Differential Equations M A2042 Midterm Exam 1
National Central University, Apr. 13 2016

Problem 1. (15%) Let x1 =y, x5 = y' and x3 = y”, then the third order equation

y" +pt)y" +at)y +r(t)y =0 (0.1)
corresponds to the system

Ty = g, (0.2a)

Ty = I3, (0.2b)

zy = —r(t)r — q(t)xe — p(t)z3 . (0.2¢)

Show that if {y1, y2, y3} and {¢y, 4, 5} are fundamental sets of equation (@) and (@), respectively,
then Wy, ya, ys|(t) = ¢ W]y, s, ps5](t), where ¢ is a non-zero constant and W and W denote the

Wronskian functions given by

Y1 Y2 Y3
Wiy, v, ysl(t) = |yi w3 wi| and Wipy, @y, @4](t) = det ([0, 0y @3]).

1 " 1
Y Y2 Y3

Proof. Write (@) as ¢’ = P(t)x, where P(t) = 0 0 1 |. In the proof of Theorem

6.11 in the lecture note, we have shown that

%WM, P2, p3l(t) = tr(P)W[py, s, 03](t) = —p(t)Wlepy, s, 3] (1),

while Theorem 4.3 shows that

%W[thQ,yg](t) = —p(O)Wy1, y2, ys] (1) -

Therefore, by the fact that Wy, ya, ys] and W(ep,, ¢,, 5] never vanish (due to the fact that
{y1,y2,y3} and {,, s, Y3} are fundamental sets of corresponding ODEs), we have

1 dW[yla Y2, y2]<t) _ 1 dW[Sola ¥2, ¢3] (t) .

W[yh Y2, y3] <t> dt W[Lpl? P, QOB] (t) dt 7

thus logw[ylay%yfi](t) = IOgW[(Pl,(P27(P3](t) + C which further lmphes that W[?/173/27y3](t) =

c W, s, ps](t) for some non-zero constant c. D




Problem 2. (15%) Let w # 0 be a real number. Consider the initial value problem

y'+wly=0,  y0)=yo, y'(0)=uy.

Let ; =y and 2y = y'. For ¢ = (21, 22)T, = Az. Find the matrix A and solve the initial value
problem by finding exp(At).

T 0 1 0 1
/ / .
Proof. If € = (y,y’)", then o’ = { 9 0} x; thus A = { 9 O]'

1. Computing exp(At) by diagonalization: The two eigenvalues of A are +iw and the corre-
sponding eigenvectors are (Fi,w)™. In other words,

T 0 -t
A_[z z}{zw ][z z}
w w0 —w||lw w
which implies that

—i ] Te« 0 J[—i i]7" —=1T[—i i]fe™ 0 W —i
LR P | e e R Do | e et

W —1

B -1 [ —5 ¢ weiwt _Z'eiwt B -1 _Z'w<eiwt + e—iwt) e—iwt _ eiwt

- 201 | w  w _wef'iwt _Z'efiwt - 2w w2(€iwt _ efiwt) _Z'w(eiwt + 67iwt>
_ 1 | 2wicoswt —2isinwt | _ coswil + sin th

C Qwi | 2iw?sinwt  —2wicoswt| w '

2. Computing exp(At) by finding A": Observing that

o [0 1[0 1] [-w? 0] _ o
A= {—uﬂ 0] [—w2 O} _{ 0 —wz] =~

thus

Aktk © A2k2k P A2k+1ktl
exp(At) —I—i-Z =1 2—+ = -
=2k 2 (2k+1)!

(1 + Z

thk © (_wz)kt%—s—l
o) §
0 a0 .
—1)kF(wt)? 1 & (—1)F(wt)Ht sin wt
:Z—I+—Z—A:coswtl+ A.
(2k)! w =

= (2k+1)!
(2k +1)! w
Therefore, the solution to ' = Az with 2(0) = xy = (yo,y1)" is given by

sin wt

sin wt Yo cos wt + 11
Ty —

in wt
x(t) = exp(At)xy = (COS wtl + e A) Ty = coswtxy +
w

sm wt
Y1 coswt — w3y

Therefore, the solution to the ODE is y(t) = yo coswt + y; sin Wt




0 -3 1 2

-2 1 -1 2
Problem 3. Let A = 9 1 _1 2|
-2 -3 1 4

1. (15%) Find a Jordan decomposition of A.

