A Concise Lecture Note on Differential Equations

1 Introduction

1.1 Background

Definition 1.1. A differential equation is a mathematical equation that relates some unknown
function with its derivatives. The unknown functions in a differential equations are sometimes called
dependent variables, and the variables which the derivatives of the unknown functions are taken
with respect to are sometimes called the independent variables. A differential equation is called
an ordinary differential equation (ODE) if it contains an unknown function of one independent
variable and its derivatives. A differential equation is called a partial differential equation (PDE)

if it contains unknown multi-variable functions and their partial derivatives.

Example 1.2. The following three differential equations are identical (with different expression):

vy +y=x+3,

dy B

%—I—y—x+3,
fl(@) + f(z) =2 +3.

R? —- R

be an unknown function. The differential equation
(x,t) — wu(z,t)

Example 1.3. Let u: {
U — Uy =T —
is a partial differential equation.

Definition 1.4. The order of a differential equation is the order of the highest-order derivatives
present in the equation. A differential equation of order 1 is called first order, order 2 second order,

etc.

Example 1.5. The differential equations in Example 1.2 and 1.3 are both first order differential

equations, while the equation 3" + 2y = 27 and u; — Uy, = 2° + t° are second order equations.

Definition 1.6. The ordinary differential equation

F(t7y7y/7"' ’y(n)) =0

n)

is said to be linear if I is linear (or more precise, affine) function of the variable y, ¢/, ---, y™. In

other words, a linear ordinary differential equation has the form
dny dn—ly

an<t)7 + Ap—1 (t)W

dtn +"'+a1(t)@+ao(t)y:f(t).

dt

If an ordinary differential equation said to be nonlinear if it is not linear.

Similar terminologies are applied to partial differential equations.



1.1.1 Why do we need to study differential equations?

Example 1.7 (Spring with or without Friction).

mi = —kx —ri.
Example 1.8 (Oscillating pendulum).

mLf = —mgsin 0

Example 1.9 (System of ODEs). Let p : [0,00) — RT denote the population of certain species. If
there are plenty of resource for the growth of the population, the growth rate (the rate of change of
the population) is proportion to the population. In other words, there exists constant v > 0 such

that
_d t) = ).
ltp( ) 729( )

The Lotka-Volterra equation or the predator-prey equation:

P =7p—apgq,
¢ = Pq+dpq.

Example 1.10. A brachistochrone curve, meaning ”shortest time” or curve of fastest descent, is the
curve that would carry an idealized point-like body, starting at rest and moving along the curve,
without friction, under constant gravity, to a given end point in the shortest time. For given two
point (0,0) and (a,b), where b < 0, what is the brachistochrone curve connecting (0,0) and (a,b)?
Define
A={h:[0,b] > R|h(0) =0,h(b) =a, his differentiable on (0,b)}

and

N ={¢:[0,0] > R|p(0) =0,9(b) =0, ¢ is differentiable on (0,b)},

and suppose that the brachistochrone curve can be expressed as z = f(y) for some f € A. Then f

the minimizer of the functional
L+ h(y
Ty = [ &= f yit M)
V—2gy
or equivalently,

= min —
f he A

— Imax
heA

J 14N (y f A/ 1+ R (y
vV—2gy —29

If o € N, then for ¢ in a neighborhood of 0, f + ty € A; thus
1+ t
F(t) = f i f_—g ?)(y)’ dy

V—29y

attains its minimum at ¢ = 0. Therefore,

d 1 t
d f\/ FUEWP o veen
dt lt=0 —2gy

F'(0) =




By the chain rule,
Y )¢ (y)
0 vV =29y\/1+ f'(y)?

Suppose in addition that f is twice differentiable, then integration-by-parts implies that

b
f'(w) '
_ dy =0 v N
Jo [\/—2gy\/1 + f’(y)g] Py .
which further implies that f satisfies the ODE
[ f'(y) ]’ —0
V=2gyy/1+ f'(y)?

dy =10 VoeN.

since ¢ € N is chosen arbitrarily.

Question: What if we assume that y = f(z) to start with? What equation must f satisfy?

Example 1.11 (Euler-Lagrange equation). In general, we often encounter problems of the type

min fa L(y,y,t)dt, where A= {y:[0,a] > R|y(0) =y(a) =0}.

yeA Jo

Write L = L(p, q,t). Then the minimizer y € A satisfies
L9/ 1) = L./ )
dt qy’yv - pyay7 .

The equation above is called the Fuler-Lagrange equation.

Example 1.12 (Heat equations). Let u(z,t) defined on Q x (0, 7] be the temperature of a material
body at point x €  at time t € (0,T], and ¢(z), o(x), k(x) be the specific heat, density, and the
inner thermal conductivity of the material body at x. Then by the conservation of heat, for any

open set U < €,

% y c(x)o(x)u(x,t)de = Lu k(x)Vu(x,t) - N(z)dS, (1.1)

where N denotes the outward-pointing unit normal of &/. Assume that u is smooth, and U is a

Lipschitz domain. By the divergence theorem, (1.1) implies

J c(x)o(x)u(z, t)dr = f div(k(z)Vu(z,t))dz.
u

u
Since U is arbitrary, the equation above implies
c(x)o(x)u(z, t) — div(k(z)Vu(z,t)) =0 VzeQ,te(0,7T].
If k is constant, then
co 5 0%

—u = Au =

.
k ~ Ox;

If furthermore ¢ and p are constants, then after rescaling of time we have

This is the standard heat equation, the prototype equation of parabolic equations.



Example 1.13 (Minimal surfaces). Let T' be a closed curve in R3. We would like to find a surface
which has minimal surface area while at the same time it has boundary T'.

Suppose that Q € R? is a bounded set with boundary parametrized by (z(t),y(t)) for ¢t € I, and
" is a closed curve parametrized by (z(t),y(t), f(x(t),y(t))). We want to find a surface having C as
its boundary with minimal surface area. Then the goal is to find a function u with the property that

u = f on 0€) that minimizes the functional

o (w) = fo/l + [Vw|?dA.

Let ¢ € €1(Q), and define

o Aluttp) — Alu) Vu-V
0A(u; ) = lim t a L 1+ [Vauf? dx

If u minimize A, then 6A(u;¢) = 0 for all p € €}(Q). Assuming that u € €?(Q), we find that u

satisfies

diV(\/%ivMJ =0,

or expanding the bracket using the Leibnitz rule, we obtain the minimal surface equation
(14wl ugw — 2ty + (1 + ul)uy, =0 V(z,y) € Q. (1.3)

Example 1.14 (System of PDEs - the Euler equations). Let 2 € R? denote a fluid container, and
o(z,t), u(z,t), p(x,t) denotes the fluid density, velocity and pressure at position x and time ¢. For a
given an open subset O <  with smooth boundary, the rate of change of the mass in O is the same

as the mass flux through the boundary; thus

% | et tide = —Lo(gu)(x,t) NS,

where N is the outward-pointing unit normal of dO. The divergence theorem then implies that

@ o(z,t)dx = — JO div(pu)(x,t)dS.

If o is a smooth function, then df
dt Jo

o(z,t)dx = f o¢(x, t)dx; thus
o
J [0 + div(ou)] (z, t)dz = 0.
o
Since O is chosen arbitrarily, we must have

ot + div(pu) =0 in Q. (1.4)

Equation (1.4) is called the equation of continuity.
Now we consider that conservation of momentum. Let m = pu be the momentum. The conser-

vation of momentum states that

if mda::—f m(u-N)dS—f deS—i—fgfdx,
dt Jo 00 20 o



here we use the fact that the rate of change of momentum of a body is equal to the resultant force

acting on the body, and with p denoting the pressure the buoyancy force is given by f pNdS.
o

0
Here we assume that the fluid is invicid so that no friction force is presented in the fluid. Therefore,

assuming the smoothness of the variables, the divergence theorem implies that
= 0 (mu’
J [mt—l—zg—i-Vp—gf dr =0.
10 — ox;
j=1 J
Since O is chosen arbitrarity, we obtain the momentum equation

(ou); + div(ou® u) = —Vp + of . (1.5)

Initial conditions: o(x,0) = go(x) and wu(z,0) = ug(x) for all z € Q.
Boundary condition: u-N = 0 on 0f).

1. If the density is constant (such as water), then (1.4) and (1.5) reduce to

w+u-Vu=—-Vp+f in Qx(0,7), (1.6a)
divu =0 in Qx(0,7). (1.6b)

Equation (1.6) together with the initial and the boundary condition are called the incompress-

ible Euler equations.

2. If the pressure p solely depends on the density; that is, p = p(p) (the equation of state), then
(1.4) and (1.5) together with are called the isentropic Euler equations.

1.2 Solutions and Initial Value Problems

Recall that a general form of an n-th order ODE with ¢ independent, y dependent, can be expressed

as
F(t7yay,7 e 7y(n)) = 07 (17)

where F is a function that depends on z, y, and the derivatives of y up to order n. We assume
that the equation holds for all ¢ in an open interval I = (a,b). In many cases we can isolate the

highest-order term y(™ and write equation (1.7) as

y(n) = f(t> Y, ylv U ’y(n—l)) . (18)

Definition 1.15. An explicit solution to a differential equation on I is a function ¢(¢) that, when
substituted for y in (1.7) or (1.8), satisfies the differential equations for all ¢ € I.

A relation G(t,y) = 0 (which, under certain assumptions, defines an implicit function of ¢) is
said to be an implicit solution to equation (1.7) on the interval [ if it defines one or more explicit
solutions on I.

A solution to an ODE is either an explicit solution or an implicit solution of that ODE.



2
Example 1.16. Show that o(t) = t* — ¢! is an explicit solution to the linear equation y” — 2= 0
but 1 (t) = t3 is not.

Example 1.17. Show that for any choice of constants ¢; and ¢y, the function ¢(t) = cie™! + coe? is

an explicit solution to the linear equation y” —y’ = 2y = 0.

Example 1.18. Show that the relation t+y+¢® = 0 is an implicit solution to the nonlinear equation
(1+te)y' +1+ye” =0.

Example 1.19. Verify that for every constant C the relation 4t — y* = (' is an implicit solution
to yy' — 4t = 0. Graph the solution curves for C' = 0, +1, £4. The collection of all such solutions is

called a one-parameter family of solutions.

Definition 1.20. By an initial value problem for an n-th order differential equation

F(t7y7y/7"' ’y(n)) =0

we mean: find a solution to the differential equation on an interval I that satisfies at ¢y the n-initial

conditions
y(to) =y,  y'(to)=wv, - y" V() =y,

where tg € I and yo, 91, -+ ,Yn_1 are given constants.

Example 1.21. Show that ¢(t) = sint — cost is a solution to the initial value problem
y'+y=0;  y0)=-1,  y'(0)=1.

Example 1.22. As shown in Example 1.17, the function p(z) = ce™" + e is a solution to
y” —y’ — 2y = 0 for any choice of the constants ¢; and cy. Determine ¢; and ¢y so that the initial
conditions y(0) = 2 and y'(0) = —3 are satisfied.

Remark 1.23. For an ODE f(z,y,y/,y", -+ ,y® 1, y®) = 0 of even order on a particular interval
[a, b], another set of conditions, called the boundary condition for an ODE, can be imposed. The
boundary condition of the ODE f(z,y, v/, y",--- ,y*" Y, y®") = 0 is of the form

y(a) = c1,y(b) = di,y'(a) = 2,y (b) = da, -+, y™ (@) = cor1, Y™ (b) = s -

Theorem 1.24 (Existence and Uniqueness of Solution/Fundamental theorem of ODE). Consider

the initial value problem

y W= ftyy "), ) =m0, Yt =m0 g () = ga. (L)

If f and the first partial derivatives of f with respect to all its variables, possibly except t, are
continuous functions in some rectangular domain R = [a, b] X [co, do] X [c1,d1] X -+ X [¢p—1, dn—1] that
contains the point (to, Yo, Y1, - ,Yn_1), then the initial value problem has a unique solution p(t) in

some interval I = (to — h,to + h) for some positive number h.



Proof. We only establish the case n = 1 (this is the version in the textbook), and the proof for the

general case is similar since (1.9) is equivalent to z’ = f(t, z) with initial condition z(¢y) = zo, where

z= (y7y/7"' 7y(71*1))7 f(t7 Z) = (ZQ,Zg,"' Jzn7f<t7 Z)) and 20 = (y()?yl;"' 7yn71)'
The proof is separated into two parts.

Existence: Choose a constant k € (0,1) such that [to — k,to + k] x [yo — k,yo + k] € R. Since
[to — k,to + k] x [yo — k,yo + k] is closed and bounded, the continuous functions |f| and |f,|
attain their maximum in [ty — k,to + k] x [yo — k,y0 + k]. Assume that for some M > 1,
\Fty)| + | fu(ty)| < M for all (t,y) € [to — k,to + k] x [yo — k,yo + k]. Let h = k/M and
I =[tg — h,to + h]. Then for ¢ € I, define the iterative scheme (called Picard’s iteration)

() = 0+ f F(son(®)ds,  golt) = vo. (1.10)

to

Note that ¢, is continuous for all n € N. We show that the sequence of functions {p,}> ,

converges to a solution to (1.9).

Claim 1: For all n e N u {0},

on(t) —yo| <k Vitel. (1.11)

Proof of claim 1: We prove claim 1 by induction. Clearly (1.11) holds for n = 0. Now
suppose that (1.11) holds for n = N. Then forn = N + 1 and t € I,

ont1(t) = yo| <

f f(s,0on(s)) ds( < Mt —to| < k.

Claim 2: For all n € N u {0},
ma o (8) — pu(t)] < K.
tel

Proof of claim 2: Let e,1(t) = @ni1(t) — @n(t). Using (1.10) and the mean value theorem,
we find that

e (1) = f [ (5 0nsa()) — F(s5,on(s))] ds = j £, (5, 60(5)) en(s) ds

to t

for some function &, satisfying ‘fn(t) — yo} < k in I (by claim 1); thus with ¢, denoting
n(t)];
rip e 1)
ent1 < kep VneN;

thus

€nt1 < kep < k*,_1 < --- < k"¢ = k" max
tel

t
J f(s,%) ds‘ < Mhk™ = k™,
to

Claim 3: The sequence of functions {¢, (t)}zoz1 converges for each ¢t € .



Proof of claim 3: Note that

Ont1 (1 Z 909+1 t)} .

For each fixed t € I, the series Z [0j11(t) — ()] converges absolutely (by claim 2 with the

comparison test). Therefore, {cpn( )}:;1 converges for each t € I.
Claim 4: The limit function ¢ is continuous in 1.

Proof of Claim 4: Let ¢ > 0 be given. Choose § = ﬁ Then if t1,t; € I satisfying

|t; — to]| < 0, we must have

to
£
|ont1(t1) = nra(ta)] < J f(5:0n(5)) ds‘ S Mt =t < 3.

t1

Passing to the limit as n — o0, we conclude that
‘@(tl)—w(t2)|<g<€ th,tgeland |t1—t2| <9

which implies that ¢ is continuous in [.

t
Claim 5: The limit function ¢ satisfies p(t) =yo + [ [f(s,¢(s))ds forall t e I.

to
Proof of claim 5: It suffices to show that

t

lim [ f(s,en(s))ds = f f(s,0(s))ds Vtel.

n—o0 tO tO

N+2
L <€ Then by claim 2 and the mean value

Let € > 0 be given. Choose N > 0 such that lf

theorem, for n > N,

Lt f(S,SOn(S)) ds —f f(s (s ds = ’ § fy )[90n< ) — gp(s)} ds)

0 to
N+2

: k
<ut| [ Slernts —ms)\ds) <Mt Y <

0 j=n j=N

Claim 6: y = ¢(t) is a solution to (1.9).
Proof of claim 6: Since ¢ is continuous, by the fundamental theorem of Calculus,

jt[yo—i—f f(s,0(s)) ds} = f(t, (1))

0

which implies that ¢’(t) = f(¢,¢(t)). Moreover, ¢(0) = yo; thus y = ¢(t) is a solution to (1.9).

Uniqueness: Suppose that y = 1(t) is another solution to the ODE (1.9) in the time interval I By
the continuity of 1, there must be some interval J = (to — 6, ¢y -+ ) such that |(t) — yo| < k
in J. We first show that 1(t) = ¢(t) for all ¢t € J, and then show that [ < J.



Let ¥ = ¢ — 4. Then 1 solves

79/2]”(@90)—]”(@@ :fy(t7£(t))79 ﬁ(tO) =0

for some £ in between ¢ and v satisfying |£(t) — yo| < k. Integrating in ¢ over the time interval

[to, t] we find that
=L@@amw@@

s €10 ds| <1 [ oo as:

(a) If¢t > to,
EIQIRS

thus the fundamental theorem of Calculus implies that

g Mtf [9(s)] ds ) = e (ot \—Mf W(s)]) <0

t t
e f [9(s)| ds < e~ J "9(s)] ds = 0
to to

which implies that J(¢) = 0 for all ¢ € (¢o,to + 0).
(b) Ift < to,

Therefore,

(s,£(5))||9(s \czs J \ds—MJ 10(s)| ds ;

thus the fundamental theorem of Calculus implies that

g WJW wﬂ—eMmm|—Mjw > 0.

t to
Mtf [9(s)| ds = eMtOJ [9(s)|ds =0
to to

which implies that 9(t) = 0 for all ¢t € (to — J, o).

Therefore,

Therefore, 6(t) = 0 for all £ € J which implies that the solution ¢ equals the solution ) in some

open interval J containing ty.

Finally, we need to argue if it is possible to have a solution y = ¢ (t) in the time interval [
but ‘y(t) — y(]! > k for some t € I. If so, by the continuity of the solution there must be some
t; € I such that "(/)(tl) — yo‘ = k. Since 1) satisfies

V= fty)  w(t) = elt),

the argument above implies that there is an open interval J < I in which @ = 1. Since y = (t)
is a solution in the time interval J, we must have ¢ =1 in I n J. In other words, ¥(t) stays in

[yo — k,yo + k] as long as t € I. This concludes the uniqueness of the solution to (1.9). D



Remark 1.25. In the proof of the existence and the uniqueness theorem, the condition that f, is
continuous is not essential. This condition can be replaced by that f is (local) Lipschitz in its second

variable; that is, there exists L > 0 such that

‘f(tayl) - f(tqu)‘ < L‘yl - y2| :

Example 1.26. Consider the initial value problem
3y’ =t —ty?, y(1)=6.

1
Let f(t,y) = §(t2 — ty®). Then f and f, are continuous in R?; thus the fundamental theorem of

ODE provides the existence and uniqueness of the solution in an interval about 1 to the ODE above.

Example 1.27. Consider the initial value problem

y' =2, y(0)=1. (1.12)

Let f(t,y) = y*. Then f and f, are continuous in R?; thus the fundamental theorem of ODE provides

the existence and uniqueness of the solution in an interval about 0 to (1.12). In fact,

vty = (1.13)

satisfies y’ = y? and the initial data y(0) = 1; thus the unique solution to (1.12) is given by (1.13)
which blows up in finite time. Therefore, even if f and f, are continuous in any rectangle containing
(to,y0), the ODE y’ = f(t,y) with initial data y(ty) = yo might not have a solution that exists for

all time.

Example 1.28. Consider the initial value problem
y' =3y, y(2)=0. (1.14)

The fundamental theorem of ODE cannot be applied since the function f(¢,y) = By% does not have
continuous partial derivative in any rectangle containing (2, 0). In fact, ¢1(¢) = 0 and ¢5(t) = (t—2)3

are solutions to (1.14). Moreover, for every a > 2, the function

(r—a)® ifz>a,

gb(t):{ 0 ifr<a

is also a solution to (1.14). Therefore, the initial value problem (1.14) has infinitely many solutions.

Example 1.29. Solve the initial value problem y’ = 2¢(1 + y) with initial data y(0) = 0 using the
Picard iteration.

Recall the Picard iteration

Orp1(t) = Lt 25(1 4 ¢i(s)) ds with ¢(t) = 0. (1.15)



¢
Then ¢ (t) = J 2sds = t*, and (1 J 2s(1+s )ds—t2—|—— and then 3(t) = J 2s(1+ s* +
0 0

4 4 46
%) ds = t* + 5 + % To see a general rule, we observe that ¢y (t) must be a polynomial of the form

k

or(t) = D at?,

J=1

and @11 (t) = or(t) + ap1t2*+Y). Therefore, we only need to determine the coefficients ay, in order
to find the solution. Note that using (1.15) we have

k k+1

k+1
i%ﬂ—f% +§ﬁﬂﬂs—ﬂ+2 M7W”_ﬁ+2%l

thus the comparison of coefficients implies that a; = 1, a; = -2 —1 . Therefore,

Tk k(k—1) k(k—1)---2 Kk
k t2] k t
which implies that ¢ (t) = > i Z —' — 1. Using the Maclaurin series of the exponential
Jj=1 =
function, we find that ¢ (t) converges to e’ — 1. The function o(t) = e’ — 1 is indeed a solution of

the ODE under consideration.

1.3 Direction Fields

A direction field is in particular very useful in the study of first order differential equations of the
type:

dy

_t = f(ty y) )

where f is a scalar function. A plot of short line segments (with equal length) drawn at various
points in the ty-plane showing the slope of the solution curve there is called a direction field for

the differential equation.

Example 1.30. Plot the direction field for the ODE % = —% Note that for every constant ¢, the

relation ty = c is an implicit solution to the ODE.

Example 1.31. Plot the direction field for the ODE % = 3y%.

1.3.1 The method of isoclines

The method of isocline can be used to plot the direction field for differential equations. An ¢socline
for the differential equation y’ = f(¢,y) is a set of points in ty-plane where all the solutions have the
same slope Cét thus it is a level curve for the function f(¢,y).

To implement the method of isoclines for sketching direction fields, we draw hash marks with

slope ¢ along the isocline f(¢,y) = ¢ for a few selected value of c.



Example 1.32. Plot the direction field for the ODE CC% = t? — y. Show that for each constant c,
the function ¢(t) = ce™ +t? — 2t + 2 is an explicit solution to the ODE.

Example 1.33. Consider a falling object whose velocity satisfies the ODE

md—v—m — bv
a " '

Plot the direction field for the ODE above.

1.3.2 Integral Curves

The so-called integral curves of an ODE is related to the direction field in the sense that at each

point of each integral curve, the direction field (at that point) is tangent to the curve.

Definition 1.34. A curve (' is said to be an integral curve of the ODE % = f(z,y) if there exists

a parametrization (x(t),y(t)) of C, where where ¢ belongs to some parameter domain I, such that

y'(t) = fla(t), y(t)x'(t) Vtel.

2 First Order Differential Equations

In general, a first order ODE can be written as

dy
E *f(tay)

for some function f. In this chapter, we are going to solve the linear equation above explicitly with
L f(t,y) = g(y)h(t);
2. f(ty) = p(t)y + q(t);
3. f(t,y) = —Fy(z,y)/F,(z,y) for some function F}
4. f(t,y) = g(y/t) for some function g;

and more.

2.1 Introduction: Motion of a Falling Body

The equation of falling body is a first order ODE

d
md—zt) =mg—bv. (2.1)
The technique of separation of variables (which will be detailed in the next section) implies that
dv  dt
mg—bv  m’



Integrating both sides, we obtain that
1 t
——log|mg —bv| = —+C
b m

for some constant C'. Therefore,

which implies that there exists A such that mg — bv = Ae~m. Therefore,

To determine A, suppose one initial condition

v(0) = vy (2.2)
is imposed. Then
mg A alent] A mg
=——— r equivalen —— =Yy — —/;
Vo= 2 or equivalently, P Rt
thus we conclude that the IVP (2.1 + (2.2) has a solution
m mg\ _u
v:v(t):Tg—i-(vg—Tg)e "

Some information that we obtain from the form of the solution above:

e Ast — o0, the velocity reaches a so-called terminal velocity % Since the decay is exponential,

the falling object reaches the terminal velocity very quickly. The heavier the object, the faster the

terminal velocity.

2.2 Separable Equations

Definition 2.1. The ODE y’ = f(t,y) is said to be separableif f(t,y) = g(y)h(t) for some functions
g and h.

Suppose that we are given a first order linear equation

d
d—?z = g(y)h(t) with initial condition y(ty) = o,

where 1/g is assume to be integrable. Let G be an anti-derivative of 1/g. Then

Y — s = = hit) = ') = hit)
::%ammzhwzﬁﬁ%G@@Mwﬂww:mmm—ewmnth@w

jmwwzaw+fh@@,

to

and y can be solved if the inverse function of G is known.



Computations in shorthand: To solve the equation d _ g(y)h(t), we formally write

dt
d
Y ht)dt
9(y)
. . .. . . .. . dG 1 dH
If G is an anti-derivative of 1/g and H is an anti-derivative of h; that is, W = o) and o h(t),
then the equality above implies that
dG = dH .

Therefore, G(y) = H(t) + C for some constant C' which can be determined by the initial condition
(if there is one).

.’L‘2

Example 2.2. Let y be a solution to the ODE % Ryl Then z,y satisfies 23 + y* — 3y = C

for some constant C.
. 3x2 4+ 4x + 2

with initial data y(0) = —1. Then
20— 1) y(0)

Example 2.3. Let y be a solution to the ODE Z—y
X

y=1—+/23+222 + 22 + 4.

Definition 2.4 (Integral Curves). Let F = (Fy,---,F,) be a vector field. A parametric curve
x(t) = (21(t), -, 2,(t)) is said to be an integral curve of F if it is a solution of the following

autonomous system of ODEs:

dx
d_tl:Fl(xla"' 7xn)a
dxy
% :Fn(xlv"' 7xn)-
In particular, when n = 2, the autonomous system above is reduced to
dx dy
=F =G 2.3
Yo Py, Y-y (2.3
for some function F,G. Since at each point (xo,yo) = (x(to), y(to)) on the integral curve,
dy _dy/dt
dx (z,y)=(z0,y0) n d[L‘/dt t=to
if di; # 0, instead of finding solutions to (2.3) we often solve
t=to
dy _ G(z,y)
dv F(z,y)
Example 2.5. Let F : R? — R? be a vector field defined by F(z,y) = (Fl(a: y) Fg(x y)) = (—y, ).
Then the parametric curve (cost,sint) is an integral curve of F since ( ) (cost,sint)
satisfies

z{(t) = —sint = —z5(t) = Fi(21(t), 22(t))
z5(t) = cost =z (t) = Fo(1(t), 2a(t)) .

Example 2.6. Find the integral curve of the vector field F(z,y) = (4 + 13, 4x — ) passing through
(0,1). Answer: y* + 16y + 2! — 822 = 17.



2.3 Linear Equations; Method of Integrating Factors
Suppose that we are given a first order linear equation

dy
dt

Let P(t) be an anti-derivative of p(t); that is, P'(t) = p(t). Then

+p(t)y = q(t) with initial condition y(to) = yo .

d

2 (Oy0)) = e"Vq(t)

= J >ds = f ePOQ(s)ds = ePWy(t) — ePWly(ty) = f ePOQ(s)ds

to 0

Pm(@+P%>):JW¢w:

t

y(t) = PO P()yﬁj ePO-POO(5)ds.

to
How about if we do not know what the initial data is? Then

d

dy
P(t) / _ P() P(t) _ P P() _ P()
e (dt + P (t)y) e Yq(t) = o (e y(t)) e Yq(t) = e y(t) =C+ fe q(t)dt,

where Jep ®g(t)dt denotes an anti-derivative of e”’Q). Therefore,

Example 2.7. Solve % +3y= %et/?’. Answer: y(t) = get/?’ + Ce /2,

d 1
Example 2.8. Solve d—?z — 2y =4 —t. Answer: y(t) = —Z + §t + Ce*.
1d
Example 2.9. Solve — - d?i t% = tcost, where t > 0. Answer: y(t) = t*sint + Ct2.

Example 2.10. Solve ty’ + 2y = 4t? with y(1) = 2. Answer: y(t) = ¢* + %2

2.4 Exact Equations and Integrating Factors

. . . d M
In this section, we focus on solving A (z,9)
dx N(z,y)

for M, N satisfying some special relation.

Recall vector calculus:

Definition 2.11 (Vector fields). A vector field is a vector-valued function whose domain and range

are subsets of Euclidean space R".

Definition 2.12 (Conservative vector fields). A vector field F : D < R" — R” is said to be
conservative if F = V for some scalar function . Such a ¢ is called a (scalar) potential for F on
D.

Theorem 2.13. IfF = (M, N) is a conservative vector field in a domain D, then N, = M, in D.



Theorem 2.14. Let D be an open, connected domain, and let F be a smooth vector field defined on

D. Then the following three statements are equivalent:
1. F is conservative in D.
2. fﬁCF -dr = 0 for every piecewise smooth, closed curve C' in D.
3. Gien and two point Py, P, € D, J F - dr has the same value for all piecewise smooth curves
in D starting at Py and ending at 16;1.

Definition 2.15. A connected domain D is said to be simply connected if every simple closed

curve can be continuously shrunk to a point in D without any part ever passing out of D.

Theorem 2.16. Let D be a simply connected domain, and M, N, M,, N, be continuous in D. If
M, = N,, then F = (M, N) is conservative.

Sketch of the proof. Since N, = M,,

T a X
N(z,y) = N(xo,y) + My(z,y) dZ:N(xO’y)+é’_yJ M(z,y)dz
0

— = [vw+ [ Mepae].

o Zo

where U(y) is an anti-derivative of N(zg,y). Let p(z,y) = U(y) + f M(z,y)dz. Then clearly
(M, N) = V¢ which implies that F = (M, N) is conservative. ' D

Combining Theorem 2.13 and 2.16, in a simply connected domain a vector field F = (M, M) is

conservative if and only if M, = N,.

—y T

Example 2.17. Let D = R*\{(0,0)}, and M (x,y) = e N(z,y) = eyt Then M, = N, =
2_ .2

ﬁ in D; however, I' # V¢ for some scalar function ¢ for if there exists such a ¢, ¢, up to

adding a constant, must be identical to the polar angle 0(x,y) € [0, 27).

Now suppose that we are given a differential equation of the form

dy _ M(x,y)
dv N(z,y)’

in which separation of variables is not possible. We note that this is equivalent of finding integral
curves of the vector field F = (=N, M).

Definition 2.18. Let D < R? be open, and M, N : D — R be continuous. An ODE of the form
j—i = —m (or the differential form M (x,y)dx+ N (z,y)dy) is called exact in D if there exists a

continuously differentiable function ¢ : D — R, called the potential function, such that ¢, = M
and ¢, = N.



Definition 2.19. A function p = p(z,y) is said to be an integrating factor of the differential
form M(z,y)dx + N(z,y)dy if (uM)(z,y)dx + (uN)(z,y)dy is exact (in the domain of interest).
To solve the ODE P \
dy _ _Mz,y) ’ (2.4)
dx N(z,y)

the following two possibilities are most possible situations:

1. If M, = N, in a simply connected domain D, then Theorem 2.16 implies that the ODE (2.4)
is exact in a simply connected domain D < R?; that is, there exists a potential function ¢ such
that Vo = (M, N). Then (2.4) can be rewritten as

dy

o (z,y) + wy(x,y)% =0;

and if (z(t),y(t)) is an integral curve, we must have

dx dy

ou(0), Y1) 5+, (a0, y(0) L = 0 or equivalently, % p(e(t) y(1)) = 0.

Therefore, integral curve satisfies (x,y) = C.
2. If M, # N,, we look for a function p such that (uM), = (uN), in a simply connected domain

D < R% Such a p always exists (in theory, but may be hard to find the explicit expression),
and such a p p satisfies the PDE

Mup, — Npy + (M, — Ny)pp=0. (2.5)
Usually solving a PDE as above is as difficult as solving the original ODE.

Yy
Example 2.20. Solve % _ _ _Yycosz 1 2ze
X

sinx + x2e¥ — 1°

Let M(z,y) = ycosx + 2ze¥ and N(z,y) = sinz + 2?e¥ — 1. Then M,(z,y) = cosz + 2ze¥ =
N,(z,y); thus the ODE above is exact in R%. To find the potential function ¢, due to the fact that
v, = M we find that

o(x,y) = V(y) + fM(x,y)dx = U(y) + ysinz + x%e¥

for some function . By ¢, = N, we must have W'(y) = —1. Therefore, U(y) = —y + C; thus the
potential function ¢ is

o(z,y) =ysinx + %Y —y+ C.

Example 2.21. Show that u(z,y) = xy? is an integrating factor for the differential form
(2y — 62)dz + (3x — 42’y )dy .

Let M(z,y) = 2y — 6z and N(z,y) = 3x — 4z*y~'. Then

0
(MM)y = @ [xy2(2y - 6x)} = 6:cy2 — 12x2y



and
0 _
(uN), = PP [2y?(3x — 42?y™1)] = 6xy”® — 122%y.

Therefore, 4 is an integrating factor since (uM), = (uN), on a simply connected domain R?.
Now we find a potential function ¢; that is, we look for a continuously differentiable function ¢
such that ¢, = pM and ¢, = uN. Since pM = zy*(2y — 6z) = 2zy° — 62%y?,
p(z,y) = U(y) + 2%y’ — 207y
for some function . Using the identity ¢, = uN, we find that 1 satisfies
1/1/@) + 3x2y2 - 4x3y =y = pulN = 3x2y2 — 4:U3y.

Therefore, 1) = C and the potential function has the form o(x,y) = 2%y* — 223y* + C.

2.5 Special Integrating Factors

There are two special cases in which it is easy to find integrating factors.

1. yT is a continuous function of x but independent of y: then we can assume that u is a
function of z, and (2.5) implies that p satisfies
dp My, — N,
ey 2.6
dx N (26)
2. —7  Ba continuous function of y but independent of x: then we can assume that p is a
function of y, and (2.5) implies that p satisfies
du Ny — M,
—=——. 2.7
i 7 (2.7)
2
Example 2.22. Solve dy _ —M.
dx 2+ zy
Let M(z,y) = 3zy + y* and N(z,y) = 2* + zy. Then M, — N, = x +y so Mdx + Ndy is not
M, — N, 1 R . . .
exact. We observe that yT = — which is a function of z, we can assume that the integrating
X
factor p is only a function of x, and (2.6) implies that p satisfies
dp 1
dr o'

thus p(x) = x. This choice of p validates that (uM), = (uN), in R?; thus uMdzx + uNdy is exact.

We note that the potential function ¢ has the form

2,,2
@(w,y)=w3y+%+0~

Therefore, we find an implicit solution

One can also verify that the function p(z,y) = is also a valid integrating factor (in

zy(2z +y)
some domain D < R?).



2
Example 2.23. Solve dy _ 22 +y.
dx 2y — o

Let M(x,y) = 22® + y and N(z,y) = 2’y — . Then M, — N, = 2 — 2zy which implies that

M, — N, 2 .
% = —=. Therefore, we assume that p = p(z) satisfies
X

du 2

ar = 2"
The separation of variables then provides that u(z) = 72, and the potential function for the differ-
ential form pMdx + pNdy has the form

2

y .y
=2r—=4+=+C.
pla,y) =20 ——+ 5+
y v
thus we obtain an implicit solution 2x — = + 5= C.
x

Remark 2.24. It is possible to lose or gain solutions when multiplying and dividing by u(x,y).

2.6 Substitution and Transformations

2.6.1 Homogeneous equations

Definition 2.25. The ODE ;Ly = f(x,y) is said to be homogeneous if f(z,y) = g(%) for some
X

function g.

Example 2.26. The equation (z — y)dz + zdy = 0 is homogeneous since it can be rewritten as

dy _ _z-y
dr T

— 147
X
and the right-hand side is a function of %
Test for homogeneity: The ODE Z—y = f(x,y) is homogeneous if and only if f(tx, ty) = f(z,y)
X
for all ¢ # 0.
To solve a homogeneous equation dy _ g(g), we let v = ¢ and substitute in dy _ v+ x@ to
dx x x dx

dzx
obtain that

dv+ o)
xdm v=g(v).

The new equation is separable so that we can apply the separation of variables to obtain a solution.

