 is either given or obtained using the procedure
in previous section), we can also look for a particular solution to (3.12) of the form

Y (t) = c1(t)φ1(t) + c2(t)φ2(t) .

Plugging such Y in (3.12)), we find that

c 11
1φ1 + c 1

1(2φ
1
1 + pφ1) + c 11

2φ2 + c 1
2(2φ

1
2 + pφ2) = g . (3.16)

Since we increase the degree of freedom (by adding another function c2), we can impose an additional
constraint. Assume that the additional constraint is

c 1
1φ1 + c 1

2φ2 = 0 . (3.17)



Then c 11
1φ1 + c 11

2φ2 = ´c 1
1φ

1
1 ´ c 1

2φ
1
2; thus (3.16) reduces to

c 1
1φ

1
1 + c 1

2φ
1
2 = g . (3.18)

Solving (3.17) and (3.18), we find that

c 1
1 =

´gφ2

W (φ1, φ2)
and c 1

2 =
gφ1

W (φ1, φ2)
.

The discussion above establishes the following

Theorem 3.16. If the function p, q and g are continuous in an open interval I, and tφ1, φ2u be a
fundamental set of the ODE (3.13). Then a particular solution to (3.12) is

Y (t) = ´φ1(t)

ż t

t0

g(s)φ2(s)

W (φ1, φ2)(s)
ds+ φ2(t)

ż t

t0

g(s)φ1(s)

W (φ1, φ2)(s)
ds , (3.19)

where t0 P I can be arbitrarily chosen, and the general solution to (3.12) is

y = C1φ1(t) + C2φ2(t) + Y (t) .

Example 3.17. Given two solutions φ1(t) =
1

t
and φ2(t) =

?
t to the ODE

2t2y 11 + 3ty 1 ´ y = 0 for t ą 0 . (3.10)

To solve
2t2y 11 + 3ty 1 ´ y = 2t2 for t ą 0 , (3.15)

we use (3.19) and (3.11) to obtain that a particular solution to (3.15) is given by

Y (t) = ´
1

t

ż

?
t

3
2
t´3/2

dt+
?
t

ż

t´1

3
2
t´3/2

dt =
2

9
t2 .

Therefore, a general solution to (3.15) is given by

y =
C1

t
+ C2

?
t+

2

9
t2 .

3.5.2 Method of Undetermined Coefficients

In addition to the method of variation of parameters, some tricks can be made to solve nonhomoge-
neous equations with constant coefficients and special forcing functions. In this sub-section, we focus
on solving

y 11 + by 1 + cy = g(t) . (3.20)

Suppose that λ1 and λ2 are two roots of r2 + br + c = 0 (λ1 and λ2 could be identical or complex-
valued). Then (3.20) can be written as( d

dt
´ λ1

)( d
dt

´ λ2

)
y(t) = g(t) .



Letting y 1 ´ λ2y = z, we have z1 ´ λ1z = g(t); thus

z(t) = eλ1t

ż

e´λ1tg(t) dt .

Solving for y we obtain that

y(t) = eλ2t

ż (
e(λ1´λ2)t

ż

e´λ1tg(t) dt
)
dt . (3.21)

Consider the following three types of forcing function g:

1. g(t) = pn(t)e
αt for some polynomial pn(t) = ant

n + ¨ ¨ ¨ + a1t+ a0 of degree n: note that

ż

eγttk dt =

$

’

&

’

%

1

γ
eγttk ´

k

γ

ż

eγttk´1dt if γ ‰ 0 ,

1

k + 1
tk+1 + C if γ = 0 .

(3.22)

Therefore, in this case a particular solution is of the form

Y (t) = ts(Ant
n + ¨ ¨ ¨ + A1t+ A0)e

αt

for some unknown s and coefficients A1
is, and we need to determine the values of these un-

knowns.

(a) If λ1 ‰ α and λ2 ‰ α, then s = 0.

(b) If λ1 = α but λ2 ‰ α, then s = 1.

(c) If λ1 = λ2 = α, then s = 2.

2. g(t) = pn(t)e
αt cos(βt) or g(t) = pn(t)e

αt sin(βt) for some polynomial pn of degree n and β ‰ 0:
note that (3.22) also holds for γ P C. Therefore, in this case we assume that a particular
solution is of the form

Y (t) = ts
[
(Ant

n + ¨ ¨ ¨ + A1t+ A0)e
αt cos(βt) + (Bnt

n + ¨ ¨ ¨ +B1t+B0)e
αt sin(βt)

]
for some unknown s and coefficients A1

is, B1
is, and we need to determine the values of these

unknowns.

(a) If λ1, λ2 P R, then s = 0.

(b) If λ1, λ2 R R; that is, λ1 = γ + iδ and λ2 = γ ´ iδ for some δ ‰ 0:

(1) If λ1 = γ + iδ and λ2 = γ ´ iδ for some γ ‰ α or δ ‰ ˘β, then s = 0.
(2) If λ1 = α + iβ and λ2 = α ´ iβ, then s = 1.

Example 3.18. Find a particular solution of y 11 ´ 3y 1 ´ 4y = 3e2t.
Since the roots of the characteristic equation r2 ´ 3r ´ 4 are different from ´1, we expect that a

particular solution to the ODE above is of the form Ae2t. Solving for A, we find that A = ´
1

2
; thus

a particular solution is Y (t) = ´
1

2
e2t.



Example 3.19. Find a particular solution of y 11 ´ 3y 1 ´ 4y = 2 sin t.
Since the roots of r2 ´ 3r ´ 4 = 0 are real, we expect that a particular solution is of the form

Y (t) = A cos t+B sin t for some constants A,B to be determined. In other words, we look for A,B
such that

(A cos t+B sin t) 11 ´ 3(A cos t+B sin t) 1 ´ 4(A cos t+B sin t) = 2 sin t .

By expanding the derivatives and comparing the coefficients, we find that (A,B) satisfies
"

3A ´ 5B = 2 ,
5A+ 3B = 0 ,

and the solution to the equation above is (A,B) =
( 3

17
,

´5

17

)
. Therefore, a particular solution is

Y (t) =
3

17
cos t ´

5

17
sin t .

Example 3.20. Find a particular solution of y 11 ´ 3y 1 ´ 4y = ´8et cos 2t.
Since the roots of r2 ´ 3r ´ 4 = 0 are real, we expect that a particular solution is of the form

Y (t) = Aet cos 2t+Bet sin 2t for some constants A,B to be determined. In other words, we look for
A,B such that

(Aet cos 2t+Bet sin 2t) 11 ´ 3(Aet cos 2t+Bet sin 2t) 1 ´ 4(Aet cos 2t+Bet sin 2t) = ´8et cos 2t .

By expanding the derivatives,

(et cos 2t) 11 (et sin 2t) 11 (et cos 2t) 1 (et sin 2t) 1 et cos 2t et sin t
et cos 2t ´3 4 1 2 1 0
et sin 2t ´4 ´3 ´2 1 0 1

thus

´3A+ 4B ´ 3A ´ 6B ´ 4A = ´8 ,

´4A ´ 3B + 6A ´ 3B ´ 4B = 0 .

Therefore, (A,B) = (
10

13
,
2

13
); thus a particular solution is

Y (t) =
10

13
et cos 2t+ 2

13
et sin 2t .

Example 3.21. Find a particular solution of y 11 ´ 3y 1 ´ 4y = 2e´t.
Since one of the roots of the characteristic equation r2 ´ 3r´ 4 is ´1, we expect that a particular

solution to the ODE above is of the form Ate´t for some constant A to be determined. In other
words, we look for A such that

(Ate´t) 11 ´ 3(Ate´t) 1 ´ 4Ate´t = 2e´t .

By expanding the derivatives, we find that ´5A = 2 which implies that A = ´
2

5
. Therefore, a

particular solution is given by Y (t) = ´
2

5
te´t.



How about if we forget what s is? - By trial and error! Starting from s = 0. If a particular of
the form with s = 0 cannot be found, then try s = 1, and so on.

Example 3.22. Find a particular solution of y 11 ´ 4y 1 + 5y = ´2e2t sin t.
We first look for a particular solution of the form Y (t) = Ae2t cos t+Be2t sin t, and find that this

leads to that 0 = e2t sin t which is impossible. Therefore, we look for a particular solution of the form
Y (t) = t(Ae2t cos t+Be2t sin t). Note that

(te2t cos t) 11 (te2t sin t) 11 (te2t cos t) 1 (te2t sin t) 1 te2t cos t te2t sin t
te2t cos t 3 4 2 1 1 0

te2t sin t ´4 3 ´1 2 0 1

e2t cos t 4 2 1 0 0 0

e2t sin t ´2 4 0 1 0 0

thus by assuming this form of particular solutions we find that

3A+ 4B ´ 8A ´ 4B + 5A = 0 ,

´4A+ 3B + 4A ´ 8B + 5B = 0 ,

4A+ 2B ´ 4A = 0 ,

´2A+ 4B ´ 4B = ´2 .

Therefore, (A,B) = (1, 0), and a particular solution is Y (t) = tet cos t.
We also note that using (3.19) we find another particular solution

y =
(
t ´

sin 2t

2

)
et cos t+ cos 2t

2
et sin t = tet cos t ´

1

2
et sin t .

If the forcing g is the sum of functions of different types, the construction of a particular solution
relies on the following

Theorem 3.23. If y = φj(t) is a particular solution to the ODE

y 11 + p(t)y 1 + q(t)y = gj(t)

for all j = 1, ¨ ¨ ¨n, then the function y =
n
ř

j=1

φj(t) is a particular to the ODE

y 11 + p(t)y 1 + q(t)y = g(t) ”

n
ÿ

j=1

gj(t) .

Example 3.24. Find a particular solution of y 11 ´ 3y 1 ´ 4y = 3e2t ´ 8et cos 2t+ 2e´t.
By Example 3.18, 3.20 and 3.21, a particular solution to the ODE above is

Y (t) = ´
1

2
e2t +

10

13
et cos 2t+ 2

13
et sin 2t ´

2

5
te´t .



3.6 Mechanical and Electrical Vibrations

We have been discussing the motion of an object attached to a spring without external force in
Example 3.11. Now we explain what if there are presence of external forcings. We consider

mẍ = ´kx ´ rẋ+ g(t) , (3.23)

where m, k, r are positive constants. We remark that the term ´rẋ is sometimes called a damping
or resistive force, and r is called the damping coefficient.

1. Undamped Free Vibrations: This case refers to that g ” 0 and r = 0. The solution to
(3.23) is then

x(t) = C1 cosω0t+ C2 sinωt = R cos(ω0t ´ ϕ) ,

where R =
a

C2
1 + C2

2 is called the amplitude, ω0 =

c

k

m
is called the natural frequency

and ϕ = arctan C2

C1
is called the phase angle. The period of this vibration is T =

2π

ω0
.

2. Dampled Free Vibrations: This case refers to that g ” 0 and r ą 0. The solution to (3.23)
is then

x(t) = C1e
´ rt

2m cosµt+ C2e
´ rt

2m sinµt = Re´ rt
2m cos(µt ´ ϕ) ,

where R =
a

C2
1 + C2

2 , µ =

?
4km ´ r2

2m
, and ϕ = arctan C2

C1
. Here µ is called the quasi

frequency, and we note that

µ

ω0

=
(
1 ´

r2

4km

) 1
2

« 1 ´
r2

8km
,

where the last approximation holds if r2

4km
! 1. The period of this vibration 2π

µ
is called the

quasi period.

(a) Critical damped: In this case, r2 = 4km.

(b) Overdamped: This case refers to that r2 ą 4km, and in this case the attached object
pass the equilibrium at most once and does not oscillate about equilibrium.

3. Forced Vibrations with Damping: We only consider

mẍ+ rẋ+ kx = F0 cosωt (3.24)

for some non-zero r, F0 and ω. Let tφ1, φ2u be a fundamental set of the corresponding ho-
mogeneous equation of (3.24). From the discussion above, φ1 and φ2 both decay to zero (die
out) as t Ñ 8. Using what we learn from the method of undetermined coefficients, the general
solution to (3.24) is

x = C1φ1(t) + C2φ2(t)
loooooooooomoooooooooon

”xc(t)

+A cosωt+B sinωt
loooooooooomoooooooooon

”X(t)

,



where C1 and C2 are chosen to satisfy the initial condition, and A and B are some constants so
that X(t) = A cosωt + B sinωt is a particular solution to (3.24). The part xc(t) is called the
transient solution and it decays to zero (die out) as t Ñ 8; thus as t Ñ 8, one sees that
only a steady oscillation with the same frequency as the external force remains in the motion.
x = X(t) is called the steady state solution or the forced response.

Since x = X(t) is a particular solution to (3.24), (A,B) satisfies

(k ´ ω2m)A+ rωB = F0 ,

´rωA+ (k ´ ω2m)B = 0 ;

thus with ω0 denoting the natural frequency; that is, ω0 =
k

m
, we have

(A,B) =
(

F0m(ω2
0 ´ ω2)

m2(ω2
0 ´ ω2)2 + r2ω2

,
F0rω

m2(ω2
0 ´ ω2)2 + r2ω2

)
.

Let α =
ω

ω0
, and Γ =

r2

mk
. Then

(A,B) =
F0

k

( 1 ´ α2

(1 ´ α2)2 + Γα2
,

?
Γα

(1 ´ α2)2 + Γα2

)
;

thus
X(t) = R cos(ωt ´ ϕ) ,

where with ∆ denoting the number
a

(1 ´ α2)2 + Γα2, we have

R =
?
A2 +B2 =

F0

k∆
and ϕ = arccos 1 ´ α2

∆
.

Then if α ! 1, R «
F0

k
and ϕ « 0, while if α " 1, R ! 1 and ϕ « π.

In the intermediate region, some α, called αmax, maximize the amplitude R. Then αmax

minimize (1 ´ α2)2 + Γα2 which implies that αmax satisfies

α2
max = 1 ´

Γ

2

and, when Γ ă 1, the corresponding maximum amplitude Rmax is

Rmax =
F0

k

1
?
Γ
a

1 ´ Γ/4
«

F0

k
?
Γ

(
1 +

Γ

8

)
,

where the last approximation holds if Γ ! 1. If Γ ą 2, the maximum of R occurs at α = 0 (and

the maximum amplitude is Rmax =
F0

k
).

For lightly damped system; that is, r ! 1 (which implies that Γ ! 1), the maximum am-

plitude Rmax is closed to a very large number F0

k
?
Γ

. In this case αmax « 1, and this implies

that the frequency ωmax, where the maximum of R occurs, is very close to ω0. We call such a
phenomena (that Rmax " 1 when ω « ω0) resonance. In such a case, αmax « 1; thus ϕ =

π

2
which means the response occur π

2
later than the peaks of the excitation.



4. Forced Vibrations without Damping:

(a) When r = 0, if ω ‰ ω0, then general solution to (3.24) is

x = C1 cosω0t+ C2 sinω0t+
F0

m(ω2
0 ´ ω2)

cosωt ,

where C1 and C2 depends on the initial data. We are interested in the case that x(0) =
x 1(0) = 0. In this case,

C1 = ´
F0

m(ω2
0 ´ ω2)

and C2 = 0 ,

so the solution to (3.24) (with initial condition x(0) = x 1(0) = 0) is

x =
F0

m(ω2
0 ´ ω2)

(
cosωt ´ cosω0t

)
=

2F0

m(ω2
0 ´ ω2)

sin ω0 ´ ω

2
t sin ω0 + ω

2
t .

When ω « ω0, R =
2F0

m(ω2
0 ´ ω2)

sin ω0 ´ ω

2
t presents a slowly varying sinusoidal amplitude.

This type of motion, possessing a periodic variation of amplitude, is called a beat.

(b) When r = 0 and ω = ω0, the general solution to (3.24) is

x = C1 cosω0t+ C2 sinω0t+
F0

2mω0

t sinω0t .

4 Higher Order Linear Equations

4.1 General Theory of n-th Order Linear Equations

An n-th order linear ordinary differential equations is an equation of the form

Pn(t)
dny

dtn
+ Pn´1(t)

dn´1y

dtn´1
+ ¨ ¨ ¨ + P1

dy

dt
+ P0(t)y = G(t) ,

where Pn is never zero in the time interval of interest. Divide both sides by Pn(t), we obtain

L[y] =
dny

dt
+ pn´1(t)

dn´1y

dtn´1
+ ¨ ¨ ¨ + p1(t)

dy

dt
+ p0(t)y = g(t) . (4.1)

Suppose that pj ” 0 for all 0 ď j ď n ´ 1. Then to determine y, it requires n times integration and
each integration produce an arbitrary constant. Therefore, we expect that to determine the solution
y to (4.1) uniquely, it requires n initial conditions

y(t0) = y0, y 1(t0) = y1, ¨ ¨ ¨ , y(n´1)(t0) = yn´1 , (4.2)

where t0 is some point in an open interval I, and y0, y1, ¨ ¨ ¨ , yn´1 are some given constants.
Equation (4.1) is called homogeneous if g ” 0.

Theorem 4.1. If the functions p0, ¨ ¨ ¨ , pn´1 and g are continuous on an open interval I, then there
exists exactly one solution y = φ(t) of the differential equation (4.1) with initial condition (4.2), where
t0 is any point in I. This solution exists throughout the interval I.



Definition 4.2. Let tφ1, ¨ ¨ ¨ , φnu be a collection of n differentiable functions defined on an open
interval I. The Wronskian of φ1, φ2, ¨ ¨ ¨ , φn at t0 P I, denoted by W (φ1, ¨ ¨ ¨ , φn)(t0), is the number

W (φ1, ¨ ¨ ¨ , φn)(t0) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1(t0) φ2(t0) ¨ ¨ ¨ φn(t0)

φ 1
1(t0) φ 1

2(t0) ¨ ¨ ¨ φ 1
n(t0)

... ... . . . ...
φ
(n´1)
1 (t0) φ

(n´1)
2 (t0) ¨ ¨ ¨ φ

(n´1)
n (t0)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Theorem 4.3. Let y = φ1(t), y = φ2(t), ¨ ¨ ¨ , y = φn(t) be solutions to the homogeneous equation

L[y] =
dny

dt
+ pn´1(t)

dn´1y

dtn´1
+ ¨ ¨ ¨ + p1(t)

dy

dt
+ p0(t)y = 0 . (4.3)

Then the Wronskian of φ1, φ2, ¨ ¨ ¨ , φn satisfies

d

dt
W (φ1, ¨ ¨ ¨ , φn)(t) + pn´1(t)W (φ1, ¨ ¨ ¨ , φn)(t) = 0 .

Proof. By the differentiation of the determinant, we find that

d

dt
W (φ1, ¨ ¨ ¨ , φn) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1 φ2 ¨ ¨ ¨ φn

φ 1
1 φ 1

2(t0) ¨ ¨ ¨ φ 1
n

... ... ...
φ
(n´2)
1 φ

(n´2)
2 ¨ ¨ ¨ φ

(n´2)
n

φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1 φ2 ¨ ¨ ¨ φn

φ 1
1 φ 1

2(t0) ¨ ¨ ¨ φ 1
n

... ... ...
φ
(n´2)
1 φ

(n´2)
2 ¨ ¨ ¨ φ

(n´2)
n

´pn´1φ
(n´1)
1 ´ ¨ ¨ ¨ ´ p0φ1 ´pn´1φ

(n´1)
2 ´ ¨ ¨ ¨ ´ p0φ2 ¨ ¨ ¨ ´pn´1φ

(n´1)
n ´ ¨ ¨ ¨ ´ p0φn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´pn´1W (φ1, ¨ ¨ ¨ , φn) . ˝

Theorem 4.4. Suppose that the functions p0, ¨ ¨ ¨ , pn´1 are continuous on an open interval I. If
y = φ1(t), y = φ2(t), ¨ ¨ ¨ , y = φn(t) are solutions to the homogeneous equation (4.3) and the
Wronskian W (φ1, ¨ ¨ ¨ , φn)(t) ‰ 0 for at least one point t P I, then every solution of (4.3) can be
expressed as a linear combination of φ1, ¨ ¨ ¨ , φn.

Proof. Let y = φ(t) be a solution to (4.3), and suppose that W (φ1, ¨ ¨ ¨ , φn)(t0) ‰ 0. Define
(y0, y1, ¨ ¨ ¨ , yn´1) =

(
φ(t0), φ

1(t0), ¨ ¨ ¨ , φ(n´1)(t0)
)
, and let C1, ¨ ¨ ¨ , Cn P R be the solution to

φ1(t0) φ2(t0) ¨ ¨ ¨ φn(t0)

φ 1
1(t0) φ 1

2(t0) ¨ ¨ ¨ φ 1
n(t0)

... ... . . . ...
φ
(n´1)
1 (t0) φ

(n´1)
2 (t0) ¨ ¨ ¨ φ

(n´1)
n (t0)



C1

C2

...
Cn

 =


y0

y1
...

yn´1

 .



We note that the system above has a unique solution since W (φ1, ¨ ¨ ¨ , φn)(t0) ‰ 0.
Claim: φ(t) = C1φ1(t) + ¨ ¨ ¨ + Cnφn(t).
Proof of Claim: Note that y = φ(t) and y = C1φ1(t) + ¨ ¨ ¨ + Cnφn(t) are both solutions to (4.3)
satisfying the same initial condition. Therefore, by Theorem 4.1 the solution is unique, so the claim
is concluded. ˝

Definition 4.5. A collection of solutions tφ1, ¨ ¨ ¨ , φnu to (4.3) is called a fundamental set of equation
(4.3) if W (φ1, ¨ ¨ ¨ , φn)(t) ‰ 0 for some t in the interval of interest.

4.1.1 Linear Independence of Functions

Recall that in a vector space (V ,+, ¨) over scalar field F, a collection of vectors tv1, ¨ ¨ ¨ , vnu is called
linearly dependent if there exist constants c1, ¨ ¨ ¨ , cn in F such that

n
ś

i=1

ci ” c1 ¨ c2 ¨ ¨ ¨ ¨ ¨ cn´1 ¨ cn ‰ 0

and
c1 ¨ v1 + ¨ ¨ ¨ + cn ¨ vn = 0 .

If no such c1, ¨ ¨ ¨ , cn exists, tv1, ¨ ¨ ¨ , vnu is called linearly independent. In other words, tv1, ¨ ¨ ¨ , vnu Ď

V is linearly independent if and only if

c1 ¨ v1 + ¨ ¨ ¨ + cn ¨ vn = 0 ô c1 = c2 = ¨ ¨ ¨ = cn = 0 .

Now let V denote the collection of all (n ´ 1)-times differentiable functions defined on an open
interval I. Then (V ,+, ¨) clearly is a vector space over R. Given tf1, ¨ ¨ ¨ , fnu Ď V, we would like to
determine the linear dependence or independence of the n-functions tf1, ¨ ¨ ¨ , fnu. Suppose that

c1f1(t) + ¨ ¨ ¨ + cnfn(t) = 0 @ t P I .

Since each fj are (n ´ 1)-times differentiable, we have for 1 ď k ď n ´ 1,

c1f
(k)
1 (t) + ¨ ¨ ¨ + cnf

(k)
n (t) = 0 @ t P I .

In other words, c1, ¨ ¨ ¨ , cn satisfy
f1(t) f2(t) ¨ ¨ ¨ fn(t)
f 1
1(t) f 1

2(t) ¨ ¨ ¨ f 1
n(t)

... ...
f
(n´1)
1 (t) f

(n´1)
2 (t) ¨ ¨ ¨ f

(n´1)
n (t)



c1
c2
...
cn

 =


0
0
...
0

 @ t P I .

If there exists t0 P I such that the matrix


f1(t0) f2(t0) ¨ ¨ ¨ fn(t0)
f 1
1(t0) f 1

2(t0) ¨ ¨ ¨ f 1
n(t0)

... ...
f
(n´1)
1 (t0) f

(n´1)
2 (t0) ¨ ¨ ¨ f

(n´1)
n (t0)

 is non-singular,

then c1 = c2 = ¨ ¨ ¨ = cn = 0. Therefore, a collection of solutions tφ1, ¨ ¨ ¨ , φnu is a fundamental set of
equation (4.3) if and only if tφ1, ¨ ¨ ¨ , φnu is linearly independent.



4.1.2 The Homogeneous Equations - Reduction of Orders

Suppose that y = φ1(t) is a solution to (4.3). Now we look for a function v such that y = v(t)φ1(t) is
also a solution to (4.3). The derivative of this v satisfies an (n ´ 1)-th order homogeneous ordinary
differential equation.

Example 4.6. Suppose that we are given y = φ1(t) = et as a solution to

(2 ´ t)y 12 + (2t ´ 3)y 11 ´ ty 1 + y = 0 for t ă 2 . (4.4)

Suppose that y = v(t)et is also a solution to (4.4). Then

(2 ´ t)(v 12et + 3v 11et + 3v 1et + vet) + (2t ´ 3)(v 11et + 2v 1et + vet) ´ t(v 1et + vet) + vet = 0

which implies that v satisfies

(2 ´ t)v 12 +
[
3(2 ´ t) + (2t ´ 3)

]
v 11 +

[
3(2 ´ t) + 2(2t ´ 3) ´ t

]
v 1 = 0

or equivalently, with u denoting v 11,

(2 ´ t)u 1 + (3 ´ t)u = 0 .

Solving the ODE above, we find that u(t) = C1(2 ´ t)e´t for some constant C1; thus

v(t) = C3 + C2t+ C1e
´t ´ C1(t+ 1)e´t = C3 + C2t ´ C1te

´t .

Therefore, a fundamental set of (4.4) is tet, tet, tu.

4.1.3 The Nonhomogeneous Equations

Let y = Y1(t) and y = Y2(t) be solutions to (4.1). Then y = Y1(t) ´ Y2(t) is a solution to the
homogeneous equation (4.3); thus if tφ1, ¨ ¨ ¨ , φnu is a fundamental set of (4.3), then

Y1(t) ´ Y2(t) = C1φ1(t) + ¨ ¨ ¨ + Cnφn(t) .

Therefore, we establish the following theorem which is similar to Theorem 3.14.

Theorem 4.7. The general solution of the nonhomogeneous equation (4.1) can be written in the
form

y = φ(t) = C1φ1(t) + C2φ2(t) + ¨ ¨ ¨ + Cnφn(t) + Y (t) ,

where tφ1, ¨ ¨ ¨ , φnu is a fundamental set of (4.3), C1, ¨ ¨ ¨ , Cn are arbitrary constants, and y = Y (t)

is a particular solution of the nonhomogeneous equation (4.1).

In general, in order to solve (4.1), we follow the procedure listed below:

1. Find the space of complementary solution to (4.3); that is, find the general solution y =

C1φ1(t) + C2φ2(t) + ¨ ¨ ¨ + Cnφn of the homogeneous equation (4.3).

2. Find a particular solution y = Y (t) of the nonhomogeneous equation (4.1).

3. Apply Theorem 4.7.



4.2 Homogeneous Equations with Constant Coefficients

We now consider the n-th order linear homogeneous ODE with constant coefficients

L[y] = y(n) + an´1y
(n´1) + ¨ ¨ ¨ + a1y

1 + a0y = 0 , (4.5)

where aj’s are constants for all j P t0, 1, ¨ ¨ ¨ , n ´ 1u. Suppose that r1, r2, ¨ ¨ ¨ , rn are solutions to the
characteristic equation of (4.5)

rn + an´1r
n´1 + ¨ ¨ ¨ + a1r + a0 = 0 .

Then (4.5) can be written as ( d
dt

´ r1

)( d
dt

´ r2

)
¨ ¨ ¨

( d
dt

´ rn

)
y = 0

1. If the characteristic equation of (4.5) has distinct roots, then

y(t) = C1e
r1t + C2e

r2t + ¨ ¨ ¨ + Cne
rnt . (4.6)

Reason: Let z1 =
( d

dt
´ r2

)
¨ ¨ ¨

( d

dt
´ rn

)
y. Then z 1

1 ´ r1z1 = 0; thus z1(t) = c1e
r1t.

Let z2 =
( d

dt
´ r3

)
¨ ¨ ¨

( d

dt
´ rn

)
y. Then z 1

2 ´ r2z2 = c1z1; thus using the method of integrating

factors, we find that

d

dt

(
e´r2tz2

)
= c1e

(r1´r2)t ñ z2(t) =
c1

r1 ´ r2
er1t + c2e

r2t . (4.7)

Repeating the process, we conclude (4.6).

How about if there are complex roots? Suppose that r1 = a + bi and r2 = a ´ bi, then
the Euler identity implies that, by choosing complex c1 and c2 in (4.7), we find that

z2(t) = c1e
at cos bt+ c2e

at sin bt

for some constants c1 and c2. Therefore, suppose that we have complex roots ak ˘ bki for
k = 1, ¨ ¨ ¨ , ℓ and real roots r2ℓ+1, ¨ ¨ ¨ , rn. Then the general solution to (4.6) is

y(t) = C1e
a1t cos b1t+ C2e

a1t sin b1t+ ¨ ¨ ¨ + C2ℓ´1e
aℓt cos bℓt+ C2ℓe

aℓt sin bℓt
+ C2ℓ+1e

r2ℓ+1t + ¨ ¨ ¨ + Cne
rnt .

2. If the characteristic equation of (4.5) has repeated roots, we group the roots in such a way that
r1 = r2 = ¨ ¨ ¨ = rℓ and so on; that is, repeated roots appear in a successive order. Then the
implication in (4.7) is modified to

d

dt

(
e´r2tz2

)
= c1e

(r1´r2)t = c1 ñ z2(t) = (c1t+ c2)e
r1t .



(a) Suppose that r3 = r2 = r1 = r. Letting z3 =
( d

dt
´ r4

)
¨ ¨ ¨

( d

dt
´ rn

)
y, we find that

z 1
3 ´ rz3 = (c1t+ c2)e

rt ;

thus the method of integrating factor implies that

d

dt

(
e´rtz3

)
= c1t+ c2 ñ z3(t) =

(c1
2
t2 + c2t+ c3)e

rt .

(b) Suppose that r1 = r2 = r and r3 ‰ r2. Letting z3 =
( d

dt
´ r4

)
¨ ¨ ¨

( d

dt
´ rn

)
y, we find that

z 1
3 ´ r3z3 = (c1t+ c2)e

rt ;

thus the method of integrating factor implies that

d

dt

(
e´r3tz3

)
= (c1t+ c2)e

(r´r3)t ñ z3(t) =
(
rc1t+ rc2)e

rt + c3e
r3t .

From the discussion above, we “conjecture” that if rj’s are roots of the characteristic equation of
(4.5) with multiplicity nj (so that n1 + ¨ ¨ ¨ + nk = n), then the general solution to (4.5) is

y(t) =
k
ÿ

j=1

pj(t)e
rjt ,

where pj(t)’s are some polynomials of degree nj ´ 1. Note that in each pj there are nj constants to
be determined by the initial conditions.

If there are repeated complex roots, say r1 = a+ bi and r2 = a´ bi with n1 = n2. Then p1 and p2
are polynomials of degree n1; thus by adjusting constants in the polynomials properly, we find that

p1(t)e
r1t + p2(t)e

r2t = rp1(t)e
at cos bt+ rp2(t)e

at sin bt .

In other words, if rj are real roots of the characteristic equation of (4.5) with multiplicity nj and
ak ˘ ibk are complex roots of the characteristic equation of (4.5) with multiplicity mk (so that
ř

j

nj +
ř

k

2mk = n), then the general solution to (4.5) is

y(t) =
ÿ

j

pj(t)e
rjt +

ÿ

k

eakt
(
q1k(t) cos bkt+ q2k(t) sin bkt

)
,

where pj(t)’s are some polynomials of degree nj ´1 and q1k, q2k’s are some polynomials of degree mk´1.

Example 4.8. Find the general solution of

y(4) + y 12 ´ 7y 11 ´ y 1 + 6y = 0 .

The roots of the characteristic equation is r = ˘1, r = 2 and r = ´3; thus the general solution to
the ODE above is

y = C1e
t + C2e

´t + C3e
2t + C4e

´3t .



If we are looking for a solution to the ODE above satisfying the initial conditions y(0) = 1, y 1(0) = 0,
y 11(0) = ´1 and y 12(0) = ´1, then C1, C2, C3, C4 have to satisfy

1 1 1 1
1 ´1 2 ´3
1 1 4 9
1 ´1 8 ´27



C1

C2

C3

C4

 =


1
0

´1
´1

 .

Solving the linear system above, we find that the solution solving the ODE with the given initial
data is

y =
11

8
et +

5

12
e´t ´

2

3
e2t ´

1

8
e´3t .

Example 4.9. Find the general solution of

y(4) ´ y = 0 .

Also find the solution that satisfies the initial condition

y(0) =
7

2
, y 1(0) = ´4 , y 11(0) =

5

2
, y 12(0) = ´2 .

The roots of the characteristic equation are r = ˘1 and r = ˘i. Therefore, the general solution
to the ODE above is

y = C1e
t + C2e

´t + C3 cos t+ C4 sin t .

To satisfy the initial condition, C1, ¨ ¨ ¨ , C4 has to satisfy


1 1 1 0
1 ´1 0 1
1 1 ´1 0
1 ´1 0 ´1



C1

C2

C3

C4

 =


7

2
´4
5

2
´2

 .

Solving the linear system above, we find that the solution solving the ODE with the given initial
data is

y = 3e´t +
1

2
cos t ´ sin t .

Example 4.10. Find the general solution of

y(4) + y = 0 .

The roots of the characteristic equation are r = ˘
(?

2

2
˘

?
2

2
i
)
. Therefore, the general solution

to the ODE above is

y = exp
(?

2

2
t
)(
C1 cos

?
2

2
t+ C2 sin

?
2

2
t
)
+ exp

(
´

?
2

2
t
)(
C2 cos

?
2

2
t+ C4 sin

?
2

2
t
)
.



4.3 The Method of Variation of Parameters

To solve a non-homogeneous ODE

L[y] =
dny

dt
+ pn´1(t)

dn´1y

dtn´1
+ ¨ ¨ ¨ + p1(t)

dy

dt
+ p0(t)y = g(t) , (4.1)

often times we apply the method of variation of parameters to find a particular solution. Suppose that
tφ1, ¨ ¨ ¨ , φnu is a fundamental set of the homogeneous equation (4.3), we assume that a particular
solution can be written as

y = Y (t) = u1(t)φ1(t) + ¨ ¨ ¨ + un(t)φn(t) .

Assume that u1, ¨ ¨ ¨ , un satisfy
u 1
1φ

(j)
1 + ¨ ¨ ¨ + u 1

nφ
(j)
n = 0

for j = 0, ¨ ¨ ¨ , 1, n ´ 2. Then

Y 1 = u1φ
1
1 + ¨ ¨ ¨ + unφ

1
n ,

Y 11 = u1φ
11
1 + ¨ ¨ ¨ + unφ

11
n ,

...

Y (n´1) = u1φ
(n´1)
1 + ¨ ¨ ¨ + unφ

(n´1)
n ,

and
Y (n) = u 1

1φ
(n´1)
1 + ¨ ¨ ¨ + u 1

nφ
(n´1)
n + u1φ

(n)
1 + ¨ ¨ ¨ + unφ

(n)
n .

Since y = Y (t) is assumed to be a particular solution of (4.1), we have

u 1
1φ

(n´1)
1 + ¨ ¨ ¨ + u 1

nφ
(n´1)
n = g(t) .

Therefore, u1, ¨ ¨ ¨ , un satisfy
φ1 φ2 ¨ ¨ ¨ φn

φ 1
1 φ 1

2 ¨ ¨ ¨ φ 1
n

... . . . ...
φ
(n´1)
1 φ

(n´1)
2 ¨ ¨ ¨ φ

(n´1)
n



u 1
1

u 1
2
...
u 1
n

 =


0
...
0
g

 .

Let Wm denote the Wronskian of tφ1, ¨ ¨ ¨ , φm´1, φm+1, ¨ ¨ ¨ , φnu; that is,

Wm =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1 ¨ ¨ ¨ φm´1 φm+1 ¨ ¨ ¨ φn

φ 1
1 ¨ ¨ ¨ φ 1

m´1 φ 1
m+1 ¨ ¨ ¨ φ 1

n
... ... ... ...

φ
(n´2)
i ¨ ¨ ¨ φ

(n´2)
m´1 φ

(n´2)
m+1 ¨ ¨ ¨ φ

(n´2)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then u 1
i = (´1)n+i Wi

W (φ1, ¨ ¨ ¨ , φn)
which implies that

Y (t) =
n
ÿ

i=1

(´1)n+iφi(t)

ż t

t0

Wi(s)g(s)

W (φ1, ¨ ¨ ¨ , φn)(s)
ds .



Example 4.11. Find the general solution to

y 12 ´ y 11 ´ y 1 + y = g(t) . (4.8)

Note the the roots of the characteristic equation r3 ´ r2 ´ r+1 = 0 of the homogeneous equation

y 12 ´ y 11 ´ y 1 + y = 0 (4.9)

are r = 1 (double) and r = ´1; thus we have a fundamental set tet, tet, e´tu of equation (4.9). Let
φ1(t) = et, φ2(t) = tet and φ3(t) = e´t. Then

W (φ1, φ2, φ3)(t) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

et tet e´t

et (t+ 1)et ´e´t

et (t+ 2)et e´t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=
[
(t+ 1) + (t+ 2) ´ t ´ (t+ 1) ´ t+ (t+ 2)

]
et = 4et ,

and W1(t) = ´2t ´ 1, W2(t) = ´2 and W3(t) = e2t. Therefore, a particular solution is

Y (t) = et
ż t

0

(´2s ´ 1)

4es
g(s)ds ´ tet

ż s

0

´2

4es
g(s)ds+ e´t

ż t

0

e2s

4es
g(s)ds

=
1

4

ż t

0

[
2(t ´ s) ´ 1)et´s + es´t

]
g(s)ds ,

and the general solution to (4.8) is

y = C1e
t + C2te

t + C3e
´t + Y (t) .

5 Series Solutions of Second Order Linear Equations

5.1 Properties of Power Series

Definition 5.1. A power series about c is a series of the form
8
ř

k=0

ak(x ´ c)k for some sequence

taku8
k=0 Ď R (or C) and c P R (or C).

Proposition 5.2. If a power series centered at c is convergent at some point b ‰ c, then the power
series converges absolutely for all points in (c ´ |b ´ c|, c+ |b ´ c|).