2. (10%) Find the general solution to the ODE o’ = Aw.

Proof. 1. The character equation of A is

0 =det(A — )
Ve _ 3 -1 2 1 2t =1 [0 2/, |0 1 0—3)2
=AM =-0+1-1+4)A +<’1 4’+’_3 4’+‘1 _1‘+‘_2 4‘+‘_2 _1‘+'_2 1‘A
1 =12 Jo 1 2 |0 =32 |0 =3 1
—( 1 -1 2/+|-2 -1 2(+|-2 1 2/+|-2 1 —1))\+det(A)
-3 1 4] [-2 1 4 |-2 =3 4] |-2 1 -1

=AM AN (—64+104+04+44+2-6)N2—(0—4+4+0)A+0=()—2)2\2.

Therefore, the eigenvalues of A is 2 and 0, both of them are repeated double roots. Two
eigenvector associated with 2 are v; = (1,0,0,1)T and v, = (0,1,1,1)T, while an eigenvector

associated with 0 is (1,1,1,1)*. Since

0 -3 1 2][0 -3 1 2 0 -8 4 4
Cope |21 -1 2| (-2 1 12 |-4 0 04
(A=0D"=1 o | 1 al]|=2 1 -1 2] |1 0 0 4|
-2 -3 1 4| -2 -3 1 4 —4 -8 4 8
vy =(0,-1,-2,0)T € Ker((A — 0I)?)\Ker(A — 0I). Let v3 = (A —0I)vs = (1,1,1,1)". Then

a Jordan decomposition of A is

2000
S 0200 . -
A:[’UlZ’UQI’U?,Z’U4] 000 1 [’Ul ’UQZ’UgZ’U;J !
0000
2. Using the Jordan decomposition obtained in 1, we have
e 0 00
S 0 e* 00 .
exp(At) = |:’011’UQZ’031’U4} 0 0 1 ¢ |:’Ull’022’031’04} :
0O 0 01
thus the general solution to '’ = Ax is
[e2t 0 0 0] [Cy
. . . O 62t O O CQ
z(t) = [vi vl vglvy 0 0 1 ¢t|]c
(0 0 0 1] |Cy
B 0162t
= ['vl TUy U3 'v4} Cae™ = Cvie* + Covge® + (Cs + Cyt)vs + Cyvy.
Cs+ Cyt
Cy




Problem 4. Let P(t) = % [_51 ﬂ

1. (15%) Find the solution ® to ®' = P(t)® satisfying the initial condition ®(1) = I, where I,
is the 2 x 2 identity matrix. (Hint: Consider the Euler equation tz’ = t P(t)x)

2. (15%) Find the general solution of the ODE &' = P(t)x + f(t), where f(t) is given by

£(t) = [‘ﬁﬂ -

Proof. 1. Let A =tP(t). Then A is a constant matrix. The characteristic equation of A is
O=det(A—AL)=(5-N)1-A)+3=XN-6A+8=(\—4)(\—2);

thus the eigenvalues of A is A\ = 4 and Ay = 2. An eigenvector associated with \; is v; =
(3,—1)T, and and eigenvector associated with Ay is vy = (1,—1)*. Therefore, the general
solution to tx’ = Az (which is equivalent to that ' = P(t)x when ¢ # 0) can be written as

CL‘(t) = Cl’Ult}\l + CQ’UQtAQ = Cl |:_31:| t4 + CQ |: 11:| t2 .

A fundamental matrix ¥ of the ODE z’ = P(t)x is

: S
U(t) = [vit! i t?] = [_t4 _tQ} ;

thus the desired matrix ® is obtained by

3t4 t2H3 111_1{3#1—152 3t4 — 3t2

(1) = ¥(OTM) = [—t‘l —?) -1 =1 T2 [ttt 43¢

2. (a) Method 1 (Variation of Parameters): Assume that a particular solution to z’ =
P(t)x + f(t) is
T, (t) = uy () vit* + ug(t)vot® .