Example 2.27. Solve (zy + y? + 2?)dx — 2*dy = 0.
2, .2 2
If x # 0, we can rewrite the ODE above as Z—y — WAy Y + y—Q + 1; thus the ODE is
X X

2
X X
homogeneous. Therefore, letting v = Q7 we find that
T

xj—; =02 4 1;
thus the separation of variables implies that v and x satisfies
dv dx
v+l oz

Therefore, tan~! v = log|z| + C or v = tan(log |z| + C'). We also note that z = 0 is a solution.



2.6.2 Equations of the form % = G(ax + by)
X

To solve Z—y = G(az + by), we let z = ax + by and find that
T

dz @_
%—a—i-bdx—aijG(z).

The separation of variable can be used to solve the ODE above.

5 Letting z = x — y, we find that

Example 2.28. Solve dy _ y—xr—1+ b
dx Y +

dz _dy_ _< o
%—1 dx_l y—xr—1+

1 >_2+Z_ 1 2244243
r—y+2/ 242 z+2

Therefore, the separation of variables implies that z and x satisfy

z42
ExwE L
Using the partial fraction,
z+2 z+2 _1( 1 L 1 )
22+424+3  22442+3  2\z43 241/

thus |
§log|z2+4z+3|:x+0.

This implies that
(z+2)—1=+Ce* = Ce*

which shows that an implicit solution to the given ODE is
(r—y+2)*=Ce* 4+ 1.

2.6.3 Bernoulli equations

Definition 2.29. A first order ODE that can be written in the form

d
o+ pla)y = a()y

where p(x) and ¢(z) are continuous on an interval (a,b) and r € R, is called a Bernoulli equation.
To solve a Bernoulli equation, we focus only on the case that r # 0, 1 (for otherwise we can solve

using the method of integrating factor for » = 0 or separation of variable for r = 1). Let v = y'™".
Then

% =(1- r)y_r% = (L=7)y ™" [a(x)y" —p(x)y] = (1 —7)[a(x) = p(z)y' "]

which can be solved using the method of integrating factor.



Remark 2.30. We note that when r» > 0, y = 0 is also a solution to the Bernoulli equation.

Example 2.31. Solve % — by = —gng.
X
Let v = y~2. Then

d’U__ _3dy__ -3 _5 3\ _
= 2y e 2y (5y §xy ) = —10v + 5z
or equivalently,
dv
— + 10v =5z
dx
Using the method of integrating factor,
%(610%) — 5el%
thus
10x 10z 10z
10z, e 5 _e[2e" 1 [ 10 } _re ¢
e v—5fxe dz 5[ 10 0l e dx 5 %0 +C.
Therefore, using v = y~2 we obtain that
v 1 ~10z
=———+C .
TR

2.6.4 Equations with linear coefficients

Consider the ODE
(a1 + by + ¢1)dx + (agx + boy + co)dy = 0.

1. If by = ao, then there exists a scalar potential such that
Vo(z,y) = (17 + b1y + c1, axx + bay + ¢2)
and an implicit solution is given by ¢(z,y) = c.

2. If albg = agbl, then
@ B _alm—i—bly—}—cl

— — b
dx asx + boy + co G(az + by)

for some a,b € R.
3. If a1bs # asby, then there exists h, k such that
o ] G- L
as bo| |k Ccol|
Let u=x+hand v =y + k. Then

v
dv aiu + byv ap + bl;

- _ —g(%).

du ~ asu+ byv _a2+62% =

The equation above is homogeneous and we can solve by the change of variable w = Y.
u

Example 2.32. Solve (—3z + y + 6)dz + (z + y + 2)dy = 0. Answer: An implicit solution is given
by (y +3)*+2(x—1)(y+3)-3x—-1)>2=c



3 Numerical Methods Involving First-Order Equations

3.1 Numerical Approximations: Euler’s Method

The goal in this section is to solve the ODE
D —fw) i) =m 3.)
numerically (meaning, programming in computer to produce an approximation of the solution) in
the time interval [to, to + 7.
Let At denote the time step size (which mean we only care what the approximated solution is
at time t, = to + kAt for all k € N). Since @(tk) ~ Y1) = y(te) when At ~ 0, we substitute

dt At
y(terr) —y(te) o dy

. = (tx) and obtain

Y(tisr) ~ y(te) + f (e, y(tr)) At VkeN.

The forward/explicit Euler method is the iterative scheme

T ¢ 2 :
Ykt1 = Yk + f(tr, yr) At Vke {1, 2, [E] — 1}, Yo ‘=" yo (in theory). (3.2)

Example 3.1. Use the Euler method with step size At = 0.1 to approximate the solution to the

initial value problem
y' =ty y(1) =4.
Let f(t,y) = t\/y and (to,%) = (1,4). The Euler method provides an approximating sequence
{yr }ren satisfying yo = 4 and

Uk+1 = Yk + ALF(1 + EAL yx) = yp + 0.1(1 + EAL)/yg -

Then y; =4+ 0.2 = 4.2 while y, = 4.2+ 0.1(1.1)v/4.2 ~ 4.42543, and etc.

k| tr | yr Determined by Euler’s Method | Exact Value of y(tx)
011 4 4

1111 4.2 4.21276
2112 4.42543 4.45210
3113 4.67787 4.71976
4114 4.95904 5.01760

51 1.5 5.27081 5.34766

Table 1: Computations for y' = t,/y, y(1) = 4

In order to study the “convergence” of a numerical method, we define the global truncation error

(associated with a numerical scheme) as follows.



Definition 3.2. Let {yx}72, be a sequence of numerical solution obtained by a specific numerical
method (with step size At > 0 fixed) of solving ODE y’ = f(¢,y) with initial data y(ty) = yo. At
each time step t, = to+kAt, the global truncation error (associated with this numerical method)

is the number ey (At) = y(tr) — Y.

Therefore, to see if a numerical method produces good approximation of the exact solution, we
check if the global truncation error converges to 0 for all k( < T'/At) as At — 0.

Assume that f is bounded and has bounded continuous partial derivatives f; and f,; that is, f;
and f, are continuous and for some constant M > 0 |f(¢,y)| + | fe(t,v)| + | f,(t,y)| < M for all ¢, y.
Then the fundamental theorem of ODE provides a unique continuously differentiable solution y = ()

o (3.1). Since f; and f, are continuous, we must have that y is twice continuously differentiable and

we have
y" = filt,y) + f,(t,y)y’.

By Taylor’s theorem, for some 6 € (0, 1) we have

/ 1 1
Y(terr) = y(te) +y'(te) At + §(At)29 (tr + 0 At)

(At)?
2

= y(ty) + f (e, y(te)) AL + [fe 4 fuf ] (te + O A, y(ty, + 0L AL)) 5

thus we conclude that
Y(tier) = y(te) + f(tr, y(tr)) At + 1At

for some 7, satisfying |7,| < LAt for some constant L.

With e, denoting y(tx) — yx, we have
exr1 = e+ [f (b y(te)) — [tk yr)| AL + T AL
The mean value theorem then implies that
lers] < len] + (MAt)|er] + L(AL)? = (1 + MAU)|ex| + L(A)?;
thus by iteration we have

lens1| < (14 MAt)|ex| + L(AL)? < (1 4+ MAL)[(1+ MAt)|ep—1| + L(AL)?] + L(At)?
= (1+ MAt)?|ej—1| + L(AL)?* [1 4 (1 + MAL)]

N

(L+ MA) eo| + LA [T+ (1 + MAL) + (1 + MA)* + -+ + (1 + MAt)¥]

L
= (1+ MAt)*eo| + MAt[(l + MA)* — 1]

< (1 + MAYH <|eo| + %At)

forall ke {1,2,- | [A%} —1}. Since (1+ MAt) < €2, we conclude that

L L
’€k+1‘ < €M(k+l)At<‘€o‘ + MAt) < €MT<‘€0| + MAt)



which further implies that

L
max_ |ex| < eMT(\eO| + —At) . (3.3)
ke{1, [ L1} M

Therefore, the difference between y(t) and y; approaches zero as At — 0.

Remark 3.3. The Euler method can also be “derived” in the following way: the solution y at each

1. satisfies
Tht1

Y(ten) — y(ty) = f " dt = f F(ty(0)) dt (3.4)

Lk tg

and the integral on the right-hand side is approximated by the value f(tg, y(tx))(trs1 — tx).

3.2 Improved Euler’s Method

Now suppose that we use the trapezoidal rule to approximate the value of the integral on the right-
hand side of (3.4); that is,

thﬂ f(t’ y(t)) dt ~ f (b y(t) + é(tml,y(tkﬂ))

(tk-l-l - tk’) )

Ly
then another numberical scheme, called the trapezoid scheme, can be developed: given y, and At,
find yg.q satisfying

(e yr) + f(tet1, yk“)At (3.5)
2 ' |

We note that the numerical scheme involves solving for y;1 from a non-linear equation which is often

Yk+1 = Yk +

very expensive (meaning that it takes a lot of computation time to find yx,1). Since yxy1 depends
on y; (and other variables) implicitly, the trapezoid scheme is an implicit numerical scheme.
To develop an explicit scheme (which means y;.1 can be explicitly expressed as a function of yy),
we approximate yy41 on the right-hand side of (3.5) using the Euler method; that is, we approximate
Ykr1 by yx + Af (¢, yx) and the trapezoid scheme is replaced by
f(Choy) + f (trsts v + AS bk, yk) )
2

The scheme above is called the improved FEuler’s method.

Yk+1 = Yr T At. (3.6)

Example 3.4. Compute the improved Euler’s method approximation to the solution of the ODE

y' =y, y(0)=1
Let At be the time step size. Then the improved Euler’s method provides

Y + Y + Aty
2

At?

Using the initial condition,
At?\k
wom (1805 A7)

We note that for each t > 0, kAt <t < (k+ 1)At for a unique k = [Ait} e Nu {0}, and kAt — ¢ as
At — 0. Therefore, by the face that
9.t
lim <1+At+A—t>At =,
At—0 2

we find that y converges to the solution y(t) of the ODE given above.



In general, the so-called one-step explicit method is often given in the form
Y1 = Y + AtP(AL Ly, yy) -

For example, in Euler’s method the function ®(At, ¢y, yx) = f(tk, yx), while in the improved Euler’s

method,
tr, —|—ft+At, —I—Atft,
CI)( A t7tk,yk) f( k Z/k) ( k : Yk ( k Z/k)) .

Definition 3.5. A numerical method is said to be consistent if

. 0
lim ®(AL 1, y) = y'(1).

3.2.1 Rate of convergence and the local truncation errors

The rate of convergence is used to understand how fast an approximated solution provided by a
numerical scheme converges to the solution of an IVP. For a numerical method, we would like to
determined the order n such that for a fixed T" > 0,
{ek(At)‘
Atn
provided that y, is the exact initial data. We note that the Euler method is of order 1 due to (3.3).

is bounded for all k < Azt as At —> 0,

Definition 3.6 (Big O and little 0). We use the notation

f(z) =g(x) + O(h(z)) as = —a

to express the idea that ‘W

)
f(z) = g(z) + o(h(x)) as T —a

f(z) —g(x)
h(x)

’ is bounded when x is closed to a, and use the notation

to express the idea that lim = 0.

r—a

Now assume that f is twice continuously differentiable; that is, f, f, and f,, are continuous.

Then y is three times continuously differentiable and Taylor’s theorem implies that

ti) = o) + ' (B)AE + (A0 (0) + O(AF)

(AL)?
2

On the other hand, the improved Euler’s method produces that

2

I (ts i) + (b Y) + feltis Y) A+ fy (b Ye) ALF (b Y1) £y O(At)
2

= y(tr) + f(tr y(te)) At + [fe 4 fuf ] (s y(te)) + O(AE) . (3.7)

Ye+r1 = Y +

2
= yr + f(tr, yr) AL + ATt [fe + fuf ] (s yi) + O(AE) .

Therefore, if we solve the ODE using the initial condition y(x) = y, then the difference between the

exact value y(tx41) and the approximated value y,,; is of order At3. This induces the following



Definition 3.7. Let y be the solution to the IVP y’ = f(¢,y) with initial data y(tg) = yo. At each

time step t, = to+ kAt, the local truncation error associated with the one-step numerical method

Yk+1 = Yp + AtP(AL, tr, yg)

y(te) — 2
At
to the numerical scheme with y,_1 = y(t)_1). (FE> 2 v - H L L FEEFI - H aiEL)

is the number 74 (At) = , where z, = y(tx—1) + Atd (At te_1, y(tk_l)) is obtained according

By the mean value theorem (for functions of several variables), with h = At we have

ex(h) = y(tr) — ye = y(tr) — Yr—1 — h®(h, th1, Ya—1)
= y(te) — y(te—1) — (R, tp—1, y(tr—1)) + y(te-1) — Yr—
+ h[q) h, tk 1,Y tk 1)) (I)(h tkfl,ykfl)]

> S

Tk(h) + Cl— 1(}1) + h® (h tk 1,§k 1)[ (tk—l) — yk—l}
Ti(h) + ex—1(h) + h®y(h, ti—1, Ek—1)er—1(h)

for some &;,_; on the line segment joining y(¢5_1) and y;_1. If we assume that |®,| is bounded by M,

then the equality above implies that
lex(h)] < hlre(h)| 4+ (1 4+ hM)lex—1(R)] .

Therefore,

lex(h)] < hlme(h)| + (1 + hM)[er—1 ()],
(1+ ~M)lep—1(R)| < h(1 + hM)|me—r ()] + (1 + hM)?|er—2(R)|

N

(1+hM)* ey (R)| < h(1+ hM)* 7 (h)] 4 (14 hM)*|eo(R)] .

Summing all the inequalities above, we find that

lex(R)] < h 2(1 + hM) |Te—e(h)| + (1 + hM)*|eg(R)] .

(=0

Suppose that the local truncation error is of order n; that is, 7, satisfies
n T
ITk(h)] < Ah Vke{0,1,---,[3] -1}

for some constant A and n > 0. Then by the fact eg(h) = 0, we conclude that

k—1
1+ hM)k -1
ex (W) < b ST (1 BMY AR + (14 hMleg(h)] < BT =L g
=0 hM
1 . o )
< [+ AM)E =1 AR" < (M7 = 1) AR"

Therefore, we establish the following



Theorem 3.8. If ®, is bounded by M and the local truncation error m,(h) associated with the one

step numerical scheme
Yrs1 = Yx + h®(h, ty, Yx)

satisfies

(k)| < AR Vke {01, [7]} and h >0,
then the global truncation error ex(h) satisfies

A
ler(h)| < M(eMT —~ 1R Yh>0.
In shorthand, if T,(h) = O(h™), then ex(h) = O(h™).
Example 3.9. The improved Euler’s method is a second order numerical scheme.

Example 3.10. Consider solving the initial value problem
y'=sin(t® +y),  y(0)=0

numerically (in the time interval [0,1]) using the improved Euler method. First we compute the
derivative of y:

y" = cos(t® +y)(2t +y') = cos(t* + y) (2t + sin(t* + y)) ,

y" = sin(t? + y) (2t + sin(t> + y))* + cos(t2 + y) [2 + cos(t? + y) (2t + sin(> + y))] .

Therefore, writing the improved Euler in the format yx1 = yx + h®(h, tx, yx), we have

®(h,t,y) = = [sin(t® + y) +sin ((t + h)* + y + hsin(t* + y))]

1
2
1
=5 [sin(t* 4+ y) + sin(t® +y + 2th + h* + hsin(t* + y))] .
A direct computation shows that

D, (h,t,y) = =[cos(t® + y) + cos((t + h)* +y + hsin(t* + y)) (1 + hcos(t* +y))] ;

DN | —

thus if ¢ € [0, 1], we must have h € [0, 1] which implies that

1 2+h 3 :
‘(Dy(h,t,y)‘<§(1+1+h):T<§ if tE[O,l].
By the Taylor theorem,
2 h3
y(tr) = y(te—r) + hy'(te—1) + ?y//(tk—l) + Ey’”(é’)
: h?
= y(tp—1) + hsin (t_, + y(te—1)) + 5 [2tk_1 cos(ta_ +y(ts1))

3

Hin(td L+ (b)) cos(tEy+ (t)] + " (6)



for some &1 in between t;_; and t,. Moreover,

Yk = Yr—1 + hP(h, tp_1,Yp—1)

h
= U1t g [2 sin(tp_y + yr—1) + cos(tp_y + yr—1) (2ts_1th + B* + hsin(t;_, + yp_1))
1
~3 Sin g1 (Ztk_lh + h* + hsin(ti_, + yk_l))Q]

for some 7,_1 in between ti_l +ypq and (g1 +h)? + yp1 + hsin(ti_1 + yg_1). Therefore, in the

time interval [0, 1] the local truncation error 74(h) satisfies

h? 1, . _ h?
17e(h)| < ?‘ cos(tp_y + y(te-1))| + Z| sinmy_1|(2ts—1h + h* + hsin(t;_, + yk_l))2 + E|y’”(€k_1)‘
h?  h? 7

h? 1
S =+ —B+h)?*+—-(2+1)*+2 < (4445 )R <7h%
5t B+ + (2+1)2+2+3) <2+ +3> 7

To obtain numerical solution which is accurate to the six decimals, by Theorem 3.8 we need to choose

h > 0 such that .
3
—(e2 —1)R2 <1077
3/2(62 )

Solving for h, we find that as long as 0 < h < 7.8452 x 107°, the global truncation error ey(h) is
bounded above by 1077 for all k£ (such that ¢, < 1).

3.3 The Taylor Method and the Runge-Kutta Method

Motivated by the definition of the local truncation error and Theorem 3.8, if f is smooth enough,

we can design one step numerical method as follows: by Taylor’s theorem,

" (n)
y(tin) = y(te) +y'(t)h + 2 ;tk)hg oot n<|tk>hn +OMh™)  as h—0.

Since y'(t) = f(t,y), each derivative y)(t;) can be expressed in terms of f and its partial derivatives.

For example, we have used
y"(t) = (fe+ ff)(ty)
to derive that the improved Euler’s method is of order 2. The Taylor method of order 3 would require

we compute y”(t) in terms of f and its partial derivatives. Since

ym(t> = %(ft + ffy)(tv y) = (ft + ffy)t(t7y> + (ft + ffy)y(t,y)f(t,y>
- (ftt + ftfy + foty + ffy2 + fzfyy)(tay)a

the Taylor method of order 3 is given by

2 3
e = e ol () + 5t )0 we) + U Sefy + 20 F + £+ Pl o) (39)

Similarly, since

Y1) = it Sl + 2L S+ P12+ P L)1)
= (fur + fufy + 3fifry + 2f fuy + ftfy2 +2f fufy + 2 fufyy + 2 Fryy) (1)
+ (ftty + ftyfy + ftfyy + 2fyfty + 2fftyy + fgj) + 4ffyfyy + f2fyyy)(t7y)f(ta y) )



the Taylor method of order 4 is given by
h? - h? - : : TR
Yer1= Y + f (tr, yr) + E(fl’ + [ fy) (e, yr) + E(f“ + fefy +2f foy + [ oy + £ 1, + £ Fu) (e k)
h : 9,
‘Fﬁ(fm + fufy + 3fefey + 2 [y + fffy2 +2f fyfey + 21 fufyy + 2 Fruy) (tis Ui) (3.9)
B
24
Example 3.11. Find the third order Taylor’s method for solving the IVP

(ftty + ftyfy + ftfyy + nyfty + fotyy + f; + 4ffyfyy + f2fyyy)<tk-/ yk)f(tk: yk) :

y =ty*,  y0)=1.

Let f(t,y) = ty*>. Then f; =%, f, = 2ty, fu =0, fi, = 2y and f,, = 2t. Therefore, using (3.8) the
3rd order Taylor’s method is
2

h h3
Yis1 = U + htpy? + 3<yi + 2thyp) + g<2tky;?: + 4dtryp + Ay, + 26y,

2

h
=y + htyy? + 5(1/2 +26008) + B (teyi + Gy

which starts at yo = 1.

To implement the Taylor method, it requires that we compute the derivatives of y9) in terms of
f and its partial derivative by hand. Moreover, for Taylor’s method of higher order, the iterative
relation becomes very lengthy so it becomes even harder for coding purposes. There are higher order
one step explicit method for solving the IVP which does not require that we differentiate f by hand,
and it is easy to implement. One of such one step explicit method is the Runge-Kutta method.

Let us start with a second order Runge-Kutta method to illustrate the idea. The idea of the

second order Runge-Kutta method is to find a, b, a, # such that the one-step numerical scheme

rn = hf(tkayk) ) (310&)
re = hf(ty +ah,y, + Br1), (3.10b)
Yk+1 = Yr +ary + b’f’z (310(3)

which produces a second order method. In order to make sure that (3.10) is of order 2, we compute

the local truncation error (by assuming that f is smooth enough). By Taylor’s theorem, we find that

Ykr1 = Yr + ahf(te, ye) + bh [f(tk, Yi) + filte, yr)ah + fy(te, yk)ﬁm] +O(h?)
=y + (a+ b)hf(te, ) + [bafi(te, yr) + 0B (e, yi) fi(te, yi) |1+ O(R?) ;

thus comparing with (3.7) (with A replacing At) and applying Theorem 3.8 we conclude that (3.10)
is of order 2 if . .

b=1, ba=- d 8=—-.

a—+ , ba 5 an I} 5

This is a system of three equations with four unknowns and has infinitely many solutions. In partic-

1
ular, a = b= B and a = = 1 provides the improved Euler’s method.



Similarly, a fourth order Runge-Kutta method in general is given by

= hf(te yr) .
[t +arh,y, + Bir1),
[tk + ah, y + Bary + Bar2)
= hf(tr + azh,yr + Bar1 + Bsr2 + Bers)
Yr+1 = Yi +ary + bra +crs + dry

h
h

such that it agrees with (3.9) up to the fourth order. One of the most popular choices of parameters

in the fourth order Runge-Kutta is given by

r1=hf(te, yr) . (3.11a)
= hf(t+ ghoye+ 5m1), (3.11b)
= hf(t k—l—lh yk—l—%rg), (3.11c)
hf(te + hyk +73), (3.114d)
r1+2ry +2r3 +r
Yl = Yp + ——— ; 3T (3.11e)
4 Second Order Linear Equations
Recall that a second order ordinary differential equation has the form
dy d*y
ty,—,— ) =0 4.1
by 2 25) (4.1

for some given function f. The ODE (4.1) is called linear if the function f takes the form
dy 2y &2y
2 DIN _opy _
£t 50 = POTY + Q0% + Rl - GUo),

where P is a function which never vanishes for all ¢ > 0. The ODE (4.1) is called nonlinear if
it is not linear. The functions P, @), R are called the coefficients of the ODE, and G is called the
forcing of the ODE. The énitial condition for (4.1) is (y(to),y'(to)) = (yo. y1)-

In this chapter, the main focus is on solving linear second order ODE

P(t)% £ 1 Rty = G(1). (4.2)

The prototype model of such kind of ODEs is the ODE
my" = —ky —by' + f(t)

which is used to model the mass-spring oscillator, where m is the mass, k is the Hooke constant, b is

the damping coefficient, and f is the external forcing acting on the mass.



4.1 Basic Theory for Second Order Linear Equations

Let I < R be an interval containing tg as an interior point. Suppose that P.Q, R, F : I — R
are continuous and P(t) # 0 for all t € I. By the fundamental theorem of ODE, the initial value
problem (4.2) with initial condition y(ty) = vo, ¥'(to) = y1 has a unique solution in some time interval
containing ¢y as an interior point.
Since P # 0 on R, the functions p = %, q= % and g = % are also continuous on I, and (4.2) is
equivalent to

y" +pt)y" +qt)y = g(t). (4.3)

Theorem 4.1. Let [ < R be an interval, and p,q,g9 : I — R be continuous. Then the initial value

problem
y" +pt)y +qt)y =g(t), y(to) = vo, y'(to) = (4.4)

has a unique solution y: I — R.

Proof. By the fundamental theorem of ODE, it suffices to show that y(t) exists for all ¢ € I.

Suppose that the maximal interval for the existence of y is (a,b) < I (which means lim y(t) and

t—b-
lim y(t) do not exist). For t € (a,b), multiplying (4.4) by y’(t) we find that
t—a
1 d / 2 / 2 / /
5V O +aOly' OF +rOyt)y' () = g(t)y'(?) - (4.5)

By the fundamental theorem of calculus,

y(t) = ylto) + j y'(s) ds = yo + j y/(s)ds:

to to

thus the Cauchy-Schwarz inequality implies that for a <t < b
t
2 2
o <2l + e~ t0) | |y (o) ds].
to

Therefore, letting M = sup [!p(t)| + |q(t)
tela,b]

}, for ¢t € (a,b) (4.5) implies that

Ly <2l OF + @Ol + r@lly©F + s + '@

< (BM+ Dy (0] + 20 ol + (¢ - t@Jt v/ ) ds] + a0

¢ b
Let X(t) = f ’y’(s)|2 ds and N = 2M (b — a)|yo|* + |y1|* + J ‘g(s)‘2 ds. Integrating the inequality
to a

above in ¢, by the fact that X'(t) = }y’(t)‘Q we find that
X'(t)S N+ [BM+1+(b—a)’|X(t) Vio<t<b

and
~X't) S N—-[BM+1+4(b—a)’|X(t) Va<t<t.



Therefore, using the method of integrating factor, we obtain that
‘X(t)‘ < NeBMH1+(0-a)’](t—to) Va<t<b

which in turn implies that |y’(¢)| is bounded above by a fixed constant C' for all a < ¢ < b.
Let {t,}*_, < (a,b) be a convergent sequence with limit a (or b). Then the mean value theorem
implies that
‘y(tn) - y<tm)‘ < Clty =t

which implies that {y(tn)}:):1 is a Cauchy sequence in R. Therefore, {y(tn)}fz1

as {t,}>_, converges (to b or a). This shows that lirgl y(t) and lim y(t) exist, a contradiction. o
t—b— t—a

converges as long

Definition 4.2. The ODE (4.3) is called homogeneous if g = 0, otherwise it is called nomn-

homogeneous. When g # 0, the term g(t) in (4.1) is called the non-homogeneous term.

Let I < R be an interval, and p,q,g : I — R be given continuous functions. For a twice

differentiable function y : R — R, let L[y| denote the function
(LIyN(@) = y" (1) + p()y"(t) + a(t)y(t) -
The kernel of L, denoted by Ker(L), consists of solutions to the homogeneous equation
y" + o)y’ +q(t)y(t) =0.

The kernel of L is called the solution space of the homogeneous equation above. We note that Ker(L)

is a vector space.

Theorem 4.3 (Principle of Superposition). If y = ¢y and y = s are two solutions of the differential

equation
Lyl =y"+py +qy =0, (4.6)

then the linear combination c1p1 + capo is also a solution for any values of the constants ¢; and c,.

In other words, the collection of solutions to (4.6) is a vector spaces.

Let Y;(t), i = 1,2, be the solution to the IVP
y" oMy +aty =0, (y(t),y'(0) = e
respectively, where e; = (1,0) and e; = (0,1). Then the solution to the IVP
v M)y +ay =0,  ylto) =w, y'(t)=un
is y(t) = yoY1(t) + y1Y1(t). Therefore, the solution to the ODE

y" +pt)y +qt)y=0



must be of the form y(t) = ¢1Y1(t) + c2Ya(t). On the other hand, there is no non-zero vector (c1, ¢z)
such that ¢1Y](t) 4+ coYa(t) = 0 for all ¢ € R, the set {Y7, Y2} is linearly independent. Therefore,

dimKer(L) = 2 and {Y;, Y5} is a basis for Ker(L).

It is natural to ask “are two given functions ¢1, o in Ker(L) linearly independent?” Suppose

that for given initial data yo,y; there exist constants c;,ce such that y(t) = c1p1(t) + capa(t) is a
solution to (4.4). Then

{Pl(to) ¢b(to)} {Cl} _ [yo}

@1(to) palto)] |2 Y

So for any given initial data (yo,y1) the solution to (4.4) can be written as a linear combination of

p1(to) pal(to)
©1(to) pa(to)

Definition 4.4. Let ¢, and ¢, be two differentiable functions. The Wronskian or Wronskian

1 and ¢y if the matrix [ 1 is non-singular. This induces the following

determinant of o, and ¢, at point ¢y is the number

Wlonel(to) = det (| 2260 22000 ) — g1 (o)t — aloliel o)

The collection of functions {¢1, po} is called a fundamental set of the initial value problem (4.6)

if W1, pa](t) # 0 for some t in the interval of interest.
Moreover, we also establish the following

Theorem 4.5. Suppose that y = p1 and y = @y are two solutions of the initial value problem (4.6).
Then for any arbitrarily given (yo,y1), the solution to the ODE

Lyl =vy" +py" +qy =0 with initial condition y(to) = yo and y'(to) = v1 ,

can be written as a linear combination of p1 and @o if and only if the Wronskian of o1 and py at ty

does not vanish.

Theorem 4.6. Let p; and s be solutions to the differential equation (4.6) satisfying the initial
conditions (p1(to), 1 (to)) = (1,0) and (p2(to), p5(to)) = (0,1). Then {1, s} is a fundamental set
of equation (4.6), and for any (yo,y1), the solution to (4.4) can be written as y = yop1 + y1p2.

Next, suppose that ¢y, ¢o are solutions to (4.6) and Wipy, pa](to) # 0. We would like to know if

{©1, P2} can be used to construct solutions to the differential equation
Lyl =y" 4+ py' + qu =0 with initial condition y(¢;) = yo and y'(t1) = 1 (4.7)

for some t; # ;. In other words, we would like to know if W[y, po](t1) vanishes or not. This

question is answered by the following



Theorem 4.7 (Abel). Let p; and @y be two solutions of (4.6) in which p,q are continuous in an
open interval I, and the Wronskian W1, ps] does not vanish at to € I. Then

Wiow () = Wlew el e (- [ po)is).

to

In particular, Wer, po](t) is never zero for all t € I.

Proof. Since ¢; and @9 are solutions to (4.6), we have

; (4.8a)

@1 (t) +p(t)py(t) + q(t)pi(t) = 0
0. (4.8D)

@y (1) + p(t)ps(t) + q(t)pa(t)

Computing (4.8b) x ¢ — (4.8a) x 9, we obtain that

(201 — 0195 ) + p(p2ip] — P1903) =0

Therefore, letting W = o] — w104 be the Wronskian of ¢ and ps. Then W' 4 pW = 0; thus

W(t) = Wi(ty) exp < - ft p(s)ds> :

to

t
Since p is continuous on [tg,t] (or [t,t]), the integral | p(s)ds is finite; thus W (t) # 0. o

to

4.2 Homogeneous Equations with Constant Coefficients: The General
Solution

In this section, we consider homogeneous second order linear ODE with constant coefficients
Py +Qy +Ry=0,
where P, @), R are independent of ¢. Since P # 0, the ODE reduces to
Yy +by +cy=0. (4.9)
Consider the equation A2 + b\ 4 ¢ = 0.

1. Suppose that there are two distinct real roots \; and Ay. Then

(& -2) (%o
d

Therefore, if z = (% - )\z)y, then (% — A1)z = 0 which further implies that z = c;e? for

some constant ¢;. Then

Yy — Aoy = creMt = (e—,\gty)/ _ Cle(M—)\Q)t — e—Azty _ . C_l )\260\1—)\2)15 + ¢y

C1

= — Mgt
AL — A

=Y

In other words, a solution to the ODE (4.9) is a linear combination of e*? and e*?! if \; and

A2 are distinct real roots of A + b\ + ¢ = 0, and is called the general solution to (4.9).



2. Suppose that there is a real double root A. Then the argument show that y satisfies

—At At

Yy — Ny =creM = (eMy) =c¢ = e My =c1t + 0o = y = crte™ + coe

In other words, a solution to the ODE (4.9) is a linear combination of te* and e if X is the
real double root of A? + b\ + ¢ = 0, and is called the general solution to (4.9).

Example 4.8. Find the general solution to y” + 5y’ — 6y = 0. Answer: y(t) = Cie! + Coe 5.
Example 4.9. Solve the initial value problem
y"+2y —y=0, y(0)=0, y'(0)=-1.

V2 vy V2 (c1-var

Answer: y(t) = — 1 1

Example 4.10. Find the solution to the initial value problem
y"+4y'+4y=0, y0)=1, y'(0)=3.

Answer: y(t) = 3te .

Question: What happened if there are complex roots for A\? + b\ 4 ¢ = 07

Definition 4.11. The equation A2 + b\ + ¢ = 0 is called the characteristic equation associated with
the ODE (4.9).

Another way to derive the characteristic equations: Consider y” + by’ + cy = 0. Let y’' = z.

Then =15 51

0 1]. Then =’ = Azx.

—c —b
Suppose that A = PAP~! for some diagonal matrix A; that is, A is diagonalizable (with eigenvec-

Write z = [y, z]T and A = l

tors of A form the columns of P and eigenvalues forms the diagonal entry of A), then P~'z’ = AP~ 'z.

Letting u = P~'a, then u’ = Au or equivalently,

i uy| )\1 0 Uy

dt [ua| |0 Ao |ug|
Therefore, u;y = Au; and uj, = Aus that further imply that u; = cie
At Aot

At Aot

and uy = cee™?'. Since

x = Pu, we conclude that y is a linear combination of eM* and e

What are eigenvalues of A7 Let A\ be an eigenvalue of A. Then

-A 1
—c —b— A\

':0 = MN+bA+c=0

which is the characteristic equation. Therefore, eigenvalues of A are the roots of the characteristic
equation for the ODE (4.9).



4.3 Characteristic Equations with Complex Roots

Consider again the 2nd order linear homogeneous ordinary differential equation
y' +by +cy=0 (4.9)

where b and ¢ are both constants. Suppose that the characteristic equation 7% + br 4 ¢ = 0 has two
complex roots A +iu. We expect that the solution to (4.9) can be written as a linear combination of

eA it and e(A—imt,

What is ¢#*? The Euler identity says that e = cosf + isin §; thus

eMEIt = eM[ cos(ut) + isin(ut)] .

Attt A

Considering the real and imaginary parts of e , we expect that ¢, (t) = e* cos(ut) and e* sin(ut)
are solutions to (4.9).
1 and ¢, are solutions: left as an exercise.

Linear independence of ¢; and ¢,: Computing the Wronskian of ¢; and ¢9, we find that

eM cos(ut) eMsin(ut)

A (\cos(t) — psin(ut) - (Asin(u) + prcos(t))|

Wlpr, 2] (t) =

which is non-zero if p # 0. Therefore, Theorem 4.6 implies that any solution to (4.9) can be written

as a linear combination of ¢; and ¢y if b* — 4c < 0 and is called the general solution to (4.9).

Example 4.12. Find the general solution of y” + 2y’ + 4y = 0. Answer: y(t) = Cie~cos+/3t +
Cyet sin /3t.

Example 4.13. Consider the motion of an object attached to a spring. The dynamics is described
by the 2nd order ODE:
mi = —kx —ra, (4.10)

where m is the mass of the object, k is the Hooke constant of the spring, and r is the friction/

damping coefficient.

4 VT~ dmk

to the characteristic
2m

1. If 2 — 4mk > 0: There are two distinct negative roots

equation, and the solution of (4.10) can be written as

—r+Vr? — 4mk‘t>
2m

2 _4
r T mk:t).

2m

z(t) = Cyexp ( + Cyexp <_
The solution z(t) approaches zero as t — 0.

2. If 72 — 4mk = 0: There is one negative double root ; to the characteristic equation, and the
m

solution of (4.10) can be written as

x(t) = Cyexp (%:) + Cotexp (%) .

The solution z(t) approaches zero as t — 0.



—r + iv4dmk — r2

2m

3. If r> — 4mk < 0: There are two complex roots to the characteristic equation,

and the solution of (4.10) can be written as

, VaAmk — 12 v NAmk — 12
x(t) = Che™ 2m cos (ut) + Cye 2m sin (ut) :
2m 2m
dmm
a) If r = 0, the motion of the object is periodic with period ————, and is called simple

harmonic motion.