Proof. Since the series
8
ř

k=0

ak(b ´ c)k converges, |ak||b ´ c|k Ñ 0 as k Ñ 8; thus there exists M ą 0

such that |ak||b ´ c|k ď M for all k. Then if x P (c ´ |b ´ c|, c + |b ´ c|), the series
8
ř

k=0

ak(x ´ c)k

converges absolutely since
8
ÿ

k=0

|ak(x ´ c)k| =
8
ÿ

k=0

|ak||x ´ c|k =
8
ÿ

k=0

|ak||b ´ c|k
|x ´ c|k

|b ´ c|k
ď M

8
ÿ

k=0

( |x ´ c|

|b ´ c|

)k

which converges (because of the geometric series test or ratio test). ˝



Definition 5.3. A number R is called the radius of convergence of the power series
8
ř

k=0

ak(x´c)k

if the series converges for all x P (c ´ R, c + R) but diverges if x ą c + R or x ă c ´ R. In other
words,

R = sup
␣

r ě 0
ˇ

ˇ

8
ÿ

k=0

ak(x ´ c)k converges in [c ´ r, c+ r]
(

.

The interval of convergence or convergence interval of a power series is the collection of all
x at which the power series converges.

We remark that Proposition 5.2 implies that a power series converges absolutely in the interior
of the interval of convergence.

Proposition 5.4. A power series is continuous in the interior of the convergence interval; that is, if
R ą 0 is the radius of convergence of the power series

8
ř

k=0

ak(x´c)k, then
8
ř

k=0

ak(x´c)k is continuous

in (c ´ R, c+R).

Proof. W.L.O.G., we prove that the power series is continuous at x0 P [c, c+R). Let ε ą 0 be given.

Define r = c+R ´ x0
2

. Then |r| ă R; thus there exists N ą 0 such that
8
ÿ

k=N+1

|ak|rk ă
ε

4
.

Moreover, since
N
ř

k=0

ak(x ´ c)k is continuous at x0, there exists 0 ă δ ă r such that

ˇ

ˇ

ˇ

N
ÿ

k=0

ak(x ´ c)k ´

N
ÿ

k=0

ak(x0 ´ c)k
ˇ

ˇ

ˇ
ă
ε

2
@ |x ´ x0| ă δ .

Therefore, if |x ´ x0| ă δ, we have

ˇ

ˇ

ˇ

8
ÿ

k=0

ak(x ´ c)k ´

8
ÿ

k=0

ak(x0 ´ c)k
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

N
ÿ

k=0

ak(x ´ c)k ´

N
ÿ

k=0

ak(x0 ´ c)k
ˇ

ˇ

ˇ
+

8
ÿ

k=N+1

|ak|rk
|x ´ c|k

rk
+

8
ÿ

k=N+1

|ak|rk
|x0 ´ c|k

rk

ď

ˇ

ˇ

ˇ

N
ÿ

k=0

ak(x ´ c)k ´

N
ÿ

k=0

ak(x0 ´ c)k
ˇ

ˇ

ˇ
+ 2

8
ÿ

k=N+1

|ak|rk ă ε

which implies that
8
ř

k=0

ak(x ´ c)k is continuous at x0. ˝

Theorem 5.5. Let R ą 0 be the radius of convergence of the power series
8
ř

k=0

ak(x ´ c)k. Then

ż x

c

8
ÿ

k=0

ak(t ´ c)kdt =
8
ÿ

k=0

ak
k + 1

(x ´ c)k+1 @x P (c ´ R, c+R) .



Proof. W.L.O.G., we assume that x P (c, c+R). Let ε ą 0 be given. Choose x0 P (c´R, c+R) such
that |x ´ c| ă |x0 ´ c|. Then for t P [c, x], |t ´ c|

|x0 ´ c|
ď 1. Moreover, since

8
ř

k=1

ak(x0 ´ c)k converges

absolutely, there exists N ě 0 such that
8
ÿ

k=N+1

|ak||x0 ´ c|k ď
ε

|x0 ´ c|
.

Since
ż x

c

8
ÿ

k=0

ak(t ´ c)kdt =

ż x

c

n
ÿ

k=0

ak(t ´ c)kdt+

ż x

c

8
ÿ

k=N+1

ak(t ´ c)kdt

=
n
ÿ

k=0

ak
k + 1

(x ´ c)k+1 +

ż x

c

8
ÿ

k=n+1

ak(t ´ c)kdt ,

we have for n ě N ,

ˇ

ˇ

ˇ

ż x

c

8
ÿ

k=0

ak(t ´ c)kdt ´

n
ÿ

k=0

ak
k + 1

(x ´ c)k+1
ˇ

ˇ

ˇ
ď

ż x

c

8
ÿ

k=n+1

|ak||x0 ´ c|k
(t ´ c)k

|x0 ´ c|k
dt

ď

ż x

c

8
ÿ

k=N+1

|ak||x0 ´ c|kdt ď |x0 ´ c|
8
ÿ

k=N+1

|ak||x0 ´ c|k ă ε .

In other words, lim
nÑ8

n
ř

k=0

ak
k + 1

(x ´ c)k+1 =
ż x

c

8
ř

k=0

ak(t ´ c)kdt which concludes the corollary. ˝

Theorem 5.6. Let R ą 0 be the radius of convergence of the power series
8
ř

k=0

ak(x ´ c)k. Then

d

dx

8
ÿ

k=0

ak(x ´ c)k =
8
ÿ

k=1

kak(x ´ c)k´1 @ x P (c ´ R, c+R) .

Proof. We first show that the series
8
ř

k=1

kak(x ´ c)k´1 also converges for all x P (c ´ R, c + R). Let

x P (c ´ R, c+R). Then there exists x0 P (c ´ R, c+R) such that |x ´ c| ă |x0 ´ c|. Choose N ą 0

such that
k

|x ´ c|k

|x0 ´ c|k
ď 1 if k ě N .

We note that it is possible to find such an N since lim
kÑ8

k
|x ´ c|k

|x0 ´ c|k
= 0. Therefore,

8
ÿ

k=0

k|ak||x ´ c|k =
N
ÿ

k=0

k|ak||x ´ c|k +
8
ÿ

k=N+1

k|ak||x ´ c|k

ď

N
ÿ

k=0

k|ak||x ´ c|k +
8
ÿ

k=N+1

|ak||x0 ´ c|kk
|x ´ c|k

|x0 ´ c|k

ď

N
ÿ

k=0

k|ak||x ´ c|k +
8
ÿ

k=N+1

|ak||x0 ´ c|k ă 8



which implies that the series
8
ř

k=0

k|ak||x ´ c|k converges absolutely.

Now, Theorem 5.5 implies that
ż x

c

8
ÿ

k=1

kak(t ´ c)k´1dt =

ż x

c

8
ÿ

k=0

(k + 1)ak+1(t ´ c)kdt =
8
ÿ

k=0

ak+1(x ´ c)k+1 =
8
ÿ

k=1

ak(x ´ c)k ;

thus we have
a0 +

ż x

c

8
ÿ

k=1

kak(t ´ c)k´1dt =
8
ÿ

k=0

ak(x ´ c)k .

Moreover, Proposition 5.4 implies that the power series
8
ř

k=0

k|ak||x´c|k is continuous in (c´R, c+R).

As a consequence, the fundamental theorem of Calculus implies that
8
ÿ

k=1

kak(x ´ c)k´1 =
d

dx

ż x

c

8
ÿ

k=1

kak(t ´ c)k´1dt =
d

dx

8
ÿ

k=0

ak(x ´ c)k

which concludes the theorem. ˝

Definition 5.7. A function f : (a, b) Ñ R is said to be analytic at c P (a, b) if f is infinitely many
times differentiable at c and there exists R ą 0 such that

f(x) =
8
ÿ

k=0

ak(x ´ c)k @ x P (c ´ R, c+R) Ď (a, b)

for some sequence taku8
k=0.

Remark 5.8. If f : (a, b) Ñ R is analytic at c P (a, b), then Theorem 5.6 implies that

f(x) =
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k @ x P (c ´ R, c+R) Ď (a, b)

for some R ą 0.
A function which is infinitely many times differentiable at a point c might not be analytic at c.

For example, consider the function

f(x) =

#

exp
(

´
1

x2

)
if x ‰ 0 ,

0 if x = 0 .

Then f (k)(0) = 0 for all k P N which implies that f cannot be analytic at 0.

5.1.1 Product of Power Series

Definition 5.9. Given two series
8
ř

n=0

an and
8
ř

n=0

bn, the series
8
ř

n=0

cn, where cn =
n
ř

k=0

akbn´k for all

n P N Y t0u, is called the Cauchy product of
8
ř

n=0

an and
8
ř

n=0

bn.



Theorem 5.10. Suppose that the two series
8
ř

n=0

an and
8
ř

n=0

bn converge absolutely. Then the Cauchy

product of
8
ř

n=0

an and
8
ř

n=0

bn converges absolutely to
( 8
ř

n=0

an

)( 8
ř

n=0

bn

)
; that is,

8
ÿ

n=0

( n
ÿ

k=0

akbn´k

)
=

( 8
ÿ

n=0

an

)( 8
ÿ

n=0

bn

)
.

Proof. Claim: If
8
ř

n=0

an converges absolutely and π : N Ñ N is bijective (that is, one-to-one and

onto), then
8
ř

n=0

aπ(n) converges absolutely to
8
ř

n=0

an.

Proof of claim: Let
8
ř

n=0

an = a and ε ą 0 be given. Since
8
ř

n=0

an converges absolutely, there exists

N ą 0 such that 8
ÿ

n=N+1

|an| ă
ε

2
.

Let K = max
␣

π´1(1), ¨ ¨ ¨ , π´1(N)
(

+ 1. Then if k ě K, π(k) ě N + 1; thus if k ě K,
8
ÿ

n=k+1

|aπ(n)| ď

8
ÿ

n=N+1

|an| ă
ε

2

and
ˇ

ˇ

ˇ

k
ÿ

n=0

aπ(n) ´ a
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

k
ÿ

n=0

aπ(n) ´

N
ÿ

n=0

an

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

N
ÿ

n=0

an ´ a
ˇ

ˇ

ˇ
ď 2

8
ÿ

n=N+1

|an| ă ε .

Therefore,
8
ř

n=0

aπ(n) converges absolutely to a.

Claim: If
8
ř

n=0

an and
8
ř

n=0

bn converge absolutely, then
8
ř

n,m=1

anbm converges absolutely and

8
ÿ

n,m=1

anbm =
( 8
ÿ

n=1

an

)( 8
ÿ

m=1

bm

)
,

where
8
ř

n,m=1

anbm denotes the limit lim
N,MÑ8

N
ř

n=1

M
ř

m=1

anbm.

Proof of claim: If N1 ă N2 and M1 ă M2,
ˇ

ˇ

ˇ

( N1
ÿ

n=1

an

)( M1
ÿ

m=0

bm

)
´

( N2
ÿ

n=1

an

)( M2
ÿ

m=0

bm

)ˇ
ˇ

ˇ
ď

N1
ÿ

n=1

|an|

M2
ÿ

m=M1+1

|bm| +
N2
ÿ

n=N1+1

|an|

M2
ÿ

m=1

|bm|

thus
ˇ

ˇ

ˇ

( N1
ÿ

n=1

an

)( M1
ÿ

m=0

bm

)
´

8
ÿ

n,m=1

anbm

ˇ

ˇ

ˇ

= lim
N2,M2Ñ8

ˇ

ˇ

ˇ

( N1
ÿ

n=1

an

)( M1
ÿ

m=0

bm

)
´

( N2
ÿ

n=1

an

)( M2
ÿ

m=0

bm

)ˇ
ˇ

ˇ

ď

( 8
ÿ

n=1

|an| +
8
ÿ

m=1

|bm|

)( 8
ÿ

n=N1+1

|an| +
8
ÿ

m=M1+1

|bm|

)
.



The claim is then concluded by passing to the limit as M1 Ñ 8 and then N1 Ñ 8.
The theorem follows from the fact that the Cauchy product is a special rearrangement of the

series
8
ř

n,m=1

anbm. ˝

Corollary 5.11. Let R1, R2 ą 0 be the radius of convergence of the power series
8
ř

k=0

ak(x ´ c)k and
8
ř

k=0

bk(x ´ c)k, respectively. Then with R denoting mintR1, R2u, we have

( 8
ÿ

k=0

ak(x ´ c)k
)( 8

ÿ

k=0

bk(x ´ c)k
)
=

8
ÿ

n=0

( n
ÿ

k=0

akbn´k

)
(x ´ c)n @ x P (c ´ R, c+R) .

5.1.2 General Theory

The discussion of the power series is for the purpose of solving ODE with analytic coefficients and
forcings.

Theorem 5.12 (Cauchy-Kowalevski, Special case). Let Ω Ď Rn be an open set, and f : Ω ˆ (t0 ´

h, t0 + h) Ñ Rn be an analytic function in some neighborhood (x0, t0) for some x0 P Ω; that is, for
some r ą 0,

f(y, t) = f(y0, t0) +
8
ÿ

k=1

ÿ

|α|+j=k

cα,j(y ´ y0)
α(t ´ t0)

j @ (y, t) P B
(
(y0, t0), r

)
,

where α = (α1, ¨ ¨ ¨ , αn) is a multi-index satisfying yα = yα1
1 ¨ ¨ ¨ yαn

n and |α| = α1 + ¨ ¨ ¨αn. Then there
exists 0 ă δ ă h such that the ODE y 1(t) = f(y, t) with initial condition y(t0) = y0 has a unique
analytic solution in the interval (t0 ´ δ, t0 + δ).

Remark 5.13. If f is continuous at (y0 ´ k, y0 + k) ˆ (t0 ´ h, t0 + h), then the general existence
and uniqueness theorem guarantees the existence of a unique solution of y 1(t) = f(y, t) with initial
condition y(t0) = y0 in some time interval (t0 ´ δ, t0 + δ). Theorem 5.12 further implies that the
solution is analytic if the “forcing” function f is analytic.

5.2 Series Solutions Near an Ordinary Point: Part I

In the remaining chapter we focus on the second order linear homogeneous ODE

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0 , (5.1)

where P,Q,R are assumed to have no common factors. We note that we change the independent
variable from t to x.

Definition 5.14. A point x0 is said to be a ordinary point to ODE (5.1) if P (x0) ‰ 0, and the
two functions Q/P , R/P are analytic at x0. It is called a singluar point if it is not a regular point.
It is called a regular singular point if the two limits

lim
xÑx0

(x ´ x0)
Q(x)

P (x)
and lim

xÑx0

(x ´ x0)
2R(x)

P (x)



both exist and are finite. Any singular point that is not a regular singular point is called an irregular
singular point.

If x0 is a regular point to ODE (5.1), then

y 11 + p(x)y 1 + q(x)y = 0

for some function p and q that are analytic at x0. Write y 1 = z. Then the vector w = (y, z) satisfies

w 1 =
d

dx

[
y
z

]
=

[
z

´p(x)z ´ q(x)y

]
” f(x,w) .

It is clear that f is analytic at x0 if p, q are analytic at x0; thus the Cauchy-Kowalevski theorem
implies that there exists a unique analytic solution.

Example 5.15. Find a series solution to y 11 + y = 0.
Suppose that the solution can be written as y =

8
ř

k=0

akx
k. Then Theorem 5.6 implies that

y 11 =
8
ÿ

k=2

k(k ´ 1)akx
k´2 =

8
ÿ

k=0

(k + 2)(k + 1)ak+2x
k ;

thus y 11 + y = 0 implies that
8
ÿ

k=0

[
(k + 2)(k + 1)ak+2 + ak

]
xk = 0 .

Since the power series (representation) associated to the zero function is
8
ř

k=0

0 ¨ xk, we must have

ak+2 =
´ak

(k + 2)(k + 1)
for all k P N Y t0u; thus we conclude that

a2k =
´a2k´2

(2k)(2k ´ 1)
=

a2k´4

(2k)(2k ´ 1)(2k ´ 2)(2k ´ 3)
= ¨ ¨ ¨ =

(´1)ka0
(2k)!

and
a2k+1 =

´a2k´1

(2k + 1)(2k)
=

a2k+1

(2k)(2k ´ 1)(2k ´ 2)(2k ´ 3)
= ¨ ¨ ¨ =

(´1)ka1
(2k + 1)!

.

Therefore,

y =
8
ÿ

k=0

a2kx
2k +

8
ÿ

k=0

a2k+1x
2k+1 = a0

8
ÿ

k=0

(´1)k

(2k)!
x2k + a1

8
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 .

Let C(x) =
8
ř

k=0

a2kx
2k and S(x) =

8
ř

k=0

a2k+1x
2k+1. Then it is clear that C 1(x) = ´S(x) and

S 1(x) = C(x). Moreover, the Wronskian of tC, Su at x = 0 is
ˇ

ˇ

ˇ

ˇ

C(0) S(0)
C 1(0) S 1(0)

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

1 0
0 1

ˇ

ˇ

ˇ

ˇ

= 1

which implies that tC, Su is a fundamental set of equation y 11 + y = 0.



Example 5.16. Find a series solution to Airy’s equation y 11 ´ xy = 0.
Suppose that the solution can be written as y =

8
ř

k=0

akx
k. Then

y 11 =
8
ÿ

k=2

k(k ´ 1)akx
k´2 =

8
ÿ

k=0

(k + 2)(k + 1)ak+2x
k ;

and
xy =

8
ÿ

k=0

akx
k+1 =

8
ÿ

k=1

ak´1x
k .

Therefore,

a2 +
8
ÿ

k=1

[
(k + 2)(k + 1)ak+2 ´ ak´1

]
xk = 0

which implies that a2 = 0 and ak+2 =
ak´1

(k + 2)(k + 1)
for all k P N. The recurrence relation further

implies that a5 = a8 = a11 = ¨ ¨ ¨ = a3k´1 = ¨ ¨ ¨ = 0 for all k P N. Furthermore, we have

a3k =
a3k´3

(3k)(3k ´ 1)
=

a3k´6

(3k)(3k ´ 1)(3k ´ 3)(3k ´ 4)
= ¨ ¨ ¨

=
a0

(3k)(3k ´ 1)(3k ´ 3)(3k ´ 4) ¨ ¨ ¨ 3 ¨ 2
=

(3k ´ 2)(3k ´ 5) ¨ ¨ ¨ 4 ¨ 1a0
(3k)!

=
3k
(
k ´

2

3

)(
k ´

5

3

)
¨ ¨ ¨

1

3
a0

(3k)!
=

3kΓ(k + 1/3)

Γ(1/3)(3k)!
a0

and

a3k+1 =
a3k´2

(3k + 1)(3k)
=

a3k´5

(3k + 1)(3k)(3k ´ 2)(3k ´ 3)
= ¨ ¨ ¨

=
a1

(3k + 1)(3k)(3k ´ 2)(3k ´ 3) ¨ ¨ ¨ 4 ¨ 3
=

(3k ´ 1)(3k ´ 4) ¨ ¨ ¨ 2a1
(3k + 1)!

=
3k
(
k ´

1

3

)(
k ´

4

3

)
¨ ¨ ¨

2

3
a1

(3k + 1)!
=

3kΓ(k + 2/3)

Γ(2/3)(3k + 1)!
a1 .

Therefore, the solution of Airy’s equation is of the form

y = a0

8
ÿ

k=0

3kΓ(k + 1/3)

Γ(1/3)(3k)!
x3k + a1

8
ÿ

k=0

3kΓ(k + 2/3)

Γ(2/3)(3k + 1)!
x3k+1 .

Example 5.17. In this example, instead of considering a series solution of Airy’s equation y 11´xy = 0

of the form y =
8
ř

k=0

akx
k, we look for a solution of the form y =

8
ř

k=0

ak(x ´ 1)k.

Since
y 11 =

8
ÿ

k=2

k(k ´ 1)ak(x ´ 1)k´2 =
8
ÿ

k=0

(k + 2)(k + 1)ak+2(x ´ 1)k

and

xy = (x ´ 1)y + y =
8
ÿ

k=0

ak(x ´ 1)k+1 +
8
ÿ

k=0

ak(x ´ 1)k =
8
ÿ

k=1

ak´1(x ´ 1)k +
8
ÿ

k=0

ak(x ´ 1)k ,



we have

(2a2 ´ a0) +
[
6a3 ´ (a1 + a0)

]
(x ´ 1) +

8
ÿ

k=2

[
(k + 2)(k + 1)ak+2 ´ (ak´1 + ak)

]
(x ´ 1)k = 0 .

Therefore, 2a2 = a0, 6a3 = a1 + a0, 12a4 = a2 + a1, 20a5 = a3 + a2, and in general,

(k + 2)(k + 1)ak+2 = ak+1 + ak .

Solving for a few terms, we find that

a2 =
1

2
a0 , a3 =

1

6
a0 +

1

6
a1 , a4 =

1

24
a0 +

1

12
a1 , a5 =

1

30
a0 +

1

120
a1 , ¨ ¨ ¨

It seems not possible to find a general form the the series solution. Nevertheless, we have

y = a0

[
1 +

(x ´ 1)2

2
+

(x ´ 1)3

6
+

(x ´ 1)4

24
+

(x ´ 1)5

30
+ ¨ ¨ ¨

]
+ a1

[
(x ´ 1) +

(x ´ 1)3

6
+

(x ´ 1)4

12
+

(x ´ 1)5

120
+ ¨ ¨ ¨

]
.

5.3 Series Solution Near an Ordinary Point: Part II

There is another way to computed the coefficients ak of the series solution to ODE (5.1). The idea is
to differentiate the equation (5.1) k-times and then evaluate at an ordinary point x0 so that yk+2(x0)

can be obtained once yj(x0)’s are known for 0 ď j ď k+1. To be more precise, we differentiate (5.1)
k-times and use the Leibniz rule to obtain that

P (x0)y
(k+2)(x0) +

k´1
ÿ

j=0

Ck
j P

(k´j)(x0)y
(j+2)(x0) +

k
ÿ

j=0

Ck
j

(
Q(k´j)(x0)y

(1+j)(x0) +R(k´j)(x0)y
(j)(x0)

)
= 0 ;

thus

P (x0)y
(k+2)(x0) = ´

k+1
ÿ

j=2

Ck
j´2P

(k´j+2)(x0)y
(j)(x0) ´

k+1
ÿ

j=1

Ck
j´1Q

(k´j+1)(x0)y
(j)(x0)

´

k
ÿ

j=0

Ck
jR

(k´j)(x0)y
(j)(x0)

= ´
[
kP 1(x0) +Q(x0)

]
y(k+1)(x0) ´

[
Q(k)(x0) + kR(k´1)(x0)

]
y 1(x0) ´ R(k)(x0)y(x0)

´

k
ÿ

j=2

[
Ck

j´2P
(k´j+2)(x0) + Ck

j´1Q
(k´j+1)(x0) + Ck

jR
(k´j)(x0)

]
y(j)(x0) .

The recurrence relation above can be used to obtain the coefficients ak+2 =
y(k+2)(x0)

(k + 2)!
of the series

solution y =
8
ř

k=0

ak(x ´ x0)
k to (5.1) once yk+1(x0), ¨ ¨ ¨ , f(x0) are known.

Example 5.18. Find the series solution about 1 of Airy’s equation y 11 ´ xy = 0.
Assume that the series solution is y =

8
ř

k=0

ak(x´ 1)k. First, we know that y 11(1)´ y(1) = 0. Since

y(1) = a0, we know that a2 =
y 11(1)

2
=

a0
2

. Differentiating Airy’s equation k-times, we find that



y(k+2) ´ xy(k) ´ ky(k´1) = 0 ;

thus

(k + 2)!ak+2 = y(k+2)(1) = y(k)(1) + ky(k´1) = k!ak + k(k ´ 1)!ak´1 = k!(ak + ak´1) .

Therefore, (k + 2)(k + 1)ak+2 = ak + ak´1 which is exactly what we use to obtain the series solution
about 1 to Airy’s equation.

Theorem 5.19. Let x0 be an ordinary point of ODE (5.1), and R1 and R2 are the radius of conver-

gence of the power series representation of Q(x)

P (x)
and R(x)

P (x)
about x0. Suppose that y =

8
ř

k=0

ak(x´x0)
k

is the unique analytic solution to (5.1) with initial condition y(x0) = a0 and y 1(x0) = a1. Then the
radius of convergence of convergence of the power series

8
ř

k=0

ak(x ´ x0)
k is the at least as large as

mintR1, R2u.

Example 5.20. The radius of convergence of series solutions about any point x = x0 of the ODE

y 11 + (sinx)y 1 + (1 + x2)y = 0

is infinite; that is, for any x0 P R, series solutions about x = x0 of the ODE above converge for all
x P R.

Example 5.21. Find a lower bound for the radius of convergence of series solutions about x = 0 of
the Legendre equation

(1 ´ x2)y 11 ´ 2xy 1 + α(α + 1)y = 0 .

Since the Taylor series expansion of 1

1 ´ x2
about 0 converges for all x P (´1, 1), the power series

representation of 2x

1 ´ x2
about 0 converges for all x P (´1, 1); thus the radius of convergence of 2x

1 ´ x2

is 1. Therefore, the radius of convergence of the series solution about 0 of the Legendre equation is
at least 1. We also note that ˘1 are both regular singular point of the Legendre equation.

Example 5.22. Find a lower bound for the radius of convergence of series solutions about x = 0 or
about x = ´

1

2
of the ODE

(1 + x2)y 11 + 2xy 1 + 4x2y = 0 .

Similar to the previous example, since the Taylor series expansion of 1

1 + x2
about 0 converges for

all x P (´1, 1), the radius of convergence of the series solution of the ODE is at least 1.
Next, consider the series solution about ´

1

2
. Since both x and x2 are polynomials, it suffices to

find the radius of convergence of the power series representation of 1

1 + x2
about ´

1

2
. Nevertheless,

the radius of convergence of the power series representation of 1

1 + x2
about ´

1

2
is

?
5

2
.



5.4 Euler Equations; Regular Singular Points

In this section we consider the Euler equation

x2y 11 + αxy 1 + βy = 0 . (5.2)

Note that x0 = 0 is a regular singular point of (5.2).
Assume that we only consider the solution of the Euler equation in the region x ą 0. Let

z(t) = y(et). Then z 1(t) = y 1(et)et and z 11(t) = y 11(et)e2t + y 1(et)et which implies that y 11(et)e2t =

z 11(t) ´ z 1(t). Therefore,
z 11(t) + (α ´ 1)z 1(t) + βz(t) = 0 . (5.3)

This is a second order ODE with constant coefficients, and can be solved by looking at the multiplicity
and complexity of the roots of the characteristic equation

r2 + (α ´ 1)r + β = 0 . (5.4)

We note that (5.4) can also be written as r(r´1)+αr+β = 0, and is called the indicial equation.

1. Suppose the roots of the characteristic equation are distinct real numbers r1 and r2. Then the
solution to (5.3) is z(t) = C1e

r1t + C2e
r2t; thus the solution to the Euler equation is

y(x) = C1e
r1 logx + C2e

r2 logx = C1x
r1 + C2x

r2 .

2. Suppose the characteristic equation has a real double root r. Then the solution to (5.3) is
z(t) = (C1t+ C2)e

rt; thus the solution to the Euler equation is

y(x) = (C1 logx+ C2)e
r logx = (C1 logx+ C2)x

r .

3. Suppose the roots of the characteristic equation are complex numbers r1 = a+bi and r2 = a´bi.
Then the solution to (5.3) is z(t) = C1e

at cos(bt) + C2e
at sin(bt); thus the solution to the Euler

equation is

y(x) = C1e
a logx cos(b logx) + C1e

a logx sin(b logx) = C1x
a cos(b logx) + C2x

a sin(b logx) .

Now we consider the solution to (5.2) in the region x ă 0. We then let z(x) = y(´x) and find
that z satisfies also satisfies the same Euler equation; that is,

x2z 11 + αxz 1 + βz = 0 .

We can then solve for z by looking at the multiplicity and complexity of the roots of the characteristic
equation, and conclude that

1. Case 1 - Distinct real roots r1 and r2:

y(x) = C1|x|r1 + C2|x|r2 .

2. Case 2 - Double real root r:
y(x) = (C1|x| + C2)|x|r .

3. Case 3 - Complex roots a ˘ bi:

y(x) = C1|x|at cos(b log |x|) + C2|x|at sin(b log |x|) .



5.5 Series Solutions Near a Regular Singular Point: Part I

Suppose that x0 is a regular singular point of (5.1); that is, P (x0) = 0, and both limits

lim
xÑx0

(x ´ x0)
Q(x)

P (x)
and lim

xÑx0

(x ´ x0)
2R(x)

P (x)

exist. W.L.O.G., we can assume that x0 = 0 (otherwise make a change of variable rx = x ´ x0), and
only focus the discussion of the solution in the region x ą 0. Suppose that

x
Q(x)

P (x)
=

8
ÿ

k=0

pkx
k and x2

R(x)

P (x)
=

8
ÿ

k=0

qkx
k

in some interval (´R,R). Then by multiplying both side of (5.1) by x2

P (x)
, we obtain that

x2y 11 + x
( 8
ÿ

k=0

pkx
k
)
y 1 +

( 8
ÿ

k=0

qkx
k
)
y = 0 . (5.5)

We note that if pk = qk = 0 for all k P N, the equation above is the Euler equation

x2y 11 + p0xy
1 + q0y = 0 (5.6)

that we discussed in previous section.
For x near 0, it is “reasonable” to expect that the solution to (5.5) will behave like the solution

to the Euler equation
x2y 11 + p0xy

1 + q0y = 0 .

The idea (due to Frobenius) of solving (5.5) is that the solution of (5.5) should be of the form xr

times an analytic function. Hence we look for solutions of (5.5) of the form

y(x) = xr
8
ÿ

k=0

akx
k =

8
ÿ

k=0

akx
k+r , x ą 0 , (5.7)

where a0 is assumed to be non-zero (otherwise we replace r by 1 + r if a1 ‰ 0). Since

y 1(x) = rxr´1
8
ÿ

k=0

akx
k + xr

8
ÿ

k=0

kakx
k´1 =

8
ÿ

k=0

(k + r)akx
k+r´1

and accordingly,

y 11(x) =
8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k+r´2 ,

we obtain
8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k+r +

( 8
ÿ

k=0

pkx
k
)( 8

ÿ

k=0

(k + r)akx
k+r

)
+
( 8
ÿ

k=0

qkx
k
)( 8

ÿ

k=0

akx
k+r

)
= 0 ,

or cancelling xr,
8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k +

( 8
ÿ

k=0

pkx
k
)( 8

ÿ

k=0

(k + r)akx
k
)
+
( 8
ÿ

k=0

qkx
k
)( 8

ÿ

k=0

akx
k
)
= 0 .



Using the Cauchy product, we further conclude that

8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k +

8
ÿ

k=0

( k
ÿ

j=0

(j + r)ajpk´j

)
xk +

8
ÿ

k=0

( k
ÿ

j=0

qk´jaj

)
xk = 0 .

Therefore, we obtain the following recurrence relation:

(k + r)(k + r ´ 1)ak +
k
ÿ

j=0

(j + r)ajpk´j +
k
ÿ

j=0

qk´jaj = 0 @ k P N Y t0u . (5.8)

Therefore, with F denoting the function F (r) = r(r ´ 1) + rp0 + q0, we have

F (r + k)ak +
k´1
ÿ

j=0

[
(j + r)pk´j + qk´j

]
aj = 0 @ k P N . (5.9)

The case k = 0 induces the following

Definition 5.23. If x0 is a regular singular point of (5.1), then the indicial equation for the
regular singular point x0 is

r(r ´ 1) + p0r + q0 = 0 , (5.10)

where p0 = lim
xÑx0

(x ´ x0)
Q(x)

P (x)
and q0 = lim

xÑx0

(x ´ x0)
2R(x)

P (x)
. The roots of the indicial equation are

called the exponents (indices) of the singularity x0.

Now assume that r1, r2 are roots of the indicial equations for a regular singular point x0.

1. If r1, r2 P R and r1 ą r2. Since F only has two roots, F (k+ r) ‰ 0 for all k P N. Therefore, for
r = r1, (5.9) indeed is a recurrence relation which implies that ak depends on a0, ¨ ¨ ¨ , ak´1 and
this, in principle, provides a series solution

y1(x) = xr1
[
1 +

8
ÿ

k=1

ak(r1)

a0
xk
]

(5.11)

to (5.5), in which ak(r1) denotes the coefficients when r = r1.

(a) If in addition r2 ‰ r1 and r1 ´ r2 R N, the F (k + r2) ‰ 0 for all k P N; thus for r = r2,
(5.9) is also a recurrence relation, and this provides another series solution

y2(x) = xr2
[
1 +

8
ÿ

k=1

ak(r2)

a0
xk
]
. (5.12)

(b) If r1 = r2 or r1 ´ r2 P N, we will discuss later in the next section.

2. If r1, r2 are complex roots, then r1 ´r2 R N and F (k+r) ‰ 0 for all k P N for r = r1, r2. Letting

xa+bi = xa ¨ xbi = xaeib logx = xa
[

cos(b logx) + i sin(b logx)
]
,

then (5.11) and (5.12) provide two solutions of (5.5).



Example 5.24. Solve the differential equation

2x2y 11 ´ xy 1 + (1 + x)y = 0 . (5.13)

We note that 0 is a regular singular point of the ODE above; thus we look for a series solution to
the ODE above of the form

y(x) = xr
8
ÿ

k=0

akx
k .

Then r satisfies the indicial equation for 0

2r(r ´ 1) ´ r + 1 = 0

which implies that r = 1 or r = 1

2
. Since

y 1(x) =
8
ÿ

k=0

(k + r)akx
k+r´1 and y 11(x) =

8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k+r´2 ,

we obtain that
8
ÿ

k=0

[
2(k + r)(k + r ´ 1) ´ (k + r) + 1

]
akx

k+r +
8
ÿ

k=0

akx
k+r+1 = 0

or cancelling xr,
8
ÿ

k=0

[
2(k + r)(k + r ´ 1) ´ (k + r) + 1

]
akx

k +
8
ÿ

k=1

ak´1x
k = 0 .

Therefore,
ak = ´

ak´1

2(k + r)(k + r ´ 1) ´ (k + r) + 1
@ k P N .

1. r = 1: ak = ´
ak´1

k(2k + 1)
for all k P N. Therefore,

ak = ´
ak´1

k(2k + 1)
=

ak´2

k(k ´ 1)(2k + 1)(2k ´ 1)
= ´

ak´3

k(k ´ 1)(k ´ 2)(2k + 1)(2k ´ 1)(2k ´ 3)

=
(´1)k

k!(2k + 1)(2k ´ 1) ¨ ¨ ¨ 1
a0 =

(2k)(2k ´ 2)(2k ´ 4) ¨ ¨ ¨ 2(´1)k

k!(2k + 1)!
a0 =

(´1)k2k

(2k + 1)!
a0 .

This provides a series solution y1(x) =
8
ř

k=0

(´1)k2k

(2k + 1)!
xk+1 whose radius of convergence is 8.

2. r = 1

2
: ak = ´

ak´1

k(2k ´ 1)
for all k P N. Therefore,

ak = ´
ak´1

k(2k ´ 1)
=

ak´2

k(k ´ 1)(2k ´ 1)(2k ´ 3)
= ´

ak´3

k(k ´ 1)(k ´ 2)(2k ´ 1)(2k ´ 3)(2k ´ 5)

=
(´1)k

k!(2k ´ 1)(2k ´ 3) ¨ ¨ ¨ 1
a0 =

(´1)k(2k)(2k ´ 2) ¨ ¨ ¨ 2

k!(2k)!
a0 =

(´1)k2k

(2k)!
a0 .

This provides a series solution y2(x) =
8
ř

k=0

(´1)k2k

(2k)!
xk+

1
2 whose radius of convergence is 8.



Therefore, the general solution to (5.13) in the series form is y = C1y1(x) + C2y2(x).

Example 5.25. Find a series solution about the regular singular point x = 0 of

(x+ 2)x2y 11(x) ´ xy 1(x) + (1 + x)y(x) = 0 , x ą 0 .

Let p(x) = ´
1

x+ 2
and q(x) =

1 + x

x+ 2
. Then

p(x) = ´
1

2

1

1 ´
´x

2

= ´
1

2

8
ÿ

k=0

(´x)k

2k
=

8
ÿ

k=0

(´1)k+1xk

2k+1
,

q(x) =
x+ 1

x+ 2
= 1 ´

1

2

1

1 ´
´x

2

= 1 ´

8
ÿ

k=0

(´1)kxk

2k+1
=

1

2
+

8
ÿ

k=1

(´1)k+1xk

2k+1
.

Therefore, (p0, q0) =
(

´
1

2
,
1

2

)
, and pk = qk =

(´1)k+1

2k+1
for all k P N. The indicial equation for 0 is

r(r ´ 1) ´
1

2
r +

1

2
= 0

which implies that r = 1 or r = 1

2
.

1. r = 1: Suppose the series solution to the ODE is y = x
8
ř

k=0

akx
k =

8
ř

k=0

akx
k+1. Then

(x+ 2)x2
8
ÿ

k=0

(k + 1)kakx
k´1 ´ x

8
ÿ

k=0

(k + 1)akx
k + (1 + x)

8
ÿ

k=0

akx
k+1 = 0

ñ

8
ÿ

k=0

(k2 + k + 1)akx
k+2 +

8
ÿ

k=0

(2k2 + k)akx
k+1 = 0

ñ

8
ÿ

k=1

(
[(k ´ 1)2 + (k ´ 1) + 1]ak´1 + (2k2 + k)ak

)
xk+1 = 0 .

Therefore, ak = ´
k2 ´ k + 1

(2k + 1)k
ak´1 for all k P N. Note that

lim
kÑ8

ˇ

ˇ

ˇ

ak
ak´1

ˇ

ˇ

ˇ
= lim

kÑ8

ˇ

ˇ

ˇ

k2 ´ k + 1

k(2k + 1)

ˇ

ˇ

ˇ
=

1

2
;

thus the radius of convergence of the series solution y =
8
ř

k=0

akx
k+1 is 2.

2. r = 1

2
: Suppose the series solution to the ODE is y = x

1
2

8
ř

k=0

akx
k =

8
ř

k=0

akx
k+ 1

2 . Then

(x+ 2)
8
ÿ

k=0

(
k +

1

2

)(
k ´

1

2

)
akx

k+ 1
2 ´

8
ÿ

k=0

(
k +

1

2

)
akx

k+ 1
2 +

8
ÿ

k=0

akx
k+ 1

2 +
8
ÿ

k=0

akx
k+ 3

2 = 0

ñ

8
ÿ

k=0

(
k2 +

3

4

)
akx

k+ 3
2 +

8
ÿ

k=0

(2k2 ´ k)akx
k+ 1

2 = 0

ñ

8
ÿ

k=0

((
(k ´ 1)2 +

3

4

)
ak´1 + (2k2 ´ k)ak

)
xk+

1
2 = 0 .

Therefore, ak = ´
(k ´ 1)2 + 3/4

k(2k ´ 1)
ak´1 for all k P N. The radius of convergence of this series

solution is also 2.