Then (uq,usy) satisfies

et r?] [ 440)] = wio [ 240)] 500

o] = [ ] [8] =[]

Therefore, a particular solution is

thus

2
x,(t) = 2tvt* — gtg’vgtz ,
and the general solution is given by

2
z(t) = (C1 + 20)vit" + (Cy — g753)1)2z52.



(b) Method 2 (Using the representation formula): Using the representation formula for
the solution to non-homogeneous equations, we find that the solution to ' = P(t)z+ f(t)

with initial condition (1) = xy can be written as

2(t) = \Ii(t)\Il(l)_lm0+£ ()T (s) " f(s) ds

ey o (st st ] [4s?

1

~

Cy

~

2

= [’Ult4 ’02752}

t
~ ~ : 2
= 01’01754 + CQ’Ugt2 + [’Ult4 : '02252] J [ s } ds
1
= C~’1’Ult4 + 5202t2 + [’Ult4 ’Ugt2] [ 2

2
= (Cl + 2t)’01t4 + (02 — §t3) ’02t27

in which [6’1,5’2]T =W (1) lzy and C) = 5’1 —2and Cy = 5’2 + % O



Problem 5. To solve a first order equation 2’ = f(¢,z) with initial condition z(ty) = o numerically,

one can use the improved Euler method which is the iteration method given by the

h
Tpy1 = Tp + 5 f(tm l'n) + f(tn+1axn + hf(tm xn))] )

where with A denoting the step size, t,, = tg + nh.

1. (15%) Use the improved Euler method to solve z’ = z + 1 with z(0) = x¢ and show that for
each fixed ¢ = nh (which implies that n — oo as the step size h — 0), one has z, — (xo+1)e’—1
as h — 0.

2. (10%) Compute the local truncation error 7,,(h) and show that

el'lxy + 1\h2

w(h)] <
()] < S

vne {01, —1}. (0.3)

(Note: You cannot apply the theorem taught in class since the corresponding ® here is not bounded
on R. Write down the numerical scheme and see if the sequence {z,}"_; produced by the scheme

converges. )

Proof. 1. Let T' > 0 be given, and N = T'/h. Since f(y) =y + 1, using the improved Euler we have

h h
Tpi1 = Tp + = [(Tn + 1) + 2 + W2y + 1) + 1] =2, + (24 h) (@, + 1)

2 2
h? h(2 + h)
= (1+h+ 5o+ =
As a consequence,
2 h(2+h
xn:<1+h+%>l‘n—1 ¥7
h? h?\2 h(2+ h h?
(1 h+ )= (1+0+7%) :cng—i—g(l%—h—i—),
2 2 2 2
h*\ 2 _ h2\3 h(2+h) h?\?
(1rhe ) o= (14 hd 5 ) s+ == (1404 )
B2y n—1 h2\ " h(2+h h2\"
<1+h+?) x1:(1+h+5> xo+%(1+h+2) .

Summing all the equalities above, we find that

Tp = (1+h+};2>n:co+w;)<1+h+f)k
(2+h> <1+h+h22>n+1—1

2 h?
ht =

h2 n h2 n+1

n

<1+h+h22>nxo+h

(0.4)



Since

2\ n 2\ L 2\ L5 (14h/2)
lim (1+h+h—> = lim (1+h+h—>h — lim (1+h+h—>h*’ﬂ/2 =T,
h—0 2 h—0 2 h—0 2
we conclude that ]llirr(lJ xz, =ewg+e —1=(xg+ 1)e' — 1.
. From the previous problem, we know that the exact solution to the ODE z’ = x + 1 with

initial data x(0) = xq is z(t) = (zo + 1)e! — 1. We note that the improved Euler method can
be written as
Tp41 = Tp + hq)(h, tn, wn) )

where ®(h,t,x) = (2+h)2(x+1)

By the definition of the local truncation error,

z((n+ 1)h) — z(nh) — h®(h,nh,z(nh))

Ta(h) =

h
(n+1)h __ nh 24+ h
e e
=(xg+1) - -5 (2o + 1)e™
e —1 h
- 1)en - —} .
(xo+ 1)e : 5
The Taylor theorem implies that
TR L
h 2 6
h_ 2
for some & € (0, h); thus ¢ = L 1— g < %eh which further implies that () D