(b) If » > 0, the object oscillates about the equilibrium point (z = 0) but approaches to zero
exponentially.
4.4 Nonhomogeneous Equations

In this section, we focus on the second order nonhomogeneous ODE

y" +pt)y" +qt)y = g(t). (4.11)

Definition 4.14. A particular solution to (4.11) is a twice differentiable function validating
(4.11). In other words, a particular solution is a solution of (4.11). The space of complementary

solutions to (4.11) is the collection of solutions to the corresponding homogeneous equation

y" +pt)y +q(t)y=0. (4.12)

Let y = Y(t) be a particular solution to (4.11). If y = ¢(¢) is another solution to (4.11), then
y = ¢(t) = Y (t) is function in the space of complementary solutions to (4.11). By Theorem 4.6, there
exist two function ¢y and ¢, such that y = ¢;(t), j = 1,2, are linearly independent solutions to
(4.12), and () — Y(t) = C1p1(t) + Capa(t) for some constants C; and Cy. This observation shows
the following

Theorem 4.15. The general solution of the nonhomogeneous equation (4.11) can be written in the

form
y=o(t) = Cipi(t) + Capa(1) + Y (1),

where {@1, 2} is a fundamental set of (4.12), Cy and Cy are arbitrary constants, and y = Y (t) is a

particular solution of the nonhomogeneous equation (4.11).
General strategy of solving nonhomogeneous equation (4.11):

1. Find the space of complementary solution to (4.11); that is, find the general solution y =
Crp1(t) + Copa(t) of the homogeneous equation (4.12).

2. Find a particular solution y = Y (t) of the nonhomogeneous equation (4.11).

3. Apply Theorem 4.15.



4.5 The Method of Undetermined Coefficients

In this sub-section, we focus on solving
y" +by +cy=g(t). (4.13)

Suppose that A\; and Ay are two roots of r2 4+ br + ¢ = 0 (A\; and Xy could be identical or complex-
valued). Then (4.13) can be written as

(52 (-0
Letting y' — Aoy = 2z, we have 2/ — A1z = g(t); thus
2(t) = eM! Je’\ltg(t) dt.
Solving for y we obtain that
y(t) = e J (6()‘1’A2)t Je’\ltg(t) dt) dt . (4.14)

Consider the following three types of forcing function ¢:

1. g(t) = pa(t)e™ for some polynomial p,(t) = a,t™ + - - - + a1t + ag of degree n: note that

Loy — k Je”ttkldt if v+#0,
Tk gp =4 7 K 4.15
Je L e : (4.15)

Therefore, in this case a particular solution is of the form
Y (t) = t°(Apt" + -+ + At + Ag)e™

for some unknown s and coefficients A’s, and we need to determine the values of these un-
knowns.
(a) If Ay # aand A2 # «, then s = 0.
(b) If Ay = o but Ay # «, then s = 1.
(¢) If \{ = Ay = @, then s = 2.
2. g(t) = pu(t)e* cos(Bt) or g(t) = pp(t)e* sin(5t) for some polynomial p,, of degree n and 3 # O:

note that (4.15) also holds for v € C. Therefore, in this case we assume that a particular

solution is of the form
Y(t) = t*|(Apt" + - + Ayt + Ag)e® cos(Bt) + (But" + - - + Byt + By)e™ sin(ﬁt)]

for some unknown s and coefficients A’s, Bls, and we need to determine the values of these
1< 1<

unknowns.



(a) If A\j, A2 € R, then s = 0.

(b) If A\j, A2 ¢ R; that is, A\; = v+ 1 and Ay = v — @0 for some § # 0:
(1) If Ay =y +id and Ay =y — i for some v # « or § # =3, then s = 0.
(2) If Ay =a+if and Ay = a — i3, then s = 1.

Example 4.16. Find a particular solution of y” — 3y’ — 4y = 3e*.
Since the roots of the characteristic equation r? — 3r — 4 are different from —1, we expect that a

particular solution to the ODE above is of the form Ae?. Solving for A, we find that A = —%; thus

. . 1
a particular solution is Y (t) = —56%.

Example 4.17. Find a particular solution of y” — 3y’ — 4y = 2sint.
Since the roots of r? — 3r — 4 = 0 are real, we expect that a particular solution is of the form
Y (t) = Acost + Bsint for some constants A, B to be determined. In other words, we look for A, B
such that
(Acost+ Bsint)” — 3(Acost + Bsint)' — 4(Acost + Bsint) = 2sint.

By expanding the derivatives and comparing the coefficients, we find that (A, B) satisfies

3A—-5B=2,
5A+3B=0,

3 =5 . .
). Therefore, a particular solution is

and the solution to the equation above is (A, B) = (1—7, T

3 5
Y(t) = ﬁcost - ﬁsint.
Example 4.18. Find a particular solution of y” — 3y’ — 4y = —8¢ cos 2t.
Since the roots of 7?2 — 3r — 4 = 0 are real, we expect that a particular solution is of the form

Y (t) = Ae' cos 2t + Be'sin 2t for some constants A, B to be determined. In other words, we look for
A, B such that

(Ae' cos 2t + Be'sin2t)” — 3(Ae’ cos 2t + Be'sin 2t)" — 4(Ae’ cos 2t + Be' sin 2t) = —8¢' cos 2t .

By expanding the derivatives,

(e'cos2t)” (e'sin2t)” (e'cos2t)’ (e'sin2t)’ e'cos2t e'sint
el cos 2t -3 4 1 2 1 0
e’ sin 2t —4 -3 -2 1 0 1

thus

—3A+4B - 3A—6B —4A = -8,
~4A—3B+6A—3B—4B=0.

10

Therefore, (A, B) = (ﬁ; 133)

; thus a particular solution is

10, 2 .
Y(t)—1—3€ coth+1—36 sin 2t .



Example 4.19. Find a particular solution of y” — 3y’ — 4y = 2e ",
Since one of the roots of the characteristic equation r2 — 3r —4 is —1, we expect that a particular
solution to the ODE above is of the form Ate™" for some constant A to be determined. In other

words, we look for A such that

(Ate™)" — 3(Ate™) — 4Ate™ = 2¢7".
By expanding the derivatives, we find that —5A = 2 which implies that A = —%. Therefore, a
particular solution is given by Y (¢) = —%te‘t.
How about if we forget what s is? - By trial and error! Starting from s = 0. If a particular of
the form with s = 0 cannot be found, then try s = 1, and so on.

Example 4.20. Find a particular solution of y” — 4y’ + 5y = —2e?! sin t.
We first look for a particular solution of the form Y'(t) = Ae* cost + Be* sint, and find that this
leads to that 0 = €* sint which is impossible. Therefore, we look for a particular solution of the form

Y (t) = t(Ae* cost + Be* sint). Note that

(te* cost)” (te*sint)” (te*!cost)’ (te*!sint)’ te* cost te* sint

te? cost 3 4 2 1 1 0
te?sint —4 3 -1 2 0 1
e? cost 4 2 1 0 0 0
e?sint -2 4 0 1 0 0

thus by assuming this form of particular solutions we find that

3A+4B—8A—4B+5A=0,
“4A+3B+4A—8B+5B =0,
4A+2B -4A =0,
—2A+4+4B —-4B = 2.
Therefore, (A, B) = (1,0), and a particular solution is Y (t) = te cost.

If the forcing g is the sum of functions of different types, the construction of a particular solution

relies on the following
Theorem 4.21. If y = ¢;(t) is a particular solution to the ODE
y" +pt)y" + a(t)y = g;(t)

forall j =1,---n, then the function y = 3, ;(t) is a particular to the ODE
j=1

y" +p)y +qt)y = g(t) = igj(t) :

Example 4.22. Find a particular solution of y” — 3y’ — 4y = 3e* — 8¢’ cos 2t + 2e~.
By Example 4.16, 4.18 and 4.19, a particular solution to the ODE above is
1

10 2 2
Y(t) = _56% + Eet cos 2t + Eet sin 2t — gte_t .



4.6 Repeated Roots; Reduction of Order

In Section 4.2 we have discussed the case that the characteristic equation of the homogeneous equation

with constant coefficients

y" +by' +cy=0 (4.9)
has one double root. We recall that in such case b*> = 4c, and ¢, () = exp (_7), po(t) = texp (_Tbt)

together form a fundamental set of (4.9).

Suppose that we are given a solution ¢ (t). Since (4.9) is a second order equation, there should
be two linearly independent solutions. One way of finding another solution, using information that
1 provides, is the variation of constant: suppose another solution is given by yo(t) = v(t)¢1(?).
Then

0”01+ 20" 0] +vp + b(v'p1 4+ vpy) + cvpr = 0.

Since y = ¢4 (t) verifies (4.9), we find that
v+ 20" + bu'p; = 0;

thus using ¢1(t) = exp (%bt) we obtain v”¢p; = 0. Since ¢; never vanishes, v”(t) = 0 for all ¢.

Therefore, v(t) = C1t + Cy for some constant C; and Cy. Therefore, another solution to (4.9), when
b = dc, is po(t) = texp (_Tbt)
The idea of the variation of constant can be generalize to homogeneous equations with variable
coefficients. Suppose that we have found a solution y = ¢;(t) to the second order homogeneous

equation
y"+pt)y" +a(t)y=0. (4.16)

Assume that another solution is given by y = v(t)¢1(t). Then v satisfies
v 1+ 20"0] +vpi + p(v'er + vp)) + qupr = 0.
By the fact that ¢; solves (4.16), we find that v satisfies
v"p1+ 20" +pv'pr =0 or equivalently, v”p; + v (2¢] + pp1) =0. (4.17)

The equation above can be solved (for v’) using the method of integrating factor, and is essentially
a first order equation.
Let P be an anti-derivative of p. If ¢1(¢) # 0 for all ¢ € I, then (4.17) implies that

(P2e" ') =0 = @)D (t) =C = P}tw'(t) = Ce D Viel.

As a consequernce,

p1(t) v(t)es(t) ‘ _ '901(?5) 0 >

Wlpr, 2] (t) = ol(t) v ()i (t) +v(D)el(t) o1(t) v'(t)er(t)

which implies that {¢1, v} is indeed a fundamental set of (4.16).



Example 4.23. Given that y = ¢1(t) = % is a solution of
2%y + 3ty —y =0 fort >0, (4.18)

find a fundamental set of the equation.

Suppose another solution is given by y = v(t)¢1(t) = v(t)/t. Then (4.17) implies that v satisfies

1 2 31
)= 40 (—2 4 22y =0,
ittt gy)

/

Therefore, v” = %; thus v'(t) = Cy+/t which further implies that v(t) = gC’lt% + (5. Therefore, one
solution to (4.18) is

2 1

y=-CiVt+ Co-

3 t
which also implies that y = 5(t) = /t is a solution to (4.18). Note that the Wronskian
1

Wt
Wlenet)=| 1 1 |=

BN
thus {¢1, ps} is indeed a fundamental set of (4.18).

LO

"2 #0 fort>0; (4.19)

l\DIC.O

4.6.1 Method of Variation of Parameters

This method can be used to solve a nonhomogeneous ODE when one solution to the corresponding
homogeneous equation is known.

Consider
y" +pt)y +q(t)y = g(t). (4.11)

Suppose that we are given one solution y = ¢4 (t) to the corresponding homogeneous euqation

y"+pt)y" +qt)y =0. (4.12)

Using the procedure in Section 4.6, we can find another solution y = @5(t) to (4.12) so that {¢1, @2}
forms a fundamental set of (4.12). Our goal next is to obtain a particular solution to (4.11).
Suppose a particular solution y = Y'(¢) can be written as the product of two functions u and ¢q;

that is, Y(t) = u(t)e1(t). Then similar computations as in Section 4.6 show that

wor+u' el +pp1) =g = (¢l u) = pely,

where P is an anti-derivative of p. Therefore,

G2(t)eF O () = f o1 ()P Og(t) dt

and further computations yield that

f o1(t) P(t>g
o [ L0,
1

@1 (



Therefore, a particular solution is of the form

Y1 (t)ep(t)g(t) dt

Y(t) = ¢u(t) J dt. (4.20)

i (t)el )

Example 4.24. As in Example 4.23, let y = () = % be a given solution to

20%y" + 3ty —y=0  fort >0, (4.18)
Suppose that we are looking for solutions to

2t%y" + 3ty —y =2t  fort>0. (4.21)
Using (4.20) (noting that in this case g(t) = 1), we know that a particular solution is given by

Jt—1€3/210gtdt

1 L (o [ 2,
Y (t) :ZJ T dtz;f(tzjmdt)dt:gt .

Therefore, combining with the fact that oy(t) = v/t is a solution to (4.18), we find that a general
solution to (4.21) is given by

C 2
y=—+CoVt+ ot

Let {¢1, ¢2} be a fundamental set of (4.12) (here s is either given or obtained using the procedure

in previous section), we can also look for a particular solution to (4.11) of the form
Y(t) = cr(t)ei(t) + calt) (1) -
Plugging such Y in (4.11)), we find that
crpr+ ei(21 +pen) + ¢02 + (205 +ppa) = g (4.22)

Since we increase the degree of freedom (by adding another function ¢y), we can impose an additional

constraint. Assume that the additional constraint is
C1p1 + oy = 0. (4.23)

Then ¢ p1 + ¢f s = —c{p] — chps; thus (4.22) reduces to

el Fews=g. (4.24)
Solving (4.23) and (4.24), we find that
/ —9¥2 / gee
cl = and Cy = .
' W1, 2] ? W1, 2]

The discussion above establishes the following



Theorem 4.25. If the function p, q¢ and g are continuous in an open interval I, and {¢ 1, p2} be a
fundamental set of the ODE (4.12). Then a particular solution to (4.11) is

901( )
ds + —ds, 4.25
el JW%NPz 20 ) Wier, al(5) (4.25)

where to € I can be arbitrarily chosen, and the general solution to (4.11) is

y = Crp1(t) + Copa(t) + Y (1).

Example 4.26. Given two solutions ¢;(t) = % and @y(t) = v/t to the ODE

2%y" +3ty' —y=0  fort>0. (4.18)
To solve

2% y" + 3ty —y =2t  fort >0, (4.21)

we use (4.25) and (4.19) to obtain that a particular solution to (4.21) is given by

3t 3/2 9

1 t1 2
Y(t):— Vi dt—l—\ff dt = ~t*.
Therefore, a general solution to (4.21) is given by

C 2
y=—+CoVt+ ot

4.7 Mechanical Vibrations

We have been discussing the motion of an object attached to a spring without external force in

Example 4.13. Now we explain what if there are presence of external forcings. We consider
mi = —kx —ri + g(t), (4.26)

where m, k,r are positive constants. We remark that the term —rz is sometimes called a damping

or resistive force, and r is called the damping coefficient.

1. Undamped Free Vibrations: This case refers to that ¢ = 0 and » = 0. The solution to
(4.26) is then
x(t) = C1 coswot + Cysinwt = R cos(wot — @),

where R = /C? 4+ C?% is called the amplitude, wy = HE is called the natural frequency
m

and ¢ = arctan % is called the phase angle. The period of this vibration is T = 2—7T
1 wo

2. Dampled Free Vibrations: This case refers to that g = 0 and r > 0. The solution to (4.26)
is then
x(t) = Che™ 2 cos ut + Cye™ 2 sin ut = Re™ 3 cos(ut — @),



/ 2
where R = /C?+C3, u = %, a
m

frequency, and we note that

nd ¢ = arctan % Here p is called the quast
1

1 r? \3 r?
E ()
wo 4km 8km

2

where the last approximation holds if ﬁ « 1. The period of this vibration T is called the
m W

quast period.

(a) Critical damped: In this case, r* = 4km.
(b) Overdamped: This case refers to that r* > 4km, and in this case the attached object

pass the equilibrium at most once and does not oscillate about equilibrium.

. Forced Vibrations with Damping: We only consider
mi + ri + kx = Fycos wt (4.27)

for some non-zero r, Fy and w. Let {¢1,p2} be a fundamental set of the corresponding ho-
mogeneous equation of (4.27). From the discussion above, ¢; and ¢y both decay to zero (die
out) as t — oo. Using what we learn from the method of undetermined coefficients, the general
solution to (4.27) is

x = Crp1(t) + Copa(t) + Acoswt + Bsinwt
) zg;:(t) ’ =X (*)
where C7 and (5 are chosen to satisfy the initial condition, and A and B are some constants so
that X (t) = Acoswt + Bsinwt is a particular solution to (4.27). The part z.(t) is called the
transient solution and it decays to zero (die out) as ¢t — oo; thus as t — o0, one sees that
only a steady oscillation with the same frequency as the external force remains in the motion.

x = X(t) is called the steady state solution or the forced response.

Since z = X (t) is a particular solution to (4.27), (A, B) satisfies

(k —w’m)A+rwB = Fy,
—rwA+ (k —w?m)B=0;

thus with wy denoting the natural frequency; that is, wy = —, we have
m

- Fom(wd — w?) Fyrw )
(4.B) = (mQ(wg — w?)2 4+ r2w?" m?(w3 — w?)2 4 r2w?/
2
Let a = i, and T = ~—. Then
wo mk
F, 1—a? r
(A, B) = _0< o] | JTa > ;
E\(1—-a2)?24Ta? (1—-a2)?+Ta?



thus
X(t) = Rcos(wt — ¢),

where with A denoting the number /(1 — a?)? + 'a?, we have
2

A

R=+vVA?>+ B?= ]5—2 and ¢ = arccos

Thenifa«l,Rw%andgﬁmo,whﬂeifa»1,R<<1and<;§~7r.

In the intermediate region, some «, called ., maximize the amplitude R. Then .y

minimize (1 — a?)? + T'a? which implies that q., satisfies

2
amax:1_§

and, when I' < 1, the corresponding maximum amplitude R,.y is
F 1 F r
Rpax = - ~ 0 <1 + _)
k T\/1-T/4 kJvT 8
where the last approximation holds if I' « 1. If I' > 2, the maximum of R occurs at « = 0 (and
20)
)
For lightly damped system; that is, 7 « 1 (which implies that I' « 1), the maximum am-

the maximum amplitude is Ry, =

plitude R,.. is closed to a very large number In this case amax & 1, and this implies

Fy
VT
that the frequency wpax, where the maximum of R occurs, is very close to wy. We call such a

phenomena (that Ry, » 1 when w ~ wy) resonance. In such a case, ayax ~ 1; thus ¢ = g

which means the response occur g later than the peaks of the excitation.
4. Forced Vibrations without Damping;:
(a) When r = 0, if w # wp, then general solution to (4.27) is

x = C} coswyt + Cs sinwot + coswt ,

Fy
m(wg — w?)
where (7 and C5 depends on the initial data. We are interested in the case that z(0) =
z’(0) = 0. In this case,

Fo
m(ws — w?)

so the solution to (4.27) (with initial condition x(0) = z’(0) = 0) is

01:— and CQZO,

2F0 . W —w wo =+ w
COS Wt — COos wot) = sin 5 tsin

t.
m(wg — w?) 2

m(ws — w?) (
2F0 . Wy —w 1 1 . . . 1 1

a — ) sin = t presents a slowly varying sinusoidal amplitude.
0

This type of motion, possessing a periodic variation of amplitude, is called a beat.

When w ~ wy, R =

(b) When r = 0 and w = wy, the general solution to (4.27) is

Fy
mwo

x = C} coswot + Cy sinwpt + t sin wot .



5 Theory of Higher Order Linear Differential Equations

5.1 Basic Theory of Linear Differential Equations

An n-th order linear ordinary differential equations is an equation of the form

a a1 d
Sop ) P Pty =G0,

}) < -
n(t) dtn B gn—1 dt

where P, is never zero in the time interval of interest. Divide both sides by P, (t), we obtain

dn n—ly

L) = S a4 i) 4 polt)y = 9(1). (5.1

Suppose that p; = 0 for all 0 < 7 <n — 1. Then to determine y, it requires n times integration and
each integration produce an arbitrary constant. Therefore, we expect that to determine the solution

y to (5.1) uniquely, it requires n initial conditions

ylto) =vo, y'(to) =v1, -, Y V(to) = Yo, (5.2)
where t is some point in an open interval I, and yo, Y1, - ,yn_1 are some given constants.
Definition 5.1. Equation (5.1) is called homogeneous if g = 0.

Similar to Theorem 4.1, we have the following

Theorem 5.2. If the functions pg,--- ,pn_1 and g are continuous on an open interval I, then there
exists exactly one solution y = ¢(t) of the differential equation (5.1) with initial condition (5.2),

where ty is any point in I. This solution exists throughout the interval I.

Definition 5.3. Let {¢1, -, n} be a collection of n differentiable functions defined on an open

interval /. The Wronskian of ¢, ¢, -+, ¢, at tg € I, denoted by W{p1, -+, ¢n](to), is the number

¢1(to) pato) -+ walto)
¢1(to) @sto) 0 pu(to)
Wigr, -, eal(to) = . . . .
o () @8V (t) e o (k)

The following theorem can be viewed as a generalization of Theorem 4.7.

Theorem 5.4. Let y = ¢1(t), y = @a(t), -+, y = @u(t) be solutions to the homogeneous equation
1= T 0T 0™ 4 ety =0 (5.3)
Yyl = di Pn-1 qir—1 D1 di Po(t)y =U. .

Then the Wronskian of p1,pa,--- , o, satisfies

d

EW[%'” s @l (t) + pa1t (W ler, - oal(t) = 0.



Proof. By the differentiation of the determinant, we find that

¥1 P2 T ¥n
o1 palte) o pp
d ) . )
EWlon, ] =
n—2 n—2 n—2
A
o ey e
¥1 P2 e ¥n
©1 @5 (to) ©n
n—2 n—2 n—2
o g Ar-?
_ (n=1) _ . _ _ (n=1) _ . _ e (n=1) . _
Pn—1¥1 Po¥1 Pn—1¥2 Pop2 Pn—1¥n Po¥n
= —Pn71W[9017"' 79011] o
Theorem 5.5. Suppose that the functions pg,--- ,pn_1 are continuous on an open interval I. If

y = @i1(t), y = @a(t), -+, y = pnu(t) are solutions to the homogeneous equation (5.3) and the
Wronskian W gy, -+ ,onl(t) # 0 for at least one point t € I, then every solution of (5.3) can be

expressed as a linear combination of p1, -, ©n.

Proof. Let y = ¢(t) be a solution to (5.3), and suppose that Wipy, -+, p,](ts) # 0. Define
(yﬂ’yla e 7%—1) = ((P(to), (p/(to), cee 7Q0(n_1) (to)), and let Ol, s ,Cn € R be the solution to

¥1 (to) SOQ(tO) T SOTL(tO) 01 Yo
1 (to) ©5(to) ©n(to) C, mn
e YR (O IR S (Y N A e R 7
We note that the system above has a unique solution since Wp1, -+, vn](tg) # 0.

Claim: ¢(t) = Cip1(t) + -+ + Cripn(t).
Proof of Claim: Note that y = ¢(t) and y = Cyp1(t) + - - - + Chn(t) are both solutions to (5.3)
satisfying the same initial condition. Therefore, by Theorem 5.2 the solution is unique, so the claim

is concluded. o

Definition 5.6. A collection of solutions {1, - , ¢, } to (5.3) is called a fundamental set of equation
(5.3) if Wiy, -+, pn](t) # 0 for some ¢ in the interval of interest.

5.1.1 Linear Independence of Functions

Recall that in a vector space (V, +,-) over scalar field F, a collection of vectors {vy, -, v,} is called
n

linearly dependent if there exist constants ¢y, -+ -, ¢, in F such that [[¢;=¢1-co- -1y #0
i=1

and

c1-v+--+c,-v,=0.



If nosuch ¢y, - - -, ¢, exists, {vq, -+, v,} is called linearly independent. In other words, {v;,- -+, v,} <

V is linearly independent if and only if
v+ +c,v,=0 AN co=c=---=¢,=0.

Now let V denote the collection of all (n — 1)-times differentiable functions defined on an open
interval I. Then (V,+,-) clearly is a vector space over R. Given {fi, - -, f,} €V, we would like to

determine the linear dependence or independence of the n-functions {f1,--- , f,}. Suppose that
Since each f; are (n — 1)-times differentiable, we have for 1 <k <n —1,

afPM) + -t fPH)=0 Vtel.

In other words, ¢y, - , ¢, satisfy
fl(t) f2<t) fn(t) Cq 0
St [ f) C 0
: : = Vtel.
A0 5700 o] Le] L0
f1(to) folte) - [falto)
f1,<t0) le(to) e fé(to)

If there exists ty € I such that the matrix is non-singular,

f ) £ ) - S ()
then ¢; = ¢ = -+ = ¢, = 0. Therefore, a collection of solutions {p1,- - ,¢,} is a fundamental set of

equation (5.3) if and only if {¢1, -+, p,} is linearly independent.

5.1.2 The Homogeneous Equations - Reduction of Orders

Suppose that y = ¢1(t) is a solution to (5.3). Now we look for a function v such that y = v(t)¢:(t) is
also a solution to (5.3). The derivative of this v satisfies an (n — 1)-th order homogeneous ordinary

differential equation.

Example 5.7. Suppose that we are given y = ¢(t) = e’ as a solution to
¥
2—-ty"+2t-3)y"—ty' +y=0 for t<2. (5.4)
Suppose that y = v(t)e’ is also a solution to (5.4). Then
(2 —1t)(v"e + 3v"e" + 3v'e" +ve') + (2t — 3)(v"e + 2v'e" + ve') — t(v'e! + ve) + ve' =0
which implies that v satisfies

2—t)"+[3(2—t)+ (2t = 3)]v" + [3(2—t) +2(2t —3) —t]v' =0



or equivalently, with u denoting v”,
2-thu'+B3—-tu=0.

Solving the ODE above, we find that u(t) = C1(2 — t)e™" for some constant Cy; thus

v(t) = C3+ Cot + Cre™" = Ci(t + 1)e " = C5 + Cot — Cite™" .
Therefore, a fundamental set of (5.4) is {e, te’, t}.
Example 5.8. Suppose that we are given y = ¢ (t) = t* as a solution to

£2(t +3)y” — 3t(t+2)y" +6(1+ 1)y’ —6y=0  for t>0. (5.5)
Suppose that y = v(¢)t? is also a solution to the ODE above. Then

2t + 3) (" + 60"t + 6v") — 3t(t + 2) (vt + 4v't + 20) + 6(1 + ¢)(v't* + 2vt) — 6vt* =0
which implies that v satisfies
t(t+ 30" + [66°(t +3) — 3t°(t + 2)]v” + [6t°(t +3) — 12¢3(t + 2) + 6> (1 + t)]v' = 0
or equivalently, with u denoting v”,
tt+3)u" +3t+4)u=0.
Solving the ODE above, we find that u(t) = C1t~*(t + 3) for some constant Cy; thus
&

'U(t) 7(1572 + t71> + Cgt + Cg

for some constants Cy and Cy. Therefore, the general solution to (5.5) is given by y(t) = Ci(1+1t) +
Cot® + Cst? which implies that {t?, 3,1 + ¢} is a fundamental set of the ODE.

5.1.3 The Nonhomogeneous Equations

Let y = Yi(t) and y = Ya(t) be solutions to (5.1). Then y = Yi(t) — Ya(t) is a solution to the
homogeneous equation (5.3); thus if {¢1, -+, p,} is a fundamental set of (5.3), then

Yi(t) = Ya(t) = Crpr(t) + - + Crpn(?) -
Therefore, we establish the following theorem which is similar to Theorem 4.15.

Theorem 5.9. The general solution of the nonhomogeneous equation (5.1) can be written in the

form
y = ¢(t) = Crp1(t) + Copa(t) + - + Crgpn(t) + Y (1),
where {@1,--- , o} is a fundamental set of (5.3), Cy,---,C, are arbitrary constants, and y = Y (t)

is a particular solution of the nonhomogeneous equation (5.1).
In general, in order to solve (5.1), we follow the procedure listed below:
1. Find the space of complementary solution to (5.3); that is, find the general solution y =
Cro1(t) + Copa(t) + - - - + Chy, of the homogeneous equation (5.3).

2. Find a particular solution y = Y'(¢) of the nonhomogeneous equation (5.1).

3. Apply Theorem 5.9.



5.2 Homogeneous Linear Equations with Constant Coefficients

We now consider the n-th order linear homogeneous ODE with constant coefficients
Lly] = y(n) + an—ly(n_l) + At ay’ +ay =0, (5.6)

where a;’s are constants for all j € {0,1,--- ,n — 1}. Suppose that 1,79, -, r, are solutions to the

characteristic equation of (5.6)
"t Ay " ar Fag = 0.

Then (5.6) can be written as

(&) ) (G =0
at " \ar ") ey )Y
1. If the characteristic equation of (5.6) has distinct roots, then

y(t) = Cret + Che™ + - -+ Cpe™ . (5.7)

Reason: Let z; = (% — rg) (% — Tn)y. Then z{ — r12; = 0; thus 21(t) = cre™.

d d . . .
Let zo = (ﬁ — 7"3) e (a — rn)y. Then z; — roze = ¢121; thus using the method of integrating
factors, we find that

d —rot r1—ro)t C1 rit rot
E(e 2 22) = et o 2(t) = me 1 cee™ . (5.8)

Repeating the process, we conclude (5.7).

How about if there are complex roots? Suppose that r; = a + bi and ry = a — bi, then

the Euler identity implies that, by choosing complex ¢; and ¢ in (5.8), we find that
2(t) = c1e™ cos bt + cye™ sin bt

for some constants ¢; and c;. Therefore, suppose that we have complex roots a; + byt for

k=1,---,¢ and real roots 7911, - ,7,. Then the general solution to (5.7) is

y(t) = Cre™ cos byt + Coe™'sin byt + - - - + Coy_1€™" cos byt + Cope®" sin byt
+ Cypyre™ 4o+ Cre™

2. If the characteristic equation of (5.6) has repeated roots, we group the roots in such a way that
ry. =1y = --- = 1y and so on; that is, repeated roots appear in a successive order. Then the
implication in (5.8) is modified to

—rot

%(6 22) = Cle(rl_TQ)t =C = Zz(t) = (Clt + CQ)@Tlt .



. d d
(a) Suppose that r3 =1y =r; = r. Letting z3 = (a — 7“4) . (% — rn)y, we find that

2y —r23 = (1t + )€’

thus the method of integrating factor implies that

d
e

—rt

Zg) =1t + ¢ = Zg(t) = (%t2 + cot + C3)€Tt .

(b) Suppose that 1 = ry = r and 73 # ry. Letting 23 = (% — 7’4) e (% — rn)y, we find that
24— 1323 = (1t + co)e™;

thus the method of integrating factor implies that

d

pr (e7™23) = (ext + c)elm It = () = (Cit + G)e™ + cze™

From the discussion above, we “conjecture” that if r;’s are roots of the characteristic equation of

(5.6) with multiplicity n; (so that ny + - -- 4+ n, = n), then the general solution to (5.6) is

y(t) = Y pi(t)e,

where p;(t)’s are some polynomials of degree n; — 1. Note that in each p; there are n; constants to
be determined by the initial conditions.
If there are repeated complex roots, say r1 = a+ bt and ro = a — bi with ny = ns. Then p; and ps

are polynomials of degree n; thus by adjusting constants in the polynomials properly, we find that
pr(t)e™ + po(t)e™' = pi(t)e™ cos bt + Po(t)e™ sin bt .

In other words, if r; are real roots of the characteristic equation of (5.6) with multiplicity n; and
ay * iby are complex roots of the characteristic equation of (5.6) with multiplicity my (so that
> nj+ >,2my, = n), then the general solution to (5.6) is

j k

y(t) = ij(t)e’"jt + 2 ™ (g (t) cos bt + qj(t) sinbyt)
J k

where p;(t)’s are some polynomials of degree n; —1 and g, ¢’s are some polynomials of degree my, —1.
Example 5.10. Find the general solution of
y(4) +y/// o 7y// o y/ +6y=0.

The roots of the characteristic equation is » = +1, r = 2 and r = —3; thus the general solution to
the ODE above is

Yy = Clet + 026715 + 03€2t + 6’46731L .



If we are looking for a solution to the ODE above satisfying the initial conditions y(0) = 1, y’(0) = 0,
y"(0) = —1 and y""(0) = —1, then C}, Cy, C3, Cy have to satisfy

1 1 1 1 C 1

1 -1 2 =3 Cy| | O

1 1 4 9 Cs| | -1

1 -1 8 =27 Cy —1
Solving the linear system above, we find that the solution solving the ODE with the given initial
data is " 5 5 .

_ 4 —t _ “ 2 L 3
Y= 3 el + — 1 2 36 86 .

Example 5.11. Find the general solution of
Yy —y=0.

Also find the solution that satisfies the initial condition

<
—
o
~—
|
|
<
—~
==
~—
Il
|
>~
<
—~
==
~—
I
DN | Ot

. y"(0) = —2.

The roots of the characteristic equation are »r = +1 and r = +i. Therefore, the general solution
to the ODE above is
y = Chre' + Coe™" + C3cost + Cysint.

To satisfy the initial condition, C,--- ,C} has to satisfy
-7
11 1 0][G 2
1 -1 0 1 Co| |4
1 1 -1 0] |cs| ™ |5
1 -1 0 -1 Cy 2
- _2 -

Solving the linear system above, we find that the solution solving the ODE with the given initial
data is

1
y=3e"+ §cost—sint.

Example 5.12. Find the general solution of y*) +y =0.
V2 V2

The roots of the characteristic equation are r = +(— + —z) Therefore, the general solution
to the ODE above is

Y = exp (\/7515) (01 cos \ft + Cysin \ft) + exp (_ \/7515) (02 cos \ft + O, sin \ft) ‘

5.3 Undetermined coefficients and the Annihilator Method
Definition 5.13. A linear differential operator L is a linear map sending smooth (meaning infinitely
many times differentiable) function y to a function L[y| given by

d™y
dtm

dn—ly

Pl + po(t)y(t)

L) = 2l L0 4 a2 1)+ 4 mal) )



for some coefficient functions pg, p1,-- - , pn, where n is called the order of L if p, # 0. In this case,

L is usually expressed as

LA LA Y
= Dn din Pn-1(l dpn—1 pa(t di Po

A linear differential operator L is said to annihilate a function y if L[y| = 0.

Theorem 5.14. Let Ly and Lo be two differential operators with constant coefficients. Then Ly, Lo

commute; that is L1Ly = LoLy or equivalently, for any smooth function vy,
Ly [L2[y]] = Ly [Ll[yﬂ .

Example 5.15. Find a differentiable operator that annihilates y(t) = 6te™* + 5¢! sin 2t.

2 2
Note that L; = % + 8 ; 16 annihilates the function ¢;(¢t) = te™* and L, = jﬁ 2% +5

annihilates the function ngQ( ) = e'sin2t. Let L = LiLy; that is, for a given function ¢, L[p] =
L1 |:L2[¢H . Then L = L2L1 and

L[(bl] - L2 [L1[¢1H — LQ[O] — 0 and L[(bg] — L1 |:L2[¢2]i| - Ll[O] - O .

Therefore, the differential operator

2 d £ d P Y.
L= Ly = (5 +85 +16) (55 =29 +5) = o + 605 55 + 82 +80

annihilates y.
5.3.1 Method of annihilator

Example 5.16. Find a general solution to
y" —y=te" +sint. (5.9)

As in the previous example, we find that

£ d & &P P d
& 5d T I S S
(dt2 at * )(dtz + ) arcan Cae  Ca

is an annihilator of the function ¢(t) = te' + sin¢. Therefore,

¢ B PR d e
LI T S S 1)(——1) )
<dt4 at g g ) g )Y

which implies that y is of the form
y(t) = (C1t* + Cot + C3)e’ + Cue™" + Cs cost + Cgsint (5.10)
since the characteristic equation has roots

A =1 (triple roots), —1, +i.



Substituting (5.10) into (5.9), we find that
y" —y=2C1e" +2(201t + Cy)e" — 2C5 cost — 2Cgsint = te' + sint ;

thus C; = =, Cy = —i, Cs =0and Cs = —%. Therefore, the general solution to (5.9) is

1
4
Lo e 1 t —t
y(t) = Z(t —t)e' — ismt—kAe + Be™".
Example 5.17. Find a general solution, using the annihilator method, to
y/// o 3y// + 4y — t62t.

2
Since <d— — 4% + 4) annihilates the function ¢(t) = te*, we find that the general solution y to the

dt?
ODE above satisfies ) . )
d d d d

(e 4+ (G 3 +4)y="0. (5:11)

Since the characteristic equation of (5.11) has zeros 2 (with multiplicity 4) and the general solution

y to (5.11) can be written as
y(t) = (Clt3 + Ogtz -+ Ogt -+ C4)€2t -+ 05677& . (512)
Substituting (5.12) into (5.11), we find that

1
y(t) = 1—8(t3 —1%)e* + (At + B)e* + Ce™".