5.6 Series Solutions Near a Regular Singular Point: Part II
5.6.1 The case that the difference of roots of indicial equation is an integer

Suppose that r1 and r2 are the roots of the indicial equation for a regular singular point.

‚ r1 = r2: Let ak(r), k P N, be defined by the recurrence relation (5.9) (with a0 and r given), and

φ(r, x) = xr
8
ÿ

k=0

ak(r)x
k .

Then the computation leading to the recurrence relation (5.9) also yields that

x2φxx(r, x) + xp(x)φx(r, x) + q(x)φ(r, x)

= a0F (r)x
r +

8
ÿ

k=1

(
F (k + r)ak(r) +

( k´1
ÿ

j=0

[
(j + r)pk´j + qk´j

]
aj(r)

)
xk+r

= a0(r ´ r1)
2xr = 0 ,

where φx and φxx denote the first and the second partial derivatives of φ w.r.t.x. Differentiating the
equation above w.r.t. r variable at r = r1, we find that

x2φxxr(r, x) + xp(x)φxr(r, x) + q(x)φr(r, x) =
[
2a0(r ´ r1)

2xr + a0(r ´ r1)
2xr logx

]ˇ
ˇ

ˇ

r=0
= 0 .

If B

B r
φxx =

(Bφ

B r

)
xx

and B

B r
φx =

(Bφ

B r

)
x

(which in general is not true since it involves exchange of

orders of limits), then the equation above implies that

x2
(Bφ

B r
(r1, ¨)

) 11
+ xp(x)

(Bφ

B r
(r1, ¨)

) 1
+ q(x)φr(r1, ¨) = 0 .

In other words, assuming that B

Br
φxx =

(Bφ

B r

)
xx

and B

B r
φx =

(Bφ

B r

)
x
, y =

Bφ

B r
(r1, x) is also a solution

to the ODE (5.5). Formally, we switch the order of the differentiation in r and the infinite sum to
obtain that

Bφ

Br
(r1, x) = xr1 logx

( 8
ÿ

k=0

ak(r)x
k
)
+ xr1

8
ÿ

k=0

a 1
k(r1)x

k = y1(x) logx+
8
ÿ

k=0

a 1
k(r1)x

k+r1 .

Now let us verify that

y2(x) = y1(x) logx+
8
ÿ

k=0

a 1
k(r1)x

k+r1 (5.14)

is indeed a solution to (5.5) (if the radius of convergence of the power series
8
ř

k=0

a 1
k(r)x

k is not zero).

We note that y2 satisfies

xy 1
2 = xy 1

1(x) logx+ y1(x) +
8
ÿ

k=0

(k + r1)a
1
k(r)x

k+r1 ,

x2y 11
2 = x2y 11

1 (x) logx+ 2xy 1(x) ´ y1(x) +
8
ÿ

k=0

(k + r1)(k + r1 ´ 1)a 1
k(r1)x

k+r1 .



Moreover, differentiating (5.8) w.r.t. r variable, we find that

[
2(k + r1) ´ 1

]
ak(r1) +

k
ÿ

j=0

pk´jaj(r1) +
k
ÿ

j=0

[
pk´j(j + r1) + qk´j

]
a 1
j(r1) = 0 @ k P N Y t0u .

Therefore, by the fact that y1 is a solution to (5.5), we have

x2y 11
2 + xp(x)y 1

2 + q(x)y2

= x2y 11
1 (x) logx+ 2xy 1

1(x) ´ y1(x) +
8
ÿ

k=0

(k + r1)(k + r ´ 1)a 1
k(r1)x

k+r1

+ xp(x)y 1
1(x) logx+ p(x)y1(x) +

( 8
ÿ

k=0

pkx
k
)( 8

ÿ

k=0

(k + r1)a
1
k(r1)x

k+r1
)

+ q(x)y1(x) logx+
( 8
ÿ

k=0

qkx
k
)( 8

ÿ

k=0

a 1
k(r1)x

k+r1
)

=
8
ÿ

k=0

[
2(k + r1) ´ 1

]
ak(r1)x

k+r1 +
8
ÿ

k=0

( k
ÿ

j=0

pk´jaj(r1)
)
xk+r1

+
8
ÿ

k=0

(
(k + r1)(k + r ´ 1)a 1

k(r1) +
k
ÿ

j=0

[
pk´j(j + r1) + qk´j

]
a 1
j(r1)

)
xk+r1 = 0 ;

thus y2(x) is a solution to (5.5).

‚ r1 ´ r2 = N P N: using the recurrence relation (5.9) for r = r2, by the fact that F (r2 + N) =

F (r1) = 0 we cannot find aN(r2) so that aN+1(r2), aN+2(r2) and so on cannot be determined.

1. Suppose that
N´1
ř

j=0

(j+ r)pN´j + qN´j is divisible by r´ r2 = r+N ´ r1. Since (5.9) implies that

(r ´ r2)(r +N ´ r2)aN(r) = ´

N´1
ÿ

j=0

[
(j + r)pN´j + qN´j

]
aj(r) .

we can compute aN(r2) by

aN(r2) = lim
rÑr2

aN(r) = ´ lim
rÑr2

N´1
ř

j=0
(j + r)pN´j + qN´j

r ´ r2
F (r +N)

r ´ r2

= ´
1

N
lim
rÑr2

N´1
ř

j=0

(j + r)pN´j + qN´j

r ´ r2
;

thus the recurrence relation can be used to determine aN+1(r1), aN+2(r1) and so on. In such a
case, another solution can be written by (5.12) as well.

2. In general (which includes the case that
N´1
ř

j=0

(j + r)pN´j + qN´j is divisible by r ´ r2), we let

φ(r, x) = xr
8
ÿ

k=0

ak(r)x
k ,

where ak(r) is given by the recurrence relation (5.9). Then

x2φxx(r, x) + xp(x)φx(r, x) + q(x)φ(r, x) = a0(r ´ r1)(r ´ r2)x
r .



Multiplying both sides of the equation above by (r´ r2) then differentiating in r variable, with
ψ(r, x) denoting the function (r ´ r2)φ(r, x), we find that

x2ψxxr(r2, x) + xp(x)ψxr(r2, x) + q(x)ψr(r2, x) = 0 ,

which, as discussed before, under certain assumptions we find that

ψr(r2, x) =
B

Br

ˇ

ˇ

ˇ

r=r2

(
(r ´ r2)

8
ÿ

k=0

ak(r)x
k+r

)
is also a solution to (5.5). Note that if N ‰ 1, the recurrence relation (5.9) implies that

lim
rÑr2

(r ´ r2)a1(r) = ´ lim
rÑr2

(
rp1 + q1

)
(r ´ r2)a0

F (r + 1)
= 0 .

Similarly, for k ă N ,

lim
rÑr2

(r ´ r2)ak(r)
ˇ

ˇ

ˇ

r=r2
= ´ lim

rÑr2

k´1
ř

j=0

[
(j + r)pk´j + qk´j

]
aj(r)(r ´ r2)

F (k + r)
= 0 .

Now we consider lim
rÑr2

(r ´ r2)aN(r). Since F (r +N) = (r ´ r2)(r +N ´ r2), we have

(r ´ r2)aN(r) = ´

N´1
ř

j=0

[
(j + r)pk´j + qk´j

]
aj(r)

(r +N ´ r2)
;

thus

lim
rÑr2

(r ´ r2)aN(r) = ´
1

N

N´1
ÿ

j=0

[
(j + r2)pk´j + qk´j

]
aj(r2)

which exists and might not vanish. Let b0 = lim
rÑr2

(r ´ r2)aN(r). Then for k ą N , with bk

denoting the limit lim
rÑr2

(r ´ r2)ak+N(r), we have

bk´N = lim
rÑr2

(r ´ r2)ak(r) = ´ lim
rÑr2

k´1
ř

j=0

[
(j + r)pk´j + qk´j

]
aj(r)(r ´ r2)

F (k + r)

= ´ lim
rÑr2

k´1
ř

j=N

[
(j + r)pk´j + qk´j

]
aj(r)(r ´ r2)

F (k + r)
= ´

k´1
ř

j=N

[
(j + r2)pk´j + qk´j

]
bj´N

F (k + r2)

= ´

k´N´1
ř

j=0

[
(j + r1)pk´j´N + qk´j´N

]
bj

F (k ´ N + r1)

which implies that the sequence tbju
8
j=0 satisfies

F (k + r1)bk +
k´1
ÿ

j=0

[
(j + r1)pk´j + qk´j

]
bj = 0 @ k P N .



As a consequence, by the fact that ak(r)

a0
is independent of a0, we have bk

b0
=

ak(r1)

a0
and

y2(x) =
B

Br

ˇ

ˇ

ˇ

r=r2
ψ(r, x) =

b0
a0
y1(x) logx+

8
ÿ

k=0

ck(r2)x
k+r2 , (5.15)

where b0 = lim
rÑr2

(r ´ r2)aN(r) and ck =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)ak(r).

Example 5.26. Find a series solution about 0 to xy 11 + y = 0.
First, we note that

p0 = lim
xÑ0

x ¨
0

x
= 0 and q0 = lim

xÑ0
x2 ¨

1

x
= 0 ;

thus 0 is a regular singular point of the ODE and the indicial equation for 0 is r(r ´ 1) = 0. There
are two distinct roots r1 = 1 and r2 = 0 to the indicial equation for 0.

Let φ(r, x) =
8
ř

k=0

ak(r)x
k+r be the solution to the ODE above. Then

8
ÿ

k=0

(k + r)(k + r ´ 1)ak(r)x
k+r´1 +

8
ÿ

k=0

ak(r)x
k+r = 0 .

which implies that

a0r(r ´ 1)xr´1 +
8
ÿ

k=0

[
(k + r + 1)(k + r)ak+1(r) + ak(r)

]
xk+r = 0 .

Therefore,
ak+1(r) = ´

1

(k + r + 1)(k + r)
ak(r) ; (5.16)

thus

ak(r) = ´
1

(k + r)(k + r ´ 1)
ak´1(r) =

1

(k + r)(k + r ´ 1)2(k + r ´ 2)
ak´2(r)

= ¨ ¨ ¨ =
(´1)k

(k + r)(k + r ´ 1)2 ¨ ¨ ¨ (r + 1)2r
a0 .

Then ak(r1) =
(´1)k

(k + 1)!k!
a0 which implies that a series solution is given by

y1(x) =
8
ÿ

k=0

(´1)k

(k + 1)!k!
xk+1 .

We also note that the recurrence relation (5.16) can be obtained by (5.9): write the ODE as
x2y 11 + xy = 0. Therefore, pk = 0 for all k P N Y t0u and qk = δ1k for k P N Y t0u, where δ¨¨ is the
Kronecker delta. Using (5.9), we have

0 = F (k + r)ak(r) +
k´1
ÿ

j=0

[
(j + r)pk´j + qk´j

]
aj(r) = F (k + r)ak(r) + ak´1(r) .



We summarize the discussions above into the following

Theorem 5.27. Let x0 = 0 be a regular singular point of the differential equation (5.5), and r1 and
r2 be the roots of the indicial equation (5.10) with r1 ě r2 if r1, r2 P R. Then there exists a series
solution given by (5.11).

1. If r1 ´ r2 R N Y t0u, then another solution is given by (5.12).

2. If r1 = r2, then another solution is given by (5.14).

3. If r1 ´ r2 = N P N, then another solution is given by (5.15).

In all three cases, the two solutions y1 and y2 form a fundamental set of solutions of the given
differential equation.

5.6.2 The radius of convergence of series solutions

The radius of convergence of the series solution (5.7) cannot be guaranteed by Theorem 5.19; however,
we have the following

Theorem 5.28 (Frobenius). If x0 is a regular singular point of ODE (5.1), then there exists at least
one series solution of the form

y(x) = (x ´ x0)
r

8
ÿ

k=0

ak(x ´ x0)
k ,

where r is the largest root of the associated indicial equation. Moreover, the series solution converges
for all x P 0 ă x ´ x0 ă R, where R is the distance from x0 to the nearest other singular point (real
or complex) of (5.1).

5.7 Bessel’s Equation

We consider three special cases of Bessel’s equation

x2y 11 + xy 1 + (x2 ´ ν2)y = 0 , (5.17)

where ν is a constant. It is easy to see that x = 0 is a regular singular point of (5.17) since

lim
xÑ0

x ¨
x

x2
= 1 = p0 and lim

xÑ0
x2 ¨

x2 ´ ν2

x2
= ´ν2 = q0 .

Therefore, the indicial equation for the regular singular point x = 0 is

r(r ´ 1) + r ´ ν2 = 0

which implies that r = ˘ν. The ODE (5.17) is called Bessel’s equation of order ν.
To find series solution to (5.17), we first note that in the case of Bessel’s equation of order ν,

F (r) = r2 ´ ν2, p(x) = 1 (which implies that p0 = 1 while pk = 0 for all k P N) and q(x) = x2 ´ ν2



(which implies that q0 = ´ν2 and q2 = 1 and qk = 0 otherwise). Therefore, the recurrence relation
(5.9) implies that [

(k + r)2 ´ ν2
]
ak(r) +

k´1
ÿ

j=0

qk´jaj(r) = 0 @ k P N .

This implies that [
(1 + r)2 ´ ν2

]
a1(r) = 0 (5.18a)[

(k + r)2 ´ ν2
]
ak(r) + ak´2(r) = 0 @ k ě 2 (5.18b)

5.7.1 Bessel’s Equation of Order Zero

Consider the case ν = 0. Then the roots of the indicial equation are identical: r1 = r2 = 0. Using
(5.18a), a1(r) ” 0 (in a small neighborhood of 0) and (5.18b) implies that

ak(r) = ´
1

(k + r)2
ak´2(r) @ k ě 2 ; (5.19)

thus a3(r) = a5(r) = ¨ ¨ ¨ = a2m+1(r) = ¨ ¨ ¨ = 0 for all m P N. Note that a2m´1(r) = 0 for all m P N
also implies that a 1

2m´1(r) = 0 for all m P N.
On the other hand, recurrence relation (5.19) also implies that

a2m(r) = ´
1

(2m+ r)2
a2m´2(r) =

1

(2m+ r)2(2m+ r ´ 2)2
a2m´4(r)

= ¨ ¨ ¨ =
(´1)m´1

(2m+ r)2(2m+ r ´ 2)2 ¨ ¨ ¨ (4 + r)2
a2(r)

=
(´1)m

(2m+ r)2(2m+ r ´ 2)2 ¨ ¨ ¨ (4 + r)2(2 + r)2
a0 ;

thus a2m(0) =
(´1)m

22m(m!)2
a0 and rearranging terms, we obtain that

log (´1)ma2m(r)

a0
= ´2

[
log(2m+ r) + log(2m+ r ´ 2) + ¨ ¨ ¨ + log(4 + r) + log(2 + r)

]
.

Differentiating both sides above in r,

a 1
2m(r)

a2m(r)
= ´2

[ 1

2m+ r
+

1

2m+ r ´ 2
+ ¨ ¨ ¨ +

1

4 + r
+

1

2 + r

]
,

and evaluating the equation above at r = 0 we conclude that

a 1
2m(0) = ´Hma2m(0) =

(´1)m+1Hm

22m(m!)2
a0 ,

where Hm =
m
ř

k=1

1

k
. As a consequence, the first series solution is given by

y1(x) =
8
ÿ

k=0

a2k(0)x
2k = a0

[
1 +

8
ÿ

k=1

(´1)kx2k

22k(k!)2

]
,



and the second solution is given by

y2(x) = a0

[
J0(x) logx+

8
ÿ

k=1

(´1)kHkx
2k

22k(k!)2

]
,

where J0 = a´1
0 y1 is called the Bessel function of the first kind of order zero. We note that

y1 and y2 can be defined for all x ą 0 since the radius of convergence of the series involved in y1 and
y2 are infinite.

Any linear combinations of y1 and y2 is also a solution to Bessel’s equation (5.17) of order zero.
Consider the Bessel function of the second kind of order zero

Y0(x) =
2

π

[ 1

a0
y2(x) + (γ ´ log 2)J0(x)

]
, (5.20)

where γ = lim
kÑ8

(Hk ´ log k) « 0.5772 is called the Euler-Máscheroni constant. Substituting for
y2 in (5.20), we obtain

Y0(x) =
2

π

[(
γ + log x

2

)
J0(x) +

8
ÿ

k=1

(´1)k+1Hk

22k(k!)2
x2k

]
, x ą 0 . (5.21)

A general solution to Bessel’s equation (5.17) of order zero then can be written as

y(x) = C1J0(x) + C2Y0(x) .

‚ Properties of J0 and Y0:

J0(x) «

c

2

πx
cos

(
x ´

π

4

)
as x Ñ 8 ,

Y0(x) «

c

2

πx
sin

(
x ´

π

4

)
as x Ñ 8 .

5.7.2 Bessel’s Equation of Order One-Half

Now suppose that ν =
1

2
(thus r1 =

1

2
and r2 = ´

1

2
). To obtain solutions to Bessel’s equation

(5.17) of order one-half, we need to compute the coefficients ak(r) for all k P N (given a0), and

b0 = lim
rÑ´ 1

2

(r ´ r2)a1(r) as well as ck =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)ak(r).

Using (5.18b), we find that

ak(r) =
´1

(k + r)2 ´ 1
4

ak´2(r) =
´1

(k + r + 1
2
)(k + r ´ 1

2
)
ak´2(r) @ k ě 2 ,

while if r « r1 =
1

2
, (5.18a) implies that a1(r) = 0 which further implies that a3(r) = a5(r) = ¨ ¨ ¨ =

a2m´1(r) = ¨ ¨ ¨ = 0 for all m P N if r «
1

2
. In particular, we have

a2m(
1

2
) =

(´1)ma0
(2m+ 1)!

and a2m´1(
1

2
) = 0 @m P N ;



thus a series solution of (5.17) is

y1(x) = a0x
1
2

8
ÿ

k=0

(´1)kx2k

(2k + 1)!
= a0x

´ 1
2

8
ÿ

k=0

(´1)kx2k+1

(2k + 1)!
= a0

sin x
?
x
.

The Bessel function of the first kind of order one-half is defined by (letting a0 =
b

2

π
in

the expression of y1 above)

J 1
2
(x) =

c

2

π

sin x
?
x

=

c

2

πx
sinx .

Now we compute the limit of (r ´ r2)a1(r) as r approaches r2. Since (5.18a) implies that (r +
3

2
)(r +

1

2
)a1(r) = 0, we have (r ´ r2)a1(r) = 0 for all r « r2 = ´

1

2
. Therefore,

b0 = lim
rÑr2

(r ´ r2)a1(r) = 0

which implies that there will be no logarithmic term in the second solution y2 given by (5.12).

Now we compute B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)ak(r). Since

a2m(r) =
´1

(2m+ r + 1
2
)(2m+ r ´ 1

2
)
a2m´2(r) = ¨ ¨ ¨

=
(´1)m

(2m+ r + 1
2
)(2m+ r ´ 1

2
) ¨ ¨ ¨ (2 + r + 1

2
)(2 + r ´ 1

2
)
a0

=
(´1)m

(2m+ r + 1
2
)(2m+ r ´ 1

2
) ¨ ¨ ¨ (r + 5

2
)(r + 3

2
)
a0

which implies that |a 1
2m(r2)| ă 8. Therefore,

c2m(r2) =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)a2m(r) = a2m(r2) =

(´1)m

(2m)!
a0 .

On the other hand, using (5.18a) again, we find that a1(r2) is not necessary zero; thus we let a1
be a free constant and use (5.18b) to obtain that

a2m+1(r) =
(´1)m

(2m+ 1 + r + 1
2
)(2m+ 1 + r ´ 1

2
) ¨ ¨ ¨ (3 + r + 1

2
)(3 + r ´ 1

2
)
a1 .

Since |a 1
2m+1(r2)| ă 8, we find that

c2m+1(r2) =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)a2m+1(r) = a2m(r2) =

(´1)m

(2m+ 1)!
a1 .

Therefore,

y2(x) =
8
ÿ

k=0

ck(r2)x
k+r2 = x´ 1

2

[
a0

8
ÿ

k=1

(´1)m

(2k)!
x2k + a1

8
ÿ

k=1

(´1)k

(2k ´ 1)!
x2k´1

]
= a0

cosx
?
x

+ a1
sinx
?
x
.

This produces the Bessel function of the second kind of order one-half

J´ 1
2
(x) =

c

2

πx
cosx ,

and the general solution of Bessel’s equation of order one-half can be written as y = C1J 1
2
(x) +

C2J´ 1
2
(x).



5.7.3 Bessel’s Equation of Order One

Now we consider the case that ν = 1 (thus r1 = 1 and r2 = ´1). Again, we need to compute
␣

ak(r1)
(8

k=1
, lim
rÑr2

(r ´ r2)a2(r) and ck(r2) =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)ak(r).

Note that (5.18a) implies that a1(r1) = 0 (which implies that a2m´1(r1) = 0 for all m P N).
Moreover,

a2m(r1) =
´1

(2m+ 2)2m
a2m´2(r) =

1

(2m+ 2)(2m)2(2m ´ 2)
a2m´4(r)

= ¨ ¨ ¨ =
(´1)m

(2m+ 2)(2m)2(2m ´ 4)2 ¨ ¨ ¨ 42 ¨ 2
a0 =

(´1)m

22m(m+ 1)!m!
a0 ;

thus
y1(x) = a0x

8
ÿ

k=0

(´1)k

22k(k + 1)!k!
x2k .

Now we focus on finding b0 and
␣

ck(r2)
(8

k=0
. Note that by (5.18a),

F (2 + r)a2(r) = ´a0 ;

thus (r + 1)a2(r) = ´
1

2(r + 3)
which implies that b0 = lim

rÑr2
(r ´ r2)a2(r) = ´

a0
2

.

To compute
␣

ck(r2)
(8

k=0
, we first note that (5.18a) implies that a1(r) ” 0; thus we use (5.18b) to

conclude that a2m´1(r) = 0 for all m P N and r « r2. This implies that c2m´1(r2) = 0 for all m P N.
On the other hand, for m P N and r « r2,

a2m(r) =
(´1)m

(2m+ r + 1)(2m+ r ´ 1)2 ¨ ¨ ¨ (r + 3)2(r + 1)
a0 ;

thus
(r ´ r2)a2m(r) =

(´1)m

(2m+ r + 1)(2m+ r ´ 1)2 ¨ ¨ ¨ (r + 3)2
a0 .

Therefore, using the formula d

dr
f(r) = f(r)

d

dr
log f(r) if f(r) ą 0, we find that

c2m(r2) =
(´1)m+1a0

(2m)(2m ´ 2)2 ¨ ¨ ¨ 22

[ 1

2m+ r + 1
+

2

2m+ r ´ 1
+ ¨ ¨ ¨ +

2

r + 3

]ˇ
ˇ

ˇ

r=r2

=
(´1)m+1a0

22m´1m!(m ´ 1)!

[ 1

2m
+

2

2m ´ 2
+ ¨ ¨ ¨ +

2

2

]
=

(´1)m+1a0
22mm!(m ´ 1)!

[ 1

m
+

2

m ´ 1
+ ¨ ¨ ¨ +

2

1

]
=

(´1)m+1
(
Hm +Hm´1

)
22mm!(m ´ 1)!

a0 .

Moreover, c0(r2) =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)a0 = a0. Then the second solution to Bessel’s equation of order

one is

y2(x) =
b0
a0
y1(x) logx+

8
ÿ

k=0

ck(r2)x
k+r2 = ´J1(x) logx+ x´1

[
a0 +

8
ÿ

k=1

c2k(r2)x
2k
]

= ´
1

2
y1(x) logx+ a0

x

[
1 ´

8
ÿ

k=1

(´1)k(Hk +Hk´1)

22kk!(k ´ 1)!
x2k

]
.



This produces the Bessel function of the first kind of order one:

J1(x) ”
1

2
y1(x) =

x

2

8
ÿ

k=0

(´1)k

22k(k + 1)!k!
x2k

and the Bessel function of the second kind of order one:

Y1(x) ”
2

π

[
´ y2(x) + (γ ´ log 2)J1(x)

]
,

where γ is again the Euler-Máscheroni constant. The general solution to Bessel’s equation of order
one then can be written as

y = C1J1(x) + C2Y1(x) .

6 System of First Order Linear Equations

6.1 Introduction

There are several reasons that we should consider system of first order ODEs, and here we provide
two of them.

1. In real life, a lot of phenomena can be modelled by system of first order ODE. For example,
the LotkaVolterra equation or the predator-prey equation:

p1 = γp ´ αpq ,

q1 = βq + δpq .

in Example 1.10 can be used to described a predator-prey system. Let x ” (x1, x2) = (p, q)T

and F(t,x) = (γx1 ´ αx1x2, βx2 + δx1x2)
T. Then the Lotka-Volterra equation can also be

written as
x 1(t) = F

(
t,x(t)

)
. (6.1)

2. Suppose that we are considering a scalar n-th order ODE

y(n)(t) = f
(
t, y(t), y 1(t), ¨ ¨ ¨ , y(n´1)(t)

)
.

Let x1(t) = y(t), x2(t) = y 1(t), ¨ ¨ ¨ , xn(t) = y(n´1)(t). Then (x1, ¨ ¨ ¨ , xn) satisfies

x 1
1(t) = x2(t) , (6.2a)

x 1
2(t) = x3(t) , (6.2b)
... =

... (6.2c)

x 1
n(t) = f

(
t, x1(t), x2(t), ¨ ¨ ¨ , xn(t)

)
. (6.2d)

Let x = (x1, ¨ ¨ ¨ , xn)
T be an n-vector, and F(t,x) =

(
x2, x3, ¨ ¨ ¨ , xn, f(t, x1, x2, ¨ ¨ ¨ , xn)

)T be a
vector-valued function. Then (6.2) can also be written as (6.1).



Definition 6.1. The system of ODE (6.1) is said to be linear if F is of the form

F(t,x) = P(t)x + g(t)

for some matrix-valued function P =
[
pij(t)

]
nˆn

. (6.1) is said to be homogeneous if g(t) = 0.

Example 6.2. Consider the second order ODE

y 11 ´ y 1 ´ 2y = sin t . (6.3)

Let x1(t) = y(t) and x2(t) = y 1(t). Then x = (x1, x2)
T satisfies

x 1(t) =

[
0 1
2 1

]
x(t) +

[
0

sin t

]
. (6.4)

Therefore, the second order linear ODE (6.3) corresponds to a system of first order linear ODE (6.4).
Review: to solve (6.3), we use the method of variation of parameters and assume that the solution
to (6.3) can be written as

y(t) = u1(t)e
2t + u2(t)e

´t ,

where te2t, e´tu is a fundamental set of (6.3). By the additional assumption u 1
1(t)e

2t + u 1
2e

´t = 0, we
find that [

e2t e´t

2e2t ´e´t

] [
u 1
1

u 1
2

]
=

[
0

sin t

]
.

Therefore, with W (t) denoting the Wronskian of te2t, e´tu, we have

u 1
1(t) =

1

W (t)
det

([
0 e´t

sin t ´e´t

])
=

´e´t sin t
´3et

=
1

3
e´2t sin t

and
u 1
2(t) =

1

W (t)
det

([
e2t 0
2e2t sin t

])
=
e2t sin t
´3et

= ´
1

3
et sin t

which further implies that a particular solution is

y(t) = ´
2e´2t sin t+ e´2t cos t

15
e2t +

et cos t ´ et sin t
6

e´t

= ´
2 sin t+ cos t

15
+

cos t ´ sin t
6

=
cos t ´ 3 sin t

10
.

This particular solution provides a particular solution to (6.4):

x(t) =
[
y(t)
y 1(t)

]
=

 cos t ´ 3 sin t

10

´
sin t+ 3 cos t

10

 .

Example 6.3. The ODE

x 1 =

[
1 1
4 1

]
x (6.5)

is a system of first order linear homogeneous ODE. Suppose the initial condition is given by x(0) =
(x10, x20)

T.



1. Let x = (x1, x2)
T. Then

x 1
1(t) = x1(t) + x2(t) , (6.6a)

x 1
2(t) = 4x1(t) + x2(t) . (6.6b)

Note that (6.6a) implies x2 = x 1
1 ´ x1; thus replacing x2 in (6.6) by x2 = x 1

1 ´ x1 we find that

x 11
1 ´ x1

1 = 4x1 + x 1
1 ´ x1 or x 11

1 ´ 2x 1
1 ´ 3x1 = 0 .

Therefore, x1(t) = C1e
3t + C2e

´t and this further implies that x2(t) = 2C1e
3t ´ 2C2e

´t; thus
the solution to (6.5) can be expressed as

x(t) =
[
x1(t)
x2(t)

]
= C1

[
1
2

]
e3t + C2

[
1

´2

]
e´t .

2. Let xh(k) « x(kh) = (x1(kh), x2(kh))
T be the approximated value of x at the k-th step. Since

x((k + 1)h) « x(kh) + h

[
1 1
4 1

]
xh(k) ,

we consider the (explicit) Euler scheme

xh(k + 1) = xh(k) + h

[
1 1
4 1

]
xh(k) =

(
Id + h

[
1 1
4 1

])k
[
x10
x20

]
,

and we expect that for t ą 0 and k = t/h, then xh(k) Ñ x(t) as h Ñ 0.

To compute the k-th power of the matrix Id + h

[
1 1
4 1

]
, we diagonize the matrix and obtain

that
Id + h

[
1 1
4 1

]
=

[
1 + h h
4h 1 + h

]
=

[
1 1

´2 2

] [
1 ´ h 0
0 1 + 3h

] [
1 1

´2 2

]´1

;

thus (
Id + h

[
1 1
4 1

])k

=

[
1 1

´2 2

] [
(1 ´ h)k 0

0 (1 + 3h)k

] [
1 1

´2 2

]´1

.

As a consequence, using the limit (1 ´ h)
t
h Ñ e´t and (1 + 3h)

t
h Ñ e3t as t Ñ 0, we find that

x(t) = lim
hÑ0

xh

( t

h

)
=

[
1 1

´2 2

] [
e´t 0
0 e3t

] [
1 1

´2 2

]´1 [
x10
x20

]
=

1

4

[
1 1

´2 2

] [
e´t 0
0 e3t

] [
2 ´1
2 1

] [
x10
x20

]
=

1

4

[
2e´t + 2e3t ´e´t + e3t

´4e´t + 4e3t 2e´t + 2e3t

] [
x10
x20

]
=

1

4

[
2x10 + x20
4x10 + 2x20

]
e3t +

1

4

[
2x10 ´ x20

´4x10 + 2x20

]
e´t .

Choose x0 = (1, 2)T and x0 = (1,´2)T, we find that

x1(t) =

[
1
2

]
e3t and x2(t) =

[
1

´2

]
e´t

are both solution to (6.5).



Remark 6.4. For a, b, c, d P R being given constants, suppose that x1 and x2 satisfy the system of
first order linear ODE

x 1
1 = ax1 + bx2 , (6.7a)

x 1
2 = cx1 + dx2 . (6.7b)

Using (6.7a), we have bx2 = x 1
1 ´ ax2; thus (6.7b) implies that x1 satisfies

x 11
1 ´ (a+ d)x 1

1 + (ad ´ bc)x1 = 0 .

We note that the characteristic equation for the ODE above is exactly the characteristic equation of

the matrix
[
a b
c d

]
.

Moreover, suppose that λ1 ‰ λ2 are distinct zeros of the characteristic equation, then

x1(t) = C1e
λ1t + C2e

λ2t .

Similarly, x2(t) = C3e
λ1t + C4e

λ2t for some C3, C4 satisfying

λ1C1e
λ1t + λ2C2e

λ2t = (aC1 + bC3)e
λ1t + (aC2 + bC4)e

λ2t ,

λ1C3e
λ1t + λ2C2e

λ2t = (cC1 + dC3)e
λ1t + (cC2 + dC4)e

λ2t .

Since teλ1t, eλ2tu are linearly independent, we must have that C1, C2, C3, C4 satisfy[
a b
c d

] [
C1

C3

]
= λ1

[
C1

C3

]
and

[
a b
c d

] [
C2

C4

]
= λ2

[
C2

C4

]
.

In other words, (C1, C3)
T and (C2, C4)

T are the eigenvectors of
[
a b
c d

]
associated with eigenvalues

λ1 and λ2, respectively. Therefore,

x(t) =
[
C1e

λ1t + C2e
λ2t

C3e
λ1t + C4e

λ2t

]
=

[
C1

C3

]
eλ1t +

[
C2

C4

]
eλ2t = u1e

λ1t + u2e
λ2t ,

where u1 = (C1, C3)
T and u2 = (C2, C4)

T.

6.2 Basic Theory of Systems of First Order Equations

Similar to Theorem 2.10, we have the following

Theorem 6.5. Let x0 = (x10, x20, ¨ ¨ ¨ , xn0) be a point in Rn, V Ď Rn be an open set containing x0,
and F : (α, β) ˆ V Ñ Rn be a vector-valued function of t and x such that F = (F1, ¨ ¨ ¨ , Fn) and the
partial derivative BFi

Bxj
is continuous in (α, β) ˆ V for all i, j P t1, 2, ¨ ¨ ¨ , nu. Then in some interval

t P (t0 ´ h, t0 + h) Ď (α, β), there exists a unique solution x = φ(t) to the initial value problem

x 1 = F(t,x) x(t0) = x0 . (6.8)

Moreover, if (6.8) is linear and V = Rn, then the solution exists throughout the interval (α, β).



The proof of this theorem is almost the same as the proof of Theorem 2.10 (by simply replacing
| ¨ | with } ¨ }Rn), and is omitted.

Corollary 6.6. Let (y0, y1, ¨ ¨ ¨ , yn´1) be a point in Rn, V Ď Rn be an open set containing x0, and
f : (α, β)ˆV Ñ R be a function such that f : (α, β)ˆV Ñ R be real-valued function such that f and
its partial derivatives Bf

Byi
is continuous in (α, β)ˆV. Then in some interval t P (t0´h, t0+h) Ď (α, β),

there exists a unique solution y = φ(t) to the initial value problem

y(n) = f(t, y, y 1, ¨ ¨ ¨ , y(n´1)) y(t0) = y0, y
1(t0) = y1, ¨ ¨ ¨ , y(n´1)(t0) = yn´1 .

In particular, the solution y is n-times continuously differentiable in (t0 ´ h, t0 + h).

Theorem 6.7 (Principle of Superposition). If the vector x1 and x2 are solutions of the linear system
x 1 = P(t)x, then the linear combination c1x1 + c2x2 is also a solution for any constants c1 and c2.

Example 6.8. Consider the system of ODE

x 1 =

[
1 1
4 1

]
x (6.5)

and note that x1(t) =

[
e3t

2e3t

]
=

[
1
2

]
e3t and x2(t) =

[
e´t

´2e´t

]
=

[
1

´2

]
e´t are solutions to this ODE;

that is,

x 1
1(t) =

[
3
6

]
e3t =

[
1 1
4 1

] [
1
2

]
e3t =

[
1 1
4 1

]
x1(t)

and
x 1
2(t) =

[
´1
2

]
e´t =

[
1 1
4 1

] [
1

´2

]
e´t =

[
1 1
4 1

]
x2(t) .

Therefore, y = c1x1(t) + c2x2(t) is also a solution to (6.5).

Theorem 6.9. Let Mnˆn denote space of nˆ n real matrices, and P : (α, β) Ñ Mnˆn be a matrix-
valued function. If the vector function x1,x2, ¨ ¨ ¨ ,xn are linearly independent solutions to

x 1(t) = P(t)x(t) (6.9)

then each solution x = φ(t) to (6.9) can be expressed as a linear combination of x1, ¨ ¨ ¨ ,xn in exact
one way; that is, there exists a unique vector (c1, ¨ ¨ ¨ , cn) such that

φ(t) = c1x1(t) + ¨ ¨ ¨ + cnxn(t) . (6.10)

Proof. By Theorem 6.5, for each ei = (0, ¨ ¨ ¨ , 0
looomooon

(i ´ 1) slots

, 1, 0, ¨ ¨ ¨ , 0), there exists a unique solution x = φi(t)

to (6.9) satisfying the initial data x(0) = ei. The set tφ1,φ2, ¨ ¨ ¨ ,φnu are linearly independent for
otherwise there exists non-zero vectors (c1, ¨ ¨ ¨ , cn) such that

c1φ1(t) + c2φ2(t) + ¨ ¨ ¨ + cnφn(t) = 0

which, by setting t = 0, would imply that (c1, c2, ¨ ¨ ¨ , cn) = 0, a contradiction.



We note that tφ1, ¨ ¨ ¨ ,φnu is a fundamental set since every solution x(t) to (6.9) can be uniquely
expressed by

x(t) = x1(0)φ1(t) + x2(0)φ2(t) + ¨ ¨ ¨ + xn(0)φn(t) . (6.11)

In fact, x(t) and x1(0)φ1(t) + ¨ ¨ ¨ + xn(0)φn(t) are both solutions to (6.9) satisfying the initial data

x(0) =
(
x1(0), ¨ ¨ ¨ , xn(0)

)T
;

thus by uniqueness of the solution, (6.11) holds.
Now, since x1, ¨ ¨ ¨ ,xn are solution to (6.9), we find that

span(x1, ¨ ¨ ¨ ,xn) Ď span(φ1, ¨ ¨ ¨ ,φn) .

Since tx1, ¨ ¨ ¨ ,xnu are linearly independent, dim
(
span(x1, ¨ ¨ ¨ ,xn)

)
= n; thus by the fact that

dim
(
span(φ1, ¨ ¨ ¨ ,φn)

)
= n, we must have

span(x1, ¨ ¨ ¨ ,xn) = span(φ1, ¨ ¨ ¨ ,φn) .

Therefore, every solution x = φ(t) of (6.9) can be (uniquely) expressed by (6.10). ˝

Definition 6.10. Let P(t) P Mnˆn, and x1, ¨ ¨ ¨ ,xn be linearly independent solutions to (6.9). Then
tx1, ¨ ¨ ¨ ,xnu is called a fundamental set of (6.9), the matrix Ψ(t) =

[
[x1(t)]

... [x2(t)]
... ¨ ¨ ¨

... [xn(t)]
]

is called the fundamental matrix of (6.9), and φ(t) = c1x1(t)+ ¨ ¨ ¨+cnxn(t) is called the general
solution of (6.9).

Theorem 6.11. If φ1,φ2, ¨ ¨ ¨ ,φn are solutions to (6.9), then

det(
[[
φ1

] ...
[
φ2

] ... ¨ ¨ ¨
...
[
φn

]]
)

is either identically zero or else never vanishes.

Recall Theorem 4.3 that for a collection of solutions tφ1, ¨ ¨ ¨ , φnu to a n-th order ODE

y(n) + pn´1(t)y
(n´1) + ¨ ¨ ¨ + p1y

1 + p0y = 0 ,

the derivative of Wronskian W (t) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1 φ2 ¨ ¨ ¨ φn

φ 1
1 φ 1

2 ¨ ¨ ¨ φ 1
n

... . . . ...
φ
(n´1)
1 φ

(n´1)
2 ¨ ¨ ¨ φ

(n´1)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

satisfies

d

dt
W (t) = ´pn´1(t)W (t)

which can be used to show that W (t) is identically zero or else never vanishes. We use the same idea
and try to find the derivative of the determinant W(t) ” det(

[[
φ1

] ...
[
φ2

] ... ¨ ¨ ¨
...
[
φn

]]
). In view of

Remark 6.4, we expect that we can derive

d

dt
W(t) = tr(P)W(t) .



Proof. Let W(t) ” det(
[[
φ1

] ...
[
φ2

] ... ¨ ¨ ¨
...
[
φn

]]
), P = [pij]nˆn, and the i-th component of φj be φ(i)

j ;
that is, [

φj

]
=

[
φ
(1)
j , ¨ ¨ ¨ , φ

(n)
j

]T
.

Since φ(i)1
j =

n
ř

k=1

pikφ
(k)
j , using the properties of the determinants we find that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(1)
n

... ... ...
φ
(j´1)
1 φ

(j´1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j´1)
n

φ
(j)1
1 φ

(j)1
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j)1
n

φ
(j+1)
1 φ

(j+1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j+1)
n

... ... ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(1)
n

... ... ...
φ
(j´1)
1 φ

(j´1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j´1)
n

n
ř

k=1

pjkφ
(k)
1

n
ř

k=1

pjkφ
(k)
2 ¨ ¨ ¨ ¨ ¨ ¨

n
ř

k=1

pjkφ
(k)
n

φ
(j+1)
1 φ

(j+1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j+1)
n

... ... ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“row operations”
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(1)
n

... ... ...
φ
(j´1)
1 φ

(j´1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j´1)
n

pjjφ
(j)
1 pjjφ

(j)
2 ¨ ¨ ¨ ¨ ¨ ¨ pjjφ

(j)
n

φ
(j+1)
1 φ

(j+1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j+1)
n

... ... ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= pjjW .

Therefore,

d

dt
W =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)1
1 φ

(1)1
2 ¨ ¨ ¨ φ

(1)1
n

φ
(2)
1 φ

(2)
2 ¨ ¨ ¨ φ

(2)
n

... . . . ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ φ

(1)
n

φ
(2)1
1 φ

(2)1
2 ¨ ¨ ¨ φ

(2)1
n

φ
(3)
1 φ

(3)
2 ¨ ¨ ¨ φ

(3)
n

... . . . ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+ ¨ ¨ ¨ +

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ φ

(1)
n

φ
(2)
1 φ

(2)
2 ¨ ¨ ¨ φ

(2)
n

... . . . ...
φ
(n´1)
1 φ

(n´1)
2 ¨ ¨ ¨ φ

(n´1)
n

φ
(n)1
1 φ

(n)1
2 ¨ ¨ ¨ φ

(n)1
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= (p11 + ¨ ¨ ¨ + pnn)W = tr(P)W ;

thus
W(t) = exp

( ż t

t0

tr(P)(s) ds
)

W(t0)

which implies that W is identically zero (if W(t0) is zero) or else never vanishes (if W(t0) ‰ 0). ˝

Definition 6.12. If φ1,φ2, ¨ ¨ ¨ ,φn are n solutions to (6.9), the determinant

W(φ1, ¨ ¨ ¨ ,φn)(t) ” det(
[[
φ1

] ...
[
φ2

] ... ¨ ¨ ¨
...
[
φn

]]
)

is called the Wronskian of tφ1, ¨ ¨ ¨ ,φnu.

Theorem 6.13. Let u, v : (α, β) Ñ Rn be real-valued functions. If x(t) = u(t) + iv(t) is a solution
to (6.9), so are u and v.



Proof. Since x(t) = u(t) + iv(t) is a solution to (6.9), x 1(t) ´ P(t)x(t) = 0; thus

0 = u 1(t) + iv 1(t) ´ P(t)
(
u(t) + iv(t)

)
= u 1(t) + iv 1(t) ´ P(t)u(t) ´ iP(t)v(t)

= u 1(t) ´ P(t)u(t) + i
(
v 1(t) ´ P(t)v(t)

)
.

Since u 1(t) ´ P(t)u(t) and v 1(t) ´ P(t)v(t) are both real vectors, we must have

u 1(t) ´ P(t)u(t) = v 1(t) ´ P(t)v(t) = 0 .

Therefore, u and v are both solutions to (6.9). ˝

6.3 Homogeneous Linear Systems with Constant Coefficients

In this section, we consider the equation

x 1(t) = Ax(t) , (6.12)

where A is a constant n ˆ n matrix.

6.3.1 The case that A has distinct real eigenvalues

By Remark 6.4, it is natural to first look at the eigenvalues and eigenvectors of A. Suppose that
A has distinct real eigenvalues λ1, ¨ ¨ ¨ , λn with corresponding eigenvectors v1, ¨ ¨ ¨ , vn. Let Λ =

diag(λ1, λ2, ¨ ¨ ¨ , λn) =


λ1

λ2
. . .

λn

 and P =
[
[v1]

... [v2]
... ¨ ¨ ¨

... [vn]
]
. Then A = PΛP´1 which

implies that
x 1(t) = PΛP´1x(t) .

Therefore, with y(t) denoting the vector P´1x(t), by the fact that y 1(t) = Px 1(t) (since P is a
constant matrix), we have

y 1(t) = Λy(t) . (6.13)

In components, we obtain that for 1 ď j ď n,

y 1
j(t) = λjyj(t)

if y(t) =
(
y1(t), ¨ ¨ ¨ , yn(t)

)T. As a consequence, if y(t0) = y0 = (y01, ¨ ¨ ¨ , y0n)
T is given, we obtain

that the solution to (6.13) (with initial data y(t0) = y0) can be written as

y(t) =


eλ1(t´t0)y01
eλ2(t´t0)y02

...
eλn(t´t0)y0n

 =


eλ1(t´t0)

eλ2(t´t0)

. . .
eλn(t´t0)

y0 ;



thus the solution of (6.12) with initial data x(t0) = x0 (which implies that y0 = P´1x0) can be
written as

x(t) = Py(t) = P


eλ1(t´t0)

eλ2(t´t0)

. . .
eλn(t´t0)

P´1x0 . (6.14)

Defining the exponential of an n ˆ n matrix M by

eM = Inˆn + M +
1

2!
M 2 +

1

3!
M 3 + ¨ ¨ ¨ +

1

k!
M k + ¨ ¨ ¨ =

8
ÿ

k=0

1

k!
M k ,

by the fact that (tΛ)k =

(λ1t)
k

. . .
(λnt)

k

, we find that

etΛ =


8
ř

k=0

1

k!
(λ1t)

k

. . .
8
ř

k=0

1

k!
(λnt)

k

 =

e
λ1t

. . .
eλnt

 .

Therefore, (6.14) implies that the solution to (6.12) with initial data x(t0) = x0 can be expressed as

x(t) = Pe(t´t0)ΛP´1x0 .

Moreover, (6.14) also implies that the solution to (6.12) with initial data x(t0) = x0 can be written
as

x(t) =
[
[v1]

... ¨ ¨ ¨
... [vn]

]
eλ1(t´t0)

eλ2(t´t0)

. . .
eλn(t´t0)


y01...
y0n



=
[
eλ1(t´t0)[v1]

... ¨ ¨ ¨
... eλn(t´t0)[vn]

]y01...
y0n


= y01e

λ1(t´t0)v1 + y02e
λ2(t´t0)v2 + ¨ ¨ ¨ + y0ne

λn(t´t0)vn . (6.15)

In other words, solutions to (6.12) are linear combination of vectors
␣

eλ1(t´t0)v1, ¨ ¨ ¨ , eλn(t´t0)vn

(

.
On the other hand, using that tA = P(tΛ)P´1, we have (tA)k = P(tΛ)kP´1; thus the definition

of exponential of matrices provides that

e(t´t0)A =
8
ÿ

k=0

1

k!

(
(t ´ t0)A

)k
=

8
ÿ

k=0

1

k!

(
P((t ´ t0)Λ)kP´1

)
= P

[ 8
ÿ

k=0

1

k!

(
(t ´ t0)Λ

)k]P´1

= Pe(t´t0)ΛP´1 .



Therefore, the solution to (6.12) with initial data x(t0) = x0 can also be expressed as

x(t) = e(t´t0)Ax0 . (6.16)

We remark that in contrast the solution to x 1(t) = ax(t), where a is a constant, can be written as

x(t) = ea(t´t0)x0 ,

where x0 = x(t0) is the initial condition.

‚ Stability: Recall from Section 2.5 that an equilibrium solution to an autonomous ODE

y 1 = f(y) (6.17)

is a time-independent solution y(t) = ye (thus ye satisfies f(ye) = 0), and the equilibrium solution
y(t) = ye is said to be asymptotically stable if there exists δ ą 0 such that the solution y to (6.17)
with initial data y(t0) = y0, where |y0 ´ ye| ă δ, satisfies

y(t) Ñ ye as t Ñ 8 ,

while the equilibrium solution y(t) = ye is said to be unstable if there exists r ą 0 such that for
all n P N there exists y0 in the ball B

(
ye,

1

n

)
such that the solution y to (6.17) with initial data

y(t0) = y0 satisfies
lim inf
tÑ8

ˇ

ˇy(t) ´ ye
ˇ

ˇ ě r .

Similarly, we can look at the stability of an equilibrium solution to the autonomous system (6.12).
An equilibrium solution to (6.12) is a time-independent solution x(t) = xe for some constant vector
xe. In other words, x(t) = xe is an equilibrium solution if Axe = 0. An equilibrium solution
x(t) = xe to (6.12) is said to be asymptotically stable if there exists δ ą 0 such that the solution x
to (6.12) with initial data x(t0) = x0, where |x0 ´ xe| ă δ, satisfies

x(t) Ñ xe as t Ñ 8 .

If all the eigenvalues λj’s are non-zero, then y(t) = xe = 0 is the only equilibrium solution,
and using (6.15) we find that xe = 0 is an asymptotically stable equilibrium if and only if all the
eigenvalues of A are negative.

‚ Phase plane: When A P M2ˆ2, a special methodology, called the phase plane analysis, can
be applied to determine the stability of an equilibrium to (6.12). Note that for the case under
consideration, (6.12) can, with x = (x1, x2)

T, be written as

d

dt

[
x1
x2

]
= A

[
x1
x2

]
=

[
a11 a12
a21 a22

] [
x1
x2

]
.

1. Phase plane: The x1-x2 plane is called the phase plane.

2. Direction field: The direction field of the system x 1 = Ax is a normalized vector field v (that
is, |v| = 1) such that for each point x in the phase plane v(x) is in the same direction as the
vector Ax.



3. Trajectory: A trajectory of the system x 1 = Ax is a solution curve x(t).

4. Phase portrait: A phase portrait of the system x 1 = Ax is a collection of representative
trajectories.

Example 6.14. Let A =

[
1 1
4 1

]
x, and we consider the system x 1 = Ax. By looking at the direction

field (on the next page), it is not difficult to see that 0 is not a stable equilibrium.

Figure 1: A direction field and a phase portrait of the system x 1 = Ax

On the other hand, we note that the eigenvalues of A are 3 and ´1. Since not all the eigenvalues
of A are negative, we also can conclude that 0 is not a stable equilibrium.

6.3.2 The case that A has complex eigenvalues

Now we consider the system x 1 = Ax when A has complex eigenvalues.

Example 6.15. Find a fundamental set of real-valued solution of the system

x 1 =

[
´1/2 1
´1 ´1/2

]
x . (6.18)

We first diagonalize the matrix A ”

[
´1/2 1
´1 ´1/2

]
and find that

[
´1/2 1
´1 1/2

]
=

[
1 1
i ´i

] [
´1/2 + i 0

0 ´1/2 ´ i

] [
1 1
i ´i

]´1

.

Therefore, Remark 6.4 implies that

x1(t) =

[
1
i

]
e(´1/2+i)t =

[
1
i

]
e´ t

2 (cos t+ i sin t) =
[
e´ t

2 cos t
´e´ t

2 sin t

]
+ i

[
e´ t

2 sin t
e´ t

2 cos t

]
and

x2(t) =

[
1

´i

]
e(´1/2´i)t =

[
1

´i

]
e´ t

2 (cos t ´ i sin t) =
[
e´ t

2 cos t
´e´ t

2 sin t

]
´ i

[
e´ t

2 sin t
e´ t

2 cos t

]
are both solutions to the ODE. By Theorem 6.13, φ1(t) =

[
e´ t

2 cos t
´e´ t

2 sin t

]
and φ2(t) =

[
e´ t

2 sin t
e´ t

2 cos t

]
are

also solutions to (6.18).



To see the linear independence of φ1 and φ2, we note that the Wronskian of φ1 and φ2 is

W(t) =

ˇ

ˇ

ˇ

ˇ

e´ t
2 cos t e´ t

2 sin t
´e´ t

2 sin t e´ t
2 cos t

ˇ

ˇ

ˇ

ˇ

= e´t

which never vanishes. Therefore, tφ1,φ2u is a fundamental set of (6.18).
Since det(A) ‰ 0, 0 is the only equilibrium. By looking at the direction field and phase portrait

of (6.18), we can image that 0 is a stable equilibrium.

Figure 2: The direction field and phase portrait of (6.18)

In fact, since φ1(t),φ2(t) Ñ 0 as t Ñ 8, any solution (which can be expressed as a linear
combination of φ1 and φ2) to (6.18) converges to 0 as t Ñ 8.

In general, if the constant matrix A has complex eigenvalues r˘ = λ ˘ iµ with corresponding
eigenvectors u˘. Then

(A ´ r˘I)u˘ = 0 ô (A ´ Ďr˘I)Ďu˘ = 0 ô (A ´ r¯I)Ďu˘ = 0 .

Therefore, u´ could be chosen as the complex conjugate of u+. Let u+ = a+ ib and u´ = a ´ ib be
eigenvectors associated with r+ and r´, respective, where a, b are real vectors. Let x1(t) = u+e

r+t

and x2(t) = a´e
r´t. Then x1,x2 are both solutions to x 1 = Ax since

x 1
1(t) = r+u+e

r+t = er+t(Au+) = Ax1(t) ,

x 1
2(t) = r´u´e

r´t = er´t(Au´) = Ax2(t) .

On the other hand, using the Euler identity we have

x1(t) = (a + ib)e(λ+iµ)t = (a + ib)eλt(cosµt+ i sinµt)
= (a cosµt ´ b sinµt)eλt + i(a sinµt+ b cosµt)eλt ,

x2(t) = (a ´ ib)e(λ´iµ)t = (a ´ ib)eλt(cosµt ´ i sinµt)
= (a cosµt ´ b sinµt)eλt ´ i(a sinµt+ b cosµt)eλt .

Therefore, Theorem 6.13 implies that φ1(t) ” (a cosµt ´ b sinµt)eλt and φ2(t) ” (a sinµt +
b cosµt)eλt are also solutions to x 1 = Ax.



Now suppose that A is an n ˆ n matrix which has k distinct complex eigenvalues denoted by
r
(1)
˘ , r

(2)
˘ , ¨ ¨ ¨ , r

(k)
˘ and n ´ 2k distinct real eigenvalues r2k+1, ¨ ¨ ¨ , rn with corresponding eigenvectors

u(1)
˘ , u(2)

˘ , ¨ ¨ ¨ , u(k)
˘ , u2k+1, ¨ ¨ ¨ ,uk, where

r (j)
˘ = λj ˘ iµj for some λj, µj P R, and u(j)

+ =
Ěu(j)

´ = a(j) + ib(j) .

Then the general solutions of x 1 = Ax is of the form

x(t) =
k
ÿ

j=1

[
C

(j)
1

(
a(j) cosµjt ´ b(j) sinµjt

)
+ C

(j)
2

(
a(j) sinµjt+ b(j) cosµjt

)]
eλjt +

n
ÿ

j=2k+1

Cjuje
λjt .

If A is a 2 ˆ 2 matrix which has complex eigenvalues, then det(A) ‰ 0; thus 0 is the only
equilibrium of the system x 1 = Ax. Now we check the stability of this equilibrium. Let u, v be
given as above. Then the Wronskian of u, v never vanishes. In fact,

W (u, v)(t)

=

ˇ

ˇ

ˇ

ˇ

(a1 cosµt ´ b1 sinµt)eλt (a1 sinµt+ b1 cosµt)eλt
(a2 cosµt ´ b2 sinµt)eλt (a2 sinµt+ b2 cosµt)eλt

ˇ

ˇ

ˇ

ˇ

= e2λt
[
(a1 cosµt ´ b1 sinµt)(a2 sinµt+ b2 cosµt) ´ (a2 cosµt ´ b2 sinµt)(a1 sinµt+ b1 cosµt)

]
= e2λt(a1b2 ´ a2b1) ‰ 0 ;

thus tu, vu is a linearly independent set. Moreover, Theorem 6.9 implies that every solution to
x 1 = Ax can be expressed as a unique linear combination of u and v (thus every solution to
x 1 = Ax can be expressed as a unique linear combination of φ1 and φ2). Therefore, we immediately
find that 0 is an asymptotically stable equilibrium if and only if λ ă 0.

Example 6.16. Consider the two-mass three-spring system

m1
d2x1
dt2

= ´(k1 + k2)x1 + k2x2 + F1(t) ,

m2
d2x2
dt2

= k2x1 ´ (k2 + k3)x2 + F2(t)

which is used to model the motion of two objects shown in the figure below.

Figure 3: A two-mass three-spring system

Letting y1 = x1, y2 = x2, y3 = x 1
1 and y4 = x 1

2, we find that y = (y1, y2, y3, y4)
T satisfies

y 1 =


0 0 1 0
0 0 0 1

´
k1 + k2
m1

k2
m1

0 0

k2
m2

´
k2 + k3
m2

0 0

y +


0
0

F1(t)

m1
F2(t)

m2

 .



Now suppose that F1(t) = F2(t) = 0, and m1 = 2, m2 =
9

4
, k1 = 1, k2 = 3, k3 =

15

4
. Letting

A =


0 0 1 0
0 0 0 1

´2
3

2
0 0

4

3
´3 0 0

, then y 1 = Ay. The eigenvalue r of A satisfies

det(A ´ rI) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´r 0 1 0
0 ´r 0 1

´2
3

2
´r 0

4

3
´3 0 ´r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´r 0 1
3

2
´r 0

´3 0 ´r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ´r 1

´2
3

2
0

4

3
´3 ´r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´r(´r3 ´ 3r) + (6 ´ 2 + 2r2) = r4 + 5r2 + 4 = 0 .

Therefore, ˘i,˘2i are eigenvalues of A. Let r1 = i, r2 = ´i, r3 = 2i and r4 = ´2i. Corresponding
eigenvectors can be chosen as

u1=


3
2
3i
2i

=

3
2
0
0

+i

0
0
3
2

,u2 =


3
2
0
0

´i


0
0
3
2

,u3 =


3

´4
6i

´8i

=


3
´4
0
0

+i


0
0
6

´8

, and u4 =


3

´4
0
0

´i


0
0
6

´8

.
Therefore, with a, b, c,d denoting the vectors (3, 2, 0, 0)T, (0, 0, 3, 2)T, (3,´4, 0, 0)T and (0, 0, 6,´8)T,
respectively, the general solution to y 1 = Ay is

y(t) = C1(a cos t ´ b sin t) + C2(a sin t+ b cos t) + C3(c cos 2t ´ d sin 2t) + C4(c sin 2t+ d cos 2t) .

In particular,[
x1
x2

]
=

[
y1
y2

]
= C1

[
3 cos t
2 cos t

]
+ C2

[
3 sin t
2 sin t

]
+ C3

[
3 cos 2t

´4 cos 2t

]
+ C4

[
3 sin 2t

´4 sin 2t

]
.

‚ Some conclusions:

1. The phase space is four dimensional.

2. Each (C1, C2, C3, C4) corresponds to a trajectory in the phase space, and by the periodicity of
the solution, each trajectory is a closed curve. Therefore, we know that the equilibrium 0 is
not asymptotically stable.

3. When the the motion of the two masses corresponds to that (C3, C4) = (0, 0), x2 =
2

3
x1; thus

for these kind of motions the two masses move back and forth together and always moves in
the same direction, but the second mass only move two-thirds as far as the first mass.

4. When the the motion of the two masses corresponds to that (C1, C2) = (0, 0), x2 = ´
4

3
x1;

thus for these kind of motions the two masses move in opposite direction, and the second mass
moves four-thirds as far as the first mass.

5. The two kinds of motions described above are called fundamental modes of vibration for
the two-mass system, and for general initial conditions the solution is a combination of two
fundamental modes.



6.3.3 The case that A has repeated eigenvalues

When A is diagonalizable, the discussion is pretty much the same as in the previous two sub-sections:
if A = PΛP´1, then the solution to x 1 = Ax with initial data x(t0) = x0 can be written as

x(t) = P exp((t ´ t0)Λ)P´1x0 .

So we focus on the case that A is an nˆn matrix which is not diagonalizable. In this case, there must
be at least one eigenvalue λ of A such that the dimension of the eigenspace

␣

v P Cn
ˇ

ˇ (A´λI)v = 0
(

is smaller than the algebraic multiplicity of λ.

Example 6.17. Let A =

[
1 ´1
1 3

]
and consider the system x 1 = Ax. We first compute the

eigenvalues (and the corresponding eigenvectors) and find that 2 is the only eigenvalue (with algebraic
multiplicity 2), while u = [1,´1]T is the only eigenvector associated with this eigenvalue. Therefore,
A is not diagonalizable.

Let x = [x, y]T. Then x, y satisfy

x 1 = x ´ y , (6.19a)

y 1 = x+ 3y . (6.19b)

Using (6.19a) we obtain y = x ´ x 1; thus applying this identity to (6.19b) we find that x satisfies

x 1 ´ x 11 = x+ 3(x ´ x 1) or equivalently, x 11 ´ 4x 1 + 4x = 0 .

The characteristic equation to the ODE above is r2 ´ 4r + 4 = 0 (which should be the same as the
characteristic equation for the matrix A); thus 2 is the only zero. From the discussion in Section
3.4, we find that the solution to ODE (that x satisfies) is

x(t) = C1e
2t + C2te

2t .

Using y = x ´ x 1, we find that the general solution to x 1 = Ax is

x =

[
x
y

]
=

[
C1e

2t + C2te
2t

´(C1 + C2)e
2t ´ C2te

2t

]
= C1

[
1

´1

]
e2t + C2

[
0
1

]
e2t + C2

[
1

´1

]
te2t .

Letting v = [0, 1]T, we have x = (C1 + C2t)e
2tu + C2e

2tv.

Given an large non-diagonalizable square matrix A, it is almost impossible to carry out the same
computation as in Example 6.17, so we need to find another systematic way to find the solution to
x 1 = Ax. The following theorem states that x(t) given by (6.16) is always the solution to x 1 = Ax
with initial data x(t0) = x0, even if A is not diagonalizable.

Theorem 6.18. Let A be a square real constant matrix. Then the solution to x 1 = Ax with initial
data x(t0) = x0 is given by

x(t) = e(t´t0)Ax0 . (6.16)



Proof. Let y(t) = e(t´t0)Ax0. Then

y(t) =
(

I + (t ´ t0)A +
(t ´ t0)

2

2!
A2 + ¨ ¨ ¨

)
y0

= y0 + (t ´ t0)Ay0 +
(t ´ t0)

2

2!
A2y0 + ¨ ¨ ¨ +

(t ´ t0)
k

k!
Aky0 + ¨ ¨ ¨ .

Therefore,

y 1(t) = Ay0 + (t ´ t0)Ay0 + ¨ ¨ ¨ +
(t ´ t0)

k´1

k!
Aky0 + ¨ ¨ ¨

= A
(

I + (t ´ t0)A +
(t ´ t0)

2

2!
A2 + ¨ ¨ ¨

)
y0 = Ay

which implies that y is a solution to x 1 = Ax with initial data y(t0) = e0¨Ax0 = x0. By the
uniqueness of the solution, we know that the solution to (6.12) with initial data x(t0) = x0 is given
by (6.16). ˝

Having established Theorem 6.18, we now focus on how to compute the exponential of a square
matrix if it is not diagonizable.

For a 2 ˆ 2 matrix A with repeated eigenvalue λ whose corresponding eigenvector is u (but not
more linearly independent eigenvector), by Example 6.17 we can conjecture that the general solution
to x 1 = Ax is

x(t) = (C1 + C2t)e
λtu + C2e

λtv

for some unknown vector v. Now let us see what role v plays.
Since x 1 = Ax, we must have

λ(C1 + C2t)e
λtu + C2e

λtu + C2λe
λtv = (C1 + C2t)e

λtAu + C2e
λtAv .

By the fact that Au = λu and C2 is a general constant, the identity above implies that

u = (A ´ λI)v .

As a consequence, v satisfies (A ´ λI)2v = 0. Moreover, we must have v ∦ u (for otherwise u = 0)
which implies that u, v are linearly independent.

Let P =
[
u ... v

]
, and Λ =

[
λ 1
0 λ

]
. Then AP = PΛ. Since u, v are linearly independent, P is

invertible; thus
A = PΛP´1 .

Therefore, the same computations used in Section 6.3.1 shows that

e(t´t0)A = Pe(t´t0)ΛP´1 .

Finally, taking t0 = 0 (since the initial time could be translated to 0), then observing that

Λk =

[
λk kλk´1

0 λk

]
, (6.20)



we conclude that

etΛ =
8
ÿ

k=0

tk

k!
Λk =


8
ř

k=0

tk

k!
λk

8
ř

k=1

tk

(k ´ 1)!
λk´1

0
8
ř

k=0

tk

k!
λk

 =

[
eλt teλt

0 eλt

]
. (6.21)

Having obtained the identity above, using (6.16) one immediately see that the general solution to
x 1 = Ax is given by

x(t) =
[
u ... v

] [eλt teλt

0 eλt

] [
C1

C2

]
.

In the following, we develop a general theory to compute e(t´t0)A for a square matrix A.

Definition 6.19. A square matrix A is said to be of Jordan canonical form if

A =


A1 O ¨ ¨ ¨ O
O A2

. . . O
... . . . . . . ...

O ¨ ¨ ¨ O Aℓ

 , (6.22)

where each O is zero matrix, and each Ai is a square matrix of the form [λ] or

λ 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 λ 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
... 0

. . . . . . 0 ¨ ¨ ¨
...

... ... . . . . . . . . . 0
...

... ... . . . . . . . . . 1 0

... ... . . . . . . 0 λ 1
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 λ


for some eigenvalue λ of A.

We note that the diagonal elements of different Ai might be the same, and a diagonal matrix is
of Jordan canonical form. Moreover, if A is of Jordan canonical form given by (6.22), then

Ak =


Ak

1 O ¨ ¨ ¨ O
O Ak

2
. . . O

... . . . . . . ...
O ¨ ¨ ¨ O Ak

ℓ

 and etA =


eA1 O ¨ ¨ ¨ O
O eA2

. . . O
... . . . . . . ...

O ¨ ¨ ¨ O eAℓ

 . (6.23)

Example 6.20. Let Λ =

λ 0 0
0 λ 1
0 0 λ

. Then Λ is of Jordan canonical form, and using (6.20) and

(6.21) we conclude that

etΛ =

eλt 0 0
0 eλt teλt

0 0 eλt

 .



Example 6.21. Let Λ =

λ 1 0
0 λ 1
0 0 λ

. Then Λ is of Jordan canonical form, and

Λk =

λk kλk´1 k(k ´ 1)

2
λk´2

0 λk kλk´1

0 0 λk

 .

Therefore,

etΛ =



8
ř

k=0

1

k!
tkλk

8
ř

k=1

1

(k ´ 1)!
tkλk´1

8
ř

k=2

1

2(k ´ 2)!
tkλk´1

0
8
ř

k=0

1

k!
tkλk

8
ř

k=1

1

(k ´ 1)!
tkλk´1

0 0
8
ř

k=0

1

k!
tkλk

 =

eλt teλt
1

2
t2eλt

0 eλt teλt

0 0 eλt

 .

In general, if Λ =



λ 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 λ 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
... 0

. . . . . . 0 ¨ ¨ ¨
...

... ... . . . . . . . . . 0
...

... ... . . . . . . . . . 1 0

... ... . . . . . . 0 λ 1
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 λ


is an m ˆ m matrix, then with Ck

m denoting

the number k!

m!(k ´ m)!
(if k ě m, and 0 if k ă m), we have

Λk =



λk kλk´1 Ck
2λ

k´2 ¨ ¨ ¨ ¨ ¨ ¨ Ck
m´1λ

k´m+1

0 λk kλk´1 . . . . . . Ck
m´2λ

k´m+2

... . . . . . . . . . . . . ...

... . . . . . . . . . . . . ...

... ¨ ¨ ¨ ¨ ¨ ¨ 0 λk kλk´1

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 λk


(which can be shown by induction using Pascal’s formula). As a consequence,

etΛ =



eλt teλt
1

2
t2eλt ¨ ¨ ¨ ¨ ¨ ¨

tm´1

(m ´ 1)!
eλt

0 eλt teλt
. . . . . . tm´2

(m ´ 2)!
eλt

... . . . . . . . . . . . . ...

... . . . . . . . . . . . . ...

... ¨ ¨ ¨ ¨ ¨ ¨ 0 eλt teλt

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 eλt


. (6.24)

The reason for introducing the Jordan canonical form and computing the exponential of matrices
of Jordan canonical form is because of the following



Theorem 6.22. Every square matrix is similar to a matrix of Jordan canonical form. In other
words, if A P Mnˆn, then there exists an invertible n ˆ n matrix P and a matrix Λ of Jordan
canonical form such that

A = PΛP´1 .

Given a Jordan decomposition A = PΛP´1, we have etA = PetΛP´1 in which the exponential
of etΛ can be obtained using (6.23) and (6.24); thus the computation of the exponential of a general
square matrix A becomes easier as long as we know how to find the decomposition A = PΛP´1.

‚ How to obtain a Jordan decomposition of a square matrix A?

Definition 6.23 (Generalized Eigenvectors). Let A P Mnˆn. A vector v P Cn is called a generalized
eigenvector of A associated with λ if (A ´ λI)pv = 0 for some positive integer p.

If v is a generalized eigenvector of A associated with λ, and p is the smallest positive integer for
which (A ´ λI)pv = 0, then (A ´ λI)p´1v is an eigenvector of A associated with λ. Therefore, λ is
an eigenvalue of A.

Definition 6.24 (Generalized Eigenspaces). Let A P Mnˆn and λ be an eigenvalue of A. The
generalized eigenspace of A associated with λ, denoted by Kλ, is the subset of Cn given by

Kλ ”
␣

v P Cn
ˇ

ˇ (A ´ λI)pv = 0 for some positive integer p
(

.

‚ The construction of Jordan decompositions: Let A P Mnˆn be given.

Step 1: Let λ1, λ2, ¨ ¨ ¨ , λk be all the eigenvalues of A with multiplicity m1, m2, ¨ ¨ ¨ , mk. We first
focus on how to determine the block

Λj =


Λ

(1)
j O ¨ ¨ ¨ O

O Λ
(2)
j

. . . O
... . . . . . . ...

O ¨ ¨ ¨ O Λ
(rj)
j

 ,
whose diagonal is a fixed eigenvalue λj with multiplicity mj for some j P t1, 2, ¨ ¨ ¨ , ku, and the
size of Λ(i)

j is not smaller than the size of Λ(i+1)
j for i = 1, ¨ ¨ ¨ , rj ´1. Once all Λ1

js are obtained,
then

Λ =


Λ1 O ¨ ¨ ¨ O
O Λ2

. . . O
... . . . . . . ...

O ¨ ¨ ¨ O Λk

 .

Step 2: Let Ej and Kj denote the eigenspace and the generalized eigenspace associated with λj,
respectively. Then rj = dim(Ej) and mj = dim(Kj). Determine the smallest integer nj such
that

mj = dim
(
Ker(A ´ λjI)nj

)
.



Find the value
p
(ℓ)
j = dim(Ker(A ´ λjI)ℓ

)
for ℓ P t1, 2, ¨ ¨ ¨ , nju

and set p(0)j = 0. Construct an rj ˆ nj matrix whose entries only takes the value 0 or 1 and
for each ℓ P t1, ¨ ¨ ¨ , nju only the first p(ℓ)j ´ p

(ℓ´1)
j components takes value 1 in the ℓ-th column

of this matrix. Let s(i)j be the sum of the i-th row of the matrix just obtained. Then Λ
(i)
j is a

s
(i)
j ˆ s

(i)
j matrix.

Step 3: Next, let us determine matrix P. Suppose that

P =
[
u(1)

1

... ¨ ¨ ¨
... u(m1)

1

... u(1)
2

... ¨ ¨ ¨
... u(m2)

2

... u(1)
3

... ¨ ¨ ¨
... u(n)

k

]
.

Then A
[
u(1)

j

... ¨ ¨ ¨
... u(mj)

j

]
=

[
u(1)

j

... ¨ ¨ ¨
... u(mj)

j

]
Λj . Divide

␣

u(1)
j , ¨ ¨ ¨ ,u(mj)

j

(

into rj groups:

␣

u(1)
j , ¨ ¨ ¨ ,u(s

(1)
j )

j

(

,
␣

u(s
(1)
j +1)

j , ¨ ¨ ¨ ,u(s
(1)
j +s

(2)
j )

j

(

, ¨ ¨ ¨ , and
␣

u(s
(1)
j +¨¨¨+s

(rj´1)

j +1)

j , ¨ ¨ ¨ ,u(mj)
j

(

.

For each ℓ P t1, ¨ ¨ ¨ , rju, we let the ℓ-th group refer to the group of vectors
!

u(s
(1)
j +¨¨¨+s

(ℓ´1)
j +1)

j , ¨ ¨ ¨ ,u(s
(1)
j +¨¨¨+s

(ℓ)
j )

j

)

.

We then set up the first group by picking up an arbitrary non-zero vectors v1 P Ker
(
(A ´

λjI)s
(1)
j zKer

(
(A ´ λjI)s

(1)
j ´1

)
and let

u(i)
j = (A ´ λjI)s

(1)
j ´iv1 for i P t1, ¨ ¨ ¨ , s

(1)
j ´ 1u .

Inductively, once the first ℓ groups of vectors are set up, pick up an arbitrary non-zero vectors
vℓ+1 P Ker

(
(A´λjI)s

(ℓ+1)
j zKer

(
(A´λjI)s

(ℓ+1)
j ´1

)
such that vℓ+1 is not in the span of the vectors

from the first ℓ groups, and define

u(s
(1)
j +¨¨¨+s

(ℓ)
j +i)

j = (A ´ λjI)s
(ℓ+1)
j ´ivℓ+1 for i P t1, ¨ ¨ ¨ , s

(ℓ+1)
j ´ 1u .

This defines the (ℓ + 1)-th group. Keep on doing so for all ℓ ď rj and for j P t1, ¨ ¨ ¨ , ku, we
complete the construction of P.

Example 6.25. Find the Jordan decomposition of the matrix A =


4 ´2 0 2
0 6 ´2 0
0 2 2 0
0 ´2 0 6

.

If λ is an eigenvalue of A, then λ satisfies

0 = det(A ´ λI) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4 ´ λ ´2 0 2
0 6 ´ λ ´2 0
0 2 2 ´ λ 0
0 ´2 0 6 ´ λ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= (4 ´ λ)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6 ´ λ ´2 0
2 2 ´ λ 0

´2 0 6 ´ λ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= (4 ´ λ)
[
(6 ´ λ)2(2 ´ λ) + 4(6 ´ λ)

]
= (6 ´ λ)(4 ´ λ)

[
(6 ´ λ)(2 ´ λ) + 4

]
= (λ ´ 4)3(λ ´ 6) .



Let λ1 = 4, λ2 = 6, m1 = 3 and m2 = 1. Note that

dim
(
Ker(A ´ 4I)

)
= 2 and dim

(
Ker(A ´ 4I)2

)
= 3 .

Therefore, n1 = 2 and p
(1)
1 = 2, p(2)1 = 4. We then construct the matrix according to Step 2 above,

and the matrix is a 2ˆ 2 matrix given by
[
1 1
1 0

]
. This matrix provides that s1 = 2 and s2 = 1; thus

the block associated with the eigenvalue λ = 4, is

4 1 0
0 4 0
0 0 4

 . Therefore, Λ =


4 1 0 0
0 4 0 0
0 0 4 0
0 0 0 6

 .
First, we note that the eigenvector associated with λ = 6 can be chosen as (1, 0, 0, 1)T. Computing

Ker
(
(A ´ 4I)

)
and Ker

(
(A ´ 4I)2

)
, we find that

Ker
(
(A ´ 4I)

)
= span

(
(1, 0, 0, 0)T, (0, 1, 1, 1)T) ,

Ker
(
(A ´ 4I)2

)
= span

(
(1, 0, 0, 0)T, (0, 1, 0, 2)T, (0, 1, 2, 0)T) .

We note that either (0, 1, 0, 2)T or (0, 1, 2, 0)T is in Ker
(
(A ´ 4I)

)
, we can choose v = (0, 1, 0, 2)T.

Then (A ´ 4I)v = (2, 2, 2, 2)T. Finally, for the third column of P we can choose either (1, 0, 0, 0)T or
(0, 1, 1, 1)T (or even their linear combination) since these vectors are not in the span of (2, 2, 2, 2)T

and (0, 1, 0, 2). Therefore,

P =


2 0 1 1
2 1 0 0
2 0 0 0
2 2 0 1

 or P =


2 0 0 1
2 1 1 0
2 0 1 0
2 2 1 1


satisfies A = PΛP´1.

Example 6.26. Let A be given in Example 6.25, and consider the system x 1 = Ax. Let u1 =

(2, 2, 2, 2)T, u2 = (0, 1, 0, 2)T, u3 = (1, 0, 0, 0)T and u4 = (1, 0, 0, 1)T. Then the general solution to
x 1 = Ax is given by

x(t) =
[
u1

... u2
... u3

... u4

]
etΛ(P´1x0)

=
[
u1

... u2
... u3

... u4

] 
e4t te4t 0 0
0 e4t 0 0
0 0 e4t 0
0 0 0 e6t



C1

C2

C3

C4



=
[
u1

... u2
... u3

... u4

] 
C1e

4t + C2te
4t

C2e
4t

C3e
4t

C4e
6t


= (C1e

4t + C2te
4t)u1 + C2e

4tu2 + C3e
4tu3 + C4e

6tu4 ,

where Λ is given in Example 6.25, x0 is the value of x at t = 0 (which can be arbitrarily given), and
(C1, C2, C3, C4)

T = P´1x0.