5.3.2 Method of undetermined coefficients

A particular solution to the constant-coefficient differential equation L[y] = Ct™e™, where m is a

non-negative integer, has the form
Yp(t) = (Apt™ + - - - + At + Ag) e’

where s = 0 if  is not a root of the associated characteristic equation or s equals the multiplicity of
this root.

A particular solution to the constant-coefficient differential equation L[y] = Ct™e* cos 3t or
Lly] = Ct™e™ sin 8t, where 8 # 0, has the form

Yp(t) = t°(Apt™ + - - + Ayt + Ag)e™ cos Bt + t* (Bpt™ + - - - + Byt + By) e sin ft

where s = 0 if a+1f is not a root of the associated characteristic equation or s equals the multiplicity

of this root.



5.4 Method of Variation of Parameters

To solve a non-homogeneous ODE

dny dn_ly dy
Lly] = a +pn71(t)m + - +P1(t)$ +po(t)y = g(t), (5.1)

often times we apply the method of variation of parameters to find a particular solution. Suppose that
{©1,--+ ,on} is a fundamental set of the homogeneous equation (5.3), we assume that a particular

solution can be written as
y=Y () =u(t)p(t) + -+ un(t)pn(t).

Assume that uy, - - - ,u, satisfy
uipi” + -+ gl =0

for j=0,---,1,n—2. Then
Yi=wpr+ -+ tnpy,
Y =l + - 4 unpy,

n

and
Y = o0 ol oD o™ ™

Since y = Y'(¢) is assumed to be a particular solution of (5.1), we have

uel" Y Y = g(t).

Therefore, uq, - - - ,u, satisfy
1 w2 Pn uy 0
1o e | ug | |
: : : 0
n—1 n—1 n—1
R s Sl I K% B

Let W, denote the Wronskian of {¢1,- -, @m_1,Om+1, ", ©n}; that is,

SO]- me—l ‘;Om—i-l (1071
W = f{ %_1 907’@1 sf{é
LR
. W
Then v/ = (—1)"*"———  which implies that
i=(-1) Wior on] p
n t
: Wi(s)g(s)
Y(t)=> (-1 "J”cpi(t)f ds. (5.13)
)= 2,1 o Wlon— 2l(5)



Example 5.18. Find the general solution to

n n"

y" =y =y +y=g(t). (5.14)

3

Note the the roots of the characteristic equation 7* —r? —r 4+ 1 = 0 of the homogeneous equation

y" —y" —y +y=0 (5.15)

are 7 = 1 (double) and r = —1; thus we have a fundamental set {e,te’, e™*} of equation (5.15). Let
©1(t) = €', po(t) = te! and p3(t) = e, Then

et tet et
Wle1, o2, ps](t) = | (t+1)e! —e | =[(t+1)+(E+2)—t—(t+1)—t+(t+2)]e =4¢",
et (t+2)et et

and W (t) = —2t — 1, W(t) = —2 and Wi(t) = €*'. Therefore, a particular solution is

vioy=e [ C2 D gas e [ Zoas vt [ ooy

0 4es o 4des o 4es

- ﬂo [2(t —s) = 1)e'™* + e g(s)ds,

and the general solution to (5.14) is
Yy = Clet + Cgtet + Cge_t + Y(t) .

Example 5.19. Recall that in Example 5.8 we have found a fundamental set {t* ¢3,¢ + 1} to the
ODE
Bt +3)y” =3t +2)y" +6(1+t)y’' —6y=0  for t>0.

Now we consider the inhomogeneous equation
2t +3)y” =3t +2)y" +6(1+t)y’ —6y=t*(t+3)* for t>0.

Let @y (t) = 2, po(t) = t* and @s(t) =t + 1. Then

2t 1+t
Wlp1, 02, 03)(t) = |2t 3t2 1 | =12t3(1 + 1)+ 2t> — 6t*(1 +t) — 6t> = 2t*(t + 3).
2 6t 0
and
e 14+t s e 21+t e 4
Wi(t) = a2 '——225 —3t°, Wh(t) = o 1 = —t*—2t, W3(t) = of 342 .
Rewrite the initial value problem as
3t(t + 2) 6(1+1) 6
m " o — (t+3).
i)Y Tears! wEprglUHY



Let g(t) = t + 3. Using formula (5.13), we find that the general solution to the inhomogeneous ODE

is given by

= G+ 20 1 @+ ) 4 pa)E + Crpa(t) + Capalt) + Capalt)

1 4
= C1p1(t) + Capa(t) + Cyps(t) + 6154 — §t3 +#Int.

6 The Laplace Transform

6.1 Definition of the Laplace Transform

Definition 6.1 (Integral transform). An integral transform is a relation between two functions
f and F of the form

B
F(s) = J K(s,t)f(¢)dt, (6.1)

where K (-, -) is a given function, called the kernel of the transformation, and the limits of integration
a, [ are also given (here a, § could be co and in such cases the integral above is an improper integral).

The relation (6.1) transforms function f into another function F called the transformation of f.

Proposition 6.2. Every integral transform is linear; that is, for all functions f and g (defined on

(a, B)) and constant a,

B B B
JK(s,t)(af(t)Jrg(t))dt—aJ K@,t)f(t)dmf K(s,0)g(t) dt

0

Example 6.3. Let f : R — R be a function such that J |f(z)| dx < 0. The Fourier transform
-0
of f, denoted by .7 (f), is defined by

“iStE(E) dt (: lim ’ e st f(t)dt),

a,f—wo J_,

1 0
F(f)(s) = —J e
N ==
where the kernel K is a complex function (i.e., the value of K is complex). We will discuss the

Fourier transform later.

Definition 6.4 (Laplace transform). Let f : [0,0] — R be a function. The Laplace transform
of f, denoted by Z(f), is defined by

R

et at (: lim | e f(t)dt),

R—0 0

26 = |

0

provided that the improper integral exists.

Example 6.5. Let f : [0,00) — R be defined by f(t) = e*, where a € R is a constant. Since the
improper integral
(a—s)t

= lim
R—o0 sS—a

* R (s#a) e
J et dt — lim ela=)t gt "2V {im (—

t=R 1 — e(afs)R
0 R— 0 R—0 (S — CL) )

t=0



exists for s > a, we find that

L)) = ——  Ys>a.

S—a

Example 6.6. Let f : [0,00) — R be given by f(t) = sin(at). Note that

R —r (R
J e sm(at) dt _Stcos(at) —I—f (—s)e_St—COS(at) dt

FE
=8
D

=2
|

0 T — a =0 a
=Uu =dv

1 s (7

= —(1 —e ™ cos(aR ) - ~** cos(at) dt (6.2)
a a ),
1

= — (1 —e cos(aR ) 2 <e_5t Sin at) 42 f * sin(at) dt)
a a a

) R

1
— _(1 — e COS aR 5 f e sm(at) dt ;
a 0

S

thus we obtain that

g2 R 1 S
(1 + §> Jo e *'sin(at) dt = . (1 — e His cos(aR)) — EB*RS sin(aR) .

Therefore, the improper integral

0 R
J e *'sin(at)dt = lim | e *'sin(at) dt

0 R= Jo

. a —Rs s —Rs _;

= }%l—r}c}o [m (1 —e cos(aR)) et sin(aR)
exists for all s > 0 which implies that

a
Moreover, (6.2) further implies that
©¢]
- _arl a s
fa e " cos(at) dt = g(a - 32—|—a2> = ar a2

Example 6.7. Let f:[0,00) — R be defined by

1 fo<t<1,
fity=x k ift=1,
0 ift>1,

where k is a given constant. Since the improper integral

o0 1 1 _ —8
f Ut df = f eoldt = —
0 0 S

exists as long as s # 0, we find that

1—e7%

S

L(f)(s) = Ws 0.

We note that the Laplace transform in this case is independent of the choice of k; thus the Laplace

transform is not one-to-one (in the classical /pointwise sense).



Example 6.8. Let f:[0,00) — R be defined by

2 if0<t<t,
f(t) = 0 ifb<t<10,
et ift > 10.

Then for R > 10 and s # 0,4,

R 5 R e~ st
f e f(t)dt = J 2e M dt + f e sttt dt = —

0 0 10 s
2(1 —e5) (=9 _ o10(4=s)

t=5  (4=9)t t=R

t=0 4 — s lt=10

s 4—s
Therefore, if s > 4, passing to the limit as R — o0,

f(f)(S) = lim Re—stf<t) dt — 2(1 — 6*53) o—10(s—4)

R—x J, 5 s—4

One can verify that Z(f)(s) does not exist for s < 4. Therefore,

9 —5s —10(s—4)
L)) ==-S— 4 E for s > 4.

S S s—4

Theorem 6.9 (Linearity of the Laplace transform). Let f, g : [0,20) — R be functions whose Laplace

transform exist for s > a and ¢ be a constant. Then for s > «,

L Z(f +9)(s) = Z(f)(s) + ZL(9)(s). 2. Z(cf)(s) = cZ(f)(s).

Example 6.10. Find the Laplace transform of the function f(t) = 11 + 5e* — 6 sin 2t.
By Example 6.5, 6.6 and the linearity of the Laplace transform,

11 5 12
=—+

— f 4.
5 s—4 s24+4 ors =

Z(f)(s)

6.1.1 Existence of the Laplace transform

There are functions whose Laplace transform does not exist for any s. For example, the function

f(t) = et does not have Laplace transform since it grows too rapidly as t — co.

Definition 6.11. A function f : [a,b] — R is said to have a jump discontinuity at t, € (a,b) if

f is discontinuous at t, but lirri f(t) and lim f(¢) both exist. A function f is said to be piecewise
t—ty t—ty

continuous on a finite interval [a, b] if f is continuous on [a, b], except possibly for a finite number
points at which f has jump discontinuities. A function f is said to be piecewise continuous on [0, o)

if f is piecewise continuous on [0, N] for all N > 0.

Definition 6.12. A function f is said to be of exponential order « if there exists M such that
|f(t)] < Me*  Vi=0.

Proposition 6.13. Let f : [0,00) — R be a function. Suppose that



1. f is piecewise continuous on [0,00), and

2. f is of exponential order «.

Then the Laplace transform of f exists for s > a;, and lim Z(f)(s) = 0, where Z(f) is the Laplace

5§—0
transform of f.

R

Proof. Since f is piecewise continuous on [0, R], the integral f e S f(t) dt exists. By the fact that
0

|f(t)] < Me® for t = 0 for some M and «, we find that for Ry > Ry > 0,

e(a—s)Rz o e(a—s)Rl

R2 Ro
‘ J et f(t) dt‘ < f e tMe®dt = M
R1 Rl

a— S

0
which converges to 0 as Ry, Ry — o if s > «. Therefore, the improper integral J e St f(t) dt exists.
0

Finally,
Q0
(s)| = U et f(t) dt‘ f e~ F(1)] dt < f e~ Me di
0
—Mf el dt < Vs> a.
s—a
As s — o0, the Sandwich lemma implies that lim Z(f)(s) = 0. o
§—00

Example 6.14. Let f : [0,00) — R be given by f(t) = t? for some p > —1. Recall that the Gamma
function I": (0,00) — R is defined by
o0
['(x) = f e ' dt .
0
We note that if —1 < p < 0, f is not of exponential order a for all a € R; however, the Laplace

transform of f still exists. In fact, for s > 0,

R . SRe_t<t>pﬂ_F(p+1)_
0

— | —styp Jt —
Z(f)(s) = lim | e *tPdt = lim 9 B

R— 0 R—

In particular, if p = n € N u {0}, then

6.1.2 The Inverse Laplace Transform

Even though Example 6.7 shows that the Laplace transform is not one-to-one in the classical sense,

we are still able to talk about the “inverse” of the Laplace transform because of the following

Theorem 6.15 (Lerch). Suppose that f,g : [0,00) — R are continuous and of exponential order a.
If Z(f)(s) = ZL(g)(s) for all s > a, then f(t) = g(t) for all t = 0.

Remark 6.16. The inverse Laplace transform of a function F' is given by
1 Y+iR
LY F)(t) = =— lim e’ F(s)ds,

2Tt R—oo ~—iR

where the integration is done along the vertical line Re(s) = 7 in the complex plane such that ~ is

greater than the real part of all singularities of F'.



6.2 Properties of the Laplace Transform

Theorem 6.17. Let f : [0,00) — R be a function whose Laplace transform ezists for s > «. If
g(t) = P f(t), then
ZLg)(s)=Z(f)(s=B) Vs>a+p.

Proof. By the definition of the Laplace transform,
o0 a0
Llg)s) = | et @y = [ eI = 20 - 5),
0 0

where the Laplace transform of g exists for s — 8 > a or equivalently, s > o + f3. =

Example 6.18. By Theorem 6.17 and Example 6.6, the Laplace transform of the function f(t) =
e sin(bt) is
b

f(f)(s):m Vs>a.

Theorem 6.19. Suppose that f : [0,00) — R is continuous with piecewise continuous derivative, and

f is of exponential order a.. Then the Laplace transform of f' exist for s > «, and

ZL(f)(s) = sZL(f)(s) = £(0).

Proof. Since f is of exponential order, the Laplace transform of f exists. Since f is continuous,

integrating by parts we find that

R t=R R R
f e S f(t)dt = e " f(t) —f (—s)e ' f(t)dt = e " f(R) —f(())—i—sf e S f(t)dt

0 t=0 0 0

Since f is of exponential order o, e f(R) — 0 as s — o0; thus

R R

L(f(s)=lim | e *'f'(t)dt =—f(0)+s lim | e *f(t)dt =sL(f)(s)— f(0). o

R— 0 R—0 0

Corollary 6.20. Suppose that f : [0,00) — R is a function such that f,f' f" -, f®Y are
continuous of exponential order o, and f™ is piecewise continuous. Then L (f™)(s) exists for all

s> «, and

Z(fO)(s) = L (f)(s) = 5" F0) = 572F1(0) = - = sfOD(0) = V(). (6.3)

Proof. Theorem implies that (6.3) holds for n = 1. Suppose that (6.3) holds for n = k. Then

ZL(f* ) (s) = 2((f)™)(s)
= " L(f")(s) = "1 F(0) = "2 (f)(0) = -+ = s(FNFP(0) — (£)*D(0)
= [ L(f)(s) = F(0)] = ¥ F/(0) = "2 7(0) — - — sf57D(0) = fP(0)
= L (f)(s) = FF(0) = FT0) = — s f B ”() F®(0)

which implies that (6.3) holds for n = k+ 1. By induction, we conclude that (6.3) holds for all n € N.

O



Example 6.21. Let f : [0,00) — R be continuous such that the Laplace transform of f exists.
Define F'(t j f(7)dr. The fundamental theorem of calculus implies that F'’ = f; thus Theorem

6.19 implies that
ZL(f)(s) = ZL(F')(s) = sL(F)(s) = F(0) = sZ(F)(s)

which shows that Z(F)(s) = %.i’(f)(s) On the other hand, we can also compute Z(F') directly as

follows: by the Fubini theorem,
0 0
L(F)(s) = f —St f f(r dT dt = f f(T)( J e—stdt) dr
0

flr L fipemrar = L)
-| ] :

Theorem 6.22. Let f : [0,00) — R be piecewise continuous of exponential order «, and g,(t) =
(—=t)"f(t). Then

Z(g)(s) = 2 ()s) Vs >a.

The proof of Theorem 6.22 requires the dominated convergence theorem (in which the integrability

is equivalent to the existence of the improper integral) stated below

Let f, : [0,00) — R be a sequence of integrable functions such that {f,}> ; converges

pointwise to some integrable function f on [0,0). Suppose that there is an integrable

n—0o0

Q0
function g such that |f,(z)| < g(z) Ya € [0,00). Then lim fn x)dr = J f(z)dx.
0

We will not prove the dominated convergence theorem. The proof of the dominated convergence

theorem can be found in all real analysis textbook.

Proof of Theorem 6.22. First we note that

2
1—t< 1—t+— VteR;
thus h bt b B2
e M —1 t
——t —— < ——t+ — VheRandt>0.
RS TR S T
Therefore,

7ht71 t2
%‘é(t—i—a)eﬂt V|h|<1andt>0

Now, since f is piecewise continuous and of exponential order «, there exists M > 0 such that

2
|f(t)] < Me® for all t > 0. Let g(t) = Me* (¢t + %) Then for s > «, g is integrable (that is,
e—(s+h)t _ o—st

foog(t) dt < o) and 7

0

f (t)‘ < ¢(t); thus the dominated convergence theorem implies



that for s > a,
O p—(s+h)t _ p—st @ e~ (sth)t _ st Jt 0

Tf(lt) dt:f lim ff(t) dt = | —e ' f(t)dt

F'(s) =1
(s) = lim o im 75

- L(_t)e—stf(t) dt = L(—tf1))(s) = ZL(g1)(s).

Moreover, ¢, is of exponential order § as long as § > «; thus for s > «, s > [ for some 8 > «

and using what we just established we find that

d? d
TR = L 2(0)(s) = Lt (1))() = L(02)(5).
By induction, we conclude that F™(s) = £(g,)(s) for s > a. D

Example 6.23. Find the Laplace transform of the function f(t) = te’ cost.
Instead of computing the Laplace transform directly, we apply Theorem 6.17 and 6.22 to obtain
that

_d _d o s—1 (s 1)?41-2(s—1)(s—1)
Z(s) = = o2 cost)(s) = — oy = (s — 12+ 1]7

BCER et SN et

(s =12 +1]"  [s—12+1]"

Example 6.24. Let f : R — oo be defined by

sint

— ift#0,
ft)y=4 ¢t

1 ift=1.

1
s24+1°
Tsint

constant C. Since j — dt = g, we have Z(f)(0) = g Therefore,
0

This implies that Z(f)(s) = —tan™! s+ C for some

Then ¢ f(t) = sint; thus —%Z(f)(s) =

Z(f)(s) = g —tan"'s = tan"* é

Example 6.25. Find the inverse Laplace transform of F(s) = log s+ 2

s—5
Suppose that Z(f) = F. Since F'(s) = . i 5 ﬁ, by Theorem 6.22 we find that
i . / o 1 o 1 o —2t - 5t .
L(H10)(5) = F(s) = 5 — e = L )(s) ~ L) (5):
5t _—2t
thus f(t) = c te

6.3 Solution of Initial Value Problems

Theorem 6.19 provides a way of solving of an ODE with constant coefficients. Suppose that we are

looking for solutions to
y" +by’ + ey = f(t).



Then taking the Laplace transform of the equation above (here we assume that y and y’ are of

exponential order a for some a € R), we find that

s*Z(y)(s) = sy(0) = y'(0) + b(s.L(y)(s) — y(0)) + L (y)(s) = L (f)(s)
which implies that the Laplace transform of the solution y satisfies

(s+0)y(0)+y'(0)  ZL(f)(s)
s2+bs+c s2+bs+c’

ZL(y)(s) = (6.4)

The ODE is then solved provided that we can find the function y = ¢(t) whose Laplace transform is
the right-hand side of (6.4).

Example 6.26. Consider the ODE
yl/_y/_zyzo'
If the solution y and its derivative y’ are of exponential order a for some a € R, then by taking the

Laplace transform of the equation above we find that

[s°Z(y) — sy(0) —y'(0)] — [sL(y) — y(0)] —2L(y) = 0;

thus
_ sy(0) +y'(0) —y(0) _ sy(0) +y'(0) — y(0)
Z)(s) = §2—s5—2 o (s—=2)(s+1)
_y(0) - y'(0)+y(0) — y(0) y’(0)+y(0)< 11 )
s+l (s—2)(s+1) s+1 3 s—2 s+1/°

By Example 6.5 and Theorem 6.15, we find that
y'(0) +y(0) (e2t . e*t)
— .

Example 6.27. Find the solution of the ODE y” + y = sin 2¢ with initial condition y(0) = 2 and
y'(0) = 1. If y is the solution to the ODE and y,y’ are of exponential order a for some a € R, then

y(t) = y(0)e™" +

(6.4) and Example 6.6 imply that the Laplace transform of y is given by

2s +1 2
S S s S o e

Using partial fractions, we expect that

2 as+b cs+d  (a+¢)s®+ (b+d)s® + (4da+c)s + (4b+d)

(524 1)(s2 +4) 211 214 (524 1)(s2 +4)

Therefore, a+c=b+d=4a+c=0and 4b+d=2; thusa=c=0and b = —d = ; This provides

that
2541 2 1 2 1 25 5 1 1 2

A = - — = = — — = )
W) = G T T 3551 3974 22+1 35541 35244
By Proposition 6.2 and Example 6.6, we find that

b} 1
y(t) = 2cost + gsint— gsin2t.



Example 6.28. Find the solution of the ODE y® — y = 0 with initial condition y(0) = y"(0) =
y"(0) =0 and y’(0) = 1 and y,y" are of exponential order a for some a € R. If y is the solution to

the ODE, then Corollary 6.20 implies that the Laplace transform of y satisfies
s'Z(y)(s) — s°y(0) — 5™y (0) — sy"(0) — y""(0) — L (y)(s) = 0;

thus ) )
s s

L)) =37 = -1+ 10)(s2+1)

Using partial fractions, we assume that

s a b cs+d  (a+bs+(a—0b) cs+d
S Aty el s S T s2—1 21
(a+b+c)s*+(a—b+d)s*>+ (a+b—c)s+ (a—b—d)
B st—1 '
Therefore, a+b+c=a+b—c=a—-b—d=0anda—b+d =1, thusa:i,b:—i,c:()and

d= % This provides that
1 1 1 1 1 1
< == - z )
W) =357 " 15571 Teer
By Example 6.5 and 6.6, we conclude that the solution to the ODE is
1 1 1
y(t) = Zet — Ze_t + 5 sint.

e Advantages of the Laplace transform method:

1. Converting a problem of solving a differential equation to a problem of solving an algebraic

equation.

2. The dependence on the initial data is automatically build in. The task of determining values

of arbitrary constants in the general solution is avoided.

3. Non-homogeneous equations can be treated in exactly the same way as the homogeneous ones,

and it is not necessary to solving the corresponding homogeneous equation first.

e Difficulties of the Laplace transform method: Need to find the function whose Laplace
transform is given - the inverse Laplace transform has to be performed in general situations.
It is also possible to consider the ODE with variable coefficient using the Laplace transform. We

use to following two examples to illustrate the idea.
Example 6.29. Find the solution to the initial value problem
y'+ty'—y=0, y0)=0, y'(0)=3.

Assume that y is continuously differentiable of exponential order « for some o > 0, and y” is piecewise
continuous on [0, ). Let Y(s) = Z(y)(s). By Corollary 6.20 and Theorem 6.22,

sY (s) — 3 — [sY (s)] "—Y(s)=0 Vs> a;



thus

32
Using the integrating factor s?e~ 7, we find that

2

[’ 2 Y (s)] "= _3se” 7
which shows that
s’ 7Y (s) =3¢ 2 +C.

2
2

Therefore, Y(s) =
y(t) = 3t.

+ Cez. By Proposition 6.13, lim Y (s) = 0; thus C' = 0. This implies that

3
52 §—00

Example 6.30. Find the solution to the initial value problem

ty" —ty' +y=2, y(0)=2, y'(0)=-1.

Assume that y is continuously differentiable of exponential order « for some o > 0, and y” is piecewise
continuous on [0, ). Let Y (s) = Z(y)(s). Then

—[SQY(S)—28+1]/+[SY(S)—Q}/—{-Y(S):Z Vs>a.

Further computations shows that
(52— $)Y'(s) + (25 — 2)Y(s) = 2 — % Vs> a
which can be reduced to
s*Y'(s) + 2sY(s) = 2.
Therefore, (s?Y)’ = 2 which implies that s*Y (s) = 2s + C; thus we find that

Y(s)zg—l-C

s s
Taking the inverse Laplace transform, we obtain that the general solution to the ODE is given by
y(t) =24 Ct.
To validate the initial condition, we find that C' = —1, so the solution to the initial value problem is
y(t) =2 —t.
6.4 Transforms of Discontinuous and Periodic Functions

In the following two sections we are concerned with the Laplace transform of discontinuous functions

with jump discontinuities.

Definition 6.31. The unit step function is the function

0 ift<oO,
“(t):{ 1 ift>0.



Example 6.32.
1. For c € R, we define u.(t) = u(t — ¢). Then the graph of u, jumps up from 0 to 1 at t = ¢.
2. The graph of —u, jumps down from 0 to —1 at t = c.

3. Let a < b. The characteristic/indicator function 1,3 can be expressed by

L) (t) = ualt) — up(t) .

The function 1) is called the rectangular window function (and is denoted by II,; in
the textbook).

4. Let 0 =cy<c1 < -+ < ¢, < cpy1 = 0. The step function

f@) = Z fi]‘(ci,ciJrl)(t) (6'5)

can be expressed by

F8) = folwen(®) + X, (firn = fidue, ().

k=0

Example 6.33. We can write the function f : (0,00) — R defined by

3 ift<2,
1 if2<t<b,
1) = t if5<t<S8,

t2/10 if 8 <t

in terms of window and step functions as

2

t
f(t) =3L02)(t) + Las(t) +1se(t) + —

mug(t).

e The Laplace transform of u.: Next, we compute the Laplace transform of the step function f
given by (?7?). We note that even though f is not defined on [0, o) so in principle Z(f) does not
exists. However, if g, h : [0,0) — R are identical to f on the domain of f, then £ (g) = Z(h). This
means any ‘extension” of f has the same Laplace transform, and the Laplace transform of one of
such extensions is viewed as the Laplace transform of f.

To compute the Laplace transform of the step function f given by (?7?), by Proposition 6.2 it

suffices to find the Laplace transform of ..

1. If ¢ <0, then

2. If ¢ > 0, then




Therefore,

e~ max{c,0}s

2 (uc)(s) =

S

Theorem 6.34. Let f : [0,00) — R be a function such that the Laplace transform ZL(f)(s) of f
exists for s > a. If ¢ is a positive constant and g(t) = u.(t) f(t — c), then

Z(9)(s) =e“ZL(f)(s) for s > a.
Conversely, if G(s) = e “2(f)(s), then Z7HG)(t) = u.(t)f(t —¢).

Proof. 1If ¢ > 0 and ¢(t) = u.(t) f(t — ¢), then the change of variable formula implies that

R R—c
L(g)(9) = m | (- dt = Jim f e+ £(1) dt
R—c
=e I%im e S f(t)dt = e L(f)(s). o
—>00 0

Example 6.35. Let f:[0,00) — R be defined by

f(t) = 4’

sint ifo<t<
m
1

sint + cos (t - %) ift >
Then f(t) = sint + ux= (t) cos (t— %), thus by Example 6.6 and Theorem 6.34 we find that

1 _xg S 1+ se 4®
E(f)(s)282+1+e I e N

Example 6.36. Let f :[0,00) — R be defined by f(t) = t>u;(t). Then

Ft) = (t = 1+ 1)%u(t) = (¢ — 1)*ua(t) + 2(t — Dua(t) + (1) ;

thus the Laplace transform of f is given by

2e7°  2e° e7° _sf 2 2 1
Z(f)(s) = 33 + 32 + s ¢ ( + =+ >

Example 6.37. Find the inverse Laplace transform of F(s) = ————

By Example 6.14, the inverse Laplace transform of s72 is

that

Ta+1) = t; thus Theorem 6.34 implies

LTHE)(t) =t —us(t)(t —2).
Definition 6.38. A function f : R — R is said to be periodic of period T(# 0) if
fe+T)=f(t) VteR.

T
Theorem 6.39. Let f: R — R be periodic of period T, and Fr(s) = f e st f(t)dt. Then
0

2(f)(s) = L1

Sl —esT



Proof. By the periodicity of f, f(t) = f(t — T) for all t € R; thus

0

Fr(s) = fo e f(t) 1o (t)dt = f e f(t) (1 —ur(t)) dt

0 0

- 2006 - [ et (- Thur(tydt = Z()(s) — e L)),

0

where we have used Theorem 6.34 to conclude the last equality. D

6.5 Differential Equations with Discontinuous Forcing Functions

In this section, we consider solving the ODE
y"+ by +cy=f(t) t>0 (6.6)

with constant coefficients b, ¢ and piecewise continuous forcing function f.

Suppose that f:[0,00) — R is a function defined by

fi(t) if0<t<e,

f(t) =1 f(t) ift>c,
d ift=c,

where f1, fo are continuous functions on [0, ), d € R is a given number, and lim fa(t) — lim fi(t) =
t—c t—c—

A # 0; that is, ¢ is a jump discontinuity of f. Define

fi(t) if0<t<e,
g(t) = lim,,.- f1(t) ift=c,
fo(t) — Au.(t) ift > c.

Then g : [0,00) — R is continuous, and f = g+ Au,.. Similarly, if f is a piecewise continuous function
has jump discontinuities {c1, ca, -+ , ¢, }, then f is continuous on (¢, cxyq) for all ke {1,--- ,n —1}

and by introducing ¢y = 0, ¢,,41 = o0, and Ay = lirri(fl(%ckﬂ)))(t) — lim (f1(¢,_,.e))(%), the function

t—cy t—c,,

g :[0,00) — F defined by
F(t) - kﬁ Ay (t) i te fer, o en)
lim (F(t) ~ 3 Avue, (1) i 1e fer, o e
k=1

t—c;

g(t) =

n

is continuous on R, and f = ¢g + > Agu,,. Therefore, in order to understand the solution of (6.6)
k=1

with piecewise continuous function f, it suffices to consider the case f = Auy for some constants A

and d.
Before proceeding, let us consider the ODE

y" =u(t)  t>0 (6.7)



for some ¢ > 0. Intuitively, a solution of such an ODE can be obtained by integrating the ODE twice
directly, and we find that
y'(0) if 0
y't)y =9 .
y'(0)+t—c ift

and
y(0) +y'(0)¢ ifo<t<e,

y(t) = { y<0> +y/(0)t + t_TC(Qy’(O) +t— C) ift>=c.

We note that such y does not possess second derivative at ¢, and this fact indicates that it seems
impossible to find a twice differentiable function y such that (6.7) for all £ > 0. Therefore, to
solve ODE with piecewise discontinuous forcing function, it requires that we modify the concept of

solutions. We have the following

Definition 6.40. Let f : [0,00) — R be a function. A function y is said to be a solution to the

initial value problem

y"+ by +ecy=f(t) y(0) =vo, y'(0)=uy

if y is continuously differentiable and satisfies the initial condition, y’’ exists at every continuity of
f, and the ODE holds at every continuity of f.

Now suppose that we are looking for a solution to

y" + by’ +cy= f(t), (6.8)

where f is a piecewise continuous function on [0, c0) and has jump discontinuities only at {cy, c2, - -+ , ¢, }
as described above. We note that the existence theorem (Theorem 1.24) cannot be applied due to

the discontinuity of the forcing function, so in general we do not know if a solution exists. However,

if there indeed exists a twice differentiable function y validating (6.8), then the solution must be

unique since if y; and yy are two solutions with the same initial condition, then y = y; — 4 is a

solution to y” + by’ + cy = 0 with y(0) = y’(0) = 0; thus y must be zero. On the other hand, if (6.8)

has a solution y, then y” must be piecewise continuous. If in addition y and y’ are of exponential

order a for some o € R, we can apply Theorem 6.20 to find the Laplace transform of the solution

y as introduced in Section 6.3 which in principle provides information of how the solution can be

found.

Now we focus on solving the ODE

y" + by’ +cy = Fuy(t), y(0)=wvo, y'(0)=w1, (6.9)

where F' is a constant and o > 0. We only consider the case that ¢ # 0 for otherwise the ODE can
reduced to a first order ODE (by integrating the ODE).

If y is a twice differentiable solution to (6.9), taking the Laplace transform of the ODE we find
that

6—0&8

L ()(s) = sy0 — v+ B[sL(y)(5) — o] + L (y)(s) = F—:

S




thus

(s +b)yo+m e
ZLy)(s) = —5——7—— _ .
(W)(s) s2+bs+c s(s2+bs+c)
. . : . 1 171 s+b . .
Using partial fractions, we obtain that ———— = - [f — 7]; thus with z denoting the
s(s24+bs+c) cls s2+bs+c

solution to the ODE
2"+ bz +c2=0, 2(0)=1, 2'(0)=0, (6.10)

we find that

e—OéS e—OéS

s(s2+bs+c) ¢
Therefore, Theorem 6.34 implies that

mwzﬁqw+€ﬁ4wp_zu—aﬂ, (6.11)

here Y is the solution to (6.9) with /= 0. We note that even though wu, is not defined at t = a,
the function y given in (6.11) is continuous for all ¢ since z(0) = 1. Moreover, the function y clearly

satisfies the initial condition y(0) = yp.

e The first derivative of y: It is clear that y'(t) exists for ¢ # « and can be computed by

yﬁﬁﬂ%ﬂ—%%@/@—@ Vi 0,6+ a. (6.12)

Therefore, y'(0) = Y'(0) = y;. Now we check the differentiability of y at t = « by looking at the

limits

Loglat ) -ya) L ylath) —y(0)
h—0~ h h—0+ h
By the differentiability of Y,

- ylath) —yle) F oo ua(la+h)(1-20h)
i h = V@) + 2 im 2 =Y
and
yla+h)—yla) ., F to(a +h) (1 = 2(h))
hli%l*' h =Yi(a)+ B hli%l+ h
_ Y/(Oé> + %hli%l_‘r 1 _hZ(h> _ Y’(a) . %Z(h) ; Z(O)
F

Therefore, y’ exists at t = a and y'(«) = Y'(«) which also validates (6.12) for ¢ = «; thus (6.12)
holds for all £ > 0. We note that y’ given by (6.12) is continuous since

lim /(1) = Y'(0) = y'(a).

Yy—a

e The second derivative of y: Now we turn our attention to the second derivative of y. It is clear

that

y%ﬂ:}”@%—ghgﬂﬂ@—aﬂ VEs0,t#a. (6.13)



Therefore, the second derivative of y exists at every continuity of the forcing function Fu,,.

e The validity of the ODE: Using (6.11), (6.12) and (6.13), we find that for ¢ > 0 and ¢ # «,
F
(y" +by" +cy)(t) = (Y +bY' +cY)(t) — Zua(t)(z” +bz" +cz)(t — a) + Fuu(t) = Fuu(t);

thus the function y satisfies the ODE at every continuity of the forcing function Fu,. Therefore, y
given by (6.11) is indeed the solution to (6.9).

e Summary: The Laplace transform method may be used to find the solution to second ODE with

constant coefficients and discontinuous forcing. In particular, the solution to the IVP

y'+by' tey=Flapt), y0)=w, y'(0)=un
can be expressed as
y(t) = Y (t) + g [ua(t) [1— 2(t— a)] —ug(®)[1 — 2(t - ﬁ)ﬂ , (6.14)

where Y is the solution to (6.9) with F' = 0 and z is the solution to (6.10).
Example 6.41. Find the solution of the ODE 2y” + y’ + 2y = ¢(¢) with initial condition y(0) =
y'(0) = 0, where

9(t) = us(t) = u20(t) = 15,20 ()

If y is the solution to the ODE, taking the Laplace transform of the ODE we find that

6—5t _ 6—208
2[5 2 (y)(s) = sy(0) =y'(0)] + [s:Z()(s) —y(0)] +2L(y)(5) = ———
thus P o5t _ o—20t
(y)( ) S(282+S+2>
Using partial fractions, we obtain that
1 11 [ s+1 L2 Y15 ]
- .- _Z : .
s(22+s+2) 2 s 2 (s+ 12 + (M5) \/E(S—i-i)?—i-(%)
T Y V15 1 . /15
Let h(t) = 3~ 3¢ [COS( 1 t) + \/ﬁsm( 1 t)} Then Example 6.6 and Theorem 6.17 show

that
L(y)(s) = (7 = e2*) L (h)(s);

thus Theorem 6.34 further implies that

y(t) = us(E)h(t — 5) — u(t)h(t — 20)

= %[%(t) — un(t)] — %[U5(t)6_4(t—5) cos (X2(t = 5)) — o (£)e~ 129 cog (VB 20))}

|:U5(t)€_i(t_5) sin (\/F(t —5)) — u20(t)e_i(t_20) sin (%F(t — 20))} .