Example 6.27. Let A =


a 0 1 0 0
0 a 0 1 0
0 0 a 0 1
0 0 0 a 0
0 0 0 0 a

. Then the characteristic equation of A is (a ´ λ)5; thus

λ = a is the only eigenvalue of A. First we compute the kernel of (A ´ aI)p for various p. With
ei = (0, ¨ ¨ ¨ , 0

looomooon

(i ´ 1)-slots

, 1, 0, ¨ ¨ ¨ , 0)T denoting the i-th vector in the standard basis of R5, we find that

Ker((A ´ aI)) =
␣

e1

ˇ

ˇ x1, x2 P R
(

= span(e1, e2) ,

Ker((A ´ aI)2) =
␣

(x1, x2, x3, x4, 0)
T ˇ

ˇx1, x2, x3, x4 P R
(

= span(e1, e2, e3, e4) ,

Ker((A ´ aI)3) = R5 = span(e1, e2, e3, e4, e5) .

The matrix obtained by Step 2 is
[
1 1 1
1 1 0

]
which implies that the two Jordan blocks is of size 3ˆ 3

and 2 ˆ 2. Therefore,

Λ =


a 1 0 0 0
0 a 1 0 0
0 0 a 0 0
0 0 0 a 1
0 0 0 0 a

 .
We note that e5 P Ker

(
(A´aI)3

)
zKer

(
(A´aI)2

)
; thus the first three column of P can be chosen

as
P(1 : 3) =

[
(A ´ aI)2e5

... (A ´ aI)e5
... e5

]
=

[
e1

... e3
... e5

]
.

To find the last two columns, we try to find a vector w P Ker
(
(A ´ aI)2

)
zKer

(
(A ´ aI)

)
so that w is

not in the span of te1, e3, e5u. Therefore, we may choose w = e4; thus the last two columns of P is

P(4 : 5) =
[
(A ´ aIe4

... e4

]
=

[
e2

... e4

]
which implies that

P =


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

 .
Example 6.28. Let A be given in Example 6.25, and consider the system x 1 = Ax. Following the
procedure in Example 6.26, we find that the general solution to x 1 = Ax is given by

x(t) =
[
e1

... e3
... e5

... e2
... e4

]

eat teat

t2

2
eat 0 0

0 eat teat 0 0
0 0 eat 0 0
0 0 0 eat teat

0 0 0 0 eat



C1

C2

C3

C4

C5


=

(
C1e

at + C2te
at +

C3

2
t2eat

)
e1 + (C2e

at + C3te
at)e3 + C3e

ate5 + (C4e
at + C5te

at)e2 + C5e
ate4 .



6.4 Fundamental Matrices

In Definition 6.10 we have talked about the fundamental matrix of system x 1 = P(t)x. It is defined as
a square matrix whose columns form an linearly independent set of solutions to the ODE x 1 = P(t)x.
Let Ψ be a fundamental matrix of x 1 = P(t)x. Since each column of Ψ is a solution to the ODE,
we must have

Ψ1(t) = P(t)Ψ(t) .

By the linearly independence of columns of Ψ, we must have

Ψ1(t)Ψ(t)´1 = P(t) for all t in the interval of interest. (6.25)

A special kind of fundamental matrix Φ, whose initial value Φ(t0) is the identity matrix, is in
particular helpful for constructing solutions to

x 1 = P(t)x , (6.26a)

x(t0) = x0 . (6.26b)

In fact, if Φ is a fundamental matrix of system x 1 = P(t)x satisfying Φ(t0) = I, then the solution
to (6.26) is given by

x(t) = Φ(t)x0 .

It should be clear to the readers that the i-th column of Φ is the solution to

x 1 = P(t)x ,

x(t0) = ei ,

where ei = (0, ¨ ¨ ¨ , 0
looomooon

(i ´ 1)-slots

, 1, 0, ¨ ¨ ¨ , 0)T is the i-th vector in the standard basis of Rn (here we assume that

the size of P is n ˆ n). Moreover, for each fundamental matrix Ψ of (6.26a), we have the relation

Ψ(t) = Φ(t)Ψ(t0) .

Therefore, given a fundamental matrix Ψ, we can easily construct the fundamental matrix Φ(t) by

Φ(t) = Ψ(t)Ψ(t0)
´1 .

Caution: Based on the discussions above and the information that the solution to the scalar equation

x1 = p(t)x with initial data x(t0) = x0 is x(t) = exp
( ż t

t0

p(s) ds
)
x0, one might start guessing that

the solution to (6.26) is

x(t) = exp
( ż t

t0

P(s) ds
)

x0 . (6.27)

This is in fact NOT TRUE because in general P(s)P(t) ‰ P(t)P(s). Nevertheless, if P(s)P(t) =

P(t)P(s) for all s and t, then the solution to (6.26) is indeed given by (6.27). To see this, we first
notice that

P(t)
( ż t

t0

P(s) ds
)
=

ż t

t0

P(t)P(s) ds =

ż t

t0

P(s)P(t) ds =
( ż t

t0

P(s) ds
)

P(t) ;



thus

d

dt

( ż t

t0

P(s) ds
)k

= P(t)
( ż t

t0

P(s) ds
)k´1

+
( ż t

t0

P(s) ds
)

P(t)
( ż t

t0

P(s) ds
)k´2

+ ¨ ¨ ¨

+
( ż t

t0

P(s) ds
)k´2

P(t)
( ż t

t0

P(s) ds
)
+
( ż t

t0

P(s) ds
)k´1

P(t)

= kP(t)
( ż t

t0

P(s) ds
)k´1

.

Therefore, the function given by (6.27) satisfies that

d

dt
exp

( ż t

t0

P(s) ds
)

x0 =
d

dt

[ 8
ÿ

k=0

1

k!

( ż t

t0

P(s) ds
)k]

x0 =
8
ÿ

k=1

1

(k ´ 1)!
P(t)

( ż t

t0

P(s) ds
)k´1

x0

= P(t)
( 8
ÿ

k=0

1

k!

( ż t

t0

P(s) ds
)k)

x0 = P(t) exp
( ż t

t0

P(s) ds
)
.

On the other hand, x(t0) = x0. As a consequence, x(t) given by (6.27) is the solution to (6.26).
Now suppose that P(t) = A is time-independent. Then by Theorem 6.18 we find that the

fundamental matrix Φ(t) is given by

Φ(t) = Pe(t´t0)ΛP´1 ,

where PΛP´1 is a Jordan decomposition of A. Moreover,

Φ(t)Φ(s) = Φ(t)Φ(s) @ t, s P R . (6.28)

To see this, let t1, t2 be given real number, and x0 P Rn be a vector. By the existence and uniqueness
theorem (Theorem 6.5), the solution to system x 1 = Ax with initial data x(t0) = x0 is given by
x(t) = Φ(t)x0 for all t P R.

On the other hand, again by the uniqueness of the solution, the solution φ1 to

φ 1 = Aφ ,

φ(t0) = x(t1) ,

and the solution φ2 to

φ 1 = Aφ ,

φ(t0) = x(t2) ,

satisfy that φ1(t) = x(t´ t0+ t1) and φ2(t) = x(t´ t0+ t2). Moreover, using the fundamental matrix
Φ we also have φ1(t) = Φ(t)x(t1) and φ2(t) = Φ(t)x(t2). Therefore,

Φ(t2)Φ(t1)x0 = Φ(t2)x(t1) = φ1(t2) = x(t1 + t2 ´ t0) = φ2(t1) = Φ(t1)Φ(t2)x0 .

Since x0 is arbitrary, we must have Φ(t2)Φ(t1) = Φ(t1)Φ(t2); thus (6.28) is concluded.



6.5 Non-homogeneous Linear Systems

Now we consider the non-homogeneous linear system

x 1 = P(t)x + g(t) , (6.29a)

x(t0) = x0 , (6.29b)

for some non-zero vector-valued forcing g. As in Definition 3.13 we said that a vector-valued function
xp(t) is called a particular solution to (6.29a) if xp satisfies (6.29a). As long as a particular solution
to (6.29a) is obtained, then the general solution to (6.29a) is given by

x(t) = Ψ(t)C + xp(t) ,

where Ψ is a fundamental matrix of x 1 = P(t)x, and C is an arbitrary constant vector. to satisfy
the initial data (6.29b), we let C = Ψ(t0)

´1
(
x0 ´ xp(t0)

)
and the solution to (6.29) is

x(t) = Ψ(t)Ψ(t0)
´1
(
x0 ´ xp(t0)

)
+ xp(t) .

To get some insight of solving (6.29), let us first assume that P(t) = A is a time-independent
matrix. In such a case,

e´tAx 1 = e´tA(Ax + g(t)
)

or e´tA(x 1 ´ Ax) = e´tAg(t) .

Since d

dt
e´tA = ´Ae´tA = ´e´tAA, the equality above implies that

(
e´tAx

) 1
= e´tAg(t) ñ e´tAx(t) ´ e´t0Ax(t0) =

ż t

t0

e´sAg(s) ds .

Therefore, the solution to (6.29) is

x(t) = etAe´t0Ax0 +

ż t

t0

etAe´sAg(s) ds .

Using fundamental matrices Ψ of system x 1 = P(t)x, we have the following similar result.

Theorem 6.29. Let Ψ(t) be a fundamental matrix of system x 1 = P(t)x, and φ(t) be the solution
to the non-homogeneous linear system

x 1 = P(t)x + g(t) , (6.30a)

x(t0) = x0 . (6.30b)

Then φ(t) = Ψ(t)Ψ(t0)
´1x0 +

ż t

t0

Ψ(t)Ψ(s)´1g(s) ds.

Proof. We directly check that the solution φ given above satisfies (6.30). It holds trivially that
φ(t0) = x0, so it suffices to show the validity of (6.30a) with φ replacing x.



Differentiating φ and using (6.25), we find that

φ1(t) = Ψ1(t)Ψ(t0)
´1x0 +Ψ(t)Ψ(t)´1g(t) +

ż t

t0

Ψ1(t)Ψ(s)´1g(s) ds

= Ψ1(t)Ψ(t)´1
(
Ψ(t)Ψ(t0)

´1x0 +

ż t

t0

Ψ(t)Ψ(s)´1g(s) ds
)
+ g(t)

= P(t)φ(t) + g(t)

which shows that φ satisfies (6.30a). ˝

‚ Another point of view - variation of parameters: Let Ψ be a fundamental matrix of x 1 = P(t)x.
We look for a particular solution to x 1 = P(t)x + g(t). By the method of variation of parameters
we can assume that a particular solution can be expressed as

x(t) = Ψ(t)u(t)

for some vector-valued function u. Since x is a solution, we must have

Ψ1(t)u(t) +Ψ(t)u 1(t) = P(t)Ψ(t)u(t) + g(t) .

Since Ψ 1 = P(t)Ψ, we obtain that u satisfies

u 1(t) = Ψ(t)´1g(t) . (6.31)

Therefore, we can choose u(t) =
ż

Ψ(t)´1g(t) dt and a particular solution to x 1 = P(t)x + g(t) is
given by

xp(t) = Ψ(t)
( ż

Ψ(t)´1g(t) dt
)
. (6.32)

On the other hand, (6.31) implies that u(t) =
ż t

t0

Ψ(s)´1g(s) ds+u(t0), where u(t0) is the value

of u at the initial time given by u(t0) = Ψ(t0)
´1x(t0); thus the solution to x 1 = P(t)x + g(t) with

initial data x(t0) = x0 is

x(t) = Ψ(t)
( ż t

t0

Ψ(s)´1g(s) ds+ u(t0)
)

= Ψ(t)Ψ(t0)
´1x0 +

ż t

t0

Ψ(t)Ψ(s)´1g(s) ds .

Example 6.30. Let A =

[
´2 1
1 ´2

]
and g(t) =

[
2e´t

3t

]
. Find a particular solution of x 1 = Ax+g(t).

We first find the Jordan decomposition of A. The characteristic equation of A is (´2´r)2´1 = 0

which implies that λ = ´1 and λ = ´3 are eigenvalues of A. The corresponding eigenvectors are
(1, 1)T and (1,´1)T; thus

A =

[
1 1
1 ´1

] [
´1 0
0 ´3

] [
1 1
1 ´1

]T

;

thus

etA =

[
1 1
1 ´1

] [
e´t 0
0 e´3t

] [
1 1
1 ´1

]T

.



The general solution to x 1 = Ax is

x(t) =
[
1 1
1 ´1

] [
e´t 0
0 e´3t

] [
C1

C2

]
= C1e

´t

[
1
1

]
+ C2e

´3t

[
1

´1

]
.

1. To obtain a particular solution, we can use (6.32) and find that

xp(t) =

[
e´t e´3t

e´t ´e´3t

]
ż
[
e´t e´3t

e´t ´e´3t

]´1 [
2e´t

3t

]
dt

=
1

2

[
e´t e´3t

e´t ´e´3t

]
ż
[
et et

e3t ´e3t

] [
2e´t

3t

]
dt

=
1

2

[
e´t e´3t

e´t ´e´3t

]
ż
[

2 + 3tet

2e2t ´ 3te3t

]
dt .

Since
ż

teλt dt =
t

λ
eλt ´

1

λ2
eλt, we obtain that

xp(t) =
1

2

[
e´t e´3t

e´t ´e´3t

][ 2t+ 3(tet ´ et)

e2t ´ (te3t ´
1

3
e3t)

]
=

1

2

2te´t + 3(t ´ 1) + e´t ´ (t ´
1

3
)

2te´t + 3(t ´ 1) ´ e´t + (t ´
1

3
)


2. Without memorizing the formula (6.32) for a particular solution, we can use the method of

variation of parameters by assuming that

xp(t) = C1(t)e
´t

[
1
1

]
+ C2(t)e

´3t

[
1

´1

]
for some scalar functions C1, C2. Then the equation x 1

p = Axp + g(t) implies that

C 1
1(t)e

´t

[
1
1

]
´ C1(t)e

´t

[
1
1

]
+ C 1

2(t)e
´3t

[
1

´1

]
´ 3C2(t)e

´3t

[
1

´1

]
= ´C1(t)e

´t

[
1
1

]
´ 3C2(t)e

´3t

[
1

´1

]
+

[
2e´t

3t

]
.

As a consequence

C 1
1(t)e

´t

[
1
1

]
+ C 1

2(t)e
´3t

[
1

´1

]
=

[
2e´t

3t

]
which implies that [

C 1
1(t)

C 1
2(t)

]
=

[
e´t e´3t

e´t ´e´3t

]´1 [
2e´t

3t

]
.

The computation above (in 1) can be used to conclude that

C1(t) = 2t+ 3(tet ´ et) and C2(t) = e2t ´
(
te3t ´

1

3
e3t

)
;

thus a particular solution is given by

xp(t) =
[
2t+ 3(tet ´ et)

]
e´t

[
1
1

]
+
[
e2t ´

(
te3t ´

1

3
e3t

)]
e´3t

[
1

´1

]
.



6.6 Numerical Methods

So far we only talk about how to find a solution to x 1 = Ax+g(t) for constant matrix A. In general, it
is very hard to compute (by hand) the general solution to x 1 = F(t,x) even if F(t,x) = P(t)x+g(t).
In this section, we focus on solving the general system (6.8) numerically.

In the following discussion, we do not specify the size of the sysmte x 1 = F(t,x); thus n no longer
denote the length of the vector x.

Definition 6.31 (Informal definition). A numerical method of solving the ODE x 1 = F(t,x) with
x(t0) = x0 is an iterative scheme which, when the step size h ą 0 is given, generates a unique
sequence of vectors tx1, ¨ ¨ ¨ ,xNu (for some N which in general depends on h) such that the piecewise
linear function φ satisfying

φ(t) =
xn+1 ´ xn

h
(t ´ tn) + xn @ t P [tn, tn+1] and n P t0, 1, ¨ ¨ ¨ , N ´ 1u ,

where tn = t0 + nh, resembles the solution to x 1 = F(t,x) with initial condition x(t0) = x0 in the
time interval [t0, tN ]. The function φ is called the numerical solution generated by this numerical
method with step size h.

A numerical method of solving the ODE x 1 = F(t,x) is called a k-step method if it requires
xn,xn+1, ¨ ¨ ¨ ,xn+k´1 to determine xn+k for all n P t0, ¨ ¨ ¨ , N ´ ku. A numerical method of solving
the ODE x 1 = F(t,x) is said to be explicit if it does not require “nonlinear procedures” to obtain
some xn’s, and is said to be implicit if it is not explicit.

Example 6.32. The forward Euler method of solving the ordinary differential equations y 1 = F(t,y)
is an explicit one-step method given by

xn = xn´1 + hF(tn´1,xn´1) @n P t1, 2, ¨ ¨ ¨ , Nu ,

while the backward Euler method is an implicit one-step method given by

xn = xn´1 + hF(tn,xn) @n P t1, 2, ¨ ¨ ¨ , Nu .

Example 6.33. The Runge-Kutta method involves a weighted average of values of F(t,x) at different
points in the interval tn ď t ď tn+1, and is given by

xn+1 = xn + h
(kn1 + 2kn2 + 2kn3 + kn4

6

)
, (6.33)

where

kn1 = F(tn,xn) , kn2 = F(tn +
1

2
h,xn +

1

2
hkn1) ,

kn3 = F(tn +
1

2
h,xn +

1

2
hkn2) , kn4 = F(tn + h,xn + hkn3) .

We note that the Runge-Kutta method is a one-step explicit method.

In this lecture we only consider explicit method.



Remark 6.34. A one-step explicit method is often (but not always) given in the form

xn+1 = xn + hΦ(tn,xn)

for some function Φ, while a k-step explicit method is often (but not always) given in the form

xn+1 = α1xn + α2xn´1 + ¨ ¨ ¨ + αkxn´k+1

+h
[
β1f(tn,xn) + β2f(tn´1,xn´1) + ¨ ¨ ¨ + βkf(tn´k+1,xn´k+1)

]
.

(6.34)

There are three fundamental sources of error of a numerical solution:

1. The iterative scheme used to produce the sequence tx1, ¨ ¨ ¨ ,xNu is an approximate one. In
other words, at each step the numerical method does not produce the correct value of the
solution at the next time step. This relates to the local/global truncation error.

2. The input data used in the iterative scheme are only approximations to the actual values of
the solution at each tk. For example, one should use x(tk) to generate xk+1 but we are forced
to start with xk. This relates to the global truncation error.

3. The precision of calculations of the computer is finite. In other words, at each step only a finite
number of digits can be retained. This relates to the round-off error (or machine error).

Definition 6.35. Let φ be a numerical solution obtained by a specific numerical method (with step
size h ą 0 fixed) of solving ODE x 1 = F(t,x) with initial data x(t0) = x0. At each time step tn,

1. the global truncation error (associated with this numerical method) is the number En(h) =

x(tn) ´ φ(tn);

2. the local truncation error (associated with this numerical method) is the number τn(h) =

x(tn+1) ´ xn+1

h
, where x(¨) is the exact solution and xn+1 is obtained according to the iterative

scheme with xj = x(tj) for all j P t0, 1, ¨ ¨ ¨ , nu.

3. the round-off error or machine error (associated with this numerical method) is the
number Rn = φ(tn)´Xn, where Xn is the actual value computed from the numerical method.

In other words, the local truncation error measures the accuracy of the numerical method for
each time step, while the global truncation error measure the errors accumulated from the beginning
of this iterative scheme.

Definition 6.36. A numerical method is said to be consistent if

lim
hÑ0

max
0ďnďN´1

|τn(h)| = 0 ,

where τn(h) is the local truncation error associated with the numerical method with step size h.



Example 6.37. Consider the forward Euler method of solving x 1 = F(t,x). If x(t) is the solution
to x 1 = F(t,x) with initial data x(tn), then the Euler method provides an approximated value of
x(tn+1) given by

xn+1 = x(tn) + hF
(
tn,x(tn)

)
.

The local truncation error is then computed by

τn(h) =
x(tn+1) ´ xn+1

h
=

x(tn+1) ´ x(tn) ´ hF
(
tn,x(tn)

)
h

=
x(tn+1) ´ x(tn)

h
´ F

(
tn,x(tn)

)
=

x(tn+1) ´ x(tn)
h

´ x 1(tn) .

In other words, the local truncation τn(h) (of the forward Euler method) measures the difference
between the real derivative and the “discrete derivative” (which allows us to design the numerical
scheme).

Now consider the backward Euler method. Similar computation shows that the local truncation
error τn(h) associated with the backward Euler method is given by

τn(h) =
x(tn+1) ´ x(tn)

h
´ x 1(tn+1) .

Example 6.38. Consider the Runge-Kutta method given in Example 6.33. The local truncation
error τn(h) is given by

x(tn+1) ´ xn+1

h
=

x(tn+1) ´ x(tn) + h
(
kn1 + 2kn2 + 2kn3 + kn4

6

)
h

=
x(tn+1) ´ x(tn)

h
´
kn1 + 2kn2 + 2kn3 + kn4

6
,

where

kn1 = F
(
tn,x(tn)

)
, kn2 = F

(
tn +

1

2
h,x(tn) +

1

2
hkn1

)
,

kn3 = F
(
tn +

1

2
h,x(tn) +

1

2
hkn2

)
, kn4 = F

(
tn + h,x(tn) + hkn3

)
.

Assume that F is a scalar function (so that it is easy for the purpose of demonstration) and F is of
class C 2 (that is, F is twice continuously differentiable). Then kn1 = x 1(tn), and

kn2 = F
(
tn,x(tn)

)
+ F t

(
tn,x(tn)

)h
2
+ Fx

(
tn,x(tn)

)hkn1
2

+O(h2)

= x 1(tn) +
h

2

[
F t

(
tn,x(tn)

)
+ Fx

(
tn,x(tn)

)
kn1

]
+O(h2) ,

kn3 = F
(
tn,x(tn)

)
+ F t

(
tn,x(tn)

)h
2
+ Fx

(
tn,x(tn)

)hkn2
2

+O(h2)

= x 1(tn) +
h

2

[
F t

(
tn,x(tn)

)
+ Fx

(
tn,x(tn)

)
kn2

]
+O(h2) ,

kn4 = F
(
tn,x(tn)

)
+ F t

(
tn,x(tn)

)
h+ Fx

(
tn,x(tn)

)
hkn3 +O(h2)

= x 1(tn) + h
[
F t

(
tn,x(tn)

)
+ Fx

(
tn,x(tn)

)
kn3

]
+O(h2) .



Therefore,

kn1 + 2kn2 + 2kn3 + kn4
6

= x 1(tn) +
h

2
F t

(
tn,x(tn)

)
+
h

6
Fx

(
tn,x(tn)

)[
x 1(tn) + kn2 + kn3

]
+O(h2)

= x 1(tn) +
h

2

[
F t

(
tn, x(tn)

)
+ Fx

(
tn, x(tn)

)
x 1(tn)

]
+O(h2)

= x 1(tn) +
h

2
x 11(tn) +O(h2)

which implies that

τn(h) =
x(tn+1) ´ x(tn)

h
´
kn1 + 2kn2 + 2kn3 + kn4

6

=
x(tn+1) ´ x(tn)

h
´ x 1(tn) ´

h

2
x 11(tn) +O(h2) .

Since F is of class C 2, x is of class C 3; thus the Taylor theorem implies that

x(tn+1) = x(tn) + hx 1(tn) +
h2

2
x 1(tn) +O(h3) .

As a consequence,

τn(h) =
hx 1(tn) +

h2

2
x 1(tn) +O(h3)

h
´ x 1(tn) ´

h

2
x 11(tn) +O(h2) = O(h2) .

Remark 6.39. If one assume that F is of class C 4, then the Runge-Kutta method provides numerical
solutions with local truncation error of order 4; that is, τn(h) = O(h4).

‚ Further look at the local truncation error and the consistency: Now we take a look at
what the local truncation error for an one-step numerical scheme

xn+1 = xn + hΦ(h, tn,xn) (6.35)

really means. We remark that here Φ(h, tn,xn) can be viewed as a way to approximate the derivative
in the time interval [tn, tn+1]. Moreover, both Euler method and Runge-Kutta scheme are one-step
methods under this definition.

Before continuing the discussion, let us use the convention that for h ą 0 and fixed T ą 0, we
define N =

[T
h

]
and the numerical solution φ generated by the one-step scheme (6.35) on the time

interval
[
tN , t0 + T ] (on which φ is not defined) has value φ(tN).

Suppose that there exists a unique solution x to (6.8) on the time interval [t0, t0+T ]. By definition
of the local truncation error,

τn(h) =
x(tn+1) ´ xn+1

h
=

x(tn+1) ´ x(tn)
h

´ Φ
(
h, tn,x(tn)

)
=

x(tn+1) ´ x(tn)
h

´ x 1(tn) + F
(
tn,x(tn)

)
+ Φ

(
h, tn,x(tn)

)
.

If F is continuous on K ” [t0, t0 + T ] ˆ

[
min

tP[t0,t0+T ]
x(t), max

tP[t0,t0+T ]
x(t)

]
, then x must be C 1 which



implies that x 1 is uniformly continuous on [t0, t0 + T ]. Therefore, the mean value theorem implies

that
lim
hÑ0

max
1ďnďN

ˇ

ˇ

ˇ

x(tn+1) ´ x(tn)
h

´ x 1(tn)
ˇ

ˇ

ˇ
= 0 ;

thus
lim
hÑ0

max
1ďnďN

|τn(h)| = lim
hÑ0

max
1ďnďN

ˇ

ˇF
(
tn,x(tn)

)
´ Φ

(
h, tn,x(tn)

)ˇ
ˇ . (6.36)

If we further assume the uniform continuity of Φ on its variables, then (6.36) further implies that

lim
hÑ0

max
1ďnďN

|τn(h)| = lim
hÑ0

sup
tP[t0,t0+T ]

ˇ

ˇF
(
t,x(t)

)
´ Φ

(
h, t,x(t)

)ˇ
ˇ (6.37)

Therefore, assuming that F is Lipchitz continuous (which guarantees the existence and uniqueness
of the solution x to (6.8) by Theorem 6.5) and Φ is uniformly continuous, then the consistency of the
one-step numerical scheme (6.35) is equivalent to that Φ

(
h, ¨,x(¨)

)
converges uniformly to F

(
¨,x(¨)

)
as h Ñ 0 (that is, (6.37)).

Remark 6.40. To see (6.36), let ε ą 0 and t P [t0, t0 + T ] be given. Since x 1 is continuous on
[t0, t0 + T ], for some M ą 0 we have

ˇ

ˇx 1(t)
ˇ

ˇ ď M for all t P [t0, t0 + T ]. Then

1. the uniform continuity of F provides a δ1 ą 0 such that
ˇ

ˇF(t,y) ´ F(s, z)
ˇ

ˇ ă
ε

2
whenever (t,y), (s, z) P K satisfying |t ´ s|2 + |y ´ z|2 ă δ21 ;

2. the uniform continuity of Φ provides a δ2 ą 0 such that
ˇ

ˇΦ(h, t,y) ´ Φ(h, s, z)
ˇ

ˇ ă
ε

2
whenever |t ´ s|2 + |y ´ z|2 ă δ22 .

Let δ =
mintδ1, δ2u

M2 + 1
. If 0 ă h ă δ, there exists tn such that |tn ´ t| ă δ. Therefore,

ˇ

ˇ

(
tn,x(tn)

)
´(

t,x(t)
)ˇ
ˇ ă mintδ1, δ2u; thus

ˇ

ˇF
(
tn,x(tn)

)
´ F

(
t,x(t)

)ˇ
ˇ+

ˇ

ˇΦ
(
h, tn,x(tn)

)
´ Φ

(
h, t,x(t)

)ˇ
ˇ ă ε .

6.6.1 Convergence of Bounded Consistent Schemes

We first consider the convergence of numerical solutions obtained from a bounded (which is defined
in Theorem 6.44) numerical scheme as the step size approaches zero.

Definition 6.41. Let a, b P R and a ă b. A family F of functions in C ([a, b];Rn) (which means for
each f P F , f : [a, b] Ñ Rn is a continuous vector-valued function) is said to be

1. uniformly bounded if

DM ą 0 Q |f(t)| ď M @ t P [a, b] and f P F ;

2. equi-continuous if

@ ε ą 0, D δ ą 0 Q
ˇ

ˇf(t) ´ f(s)
ˇ

ˇ ă ε whenever |t ´ s| ă δ, t, s P [a, b], and k P N .



Now we introduce the Arzelà-Ascoli Theorem which can be applied to extract a uniformly con-
vergent subsequence from a sequence of continuous functions as long as those functions are equi-
continuous and uniformly bounded.

Theorem 6.42 (Arzelà-Ascoli). Let a, b P R with a ă b, and tfku8
k=1 Ď C ([a, b];Rn) be a uniformly

bounded, equi-continuous sequence of functions. Then there exists a subsequence
␣

fkj
(8

j=1
which

converges uniformly (to some function f P C ([a, b];Rn)).

Remark 6.43. The uniform convergence of the sequence tfku8
k=1 to f on [a, b] means that

lim
kÑ8

sup
xP[a,b]

|fk(x) ´ f(x)| = 0 .

Theorem 6.44. For each h ą 0, let φh : [t0, t0 + T ] Ñ Rn be the numerical solution generated by
the one-step scheme (6.35) for some functions Φ. If Φ is bounded near h = 0; that is, there exists
δ ą 0 and M ą 0 such that

ˇ

ˇΦ(h, t,x)
ˇ

ˇ ď M for all (h, t,x) P (0, δ] ˆ [t0, t0 + T ] ˆ Rn, then every
subsequence

␣

φhj

(8

j=1
of tφhuhą0 possesses a uniformly convergent subsequence

␣

φhjℓ

(8

ℓ=1
; that is,

for some continuous function φ : [t0, t0 + T ] Ñ Rn, we have

lim
ℓÑ8

sup
tP[t0,t0+T ]

ˇ

ˇφhjℓ
(t) ´ φ(t)

ˇ

ˇ = 0 .

Proof. By Arzelà-Ascoli Theorem, it suffices to prove that the family of functions tφhuhą0 is uniformly
bounded and equi-continuous.

First, since Φ is bounded by M , the numerical scheme implies that
ˇ

ˇφh(tn)
ˇ

ˇ ď
ˇ

ˇφh(tn´1)
ˇ

ˇ+ hM ď
ˇ

ˇφh(tn´2)
ˇ

ˇ+ 2hM ď ¨ ¨ ¨

ď
ˇ

ˇφh(0)
ˇ

ˇ+ nhM ď |x0| +MT @n P
␣

1, ¨ ¨ ¨ ,
[T
h

](
.

Since φh are piecewise linear for all h ą 0, we find that
ˇ

ˇφh(t)
ˇ

ˇ ď |x0|e
MT for all t P [t0, t0 + T ] and

for all h ą 0. Therefore, tφhuhą0 is a uniformly bounded family of continuous functions.
On the other hand, by the boundedness of Φ again, we find that

ˇ

ˇ

ˇ

φh(t) ´ φh(s)

t ´ s

ˇ

ˇ

ˇ
ď M @ t, s P [tn´1, tn] for some n P

␣

1, ¨ ¨ ¨ ,
[T
h

](
.

Therefore, by the fact that
ˇ

ˇ

ˇ

φh(t) ´ φh(s)

t ´ s

ˇ

ˇ

ˇ
ď max

!ˇ

ˇ

ˇ

φh(t) ´ φh(r)

t ´ r

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ

φh(r) ´ φh(s)

r ´ s

ˇ

ˇ

ˇ

)

@ s ď r ď t ,

we find that tφhuhą0 is uniformly Lipschitz (with Lipschitz constant M) which implies that tφhuhą0

is an equi-continuous family of continuous functions. ˝

Therefore, every bounded numerical scheme produces a limit function which is a candidate of
the exact solution. Next, we consider the convergence (to the exact solution) of numerical solutions
generated by a bounded consistent numerical scheme.



Theorem 6.45. Suppose that F : [t0, t0 + T ] ˆ Rn be uniformly continuous such that the system
(6.8) has a unique solution x : [t0, t0 + T ] Ñ Rn. For each h ą 0, let φh : [t0, t0 + T ] Ñ Rn be the
numerical solution generated by the one-step scheme (6.35) for some functions Φ. If for some δ ą 0,
Φ is bounded uniformly continuous on (0, δ]ˆ [t0, t0+T ]ˆRn, and Φ(h, ¨, ¨) converges to F uniformly
on [t0, t0 + T ] ˆ Rn as h Ñ 0, then the sequence tφhuhą0 converges uniformly to the exact solution x
to (6.8).

Proof. If suffices to show that if the sequence
␣

φhj

(8

j=1
converges to some function φ uniformly on

[t0, t0 + T ], then φ must be the solution x to (6.8).
Let ε ą 0 be given. Then the uniform continuity of Φ implies that there exists δ1 ą 0 such that

if |y ´ z| ă δ1, then
sup

hą0,kPt0,¨¨¨ ,ℓu

ˇ

ˇΦ
(
h, kh,y

)
´ Φ

(
h, kh, z

)ˇ
ˇ ă

ε

3T
.

The uniform convergence of Φ(h, ¨, ¨) to F as h Ñ 0 implies that there exists δ2 ą 0 such that if
0 ă h ă δ2,

sup
(t,y)P(0,δ]ˆRn

ˇ

ˇF
(
t,y

)
´ Φ

(
h, t,y

)ˇ
ˇ ă

ε

3T
.

Moreover, since F
(
¨,φ(¨)

)
is continuous on [t0, t0+T ], it is Riemann integrable over [t0, t0+T ]; thus

there exists δ3 ą 0 such that if 0 ă h ă δ3,

ˇ

ˇ

ˇ

ż t

t0

F
(
s,φ(s)

)
ds ´

ℓ´1
ÿ

k=0

F(t0 + kh,φ(t0 + kh)
)
h
ˇ

ˇ

ˇ
ă
ε

3
.

Let t P [t0, t0 + T ] be given. For hj ą 0, we define ℓj =
[ t

hj

]
. Then φhj

satisfies that

φhj
(t0 + hj) ´ φhj

(t0) = hjΦ
(
hj, t0,φhj

(t0)
)
,

φhj
(t0 + 2hj) ´ φhj

(t0 + hj) = hjΦ
(
hj, t0 + hj,φhj

(t0 + hj)
)
,

... =
...

φhj

(
tℓj ´ hj

)
´ φhj

(tℓj ´ 2hj) = hjΦ
(
hj, t0 + (ℓj ´ 2)hj,φhj

(t0 + (ℓj ´ 2)hj)
)
,

φhj
(tℓj) ´ φhj

(tℓj ´ hj) = hjΦ
(
hj, t0 + (ℓj ´ 1)hj,φhj

(t0 + (ℓj ´ 1)hj)
)
.

Summing all the equalities, we find that

φhj
(tℓj) = φhj

(t0) +

ℓj´1
ÿ

k=0

Φ(hj, t0 + khj,φhj
(t0 + khj)

)
hj

= x0 +

ℓj´1
ÿ

k=0

Φ(hj, t0 + khj,φhj
(t0 + khj)

)
hj . (6.38)

Now, by the uniform convergence of
␣

φhj

(8

j=1
and hj Ñ 0 as j Ñ 8, there exists N ą 0 such

that if j ě N ,
sup
tP[0,T ]

ˇ

ˇφhj
(t) ´ φ(t)

ˇ

ˇ ă δ1 and 0 ă hj ă mintδ2, δ3u .



Therefore, if j ě N , identity (6.38) yields that
ˇ

ˇ

ˇ
φhj

(tℓj) ´ x0 ´

ż t

t0

F
(
s,φ(s)

)
ds
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż t

t0

F
(
s,φ(s)

)
ds ´

ℓ´1
ÿ

k=0

F(t0 + khj,φ(t0 + khj)
)
hj

ˇ

ˇ

ˇ

+
ℓ´1
ÿ

k=0

ˇ

ˇF(t0 + khj,φ(t0 + khj)
)

´ Φ
(
hj, t0 + khj,φ(t0 + khj)

)ˇ
ˇhj

+
ℓ´1
ÿ

k=0

ˇ

ˇΦ
(
hj, t0 + khj,φ(t0 + khj)

)
´ Φ

(
hj, t0 + khj,φhj

(t0 + khj)
)ˇ
ˇhj

ď
ε

3
+ 2 ¨

ε

3T

ℓ´1
ÿ

k=0

hj ď ε .

Passing to the limit as j Ñ 8, by the fact that tℓj Ñ t as j Ñ 0 and φhj
converges to φ uniformly

as j Ñ 8, we find that
ˇ

ˇ

ˇ
φ(t) ´ x0 ´

ż t

t0

F
(
s,φ(s)

)
ds
ˇ

ˇ

ˇ
ď ε .

Since ε ą 0 is given arbitrarily, we conclude that

φ(t) = x0 +

ż t

t0

F
(
s,φ(s)

)
ds @ t P [t0, t0 + T ] .

The identity above implies that φ is differentiable and φ 1 = F(t,φ) and φ(t0) = x0. Since x is the
unique solution to (6.8), we must have φ(t) = x(t). ˝

Example 6.46. If F : [t0, t0 + T ]ˆRn is bounded and Lipschitz continuous, then the forward Euler
method provides a sequence of numerical solutions tφhuhą0 which converges to the exact solution to
x 1 = F(t,x).

Example 6.47. Consider the ODE x 1 = sin(x2) with initial data x(0) = 5. One can use the following
matlabr code

T = 1; % the duration of time
h = 0.01; % the step size
N = floor(T/h); % the number of total steps
x = zeros(length(N+1));
x(1) = 5; % assign the initial data

for j=1:1:N
x(j+1) = x(j) + h*sin(x(j)^2);

end

t = 0:h:N*h;
plot(t,x);

to generate a numerical solution.



6.6.2 The Rate of Convergence

In this sub-section, we focus on how fast a sequence of numerical solutions converges to the exact
solution (given that the assumptions in Theorem 6.45 and probably more assumptions hold). To see
the rate of convergence, we have to look at the convergence behavior of the global truncation error.

By the mean value theorem (for functions of several variables),

En(h) = x(tn) ´ xn = x(tn) ´ xn´1 ´ hΦ(h, tn´1,xn´1)

= x(tn) ´ x(tn´1) ´ hΦ(h, tn´1,x(tn´1)) + x(tn´1) ´ xn´1

+ h
[
Φ(h, tn´1,x(tn´1)) ´ Φ(h, tn´1,xn´1)

]
= hτ n´1(h) + En´1(h) + h(∇xΦ)(h, tn´1, ξn´1)

[
x(tn´1) ´ xn´1

]
= hτ n´1(h) + En´1(h) + h(∇xΦ)(h, tn´1, ξn´1)En´1(h)

for some ξn´1 on the line segment joining x(tn´1) and xn´1. If we assume that
ˇ

ˇ∇xΦ
ˇ

ˇ is bounded by
K, then the equality above implies that

|En(h)| ď h|τ n´1(h)| + (1 + hK)|En´1(h)| .

Therefore,

|En(h)| ď h|τ n´1(h)| + (1 + hK)|En´1(h)| ,

(1 + hK)|En´1(h)| ď h(1 + hK)|τ n´2(h)| + (1 + hK)2|En´2(h)| ,

... ď
...

(1 + hK)n´1|E1(h)| ď h(1 + hK)n´1|τ 0(h)| + (1 + hK)n|E0(h)| .

Summing all the inequalities above, we find that

|En(h)| ď h
n
ÿ

k=1

(1 + hK)k´1
ˇ

ˇτ n´k(h)
ˇ

ˇ+ (1 + hK)n|E0(h)| . (6.39)

Suppose that the local truncation error satisfies

|τ n(h)| ď Ahr @n P
␣

0, 1, ¨ ¨ ¨ ,
[T
h

]
´ 1

(

for some constant A and r ą 0. Then by the fact E0(h) = 0, we conclude that

|En(h)| ď h
n
ÿ

k=1

(1 + hK)k´1Ahr + (1 + hK)n|E0(h)| ď h
(1 + hK)n ´ 1

hK
Ahr

ď
1

K

[
(1 + hK)

T
h ´ 1

]
Ahr ď

1

K
(eKT ´ 1)Ahr .

Therefore, we establish the following

Theorem 6.48. Assume the conditions in Theorem 6.45. If ∇xΦ is bounded by K and the local
truncation error τ n(h) satisfies

|τ n(h)| ď Ahr @n P
␣

0, 1, ¨ ¨ ¨ ,
[T
h

]
´ 1

(

and h ą 0



for some constant A ą 0, then the global truncation error En(h) satisfies

|En(h)| ď
1

K
(eKT ´ 1)hr @h ą 0 .

Example 6.49. If F : [t0, t0 + T ]ˆRn is bounded and Lipschitz continuous, then the forward Euler
method provides a sequence of numerical solutions tφhuhą0 which converges to the exact solution to
x 1 = F(t,x) with rate

sup
tP[t0,t0+T ]

ˇ

ˇφh(t) ´ x(t)
ˇ

ˇ ď Ch @h ą 0

for some constant C ą 0. To see this, we first note that Theorem 6.48 implies that there exists
M ą 0 such that

sup
0ďnď[T/h]

ˇ

ˇφh(tn) ´ x(tn)
ˇ

ˇ ď Mh @h ą 0 .

Suppose that |F | is bounded by L. For t P [t0, t0 + T ], choose n P t0, 1, ¨ ¨ ¨ , N ´ 1u such that
tn ď t ď tn+1. Then

ˇ

ˇφh(t) ´ φh(tn)
ˇ

ˇ ď
ˇ

ˇφh(tn+1) ´ φh(tn)
ˇ

ˇ = h
ˇ

ˇF
(
tn,φh(tn)

)ˇ
ˇ ď Lh

and the mean value theorem implies that
ˇ

ˇx(t) ´ x(tn)
ˇ

ˇ ď
ˇ

ˇx 1(ξ)
ˇ

ˇ|t ´ tn| =
ˇ

ˇF
(
ξ,x(ξ)

)ˇ
ˇ|t ´ tn| ď Lh .

Therefore,
ˇ

ˇx(t) ´ φh(t)
ˇ

ˇ ď
ˇ

ˇx(t) ´ x(tn)
ˇ

ˇ+
ˇ

ˇx(tn) ´ φh(tn)
ˇ

ˇ+
ˇ

ˇφh(tn) ´ φh(t)
ˇ

ˇ ď (M + 2L)h @h ą 0 .

7 The Laplace Transform

7.1 Definition of the Laplace Transform

Definition 7.1 (Integral transform). An integral transform is a relation between two functions
f and F of the form

F (s) =

ż β

α

K(s, t)f(t) dt , (7.1)

where K(¨, ¨) is a given function, called the kernel of the transformation, and the limits of integration
α, β are also given (here α, β could be 8 and in such cases the integral above is an improper integral).
The relation (7.1) transforms function f into another function F called the transformation of f .

Proposition 7.2. Every integral transform is linear; that is, for all functions f and g (defined on
(α, β)) and constant a,

ż β

α

K(s, t)
(
af(t) + g(t)

)
dt = a

ż β

α

K(s, t)f(t) dt+

ż β

α

K(s, t)g(t) dt .



Example 7.3. Let f : R Ñ R be a function such that
ż 8

´8

|f(x)| dx ă 8. The Fourier transform

of f , denoted by F (f), is defined by

F (f)(s) =
1

?
2π

ż 8

´8

e´istf(t) dt
(
= lim

α,βÑ8

ż β

´α

e´istf(t)dt
)
,

where the kernel K is a complex function (i.e., the value of K is complex). We will discuss the
Fourier transform later.

Definition 7.4 (Laplace transform). Let f : [0,8] Ñ R be a function. The Laplace transform
of f , denoted by L (f), is defined by

L (f)(s) =

ż 8

0

e´stf(t) dt
(
= lim

RÑ8

ż R

0

e´istf(t)dt
)
,

provided that the improper integral exists.

Example 7.5. Let f : [0,8) Ñ R be defined by f(t) = eat, where a P R is a constant. Since the
improper integral

ż 8

0

e(a´s)t dt = lim
RÑ8

ż R

0

e(a´s)t dt
(s‰a)
= lim

RÑ8

(
´

e(a´s)t

(s ´ a)

ˇ

ˇ

ˇ

t=R

t=0

)
= lim

RÑ8

1 ´ e(a´s)R

s ´ a

exists for s ą a, we find that
L (f)(s) =

1

s ´ a
@ s ą a .

Example 7.6. Let f : [0,8) Ñ R be defined by

f(t) =

$

’

&

’

%

1 if 0 ď t ă 1 ,

k if t = 1 ,

0 if t ą 1 ,

where k is a given constant. Since the improper integral
ż 8

0

e´stf(t) dt =

ż 1

0

e´stdt =
1 ´ e´s

s

exists as long as s ‰ 0, we find that

L (f)(s) =
1 ´ e´s

s
@ s ‰ 0 .

We note that the Laplace transform in this case is independent of the choice of k; thus the Laplace
transform is not one-to-one (in the classical/pointwise sense).

Example 7.7. Let f : [0,8) Ñ R be given by f(t) = sin(at). Note that
ż R

0

e´st
loomoon

”u

sin(at) dt
looomooon

”dv

= ´e´st cos(at)
a

ˇ

ˇ

ˇ

t=R

t=0
+

ż R

0

(´s)e´st cos(at)
a

dt

=
1

a

(
1 ´ e´Rs cos(aR)

)
´
s

a

ż R

0

e´st cos(at) dt (7.2)

=
1

a

(
1 ´ e´Rs cos(aR)

)
´
s

a

(
e´st sin(at)

a

ˇ

ˇ

ˇ

t=R

t=0
+
s

a

ż R

0

e´st sin(at) dt
)

=
1

a

(
1 ´ e´Rs cos(aR)

)
´

s

a2
e´Rs sin(aR) ´

s2

a2

ż R

0

e´st sin(at) dt ;



thus we obtain that(
1 +

s2

a2

) ż R

0

e´st sin(at) dt = 1

a

(
1 ´ e´Rs cos(aR)

)
´

s

a2
e´Rs sin(aR) .

Therefore, the improper integral
ż 8

0

e´st sin(at) dt = lim
RÑ8

ż R

0

e´st sin(at) dt

= lim
RÑ8

[ a

s2 + a2

(
1 ´ e´Rs cos(aR)

)
´

s

s2 + a2
e´Rs sin(aR)

]
exists for all s ą 0 which implies that

L (f)(s) =
a

s2 + a2
@ s ą 0 .

Moreover, (7.2) further implies that
ż 8

0

e´st cos(at) dt = a

s

(1
a

´
a

s2 + a2

)
=

s

s2 + a2
.

Proposition 7.8. Suppose that

1. f is piecewise continuous on the interval 0 ď t ď R for all positive R P R;

2. f is of exponential order a; that is, |f(t)| ď Meat for some M and a.

Then the Laplace transform of f exists for s ą a.

Proof. Since f is piecewise continuous on [0, R], the integral
ż R

0
e´stf(t) dt exists. If 0 ă R1 ă R2,

by the fact that |f(t)| ď Meat for some M and a, we find that
ˇ

ˇ

ˇ

ż R2

R1

e´stf(t) dt
ˇ

ˇ

ˇ
ď

ż R2

R1

e´stMeat dt =M
e(a´s)R2 ´ e(a´s)R1

a ´ s

which converges to 0 as R1, R2 Ñ 8 if s ą a. Therefore, the improper integral
ż 8

0
e´stf(t) dt exists.

˝

Example 7.9. Let f : [0,8) Ñ R be given by f(t) = tp for some p ą ´1. Recall that the Gamma
function Γ : (0,8) Ñ R is defined by

Γ(x) =

ż 8

0

e´ttx´1 dt .

We note that if ´1 ă p ă 0, f is not of exponential order a for all a P R; however, the Laplace
transform of f exists the Laplace transform of f exists. In fact, for s ą 0,

L (f)(s) = lim
RÑ8

ż R

0

e´sttp dt = lim
RÑ8

ż sR

0

e´t
( t
s

)pdt

s
=

Γ(p+ 1)

sp+1
.

In particular, if p = n P N Y t0u, then

L (f)(s) =
n!

sn+1
@ s ą 0 .



7.1.1 The Inverse Laplace Transform

Even though Example 7.6 shows that the Laplace transform is not one-to-one in the classical sense,
we are still able to talk about the “inverse” of the Laplace transform because of the following

Theorem 7.10 (Lerch). Suppose that f, g : [0,8) Ñ R are continuous and of exponential order a.
If L (f)(s) = L (g)(s) for all s ą a, then f(t) = g(t) for all t ě 0.

Remark 7.11. The inverse Laplace transform of a function F is given by

L ´1(F )(t) =
1

2πi
lim
RÑ8

ż γ+iR

γ´iR

estF (s) ds ,

where the integration is done along the vertical line Re(s) = γ in the complex plane such that γ is
greater than the real part of all singularities of F .

7.2 Solution of Initial Value Problems

Theorem 7.12. Suppose that f : [0,8) Ñ R is continuous with piecewise continuous derivative,
and f is of exponential order a. Then the Laplace transform of f 1 exist for s ą a, and

L (f 1)(s) = sL (f)(s) ´ f(0) .

Proof. Since f is of exponential order, the Laplace transform of f exists. Since f is continuous,
integrating by parts we find that

ż R

0

e´stf 1(t) dt = e´stf(t)
ˇ

ˇ

ˇ

t=R

t=0
´

ż R

0

(´s)e´stf(t) dt = e´Rsf(R) ´ f(0)s

ż R

0

e´stf(t) dt .

Since f is of exponential order a, e´Rsf(R) Ñ 0 as s Ñ 8; thus

L (f 1)(s) = lim
RÑ8

ż R

0

e´stf 1(t) dt = ´f(0) + s lim
RÑ8

ż R

0

e´stf(t) dt = sL (f)(s) ´ f(0) . ˝

Corollary 7.13. Suppose that f : [0,8) Ñ R is a function such that f, f 1, f 11, ¨ ¨ ¨ , f (n´1) are contin-
uous of exponential order a, and f (n) is piecewise continuous. Then L (f (n)(s) exists for all s ą a,
and

L (f (n))(s) = snL (f)(s) ´ sn´1f(0) ´ sn´2f 1(0) ´ ¨ ¨ ¨ ´ sf (n´2)(0) ´ f (n´1)(0) .

Example 7.14. Consider the ODE
y 11 ´ y 1 ´ 2y = 0 .

If the solution y and its derivative y 1 are of exponential order a for some a P R, then by taking the
Laplace transform of the equation above we find that[

s2L (y) ´ sy(0) ´ y 1(0)
]

´
[
sL (y) ´ y(0)

]
´ 2L (y) = 0 ;



thus

L (y)(s) =
sy(0) + y 1(0) ´ y(0)

s2 ´ s ´ 2
=
sy(0) + y 1(0) ´ y(0)

(s ´ 2)(s+ 1)

=
y(0)

s+ 1
+

y 1(0) + y(0)

(s ´ 2)(s+ 1)
=

y(0)

s+ 1
+
y 1(0) + y(0)

3

( 1

s ´ 2
´

1

s+ 1

)
.

By Example 7.5 and Theorem 7.10, we find that

y(t) = y(0)e´t +
y 1(0) + y(0)

3

(
e2t ´ e´t

)
.

The procedure listed in Example 7.14 provides a way of solving of an ODE with constant coeffi-
cients. In fact, suppose that we are looking for solutions to

y 11 + by 1 + cy = f(t) .

Then taking the Laplace transform of the equation above (here we assume that y and y 1 are of
exponential order a for some a P R), we find that

s2L (y)(s) ´ sy(0) ´ y 1(0) + b
(
sL (y)(s) ´ y(0)

)
+ cL (y)(s) = L (f)(s)

which implies that the Laplace transform of the solution y satisfies

L (y)(s) =
(s+ b)y(0) + y 1(0)

s2 + bs+ c
+

L (f)(s)

s2 + bs+ c
. (7.3)

The ODE is then solved provided that we can find the function y = φ(t) whose Laplace transform is
the right-hand side of (7.3).

Example 7.15. Find the solution of the ODE y 11 + y = sin 2t with initial condition y(0) = 2 and
y 1(0) = 1. If y is the solution to the ODE and y, y 1 are of exponential order a for some a P R, then
(7.3) and Example 7.7 imply that the Laplace transform of y is given by

L (y)(s) =
2s+ 1

s2 + 1
+

2

(s2 + 1)(s2 + 4)
.

Using partial fractions, we expect that

2

(s2 + 1)(s2 + 4)
=
as+ b

s2 + 1
+
cs+ d

s2 + 4
=

(a+ c)s3 + (b+ d)s2 + (4a+ c)s+ (4b+ d)

(s2 + 1)(s2 + 4)
.

Therefore, a+ c = b+ d = 4a+ c = 0 and 4b+ d = 2; thus a = c = 0 and b = ´d =
2

3
. This provides

that
L (y)(s) =

2s+ 1

s2 + 1
+

2

3

1

s2 + 1
´

2

3

1

s2 + 4
=

2s

s2 + 1
+

5

3

1

s2 + 1
´

1

3

2

s2 + 4
.

By Proposition 7.2 and Example 7.7, we find that

y(t) = 2 cos t+ 5

3
sin t ´

1

3
sin 2t .



Example 7.16. Find the solution of the ODE y(4) ´ y = 0 with initial condition y(0) = y 11(0) =

y 12(0) = 0 and y 1(0) = 1 and y, y 1 are of exponential order a for some a P R. If y is the solution to
the ODE, then Corollary 7.13 implies that the Laplace transform of y satisfies

s4L (y)(s) ´ s3y(0) ´ s2y 1(0) ´ sy 11(0) ´ y 12(0) ´ L (y)(s) = 0 ;

thus
L (y)(s) =

s2

s4 ´ 1
=

s2

(s ´ 1)(s+ 1)(s2 + 1)
.

Using partial fractions, we assume that

L (y)(s) =
s2

s4 ´ 1
=

a

s ´ 1
+

b

s+ 1
+
cs+ d

s2 + 1
=

(a+ b)s+ (a ´ b)

s2 ´ 1
+
cs+ d

s2 + 1

=
(a+ b+ c)s3 + (a ´ b+ d)s2 + (a+ b ´ c)s+ (a ´ b ´ d)

s4 ´ 1
.

Therefore, a + b + c = a + b ´ c = a ´ b ´ d = 0 and a ´ b + d = 1; thus a =
1

4
, b = ´

1

4
, c = 0 and

d =
1

2
. This provides that

L (y)(s) =
1

4

1

s ´ 1
´

1

4

1

s+ 1
+

1

2

1

s2 + 1
.

By Example 7.5 and 7.7, we conclude that the solution to the ODE is

y(t) =
1

4
et ´

1

4
e´t +

1

2
sin t .

‚ Advantages of the Laplace transform method:

1. Converting a problem of solving a differential equation to a problem of solving an algebraic
equation.

2. The dependence on the initial data is automatically build in. The task of determining values
of arbitrary constants in the general solution is avoided.

3. Non-homogeneous equations can be treated in exactly the same way as the homogeneous ones,
and it is not necessary to solving the corresponding homogeneous equation first.

‚ Difficulties of the Laplace transform method: Need to find the function whose Laplace
transform is given - the inverse Laplace transform has to be performed in general situations.

7.3 Step Functions

In the following two sections we are concerned with the Laplace transform of discontinuous functions
with jump discontinuities.

Definition 7.17. The unit step function or Heaviside function is the function

H(t) =

"

0 if t ă 0 ,
1 if t ě 0 .



Example 7.18.

1. For c P R, we define uc(t) = H(t ´ c). Then the graph of uc jumps up from 0 to 1 at t = c.

2. The graph of ´uc jumps down from 1 to 0 at t = c.

3. Let a ă b. The characteristic/indicator function 1[a,b) can be expressed by

1[a,b)(t) = ua(t) ´ ub(t) .

4. Let a1 ă b1 ă a2 ă b2 ă ¨ ¨ ¨ ă an ă bn. The step function

f(t) =
n
ÿ

i=1

fi1[ai,bi)(t) (7.4)

can be expressed by

f(t) =
n
ÿ

i=1

fi[uai(t) ´ ubi(t)
]
.

5. Let 0 = c0 ă c1 ă ¨ ¨ ¨ ă cn ă cn+1 = 8. The step function

f(t) =
n
ÿ

i=0

fi1[ci,ci+1)(t) (7.5)

can be expressed by

f(t) = f01[0,c1)(t) +
n
ÿ

k=0

(fk+1 ´ fk)uck(t) .

‚ The Laplace transform of uc: To compute the Laplace transform of the step function given by
(7.4), by Proposition 7.2 it suffices to find the Laplace transform of uc.

1. If c ď 0, then
L (uc)(s) =

ż 8

0

e´st dt =
1

s
@ s ą 0 .

2. If c ą 0, then

L (uc)(s) =

ż 8

c

e´st dt =
e´cs

s
@ s ą 0 .

Therefore,

L (uc)(s) =
e´ maxtc,0us

s
.

Theorem 7.19. Let f : [0,8) Ñ R be a function such that the Laplace transform L (f)(s) of f
exists for s ą a ě 0. If c is a positive constant and g(t) = uc(t)f(t ´ c), then

L (g)(s) = e´csL (f)(s) .

Conversely, if G(s) = e´csL (f)(s), then uc(t)f(t ´ c) = L ´1(G)(t) .



Proof. If c ą 0 and g(t) = uc(t)f(t ´ c), then the change of variable formula implies that

L (g)(s) = lim
RÑ8

ż R

c

e´stf(t ´ c) dt = lim
RÑ8

ż R´c

0

e´s(t+c)f(t) dt

= e´cs lim
RÑ8

ż R´c

0

e´stf(t) dt = e´csL (f)(s) . ˝

Example 7.20. Let f : [0,8) Ñ R be defined by

f(t) =

$

&

%

sin t if 0 ď t ă
π

4
,

sin t+ cos
(
t ´

π

4

)
if t ě

π

4
.

Then f(t) = sin t+ uπ
4
(t) cos

(
t ´

π

4

)
; thus by Example 7.7 and Theorem 7.19 we find that

L (f)(s) =
1

s2 + 1
+ e´π

4
s s

s2 + 1
=

1 + se´π
4
s

s2 + 1
.

Example 7.21. Find the inverse Laplace transform of F (s) = 1 ´ e´2s

s2
.

By Example 7.9, the inverse Laplace transform of s´2 is t

Γ(1 + 1)
= t; thus Theorem 7.19 implies

that
L ´1(F )(t) = t ´ u2(t)(t ´ 2) .

We also have the following

Theorem 7.22. Let f : [0,8) Ñ R be a function such that the Laplace transform L (f)(s) of f
exists for s ą a ě 0. If c is a constant and g(t) = ectf(t), then

L (g)(s) = L (f)(s ´ c) @ s ą a+ c .

Conversely, if G(s) = L (f)(s ´ c), then L ´1(G)(t) = ectf(t) .

Proof. By the definition of the Laplace transform,

L (g)(s) =

ż 8

0

e´stectf(t) dt =

ż 8

0

e´(s´c)tf(t) dt = L (f)(s ´ c) . ˝

Example 7.23. Find the inverse Laplace transform of G(s) = 1

s2 ´ 4s+ 5
.

By completing the square, s2 ´ 4s+5 = (s´ 2)2+1; thus Example 7.7 and Theorem 7.22 implies
that

L ´1(G)(t) = e2t sin t .

7.4 Differential Equations with Discontinuous Forcing Functions

Let f : [0,8) Ñ R be a function defined by

f(t) =

#

f1(t) if 0 ď t ă c ,

f2(t) if t ě c ,



where f1, f2 are continuous and lim
tÑc+

f2(t)´ lim
tÑc´

f1(t) = A (such a point c is called a jump discontinuity
of f). Define

g(t) =

#

f1(t) if 0 ď t ă c ,

f2(t) ´ Auc(t) if t ě c .

Then g : [0,8) Ñ R is continuous, and f = g+Auc. Similarly, if f is a piecewise continuous function
which only has jump discontinuities tc1, c2, ¨ ¨ ¨ , cnu such that f is continuous on [ck, ck+1) for all
k P t1, ¨ ¨ ¨ , n ´ 1u. Then By introducing c0 = 0 and cn+1 = 8, we can write

f = f1[c0,c1) + f1[c1,c2) + ¨ ¨ ¨ + f1[cn´1,cn) + f1[cn,cn+1) .

If Ak ” lim
tÑc+k

(f1[ck,ck+1)))(t) ´ lim
tÑc´

k

(f1[ck´1,ck))(t), then the function g : [0,8) Ñ F defined by

g(t) = f(t) ´

n
ÿ

k=1

Akuck(t)

is continuous on R, and f = g +
n
ř

k=1

Akuck .

Now suppose that we are looking for a solution to

y 11 + by 1 + cy = f(t) , (7.6)

where f is a piecewise continuous function which only has jump discontinuities tc1, c2, ¨ ¨ ¨ , cnu as
described above. We note that the existence theorem (Theorem 2.10) cannot be applied due to the
discontinuity of the forcing function, so in general we do not know if a solution exists. However, if
there indeed exists a twice differentiable function y validating (7.6), then the solution must be unique
since if y1 and y2 are two solutions with the same initial condition, then y = y1 ´ y2 is a solution
to y 11 + by 1 + cy = 0 with y(0) = y 1(0) = 0; thus y must be zero which implies that the solution, if
it exists, must be unique. On the other hand, if (7.6) has a solution y, then y 11 must be piecewise
continuous. If in addition y and y 1 are of exponential order a for some a P R, we can apply Theorem
7.13 to find the Laplace transform of the solution y as introduced in Section 7.2 which in principle
provides information of how the solution can be found.

Now we focus on solving the ODE

y 11 + by 1 + cy = F1[α,β)(t) , y(0) = y0 , y 1(0) = y1 , (7.7)

where F is a constant and 0 ă α ă β. We only consider the case that c ‰ 0 for otherwise the ODE
can reduced to a first order ODE (by integrating the ODE). We note that the right-hand side can
also be written as F

[
uα(t) ´ uβ(t)

]
.

If y is a twice differentiable solution to (7.7), taking the Laplace transform of the ODE we find
that

s2L (y)(s) ´ sy0 ´ y1 + b
[
sL (y)(s) ´ y0

]
+ cL (y)(s) = F

e´αs ´ e´βs

s
;

thus
L (y)(s) =

(s+ b)y0 + y1
s2 + bs+ c

+ F
e´αs ´ e´βs

s(s2 + bs+ c)
.



Using partial fractions, we obtain that 1

s(s2 + bs+ c)
=

1

c

[
1

s
´

s+ b

s2 + bs+ c

]
; thus with z denoting the

solution to the ODE
z 11 + bz 1 + cz = 0 , z(0) = 1 , z 1(0) = 0 ,

we find that
e´αs ´ e´βs

s(s2 + bs+ c)
=
e´αs ´ e´βs

c
L (1 ´ z)(s) .

Therefore, Theorem 7.19 implies that

y(t) = Y (t) +
F

c

[[
uα(t)(1 ´ z(t ´ α)

]
´ uβ(t)

[
1 ´ z(t ´ β)

]]
, (7.8)

here Y is the solution to (7.7) with F = 0. The function y given in (7.8) is the only possible solution
to (7.7). We note that even though uα,uβ are discontinuous at t = α, β, the function y given in (7.8)
is continuous for all t since z(0) = 1.

‚ The first derivative of y: For t ‰ α, β, it is clear that y 1(t) exists and can be computed by

y 1(t) = Y 1(t) +
F

c

[
uβ(t)z

1(t ´ β) ´ uα(t)z
1(t ´ α)

]
. (7.9)

Now we check the differentiability of y at t = α and t = β by looking at the limits

lim
hÑ0´

y(c+ h) ´ y(c)

h
and lim

hÑ0+

y(c+ h) ´ y(c)

h
for c = α, β .

For |h| ! 1, α + h ă β. Therefore, by the differentiability of Y ,

lim
hÑ0´

y(α + h) ´ y(α)

h
= Y 1(α) +

F

c
lim
hÑ0´

uα(α+ h)
(
1 ´ z(h)

)
´ uα(α)

(
1 ´ z(0)

)
h

= Y 1(α)

and

lim
hÑ0+

y(α + h) ´ y(α)

h
= Y 1(α) +

F

c
lim
hÑ0+

uα(α + h)
(
1 ´ z(h)

)
´ uα(α)

(
1 ´ z(0)

)
h

= Y 1(α) +
F

c
lim
hÑ0+

1 ´ z(h)

h
= Y 1(α) ´

F

c

z(h) ´ z(0)

h

= Y 1(α) ´
F

c
z 1(0) = Y 1(α) .

Therefore, y 1 exists at t = α and y 1(α) = Y 1(α) which also validates (7.9) for t = α. Similarly,

y 1(β) = Y 1(β) ´
F

c

[
u 1
β(α)(1 ´ z(β ´ α)

)
+ uα(β)z

1(β ´ α)
]
= Y 1(β) ´

F

c
z 1(β ´ α)

since
lim
hÑ0

uβ(β + h)
(
1 ´ z(h)

)
´ uβ(β)

(
1 ´ z(0)

)
h

= 0 .

In other words, (7.9) holds for all t ą 0. We note that y 1 given by (7.9) is continuous since

lim
yÑα

y 1(t) = Y 1(α) = y 1(α)



and

lim
yÑβ

y 1(t) = Y 1(β) ´
F

c
z 1(β ´ α) +

F

c
lim
yÑβ

uβ(t)z
1(t ´ β) = Y 1(β) ´

F

c
z 1(β ´ α) = y 1(β) .

‚ The second derivative of y: Now we turn our attention to the second derivative of y. As before,
it suffices to check the differentiability of y 1 at t = α, β since

y 11(t) = Y 11(t) +
F

c

[
uβ(t)z

11(t ´ β) ´ uα(t)z
11(t ´ α)

]
@ t ą 0 , t ‰ α, β . (7.10)

For t = α, we find that

lim
hÑ0´

y 1(α + h) ´ y 1(α)

h
= Y 11(α) ´

F

c
lim
hÑ0´

uα(α + h)z 1(h) ´ uα(α)z
1(0)

h
= Y 11(α)

and

lim
hÑ0+

y 1(α + h) ´ y 1(α)

h
= Y 11(α) ´

F

c
lim
hÑ0+

uα(α + h)z 1(h) ´ uα(α)z
1(0)

h

= Y 11(α) ´
F

c
lim
hÑ0+

z 1(h) ´ z 1(0)

h
= Y 11(α) ´

F

c
z 11(0)

= Y 11(α) +
F

c

[
bz 1(0) + cz(0)

]
= Y 11(α) + F .

Since F ‰ 0, we conclude that the second derivative of y at t = α does not exist. Similarly, the
second derivative of y at t = β does not exist neither. Nevertheless, for t ‰ α, β,

y 11(t) + by 1(t) + cy(t) = Y 11(t) +
F

c

[
uβ(t)z

11(t ´ β) ´ uα(t)z
11(t ´ α)

]
+ bY 1(t) +

bF

c

[
uβ(t)z

1(t ´ β) ´ uα(t)z
1(t ´ α)

]
+ cY (t) + F

[[
uα(t)(1 ´ z(t ´ α)

]
´ uβ(t)

[
1 ´ z(t ´ β)

]]
=
F

c

[
uα(t)

[
bz 1(t ´ α) + cz(t ´ α)

]
´ uβ(t)

[
bz 1(t ´ β) + cz(t ´ β)

]]
+
F

c

[
buβ(t)z

1(t ´ β) ´ buα(t)z
1(t ´ α)

]
+
F

c

[
cuα(t)

[
(1 ´ z(t ´ α)

]
´ cuβ(t)

[
1 ´ z(t ´ β)

]]
= F [uα(t) ´ uβ(t)

]
= F1[α,β)(t) .

Summary: There is no function which validates (7.7) for all t ą 0. However, there exists a contin-
uously differentiable function whose second derivative is piecewise continuous which validates (7.7)
for all t ą 0 except the discontinuities of the second derivative. We shall also call such a function a
solution to (7.7).

Definition 7.24. Let f : [0,8) Ñ R be a function. A function y is said to be a solution to the ODE

y 11 + by 1 + cy = f(t) y(0) = y0, y 1(0) = y1

if y is continuously differentiable, and y 1 1 exists at every continuity of f .



Example 7.25. Find the solution of the ODE y 11 + 4y = g(t) with initial data y(0) = y 1(0) = 0,
where the forcing function g is given by

g(t) =

$

’

’

&

’

’

%

0 if 0 ď t ă 5 ,
t ´ 5

5
if 5 ď t ă 10 ,

1 if t ě 10 .

We note that g(t) = 1

5

[
u5(t)(t´ 5)´ u10(t)(t´ 10)

]
; thus Example 7.9 and Theorem 7.19 imply that

L (g)(s) =
1

5

1

s2
(e´5s ´ e´10s) =

e´5t ´ e´10t

5s2
.

We also remark that g 1(t) =
1

5
(u5(t) ´ u10(t)) if t ‰ 5, 10. Since the value at g 1 at two points does

not affect the Laplace transform, we can use Corollary 7.13 to compute the Laplace transform of g:

sL (g)(s) = sL (g)(s) ´ g(0) = L (g 1)(s) =
e´5t ´ e´10t

5s
;

thus L (g)(s) =
e´5s ´ e´10s

5s2
.

Assume that a solution y to the ODE under consideration exists such that y, y 1 are continuous
and y 11 are of exponential order a for some a P R. Then the Laplace transform implies that

s2L (y)(s) ´ sy(0) ´ y 1(0) + 4L (y)(s) =
e´5s ´ e´10s

5s2
.

Therefore,

L (y)(s) =
e´5s ´ e´10s

5s2(s2 + 4)
.

Using partial fractions, we assume that 1

s2(s2 + 4)
=

as+ b

s2
+

cs+ d

s2 + 4
, where a, b, c, d satisfy a+ c = 0,

b+ d = 0, 4a = 0 and 4b = 1; thus

L (y)(s) =
e´5s ´ e´10s

20

[ 1

s2
´

1

2

2

s2 + 4

]
.

By Theorem 7.22, we find that

y(t) =
1

20

[
u5(t)(t ´ 5) ´ u10(t)(t ´ 10) ´

1

2

(
u5(t) sin

(
2(t ´ 5)

)
´ u10(t) sin

(
2(t ´ 10)

))]
.

Remark 7.26. The Laplace transform picks up solutions whose derivative of the highest order
(which is the same as the order of the ODE under consideration) is of exponential order a for some
a P R.

7.5 Impulse Functions

In this section, we are interested in what happens if a moving object in a spring-mass system is
hit by an external force which only appears in a very short amount of time period (you can think



of hitting an object in a spring-mass system using a hammer in a very short amount of time). In
practice, we do not know the exact time period [α, β] (with |β ´ α| ! 1) during which the force hits
the system, but can assume that the total amount of force which affects the system is known. This
kind of phenomena usually can be described by the system

y 11 + by 1 + cy = f(t) , y(0) = y0 , y 1(0) = y1

for some special kind of functions f which has the following properties:

1. f is sign-definite; that is, f(t) ě 0 for all t ą 0 or f(t) ď 0 for all t ă 0;

2. f is and is supported in [t0 ´ τ, t0 + τ ] for some t0 ą 0 and some very small τ ą 0;

3.
ż t0+τ

t0´τ
f(t) dt = F , where F is a constant independent of τ .

This kind of force is called an impulse.

Example 7.27. Let dτ : R Ñ R be a step function defined by

dτ (t) =

$

&

%

1

2τ
if t P [´τ, τ) ,

0 otherwise .
(7.11)

Figure 4: The graph of y = dτ (t) as τ Ñ 0+.

Then f(t) = Fdτ (t) is an impulse function. We note that with d denoting the function 1

2
1[´1,1),

then dτ (t) =
1

τ
d
( t
τ

)
. Moreover, if φ : R Ñ R is continuous in an open interval containing 0, we must

have
lim
τÑ0+

ż 8

´8

dτ (t)φ(t) dt = φ(0) . (7.12)

Example 7.28. Let

η(t) =

$

&

%

C exp
( 1

t2 ´ 1

)
if |t| ă 1 ,

0 if |t| ě 1 ,



where C is chosen so that the integral of η is 1. Then the sequence tητuτą0 defined by

ητ (t) =
1

τ
η
( t
τ

)
(7.13)

also has the property that
lim
τÑ0

ż 8

´8

ητ (t)φ(t) dt = φ(0) (7.14)

for all φ : R Ñ R which is continuous in an open interval containing 0.

Figure 5: The graph of ητ for τ = 1,
1

2
,
1

4
,
1

8
.

To see this, we notice that ητ is supported in [´τ, τ ] and the integral of ητ is still 1. Suppose that
φ : R Ñ R is continuous on (a, b) for some a ă 0 ă b. Then there exists 0 ă δ ă mint´a, bu such
that

ˇ

ˇφ(t) ´ φ(0)
ˇ

ˇ ă
ε

2
whenever |t| ă δ .

Therefore, if 0 ă τ ă δ, by the non-negativity of ητ we find that
ˇ

ˇ

ˇ

ż 8

´8

ητ (t)φ(t) ´ φ(0)
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

ż τ

´τ

ητ (t)φ(t) dt ´ φ(0)

ż τ

´τ

ητ (t) dt
ˇ

ˇ

ˇ

=

ż τ

´τ

ητ (t)
[
φ(t) ´ φ(0)

]
dt

ď

ż τ

´τ

ητ (t)
ˇ

ˇφ(t) ´ φ(0)
ˇ

ˇ dt ď
ε

2

ż τ

´τ

ητ (t) dt ă ε

which validates (7.14).

Definition 7.29. A sequence of functions tζτuτą0, where ζτ : R Ñ R for all τ ą 0, is called an
approximation of the identity if tζτuτą0 satisfies

1. ζτ (t) ě 0 for all t P R.

2. lim
τÑ0+

ż 8

´8

ζτ (t) dt = 1.



3. For all δ ą 0, lim
τÑ0+

ż

|t|ąδ
ζτ (t) dt = 0.

In particular, tdτuτą0 and tητuτą0 are approximations of identity.

Using the same technique of establishing (7.14), one can also prove that if tζτuτą0 is an approxi-
mation of the identity, then

lim
τÑ0

ż 8

´8

ζτ (t)φ(t) dt = φ(0) .

Remark 7.30. An approximation of identities does not have to be compactly supported. For

example, let n(t) = 1
?
2π
e´ t2

2 be the probability density function of the normal distribution N(0, 1),

then nτ (t) ”
1

?
2πτ

e´ t2

2τ constitutes an approximation of the identity tnτuτą0.

For t0 ą 0, we consider the ODE

y 11 + by 1 + cy = Fdτ (t ´ t0) , yτ (0) = y0 , y 1
τ (0) = y1 . (7.15)

For each 0 ă τ ă t0, let yτ be the solution to (7.15). Using (7.8) we find that

yτ (t) = y8(t) +
F

2cτ

[
ut0´τ (t)

[
1 ´ z(t ´ t0 + τ)

]
´ ut0+τ (t)

[
1 ´ z(t ´ t0 ´ τ)

]]
,

where y8 is the unique C 2-function solving

y 11
8 + by 1

8 + cy8 = 0 , y8(0) = y0 , y 1
8(0) = y1 .

and z is the unique C 2-function solving

z 11 + bz 1 + cz = 0 , y8(0) = 1 , y 1
8(0) = 0 .

We remark here that y8, y 1
8, z 1 and z 11 are of exponential order a for some a P R. We also recall

that the discussion in Section 7.4 shows that yτ is continuously differentiable, and y 11
τ is piecewise

continuous. Our “goal” here is to find a function y which is independent of τ but |y ´ yτ | ! 1 when
τ ! 1. In other words, our goal is to show that tyτuτą0 converges and find the limit of tyτuτą0.

We claim that tyτuτą0, viewing as functions defined on [0, T ], is uniformly bounded and equi-
continuous (so that we can extract a uniformly convergent subsequence). To see this, using the
identity that

ua+b(t) = ua(t ´ b) (7.16)

we rewrite yτ as

yτ (t) = y8(t) +
F

2cτ

[
ut0(t+ τ)

[
1 ´ z(t ´ t0 + τ)

]
´ ut0(t ´ τ)

[
1 ´ z(t ´ t0 ´ τ)

]]
= y8(t) +

F

2c
¨
[ut0(t+ τ) ´ ut0(t ´ τ)

][
1 ´ z(t ´ t0)

]
τ

+
F

2c
¨
ut0(t+ τ)

[
z(t ´ t0) ´ z(t ´ t0 + τ)

]
τ

´
F

2c
¨
ut0(t ´ τ)

[
z(t ´ t0) ´ z(t ´ t0 ´ τ)

]
τ

.