=
(@)

1
215



Example 6.42. Find the solution of the ODE y” + 4y = ¢(¢) with initial data y(0) = y’(0) = 0,

where the forcing function g is given by

0 if0<t<5,
t—5 .
g(t) = — if 5 <t <10,
1 ift>10.

We note that g(t) = %[u5(t)(t —5) —uyo(t)(t — 10)]; thus Example 6.14 and Theorem 6.34 imply that

6753 _ 67103
5820 T
1
We also remark that ¢'(t) = 5(u5(t) —uyo(t)) if t # 5,10. Since the value at g’ at two points does
not affect the Laplace transform, we can use Corollary 6.20 to compute the Laplace transform of g:

6—53 _ 6—103

sZ(9)(s) = sZ(9)(s) — 9(0) = ZL(g')(s) = ——%——;

thus Z(g)(s) =

Assume that a solution y to the ODE under consideration exists such that y, y’ are continuous

and y” are of exponential order a for some a € R. Then the Laplace transform implies that

6—55 _ 6—105

LL()(s) — 59(0) — y'(0) + 4L ()(s) = 1 —

Therefore,
6—55 o 6—105
20 = sam ey
. : . 1 as+b cs+d .
Using partial fractions, we assume that eTpe Ry R + 21 where a, b, ¢, d satisfy a +c¢ =0,
b+d=0,4a =0 and 4b = 1; thus
e e W0sr1 1 2
L)) =" [5_2* 5324—4]

By Theorem 6.17, we find that

(0) = 55 [us(0)(¢ = 3) — wio(0)(¢ = 10) — 3 (us(t) sim (20t — 5)) — ot sim (202~ 10)) )]

Remark 6.43. The Laplace transform picks up solutions whose derivative of the highest order
(which is the same as the order of the ODE under consideration) is of exponential order a for some
aeR.

6.6 Convolution

Definition 6.44. Let f, g be piecewise continuous on [0, 0). The convolution of f and g, denoted
by f % g, is defined by

(f*@@%=£f@—7hﬁﬁh- (6.15)



Proposition 6.45. Let f, g, h be piecewise continuous on [0,0). Then
(a) f*g=g* [
(b) f*(g+h)=(f*g)+(f*h)
(c) (f *g)*h=fx(gxh);
(d) (f*0)=0.

Proof. 1t is clear that (b) and (d) hold, so we only prove (a) and (c). To see (a), we make a change
of variable and find that

—T1)g(T)dr = — —du) = — du = )
rxa = s [[ st =) = [ ot wsttu= (0 % 100
To see (c), using (a) and the Fubini theorem,

rt

(7% ) k] = [ (o (e =nhirydr = [ ([ ot~ 7~ s du)nir)ar

JO 0
rt
Jo <
rt
JO (
t—u

— Ptf(U)(J g(t —u—7)h(r)dr)d

0

J T = — w) f(u)h(r) du)dr

0

f_u gt — 1 —w)f(u)h(r) d7‘> du

0

IS

JO

which completes the proof of (d). D

Theorem 6.46. Let f and g be piecewise continuous on [0,0) and are of exponential order . Then

ZL(f*9)(s) = Z(f)(s)Z(g)(s) Vs>a.

Proof. Since f is of exponential order «, for some M; > 0, |f(t)] < Mje® for all t > 0. Therefore,
for s > «a,

R

26 - |

0

o0 o0 ]\4’1
e~ (1) dt‘ < f e~ (1) dt < M, f e~ Craltgr < L elamoR
R R § =

«

Similarly, for some My > 0, |g(t)| < Mae™ for all t > 0 and

R

Z()) — [ e gt dr] <

0

(a—s)R

Vs> .
s —«

By the Fubini theorem,

LRest ff(t—T)g(T) J f f(t = 7)g(r)e dt) dr
J —s7g f F(t—T)e st dt) dr = L eSTg(T)(fORT F(t)e dt) dr



thus for s > «a,
[ ([ se-mutryar) i - 21602106
| [Cemin ([ st a) i - 2162006

0

| [Cemin ([ st a- 2e) i+ 2016 |
_ M, M, fOR =57 07 pla=s)(R=1) g 1 Sj\ifza‘g(f)(s)‘e(a_sm

R

eg(r)dr = Z(9)(5)))|

= S —
MM gn M
S — S —

2 (f)(s)|e@"

which converges to 0 as R — 0.

Example 6.47. Find the inverse Laplace transform of H(s) = m.
Method 1: Using the partial fractions,
o« i1 1y 11 1 a
$2(s2+a?)  als®  s2+a? a s a*s?+a?’

thus Example 6.6 and 6.14 imply

a

Method 2: By Theorem 6.46, with F, G denoting the functions F(s) = % and G(s) = Tra
s s>+a

LU H) () = (L7HF) % L71(@)(t) = J t(t — 7)sin(ar) dr

0

t t
:tJ sinaTdT—J Tsinar dr
0 0

t T=t
= ——cos(aT
- cos(ar)

T=t 1 t
+ - f cos(ar) dT]

7=0 a Jo

t 1t t sinar|™=t t sin at
=———| cos(ar)dr = - — — = 5
a a)j a a

- [ - gcos(m')

7=0

=0 a a

Example 6.48. Find the solution of the initial value problem

y" +ay=g@),  y(0)=3, y'(0)=-1.
Taking the Laplace transform of the equation above, we find that

3s—1  Z(g9)(s) 3s 1 2 ZL(g)(s) 2
Z = = — = :
(v)(s) s24+4 s2+4 s24+4 252+4+ 2 s244
Therefore, by Example 6.6 and Theorem 6.46,

y(t) = 3cos(2t) — %sin(?t) +

S —

g(t — 7)sin 27 dr

t

N = DN~
(=) )

1
= 3cos(2t) — 5 sin(2t) + g(7)sin2(t —7)dr.



In general, we can consider the second order ODE
y by tey=9g1),  y0)=w, y'(0)=u.

As discussed before, we find that if y is a solution to the ODE above,

(s+dyp+y , Z9(s)

< = .
W)(s) s24+bs+c s24+bs+c

Therefore,

1. if 72 + br 4+ ¢ = 0 has two distinct real roots r; and ry, then the solution y is

t LT roT
—r r — e —e
y(t) = Y1 =240 e, T80 ylem_'_f ot —7) dr
r —Te ry—To 0 rn—T2

2. if r2 4+ br + ¢ = 0 has a double root 71, then the solution y is

t

y(t) = yoemt -+ (yl — 7“1yo)te”t + J g(t . 7_>€r17-7_ dr .
0

3. if r2 4+ br + ¢ = 0 has two complex roots A & iu, then the solution y is

t

- A
y(t) = yoe™ cos pt + YL A0 A i ut + J g(t—r1)e
K 0 K

A SID QT

dr .

6.7 Impulse and the Dirac Delta Function

In this section, we are interested in what happens if a moving object in a spring-mass system is
hit by an external force which only appears in a very short amount of time period (you can think
of hitting an object in a spring-mass system using a hammer in a very short amount of time). In
practice, we do not know the exact time period [«, 5] (with |5 — a| « 1) during which the force hits
the system, but can assume that the total amount of force which affects the system is known. This

kind of phenomena usually can be described by the system
y" +by +ey=ft),  y0) =y, y'0)=un
for some special kind of functions f which has the following properties:

1. f is sign-definite; that is, f(t) = 0 for all t > 0 or f(¢) <0 for all £ < 0;

2. f is and is supported in [ty — T, to + 7| for some ¢y > 0 and some very small 7 > 0;

to+T7
3. f(t)dt = F, where F is a constant independent of 7.

to—T

This kind of force is called an impulse.



Example 6.49. Let d, : R — R be a step function defined by

1
— ifte(—7,7),

d.(t) = 27 ( ) (6.16)
0 otherwise.

Figure 1: The graph of y = d,(t) as 7 — 0.

Then f(t) = Fd,(t) is an impulse function. We note that with d denoting the function %1(_1,1),

1./t . . . . . ..
then d,(t) = —d(—). Moreover, if ¢ : R — R is continuous in an open interval containing 0, we must
T T

have
o0

lim d.(t)e(t)dt = ¢(0). (6.17)

-0t J_

Example 6.50. Let
Cexp (;) if [t <1,

n(t) = -1
0 if [t > 1,
where C' is chosen so that the integral of 7 is 1. Then the sequence {7, },~¢ defined by
1 ¢
(t) = —n(— 1
00 = (%) (6.18)
also has the property that
o0
lim | 7-()¢(t) dt = ¢(0) (6.19)
0 J_

for all ¢ : R — R which is continuous in an open interval containing 0. To see this, we notice that
n; is supported in [—7, 7] and the integral of 7, is still 1. Suppose that ¢ : R — R is continuous on
(a,b) for some a < 0 < b. Then there exists 0 < 6 < min{—a, b} such that

|o(t) — ©(0)] < % whenever |t| < 0.

Therefore, if 0 < 7 < §, by the non-negativity of n, we find that

T

[ wiwe -] =| [ nwstrae o [ il
— [ w0l - v0)]

—T

< | wlet) - o)< 5 [ e <

-7

DO ™



which validates (6.19).

T=1/8

7= 1%
=l

O t

Figure 2: The graph of n, for 7 = 1,

Definition 6.51. A sequence of functions {(;},~o, where ¢, : R — R for all 7 > 0, is called an

approximation of the identity if {(,},-o satisfies

1. ¢-(t) =0 for all t e R.

2 dim [ Gl =
3. For all § > 0, lim C-(t)dt = 0.

=0t J|t|>6§

In particular, {d,},~o and {n,},~o are approximations of identity.

Using the same technique of establishing (6.19), one can also prove that if {(;},~¢ is an approxi-

mation of the identity, then

lim fo G (Bt dt = o(0)

Remark 6.52. An approximation of identities does not have to be compactly supported. For

example, let n(t) = —e 7 be the probability density function of the normal distribution N(0, 1),
1

2

then n,(t) = e~ constitutes an approximation of the identity {n,},o.

V2T
For tp > 0 and 0 < 7 < tg, let y, denote the solution to the IVP

y, + by +cyr = Fd(t —to),  v-(0)=wo, % (0)=uyi. (6.20)

Using (6.14) we find that

+ % |:Uto—’r(t) [1 — 2(t — 1o —I—T)} — Uy 1 (t) [1 — 2(t — to — T)” 7

where Y is the unique ¢*-function solving

Y"4+bY ' 4+¢cY =0, Y(0)=y, Y'(0)=u.



and z is the unique ¢?-function solving
2"+ bz +c2=0, 2(0)=1, =2(0)=0.

We remark here that Y, Y/, 2’ and 2" are of exponential order « for some « > 0; that is, there exists
M > 0 such that

YO+ [Y'(0)] + [z(0)] + |2'(t)] < Me™ ¥t >0. (6.21)

We also recall that the discussion in Section 6.5 shows that y, is continuously differentiable, and
y. is piecewise continuous. Our “goal” here is to find a function y which is independent of 7 but
ly — y,| « 1 when 7 « 1. In other words, our goal is to show that {y,},~o converges and find the

limit of {y,},~0. We rely on the following theorem:

Let a,be R and f, : [a,b] — R be a sequence of differentiable functions such that {f,}>_,
and {f.}x_, are both uniformly bounded; that is, there exists M such that

’fnx ’+|f x|<Mforallxe[a,b] and n € N;

Then there is a subsequence { fn]} and a continuous function f : [a,b] — R such that

lim sup ‘fnj x) — fx!zO. ()

I gefab]

The convergence in (x) is called the uniform convergence. To be more precise, we say that a
sequence of functions {gx};~; converges uniformly to g on A if kll_r}olo stg;l) lgr(t) — g(t)| = 0; thus (%) is
the same as saying that { fnj};ozl converges uniformly to f on [a,b]. The theorem above is a direct
consequence of the Arzeld-Ascoli theorem, and the proof of the Arzela-Ascoli theorem can be
found in most of textbooks of Elementary Analysis.

We claim that {y,}.~0 and {y/},~o, viewing as functions defined on [0, 7] for some T' > 0, are
uniformly bounded (so that we can extract a uniformly convergent subsequence due to the Arzela-

Ascoli theorem). Let 7' > 0 be given such that to + 7 < T
1. If0 <t <ty— 7, then y,(t) = Y (t); thus

(t ") < Y (t) Y'( Vte (0,tg — 7). 6.22
ly- ()] + |yi(t)] < mggg]\ !+t{51[13;<q! t)| (0,t0— 1) (6.22)

2. Iftg— 7 <t <ty+ T, then

U () =Y () + [ =2t —to+7)] and /() = Y/(t) - 2=

2cT

(t - to + T)
The mean value theorem implies that there exists &1,&; € (t — to + 7) such that

l—z(t—to+7)=2(0)—2(t —to+7)=—-2"(&)(t —to+ ),
2Zt—to+T1)=2"(t—to+7)—2'(0) =2"(&)(t —to + 7).



Since tg — T < t < tg+ 7, we must have |t — to + 7| < 27; thus

ly-(0)] < |Y (¢ |+ |'(£1)|lt—to+7|

< max |Y(t) ’+—|maX|z()| Vte (0,tg—7),
t€[0,7] le| te[0,1)

and similarly,

()] < max [v'(1)] + £ Vie (0t ).
lyr(®)] < maoe [Y(1)] + 7 max [2"(1) € (0.t —7)

3. If to+7<t<T, then

Uelt) = V(1) = o [t —to +7) = 2(t — to — 7)]
(1) = Y'() — %[z’(t —to ) — 2 (t—to— 7).

(6.23a)

(6.23b)

Similar to the argument in the previous case, the mean value theorem provides n;,7s € (t —

to — 7,t — to + 7) such that
2t —to+7)—z(t —to—7)=2"(m) - (27),
Pt —to+T7) =2t —to—7)=2"(n2) - (27);
thus

‘ ‘ /
(1) < max [V (¢) I Vte(to+7,T
’y ( )’ teOaT]l ‘ ‘C‘ te[OaT]’z ( )‘ © ( 0 )

(1) < Y'( I "t te(t T).
[yr(®)] < max |[Y'(0)] + T max "] Vie (o7, T)
Noting that there exist M > 0 and a > 0 such that

Y@+ YO+ [2'@)] + [2"(t)] < Me™  Vi>0,

combining (6.22), (6.23) and (6.24) we find that

IFI)

ly- ()] + [yl ()] < 2M(1+||

Vte (O,T)\{to-Tﬂfo—FT}.

Let M =2M (1 + ||F||) By the continuity of y, and y/, the inequality above shows that
C

4o ()] + ()| < BeoT
Since the inequality above holds for all 7' > 0, we conclude that
ly- ()] + |yL(t)] < Met  ¥t>0.

Therefore, {y,},~0 and {y.},~o are uniformly bounded on [0, 7] for all 7" > 0.

(6.24a)

(6.24b)

(6.25)

Let T" > 0 be fixed again. By the Arzela-Ascoli theorem, there exists a subsequence {yTj };il



which converges to y uniformly on [0,7] as 7 — o0. We note that y is a function defined on [0, 7.
Now, by the uniform boundedness of {yTj }?;1 and {yT’j };il on [0,277, there exists a subsequence
{yw }Zl which converges to y* uniformly on [0, 277]. Same procedure provides a further subsequence
{ywk }120:1 which converges to y** uniformly on [0,37]. We note that y** = y* on [0,7 + 1] and
y** =y on [0,7]). We continue this process and obtain a sequence, still denoted by {yTj };O:l, and a

continuous function y : [0,0) — R such that

lim sup |y, (t) —y(t)| =0 VT >0. (6.26)

I tef0,T]

We note that (6.25) implies that y satisfies
ly(t)] < Me™  Vt>0;

thus the limit function y is of exponential order a for some o > 0. On the other hand, we also note
that it is still possible that there is another convergent subsequence which converges to another limit
function, but we will show that there is only one possible limit function.

Note that in Section 6.5 we use the Laplace transform to solve the IVP (6.20) and obtain that

Q0

(8 +bs +¢)ZL(y:)(s) = (s +b)yo +y1 + FJ d.(t —to)e *" dt Vs> a,
0

where « is chosen so that y, and y are of exponential order «. In particular,

o0 o0

yr,(t)e " dt = (s + b)yo + y1 + FJ dr, (t — to)e " dt Vs> a. (6.27)
0

(32—|~bs—|—c)f

0

Let ¢ > 0 and s > «a be given. Since there exists M > 0 such that |y.(¢)] + |y(t)] < Me** for all

t > 0, we can choose T' > 0 such that

JOO (a—s)t dt 1 (a—8)T < €
€ = (& —_—.
T S— 2M

Then by the convergence (6.26),there is N > 0 such that if 7 > N,

sup [yr, (£) = y(t)] < 5 .
tefo,7] 2(1 +e~sT)

Then for j > N,

‘ JOO [y, (t) — y(t)] e dt) < J;oo lyr, (£) — y(t)|e~*" dt

0

- r‘ ‘yTj (t) o y(t)}e_St dt + joo \y’f’j (t) - y(t>’€_5t dt
Jo .

rT o0
< J sup |y, (t) — y(t)|e " dt + MJ ee ™ dt
0 te[0,7] T
T
se . £
<€ tdt+ = <
2(1+e_5T)f0 ¢ dttg=e



which implies that
a0 o0

lim |y, (t)e ™ dt = f y(t)e ™t dt = L (y)(s) Vs> a.

=% Jo 0

On the other hand, the change of variables formula shows that

0 © ”
J de (t — to)e—st dt = f de (t — to)e_St dt = f de (t)e—s(t—f—to) dt

0 —o0 —00

so (6.17) implies that

Q0
lim | d,(t—to)e ™™ dt = e

Jj—0 0

As a consequence, passing to the limit as j — o0 in (6.27), we find that
(s +bs+¢)Z(y)(s) = (s +b)yo +y1 + Fe 5 Vs>a. (6.28)

Since any possible limit of {y,},~o has to satisfy the equation above, by Theorem 6.15 we conclude
that there is only one uniform limit of {y;},~¢; thus {y,}.~0 converges to y uniformly on [0, 7] for
every T' > 0; that is,

lim sup |y-(t) —y(t)] =0 VT >0. (6.29)

70 te(0,7]
The uniform convergence of {y;},~¢ to y implies that if the support of the impulse is really small,
even though we might not know the precise value of 7, the solution to (6.20) is very closed to the
unique limit function y. We note that the three possible y’s given above are continuous but have
discontinuous derivatives, and are not differentiable at ¢g.
By Theorem 6.34 and 6.17, identity (6.28) implies the following:

1. if 72 + br + ¢ = 0 has two distinct real roots r; and ry, then the solution y to (6.28) is

y(t) =Y (t) + iy (1) [ E10) — gratt—to)]
_ - F
= T2 et IO T U ot Uy (1) [eﬁ(t—to) — erz(t—to)] : (6.30)
T — T2 ™ —To Ty — 19

2. if 72 4+ br + ¢ = 0 has a double root 71, then the solution y to (6.28) is

y(t) = Y(t) + Futo (t) (t _ t0)€T1(t—t0)
= yoe™ + (y1 — riyo)te™ + Fuy, (£)(t — to)em(710) (6.31)

3. if 72 4+ br + ¢ = 0 has two complex roots A & iu, then the solution y to (6.28) is

F
y(t) =Y () + —uy, ()X sin p(t — to)
.

Y1 — Yo

F
= yoe™ cos pt + Te sin pt + ;uto (t)er=0) sin pu(t — tp) . (6.32)



6.7.1 The Dirac delta function

Even though we can stop our discussion about second order ODEs with impulse forcing functions

here, we would like to go a little bit further by introducing the so-called “Dirac delta function”.

Definition 6.53 (Informal definition of the Dirac delta function). For t, > 0, the Dirac delta

function at to, denoted by dy,, is the function whose Laplace transform is the function G(s) = e~5%.

Given the definition above, (6.4) and (6.28) imply that y satisfies the ODE

y" +by' +ey=Fo(t),  y0)=yo, y'(0)=u1. (6.33)
However, there is no such d;, for the following reasons:

1. Using (6.30), (6.31) or (6.32), we find that y” 4+ by’ +cy = 0 for all ¢ # ¢. If such J;, exists (as
a function), then d,,(¢t) = 0 for all ¢ # ¢, which makes .Z(d;,) = 0. In other words, if J;, is a
function of non-negative real numbers, no matter what value is assigned to dy, (o), the Laplace

sto

transform of d;, cannot be e~

—sto

2. Rewriting e™*% as s - , by Theorem 6.19 we find that

— = 5 Z(u,) = z(%uto)(s) o (0) = 2 (S, (5).

Therefore, &;,(t) = %uto(t) which vanishes as long as t # to.

e What does y" +by’'+cy = Fo,,(t) really mean? Recall that our goal is to find a “representative”
of solutions of the sequence of ODEs (6.20). The discussion above shows that such a representative

has to satisfies (6.28) which, under the assumption that
L(y" +by" +cy)(s) = (s> +bs + )L (y) — sy(0) —y'(0). (6.34)

implies the equation y” + by’ + cy = Fo,,(t). As we can see from the precise form of the function y
in (6.30), (6.31) and (6.32), y’ is not even continuous; thus (6.34) is in fact a false assumption.

The way that the ODE y” + by’ 4+ cy = Fé;,(t) is understood is through the distribution theory,
in which both sides of the ODE are treated as “functions of functions”. Let ¢ : [0,20) — R be a
twice continuously differentiable function which vanishes outside [0, 7| for some T' > t,. Multiplying
both sides of (6.20) by ¢ and then integrating on [0, 7|, we find that

T

T
|z by Yoty =F | d(e - ety at.
0 ’ 0

Integrating by parts (twice if necessary) and making a change of variable on the right-hand side,

Q0 0¢]

Yr, () (" (t) — b’ () + cp(t)) dt = FJ dr, (t)p(t +to) dt  (6.35)

—00

Yo' (0) — (y1 + byo)(0) + fo



for all twice continuously differentiable functions ¢ vanishing outside some interval [0,7]. We note
that the integral in (6.35) is not an improper integral but indeed an integral on a bounded interval.
Passing to the limit as 7 — oo in (6.35), the uniform convergence of {yT]} to y on any closed

interval [0, 7] and (6.17) imply that

0

Yo' (0) = (y1 + byo) p(0) + J y(t) (9" (t) — b’ (t) + co(t)) dt = Fop(to) (6.36)

0

for all twice continuously differentiable functions ¢ vanishing outside some interval [0, 7.

Definition 6.54. The collection of all k-times continuously differentiable function defined on [0, o
and vanishing outside some interval [0, 7] for some T > 0 is denoted by %*([0,0)). A function
f :[0,00) — R is said to belong to the space €°([0,0)) if f € €*([0,0)) for all k € N. In other
words,

€ ([0,0)) = {f :[0,00) > R| fe€*(0,0) Vk e N}.

Definition 6.55. Let f : [0,00) be a piecewise continuous function. The linear functional induced
by f, denoted by {f,-), is a function on €.°([0, %)) given by

0
o= e YoesE(o.).
0
Consider the following simple ODE

y" +by' +ey=f1t),  y0)=w, y'(0)=uwy, (6.37)

where f is a continuous function of exponential order a for some a € R. The existence theory
implies that there exists a unique twice continuously differentiable solution y to (6.37). Moreover, if
p € 62([0,2)),
o0 0
L [y"(t) + by (t) + cy(t)] p(t) dt = JO fp(t)dt,  y(0) =yo, y'(0) =w1. (6.38)

Since y is twice continuously differentiable on [0, 00), we can integrate by parts and find that the
solution y to (6.37) also satisfies

o0

Yo' (0) = (y1 + byo) p(0) + L y(t) (" (t) = bp'(t) + cp(t)) dt = (f, ) Ve €2([0,2)). (6.39)

On the other hand, if y is a twice continuously differentiable function satisfying (6.39), we can

integrate by parts (to put the derivatives on ¢ back to y) and find that y satisfies
(Z/o - Z/(O))W(O) - [yl +byo —y'(0) — by(O
” Ve 6. ([0,%)).
+j [y"(t) + by’ () + cy(t)]o(t) dt = f f(t)

0

In particular,

JOOO [y"(t) + by’ (t) + cy(t)] o(t) dt = J f)pt)dt Yoe€?([0,0)) satisfying ¢(0) = ¢'(0) =0,



Therefore, y” + by’ + cy must be identical to f since they are both continuous. Having established
this, we find that

(%0 = 9(0))©"(0) = [y1 + byo — y'(0) = by(0)]0(0) =0 Ve E([0,0)).

Choose ¢ € €2([0,90)) such that ¢(0) = 0 and ¢’(0) = 1, we conclude that yo = y(0); thus we arrive
at the equality

[y1+ byo — 5'(0) = by(0)] (0) =0 Ve G ([0,2)).

The identity above clearly shows that y; = y’(0). In other words, if y is twice continuously differen-
tiable and satisfies (6.39), then y satisfies (6.37); thus we establish that given a continuous forcing
function f,

y is a solution to (6.37) if and only if y satisfies (6.39).

Thus we change the problem of solving an ODE “in the pointwise sense” to a problem of solving
an integral equation which holds “in the sense of distribution” (a distribution means a function of
functions). We note that there is one particular advantage of defining solution to (6.37) using (6.39)
instead of (6.38): if f is discontinuous somewhere in [0,00) (for example, f = Fl(, ) as in the
previous section), (6.39) provides a good alternative even if y” does not always exist.

The discussion above motivates the following

Definition 6.56 (Weak Solutions). Let f : [0,00) — R be a function of exponential order a for some
a € R. A function y : [0,0) — R is said to be a weak solution to (6.37) if y satisfies the integral
equation (6.39). The integral equation (6.39) is called the weak formulation of (6.37).

We remark that the discussion above shows that if f : [0, 00) — R is continuous and of exponential
order a for some a € R, the unique ¢*-solution y to (6.37) is also a weak solution.
In view of (6.39), if we define L : €2([0,90)) — R by

0

L() = yow'(0) — (41 + byo)(0) + L y() (9" (t) — b’ (t) + cp(t)) dt, (6.40)

then the integral equation (6.37) is equivalent to that “the two linear functionals L and {f,-) are the

same on the space €2(]0,0))”. We also note that
L(p) =" + by’ + cy, ) if y” is piecewise continuous, and (y(0),y'(0)) = (vo,v1) ;

thus if y” is piecewise continuous, the statement “L = (f, ) on €*([0,00))” is the same as saying that
“the linear functional induced by y” + by’ + cy and the linear functional induced by f are identical”.
This is what it means by y” 4+ by’ + cy = f in the sense of distribution.

If the right-hand side {f,-) is replaced by a general linear functional ¢, we can still talk about
the possibility of finding an integrable function y validating the integral equation (6.39), or more
precisely, L = £ on €%([0,0)). In particular, for F' € R and ¢, > 0, it is reasonable to ask whether

or not there exists an integrable function y such that

Q0

Yo' (0) — (y1 + byo) 0(0) + L y(t) (" (t) = b’ (t) + cp(t)) dt = Fo(to) Ve %([0,2)), (6.36)



where the linear functional ¢ : €2(]0,%0)) — R is given by
Up) = Folto)  Yoe?([0,%)). (6.41)

This is exactly the integral equation (6.36); thus the ODE y” + by’ + cy = Fd,,(t) is understood as
L =/(on €?([0,0)), where L and ¢ are defined by (6.40) and (6.41), respectively.

The definition of ¢ motivates the following

Definition 6.57 (Dirac Delta Function). For ¢ty > 0, the Dirac delta function at t; is a map
84, + €2([0,00)) — R defined by
01, (0) = ¢ (to) -
0
Because of Definition 6.55, one often write d;,(¢) = J 0t (1) () dt for ty > 0.
0

Under this definition, the ODE y” + by’ + cy = F'é;, is understood as “the functional induced by
y" + by’ + cy (given by (6.40)) is the same as the functional induced by Fé;,”. The function y given
by (6.30), (6.31) or (6.32) is then a weak solution to (6.33).

e Summary:
1. The limit y of the solution y, to the IVP (6.20) is the weak solution to the IVP (6.33); that is,
y solves (6.33) in the sense of distribution or equivalently, y satisfies (6.36).

2. The limit y can be obtained by solving (6.33) formally using the Laplace transform (by treating
that Z(d;,)(s) = e ) and are given by (6.30), (6.31) or (6.32).

Example 6.58. In this example, we would like to find the “anti-derivative” of the Dirac delta

function at {5 > 0. In other words, we are looking for a solution to

y'=0,(t),  y(0)=0.

Taking the Laplace transform, we find that

sL(y)(s) = e or equivalently, Z(y)(s) = . (6.42)

As a consequence, by Example 6.5 and Theorem 6.34 we conclude that the (weak) solution to the
ODE above is

y(t) = g, (1)
We again emphasize that in principle we are not allowed to use Theorem 6.19 or Corollary 6.20 to

compute the Laplace transform of y’; however, the functional induced by y’ (by assuming that y is
o0 o0
| v =000 - | voe®a voed (o)
0 0
so we are in fact solving y’ = d,(t) in the sense of distribution; that is, we look for y satisfying
0
- [ uoema =) voewio).
0

Letting o(t) = e~ leads to (6.42).



7 Series Solutions of Differential Equations

7.1 Properties of Power Series

©¢]
Definition 7.1. A power series about c is a series of the form Y ap(z — ¢)* for some sequence

k=0
{ar}y € R (or C) and c€ R (or C).

Proposition 7.2. If a power series centered at ¢ is convergent at some point b # ¢, then the power

series converges absolutely for all points in (¢ — |b— c|,c+ |b — ¢|).

o0
Proof. Since the series > ax(b — ¢)F converges, |ag||b — ¢|* — 0 as k — o0; thus there exists M > 0
k=0

Qo0

such that |ag||b — ¢|® < M for all k. Then if x € (¢ — |b — ¢|,c + |b — c|), the series ] ap(z — ¢)*
k=0

converges absolutely since

S k S FN wlr—cff o (=l \*
O lan(e =) = Y laulle — el = Y Jaellp — el i < M Y7 (=)
=0 k=0 =0 |b—¢] |b—c|

k=0

which converges (because of the geometric series test or ratio test). o

Q0
Definition 7.3. A number R is called the radius of convergence of the power series > ap(z—c)k
k=0

if the series converges for all x € (¢ — R,c+ R) but diverges if x > ¢+ R or x < ¢ — R. In other

words,
a0

R = sup {r >0 ‘ Z ap(x — ¢)* converges in [c — 7, ¢ + 7’]} )
k=0
The interval of convergence or convergence interval of a power series is the collection of all

x at which the power series converges.

We remark that Proposition 7.2 implies that a power series converges absolutely in the interior

of the interval of convergence.

Proposition 7.4. A power series is continuous in the interior of the convergence interval; that is, if

o0 e¢]
R > 0 is the radius of convergence of the power series >. ax(x —c)*, then Y. an(z —c)¥ is continuous

k=0 k=0
in (c— R,c+ R).
Proof. W.L.O.G., we prove that the power series is continuous at xq € [¢,c+ R). Let € > 0 be given.
R— .
Define r = foo. Then zo + 7 € (¢ — R, ¢+ R); thus there exists N > 0 such that
0
-
Z lag||xo + 17— < 3
k=N-+1
N
Moreover, since Y. ax(z — ¢)¥ is continuous at xg, there exists 0 < § < 7 such that
k=0

N

N
ap(x — ) — aaz—c"”’<E Ve -2 <9.
Do =0 = Dafe—0f| <3 Vo=l



Therefore, if |z — 2| < §, we have

N N
‘Zakx—c Zak T — C) ‘ ‘Z (z —c)* Zak(wo—c)k‘
k=0 = k=0
b 3 aglleotr— el I S gy ol L
apl|zo + 1 — ¢ff ———— a||lzo + 1 — ¢ff ——
k=N+1 [zo 1 —cfF k=N+1 [zo 7 —cf*
N N 0
< ‘Zak(x—c)k—Zak(xo—c)k)—l—Q Z lag|r* < e
k=0 k=0 k=N-+1
which implies that Y aj(z — ¢)* is continuous at z. a
k=0
e}
Theorem 7.5. Let R > 0 be the radius of convergence of the power series > ap(x — c)¥. Then
k=0
ee}
JZakt—ckdt ZJ (t —c)F :Z c)ktt Vrxe(c—R,c+R).
C — k=0 —

Proof. W.L.O.G., we assume that x € (¢,c+ R). Let € > 0 be given. Choose zy € (¢ — R, c+ R) such

Q0
that |x — ¢| < |zg — ¢|. Then for t € [¢, ], |’t|| 1. Moreover, since Y. ax(zo — ¢)* converges
Zo — ¢ k=1
absolutely, there exists N > 0 such that
= €
D lawllzo — o < :
kE=N-+1 |0 — ¢

Since

xr O Tz n

JZak(t—ckdt JZ (t—c) dt—l—] ar(t — c)*dt
CkN+1

c)ftt 4 J Z ap(t — c)kat

k=n-+1

Ak c)k+ R (E— C)k
Zakt—c dt — 2]{: ‘< 2 ]ak||a:0—c|| ‘

k=0 k=n+1
f Z lag||zo — c|Fdt < |z — ¢ Z lag||zo — | < €.
¢ k=N+1 k=N+1
n T Q0
In other words, lim Z kak (x —c)**t = J > a(t — ¢)*dt which concludes the corollary. D
0
Theorem 7.6. Let R > 0 be the radius of convergence of the power series >, ap(x — c)*. Then
k=0

dZ (x —¢) :ii x—c)k:ika(x—c)k_l Vrze(c—R,c+ R)
] dx _ k ) :



Proof. We first show that the series Z kay(z — ¢)*~! also converges for all z € (¢ — R,c+ R). Let
k=1

Lk
z € (¢c— R,c+ R). Choose zg € (¢ — R,c+ R) such that |x — ¢| < |zg — ¢|. Then khm k‘f cc||k =0.
—00 0 —
Therefore, there exists M > 0 such that
Lk
T vkenu o)
|0 — ¢[*
thus
S bl _ N\ T e M\ k
I;)k|ak||x—c| :l;]|ak||xo ‘| k:| o < \xo—c};)Mkao_d < 0.
Q0
Let b, = (k + 1)aj.1. The absolute convergence above implies that the power series Y. by(z — c)*
k=0
converges absolutely in (¢ — R, ¢+ R) since
0 0
Zbk(:ﬂ—c)k = Zk‘ak(a:—c)k_l Vee(c—R,c+ R). (7.1)

Now, Theorem 7.5 implies that for all x € (¢ — R,c+ R),

JZbkt—c )edt = Zfbkt—c )edt = Zak+1x—ck+1 i ZL‘—C

k=0 =

thus by the fact (due to Proposition 7.4) that the power series Z br|z — c|¥ is continuous in (c —

R,c+ R), the fundamental theorem of Calculus implies that

0 d 0
ko k
i be(z — ¢) dt—%kgoak(x—c) Vze(c—R,c+R).

The theorem is then concluded because of (7.1). o

Definition 7.7. A function f : (a,b) — R is said to be analytic at c € (a,b) if f is infinitely many

times differentiable at ¢ and there exists R > 0 such that
o0

f(x):Zak(x—c)k Veze(c—R,c+ R) < (a,b)
k=0

for some sequence {ax}{ -

Remark 7.8. If f: (a,b) — R is analytic at ¢ € (a,b), then Theorem 7.6 implies that

f(x) —Zf( (z —c)* Veze(c—R,c+ R) < (a,b)

for some R > 0.
A function which is infinitely many times differentiable at a point ¢ might not be analytic at c.

For example, consider the function
1
exp(— —) ifx#0,
ey = P
0 ifx=0.
Then f*)(0) = 0 for all £ € N which implies that f cannot be analytic at 0.



7.1.1 Product of Power Series

Q0 Q0 a0 n

Definition 7.9. Given two series Y, a, and ). b,, the series >_ ¢,, where ¢, = > axb,_j for all
n=0 n= O n=0 k=0
n € N u {0}, is called the Cauchy product of Z a, and Z by,
n=0

o0 0
Theorem 7.10. Suppose that the two series Y, a, and Y, b, converge absolutely. Then the Cauchy

e}

o0 o0 o0
product of > a, and ), b, converges absolutely to < >, an>< > bn); that is,
n=0 n=0 n=0

n=0

5 (Shans) - (S ) (S0)-

n=0 n=0
0¢]
Proof. Claim: If ) a, converges absolutely and 7 : N — N is bijective (that is, one-to-one and
0 =0 0
onto), then Y} ar(,) converges absolutely to >, a,.
n=0 o n=0 "
Proof of claim: Let }] a, = a and € > 0 be given. Since > a, converges absolutely, there exists
n=0 n=0
N > 0 such that -
€
D1 laal < <.
n=N+1 2

Let K = max{ﬂ_l(l),--- ,W_I(N)} + 1. Thenif k > K, w(k) = N + 1; thus if k > K,

0 o0 €
M ol < D) lanl < 5
n=k+1 n=N+1
and
k k N N 0
‘Zaw(n)—a‘ <’Zaw(n)—2an +’Z@n—a‘ <2 Z la,| <¢.
n=0 n=0 n=0 n=0 n=N-+1
Therefore, ), ar@) converges absolutely to a.
n 0
e}
Claim: If Z a, and Z b, converge absolutely, then > a,b,, converges absolutely and
= n=0 n,m=1
a0 a0 Q0
Z anbm: (Zan><z bm>7
n,m=1 n=1 m=1

[ve}
where > a,b,, denotes the limit lim Z Z Qb

n,m=1 NM—0 521 ;=1

Proof of claim: If Ny < Ny and M; < M,,

MQ N2

)(2%!)(2\6 ) - (iw)(ﬁlwm\)\giw D \an|m§1\bm|

m=Mi;+1 n=N1+1



o6}
which converges as Ny, M; — oo. Therefore, >, a,b,, converges absolutely, and similar computation

shows that e
Ny My 0
(o) (2 bn) = 2 antn
n=1 m=0 n,m=1

=t (B (M) - (B (X))

e VRN N
<(Dland+ X ) (2 laal+ Y Pl
n=1 m=1 n=N1+1 m=Mi+1

which converges to zero as Ny, M; — oo. Therefore, we conclude that

The claim is then concluded by passing to the limit as M; — oo and then N; — oo.

The theorem follows from the fact that the Cauchy product is a special rearrangement of the

e ¢]
series Y. a,bp,. o
n,m=1
e}
Corollary 7.11. Let Ry, Ry > 0 be the radius of convergence of the power series Y. ay(z — c)* and
k=0
o0
> b(x — ¢), respectively. Then with R denoting min{R;, Ry}, we have
k=0
0 a0 a0 n
<2ak(x—c)k>(26k(x—c)k> = Z ( akbn,k)(x—c)” Vee(c—R,c+ R).
k=0 k=0 n=0 k=0

7.2 Power Series Solutions to Linear Differential Equations

The discussion of the power series is for the purpose of solving ODE with analytic coefficients and

forcings.

Theorem 7.12 (Cauchy-Kowalevski, Special case). Let 2 < R™ be an open set, and f : Q x (tg —
h,to + h) — R™ be an analytic function in some neighborhood (xo,ty) for some xy € Q; that is, for

some r > 0,

f(y,t) = f(yo, to) + Z Z Caj(y —90)*(t =t} V(y,t) € B((30,t0),7)

k=1 |a|+j=k
where a = (aq, -+ , ) is a multi-index satisfying y* = y* -y and |a| = oy + - - o, Then there
exists 0 < 0 < h such that the ODE y'(t) = f(y,t) with initial condition y(to) = yo has a unique

analytic solution in the interval (to — d,tg + 9).

Remark 7.13. If f is continuous at (yo — k,yo + k) % (tg — h,to + h), then the general existence
and uniqueness theorem guarantees the existence of a unique solution of y'(t) = f(y,t) with initial
condition y(ty) = yo in some time interval (typ — J,t9 + ). Theorem 7.12 further implies that the

solution is analytic if the “forcing” function f is analytic.



Example 7.14. Find a power series solution to y’ + 2ty = 0.
Note that the ODE above can be written as y’ = f(y,t), where f(y,t) = —2ty. Since f is analytic

at any point (o, to), the Cauchy-Kowalevski theorem implies that the solution y is analytic at any
©¢]
to. Assume that y(t) = Y at"* is the power series representation of the solution y at 0 with radius

of convergence R > 0. Then Theorem 7.6 implies that

Q0 ee}
y'(t) = Z kapt* ! = Z(k + Daggat®;
k=1 k=0
thus the ODE above shows that
o0 ee} e} 0
0=>1(k+ Dagat’ +2t > axt’ = (k+ Dagat* +2 ) ap_yt*
k=0 k=0 k=0 k=1
e}
=a; + Z [(k‘ + 1)ak+1 —+ 2ak_1] tk .
k=1
Therefore, a; = 0 and (k4 1)ags1 +2ax_1 = 0 for all k € N; thus a; = a3 = -+ = agg_1 = --- =0 for

all k € N. Moreover, the fact that a;.; = — ap_1 implies that

k+1

Agky2 = — Ao Vk‘ENU{O};

kE+1

_1\k

thus aq, = (k‘)ao for all £ € N. As a consequence,

y(t) = ), ant™ =ao ), %ﬂk( =0 ), ( /zl> = aoef) .
k=0 k=0 : !

k=0
In the remaining chapter we focus on the second order linear homogeneous ODE

P(x)% + Q(x)% + R(x)y =0, (7.2)

where P, (), R are assumed to have no common factors. We note that we change the independent

variable from ¢ to z.

Definition 7.15. A point z is said to be a ordinary point to ODE (7.2) if P(zy) # 0, and the
two functions @/ P, R/P are analytic at xq. It is called a singluar point if it is not a regular point.

It is called a regular singular point if the two limits

fimf 2035 e

both exist and are finite. Any singular point that is not a regular singular point is called an irregular

singular point.

Example 7.16. 1 is the only singular point for the ODE zy” + z(1 — 2) "'y’ + (sinz)y = 0.



If zy is a regular point to ODE (7.2), then

y" +p(x)y’ +qlx)y =0 (7.3)

for some function p and ¢ that are analytic at z,. Write y’ = z. Then the vector w = (y, z) satisfies

W= M - [—p<x>zz— q<x>y] flw, ).

It is clear that f is analytic at x( if p,q are analytic at xp; thus the Cauchy-Kowalevski theorem

implies that any solutions to (7.3) are analytic. To be more precise, we have the following

Theorem 7.17. Suppose xy is an ordinary point for equation (7.2). Then equation (7.2) has two

linearly independent analytic solutions of the form

o0]

y(x) = Z ap(r — x0)" .
k=0
Moreover, the radius of convergence of any power series solution of the form given above is at least

as large as the distance from o to the nearest singular point (possibly a complex number) of equation
(7.3).

Example 7.18. The radius of convergence of series solutions about any point x = zy of the ODE
y" + (sinz)y’ + (1 +2*)y =0

is infinite; that is, for any zy € R, series solutions about x = x( of the ODE above converge for all
reR.

Example 7.19. Find a lower bound for the radius of convergence of series solutions about x = 0 of
the Legendre equation
(1-2®)y" =22y’ +ala+1)y=0.

Since there are two singular points +1, the radius of convergence of the series solution about 0 of the
Legendre equation is at least 1. We also note that +1 are both regular singular point of the Legendre

equation.

Example 7.20. Find a lower bound for the radius of convergence of series solutions about x = 0 or
about x = —% of the ODE

(14 2%)y" + 2zy’ +42°y = 0.

Since there are two singular points, +¢, of the ODE, the radius of convergence of the power series
solution about 0 of the ODE is at least 1.

. . . 1 . . 1 .
Next, consider the power series solution about —5 Since the distance between 3 and +7 are

V5 1 V5

5 the radius of convergence of a power series solution about 3 is at least 5



7.3 Series Solutions Near an Ordinary Point: Part I

In this section, we provide several examples showing how to apply the method of power series to
solve ODE (or IVP).

Example 7.21. Find the general solution to the ODE 2y” 4+ xy’ + y = 0 in the form of a power

series about the ordinary point x = 0.

e}
Suppose that the solution can be written as y = Y. azz*. Then Theorem 7.6 implies that

k=0
0 0 0
y' = Z kapz™' and y” = Z k(k —1)aza"? = Z(k‘ +2)(k 4 1)ajpo0x";
k=1 k=2 k=0
thus
0
Z [2(k +2)(k + 1)apso + kay, + ax]z® = 0.
k=0

Therefore, 2(k + 2)(k + 1)ag2 + (k + 1)ag = 0 for all k € N U {0} or equivalently,
1

= —— VkeNuU{0}.
(gt 2(k:+2)ak e Nu {0}
For even k = 2n,
1 1 (—1)
= ey T gy ) T T g TN
while for odd k = 2n + 1,
1 1 (—1)"
Uopp] = ——————Ugp_1 = Ugp3 =+ = a
T 0 +1) T 22+ 1) (@2n—1) P (20 +1)(2n —1)---3
(—1)"n!
== 7 W N.
(27”L—i-1)!a1 ne
Therefore,

i (=" ,, + i (=D"n! 51
=a x a — :
Y0 L ) ' 4 (20 4 1))

The radius of convergence of the power series given above is also infinite and this coincides with the
conclusion in Theorem 7.17.

& (= o . 2 .
Note that the function )] (22n)' 2?" is indeed the function exp (—%); thus using the method of
n=0 n.

2 2

reduction of order, we find that another linearly independent solution is exp (— %) j exp (%) dx.

Example 7.22. Find the general solution to Airy’s equation y” — xy = 0 in the form of a power
series about the ordinary point x = 0.

e¢]
Suppose that the solution can be written as y = Y azz*. Then
k=0

0 0

y" =Y k(k = Daga* = > (k+2)(k + Dagso2®;
k=2 k=0



and
o0 o0
xy = Z apxttt = Z ap_12" .
k=0 k=1

Therefore,

as + i [(k +2)(k+ 1)agys — ak,l}xk =0

k=1
which implies that a; = 0 and ag,o = M‘;ﬁ for all k¥ € N. The recurrence relation further
implies that a5 = ag = a1 =+ = agx_1 = --- = 0 for all k € N. Furthermore, we have
- a3k—3 _ a3k—6 _
FT(Bk)Bk—1)  (3k)(3k — 1)(3k — 3)(3k — 4)
B ao  (3k—2)(3k —5)---4 - lag
- (BK)Bk—1)(3k —3)(3k —4)---3-2 (3k)!
2 5 1
kg —g) e 3Tk + 13,
(3k)! I'(1/3)(3k)!
and
a _ asg—2 _ azk—5 _
P BE+1)Bk) Bk + 1)(3k)(3k — 2)(3k — 3)
B aq (B —1)(3k —4)---2a,
- (Bk+1)(3k)(3k —2)(3k —3)---4-3 (3k +1)!
1 4 2
gl g) e Tk +2/3)
(3k +1)! U(2/3)(3k+ 1)1

Therefore, the solution of Airy’s equation is of the form

3FT(k +1/3) 3D (k+2/3
OZ /3) 3k alz ( /)xsm_

1/3 3k)! '(2/3)(3k + 1)!
Example 7.23. In this example, instead of considering a series solutlon of Airy’s equation y”—zy = 0
of the form y = Z arz®, we look for a solution of the form y = Z ap(z — 1)k
k=0 k=0
Since
0¢] Q0
y" =Y k(k = Dag(z — 1)F 2 = Y (k+2)(k + Daga(a — 1)
k=2 k=0
and
e 6} e}
:cy:(:L'—l)y—i-yIZak(a:—l)kH—i-Z (x —1)F Zaklx—l Zak(a;—l)k,
k=0 k=0 k=0
we have
Q0
(2&2 — CLQ) + [6&3 — (CLl + (Io)} ($ — 1) + Z [(k’ + 2)(/{i + 1)ak+2 — (ak_l + akﬂ (IB — 1)k =0.
k=2

Therefore, 2a, = ag, 6az = a1 + ag, 12a4 = as + a1, 20a5 = a3z + as, and in general,

(k + 2)(/{7 + 1)CLk+2 = Ak11 + ag .



Solving for a few terms, we find that

1 1 +1 1 +1 1 n 1
ay = =a as = =ay + =a ay = —a a5 = —=ap + —=a
2= 500, a3 = Gdo T Ly, (4= 5o do 12 5= 30% T 150

It seems not possible to find a general form the the series solution. Nevertheless, we have

(-1 (@-1° (@-1' (@-1°
y:ao[l—l— S R R +}
—i—al[(x—l)—l—@_(il) +(x121) +(x1_201) +]

7.4 Series Solution Near an Ordinary Point: Part II

There is another way to computed the coefficients ay, of the series solution to ODE (7.2). The idea is
to differentiate the equation (7.2) k-times and then evaluate at an ordinary point x so that y*+2) ()
can be obtained once y(j)(a:o)’s are known for 0 < j < k+ 1. To be more precise, we differentiate
(7.2) k-times and use the Leibniz rule to obtain that

k—1
P(Io)y(k—i-Q) Z Ck?P(k 7) ( J+2) Z Ck ) 1+j)(1’0) + R(k_j)(l'o)y(j)(l’o)) — 0;
7=0
thus
k41 ' k41 _ 4
Po)y 2 ( Z C«k B=3%2) (10)y D () — Z C]/f?_lQ(k—j-‘rl)(xO)y(J)(xo)
j=1

— Z Cj’?R(k_j)(xo)y(j)(xo)
= —[kP’(z0) + Q(20)]y* ) (x0) — [Q¥) (wo) + kR (w0) ]y (x0) — R™ (w0)y(x0)

k
= D (O PE (@g) + O, QU (ag) 4+ CFRE (o)) (o)
j=2

(k+2)
The recurrence relation above can be used to obtain the coefficients a, o = y(lﬁ—(;)?) of the series
o0
solution y = > ag(z — 20)* to (7.2) once y**1(xy), -+, f(xo) are known.
k=0

Example 7.24. Find the series solution about 1 of Airy’s equation y” — xy = 0.
o0
Assume that the series solution is y = Y. ag(x — 1)*. First, we know that y”(1) —y(1) = 0. Since

k=0
"
1 . .. . . .
Y 2( ) = %. Differentiating Airy’s equation k-times, we find that

y(1) = ao, we know that a; =
gk gy ) (=1 — .

thus

(k +2)lars = y* 2 (1) = y® (1) + ky™ D = Klag + k(k = 1)lay = k!(ax + ax1) .

Therefore, (k + 2)(k + 1)ag2 = ag + ax—1 which is exactly what we use to obtain the series solution

about 1 to Airy’s equation.



7.5 Cauchy-Euler (Equi-Dimensional) Equations

In this section we consider the Cauchy-Euler (or simply Euler) equation
Lly)(z) = 22" + azy’ + By = 0. (7.4)

Note that xy = 0 is a regular singular point of (7.4).

Assume that we only consider the solution of the Euler equation in the region x > 0. Let
2(t) = y(e!). Then 2'(t) = y'(e')e! and 2" (t) = y”(e)e* + y'(e!)et which implies that y”(ef)e? =
2"(t) — z'(t). Therefore,

2"(t) + (a—1)2'(t) + Bz(t) = 0. (7.5)

This is a second order ODE with constant coefficients, and can be solved by looking at the multiplicity

and complexity of the roots of the characteristic equation
P+ (a—1)r+3=0. (7.6)
We note that (7.6) can also be written as r(r — 1) +ar+ 8 = 0, and is called the indicial equation.

1. Suppose the roots of the characteristic equation are distinct real numbers r; and 5. Then the

solution to (7.5) is z(t) = Cre™* 4+ Cye™"; thus the solution to the Euler equation is
y(x) = Cre™ 108" 4 Che '8 = Cia™ + Coa™ .
2. Suppose the characteristic equation has a real double root r. Then the solution to (7.5) is
z(t) = (Cit + Cy)e™; thus the solution to the Euler equation is
y(x) = (Cylogz + Cy)e 8% = (C logx + Cy)x" .
3. Suppose the roots of the characteristic equation are complex numbers v, = a+bi and o = a—bi.

Then the solution to (7.5) is z(t) = Cye™ cos(bt) + Cae™ sin(bt); thus the solution to the Euler

equation is
y(x) = C1e'8” cos(blog x) + Cre°8* sin(blog x) = C12” cos(blog x) + Cya®sin(blogz) .
Now we consider the solution to (7.4) in the region z < 0. We then let z(z) = y(—z) and find
that z satisfies also satisfies the same Euler equation; that is,
222" +oaxz' + B2 =0.

We can then solve for z by looking at the multiplicity and complexity of the roots of the characteristic

equation, and conclude that
1. Case 1 - Distinct real roots r1 and rs:
y(x) = Cyla|™ + Colz[™.
2. Case 2 - Double real root r:
y(z) = (Cila| + Co)lal" .
3. Case 3 - Complex roots a + bi:
y(x) = Cy|z|* cos(blog |x|) + Cylx|* sin(blog|z]) .



7.5.1 Another way to find solutions to the Cauchy-Euler equations
Assume that the solution is of the form y(z) = z”. Then

2r(r — Da" % + azra” ' 4 B2" = 0.

Therefore, r satisfies the indicial equation (7.5).

1. If the indicial equation (7.5) has two distinct real roots r; and rq, then 2™ and x™ are linearly
independent solutions to the Euler equation. Therefore, the solution to the Euler equation

(when the indicial equation has two distinct real roots) is given by
y(z) = Cra"™ + Coa™ .

a+bi i are

2. If the indicial equation (7.5) has two distinct complex roots a + bi, then x and z%7°

linearly independent solutions to the Euler equation. Using the Euler identity,

atbi

xr _ e(aibi) log x

alogx+tblogxi

=e = 2“[ cos(blogz) + isin(blogz)] ;

thus the general solution to the Euler equation (when the indicial equation has two comnplex
roots) is given by
y(z) = C1a” cos(blog x) + Cya” sin(blog ) .

(0 —1)°
1

a solution to the Euler equation. Suppose that 5 # 0 (so that the equation does not reduces

3. Suppose that the indicial equation (7.5) has a double root 9. Then g = , and T

to a first order one).

(a) The method of reduction of order: suppose that another linearly independent solution is

given by y(z) = u(x)z 2" for some function u. Then u satisfies

1-a l—-a—-1—a =3-a
+ ]

21, n, iz ’
1
?lu"z= + (1 —a)u'z™2 5 5T’
—a ]_ — —l—« - ]. 2 —
—i—ozx[u’xlT—i- e }+(a4 ) ur e =0
which can be simplified as
zu”" +u' =0.

Therefore, u'(x) = ¢ which further implies that u(z) = C'logx + D. Therefore, another
x
solution is given by z log x.
(b) Let w(r,z) = z". Then L{w(r,-)](z) = (r — ro)*z" for all » # 0. Taking the partial

derivative with respect to r variable, we find that

0 0 [ 0w ow  (a—1)2
—Lfu(r, () = < [:c e tarl 4

w| =2(r—ro)z" 4+ (r —ro)z" logx.



. . . . . 03
Since the mixed partial derivatives are continuous for all x,r # 0, we find that Yo

5 e » orox?
w w w
ox2or and ordox  Oxor’ thus
0 5 03w ?w  (a—1)%0w
0= or r:roL[w(T’ Niw) = [m ox20r + Omé’:z:ar + 4 W] (ro, )
ow

= L[E(ro, )} (x).

Jw

In other words, = (10, -) is also a solution to the Euler equation. Since ?:(r, x) =x2"logx,

we find that another linearly independent solution to the Euler equation (when the indicial

equation has a double root) is given by x™ log z.

7.6 Series Solutions Near a Regular Singular Point: Part I

Suppose that zg is a regular singular point of the ODE
Px)y"+Q(z)y' + R(x)y =0 T > Tp; (7.2)

that is, P(z¢) = 0, and both limits

. x , R(x

(e apgy o dm oy
. . — (o Q(z) _ . eR@) : .
exist. Suppose that the functions p(z) = (z xO)P(:n) and ¢(z) = (v — zo) P) are analytic at zo;

that is,
Q@) _ < k 2 R(r) < k
_ _ _ d _ - _
(x IO)P(m) I;)pk(x x0)" and (x — xp) P) kz:](]qk(x xg)
32

in some interval (zg — R,xo + R). Then by multiplying both side of (7.2) by (:CP(;C;)), we obtain

that
(2 — 20)*y" + (x — zo)p(2)y’ + q(2)y

= (z — 370)2?// + (2 — ZBO)( i (T — $0)k>y’ + <§: qr(z — $0)k>y 0. (7.7)
k=0 k=0

We note that if xo = 0 and pp = ¢, = 0 for all £ € N, the equation above is the Euler equation

22y 4+ poxy’ + qoy =0 (7.8)

that we discussed in previous section. Therefore, for x near 0, it is “reasonable” to expect that the

solution to (7.7) will behave like the solution to the Euler equation

z*y" + pory’ + qoy = 0.

The idea due to Frobenius of solving (7.7) is that the solution of (7.7) should be of the form z" times
an analytic function.
To be more precise, the method of Frobenius provides a way to derive a series solution to (7.2)

about the regular singular point xg:



1. Suppose that a series solution can be written as

a0 ee]
y(z) = (v — z0)" Z ap(x — x20)* = Z ap(x — x20)"
k=0 k=0
for some r and {ax};", to be determined. Substitute y into (7.2) to obtain an equation of the
form
Ao — 20) ™ + Ay(z — 20)" T + Ag(z — 20) T2 4 = 0.
2. Set Ay = Ay = Ay = --- = 0. Note that Ay = 0 should correspond to the indicial equation

Firy=r(r—=1)+por+q =0,

. x . R(x
where py = $1Lr]ar:10(x — Tp) ggm; and gy = zlggo(x - $0)2PEJ;;.
3. Use the system of equations Ag = A; = Ay = --- =0 to find a recurrence relation involving ay,
and ag, Ay, -« 5 Ag—1-

W.L.O.G., we can assume that zyp = 0 (otherwise make a change of variable T = = — ), and

only focus the discussion of the solution in the region x > 0. Due to the method of Frobenius, we

look for solutions of (7.7) of the form

0 0
=z’ Z apz® = Z arz™ x>0, (7.9)
k=0 k=0

where qg is assumed to be non-zero (otherwise we replace r by 1+ r if a; # 0). Since

0¢]

o0 0
"(z) = ra"* Z apz’ + 2" Z kapz® ! = Z(k + r)agzt !
- — k=0

and accordingly,

y"(x) = Z(k +7)(k+ 71— Daga® 2,

k=0
we obtain
= o0
l;)(k—irr)(k—l—r—l Japz* T + (Zpkx )(kz_o (k + r)apz” ) (qux )(l;)akxm ) —0,

or cancelling x",
0¢] o0 0¢] 0
Dk +r)(k 47— D+ (Y peat) (D + r)ana) + (Z art) (Y ma*) =0
k=0 k=0 k=0 k=0

Using the Cauchy product, we further conclude that

o0 k

Z(/{;—i—r)(k:—l—r—lakx —i—i(i]—l—r )a;jpi— J>x +Z<qu Jaj>x =0.

k=0 k=0  j=0 k=0 ;=0



Therefore, we obtain the following recurrence relation:

k k
(k+7)(k+7—Dar+ Y +r)ape; + Y qr—ja; =0  ¥keNuU{0}. (7.10)

=0 =0
Therefore, with F' denoting the function F(r) = r(r — 1) + rpo + qo, we have

k—1
F(?‘ + k)ak + Z [(] + T)pk_j + qk_j] a; =0 VkeN. (7.11)
7=0

The case k =0 in (7.10) induces the following

Definition 7.25. If x4 is a regular singular point of (7.2), then the indicial equation for the
regular singular point x is

r(r—1)+por+gq =0, (7.12)

where py = :Blirrwlo(x - xg)ggg and qo = a}ifgo(x - xo)Qﬁgi;.

called the exponents (indices) of the singularity z.

The roots of the indicial equation are

Now assume that rq, 79 are roots of the indicial equations for a regular singular point x;.

1. If r1,r9 € R and 71 > 7. Since F only has two roots, F'(k + r1) # 0 for all £ € N. Therefore,
for r = ry, (7.11) indeed is a recurrence relation which implies that a; depends on ag, - , a1

and this, in principle, provides a series solution

y1(z) = 2™ [1 + i akyl)xk] (7.13)

=1 9

to (7.7), in which ag(r1) denotes the coefficients when r = r;.

(a) If in addition 75 # r and 11 — ro ¢ N, the F(k + ry) # 0 for all & € N; thus for r = ry,

(7.11) is also a recurrence relation, and this provides another series solution

(@) =214 ) W00 (7.14)

=1 0

(b) If 1y =79 or r; — r9 € N, we will discuss later in the next section.

2. If rq,ry are complex roots, then 11 —ry ¢ N and F(k+ 1) # 0 for all k£ € N for r = 1, ry. Since

2t = 2% 2 = 298" = 2% cos(blog ) + isin(blogz)]
(7.13) and (7.14) provide two solutions of (7.7) or equivalently, the general solution to (7.2) in
series form is given by

0

y(z) = Ci(z — 39)* | cos(blog(z — x)) + isin(blog(z — zo))] Z ap(ry)(z — 20)F

+ Co(x — 20)" [ cos(blog(z — x0)) — isin(blog(z — x))] Z ar(re)(z — ).
k=0



In the following discussion, we will only focus on the case that the indicial equation has only real

roots.

Example 7.26. Solve the differential equation
22%y" —wy'+ (1 +2)y=0 x>0. (7.15)

We note that 0 is a regular singular point of the ODE above; thus we look for a series solution to

the ODE above of the form .
xr)=a" Z arz® .
k=0

Then r satisfies the indicial equation for 0
2r(r—1)—r+1=0

1
which implies that r =1 or r = 3 Since

0 0
y'(x) = Z(k +r)arz™ ™t and  y”(x) = E(k +7)(k+r— Dagz" 2,
k=0 k=0
we obtain that
0 0
2 2k +7)(k+7r—1)— (k+7r) 4+ 1apz™" + 2 apx™ T =0
k=0 k=0
or cancelling z",
0¢] o0
DU+ r)(k+r—1) = (k+7r)+ az* + > ap12® =0,
k=0 k=1
Therefore,
a1
—_ — k N-
i 2k+r)k+r—1)—(k+r)+1 vhe
_ 1. _ Gk
1.r=1: a, = RETEY) for all £ € N. Therefore,
a — — k-1 _ ak—2 _ ak—3
k E(2k+1)  k(k—1)(2k+1)(2k —1) k(k —1)(k —2)(2k + 1)(2k — 1)(2k — 3)
B (—1)* - (2k)(2k —2)(2k —4) - - 2(—1)’“@ _(—1)R2F "
TREECE+DRk—1)---1° k!(2k 4+ 1)! O Qk+1)
0 )ka
This provides a series solution y;(x) = Z ) ! whose radius of convergence is .
L ak
2. r = 3t = Kok —1) for all k£ € N. Therefore,
a — — ag—1 _ ag—2 _ ag—3
k kE(2k—1)  k(k—1)(2k—1)(2k — 3) k(k —1)(k —2)(2k — 1)(2k — 3)(2k — b)
(=1)* (D" (2k)(2k —2)---2  (=1)*2"
— ag = agp — agp -
E'(2k —1)(2k—3)---1 k!(2k)! (2k)!
1)’f2’f

0
l
This provides a series solution ys(z) = 3] (= *2 whose radius of convergence is 0.



Therefore, the general solution to (7.15) in the series form is y = Ciy1(x) + Caya(z).

Example 7.27. Find a series solution about the regular singular point x = 0 of

(x4 2)x 2y”( )—zy'(z) + (1 +2)y(x) =0, x>0.
1+
Let p(x) = R and ¢(z) = m. Then
1 1 1 © (—J])k © (_1)k+lxk 1 © (_1>k’+1xkz
R T I AP
1— - k=0 k=0 k=1
T +1 1 1 O (—DFrE 1 G (—1)R gk
q()=$+2: D) —le_Z ok+1 _§+Z ok+1
1 k=0 k=1
_1)k+1
Therefore, (pg,qo) = (— , ), and pr = qi ST for all k € N. The indicial equation for 0 is
1 1
) Zpa-—0
r(r—1) 5" + 5

1
which implies that r =1 or r = 3

Q0 0
1. r = 1: Suppose the series solution to the ODE is y = z Y. apz* = >} aza*™. Then

k=0 k=0
0 0 0
(z + 2)2? Z(k + Dkaga™ — 2 Z(k + Dagz® + (1 + 2) Z arpz™ =0
k=0 k=0 k=0
0 0
= Z(k:2 + k+ Daga®™? + Z(2k2 + E)apz"tt =0
k=0 k=0

= i (Kk — 1)+ (k= 1) + ap_1 + (2k* + k)%)x’““ —0.

k2 —k+1
Therefore, a; = —m ar—1 for all k € N. Note that
lim |2 | = g [T 1( -
k—oo lag_q kS /{: (2k+1

thus the radius of convergence of the series solution y = Z apxFtt is 2.
k=0

1 : . , S -
2. r= 5 Suppose the series solution to the ODE is y = z2 > aprh = 3] agz™*2. Then

k=0 k=0
- 1 1 1 O 1 1 0 . 0 .
(z+2) Z (k+ 5) (k— Q)a’foE - Z (k+ §>ak$k+§ + Z aprtter + Z apz’tz =0
k=0 Py = P,
)Gk$k+2 + Z (2k* — k)akx“% =0
k=0

(K +3
(k-

Therefore, ap = —

0]
k=0
0 3 .
- ’;) D25 )aps + (2K k)ak)x“a ~0.

(k—1)2+3/4

K2k — 1) ax—1 for all k € N. The radius of convergence of this series

solution is also 2.



7.7 Series Solutions Near a Regular Singular Point: Part II

Suppose that r; and 7, are the roots of the indicial equation for a regular singular point. In this
section, we discuss how a linearly independent solution ys is obtained if 1 — 7, € N U {0}. In the

following, we let A/(r1, r9) denote the discrete set
N(ri,ra) ={r —k|r=ry or ra,k e N}.

Then F(k + 1) # 0 for all k€ N and r ¢ N (ry,72); thus for some given ag the recurrence relation
k—1
F(k+r)ag(r) = — Z (G + r)pe—j + qu—j]a;(r) VkeN (7.16)
=0
can be used to determine a sequence {ak(r)}zo:l.

7.7.1 The case the indicial equation has a double root

Suppose that ry = ro. For r ¢ N (r1,r2), we define

where {ak(r)}zo:l satisfies the recurrence relation (7.16). Then the computation leading to the

recurrence relation (7.11) also yields that

T 0aa (1, ) + ap(2)@u (r, 2) + q(2)@(r, x)

= aoF () + 3 [Pl ran(r) + 3 [G+rIpecs + ais)ag ()] o4

= ag(r — r1)2x” ,

where ¢, and ¢,, denote the first and the second partial derivatives of ¢ w.r.t. z. Differentiating the

equation above w.r.t.r variable at » = r{, we find that

82 P (1, @) + 2p(2)ur (r, ) + q(2) @, (1, 2) = [2a0(r — r1)%2" + ao(r — r1)?2" log z]

r=ri

0 /0 0 _ /0p Lo . . e
If 5 Par = (E)m and 5P = (E)m (which in general is not true since it involves exchange of

orders of limits), then the equation above implies that

2d2 dy d 0y e _

X @(E(rl, )) +$p<$)%(ﬁ(7’1,37)) + q(l‘)ﬁ(ﬁ,x) — 0
In oth ds, assuming that -~ ., = (22) and Lo, = (29) |y = 22(ry, 1) is al Iuti
1 otner words, assulling 12%5\,4331— ﬁ o all EQOT— E I,y—ﬁrl,x 1S alSO a Solution

to the ODE (7.7). Formally, we switch the order of the differentiation in  and the infinite sum to
obtain that

agp r = / k S / k+r
E(rl,x): log = +x1];)ak(r1)x = loga:+kz;)ak(7"1)$ t.



In other words, under the assumptions that

e¢] 0
o _ (0% o _ (0% 7 BN )k
5, P = <E)M’ 5, P = (ar)x and Pl Z ap(r)z" = Z ag(r)x”, (7.17)
k=0 k=0
the function y, given by
o0
ya() = y1(x) logw + > aj ()" (7.18)
k=0

is indeed a solution to (7.7). In general, it is hard to verify those assumptions in (7.17); however, we

can still verify whether (7.18) provides a series solution to (7.7) or not. Let us show that ys given by

Q0
(7.18) is indeed a solution to (7.7) if the radius of convergence of the power series >. aj(r)x*

1s not
k=0
zero. We note that y, satisfies
e¢]
rys(x) = wy{(@) logw + yi(w) + Y (k +r1)ag(r)a*
k=0
0
vy (z) = 2y (z) logx + 2xy’(x) — yi(x) + E(k + 7)) (k+ 7 — Dag(r))a"m .
k=0
Moreover, differentiating (7.16) in r at r = 71, we find that
k k
[2(k +71) — 1] ay(r1) —i—Zpk ja;(r1) Zpkj +71) + qr—jla(r1) =0 VkeNu{0}.
Jj=0 j=0
Therefore, by the fact that y; is a solution to (7.7), we have
*yy +ap(r)y; + q(z)y:
\’:0
= 2%y, (x)logx + 2zy{ (x) — y1(v) + Z(k: +r) (k47— 1)aj(r)az" "
k=0
+ap(a)yi(x)logz + p(x)un(x) + (D i) ( Y0k + ri)af(r)at )
k=0 k=0
+q(x)y ()logx—l—(qua")(Z k+”>
k=0 k=0
0 o0 k
Z (k+m11) —1}@1@ )T gt 4 Z(Z Di—jj f1> ks
0 k
Z( 4+ r)(k+ 71— 1ag(r) Epky +71) + Qi J(L(/Q) Ftr =0
e ¢]
thus yo() is a solution to (7.7) if the radius of convergence of the power series . aj(r)z" is not
k=0

Zero.
Finally, we verify that {y;,y.} forms a linearly independent set of solutions to (7.7) (or (7.2)).

This relies on making sure of that the Wronskian of y; and y, does not vanish. So we compute the



Wronskian of y; and y, and obtain that

W (ZL’) n (ZE) log x + i Gé(rl)xk+rl
Wyr, yol(x) k=0

/ / yl(x) & / k4+r—1
(@) i@ oge + 2 4 3 (k+ m)a(r)e

= U @) Dk ral () — () D af (et

= k=0
- y%g(cx) + ] 2 lar—j(r1) (G + r1)aj(r) = (k = j +r1)ag_;(r1)aj(r)] "+
= 2 (D fastra) + 24 = D) anesr) a2

= [aé + i (i [a;(r1) + (25 — k)a;(rl)}ak_j(h»xk} L2l

Since ag # 0, {y1,y2} is a linear independent set of solutions to (7.7) (or (7.2)).
Example 7.28. Find the first few terms in the series expansion about the regular singular point

xo = 0 for two linearly independent solutions to

v*y" — a2y’ +(1—2)y=0 x>0.

The indicial equation to the ODE above is
r(r—=1)—r+1=0

and it has a double root = 1. With p(z) = —1 and ¢(z) = 1 — z in mind, we have py = —1 and
pr=0forall ke N, and g =1, ¢y = —1 and ¢, = 0 for all £ > 2; thus the recurrence relation (7.11)
for {ak(r)}zc:l is given by

k-1

(k+r—1)%au(r) = — Z (G + PPy + qr—1] aj(r) = a1 (7). (7.19)

For r = 1, with the choice of ag = 1 we have

1 1 .
ak(l) — ﬁak*1(1> = ma/k72(1> — ... = (k")2 ;

thus a series solution to the ODE is given by

y1(3€) = 33[1 +§:1 (kll)Zxk] _ i (kl!)zxk+1 '

k=0

Moreover, (7.19) implies that

(k+r—1)2a,(r) +2(k+7r — Dap(r) = a,_,(r);



2k

thus k‘2CLé(1) = aléfl(l) — Qkak(l) = aéq(l) - (k12

which implies that

Take ag = 1, we find that
/ !/ 1 3 !/
a;(1) = -2, a2(1):§(_2_1):_17 a3(1):?(—1—6):—@,

Since |a/(1)] < 1 for k > 2 (this can be shown by induction), limsup |a/(1)|* < 1; thus the radius of
k—0o0

0
convergence for the series . a/(1)z*"! is at least 1. Therefore, another linearly independent solution
k=1
is given by
3., 11

e¢]
1
yg(a:)zz e logr 4+ (—22° — =2 — —at + ).
Zi (k12 FRERRTIT

7.7.2 The case that the difference between two real roots is an integer

Suppose that 7 —ro = N € N. Using the recurrence relation (7.16) for r = 7o, by the fact that
F(ro + N) = F(r;) = 0 we cannot find ay(re) so that ayi1(ra), ani2(r2) and so on cannot be
determined. In this case, we note that for each k € N, ax(r) is a rational function of r. In fact, we

can show by induction that

_ Pe(r)
W) = FhrFh—14nFaen N

for some polynomial py(r) (of degree at most k).