By the mean value theorem,

1 ´ z(t ´ t0) = z(0) ´ z(t ´ t0) = (t0 ´ t)z 1(ξ1) for some ξ1 in between 0 and t ´ t0 ,

z(t ´ t0) ´ z(t ´ t0 + τ) = z 1(ξ2)τ for some ξ2 P (t ´ t0, t ´ t0 + τ) ,

z(t ´ t0) ´ z(t ´ t0 ´ τ) = z 1(ξ3)τ for some ξ3 P (t ´ t0 ´ τ, t ´ t0) ;

thus

1. The case ´τ ă t0 ´ t ď τ : in this case we have ut0(t+ τ) ´ ut0(t ´ τ) = 1; thus

|yτ (t)| ď |y8(t)| +
ˇ

ˇ

ˇ

F

2c

ˇ

ˇ

ˇ

[
|z 1(ξ1)|

|t ´ t0|

τ
+ |z 1(ξ2)| + |z 1(ξ3)|

]
ď |y8(t)| +

ˇ

ˇ

ˇ

F

2c

ˇ

ˇ

ˇ

[
|z 1(ξ1)| + |z 1(ξ2)| + |z 1(ξ3)|

]
ď max

tP[0,T ]
|y8(t)| +

ˇ

ˇ

ˇ

3F

2c

ˇ

ˇ

ˇ
max
tP[0,T ]

|z 1(t)| .

2. The case t0 ´ t R (´τ, τ ]: in this case we have ut0(t+ τ) ´ ut0(t ´ τ) = 0; thus

|yτ (t)| ď |y8(t)| +
ˇ

ˇ

ˇ

F

2c

ˇ

ˇ

ˇ

[
|z 1(ξ2)| + |z 1(ξ3)|

]
ď max

tP[0,T ]
|y8(t)| +

ˇ

ˇ

ˇ

F

c

ˇ

ˇ

ˇ
max
tP[0,T ]

|z 1(t)| . (7.17)

Therefore, for all τ ą 0 we have

max
tP[0,T ]

|yτ (t)| ď max
tP[0,T ]

|y8(t)| +
ˇ

ˇ

ˇ

3F

2c

ˇ

ˇ

ˇ
max
tP[0,T ]

|z 1(t)| ď C1e
aT

which implies that the sequence tyτ (t)uτą0 is uniformly bounded on [0, T ] and tyτuτą0 are of expo-
nential order a.

On the other hand, using (7.9) and (7.16) we have

y 1
τ (t) = y 1

8(t) +
F

2cτ

[
ut0(t ´ τ)z 1(t ´ t0 ´ τ) ´ ut0(t+ τ)z 1(t ´ t0 + τ)

]
= y 1

8(t) ´
F

2c
¨

[
ut0(t+ τ) ´ ut0(t ´ τ)

]
z 1(t ´ t0)

τ

+
F

2c
¨
ut0(t ´ τ)

[
z 1(t ´ t0 ´ τ) ´ z 1(t ´ t0)

]
τ

´
F

2c
¨
ut0(t+ τ)

[
z 1(t ´ t0 + τ) ´ z 1(t ´ t0)

]
τ

.

By the mean value theorem,

z 1(t ´ t0) = z 1(t ´ t0) ´ z 1(0) = z 11(η1)(t ´ t0) for some η1 in between 0 and t ´ t0 ,

z 1(t ´ t0 ´ τ) ´ z 1(t ´ t0) = ´z 1(η2)τ for some η2 in (t ´ t0 ´ τ, t ´ t0) ,

z 1(t ´ t0 + τ) ´ z 1(t ´ t0) = z 1(η3)τ for some η3 in (t ´ t0, t ´ t0 + τ) ,

where we use z 1(0) = 0 to conclude the existence of η1. Similar argument used to conclude that
tyτuτą0 is uniformly bounded can then be applied to conclude that

max
tP[0,T ]

|y 1
τ (t)

ˇ

ˇ ď max
tP[0,T ]

|y 1
8(t)| +

ˇ

ˇ

ˇ

3F

2c

ˇ

ˇ

ˇ
max
tP[0,T ]

|z 11(t)| ď C2e
aT .



This implies that tyτuτą0 is uniformly Lipschitz and are of exponential order a; thus tyτuτą0, viewed as
a sequence of functions defined on [0, T ], is equi-continuous. By the Arzelà-Ascoli theorem (Theorem
6.42), there exists a subsequence

␣

yτj
(8

j=1
which converges to y uniformly on [0, T ] as j Ñ 8. We

note that y is a function defined on [0, T ].
Now, by the uniform boundedness and equi-continuity of

␣

yτj
(8

j=1
on [0, T + 1], there exists

a subsequence
␣

yτjℓ
(8

ℓ=1
which converges to y˚ uniformly on [0, T + 1]. Same procedure provides a

further subsequence
␣

yτjℓk

(8

k=1
which converges to y˚˚ uniformly on [0, T + 2]. We note that y˚˚ = y˚

on [0, T + 1] and y˚˚ = y on [0, T ]). We continue this process and obtain a sequence, still denoted
by

␣

yτj
(8

j=1
, and a continuous function y : [0,8) Ñ R such that

␣

yτj
(8

j=1
converges to y uniformly

on [0, T ] for all T ą 0. We note that (7.17) implies that the limit function y is of exponential order
a for some a ą 0. Moreover, we also note that it is still possible that there is another convergent
subsequence which converges to another limit function, but we will show that there is only one
possible limit function.

Let φ : [0,8) Ñ R be a twice continuously differentiable function which vanishes outside [0, T ]

for some T ą t0. Multiplying the equation above by φ and then integrating on [0, T ], we find that
ż T

0

(y 11
τj
+ by 1

τj
+ cyτj

)
φ(t) dt = F

ż T

0

dτj(t ´ t0)φ(t) dt .

Integrating by parts (twice if necessary) and making a change of variable on the right-hand side,

y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

yτj(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt = F

ż 8

´8

dτj(t)φ(t+ t0) dt (7.18)

for all twice continuously differentiable functions φ vanishing outside some interval [0, T ]. We note
that the integral in (7.18) is not an improper integral but indeed an integral on a bounded interval.
Passing to the limit as j Ñ 8 in (7.18), the uniform convergence of

␣

yτj
(8

j=1
to y on any closed

interval [0, T ] and (7.12) imply that

y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

y(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt = Fφ(t0) (7.19)

for all twice continuously differentiable functions φ vanishing outside some interval [0, T ]. Since y is
of exponential order a, (7.19) in fact holds for all twice continuously differentiable function φ which
approaches 0 fast enough at infinity, here the sentence “φ approaches 0 fast enough at infinity” means
that

ˇ

ˇφ(t)
ˇ

ˇ+
ˇ

ˇφ 1(t)
ˇ

ˇ+
ˇ

ˇφ 11(t)
ˇ

ˇ ď Me´rat @ t " 1

for some ra ą a.
To see what a possible limit function y is, we let φ(t) = e´st for s ą a in (7.19) and obtain that

´sy0 ´ (y1 + by0) + (s2 + bs+ c)

ż 8

0

y(t)e´st dt = Fe´st0

which, by the definition of the Laplace transform, implies that

(s2 + bs+ c)L (y)(s) = (s+ b)y0 + y1 + Fe´st0 . (7.20)



Since every possible limit y of tyτuτą0 is continuous and is of exponential order a, by Theorem 7.10
we conclude that there is only one uniform limit of tyτuτą0; thus tyτuτą0 converges to y uniformly
on [0, T ] for every T ą 0. By Theorem 7.19 and 7.22, identity (7.20) implies the following:

1. if r2 + br + c = 0 has two distinct real roots r1 and r2, then the solution y to (7.20) is

y(t) = y8(t) +
F

r1 ´ r2
ut0(t)

[
er1(t´t0) ´ er2(t´t0)

]
=
y1 ´ r2y0
r1 ´ r2

er1t +
r1y0 ´ y1
r1 ´ r2

er2t +
F

r1 ´ r2
ut0(t)

[
er1(t´t0) ´ er2(t´t0)

]
. (7.21)

2. if r2 + br + c = 0 has a double root r1, then the solution y to (7.20) is

y(t) = y8(t) + Fut0(t)(t ´ t0)e
r1(t´t0)

= y0e
r1t + (y1 ´ r1y0)te

r1t + Fut0(t)(t ´ t0)e
r1(t´t0) . (7.22)

3. if r2 + br + c = 0 has two complex roots λ ˘ iµ, then the solution y to (7.20) is

y(t) = y8(t) +
F

µ
ut0(t)e

λ(t´t0) sinµ(t ´ t0)

= y0e
λt cosµt+ y1 ´ λy0

µ
eλt sinµt+ F

µ
ut0(t)e

λ(t´t0) sinµ(t ´ t0) . (7.23)

The uniform convergence of tyτuτą0 to y implies that if the support of the impulse is really small,
even though we might not know the precise value of τ , the solution to (7.15) is very closed to the
unique limit function y. We note that the three possible y’s given above are continuous but have
discontinuous derivatives, and are not differentiable at t0.

7.5.1 The Dirac delta function

Even though we can stop our discussion about second order ODEs with impulse forcing functions
here, we would like to go a little bit further by introducing the so-called “Dirac delta function”.
Taking (7.3) into account, (7.20) motivates the following

Definition 7.31 (Informal definition of the Dirac delta function). For t0 ą 0, the Dirac delta
function at t0, denoted by δt0 , is the function whose Laplace transform is the function G(s) = e´st0 .

Therefore, (7.3) and (7.20) imply that y satisfies the ODE

y 11 + by 1 + cy = Fδt0(t) , y(0) = y0, y 1(0) = y1 . (7.24)

By Theorem 7.19, in order to obtain the precise form of δt0 it suffices to find the function whose
Laplace transform is the constant 1. However, this δt0 is not a function of non-negative real numbers
since we actually have

y 11(t) + by 1(t) + cy(t) = 0 @ t ‰ t0



if y is given by (7.21), (7.22) or (7.22). If δt0 is a function of non-negative real numbers, no matter
what value is assigned to δt0(t0), the Laplace transform of δt0 cannot be constant 1.

‚ What does y 11+by 1+cy = Fδt0(t) really mean? Recall that our goal is to find a “representative”
of solutions of the sequence of ODEs (7.15). The discussion above shows that such a representative
has to satisfies (7.20) which, under the assumption that

L (y 11 + by 1 + cy)(s) = (s2 + bs+ c)L (y) ´ sy(0) ´ y 1(0) . (7.25)

implies the equation y 11 + by 1 + cy = Fδt0(t). As we can see from the precise form of the function y

in (7.21), (7.22) and (7.23), y 1 is not even continuous; thus (7.25) is in fact a false assumption.
The way that the ODE y 11 + by 1 + cy = Fδt0(t) is understood is through the distribution theory,

in which both sides of the ODE are treated as “functions of functions”. Before our discussion, let us
first have the following two definitions.

Definition 7.32. The collection of all k-times continuously differentiable function defined on [0,8

and vanishing outside some interval [0, T ] for some T ą 0 is denoted by C k
c ([0,8)). A function

f : [0,8) Ñ R is said to belong to the space C 8
c ([0,8)) if f P C k

c ([0,8)) for all k P N. In other
words,

C 8
c ([0,8)) ”

!

f : [0,8) Ñ R
ˇ

ˇ

ˇ
f P C k

c ([0,8) @ k P N
)

.

Definition 7.33. Let f : [0,8) be a piecewise continuous function. The linear functional induced
by f , denoted by xf, ¨y, is a function on C 8

c ([0,8)) given by

xf, φy =

ż 8

0

f(t)φ(t) dt @φ P C 8
c ([0,8)) .

Consider the following simple ODE

y 11 + by 1 + cy = f(t) , y(0) = y0 , y 1(0) = y1 , (7.26)

where f is a continuous function of exponential order a for some a P R. The existence theory
implies that there exists a unique twice continuously differentiable solution y to (7.26). Moreover, if
φ P C 2

c ([0,8)),
ż 8

0

[
y 11(t) + by 1(t) + cy(t)

]
φ(t) dt =

ż 8

0

f(t)φ(t) dt , y(0) = y0 , y
1(0) = y1 . (7.27)

Since y is twice continuously differentiable on [0,8), we can integrate by parts and find that the
solution y to (7.26) also satisfies

y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

y(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt = xf, φy @φ P C 2

c ([0,8)) . (7.28)

On the other hand, if y is a twice continuously differentiable function satisfying (7.28), we can
integrate by parts (to put the derivatives on φ back to y) and find that y satisfies(

y0 ´ y(0)
)
φ 1(0) ´

[
y1 + by0 ´ y 1(0) ´ by(0)

]
φ(0)

+

ż 8

0

[
y 11(t) + by 1(t) + cy(t)

]
φ(t) dt =

ż 8

0

f(t)φ(t) dt
@φ P C 2

c ([0,8)) .



In particular,
ż 8

0

[
y 11(t) + by 1(t) + cy(t)

]
φ(t) dt =

ż 8

0

f(t)φ(t) dt @φ P C 2
c ([0,8)) satisfying φ(0) = φ 1(0) = 0 .

Therefore, y 11 + by 1 + cy must be identical to f since they are both continuous. Having established
this, we find that(

y0 ´ y(0)
)
φ 1(0) ´

[
y1 + by0 ´ y 1(0) ´ by(0)

]
φ(0) = 0 @φ P C 2

c ([0,8)) .

Choose φ P C 2
c ([0,8)) such that φ(0) = 0 and φ 1(0) = 1, we conclude that y0 = y(0); thus we arrive

at the equality [
y1 + by0 ´ y 1(0) ´ by(0)

]
φ(0) = 0 @φ P C 2

c ([0,8)) .

The identity above clearly shows that y1 = y 1(0). In other words, if y is twice continuously differen-
tiable and satisfies (7.28), then y satisfies (7.26); thus we establish that given a continuous forcing
function f ,

y is a solution to (7.26) if and only if y satisfies (7.28).

Thus we change the problem of solving an ODE “in the pointwise sense” to a problem of solving
an integral equation which holds “in the sense of distribution” (a distribution means a function of
functions). We note that there is one particular advantage of defining solution to (7.26) using (7.28)
instead of (7.27): if f is discontinuous somewhere in [0,8) (for example, f = F1[α,β) as in the
previous section), (7.28) provides a good alternative even if y 11 does not always exist.

The discussion above motivates the following

Definition 7.34 (Weak Solutions). Let f : [0,8) Ñ R be a function of exponential order a for some
a P R. A function y : [0,8) Ñ R is said to be a weak solution to (7.26) if y satisfies the integral
equation (7.28). The integral equation (7.28) is called the weak formulation of (7.26).

We remark that the discussion above shows that if f : [0,8) Ñ R is continuous and of exponential
order a for some a P R, the unique C 2-solution y to (7.26) is also a weak solution.

In view of (7.28), if we define L : C 2
c ([0,8)) Ñ R by

L(φ) = y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

y(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt , (7.29)

then the integral equation (7.26) is equivalent to that “the two linear functionals L and xf, ¨y are the
same on the space C 2

c ([0,8))”. We also note that

L(φ) = xy 11 + by 1 + cy, φy if y 11 is piecewise continuous, and (y(0), y 1(0)) = (y0, y1) ;

thus if y 11 is piecewise continuous, the statement “L = xf, ¨y on C 2
c ([0,8))” is the same as saying that

“the linear functional induced by y 11 + by 1 + cy and the linear functional induced by f are identical”.
This is what it means by y 11 + by 1 + cy = f in the sense of distribution.

If the right-hand side xf, ¨y is replaced by a general linear functional ℓ, we can still talk about
the possibility of finding an integrable function y validating the integral equation (7.28), or more



precisely, L = ℓ on C 2
c ([0,8)). In particular, for F P R and t0 ą 0, it is reasonable to ask whether

or not there exists an integrable function y such that

y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

y(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt = Fφ(t0) @φ P C 2

c ([0,8)) , (7.19)

where the linear functional ℓ : C 2
c ([0,8)) Ñ R is given by

ℓ(φ) = Fφ(t0) @φ P C 2
c ([0,8)) . (7.30)

This is exactly the integral equation (7.19); thus the ODE y 11 + by 1 + cy = Fδt0(t) is understood as
L = ℓ on C 2

c ([0,8)), where L and ℓ are defined by (7.29) and (7.30), respectively.
The definition of ℓ motivates the following

Definition 7.35 (Dirac Delta Function). For t0 P R, let X (t0) denote the collection of functions
defined on R and continuous on an open interval containing t0. The Dirac delta function at t0 is
a map δt0 : X (t0) Ñ R defined by

δt0(φ) = φ(t0) .

The map δ0 is usually denoted as δ.

Under this definition, the ODE y 11 + by 1 + cy = Fδt0 is understood as “the functional induced by
y 11 + by 1 + cy (given by (7.29)) is the same as the functional induced by Fδt0”. The function y given
by (7.21), (7.22) or (7.23) is then a weak solution to (7.24).

Example 7.36. In this example, we would like to find the “anti-derivative” of the Dirac delta
function at t0 ą 0. In other words, we are looking for a solution to

y 1 = δt0(t) , y(0) = 0 , y 1(0) = 0 .

Taking the Laplace transform, we find that

sL (y)(s) = e´st0 or equivalently, L (y)(s) =
e´st0

s
. (7.31)

As a consequence, by Example 7.5 and Theorem 7.19 we conclude that the (weak) solution to the
ODE above is

y(t) = ut0(t) = H(t ´ t0) .

We again emphasize that in principle we are not allowed to use Theorem 7.12 or Corollary 7.13 to
compute the Laplace transform of y 1; however, the functional induced by y 1 (by assuming that y is

ż 8

0

y 1(t)φ(t) dt = y(0)φ(0) ´

ż 8

0

y(t)φ 1(t) dt

so we are in fact solving y 1 = δt0(t) in the sense of distribution; that is, we look for y satisfying

´

ż 8

0

y(t)φ 1(t) dt = φ(t0) @φ P X.

Letting φ(t) = e´st leads to (7.31).



7.6 The Convolution Integrals

Definition 7.37. Let f, g be piecewise continuous on [0,8). The convolution of f and g, denoted
by f ˙ g, is defined by

(f ˙ g)(t) =

ż t

0

f(t ´ τ)g(τ) dτ . (7.32)

Proposition 7.38. Let f, g, h be piecewise continuous on [0,8). Then

(a) f ˙ g = g ˙ f ;

(b) f ˙ (g + h) = (f ˙ g) + (f ˙ h);

(c) (f ˙ g) ˙ h = f ˙ (g ˙ h);

(d) (f ˙ 0) = 0.

Theorem 7.39. Let f and g be piecewise continuous on [0,8) and are of exponential order a. Then

L (f ˙ g)(s) = L (f)(s)L (g)(s) @ s ą a .

Proof. Since f is of exponential order a, for some M1 ą 0, |f(t)| ď M1e
at for all t ą 0. Therefore,

for s ą a,
ˇ

ˇ

ˇ
L (f)(s) ´

ż R

0

e´stf(t) dt
ˇ

ˇ

ˇ
ď

ż 8

R

e´st
ˇ

ˇf(t)
ˇ

ˇ dt ď M1

ż 8

R

e´(s´a)tdt ď
M1

s ´ a
e(a´s)R .

Similarly, for some M2 ą 0, |g(t)| ď M2e
at for all t ą 0 and

ˇ

ˇ

ˇ
L (g)(s) ´

ż R

0
e´stg(t) dt

ˇ

ˇ

ˇ
ď

M2

s ´ a
e(a´s)R @ s ą a .

By the Fubini theorem,
ż R

0

e´st
( ż t

0

f(t ´ τ)g(τ) dτ
)
dt =

ż R

0

( ż R

τ

f(t ´ τ)g(τ)e´st dt
)
dτ

=

ż R

0

e´sτg(τ)
( ż R

τ

f(t ´ τ)e´s(t´τ) dt
)
dτ =

ż R

0

e´sτg(τ)
( ż R´τ

0

f(t)e´st dt
)
dτ ;

thus for s ą a,
ˇ

ˇ

ˇ

ż R

0

e´st
( ż t

0

f(t ´ τ)g(τ) dτ
)
dt ´ L (f)(s)L (g)(s)

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

ż R

0

e´sτg(τ)
( ż R´τ

0

f(t)e´st dt
)
dτ ´ L (f)(s)L (g)(s)

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

ż R

0

e´sτg(τ)
( ż R´τ

0

f(t)e´st dt ´ L (f)(s)
)
dτ + L (f)(s)

( ż R

0

e´sτg(τ) dτ ´ L (g)(s)
)ˇ
ˇ

ˇ

ď
M1M2

s ´ a

ż R

0

e´sτeaτe(a´s)(R´τ) dτ +
M2

s ´ a

ˇ

ˇL (f)(s)
ˇ

ˇe(a´s)R

=
M1M2

s ´ a
Re(a´s)R +

M2

s ´ a

ˇ

ˇL (f)(s)
ˇ

ˇe(a´s)R

which converges to 0 as R Ñ 8. ˝



Example 7.40. Find the inverse Laplace transform of H(s) =
a

s2(s2 + a2)
.

Method 1: Using the partial fractions,

a

s2(s2 + a2)
=

1

a

[ 1

s2
´

1

s2 + a2

]
=

1

a
¨
1

s2
´

1

a2
a

s2 + a2
;

thus Example 7.7 and 7.9 imply

L ´1(H)(t) =
t

a
´

1

a2
sin at .

Method 2: By Theorem 7.39, with F,G denoting the functions F (s) = 1

s2
and G(s) =

a

s2 + a2
,

L ´1(H)(t) =
(
L ´1(F ) ˙ L ´1(G)

)
(t) =

ż t

0

(t ´ τ) sin(aτ) dτ

= t

ż t

0

sin aτ dτ ´

ż t

0

τ sin aτ dτ

= ´
t

a
cos(aτ)

ˇ

ˇ

ˇ

τ=t

τ=0
´

[
´
τ

a
cos(aτ)

ˇ

ˇ

ˇ

τ=t

τ=0
+

1

a

ż t

0

cos(aτ) dτ
]

=
t

a
´

1

a

ż t

0

cos(aτ) dτ =
t

a
´

sin aτ
a2

ˇ

ˇ

ˇ

τ=t

τ=0
=
t

a
´

sin at
a2

.

Example 7.41. Find the (weak) solution of the initial value problem

y 11 + 4y = g(t) , y(0) = 3 , y 1(0) = ´1 .

Taking the Laplace transform of the equation above, we find that

L (y)(s) =
3s ´ 1

s2 + 4
+

L (g)(s)

s2 + 4
=

3s

s2 + 4
´

1

2

2

s2 + 4
+

L (g)(s)

2

2

s2 + 4
.

Therefore, by Example 7.7 and Theorem 7.39,

y(t) = 3 cos(2t) ´
1

2
sin(2t) + 1

2

ż t

0

g(t ´ τ) sin 2τ dτ

= 3 cos(2t) ´
1

2
sin(2t) + 1

2

ż t

0

g(τ) sin 2(t ´ τ) dτ .

In general, we can consider the second order ODE

y 11 + by 1 + cy = g(t) , y(0) = y0 , y 1(0) = y1 .

As discussed before, we find that if y is a (weak) solution to the ODE above,

L (y)(s) =
(s+ b)y0 + y1
s2 + bs+ c

+
L (g)(s)

s2 + bs+ c
.

Therefore,



1. if r2 + br + c = 0 has two distinct real roots r1 and r2, then the solution y is

y(t) =
y1 ´ r2y0
r1 ´ r2

er1t +
r1y0 ´ y1
r1 ´ r2

er2t +

ż t

0

g(t ´ τ)
er1τ ´ er2τ

r1 ´ r2
dτ .

2. if r2 + br + c = 0 has a double root r1, then the solution y is

y(t) = y0e
r1t + (y1 ´ r1y0)te

r1t +

ż t

0

g(t ´ τ)er1ττ dτ .

3. if r2 + br + c = 0 has two complex roots λ ˘ iµ, then the solution y is

y(t) = y0e
λt cosµt+ y1 ´ λy0

µ
eλt sinµt+

ż t

0

g(t ´ τ)eλτ
sinµτ
µ

dτ .

8 Partial Differential Equations and Fourier Series

8.1 Two-Point Boundary Value Problems

For a second order ODE y 11+p(t)y 1+q(t)y = g(t), instead of imposing the initial condition y(t0) = y0

and y 1(t0) = y1 sometimes the boundary condition y(α) = y0 and y(β) = y1 are imposed. In this
section, we consider the two-point boundary value problem

y 11 + p(x)y 1 + q(x)y = g(x) , y(α) = y0, y(β) = y1 . (8.1)

Let z(x) = y(x) ´
x ´ α

β ´ α
y1 ´

x ´ β

α ´ β
y0. Then z satisfies

z 11 + p(x)z 1 + q(x)z = G(x) , z(α) = z(β) = 0 , (8.2)

where G(x) = g(x) ´ p(x)
y0 ´ y1
α ´ β

´ q(x)
(x ´ α

β ´ α
y1 +

x ´ β

α ´ β
y0
)
. Therefore, in general we can assume

the homogeneous boundary condition y0 = y1 = 0 in (8.1). Such a boundary condition is called
homogeneous Dirichlet boundary condition, while the boundary condition in (8.1) is called in-
homogeneous Dirichlet boundary conditions.

Remark 8.1. Even though the initial value problem

y 11 + p(t)y 1 + q(t)y = g(t) , y(t0) = y0 , y 1(t0) = y1 (8.3)

looks quite similar to the boundary value problem (8.1), they actually differ in some very important
ways. For example, if p, q, g are continuous, the initial value problem (8.3) always have a unique
solution, while the boundary value problem (8.1) might have no solution or infinitely many solutions:

1. y 11+y = 0 with boundary condition y(0) = y(π) = 0 has infinite many solutions yc(x) = c sinx.

2. y 11 + y = sinx with boundary condition y(0) = y(π) = 0 has no solution. To see this, we
assume that there is a solution y = y(x) to this ODE. Then y 1(0) = y1 for some y1 P R. Use
the Laplace transform (treating x as the variable t), we find that the solution y satisfies

L (y)(s) =
y1

s2 + 1
+

1

(s2 + 1)2
;



thus by Theorem 7.39 we find that

y(x) = y1 sinx+
ż x

0

sin(x ´ z) sin z dz = y1 sinx+ sin x ´ x cosx
2

.

It is impossible to have y(π) = 0 for any choice of y1.

On the other hand, there are cases that (8.1) has a unique solution. For example, the general solution
to the boundary value problem

y 11 + 2y = 0

is given by
y(x) = C1 cos

?
2x+ C2 sin

?
2x ;

thus to validate the boundary condition y(0) = 1 and y(π) = 0, we must have C1 = 1 and C2 =

´ cot
?
2π. In other words, the solution y(x) = cos

?
2x ´ cot

?
2π sin

?
2x.

The existence theory of the solution to (8.1) requires a totally different functional framework,
and will not be proved in this course. However, we will still state the existence theory and try to
explain the idea of why the theorem should be true.

Theorem 8.2. Let α, β be real numbers and α ă β. Suppose that p : [α, β] Ñ R is continuously
differentiable, and q : [α, β] Ñ R is continuous. Then (8.1) (with y0 = y1 = 0) has a solution if and
only if g : [α, β] Ñ R is integrable and

ż β

α

g(x)φ(x) dx = 0 @φ satisfying φ 11 ´ p(x)φ 1 +
(
q(x) ´ p 1(x)

)
φ = 0 and φ(α) = φ(β) = 0 .

The solution is unique if the ODE y 11 + p(x)y 1 + q(x)y = 0 with y(α) = y(β) = 0 has only trivial
solution y ” 0.

Remark 8.3. The equation φ 11 ´ p(x)φ 1 +
(
q(x) ´ p 1(x)

)
φ = 0 is called the formal adjoint

equation of y 11 + p(x)y 1 + q(x)y = 0.

Example 8.4. Consider y 11 + y = g(x) with boundary data y(0) = y(π) = 0, where g(x) = sinx.
We have shown in Remark 8.1 that there is no solution to this boundary value problem. To see this
using Theorem 8.2, we first find the kernel of the formal adjoint equation

φ 11 + φ = 0 , φ(0) = φ(π) = 0 .

Since the general solution to φ 11 + φ = 0 is φ(t) = C1 cosx+C2 sinx, to validate the boundary data
we must have C1 = 0. Therefore, for the ODE under consideration to have a solution, we must have

ż π

0

g(x) sinx dx = 0 .

This is impossible since g(x) = sinx.



Example 8.5. Again consider y 11 + y = g(x) with boundary data y(0) = y(π) = 0, but this time we
let g(x) = cosx. As discussed above, since

ż π

0

g(x) sinx dx =

ż π

0

sinx cos x dx =
1

2

ż π

0

sin 2x dx =
´ cos 2x

4

ˇ

ˇ

ˇ

x=π

x=0
= 0 ,

by Theorem 8.2 this ODE has a solution.
To find a solution to the ODE above, we mimic the procedure in Remark 8.1 and find that

L (y)(s) =
y1

s2 + 1
+

s

(s2 + 1)2
,

where y1 = y 1(0). Therefore, Theorem 7.39 implies that

y(x) = y1 sinx+
ż x

0

cos(x ´ z) sin z dz = y1 sinx+ x sin x
2

.

Reason/Idea for why Theorem 8.2 is true: Suppose that A is a n ˆ n matrix, b P Rn. Then
Rn = R(A) ‘ Ker(AT), and R(A) K Ker(AT); that is,

x ¨ y = 0 @ x P R(A) and y P Ker(AT) .

Therefore,
b P R(A) if and only if b ¨ y = 0 @ y P Ker(AT) .

Now, we treat

1. the differential operator d2

dx2
+ p(x)

d

dx
+ q(x) as the role of A;

2. the space of twice differentiable functions with vanishing boundary data as the role of Rn;

3. the integral over [α, β] of product of functions f , g as the inner product of f and g.

Then conceptually we can expect that

g P R(A) if and only if g ¨ φ = 0 @φ P Ker(AT) . (8.4)

Now let us examine what Ker(AT) is. By definition, AT is the unique operator satisfying (Ax) ¨ y =

x ¨ (ATy); thus for y, z P Dom(A) (which is the collection of twice differentiable functions with
vanishing boundary data) AT has the property that

ż β

α

(Ay)(x)z(x) =

ż β

α

y(x)(ATz)(x) dx .

Integrating by parts, by the fact that y(α) = y(β) = z(α) = z(β) = 0,
ż β

α

(Ay)(x)z(x) =

ż β

α

[
y 11 + p(x)y 1 + q(x)y

]
z(x) dx =

ż β

α

y(x)
[
z 11 ´

(
p(x)z

) 1
+ q(x)z

]
dx

=

ż β

α

y(x)(ATz)(x) dx .



Therefore, AT is the differential operator d2

dx2
´ p(x)

d

dx
+
(
q(x) ´ p 1(x)

)
. Note that g P R(A) means

D y P Dom(A) Q y 11 + p(x)y 1 + q(x)y = g(x) ;

thus (8.4) implies that

D y P Dom(A) Q y 11 + p(x)y 1 + q(x)y = g(x)

ô

ż β

α

g(x)φ(x) dx = 0 @φ satisfying φ 11 ´ p(x)φ 1 +
(
q(x) ´ p 1(x)

)
φ = 0 .

This is exactly what Theorem 8.2 is talking about. However, we emphasize that the argument above
is purely conceptually but not rigorous.

8.1.1 Eigenfunctions

Recall that if A is a real symmetric n ˆ n matrix, then it is diagonalizable and there exists an
orthonormal basis of Rn consisting of eigenvectors of A. Similarly, if a second order differential
operator

A =
d2

dx2
+ p(x)

d

dx
+ q(x) (8.5)

is self-adjoint (meaning A = AT, where AT is given by ATφ = φ 11 ´ p(x)φ 1 + (q(x) ´ p 1(x))φ),
then the eigenvectors of A, called the eigenfunctions of A, can also form an orthonormal basis of
Dom(A). We note that for a differential operator A given by (8.5) being self-adjoint, it is sufficient
and necessary that p ” 0. In particular, we consider the eigenfunctions u of the differential operator

∆ =
d2

dx2
satisfying

∆u = u 11 = λu , u(α) = u(β) = 0 (α ă β) . (8.6)

If λ ą 0, then the general solution to (8.6) is u(x) = C1e
?
λx + C2e

´
?
λx which, to validate the

boundary data, implies that C1 = C2 = 0. Therefore, the eigenvalue of the differential operator ∆

cannot be positive.
If λ ď 0, the general solution to (8.6) is u(x) = C1 cos

?
´λx + C2 sin

?
´λx. To satisfy the

boundary data, it is required that[
cos

?
´λα sin

?
´λα

cos
?

´λβ sin
?

´λβ

] [
C1

C2

]
=

[
0
0

]
Since we are interested in the case that C1 or C2 ‰ 0, we must have

det
([

cos
?

´λα sin
?

´λα
cos

?
´λβ sin

?
´λβ

])
= 0 ;

thus sin
?

´λ(β ´ α) = 0. This implies that
?

´λ(β ´ α) = kπ or some k; thus λ = ´
k2π2

(β ´ α)2
. A

corresponding eigenfunction is then

u(x) = ´ sin kπα

β ´ α
cos kπx

β ´ α
+ cos kπα

β ´ α
sin kπx

β ´ α
= sin kπ(x ´ α)

β ´ α
.



For each k P N, define

λk = ´
k2π2

(β ´ α)2
and ek(x) =

c

2

β ´ α
sin kπ(x ´ α)

β ´ α
, (8.7)

where the constant
c

2

β ´ α
is for the purpose that teku8

k=1 forms an orthonormal set; that is, we

have the property that ek ¨ ej = δkj, or to be more precisely,
ż β

α

ek(x)ej(x) dx =

"

1 if k = j ,
0 if k ‰ j .

Then we expect that for twice differentiable function φ with vanishing Dirichlet boundary data,

φ(x) =
8
ÿ

k=1

(φ ¨ ek)ek(x) =
8
ÿ

k=1

ż β

α

φ(y)ek(y) dy ek(x) @x P [α, β] (8.8)

and the “length” of the function φ should obey the Pythagorean Theorem; that is, one expects that
ż β

α

φ(x)2 dx =
8
ÿ

k=1

( ż β

α

φ(y)ek(y) dy
)2

(8.9)

Identity (8.8), often called the Fourier series representation (for functions vanishing on the
boundary), in fact holds for all φ which satisfies φ(α) = φ(β) and is Hölder continuous with some
Hölder exponent; that is, there is α P (0, 1] such that

sup
x1,x2P[α,β]

ˇ

ˇφ(x1) ´ φ(x2)
ˇ

ˇ

|x1 ´ x2|α
ă 8 ,

while (8.9), called the Parseval identity, even holds for a larger class of functions. We again
emphasize that the derivation of (8.8) is not rigorous but purely conceptually.

Instead of considering the second order equation y 11 +p(t)y 1 + q(t)y = g(t) with boundary y(α) =
y(β) = 0, we can also consider the following three type of boundary conditions:

1. y 1(α) = a, y 1(β) = b, called the inhomogeneous Neumann boundary condition, or

2. y(α) = 0, y 1(β) = b or y 1(α) = a, y 1(β) = 0, called the mixed type boundary condition.

We note that in either cases, using similar technique to transform (8.1) to (8.2) we can always
transform the boundary condition above to the homogeneous one; that is,

1. y 1(α) = 0, y 1(β) = 0, called the homogeneous Neumann boundary condition, or

2. y(α) = 0, y 1(β) = 0 or y 1(α) = 0, y 1(β) = 0.

Now we consider the eigenfunctions for the differential operator ∆ with different boundary conditions.

1. Homogeneous Neumann boundary conditions: We look for u : [α, β] Ñ R satisfying

uxx = λu in [α, β], u 1(α) = u 1(β) = 0 .



As in the previous section, if λ ą 0, then the only possible u is trivial, so we consider the case
λ ď 0. If λ = 0, we have u(x) = 1 being a non-trivial eigenfunction. If λ ă 0, the general
solution to the ODE (without specifying the boundary condition) is

u(x) = C1 cos
?

´λx+ C2 sin
?

´λx ,

and to validate the boundary condition, the system[
´ sin

?
´λα cos

?
´λα

´ sin
?

´λβ cos
?

´λβ

] [
C1

C2

]
=

[
0
0

]
must have non-trivial solution which implies sin

?
´λ(β ´ α) = 0. As in the previous section,

we conclude that

λ = ´
k2π2

(β ´ α)2
and u(x) = C cos

?
´λ(x ´ α) = C cos kπ(x ´ α)

β ´ α
.

For each k P N, define

λk = ´
k2π2

(β ´ α)2
, e0(x) =

c

1

β ´ α
and ek(x) =

c

2

β ´ α
cos kπ(x ´ α)

β ´ α
. (8.10)

Then teku8
k=0 forms an orthonormal “basis” in the space

␣

u P C 2([α, β])
ˇ

ˇu 1(α) = u 1(β) = 0
(

;

that is, for twice differentiable function φ with vanishing Neumann boundary data,

φ(x) =
8
ÿ

k=0

(φ ¨ ek)ek(x) =
8
ÿ

k=1

ż β

α

φ(y)ek(y) dy ek(x) @x P (α, β) (8.11)

and the “length” of the function φ should obey the Parseval identity
ż β

α

φ(x)2 dx =
8
ÿ

k=1

( ż β

α

φ(y)ek(y) dy
)2

(8.12)

2. Mixed type boundary conditions: We first look for u : [α, β] Ñ R satisfying

uxx = λu in [α, β], u(α) = u 1(β) = 0 .

Similar computations show that λ ă 0 and cos
?

´λ(α ´ β) = 0. Therefore,
?

´λ(β ´ α) =
(2k + 1)π

2
which implies that for some k P N,

λ = ´
(2k ´ 1)2π2

4(β ´ α)2
.

Therefore, for each k P N, define

λk = ´
(2k ´ 1)2π2

4(β ´ α)2
and ek(x) =

c

2

β ´ α
sin (2k ´ 1)π(x ´ α)

2(β ´ α)
.

Then teku8
k=1 forms an orthonormal “basis” in the space

␣

u P C 2([α, β])
ˇ

ˇu(α) = u 1(β) = 0
(

.

Similarly,
!

c

2

β ´ α
cos (2k ´ 1)π(x ´ α)

2(β ´ α)

)8

k=1
forms an orthonormal “basis” in the space

␣

u P

C 2([α, β])
ˇ

ˇu 1(α) = u(β) = 0
(

.



8.2 Fourier Series

In the previous section, we discuss how one obtain an orthonormal basis in different spaces. In fact,
by the Stone-Weierstrass Theorem (abstract version) we can conclude the following

Theorem 8.6. Let C (T) be the collection of all 2π-periodic continuous functions, and Pn(T) be the
collection of all trigonometric polynomials of degree n; that is,

Pn(T) =
!

c0
2
+

n
ÿ

k=1

ck cos kx+ sk sin kx
ˇ

ˇ

ˇ
tckunk=0, tskunk=1 Ď R

)

.