N-1
1. Suppose that [(] +7r)pn—j + qN_j]aj(r) is divisible by r —ry = r + N — r;. Since (7.11)
=0
implies that
N-1

(r—ra)(r+ N —ra)an(r) = = > [(j+r)pn—j + qv—j] a;(r) .

=]

<

we can compute ay(r2) by

F

1

[(G +7)pn—j + an—j]a;(r)
. 1 .. j=0
alre) = g an(r) =~ 1, . |

thus the recurrence relation can be used to determine ay1(72), ayi2(r2) and so on. In such a

case, another solution can be written by (7.14) as well.

N-1
2. What if the rational function Y [(j+7)pn—;+qn—;]a;(r) is not divisible by r —r,? Note that
7=0

then (7.16) implies that ax(r) is unbounded as r approaches 1o, and (r — r9)ay(r) is bounded
in a neighborhood of r5. In this case, we let G (r) = (r — r9)ax(r) and

0 0

Y(r,z) = (r —rg)a” Z ap(r)zk = 2" ?ik(r)xk ,

k=0 k=0



where ay(r) satisfies the recurrence relation (7.11). Then
T2 (1, ) + 2p(2) e (r, 2) + q(2)Y(r, 2) = ag(r — r1)(r — ro)?a”.
Differentiating in r variable at r = ry, we find that
T nar (ra, ) + 2p(2)0r (r2, ) + q(2) (12, ) = 0,

which, as discussed before, we expect that

a o0

k—i—r

i) = £ 00
’ or

k=0
or to be more precise,
e¢] e}
yo(z) = Z ar(ry) 2" log  + Z aj(ry)atr (7.20)
k=0 k=0
is also a solution to (7.7), where ay(r2) = lim ax(r). Note that Go(r2) = 0, and if N # 1, the

recurrence relation (7.11) implies that

=0.

Jim (r —ra)ar(r) = — lim (1 +Fq(;)$”1_) r2)ao

Similarly, for £ < N,

> G+ 7)oy + ar—gla;(r)(r — 72)

Jin(r =) = = iy B -

In other words, @(ry) = 0 for 0 < k < N — 1. Now we consider lim (r — ry)an(r). Since
r—ro
F(r+ N)=(r—mry)(r+ N —ry), we have

go (7 + 7)pr—j + @r—j ] a;(r)

J
r—r9)an(r) = — ;
( 2)ax(r) (r+ N —ry)
thus
N-—
an(ry) = 7}5’%(7” —ry)an(r) Z (J + )iy + qu—j] a;(r2)
N-1
which exists and does not vanish (since Y] [(j+7)pn—;+aqn—;]a;(r) is not divisible by r—ry).
7=0

Then for £ > N, we have

k—1
[(] +7)pr— —j T Qe ]:|aJ (r)(r —12)
R e
k=1 k=1 R
2 [+ 1)pr—j + g ag (r)(r = 12) ,ZN (7 + ra)pr—j + qr—;]@;(r2)
— _ 1 J= _ _]:
R F(k+r) F(k+ 1)
k—N—1
& [(] + 71)Pr—j-N + Qkfij} ajyn(r2)
J:

F(k’—N—FTl)



Let bj = @4 n(r2). Then the identity above implies that the sequence {b;}7, satisfies

k—1
F(k+r) bﬁZ jHr)pE, +aky)b;=0  VkeN.

In other words, {bx};, satisfies the same recurrence relation as {ak(rl)}zozo. By the fact that

ax(r) is independent of ag, we must have — = ar(r1)
agn 0 ao

. As a consequence, (7.20) implies that

ee} o0 0 0
Z Ap(re) 2 log x + Z aj(ry)ahtr? = Z bzt log x + Z aj (ry)ahtr
k=N k=0 k=0 k=0

bo ©¢] a0
== Z ap(r)z" " log x + Z aj(ry)ahtr
% 1= k=0

bo
— —yl( ) log z + Z ezt (7.21)

k=0

(r —ro)ag(r).

where by = lim (r — r9)ay(r) and ¢ = é’i
r—ro r

T=T2
N-1
Remark 7.29. We note that (7.21) is also a solution even if % [(j+7)pn—;+aqn—;]a;(r) is divisible
7=0

N-1

by  —ro. In fact, if Y [(j + r)pn—j + qn—j]a;(r) is divisible by 7 — r5, then by = 0 which implies
§=0

that all by’s are zeros for all k. Moreover, in this case ay(ry) exists; thus

0

Em (r —ro)ag(r) = ax(rs2)

r=ro

C —

which implies that (7.21) agrees with (7.14).
Example 7.30. Find the general series solution about the regular singular point o = 0 of
2y + 3y — 2y =0 x>0.
Rewrite the equation above as
2?y” +3zy’ —2*y =0,
and let p(r) = 3 and ¢(z) = —z% Then 2%y” + zp(z)y’ + q(x)y = 0, where we note that
1. po =3 and p; =0 for all j € N. 2. ¢g=—1,¢;forall je Nu {0} and j +# 2.

The indicial equation of the ODE above is F(r) = r(r — 1) 4+ 3r = 0 which has two distinct roots
ry =0 and ry, = —2.

Using (7.11), we find that {ax(r1)}72, satisfies the recurrence relation

2a:(r1) =0 and k(k+2)ak(r1) — ag—2(r1) =0 Vk=>2.



Therefore, a1(r1) = az(r1) = -+ = ag11(r1) = 0 and

1 1 1

n — n—2 — pd = = ——————————— 4 N’
“n T o2+ 2) "2 T (20 1 2)(2n — 2)2n ! 220l (n 4 1)1 ne
thus a series solution (with ag = 1) is given by
- 1 < 1
TN S N B
22k (K + 1) 22Nk + 1)t

Now we look for a second series solution as discussed above. Note that N = r; — ry = 2. Since

ap = 1, using (7.11) we obtain that

(r+3)(r+ 1ai(r) =0
(k+7r+2)(k+r)ag(r) —ag—a(r) =0 Vk=2.

Therefore,
ar(r) =as(r) =as(r) = =ag_1(r) =0 forr~ —2and ke N (7.22)
and 1
2 = 2)a_ Vk>=2. 7.23
(T+ )ak(r) (]{7+T+2)(k'+’l“) (T+ )a’k Q(T) ( )
We first compute by. By definition,
. Y T _ 1
bO - }LI{IQ(T - T2>aN<T) - rl_l)f£l2<7" + 2)(12(7") - T1_1>I£12 r44 - 2 .

Now we compute c(re). With ax(r) = (r + 2)ax(r), the recurrence relation (7.23) implies that

aox—1(r) = 0 for all kK € N. Moreover,

50(7‘) = (7""2)@0 =r—+2

and for k e N,
s () = : ok a(r) = : fapa(r) =
= ok )2k 1) P T @k v+ 2)(2k + )22k 4 —2) R T
1 N
B (2k+r—|—2)(2k—|—7“)2(2k—|—r—2)2-~-(4+r)2(2+7")a0

1
(2k+r+2)(2k+r)2(2l<;+r—2)2...(4+T)2?

thus
log dioy, (1) = —log(2k + 1 + 2) — 2[log(2k + 1) + log(2k + 1 — 2) + - - + log(4 + 1)] keN.

Differentiating g, at r = —2, we obtain that c¢o(—2) = Go(—2) = 1 and for all ke N,

o 1 1 1 1,7
con(—2) = &L (—2) = —[ﬁ R R B 5)]a%(—z)
—_[i_f_(L_FL_’_..._’_l)} 1
o2k k-1 k-2 171 (2k)(2k — 2)2(2k — 4)2 ... 22
1 1

T2k — 1) (i = 57)




k
1
where Hy = ), 7 is the k-th partial sum of the harmonic series. Therefore,

=1
yo(z) = ly (z)logz +27% — i 1 (H B i)x2k—2

Rl Zi T — 1R 2
_! 2 L5 5 a
- 2y1(x) logz +x T ok g

and the general series solution is given by
y(ﬂ?) = Cl?Jl(-T) -+ ngg(l') = Cl?/1(l‘) + 02 1?/1(1’) lOg.Z' + SCiZ - } . iwg o Lm‘l 4.
2 4 64 1152

We summarize the discussions above into the following

Theorem 7.31. Let xy be a reqular singular point for

(x —20)%y" + (2 — 20)p(x)y’ + q(x)y =0 T > 1,

and let m1,79 be the roots of the associated indicial equation r(r — 1) + p(xo)r + q(xo) = 0, where

Re(r1) = Re(rs).

1. If ry — ry is not an integer, then there exist two linearly independent solutions of the form

o
yi(z) = Z ap(r — x0)* | ag # 0,
k=0
o0
yo(z) = Z b(z — m0)Ft by # 0.

B
Il
o

2. If r1 = 1y, then there exists two linearly independent solutions of the form

00]

y1(z) = Z ap(x — x0)Ft ag # 0,
k=0
o0
yo(z) = y1(x) log(x — o) + 2 b(x — x0)" 172

k=0

3. If ry —ro € N, then there exists two linearly independent solutions of the form

o0
yi(z) = Z ap(r — xo)Ft ag # 0,
k=0
0
yo(z) = Cyp(x) log(x — o) + Z b(x — x0)* 17 by # 0,

k=0

where C is a constant that could be zero.

Example 7.32. Let us use Theorem 7.31 to find solutions

xy” + 3y — 2y =0 x>0



in the form of series about the regular singular point xy = 0.

Following Example 7.30, the indicial equation of the ODE above has two distinct roots r; = 0

and ry = —2. Therefore, by Theorem 7.31 there exists two linearly independent solutions:
ee} o0
n(x) = Z ape®  and  yy(r) = Cyi(z)logz + 2 b2,
k=0 k=0

where {a;}, satisfies the recurrence relation

200 =0 and k(k +2)ar, — ax—2 =0 Vk=>=2
-
22nnl(n + 1)!
Now we determine the constant C' and the sequence {by}7~ . Since y» is also a solution and

and, by taking ay = 1, is given by as, = and asg,—1 = 0 for all n e N.

ys(x) = Cy{(x)logz + Cylim) + Z(k — 2)bpa™ 3

0 0
= Cy,(x)logz + C Z a4 Z(k’ — )bzt 3

k=0 k=0
/ 0
Yy (x) = Cy;'(x)logx + Cylff +C Z Dape®™2 + ) (k — 2)(k — 3)bpa* ™
k=0
e} 0
= Cyl'(z)logx + C > (2k — Vaga* > + Y (k — 2)(k — 3)bpz" ™,
k=0 k=0
we have (with @y = 1 in mind)
0 =zy; +3y; — zys
e} 0
=C ) (2k + 2arz™ ' + > k(k — 2)bpat” Z bea’™
k=0 k=0

00]
=20 — b = bor '+ C Y (2k + Dapa2t + Z [(k 4 3)(k 4+ 1)bgys — ] 2"
k=0 k=0
o0

= —bll‘_Q(QC - bo)$_1 + Z [(k’ + 3)(l€ + 1)bk+3 — bpr1 + C(Qk‘ + 4)ak+1} z*
k=0

Therefore, by = 2C', by = 0 and
(k+3)(k+ 1)brys — b1 + C(2k +4)ag, = 0.

If C =0, then by = 0 for all £ € N u {0}; thus for yo being non-trivial C' # 0. W.L.O.G. we can

assume that C' = % Since ag,_1 = 0 for all £ € N and b; = 0, we find that by,_; = 0 for all k£ € N;
thus

(2n+1)
2n(2n + 2)bapi2 — bay, + C(4n + 2)ag, = 2n(2n + 2)boy 2 — bay + m =0 VYneN.
This implies that

ba 3 b4 5 b 7

bi=g ~ "5 12 192 2304’




and this further implies that

1
yo(x) = §y1(m) logz 4+ 272 + by + bya® + bz + - -

_ (1 2 3 2 T 4 ) ( 1o, 1 4 )
= <2y1(:1c)10g:17—|—x 64£L‘ 2304$ + + by 1+8x + 192x + )

1
We note that y, in Example 7.30 is given by by = ~1 in the expression above.

7.7.3 The radius of convergence of series solutions

The radius of convergence of the series solution (7.9) cannot be guaranteed by Theorem 7.17; however,

we have the following

Theorem 7.33 (Frobenius). If zg is a reqular singular point of ODE (7.2), then there exists at least

one series solution of the form

0

y(@) = (x —20)" ) an(z — )",

k=0

where r is the largest root or any complex root of the associated indicial equation. Moreover, the
series solution converges for all x € 0 < x — xy < R, where R is the distance from xq to the nearest

other singular point (real or complez) of (7.2).

7.8 Special Functions
7.8.1 Bessel’s Equation

We consider three special cases of Bessel’s equation

22y +xy’ + (2 -1y =0, (7.24)

where v is a constant. It is easy to see that x = 0 is a regular singular point of (7.24) since

2 2

) x _ x°—v
limzx - — =1=pg and lim 22 - =12 =yq.
z—0 2 z—0 T2

Therefore, the indicial equation for the regular singular point x = 0 is
r(r—1)4+r—1v2=0

which implies that 7 = +v. The ODE (7.24) is called Bessel’s equation of order v.

To find series solution to (7.24), we first note that in the case of Bessel’s equation of order v,
F(r)=7r?—v? p(x) = 1 (which implies that py = 1 while p; = 0 for all k € N) and ¢(z) = 2* — v/?
(which implies that gg = —v? and ¢ = 1 and ¢z = 0 otherwise). Therefore, the recurrence relation
(7.11) implies that

k-1
[(k+7)* = v*]ax(r) + Z qr—jaj(r)=0  VkeN.



This implies that

[(L+7)? = v?]ai(r) =0 (7.25a)
[(k+7)* = v?]an(r) + ap—a(r) =0  Vk=2 (7.25b)

e Bessel’s Equation of Order Zero: Consider the case v = 0. Then the roots of the indicial
equation are identical: r; = ro = 0. Using (7.25a), a1(r) = 0 (in a small neighborhood of 0) and
(7.25b) implies that

1
a(r) = *W—T)Qak_g(r) Vk =2, (7.26)

thus az(r) = as(r) = -+ = agmy1(r) = -+ = 0 for all m € N. Note that ag,,_1(r) = 0 for all m e N
also implies that aj,, ,(r) = 0 for all m e N.

On the other hand, recurrence relation (7.26) also implies that

1 1

G (r) = W 2m— (1) = 2m+71)2(2m+r — 2)2a2m,4(r)
(1
= as(r)
Cm+7)?2C2Cm+r—2)2---(4+71)?
) (1) .
Cm+r)2Cm+r—2)2 - (44722472 "
thus ag,(0) = Sam (1;') ap and rearranging terms, we obtain that
(=1)™agm(r) _ o)
log - —2[log(2m + r) 4+ log(2m +r — 2) + - - - + log(4 + r) + log(2 + r)] .
0

Differentiating both sides above in r,

aém(r):_[ 1 1 1 1 ]

a2 (1) 2m+r+2m—|—r—2+'”+4+r+2—|—r

and evaluating the equation above at » = 0 we conclude that

(_1)m+1Hm

a’2/m(0> = = magm(O) = 22m(m|)2 aop ,

m
1 . L
where H,, = > —. As a consequence, the first series solution is given by
k=1

< 2k o (—1)Fa
) = Z az;(0)z™" = ag [1 + 2 W} ;
k=0
and the second solution is given by

k—i—le
yg( )— aop |:J0 10g$—|— 2 22k k' k ] :

where Jy = ag 'y, is called the Bessel function of the first kind of order zero. We note that
y1 and y, can be defined for all z > 0 since the radius of convergence of the series involved in y; and

Yo are infinite.



Any linear combinations of y; and y, is also a solution to Bessel’s equation (7.24) of order zero.

Consider the Bessel function of the second kind of order zero

Yo(a) = 2

™

1
(@) + (7~ log2)o(w)| (7.27)
0
where v = ]}im (Hy —logk) ~ 0.5772 is called the Euler-Mdscheroni constant. Substituting for
—0
Yo in (7.27), we obtain

Yo(z) = %[(7 + log g) Jo(z) + i %x%} , z>0. (7.28)
k=1

A general solution to Bessel’s equation (7.24) of order zero then can be written as

e Bessel’s Equation of Order One-Half: Now suppose that v = % (thus r; = % and ry = —%)

To obtain solutions to Bessel’s equation (7.24) of order one-half, we need to compute the coefficients

ai(r) for all k € N (given ag), and by = lim (r —rg)ai(r) as well as ¢, = ;T (r —ro)ag(r).
r—-—3 T=r2

Using (7.25b), we find that

-1 —1

() = . Vk>2,
ar-2(r) k+r+Hk+r—H" 2(r)

ag(r) = (

k+r)?2—1

while if r ~ r; = %, (7.25a) implies that a;(r) = 0 which further implies that az(r) = as(r) = -+ =
agm—1(r)=---=0forallme Nifr ~ % In particular, we have
1 —1)™a 1

thus a series solution of (7.24) is

0 k 2k 0 k .2k+1 :
1o (1) i (D) sin
€T) = anx? — = anxr 2 = .
n(@) = ao kzzo 2k + 1)~ kzzo Qk+ 1)

The Bessel function of the first kind of order one-half is defined by (letting ag = \/% in

the expression of y; above)
2sinx 2
Ji(x) =4 — =A/—sinz.
%( ) T AT T

Now we compute the limit of (r — rq)ai(r) as r approaches ry. Since (7.25a) implies that (r +

)(r + %)al(r) =0, we have (r —ry)ay(r) =0 for all r ~ ry = 5 Therefore,

3
2

bo = lim (r — r9)as(r) =0
roTY

which implies that there will be no logarithmic term in the second solution yy given by (7.14).



Now we compute 2 (r — ro)ag(r). Since
or r=ro

-1
@Cm+r+3)2m+r—3
(=n"

= a
Cm+r+3)2m+r—3) - 2+r+3Q2+r—3) 0

_ = o
Cm+r+H2m+r—3)-(r+3)(r+32)

Ao (1) =

) agm_Q(T’) =

which implies that |aJ,,(r2)| < 0. Therefore,

0 (=D™

Com(12) = (r —r9)ag,(r) = agm(re) = Wao.

57" r=ro

On the other hand, using (7.25a) again, we find that a;(r2) is not necessary zero; thus we let a;
be a free constant and use (7.25b) to obtain that

(=D"
2m+1+r+HCm+1+r—3)- - B+r+HB+r-1)

CLQm_H(’f‘) = ( aq .

Since |ag,,,1(r2)| < o, we find that

0

Com+1(12) = a (r = r2)agmy1(r) = asm(r2) = %al .

r=r2

Therefore,

0

— ktra _ .—% < (=™ 2%k C (—1)k ok-1] _ COSZ sinz
y2(x) kZ_Ock(rg)m T [a()l;l (Qk)!x +a1];1—(2k_1)!a: aoﬁ +a1\/§.

This produces the Bessel function of the second kind of order one-half

and the general solution of Bessel’s equation of order one-half can be written as y = C1J 1 (x) +
Cz:]i%(l')
e Bessel’s Equation of Order One: Now we consider the case that v = 1 (thus r; = 1 and

ro = —1). Again, we need to compute {ak(rl)}zo:l, }L%(T—rg)ag(r) and ¢ (o) = e, (r—ro)ag(r).

Note that (7.25a) implies that a;(r;) = 0 (which implies that ag,—1(r1) = 0 for all m € N).

Moreover,

-1 1
Ao (11) = ( Azm—a(T)

om 3 22m 2 = G D @mem —9)
(=™ (=™

T Gmr2)@2m)em — 4242270 T 2w 1 )il O

thus . .
_ =D
wlw) = aokaO 2k + Dk



Now we focus on finding by and {ck(m)}fzo. Note that by (7.25a),

F(2+r)as(r) = —aop;

1 . . . - . . o _@
N+ 3) which implies that by = Thj% (r —ry)ay(r) = o
To compute {ck(Tz)}ZO:O, we first note that (7.25a) implies that a,(r) = 0; thus we use (7.25b) to

conclude that ag,,_1(r) = 0 for all m € N and r ~ ry. This implies that o, _1(r2) = 0 for all m € N.

thus (r 4 1)ag(r) = —

On the other hand, for m € N and r ~ o,

(=D
Cm+r+1)2m+r—1)2---(r+3)>2(r+1)

a2m<r) - Qg ;

thus
=

Cmtr+D)@2mtr—12(r13)2"°

(r —ro)ag,(r) =

Therefore, using the formula d%f(r) = f(r)d% log f(r) if f(r) > 0, we find that

)= s e L

(2m)(2m —2)?-.. 22 2m+r+1+2m—|—r—1+m+r+3
(_1)m+1a0 1 9 2]

22m—1m!(m—1)![%+2m—2+”'+§

(—1)™*lay 11 2 2} (=)™ (Hy + Hins)

~ 2mml(m — 1)! [m L 22mm|(m — 1)

agp -

9
or

(r — r9)ag = ag. Then the second solution to Bessel’s equation of order
r=ro

Moreover, cy(ry) =

one is

b 0 e 6}
yo(z) = a—0y1 (z)log z + Z cr(ry)a™ = —Jy(x)loga + 7 [ao + Z C2k(7’2)l’2k:|
0 k=0 k=1

i "(Hy + Hy1) 2k]
R T

1
:—Eyl( x)logr + — [

This produces the Bessel function of the first kind of order one:

~
S
I

1 T (—1)* 2k
s =5 kzzo 2% () + 1)1k

and the Bessel function of the second kind of order one:

2

Yi(z) = - [— yo(z) + (v — logQ)Jl(x)] ,

where 7 is again the Euler-Méscheroni constant. The general solution to Bessel’s equation of order
one then can be written as

e The General Case: In general, we have the following



Definition 7.34 (Bessel’s function of the first kind). For v > 0, the Bessel function of the first
Q0

kind of order v, denoted by J,,, is defined as the series solution Y. ax(v)z**" to the Bessel equation

k=0
of order v
2" +ay' + (2 — 1)y =0 (7.24)
with a specific ag(v) = F(V‘il)?’ where I' : (0,00) — R is the Gamma-function. In other words,
the Bessel function of the first kind of order v is the series solution to (7.24) of the form J,(z) =
z¥ F(Vil)? + 121 ak(u)xk] .

For J,(z) to be a solution to (7.24), the coefficients {ax(v)}72; must satisfy (7.25) (with r = v)
and this implies that

F(1+v)a(v)=0,
=0

Fk+v)ar(v) + ag—o(v) Vk>=2.

Therefore, we conclude that a;(v) = 0 and

-1 1
P | Py T jae-2(v) - VE>2;

() =7 Kk 20)

thus agm,41(v) =0 for all m e N U {0} and
1

ag (V) = 2k (2k + 2v)(2k — 2)(2k — 2 + 2v) ag-a(V) = -+
_ (—=DF
T ok(2k —2)(2k —4) 22k + 20)(2k + 20— 2) - (2 + 20) (7.29)
(—1)F 1

Tkt ) (k+rv—1)---(v+1) Tw+1)2
Using the property that I'(z + 1) = 2I'(z) for all x > 0, we find that
(k+v)k+v—=1)--v+1DI'(v+1)=T'k+v+1);
thus

(=DM (w+1) 1 B (—1)*
2Nk +v+1) T(v+1)2r 2k (k+v+1)°

Clzk(ll)

Therefore,

o a0
_ (_1)k 2%k+v _ (_1)k Ty
JV(x)_]§022k+uk!F(k+y+1)x _I;)k!F( +y+1)(2> '

A second solution may be found using reduction of order, but it is not of the same form as a
Bessel function of the first kind. Therefore, we refer to it as a Bessel function of the second
kind, which is also known as a Neumann function or Weber function.

When 2r ¢ N, discussion in Section 7.7 shows that

ya(z) = Z an(—V):E%_”
k=0



is a linearly independent (w.r.t. J,) solution to Bessel’s equation of order v, where ag(—v) is given
by (7.29). Let I' : C\{0,—1,—2,---} — C be the analytic continuation of I' : Rt — R satisfying

['(z41) = 2I'(2) for —z ¢ N U {0} (and 1/T'(z) = 0 for all —z € N U {0}). The function J_, is the
1

function yo with the choice of ag = m; that is,
J_ ( l)k x2k—u )
— KIT(k—v+1)

We note that when v € N U {0}, using the property that 1/I'(z) = 0 for all —z € N U {0}, we have

1)k+u

I Z E!'T(k ( —1)1/—1—1)<2)2k = Z k:—i—(l/)'F(k:—l—l)< )QHV

( 1)k 2k+v ,
- — KIT k+u+1)<2> = (D)% (@).

Definition 7.35 (Bessel’s function of the second kind).

1. For v ¢ N U {0}, the Bessel function of the second kind of order v is the function Y,

defined as the following linear combination of J, and J_,:

cos(vm)d,(z) — J_,(x) ‘

sin(v)

Y, (x) =

2. For m € Nu {0}, the Bessel function of the second kind of order m is the function Y,,
defined by

Yo(z) = lim cos(vm)d,(x) — J_,(x) .

v—m sin(v)

e Properties of Bessel’s functions: Here we lists some properties of Bessel’s functions.

1. Some recurrence relation: Using the series representation of Bessel’s function .J,, it is not
difficult to show that .J, satisfies

d v v d —v _ —v
L @) = 2 (0), L ) = " dyae).
Jyr () = g (@) — Joa(a), V1 (2) = Ty () — 27)(2)

2
J, () ~ W—cos(x—%—%) x> 1,
Y, () 2 ( VT 7T) 51
() ~ | —sin (2 — — — =
x —sin(z———7) @



8 Matrix Methods for Linear Systems

8.1 Introduction

There are several reasons that we should consider system of first order ODEs, and here we provide

two of them.

1. In real life, a lot of phenomena can be modelled by system of first order ODE. For example,

the Lotka-Volterra equation or the predator-prey equation:
p'="p—apq,
¢ = Bq+dpq.

in Example 1.9 can be used to described a predator-prey system. Let € = (z1,22) = (p, ¢)T and
F(t,z) = (yo1 — ax 2o, frs + 0x179) . Then the Lotka-Volterra equation can also be written

z'(t) = F(t,z(t)). (8.1)

2. Suppose that we are considering a scalar n-th order ODE
y () = f(ty(t),y' @),y V(@)

Let 2,(t) = y(t), z2(t) = y'(t), - -, 2n(t) = y™ D (t). Then (zy,--- ,x,) satisfies

8

z(t) = f(t, 21 (t), 22(t), -+, xalt)). (8.2d

Let = (21, -+ ,7,)T be an n-vector, and F(t,x) = (:BQ,:vg, oo T, ft g, e, ,xn))T be a

vector-valued function. Then (8.2) can also be written as (8.1).

Definition 8.1. The system of ODE (8.1) is said to be linear if F is of the form
F(t,z) = P(t)x+ g(t)

for some matrix-valued function P = [p;(t)] . (8.1) is said to be homogeneous if g(t) = 0.

nxn

Example 8.2. Consider the second order ODE
" !/ .
y" —y' — 2y =sint. (8.3)

Let x1(t) = y(t) and x5(t) = y'(t). Then & = (2, 22)T satisfies

2(t) = B ﬂ m(t)+{ ¥ } . (8.4)

sint



Therefore, the second order linear ODE (8.3) corresponds to a system of first order linear ODE (8.4).
Review: to solve (8.3), we use the method of variation of parameters and assume that the solution

to (8.3) can be written as
y(t) = ui(t)e* + ug(t)e ™,

where {€?' e~} is a fundamental set of (8.3). By the additional assumption w;(t)e* + uj(t)e™" = 0,

we find that
e et fu] |0
2e%  —e | |us| ~ |sint|
Therefore, with W (¢) denoting the Wronskian of {€*,e~*}, we have
1 0 et —e“tsint 1
/ _ - - - -2t _:
uy(t) = W@ det ( [sint —e‘t] ) 3 3¢ sin ¢

and 1 2t 0 2t o3 t 1
Fo e _etsing 1,
uy(t) = W det < {262,5 sin t} ) =34 =3¢ sint
which further implies that a particular solution is

2¢ %sint + e *cost ,, ecost—e'sint _,

t) = —

2sint + cost cost —sint B cost — 3sint
15 6 N 10 '

This particular solution provides a particular solution to (8.4):

cost — 3sint

2(t) = {y(t)] _ 10

_sint+3008t
10

Example 8.3. The ODE
, 11
x' = { 41l (8.5)
is a system of first order linear homogeneous ODE. Suppose the initial condition is given by x(0) =
(710, 96’20)T-

1. Let © = (z1,22)T. Then

(t) + 22(t) (8.6a)

QZ{(t) =T )

(1)

Note that (8.6a) implies z9 = x{ — x1; thus replacing x5 in (8.6) by z3 = x{ — x; we find that
x — 2y =dx; + 2 — 1y or  zy —2x]—3r;=0.

Therefore, z;(t) = C1e3* 4+ Cye™ and this further implies that z5(t) = 2C1€3 — 2Cye™; thus

the solution to (8.5) can be expressed as

o(t) = B;Eg} o) H 4 [_12] et



2. Let @y, (k) ~ z(kh) = (x1(kh), z2(kh))T be the approximated value of x at the k-th step. Since

z((k + 1)h) ~ x(kh) + h {

11

4 1} (k) ,

we consider the (explicit) Euler scheme

and we expect that for ¢ > 0 and

11
4 1

[t = (10 ]y 1)) 1

k =t/h, then x,(k) — x(t) as h — 0.

g

K

To compute the k-th power of the matrix Id+h [le ﬂ , we diagonize the matrix and obtain
that ) .
ld+n [111 1| = {t%h 1ﬁh] - {—12 é] th lf?)h} {—12 ;] !
thus __ . .
CEN P D e | e |

As a consequence, using the limit

(1—h)t — e and (14 3h)% — €3 as t — 0, we find that

L i [1 10fet 011 117 [
2(t) = Jim 2 () = {—2 2] {0 6‘4 {—2 2} L;QO
11 1) et 072 —1] [ew
4|2 2] [0 €M [2 1] |z
1 [ 2e7t 4+ 2¢% —et %] [x4
T4 | et 4e¥ 2e7! +2e% | wg
_ 1 [ 2x10 + w20 o5t 1 2r19 — X0 et
4 _4$10 + 2299 4 | =410 + 2799 '

Choose xy = (1,2)T and z, = (1,

are both solution to (8.5).

—2)T, we find that

Remark 8.4. For a,b,c,d € R being given constants, suppose that x; and x, satisfy the system of

first order linear ODE

xy = axy + bxy,

xy = cxy + das .

Using (8.7a), we have bxy = x{ — axs; thus (8.7b) implies that z; satisfies

z; — (a+ d)z{ + (ad — bc)x; = 0.

We note that the characteristic equation for the ODE above is exactly the characteristic equation of

b

i

the matrix [Z



Moreover, suppose that A\; # A\ are distinct zeros of the characteristic equation, then
T (t) = Cleht + 026/\2t .
Similarly, zo(t) = CseM! + Cye?t for some Cs, Cy satisfying

MC1eMt 4+ X Che??t = (aCy 4 bC3)eM! + (aCy 4 bCy)et?t |
M CseMt 4 X Che™?t = (cOy + dC3)e™! + (cOy + dCy)e?t .

Mt ert) are linearly independent, we must have that Cy, Cy, C3, Cy satisfy

AR R IR

In other words, (Cy,C5)T and (Cy, Cy)" are the eigenvectors of [Z

Since {e

Z} associated with eigenvalues

A1 and Ao, respectively. Therefore,

CeMt +C’2@A2t} _ {Cl} ity [Cg

_ Aot At Aot
z(t) = [Cgeht + Cye?! Cs C’J e = meT + wpe

where u; = (C1, Cs)" and uy = (Cy, Cy)7T.

8.2 Basic Theory of Systems of First Order Equations
Similar to Theorem 1.24, we have the following

Theorem 8.5. Let g = (219,20, "+ ,Tno) be a point in R™, V < R™ be an open set containing xy,
and F : (a, ) x V — R" be a vector-valued function of t and x such that F = (Fy,--- , F,) and the

63:]-
te(to—h,to+h) S (o, ), there exists a unique solution T = @(t) to the initial value problem

partial derivative is continuous in (a, B) x V for alli,j e {1,2,--- ,n}. Then in some interval

x' = F(t, x) x(to) = o . (8.8)
Moreover, if (8.8) is linear and V = R", then the solution exists throughout the interval (., ().

The proof of this theorem is almost the same as the proof of Theorem 1.24 (by simply replacing

| - | with | - |gn), and is omitted.

Theorem 8.6 (Principle of Superposition). If the vector @, and xo are solutions of the linear system

' = P(t)x, then the linear combination c1x, + co®2 is also a solution for any constants c; and cs.

Example 8.7. Consider the system of ODE

2 = [411 ﬂ . (8.5)

3 —t
and note that z;(t) = [2663,5} = B} et and xy(t) = [_626_15} = l_g} e~ are solutions to this ODE;

so-[r-i - e

that is,



and
S | A o

Therefore, y = ;@ (t) + coxo(t) is also a solution to (8.5).

Theorem 8.8. Let M,,«,, denote the space of nxn real matrices, and P : (o, B) — My xn be a matriz-

valued function. If the vector-valued functions @y, s, -+ ,x, are linearly independent solutions to
z'(t) = P(t)z(t) (8.9)
then each solution x = ¢(t) to (8.9) can be expressed as a linear combination of @, --- , @, in exact
one way; that is, there exists a unique vector (c1,--- ,¢,) such that
p(t) =crx(t) + - + cpxy(t) . (8.10)
Proof. By Theorem 8.5, for each €; = (0,---,0,1,0,---,0), there exists a unique solution & = ¢, (t)
~—~——
(i — 1) slots

to (8.9) satisfying the initial data x(0) = e;. The set {1, 5, - , ¢, } are linearly independent for

otherwise there exists a non-zero vector (¢y,- - ,¢,) such that

11 (t) + copy(t) + -+ cupy(t) =0

which, by setting ¢ = 0, would imply that (¢1, ¢, -+, ¢,) = 0, a contradiction.
We note that every solution x(¢) to (8.9) can be uniquely expressed by

(t) = 21(0)1 (1) + 22(0)a(t) + - + 2n(0)ep (1) - (8.11)

In fact, x(t) and x1(0)p;(t) + - - - + 2,(0)¢p,,(t) are both solutions to (8.9) satisfying the initial data

2(0) = (21(0), -+, 2(0)) " ;

thus by uniqueness of the solution, (8.11) holds.

Now, since @y, - - - , @, are solution to (8.9), we find that

Span(wlr e 7mn) = Span(%, e 79071) :

Since {x,---,x,} are linearly independent, dim (span(wl, . ,a:n)) = n; thus by the fact that

dim (span(epy, -, %,)) = n, we must have

span(zi, -, T,) = span(@y, -, @,) .
Therefore, every solution & = ¢(t) of (8.9) can be (uniquely) expressed by (8.10). o

Definition 8.9. Let P(t) € M, xn, and @y, - - - , , be linearly independent solutions to (8.9). Then
(@i, -, x,) is called a fundamental set of (8.9), the matrix ¥(t) = [[ml (O]} [z()] i [mn(t)]]
is called the fundamental matriz of (8.9), and p(t) = c1@1(t) +- - - + ¢, @, (t) is called the general
solution of (8.9).