Let P(T) =
8
Ť

n=0

Pn(T). Then P(T) is dense in C (T). In other words, if f P C (T) and ε ą 0 is

given, there exists p P P(T) such that
ˇ

ˇf(x) ´ p(x)
ˇ

ˇ ă ε @ x P R .

In other words, every period function with period 2π can be approximated by trigonometric
polynomials in the uniform sense. In this section, we would like to discuss how to approximate a
continuous period functions using trigonometric polynomials.

背景知識：Stone-Weierstrass 定理（concrete version）告訴我們定義在 [0, 1] 上的連續函數 f 可以

用多項式（例如 Bernstein 多項式）去逼近（在均勻收斂的意義下），而我們也注意到 Bernstein 多
項式，在取不同次數 n 的多項式做逼近時，每一個單項式 xk 前面的係數都跟 n 和 k 有關。但是

從 Taylor 定理中我們又發現，對某些擁有很好性質的函數 f（叫做解析函數 Analytic functions），
即使取不同次數 n 的多項式做逼近時，每個單項式 xk 前面的係數可以取成只跟函數 f 的 k 次導

數有關（跟 n 無關）。這給了我們一個很粗略的概念，知道想用多項式去逼近連續函數時，多項式

的係數有些時候會跟多項次的次數有關，有時則無關。

在這一節中，我們特別關注連續的週期函數。由 Theorem 8.6 我們知道週期為 2π 的函數可用

形如

pn(x) =
c
(n)
0

2
+

n
ÿ

k=1

(c
(n)
k cos kx+ s

(n)
k sin kx)

的三角多項式 (trigonometric polynomials) 所逼近（在均勻收斂的意義下），其中上標 (n) 代表的

是係數可能與用來逼近的三角多項式的次數 n 有關係。跟前一段所述的經驗類似，在數學理論上

我們想知道下面問題的答案：

1. 什麼樣的函數，可以用係數與逼近次數無關的三角多項式去逼近。對這樣的函數，三角多項
式要怎麼挑？

2. 對於實在沒辦法用係數與逼近次數無關的三角多項式去逼近的連續週期函數，有什麼好的方
法逼近？而上面所挑出來的那個係數跟逼近次數無關的三角多項式，在次數接近無窮大時出

了什麼問題？

Let f P C (T) be given. We first assume that the trigonometric polynomials used to approximate
f can be chosen in such a way that the coefficients does not depend on the degree of approximation;



that is, c(n)k = ck and s
(n)
k = sk. In this case, if pn Ñ f uniformy on [´π, π], we must have

lim
nÑ8

ż π

´π

pn(x) cos kx dx =

ż π

´π

f(x) cos kx dx @ k P t0, 1, ¨ ¨ ¨ , nu

and
lim
nÑ8

ż π

´π

pn(x) sin kx dx =

ż π

´π

f(x) sin kx dx @ k P t1, ¨ ¨ ¨ , nu .

Since
ż π

´π

cos kx cos ℓx dx =

ż π

´π

sin kx sin ℓx dx = πδkℓ @ k, ℓ P N

and
ż π

´π

sin kx cos ℓx dx = 0 @ k P N, ℓ P N Y t0u ,

we find that
ck =

1

π

ż π

´π

f(x) cos kx dx and sk =
1

π

ż π

´π

f(x) sin kx dx . (8.13)

This induces the following

Definition 8.7. For a Riemann integrable function f : [´π, π] Ñ R, the Fourier series repre-
sentation of f , denoted by s(f, ¨), is given by

s(f, x) =
c0
2
+

8
ÿ

k=1

(ck cos kx+ sk sin kx)

whenever the sum makes sense, where sequences tcku8
k=0 and tsku8

k=1 given by (8.13) are called the
Fourier coefficients associated with f . The n-th partial sum of the Fourier series representation
to f , denoted by sn(f, ¨), is given by

sn(f, x) =
c0
2
+

n
ÿ

k=1

(ck cos kx+ sk sin kx) .

We note that for the Fourier series s(f, x) to be defined, f is not necessary continuous.

Example 8.8. Consider the periodic function f : R Ñ R defined by

f(x) =

"

x if 0 ď x ď π ,
´x if ´π ă x ă 0 ,

and f(x+ 2π) = f(x) for all x P R. To find the Fourier representation of f , we compute the Fourier
coefficients by

sk =
1

π

ż π

´π

f(x) sin kx dx =
1

π

( ż π

0

x sin kx dx ´

ż 0

´π

x sin kx dx
)
= 0

and

ck =
1

π

ż π

´π

f(x) cos kx dx =
1

π

( ż π

0

x cos kx dx ´

ż 0

´π

x cos kx dx
)
=

2

π

ż π

0

x cos kx dx .



If k = 0, then c0 =
2

π

ż π

0
x dx = π, while if k P N,

ck =
2

π

(x sin kx
k

ˇ

ˇ

ˇ

π

0
´

ż π

0

sin kx
k

dx
)
=

2

π

cos kx
k2

ˇ

ˇ

ˇ

π

0
=

2((´1)k ´ 1)

πk2
.

Therefore, c2k = 0 and c2k´1 = ´
4

π(2k ´ 1)2
for all k P N. Therefore, the Fourier series representation

of f is given by

s(f, x) =
π

2
´

4

π

8
ÿ

k=1

cos(2k ´ 1)x

(2k ´ 1)2
.

Example 8.9. Consider the periodic function f : R Ñ R defined by

f(x) =

$

&

%

1 if ´
π

2
ď x ď

π

2
,

0 if ´π ď x ă ´
π

2
or π

2
ă x ď π ,

and f(x + 2π) = f(x) for all x P R. We compute the Fourier coefficients of f and find that sk = 0

for all k P N and c0 = 1, as well as

ck =
1

π

ż π
2

´π
2

cos kx dx =
2

π

ż π
2

0

cos kx dx =
2 sin kπ

2

πk
.

Therefore, c2k = 0 and c2k´1 =
2(´1)k+1

π(2k ´ 1)
for all k P N; thus the Fourier series representation of f is

given by

s(f, x) =
1

2
´

2

π

8
ÿ

k=1

(´1)k

2k ´ 1
cos(2k ´ 1)x .

Example 8.10. Consider the periodic function f : R Ñ R defined by

f(x) = x if ´ π ă x ď π

and f(x + 2π) = f(x) for all x P R. Then the Fourier coefficients of f are computed as follows:
ck = 0 for all k P N Y t0u since f is (more or less) an odd function, and

sk =
1

π

ż π

´π

x sin kx dx =
2

π

ż π

0

x sin kx dx =
2

π

(
´
x cos kx

k

ˇ

ˇ

ˇ

π

0
+

ż π

0

cos kx
k

dx
)
=

2(´1)k+1

k
.

Therefore, the Fourier series representation of f is given by

s(f, x) = 2
8
ÿ

k=1

(´1)k+1

k
sin kx .

Proposition 8.11. Let f : [´π, π] be Riemann integrable and sn(f, x) be the n-th partial sum of the
Fourier series representation of f . Then

ż π

´π

ˇ

ˇf(x) ´ sn(f, x)
ˇ

ˇ

2
dx ď

ż π

´π

ˇ

ˇf(x) ´ p(x)
ˇ

ˇ

2
dx @ p P Pn(T) .



Proof. We note that if p P Pn(T), then sn(p, ¨) = p and
ż π

´π

(
f(x) ´ sn(f, x)

)
p(x) dx = 0 .

Therefore, if p P Pn(T),
ż π

´π

ˇ

ˇf(x) ´ p(x)
ˇ

ˇ

2
dx =

ż π

´π

ˇ

ˇf(x) ´ sn(f, x) + sn(f, x) ´ p(x)
ˇ

ˇ

2
dx

=

ż π

´π

ˇ

ˇf(x) ´ sn(f, x)
ˇ

ˇ

2
dx+

ż π

´π

ˇ

ˇsn(f ´ p, x)
ˇ

ˇ

2
dx (8.14)

which concludes the proposition. ˝

Theorem 8.12. Let f P C (T). Then

lim
nÑ8

ż π

´π

ˇ

ˇsn(f, x) ´ f(x)
ˇ

ˇ

2
dx = 0 (8.15)

and
ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx = π

[c20
2
+

8
ÿ

k=1

(c2k + s2k)
]
. (Parseval’s identity) (8.16)

Proof. Let ε ą 0 be given. By the denseness of the trigonometric polynomials in C (T), there exists

h P P(T) such that sup
xPR

ˇ

ˇf(x) ´ h(x)
ˇ

ˇ ă

b

ε

2π
. Suppose that h P PN(T). Then by Proposition 8.11,

ż π

´π

ˇ

ˇf(x) ´ sN(f, x)
ˇ

ˇ

2
dx ď

ż π

´π

ˇ

ˇf(x) ´ h(x)
ˇ

ˇ

2
dx ă ε .

Since sN(f, ¨) P Pn(T) if n ě N , we must have
ż π

´π

ˇ

ˇf(x) ´ sn(f, x)
ˇ

ˇ

2
dx ď

ż π

´π

ˇ

ˇf(x) ´ sN(f, x)
ˇ

ˇ

2
dx ď ε @n ě N ;

thus (8.15) is concluded. Finally, using (8.14) with p = 0 we obtain that
ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx =

ż π

´π

ˇ

ˇsn(f, x)
ˇ

ˇ

2
dx+

ż π

´π

ˇ

ˇf(x) ´ sn(f, x)
ˇ

ˇ

2
dx ;

thus passing to the limit as n Ñ 8 and using the fact that
ż π

´π

ˇ

ˇsn(f, x)
ˇ

ˇ

2
dx = π

[
c20
2
+

n
ř

k=1

(c2k + s2k)
]

we conclude (8.16). ˝

Remark 8.13. Identities (8.15) and (8.16) also hold for Riemann integrable function f : [´π, π] Ñ R.

Assuming this, then Example 8.10 provides that
ż π

´π

x2 dx = π
8
ÿ

k=1

4

k2

which implies that
8
ř

k=1

1

k2
=

π2

6
.



8.3 The Fourier Convergence Theorem

Let f : R Ñ R be a 2π-period function and Riemann integrable over [´π, π]. The n-th partial sum
of the Fourier series representation of f is given by

sn(f, x) =
c0
2
+

n
ÿ

k=1

(
ck cos kx+ sk sin kx

)
=

1

2π

ż π

´π

f(x) dx+
n
ÿ

k=1

[( 1
π

ż π

´π

f(y) cos ky dx
)

cos kx+
( 1
π

ż π

´π

f(y) sin ky dy
)

sin kx
]

=
1

2π

ż π

´π

f(x) dx+
1

π

ż π

´π

f(y)
(

cos ky cos kx+ sin ky sin kx
)
dy

=
1

π

ż π

´π

f(y)
(1
2
+

n
ÿ

k=1

cos k(x ´ y)
)
dy .

Since 1

2
+

n
ř

k=1

cos kx =
sin(n+ 1

2)x

2 sin x
2

, we conclude that

sn(f, x) =

ż π

´π

f(y)
sin(n+ 1

2
)(x ´ y)

2π sin x´y
2

dy .

This induces the following

Definition 8.14. The function
Dn(x) =

sin(n+ 1
2
)x

2π sin x
2

(8.17)

is called the Dirichlet kernel.

Definition 8.15 (Convolutions). For 2π-period functions f, g, the convolution of f and g, denoted
by f ‹ g, is the function

(f ‹ g)(x) =

ż π

´π

f(x ´ y)g(y) dy .

Using this definition, we have sn(f, x) = (Dn ‹ f)(x). We note that similar to (a) of Proposition
7.38, by the periodicity of f and g we also have f ‹ g = g ‹ f .

Theorem 8.16. For any f P C 1(T); that is, f is 2π-periodic continuously differentiable function,
sn(f, ¨) = Dn ‹ f converges to f uniformly as n Ñ 8.

Proof. Let ε ą 0 be given. Define δ = ε

4(}f 1}8 + 1)
, where } ¨ }8 denotes the maximum of a function.

Since 1

n+ 1
2

Ñ 0 as n Ñ 8 and f, f 1 are bounded, there exists N ą 0 such that

1

2π

[ 2}f}8

(n+ 1
2
) sin δ

2

+
π}f 1}8

(n+ 1
2
) sin δ

2

+
π}f}8

(n+ 1
2
) sin2 δ

2

]
ă
ε

4
whenever n ě N .

Since
ż

T
Dn(x ´ y) dy = 1 for all x P T,

sn(f, x) ´ f(x) = (Dn ‹ f ´ f)(x) =

ż π

´π

Dn(x ´ y)
(
f(y) ´ f(x)

)
dy

=

ż π

´π

Dn(y)
(
f(x ´ y) ´ f(x)

)
dy .



We break the integral into two parts: one is the integral over |y| ď δ and the other is the integral
over δ ă |y| ď π. Since f P C 1(T),

|f(x ´ y) ´ f(x)| ď sup
xPR

|f(x)||y| ” }f 1}8|y| ;

thus by the fact that 2

π
|x| ď sin |x| for |x| ď π,

ˇ

ˇ

ˇ

ż

|y|ďδ

Dn(y)
(
f(x ´ y) ´ f(x)

)
dy
ˇ

ˇ

ˇ

ď
1

2π

ż δ

´δ

ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇ

ˇ

ˇ sin y
2

ˇ

ˇ

dy ď
}f 1}8

2π

ż δ

´δ

y

sin y
2

dy ď }f 1}8δ ă
ε

4
. (8.18)

As for the integral over δ ă |y| ď π, we have
ż π

δ

sin
(
n+

1

2

)
y
f(x ´ y) ´ f(x)

sin y
2

dy

= ´
cos

(
n+ 1

2

)
y

n+ 1
2

f(x ´ y) ´ f(x)

sin y
2

ˇ

ˇ

ˇ

y=π

y=δ
+

ż π

δ

cos
(
n+ 1

2

)
y

n+ 1
2

d

dy

f(x ´ y) ´ f(x)

sin y
2

dy

=
cos

(
n+ 1

2

)
δ

n+ 1
2

f(x+ δ) ´ f(x)

sin δ
2

´

ż π

δ

cos(n+ 1
2
)y

n+ 1
2

f 1(x+ y)

sin y
2

dy

´

ż π

δ

cos(n+ 1
2
)y

n+ 1
2

cos y
2
(f(x ´ y) ´ f(x))

2 sin2 y
2

dy .

Therefore, if n ě N ,
ˇ

ˇ

ˇ

ż π

δ

sin
(
n+

1

2

)
y
f(x ´ y) ´ f(x)

2π sin y
2

dy
ˇ

ˇ

ˇ

ď
1

2π

[ 2}f}8

(n+ 1
2
) sin δ

2

+
π}f 1}8

(n+ 1
2
) sin δ

2

+
π}f}8

(n+ 1
2
) sin2 δ

2

]
ă
ε

4
. (8.19)

Similarly, if n ě N ,
ˇ

ˇ

ˇ

ż ´δ

´π

sin
(
n+

1

2

)
y
f(x ´ y) ´ f(x)

2π sin y
2

dy
ˇ

ˇ

ˇ
ă
ε

4
. (8.20)

Therefore, the combination of (8.18)-(8.20) implies that

sup
xPR

ˇ

ˇ

ˇ

ż π

´π

sin(n+
1

2
)y
f(x+ y) ´ f(x)

sin y
2

dy
ˇ

ˇ

ˇ
ă ε whenever n ě N .

This implies that lim
nÑ8

sup
xPR

ˇ

ˇ(Dn ‹ f)(x) ´ f(x)
ˇ

ˇ = 0 or Dn ‹ f converges uniformly to f . ˝

Remark 8.17. Given a continuous function g with period 2L, let f(x) = g
(Lx
π

)
. Then f is a

continuous function with period 2π, and the Fourier series representation of f is given by

s(f, x) =
c0
2
+

n
ÿ

k=1

(ck cos kx+ sk sin kx) ,

where ck and sk are given by (8.13). Now, define the Fourier series representation of g by s(g, x) =
s
(
f,

πx

L

)
. Then the Fourier series representation of g is given by



s(g, x) =
c0
2
+

8
ÿ

k=1

(
ck cos kπx

L
+ sk sin kπx

L

)
,

where tcku8
k=0 and tsku8

k=1 is also called the Fourier coefficients associated with g and are given by

ck =
1

π

ż π

´π

f(x) cos kx dx =
1

π

ż π

´π

g
(Lx
π

)
cos kx dx =

1

L

ż L

´L

g(x) cos kπx
L

dx

and similarly, sk =
1

L

ż L

´L
g(x) sin kπx

L
dx. Moreover, the change of variable formula implies that

ż L

´L

ˇ

ˇg(x)
ˇ

ˇ

2
dx =

ż L

´L

ˇ

ˇf
(πx
L

)ˇ
ˇ

2
dx =

L

π

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx = L

[c20
2
+

8
ÿ

k=1

(c2k + s2k)
]
. (8.21)

Identity (8.21) is the Parseval identity for 2L-periodic function g.

Definition 8.18. A function f is said to be piecewise continuous on an interval [α, β] if the
interval can be partitioned by a finite number of points α = x0 ă x1 ă ¨ ¨ ¨ ă xn = β such that

1. f is continuous on each open sub-interval (xi´1, xi).

2. f approaches a finite limit as the end-points of each sub-interval are approached from within
the sub-interval.

Theorem 8.19. Suppose that f and f 1 are piecewise continuous on the interval [´L,L) and f(x +

L) = f(x) for all x P R. Then

f(x+) + f(x´)

2
= s(f, x) =

c0
2
+

8
ÿ

k=1

(
ck cos kx+ sk sin kx

)
,

where f(x˘) = lim
yÑx˘

f(x) denotes the one-sided limit of f at x.

Example 8.20. Let f(x) =
"

0 if ´L ă x ă 0 ,

L if 0 ă x ă L ,
and f(x+ 2L) = f(x) for all x P R. Then

s(f, x) =
L

2
+

2L

π

8
ÿ

k=1

1

2k ´ 1
sin (2k ´ 1)πx

L
.

The following figure demonstrates the graph of f and the 8-th partial sum of f

Figure 6: The partial sum s8(f, x) =
L

2
+

2L

π

8
ř

k=1

1

2k ´ 1
sin (2k ´ 1)πx

L
.



One can use the following matlabr code to generate the picture above. The reader can change
the value of N and see how the Fourier series converges to the step function.

N = 8; % degree of trigonometric polynomial
L = 1; % half of the period
x = -2.2:0.01:2.2;

% Computing the N-th partial sum of the Fourier series
S = L/2*ones(1,length(x));
for k = 1:N

S = S + 2*L*sin((2*k-1)*pi*x/L)/(pi*(2*k-1));
end

% Plot the N-th partial sum of the Fourier series
plot(x,S);
hold on;

% Plot the step function
t = -2.5:0.01:2.5;
s = (t < -1).*(t > -2).*ones(1,length(t))...

+ (t < 1).*(t > 0).*ones(1,length(t)) + (t > 2).*ones(1,length(t));
plot(t,s);

Theorem 8.21 (Gibbs’ Phenomena). Let f and f 1 be piecewise continuous on the interval [´L,L)
and f(x + L) = f(x) for all x P R. Suppose that at some point x0 the limit from the left f(x´

0 ) and
the limit from the right f(x+0 ) of the function f exist and differ by a non-zero gap a:

f(x+0 ) ´ f(x´
0 ) = a ‰ 0,

then there exists a constant c ą 0, independent of f , x0 and L (in fact, c =
1

π

ż π

0

sinx

x
dx ´

1

2
«

0.089490), such that

lim
nÑ8

sn
(
f, x0 +

L

2n

)
= f(x+0 ) + ca , (8.22a)

lim
nÑ8

sn
(
f, x0 ´

L

2n

)
= f(x´

0 ) ´ ca . (8.22b)

8.4 Even and Odd Functions

In this section, we consider the Fourier series representation of 2L-periodic even or odd functions.
Recall that a function f : R Ñ R is called an even (resp. odd) function if f(´x) = f(x) (resp.
f(´x) = ´f(x)) for all x P R, and we note that if f : R Ñ R is an even (resp. odd) function,

ż M

´M

f(x) dx = 2

ż M

0

f(x) dx
(

resp.
ż M

´M

f(x) dx = 0
)

@M ą 0 .



Therefore, if f is a 2L-periodic even function, the Fourier series representation of f is given by

s(f, x) =
c0
2
+

8
ÿ

k=1

ck cos kπx
L

, (8.23)

while if f is a 2L-periodic odd function, the Fourier series representation of f is given by

s(f, x) =
8
ÿ

k=1

sk sin kπx
L

, (8.24)

where tcku8
k=0, tsku8

k=1 are given by

ck =
1

L

ż L

´L

f(x) cos kπx
L

dx , sk =
1

L

ż L

´L

f(x) sin kπx
L

dx . (8.25)

Definition 8.22. Let f : [0, L] Ñ R be a function. Then even (resp. odd) extension of f is the
function fe : [´L,L] Ñ R (resp. fo : [´L,L] Ñ R) such that

fe(x) =

"

f(x) if x P [0, L] ,

f(´x) if x P [´L, 0) .

(
resp. fo(x) =

"

f(x) if x P [0, L] ,

´f(´x) if x P [´L, 0) .

)
The even (resp. odd) periodic extension of f is a 2L-periodic function which coincides with fe
(resp. fo) in the interval [´L,L].

Definition 8.23. Let f : [0, L] Ñ R be a function. The Fourier series representation of the even
(resp. odd) extension of f is called the Fourier cosine (resp. sine) series of f .

Using (8.23)-(8.25), the Fourier cosine and sine series of f : [0, L] Ñ R is

s(fe, x) =
1

L

ż L

0

f(y)dy +
2

L

8
ÿ

k=1

( ż L

0

f(y) cos kπy
L
dy

)
cos kπx

L

and
s(fo, x) =

2

L

8
ÿ

k=1

( ż L

0

f(y) sin kπy
L
dy

)
sin kπx

L
,

respectively. By Theorem 8.19, if f : [0, L] Ñ R is piecewise continuous with piecewise continuous
f 1, then

f(x+) + f(x´)

2
= s(fe, x) = s(fo, x) @ x P [0, L] .

Moreover, Remark 8.13 and (8.21) imply that
ż L

0

ˇ

ˇf(x)
ˇ

ˇ

2
dx =

1

2

ż L

´L

ˇ

ˇfe(x)
ˇ

ˇ

2
dx =

L

2

[ 2

L2

( ż L

0

f(y) dy
)2

+
4

L2

8
ÿ

k=1

( ż L

0

f(y) cos kπy
L
dy

)2]
=

1

L

( ż L

0

f(y) dy
)2

+
2

L

8
ÿ

k=1

( ż L

0

f(y) cos kπy
L
dy

)2]
and similarly,

ż L

0

ˇ

ˇf(x)
ˇ

ˇ

2
dx =

1

2

ż L

´L

ˇ

ˇfo(x)
ˇ

ˇ

2
dx =

2

L

8
ÿ

k=1

( ż L

0

f(y) sin kπy
L
dy

)2

.



Example 8.24. By Example 8.8 and 8.10, we conclude that

x = 2
8
ÿ

k=1

(´1)k+1

k
sin kx =

π

2
´

4

π

8
ÿ

k=1

cos(2k ´ 1)x

(2k ´ 1)2
@ x P [0, π) .

The Parseval identity provides that

2π3

3
= π

8
ÿ

k=1

4

k2
= π

[π2

2
+

16

π2

8
ÿ

k=1

1

(2k ´ 1)4

]
.

8.5 Separation of Variables; Heat Conduction in a Rod

Consider the heat distribution on a rod of length L: Parameterize the rod by [0, L], and let t be the
time variable. Let ρ(x), s(x), κ(x) denote the density, specific heat, and the thermal conductivity
of the rod at position x P (0, L), respectively, and u(x, t) denote the temperature at position x and
time t. For 0 ă x ă L, and ∆x,∆t ! 1,
ż x+∆x

x

ρ(y)s(y)
[
u(y, t+∆t) ´ u(y, t)

]
dy =

ż t+∆t

t

[
´κ(x)ux(x, t

1) + κ(x+∆x)ux(x+∆x, t1)
]
dt1 ,

where the left-hand side denotes the change of the total heat in the small section (x, x + ∆x), and
the right-hand side denotes the heat flows from outside. Divide both sides by ∆x∆t and letting ∆x

and ∆t approach zero, if all the functions appearing in the equation above are smooth enough, we
find that

ρ(x)s(x)ut(x, t) =
[
κ(x)ux(x, t)

]
x

0 ă x ă L , t ą 0 . (8.26)

Assuming uniform rod; that is, ρ, s, κ are constant, then (8.26) reduces to that

ut(x, t) = α2uxx(x, t) , 0 ă x ă L , t ą 0 , (8.27a)

where α2 =
κ

ρs
is called the thermal diffusivity.

To determine the state of the temperature, we need to impose that initial condition

u(x, 0) = f(x) 0 ă x ă L (8.27b)

and a boundary condition. In this section, we consider the Dirichlet boundary condition

u(0, t) = u(L, t) = 0 t ą 0 . (8.27c)

Method of Separation of Variables: Assume that the solution u is a product of two functions,
one depending only on x and the other depending only on t; thus

u(x, t) = X(x)T (t) .

Then (8.27a) implies that

T 1(t)X(x) = α2T (t)X 11(x) 0 ă x ă L , t ą 0 .



Rearranging terms, we obtain that
X 11(x)

X(x)
=

1

α2

T 1(t)

T (t)
.

Since the left-hand side is a function of x and the right-hand side is a function of t, we must have

X 11(x)

X(x)
=

1

α2

T 1(t)

T (t)
= ´λ .

for some constant λ. In other words, X and T satisfy

X 11(x) + λX(x) = 0 0 ă x ă L ,

T 1(t) + α2λT (t) = 0 t ą 0 .

Since u(0, t) = u(L, t) = 0 for all t ą 0, for X(x)T (t) to be a solution, we must have X(0) = X(L) =

0. As discussed before, in order to have non-trivial solution, λ has to be positive and using (8.7) we
find that

λk =
k2π2

L2
and Xk(x) = sin kπx

L
.

This in turn implies that

T 1(t) +
k2π2α2

L2
T (t) = 0 ;

thus T (t) = e´ k2π2α2

L2 t. As a consequence, we conclude that

uk(x, t) = e´ k2π2α2

L2 t sin kπx
L

.

This uk satisfies (8.27a) and (8.27c) for all k P N. By the superposition principle, we also expect that
the linear combination of uk’s satisfies (8.27a) and (8.27c).

To satisfy the initial condition u(x, 0) = f(x), we first find the Fourier sine series of f and find
that

f(x) =
8
ÿ

k=1

sk sin kπx
L

, sk =
2

L

ż L

0
f(x) sin kπx

L
dx .

Define
u(x, t) =

8
ÿ

k=1

ske
´ k2π2α2

L2 t sin kπx
L

, sk =
2

L

ż L

0
f(x) sin kπx

L
dx .

Then if the differentiation in both x and t commutes with the infinite sum, then u given above solves
(8.27).

8.6 Other Heat Conduction Problems
8.6.1 Non-homeogeneous Dirichlet boundary conditions

In this sub-section we consider the heat equation (8.27a,b) with non-homogeneous Dirichlet boundary
condition

u(0, t) = T1 and u(L, t) = T2 t ą 0 . (8.27d)



Define v(x) = (T2 ´ T1)
x

L
+ T1. Then v(0) = T1 and v(L) = T2. Letting w(x, t) = u(x, t) ´ v(x),

we find that w satisfies

wt(x, t) = α2wxx(x, t) 0 ă x ă L , t ą 0 ,

w(x, 0) = f(x) ´ v(x) 0 ă x ă L ,

w(0, t) = w(L, t) = 0 t ą 0 .

By the discussion in the previous section, we find that

w(x, t) =
8
ÿ

k=1

bke
´ k2π2α2

L2 t sin kπx
L

, bk =
2

L

ż L

0

(f(x) ´ v(x)) sin kπx
L

dx .

Therefore, the solution to (8.27a,b,d) is given by

u(x, t) = v(x) + w(x, t)

= (T2 ´ T1)
x

L
+ T1 +

8
ÿ

k=1

bke
´ k2π2α2

L2 t sin kπx
L

,

where
bk =

2

L

ż L

0

(
f(x) ´ (T2 ´ T1)

x

L
´ T1

)
sin kπx

L
dx .

Since the temperature at the ends of the rod are fixed to be some constants, we expect that
u(x, t) Ñ v(x) as t Ñ 8. To see this mathematically, we consider the case that t " 1. By the fact

that |bk| ď
2

L

ż L

0

ˇ

ˇf(x) ´ v(x)
ˇ

ˇ dx, we have

max
xP[0,L]

ˇ

ˇu(x, t) ´ v(x)
ˇ

ˇ ď

8
ÿ

k=1

|bk|e´ k2π2α2

L2 t
ď

( 2

L

ż L

0

ˇ

ˇf(x) ´ v(x)
ˇ

ˇ dx
) 8
ÿ

k=1

e´ k2π2α2

L2 t

ď e´π2α2

L2 (t´1)
( 2

L

ż L

0

ˇ

ˇf(x) ´ v(x)
ˇ

ˇ dx
) 8
ÿ

k=1

e´ k2π2α2

L2 .

Since
8
ř

k=1

e´ k2π2α2

L2 ă 8, we conclude that

lim
tÑ8

max
xP[0,L]

ˇ

ˇu(x, t) ´ v(x)
ˇ

ˇ = 0 .

This shows that u(¨, t) Ñ v uniformly on [0, L] as t Ñ 8, and this further shows that

lim
tÑ8

ż L

0

ˇ

ˇu(x, t) ´ v(x)
ˇ

ˇ

2
dx = 0 .

On the other hand, for each fixed t ą 0, we can treat
8
ÿ

k=1

bke
´ k2π2α2

L2 t sin kπx
L

as the Fourier sine series of u(x, t) ´ v(x); thus the Parseval identity implies that
ż L

0

ˇ

ˇu(x, t) ´ v(x)
ˇ

ˇ

2
dx = L

8
ÿ

k=1

b2ke
´ 2k2π2α2

L2 t
ď e´ 2π2α2

L2 t
8
ÿ

k=1

b2k

= Le´ 2π2α2

L2 t

ż L

0

|f(x)|2 dx Ñ 0 as t Ñ 8.



8.6.2 Homogeneous Neumann boundary conditions

In this sub-section we consider the heat equation (8.27a,b) with non-homogeneous Dirichlet boundary
condition

ux(0, t) = 0 and ux(L, t) = 0 t ą 0 . (8.27e) .

We remark that this boundary condition means the end of the rod are insulated.
Now we apply the method of separation of variables. Suppose u(x, t) = X(x)T (t) is a solution to

(8.27a) and (8.27e). Then again
X 11(x)

X(x)
=

1

α2

T 1(t)

T (t)
= ´λ .

for some constant λ, or equivalently, X and T satisfy

X 11(x) + λX(x) = 0 0 ă x ă L ,

T 1(t) + α2λT (t) = 0 t ą 0 .

Since ux(0, t) = ux(L, t) = 0 for all t ą 0, for X(x)T (t) satisfying (8.27e), we must have X 1(0) =

X 1(L) = 0. As discussed before, in order to have non-trivial solution, λ has to be non-negative and
using (8.7) we find that

λk =
k2π2

L2
and Xk(x) = cos kπx

L
@ k P N Y t0u .

This in turn implies that

T 1(t) +
k2π2α2

L2
T (t) = 0 ;

thus T (t) = e´ k2π2α2

L2 t. As a consequence, we conclude that

uk(x, t) = e´ k2π2α2

L2 t cos kπx
L

.

This uk satisfies (8.27a) and (8.27e) for all k P N Y t0u.
To satisfy the initial condition u(x, 0) = f(x), we first find the Fourier cosine series of f and find

that
f(x) =

c0
2
+

8
ÿ

k=1

ck cos kπx
L

, ck =
2

L

ż L

0
f(x) cos kπx

L
dx .

Define
u(x, t) =

c0
2
+

8
ÿ

k=1

cke
´ k2π2α2

L2 t cos kπx
L

, ck =
2

L

ż L

0
f(x) cos kπx

L
dx .

Then if the differentiation in both x and t commutes with the infinite sum, then u given above solves
(8.27a,b,e).

Since the ends of the rod are insulated, we expect that the temperature converges to the average

temperature 1

L

ż L

0
f(x) dx. To see this, we note that c0

2
is the average temperature, and as in the

previous case we have

max
xP[0,L]

ˇ

ˇu(x, t) ´
c0
2

ˇ

ˇ ď e´π2α2

L2 (t´1)
( 2

L

ż L

0

ˇ

ˇf(x)
ˇ

ˇ dx
) 8
ÿ

k=1

e´ k2π2α2

L2 Ñ 0 as t Ñ 8 .



8.7 The Wave Equations

In this section we consider the wave equations utt = c2uxx.

8.7.1 Models

1. From Hooke’s law: imagine an array of little weights of mass m interconnected with massless
springs of length h, and the springs have a stiffness of k (see the figure).

k k

m m m

u(x) u(x + h)u(x − h)

If u(x) measures the distance from the equilibrium of the mass situated at x, then the forces
exerted on the mass m at the location x are

FNewton = ma = m
B 2u

B t2
(x, t)

FHooke = k[u(x+ h, t) ´ u(x, t)] ´ k[u(x, t) ´ u(x ´ h, t)]

= k[u(x+ h, t) ´ 2u(x, t) + u(x ´ h, t)] .

If the array of weights consists of N weights spaced evenly over the length L = Nh of total
mass M = Nm, and the total stiffness of the array K = k/N , then

B 2u

B t2
(x, t) =

KL2

M

u(x+ h, t) ´ 2u(x, t) + u(x ´ h, t)

h2
.

Taking the limit N Ñ 8, h Ñ 0 (and assuming smoothness) we obtain

utt(x, t) = c2uxx(x, t) . (8.28a)

(2) Equation of vibrating string: let u(x, t) measure the distance of a string from its equilibrium.

α

T1

T2

β

x x + h

String

u(x) u(x + h)

Assuming only motion in the vertical direction, the horizontal component of tensions T1 and
T2 have to be the same:

T1 cosα = T2 cos β « T .

The difference of the vertical component of T1 and T2 induces the motion in the vertical direc-
tion:

m
B 2u

B t2
(x, t) « T2 sin β ´ T1 sinα = (T2 cos β) tan β ´ (T1 cosα) tanα

« [T (x+ h)ux(x+ h, t) ´ T (x)ux(x, t)] .



If ρ is the density of the string, then m = ρh; hence

ρ
B 2u

B t2
(x, t) «

T (x+ h)ux(x+ h, t) ´ T (x)ux(x, t)

h
.

Taking the limit h Ñ 0, we obtain

ρutt(x, t) =
[
T (x)ux(x, t)

]
x
. (8.29)

If T is constant, then (8.29) reduces to

utt(x, t) = c2uxx(x, t) . (8.28)a

To determine the state of the displacement u, we need to impose that initial condition

u(x, 0) = f(x) , ut(x, 0) = g(x) 0 ă x ă L (8.27b)

and a boundary condition. In this section, we consider the Dirichlet boundary condition

u(0, t) = u(L, t) = 0 t ą 0 . (8.28c)

Again, applying the method of separation of variables, we assume that u(x, t) = X(x)T (t) satis-
fying (8.28a,c) and find that

T 11(t)X(x) = c2T (t)X 11(x) 0 ă x ă L, t ą 0 ,

X(0)T (t) = X(L)T (t) = 0 t ą 0 .

Therefore,
1

c2
T 11(t)

T (t)
=
X 11(x)

X(x)
= ´λ 0 ă x ă L, t ą 0

for some constant λ. Taking the boundary condition X(0) = X(L) = 0 into account, we find that

λ = λk =
k2π2

L2
, X(x) = Xk(x) = sin kπx

L
,

and
T (t) = Tk(t) = ck cos kπct

L
+ sk sin kπct

L
,

in which k P N. Define uk(x, t) = Xk(x)Tk(t), then we look for ck, sk such that the “formal” solution
of (8.28a,b,c) can be expressed by

u(x, t) =
8
ÿ

k=1

(
ck cos kπct

L
+ sk sin kπct

L

)
sin kπx

L
.

To satisfy the initial condition (8.28b), we have

ck =
2

L

ż L

0

f(x) sin kπx
L

dx and sk =
2

kπc

ż L

0

g(x) sin kπx
L

dx .



8.7.2 The d’Alembert formula

Let v(x, t) =
8
ř

k=1

ck cos kπct

L
sin kπx

L
and w(x, t) =

8
ř

k=1

sk sin kπct

L
sin kπx

L
. Then

v(x, t) =
8
ÿ

k=1

ck
2

(
sin kπ(x+ ct)

L
+ sin kπ(x ´ ct)

L

)
=
F (x+ ct) + F (x ´ ct)

2

and
w(x, t) =

8
ÿ

k=1

sk
2

(
cos kπ(x ´ ct)

L
´ cos kπ(x+ ct)

L

)
=
H(x ´ ct) ´ H(x+ ct)

2
,

where F (x) =
8
ř

k=1

ck sin kπx

L
and H(x) =

8
ř

k=1

sk cos kπx

L
. We note that F is the odd period extension

of f while

H 1(x) = ´

8
ÿ

k=1

kπ

L
ck cos kπx

L

is the odd period extension of ´
1

c
g. Let G be the odd periodic extension of g. Then

H(x ´ ct) ´ H(x+ ct)

2
=

1

2c

ż x+ct

x´ct

G(ξ) dξ ;

thus the formal solution to (8.28) is given by

u(x, t) =
F (x+ ct) + F (x ´ ct)

2
+

1

2c

ż x+ct

x´ct

G(ξ) dξ . (8.30)

This is called the d’Alembert formula.
If F is twice differentiable, G is differentiable, then u given by (8.30) satisfies

ut(x, t) =
c

2

[
F 1(x+ ct) ´ F 1(x ´ ct)

]
+

1

2

[
H(x+ ct) +H(x ´ ct)

]
,

utt(x, t) =
c2

2

[
F 11(x+ ct) + F 11(x+ ct)

]
+
c

2

[
H 1(x+ ct) ´ H 1(x ´ ct)

]
,

ux(x, t) =
1

2

[
F 1(x+ ct) + F 1(x ´ ct)

]
+

1

2c

[
H(x+ ct) ´ H(x ´ ct)

]
,

utt(x, t) =
1

2

[
F 11(x+ ct) + F 11(x+ ct)

]
+

1

2c

[
H 1(x+ ct) ´ H 1(x ´ ct)

]
.

Therefore, utt(x, t) = c2uxx(x, t) for 0 ă x ă L and t ą 0. Moreover, u clearly satisfies (8.28b) and
(8.28c); thus u given by (8.30)) solves (8.28).
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