Theorem 8.10. Let P : (a,5) — My, be continuous matriz-valued function, x, be a particular

solution to the non-homogeneous system
z'(t) = P(t)x(t) + g(t) (8.12)
on (o, B), and {x1,xo, - ,x,} be a fundamental set of the ODE x'(t) = P(t)z(t). Then every

solution to (8.12) can be expressed in the form
x(t) = Crxy(t) + Coxa(t) + - - + Crxn(t) + x,(2) .
Theorem 8.11. If ¢y, 5, , ¢, are solutions to (8.9), then
det([[01]  [a] -+ ]
is either identically zero or else mnever vanishes.

Recall Theorem 5.4 that for a collection of solutions {¢1,- - ,¢,} to a n-th order ODE

y™ 4+ D Wy iy +poy =0,

1 Y2 Pn
. . S e d
the derivative of Wronskian W (t) = | . . .| satisfies %W(t) = —pu_1 ()W ()
gOgnfl) (pgnfl) o gO%nfl)
which can be used to show that W (¢) is identically zero or else never vanishes. We use the same idea
and try to find the derivative of the determinant W(¢) = det( [[gol] ey e [cpn]] ).
Proof. Let W(t) = det( [[gol} o] e [cpn]] ), P = [Pijlnxn, and the i-th component of ¢; be wgi);

that is,
T
_|.,M (n)
5] = [%‘ AR & ] '

), using the properties of the determinants we find that

Since gog-i)/ = pik@§k
k=1

1 1 1 . .. « e e n
B R 4 o 2
G-y G-y G pd e§D Y
SOgﬂ)/ SO(ZJ), o QO%J)/ — kzlpjkgpl kglpjk('% AU kzlpjk(pn
wf*” wgf” SRS wa” [ e R R
A SN VR o
1 1
o g ot
'.71 .'71 .;1
(pgj()) (pg()) V’g())
“row operations” j j j
= pier Pies e ot DR | =piW
o o .
I e R 151
PR i




Therefore,

1 1 1 1 1 1
ay ay e e oL R A ol
¥1 2 ¥n 2y (2) 2y (2) (2) (2)
d 90§2) 80;2) S0%2) SO%B) ‘;02(3) 90”63) ¥1 %) Pn
—W = I K2 ) fn’ |+t
dt :
(n—1) (n—1) (n—1)
o ol e ¢ (n) oy Py "y
¥1 P2 Pn ¥1 2 Pn
thus

W(t) = exp (f: tr(P)(s) ds) Wi(to)

which implies that W is identically zero (if W(ty) is zero) or else never vanishes (if W(ty) #0). o

Definition 8.12. If ¢, ¢,, -+ , ¢, are n solutions to (8.9), the determinant
Wigps, e)(t) = det(|[w1]  [a] - [e,] )
is called the Wronskian of {¢,,- - ,¢,}.

Theorem 8.13. Let u, v : (o, 5) — R" be real vector-valued functions. If z(t) = u(t) + iv(t) is a

solution to (8.9), so are w and v.
Proof. Since x(t) = u(t) + iv(t) is a solution to (8.9), «'(t) — P(t)z(t) = 0; thus

0

(t) +iv'(t) — P(t)(u(t) +iv(t)) = u'(t) +iv'(t) — P(t)u(t) — iP(t)v(t)
(t) — P(t)u(t) +i(v'(t) — P(t)v(?)) .

ul
ul

Since u'(t) — P(t)u(t) and v'(t) — P(t)v(t) are both real vectors, we must have
u'(t) — P(t)u(t) = v'(t) — P(t)v(t) = 0.

Therefore, u and v are both solutions to (8.9). o

8.3 Homogeneous Linear Systems with Constant Coefficients
In this section, we consider the equation
z'(t) = Ax(t), (8.13)
where A is a constant n x n matrix.
8.3.1 The case that A has n linearly independent eigenvectors

By Remark 8.4, it is natural to first look at the eigenvalues and eigenvectors of A. Suppose that A has

real eigenvalues Ay, --- , A\, with corresponding eigenvectors vy, --- , v, such that vy, .-, v, are lin-



At

A
early independent. Let A = diag(A1, A2, -+, \y) = ? ' and P = |[vy]:[wvo]: - i [w,] |-

Then A = PAP~! which implies that
x'(t) = PAP 'z(t).

Therefore, with y(t) denoting the vector P~ ax(t), by the fact that y'(t) = Pz’'(t) (since P is a

constant matrix), we have

y'(t) = Aylt). (8.14)
In components, we obtain that for 1 < j < n,

y;(t) = Ny, (t)
if y(t) = (n(t),--- ,yn(t))T. As a consequence, if y(ty) = Yo = (Yo1,"** ,Yon)" is given, we obtain
that the solution to (8.14) (with initial data y(ty) = y,) can be written as

6)\1 (tfto)y()l eAl(t*tO)
6)\2 (t—to) Yo2 6)‘2 (t—to)
y(t) = : = . Yo'

ekn(tfto)yo’n 6/\n(t7t0)

thus the solution of (8.13) with initial data (ty) = @, (which implies that y, = P~ 'xy) can be

written as

e)q(t—to)
6)\2(t—t0)
z(t) = Py(t)=P _ Pz, (8.15)
e)\n(t—to)
Defining the exponential of an n x n matrix M by
1 1 1 o 1
M f— —_— 2 —_— 3 Y —_— k . e —_— k
M =T+ Mo M o o MP e M _kZ::gk;!M ,
(Ait)*
by the fact that (tA)* = , we find that
(Ant)*
TP,
P I ettt
oA —
0 1 eknt
S L
k=0 K-

Therefore, (8.15) implies that the solution to (8.13) with initial data @(ty) = @y can be expressed as

x(t) = Pel"t)Apig, .



Moreover, (8.15) also implies that the solution to (8.13) with initial data x(ty) = @y can be written

as
A (t—to)
eAz(t—to) Yo1
2(t) = |[vi] i+ i[v,] -
ernlt—to) | [Yon
Yo1
— [6A1(t—to)[v1]; ;eAn(t—to)[vn]
Yon
= yor M vy + oo vy 4 gty (8.16)
In other words, solutions to (8.13) are linear combination of vectors {e* =0y, ... ernli=to)y, L

On the other hand, using that tA = P(tA)P~', we have (tA)* = P(tA)*P~'; thus the definition

of exponential of matrices provides that

plt=t0)A _ Z %((t —t)A Z kl (t —to A)kP—l) = P[ Z %((t — to)A)k} P!

Therefore, the solution to (8.13) with initial data @(ty) = xy can also be expressed as
x(t) = et g, (8.17)
We remark that in contrast the solution to x’(t) = az(t), where a is a constant, can be written as
x(t) = et=t0) g

where g = z(t) is the initial condition.

8.3.2 The case that A has complex eigenvalues
Now we consider the system &’ = Ax when A has complex eigenvalues.

Example 8.14. Find a fundamental set of real-valued solution of the system

x = [__1{2 _11/2} . (8.18)

~1/2 1
-1 —1/2

ER RN R

Therefore, Remark 8.4 implies that

1 : 1 . “32cost] . [e ssint
i (t) = |. (71240t — | e’%(cost +isint) = € jfo,s +1 eiz S
7 1 —e"28int e 2cost

We first diagonalize the matrix A = [ } and find that



and

-t _t .
To(t) = [ 1-] e(~1/2=0t = { 1.] e_é(cost —isint) = [ ¢ _cho.St ] —1 {e_f qu

—1 —1 —e 2sint e 2 cost
_t b
are both solutions to the ODE. By Theorem 8.13, ¢, (t) = ¢ _QLCO_St and ¢, (t) = e_j sin are
—e 28Int € 2cost

also solutions to (8.18).

To see the linear independence of ¢; and ¢,, we note that the Wronskian of ¢, and ¢, is

_t _t .
e 2cost e zsint|

W(t) =

—e"2sint e zcost|
which never vanishes. Therefore, {¢;, ,} is a fundamental set of (8.18).

In general, if the constant matrix A has complex eigenvalues r1 = X\ + iy with corresponding
eigenvectors u4. Then

(A—riDur =0 (A-—ruz =0< (A—r:D)uyz =0.

Therefore, u_ could be chosen as the complex conjugate of u,. Let u, = a+tband u_ = a—ib be
eigenvectors associated with r, and r_, respective, where a, b are real vectors. Let x;(t) = u e™!

and x(t) = u_e"'. Then x;, z3 are both solutions to ¢’ = Az since

z(t) =ryu et = (Auy) = Az, (1),

zo(t)=r_u_e "' =e""(Au_) = Axy(t).
On the other hand, using the Euler identity we have

a—i—zb) (Aip)t _

(1) =

+ib)eM (cos pt + i sin pt)

a—ib)e® M = (a —ib)e

(1) =

*(cos pt — i sin ut)

( = (a

= (acos ut — bsmut)e” + i(asin ut + bcosp,t)
( = ( A

( ) At

acos jut — bsin ut)e — i(asin put + bcos ut)e™

Therefore, Theorem 8.13 implies that ¢, () = (@ cos ut—bsin ut)e* and @, (t) = (asin ut+bcos ut)e
are also solutions to &’ = Awx.

Now suppose that A is an n x n matrix which has k£ distinct complex eigenvalues denoted by

rgrl ), rf ), e ,rg_rk ) and n — 2k distinct real eigenvalues 1911, -+ , 7, With corresponding eigenvectors

(n 2 (k)
UL, Uy o0y Uy, Wyt o0 U, where

rgf) = \; +ip; for some \j, u; € R, and ug) = u? = gV +ip

Then the general solutions of &’ = Ax is of the form

k n
Z [C(] a cos it — b\ sin p; t) + C'])(a(]) sin it + b9 COS [U; t)] At 4 Z Cj'u,jekft
j=1 J=2k+1



If A is a 2 x 2 matrix which has complex eigenvalues, then det(A) # 0; thus 0 is the only
equilibrium of the system &’ = Ax. Now we check the stability of this equilibrium. Let u, v be given

as above. Then the Wronskian of u, v never vanishes. In fact,

Wlu, v|(t)

(a1 cos ut — by sin ut)eM  (ap sin ut + by cos ut)eM
(ag cos put — by sin ut)eM  (ag sin ut + by cos ut)eM

= M [(ay cos it — by sin put) (as sin put + by cos pit) — (ag cos pit — by sin put) (aq sin put + by cos ut)]
= e (a1by — aghy) # 0;

thus {u, v} is a linearly independent set. Moreover, Theorem 8.8 implies that every solution to
' = Ax can be expressed as a unique linear combination of w and v (thus every solution to
&’ = Ax can be expressed as a unique linear combination of ¢, and ¢,). Therefore, we immediately

find that 0 is an asymptotically stable equilibrium if and only if A < 0.

Example 8.15. Consider the two-mass three-spring system

d2:L'1

mlW = — (k1 + ko)x1 + koo + F1 (1),
d2$2
mQW = kgiL‘l — (kz + kg)l’g + Fg(t)

which is used to model the motion of two objects shown in the figure below.

Figure 3: A two-mass three-spring system

Letting y1 = 21, Y2 = 22, Y3 = 1 and yy = x5, we find that y = (y1,4s, Y3, ya) " satisfies

) 0 1 0] 0

0 0 0 1 0

y' = | Rtk ko Ly | F1(D)
mq mi m

e ktk F(t)

L M2 ma | | mo |

1
Now suppose that Fi(t) = Fy(t) = 0, and my; = 2, my = %, ki =1, ke =3, ks = Z5 Letting

0 0 10
0 0 0 1
A=|_9 3 4 ol then y’' = Ay. The eigenvalue r of A satisfies
2

4
§—300



—r 0 1 0
0 —r 0 1 - 0 1 0 —r 1
3 — p—
det(A — TI) = -9 g —p 0 = —7r 5 —r 0 + 42 B 0
So3 0 B B - S Sl

= (=1 =3r)+(6—2+2") =r' + 57 +4=0.

Therefore, +i, +2i are eigenvalues of A. Let ry = 7, 7o = —i, r3 = 2i and r4 = —2i. Corresponding

eigenvectors can be chosen as

3 3 0 3 0 3 3 0 3 0
2 21 1o 21 . |0 —4 —4| |0 -4 |0
W= gl = o P sl ™ = o] T 3™ T e [T o | T e M=o 7
2 0 2 0 2 —8i 0 -8 0 -8

Therefore, with a, b, ¢, d denoting the vectors (3,2,0,0)T, (0,0,3,2), (3, —4,0,0)T and (0,0,6, —8)",

respectively, the general solution to y’ = Ay is
y(t) = Ci(acost — bsint) + Cy(asint + beost) + C3(ccos 2t — dsin2t) + Cy(esin 2t + dcos2t) .

In particular,
| |wn| 3cost 3sint 3 cos 2t 3sin 2t
{@] N {yg] =G [2 cos t} +0 [2 sin t} +Cs {—4 cos 2t +C —4sin2t|
8.3.3 The case that A is not diagonalizable

In this case, there must be at least one eigenvalue A of A such that the dimension of the eigenspace
{ve C"| (A — AI)v = 0} is smaller than the algebraic multiplicity of A.

1 -1
1 3

eigenvalues (and the corresponding eigenvectors) and find that 2 is the only eigenvalue (with algebraic

Example 8.16. Let A = { } and consider the system &’ = Axz. We first compute the

multiplicity 2), while w = [1, —1]T is the only eigenvector associated with this eigenvalue. Therefore,
A is not diagonalizable.

Let = [z,y|". Then z,y satisfy

=x—y, (8.19a)
y' =x+3y. (8.19b)

Using (8.19a) we obtain y = « — z'; thus applying this identity to (8.19b) we find that = satisfies
' —ax"=x+3x—2a) or equivalently, 2" —4x' + 42 =0.

The characteristic equation to the ODE above is r? — 4r + 4 = 0 (which should be the same as the
characteristic equation for the matrix A); thus 2 is the only zero. From the discussion in Section
4.6, we find that the solution to ODE (that x satisfies) is

;E(t) = Cle2t + 02t€2t .



Using y = = — ', we find that the general solution to ¢’ = Az is

_ || C1e® + Cyte? B 17 o 0] o 1 y
v [?j N [_(Cl + Cy)e? — Cote? | — 1 1l T & e+ Cy 1 te*t.
Lettlng V= [O, ]_]T’ we have © = (Cl + 02t>€2t’u, + 026275,0‘

Given an large non-diagonalizable square matrix A, it is almost impossible to carry out the same
computation as in Example 8.16, so we need to find another systematic way to find the solution to
x' = Ax. The following theorem states that x(t) given by (8.17) is always the solution to ¢’ = Az

with initial data x(tg) = @y, even if A is not diagonalizable.

Theorem 8.17. Let A be a square real constant matriz. Then the solution to @' = Ax with initial
data x(ty) = o is given by
x(t) = et g, (8.17)

Proof. Let y(t) = e~")4x,. Then

y(t) = (I+(t—t0)A+%A2+m)yO

t—to)? t—to)k
:yo—f—(t—to)Ayo—f‘QA%}@"‘"""QA’C?/O"‘“'

2! k!
Therefore,
/ (t*to)kil k
y'(t) = Ay + (t —to) Ayy + -+ ———— Ay + -
t —tg)?
:A(I+(t—t0)A+%A2+m>yO:Ay

which implies that y is a solution to &’ = Az with initial data y(t;) = ¢4z, = x,. By the

uniqueness of the solution, we know that the solution to (8.13) with initial data x(ty) = xy is given

by (8.17). o

Having established Theorem 8.17, we now focus on how to compute the exponential of a square
matrix if it is not diagonizable.

For a 2 x 2 matrix A with repeated eigenvalue A\ whose corresponding eigenvector is u (but not
more linearly independent eigenvector), by Example 8.16 we can conjecture that the general solution
tox’ = Ax is

z(t) = (O + Cot)eMu + CyeMu

for some unknown vector v. Now let us see what role v plays.

Since ' = Az, we must have
)\(01 + Cgt)eAt’U, + 026)\t’u + C’g)\e)‘tv = (01 + Cgt)e)\tA’U, + CQBMA’U .
By the fact that Au = Au and C} is a general constant, the identity above implies that

u=(A—-N)v.



As a consequence, v satisfies (A — AI)2v = 0. Moreover, we must have v }f u (for otherwise u = 0)

which implies that w, v are linearly independent.

Al

Let P = [’u,f'v], and A = [0 \

} . Then AP = PA. Since u, v are linearly independent, P is

invertible; thus
A=PAP".

Therefore, the same computations used in Section 8.3.1 shows that

e(t*tO)A — Pe(tfto)AP—l )

Finally, taking to = 0 (since the initial time could be translated to 0), then observing that

P S Lt
k __
A= [o K } ’ (8:20)
we conclude that
i ok i t A1
PN SRV =Y =N U e e .
€ - Z - o0 k - M\t . ( . )
=0 k' 0 Z LAk 0 e
=0 k!

Having obtained the identity above, using (8.17) one immediately see that the general solution to

= fusal [2 15[

In the following, we develop a general theory to compute el*"t0)4 for a square matrix A.

x' = Ax is given by

Definition 8.18. A square matrix A is said to be of Jordan canonical form if

A, O -+ O
A Q 42 Q 7 (8.22)
O -~ 0 A,

where each O is zero matrix, and each A; is a square matrix of the form [A] or

N 1 0 - .. .. 0
O X 1 0 - - 0
0 0 )
0
1 0
: 0 X 1
10 0 Al

for some eigenvalue A\ of A.



We note that the diagonal elements of different A; might be the same, and a diagonal matrix is

of Jordan canonical form. Moreover, if A is of Jordan canonical form given by (8.22), then

A o .. 0 el 0 ... 0O
k c . A2 t.
A= |9 f42 0 and A= |9 O (8.23)
O --- 0 A O - 0O e
A0 O
Example 8.19. Let A = |0 A 1|. Then A is of Jordan canonical form, and using (8.20) and
0 0 A
(8.21) we conclude that M0 0
7 N RS VY
0 0 et
A1 0
Example 8.20. Let A= |0 A 1]|. Then A is of Jordan canonical form, and
0 0 A
)\kz k})\k_l k(k — 1) )\k—2
2
k
AN = 0 )\k k,)\kfl
0 0 AE
Therefore,
-io] ltk)\k i 1 tk)\k’*l i 1 tk))\k’*l-
k=0 k! o1 (B —=1)! = 2(k —2)! A gt Ly
L1 L 1 2
tA L okyk kyk—1 | _
et = 0 kgo k!t A 1;1 (k—l)!t A =10 M e
L 0 0 eM
0 0 > Ht A
L k=0 i
N 1 0 - oo oo 0]
O N 1 0 - --- 0
TR . 0 .
In general, if A = 0 is an m x m matrix, then with C* denoting
1 0
: 0o X 1
0 0 A
| L i
the number '(kk)' (if £ = m, and 0 if £ < m), we have
ml(k —m)!
')\k L1 C«éc)\k—2 cee e (COF _1)\k—m+1'
0 /\k k)\k_l . . Ck _2)\k—m+2
e . . ) : : .

0 M kAR




(which can be shown by induction using Pascal’s formula). As a consequence,

[ M et 1152 Y ! 6)\1‘,_
2 (m—1)!
0 M et tm—? oy
(m —2)!
A= : : (8.24)
: oo o e O 6)\t t@At
0 - . .0 et |

The reason for introducing the Jordan canonical form and computing the exponential of matrices

of Jordan canonical form is because of the following

Theorem 8.21. Fvery square matriz is similar to a matriz of Jordan canonical form. In other
words, if A € M, xn, then there exists an invertible n x n matric P and a matriz A of Jordan
canonical form such that

A= PAP'.

Given a Jordan decomposition A = PAP™', we have ¢4 = Pe!AP~! in which the exponential
of ' can be obtained using (8.23) and (8.24); thus the computation of the exponential of a general

square matrix A becomes easier as long as we know how to find the decomposition A = PAP™*.

e How to obtain a Jordan decomposition of a square matrix A?

Definition 8.22 (Generalized Eigenvectors). Let A € M,,5,,. A vector v e C" is called a generalized

eigenvector of A associated with A if (A — A\I)Pv = 0 for some positive integer p.

If v is a generalized eigenvector of A associated with A, and p is the smallest positive integer for
which (A — AI)?v = 0, then (A — M\I)P"!v is an eigenvector of A associated with A. Therefore, A is

an eigenvalue of A.

Definition 8.23 (Generalized Figenspaces). Let A € M, «, and A be an eigenvalue of A. The
generalized eigenspace of A associated with A, denoted by K, is the subset of C" given by

K, = {v eC" ‘ (A — M\I)P’v = 0 for some positive integer p} .

e The construction of Jordan decompositions: Let A € M,,,,, be given.

Step 1: Let Aq, Ao, ---, A\ be all the eigenvalues of A with multiplicity mq, mo, - -+, my. We first
focus on how to determine the block
AD o ... o
j
2 -
O A, .0

Aj:

o - 0 AV



whose diagonal is a fixed eigenvalue \; with multiplicity m; for some j € {1,2,--- ,k}, and the

size of Ag.i) is not smaller than the size of A§~i+1) fort =1,---,r;—1. Once all A;-s are obtained,
then
A, O - O
A~ O A, . O
O - O A,

Step 2: Let E; and K, denote the eigenspace and the generalized eigenspace associated with A;,
respectively. Then r; = dim(E;) and m; = dim(K;). Determine the smallest integer n; such
that

m; = dim (Ker(A — A\;I)™).
Find the value
py) = dim(Ker(A — \;I)*)  for €e{1,2, -+ ,n;}
(0)

and set p;° = 0. Construct an r; x n; matrix whose entries only takes the value 0 or 1 and
for each £ € {1,--- n]} only the first py) pgefl) components takes value 1 in the ¢-th column

of this matrix. Let s ) be the sum of the i-th row of the matrix just obtained. Then A is a

;Z) § 2 matrix.

Step 3: Next, let us determine matrix P. Suppose that

P=[uli ™ il (N (Y]

Then A[ug-l)f fug-mj)} = ['u,g.l)f cee mj ]A Divide {u e ,ug-mj)} into r; groups:
o0 W, @ (o6 (rj=1)

{’u/gl),-‘- } { +1 u§sj +s; )}7_” . and {u +eots; +1)’”' 7u§mj)}'

For each £ € {1,--- ,r;}, we let the ¢-th group refer to the group of vectors

fu e e
We then set up the first group by picking up an arbitrary non-zero vectors v; € Ker((A —
o)
) \Ker((A A% ) and let

- (A — )\jI)s;I)ii’Ul fOI' Z € {1, D ,85.1) — 1} .

Inductively, once the ﬁrst ¢ groups of vectors are set up, pick up an arbitrary non-zero vectors
S+

Vg1 € Ker((A— )1 ) \Ker((A AI)% 1) such that e, is not in the span of the vectors

from the first ¢ groups, and define

(s (1)+ +s(£>+z)
U,

i =(A-\I) J('Hl)_iwﬂ for i e {1,- s 1}.

) J

This defines the (¢ + 1)-th group. Keep on doing so for all ¢ < r; and for j € {1,--- ,k}, we

complete the construction of P.



Example 8.24. Find the Jordan decomposition of the matrix A =

\}
\}
o OO N

If X is an eigenvalue of A, then A satisfies

— 2
0 6—-X =2 0
0 2 2=-Xx 0
0 -2 0 6-—2A

—@4-N] 2 2-x 0
20 6-A

Let A1 =4, Ay =6, m; = 3 and my = 1. Note that

dim (Ker(A —4I)) =2 and dim (Ker(A — 4I)%) = 3.

Therefore, ny = 2 and pgl) =2, pSQ) = 4. We then construct the matrix according to Step 2 above,

11
and the matrix is a 2 x 2 matrix given by [ } . This matrix provides that s; = 2 and s, = 1; thus

10
Lo 01400
the block associated with the eigenvalue A =4,is [0 4 0] . Therefore, A = 00 4 0
004 00 0®6

First, we note that the eigenvector associated with A = 6 can be chosen as (1,0,0,1)T. Computing

Ker((A —4I)) and Ker((A — 4I)?), we find that

Ker((A —41)) = span((1,0,0,0)",(0,1,1,1)"),
Ker((A — 4I)*) = span((1,0,0,0)",(0,1,0,2)",(0,1,2,0)") .

We note that either (0,1,0,2)% or (0,1,2,0)" is in Ker((A — 41)), we can choose v = (0,1,0,2)T.
Then (A —41)v = (2,2,2,2)T. Finally, for the third column of P we can choose either (1,0,0,0)T or
(0,1,1,1)T (or even their linear combination) since these vectors are not in the span of (2,2,2,2)T
and (0, 1,0,2). Therefore,

or P=

N DO DN DO
N O = O
O O O =
_ O O =
DN DN DN
N O = O
—_ == O
_ o O

satisfies A = PAP L.

Example 8.25. Let A be given in Example 8.24, and consider the system x’ = Axz. Let u; =
(2,2,2,2)T, uy = (0,1,0,2)T, uz = (1,0,0,0) and uy = (1,0,0,1)T. Then the general solution to



x' = Ax is given by

x(t) = [ul SUY U3 u4] (P ay)

et te®* 0 0 Ci
0 e* 0 0 Cy
0 0 e 0 Cy
L 0 0 0 €6t 04
—01 64t + Cgt€4t

026475

C3€4t

C466t

= (0164t + CQt€4t)’U,1 + 0264t’ulg + 0364t’LL3 + C4€6t’l.l,4 s

= [U1U2'IL3U4]

= [U1U2U3’U,4]

where A is given in Example 8.24, x; is the value of  at t = 0 (which can be arbitrarily given), and
(017 CQ, 037 04)T = PilmO'

a 01 00
0 a 010
Example 8.26. Let A= |0 0 a 0 1|. Then the characteristic equation of A is (a — \)®; thus
000 a6 O
0000 a

A = a is the only eigenvalue of A. First we compute the kernel of (A — aI)? for various p. With
e, = (0,---,0,1,0,---,0)T denoting the i-th vector in the standard basis of R, we find that
——

(¢ — 1)-slots
Ker((A — al)) = {e; | z1,72 € R} = span(ey, &),
Ker((A - U,I)Z) - {(xhanvx?n Ty, O)T ‘ T1,X2,T3,T4 € R} = Spa’n(el7 €, €3, 64) ;

Ker((A — al)®) = R® = span(ey, e, €3, ey, €5) .

The matrix obtained by Step 2 is [1

1 i (1)] which implies that the two Jordan blocks is of size 3 x 3
and 2 x 2. Therefore,

a1 0 0 0
0O al 00
A=10 0 a 0 O
000 al
0000 a

We note that e € Ker((A —al)?)\Ker((A —aI)?); thus the first three column of P can be chosen
as
P(1:3)=[(A—al)’e;: (A —al)esies] = [e1 esies).

To find the last two columns, we try to find a vector w € Ker((A — aI)?)\Ker((A —al)) so that w is

not in the span of {ey, e3, es}. Therefore, we may choose w = e4; thus the last two columns of P is

P(4 . 5) = [(A—(II€4E€4} = [62564}



which implies that

100 00
00010
P=|01000
0 00O01
00100

Example 8.27. Let A be given in Example 8.24, and consider the system &’ = Az. Following the

procedure in Example 8.25, we find that the general solution to &’ = Ax is given by

[cat  teat %e“t 0 0] C
eat tezzt O 0 Cg
0 e o0 o0f|®
0 0 e¥ te® Ci
0 0 0 e LG5

. ) 0
x(t) = [61163165.62164] 0
0

| O

C
- (Cleat + Cyte™ + ?31526‘”) e; + (Coe™ + Cste™)es + Cse™es + (Che™ + Cste™) ey + Cseey .

8.4 Fundamental Matrices

In Definition 8.9 we have talked about the fundamental matrix of system &’ = P(t)x. It is defined as
a square matrix whose columns form an linearly independent set of solutions to the ODE &’ = P(t)z.
Let ¥ be a fundamental matrix of @’ = P(t)x. Since each column of W is a solution to the ODE,

we must have
W'(t) = P(t)¥(t).
By the linearly independence of columns of ¥, we must have

()W (t) ! = P(t) for all ¢ in the interval of interest. (8.25)

A special kind of fundamental matrix ®, whose initial value ®(¢q) is the identity matrix, is in
particular helpful for constructing solutions to
z' = P(t)x, (8.26a)
In fact, if ® is a fundamental matrix of system a’ = P(t)x satisfying ®(to) = I, then the solution
to (8.26) is given by
x(t) = ®(t)xo .
It should be clear to the readers that the i-th column of ® is the solution to

' = P(t)z,
x(ty) = e,
where €; = (0,---,0,1,0,---,0)" is the i-th vector in the standard basis of R" (here we assume that
—_——
(i — 1)-slots

the size of P is n x n). Moreover, for each fundamental matrix ¥ of (8.26a), we have the relation

(1) = B(t)(t).



Therefore, given a fundamental matrix ¥, we can easily construct the fundamental matrix ®(¢) by
D(t) = (t)P(ty) ™

Caution: Based on the discussions above and the information that the solution to the scalar equation
t

' = p(t)x with initial data z(ty) = x¢ is z(t) = exp (J p(s) ds)xo, one might start guessing that
to

the solution to (8.26) is
t

x(t) = exp ( P(s) ds) x . (8.27)

to

This is in fact NOT TRUE because in general P(s)P(t) # P(t)P(s). Nevertheless, if P(s)P(t) =
P(t)P(s) for all s and t, then the solution to (8.26) is indeed given by (8.27). To see this, we first

notice that
t t
Pt )( P(s) ds f Pt ds—f P(s ( P(s )da)P(t);
to to
thus

i(LZP(s)ds)k:P()< P(s JP ds P(t) L:P(s)ds)k2+~--

to

(P( JPde

to

— kP(t )( " P(s )ds)

to

" P(s) as)  P(1)

to

Therefore, the function given by (8.27) satisfies that

k e
7exp JP ds k:' JP ds) Ty = (

k:l to

- P(t)(z ;I( P(s)ds) )ao = P(1) exp( " P(s) ds)

to to

t

P(s) ds)klmo

On the other hand, x(ty) = xy. As a consequence, x(t) given by (8.27) is the solution to (8.26).
Now suppose that P(t) = A is time-independent. Then by Theorem 8.17 we find that the

fundamental matrix ®(t) is given by
B(t) = Pell0A P
where PAP™! is a Jordan decomposition of A. Moreover,
(1) P(s) = P(s)P(¢) Vt,seR. (8.28)

To see this, let t1,ty be given real number, and xy € R™ be a vector. By the existence and uniqueness
theorem (Theorem 8.5), the solution to system x’ = Az with initial data x(ty) = x is given by
x(t) = ®(t)x, for all £ € R.



On the other hand, again by the uniqueness of the solution, the solution ¢, to
p'=Ap,
p(to) = o(t),
and the solution ¢, to
p'=Ap,
p(to) = (ta),

satisfy that ¢, (t) = z(t —to+1t1) and ¢, (t) = x(t —to+1t2). Moreover, using the fundamental matrix
® we also have ¢ (t) = ®(t)x(t1) and @, (t) = ®(t)x(t2). Therefore,

P (1)@ (1) @0 = P(L2)x(tr) = 1 (t2) = (s + 1a — to) = pa(tr) = (1) P(L2) 20 -

Since xy is arbitrary, we must have ®(to)®(t1) = ®(t1)P(t2); thus (8.28) is concluded.

8.5 Non-homogeneous Linear Systems
Now we consider the non-homogeneous linear system

' = P(t)x+ g(t), (8.29a)

for some non-zero vector-valued forcing g. As in Definition 4.14 we said that a vector-valued function
x,(t) is called a particular solution to (8.29a) if x, satisfies (8.29a). As long as a particular solution

to (8.29a) is obtained, then the general solution to (8.29a) is given by
2(t) = (1) C + 3y (1)

where W is a fundamental matrix of £’ = P(t)x, and C is an arbitrary constant vector. to satisfy
the initial data (8.29b), we let C = W (to) (@0 — @,(ty)) and the solution to (8.29) is

o(t) = q’(t)‘l'(to)_l (:1:0 - mp(tO)) + (1)

To get some insight of solving (8.29), let us first assume that P(t) = A is a time-independent

matrix. In such a case,
ez = (Ax+g(t)) or ez’ — Az)=e"g(t).

d
Since ae_“‘ = —Ae 4 = —¢7"1 A, the equality above implies that

t
(e7z) =eMg(t) = e Ma(t) - eT0A(ty) = J e g(s)ds.
to
Therefore, the solution to (8.29) is

t
x(t) = e Agy + J ee 4 g(s) ds .
t

0

Using fundamental matrices ¥ of system &’ = P(t)x, we have the following similar result.



Theorem 8.28. Let W(t) be a fundamental matriz of system x' = P(t)x, and @(t) be the solution

to the non-homogeneous linear system

' = P(t)x+ g(t), (8.30a)
x(ty) = oo . (8.30b)

Then p(t) = ® ()W (ty) txy + t U () P(s)tg(s)ds.

to
Proof. We directly check that the solution ¢ given above satisfies (8.30). It holds trivially that
p(ty) = xy, so it suffices to show the validity of (8.30a) with ¢ replacing .
Differentiating ¢ and using (8.25), we find that

0 = WOW(0) S + FOR0) 90 + [ WO g0
— () ()! (\If<t>\v<to>—1mo " f ()W () g(s) ds) + gt
= P(t)e(t) + g(t)
which shows that ¢ satisfies (8.30a). o

e Another point of view - variation of parameters: Let ¥ be a fundamental matrix of ' = P(t)x.
We look for a particular solution to &’ = P(t)x+ g(t). By the method of variation of parameters we

can assume that a particular solution can be expressed as

for some vector-valued function w. Since x is a solution, we must have

U'(u(t) + T()u'(t) = P)P(t)ut) + g(t).

Since ' = P(t)¥, we obtain that u satisfies

w(t) = W) g(t). (8.31)

Therefore, we can choose wu(t f\I’ t)dt and a particular solution to &’ = P(t)x + g(t) is
given by

fxp(t)lg(t) ). (8.32)

On the other hand, (8.31) implies that u f P(s s)ds + u(ty), where u(ty) is the value

of u at the initial time given by u(tg) = \I’(to) x(to); thus the solution to x’ = P(t)x + g(t) with

initial data x(ty) = xy is



Example 8.29. Let A = [ 1

_12} and g(t) — [

27t

et } . Find a particular solution of ' = Az+g(t).

We first find the Jordan decomposition of A. The characteristic equation of A is (—=2—7r)*—1 =0

which implies that A = —1 and A = —3 are eigenvalues of A. The corresponding eigenvectors are

(1,1)" and (1, —1)T; thus
A—

thus

e1EA

The general solution to ¢’ = Az is

1

o(t) — [1 L

—t

—1} [eo

117-1 o1t 11°
~1] o =3][1 —1] °
11Tet o111 11"
—~1] [0 e 3t |1 —1

0

C |1 _ 1
) ef e [ el

1. To obtain a particular solution, we can use (8.32) and find that

t 1
At M Mt
te dt 3 e 2 e

=)

Since J

e

2t

2t + 3(te" — )
— (tegt —

€f3t

1
2et
A
et et 2et
s

e 3t 2 + 3tet
3;| ( |i2€2t _ 3t€3t:| dt.

, we obtain that

1 2te’t+3(t—1)+e’t—(t—é)
(t—1)—e*t+(t—é)

2]

3 2 12tet +3

2. Without memorizing the formula (8.32) for a particular solution, we can use the method of

variation of parameters by assuming that

2,(t) = Ca(t)e ™ H T Cy(t)e™ {_1]

1

for some scalar functions Cy, Cy. Then the equation z, = Az, + g(t) implies that

1

Ci(t)e™ H ~ Ci(t)e™ H L Ot [
|-seancs [ ]

As a consequence

cite ]

1

i)

1

1

+ (e {_11] _ Ffj):]



which implies that
ci)] _let e ! [2e
Cyt)| et —e ¥ 3t |

The computation above (in 1) can be used to conclude that

1
Cy(t) = 2t + 3(te' — ) and Co(t) = e* — (te® — ge3t) ;

thus a particular solution is given by

(1) = |2t +3(te’ —e')] e’ H + e — (te® - %e%)]e—w {
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