Differential Equations M A2041-A Midterm Exam 2
National Central University, Dec. 14 2016
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Problem 1. Consider the initial value problem y’ =t + y with y(0) = 0.
1. (5%) Find the exact solution to the initial value problem above.

2. (15%) Show that the numerical method

h h
Ykt = Yi + h[tr + 5 T Ut 5(% + yr)]

is a third order numerical method; that is, show that the global truncation error e;(h) satisfies

lex(h)| < Ch? v1<k<%.

for some constant C' > 0.

Solution:

t

1. By the method of integrating factors, (e 'y)’ = te~* which implies that

ety = ftet dt = —te™" + Jet dt =—(t+1)e "+ C.

Therefore, y(t) = Ce' —t — 1. Together with the initial condition y(0) = 0, we find that C' = 1;
thus
yt) =e" —t—1.

2 0
2. By the fact that e® =1+ h + % + %h?’ for some 6 € (0, h), we find that

te) — y(ti- h
Te(h) = y(te) hy< =) 1= 5~ ylti)
ete-1(eh — 1) — h h_ gt .
) B Ch vtk
h k-1 5~ ber 1 2 (e D
2 ef
— et(h+ i+ GhY) et — P

- g(tk—l + y(te-1))

elh—110

h?.
h 2 6

Therefore, for ¢, € [0,T], we have
T

m(m)] < 0.

Moreover, with ® denoting the function

h h

the numerical scheme can be expressed as ypr1 = yr + h®(h, ty, yx) and @, (h,t,y) = 1 +

|

which further implies that
T
|2y(ht )| <1+ 5

Therefore, Theorem 3.8 in the lecture note implies that ‘ek(h)| < Ch? for some C' > 0. o






Problem 2. Consider the initial value problem y’ = cos(t® + ) with y(0) = 0.
1. (5%) Write the improved Euler’s method in the form
Ykt =Y + hP(h, T, yr) -

In other words, find the function ® such that the iterative scheme above is equivalent to the

improved Euler method.

2. (15%) Show that the local truncation error 75 (h) satisfies

me(R)| < 9K Vh<

| =

Proof. First we compute the derivative of y as follows:

y" = —sin(t® + y)(3t* + y') = —sin(t® + y) (3¢ + cos(t®> + y)) ,
y" = —cos(t® + y) (3t* + cos(t* + y))2 — sin(t® + y)[6t — sin(t* + y) (3> + cos(t® + y))] ;
thus for ¢ € [0, 1], |y’”(t)‘ < (3+1)2+ (6+4) = 26.

1. Let f(t,y) = cos(t® + y). The improved Euler’s method is the numerical scheme given by

Yk+1 = Yk + g[f(tkayk) + ftr + hyye + hf (e, yr))]
=y + g[cos(tz + i) + cos ((tr + h)* + yr + heos(t + yi)) ]
=y + g[cos(ti + yi) + cos (t + yi + 3h’t, + 3ht;, + h* + heos(t] + )] ;
thus ®(h,t,y) = % [cos(t® + y) + cos(t® + y + 3h*t + 3ht* + h3 + hcos(t + y))].

2. By the Taylor theorem,

2 3

(t) = i) + by (1) + o () + oy (6 )
2

h .
= y(te) + hos (b +y(te)) + 5 [— Bty sin(ty_y + y(tr-1))

3

— (e + pt)) cos(td + y(ti))] + "6

for some &1 in between t;_; and t;. Moreover, by the Taylor theorem,

cosa

2

inb
(x—a)z—i-Sl%(x—a)?’

cosx = cosa — sina(r —a) —
for some b in between x and a; thus
Yk = Yp—1 + hP(h, te_1, yr—1)
= yp_1 + g [2 cos(ty | +yp_1) —sin(t; | + yr_1) (3tz_1h 4 3ty h® + h® + heos(£8_, + ykfl))

1
— 5 COS k-1 (3t3_1h + 3ty_1h® + h® + hcos(t;_, + yk_l))Z]



for some 7,1 in between t; | +yr_1 and (t,_1 + h)> + yr_1 + hcos(t3_, + yx_1). Therefore, in

the time interval [0, 1] the local truncation error 74(h) satisfies
Lrhy o o3 2, 13
[rh)| < |1 sin(toy + o) [3tu1h? + B
h? 2 2 3 2 R
+ Z‘ cos M1 |[3ti_1 + 3tp_1h + h* + cos(ti_; + ye1)|” + E’y (5;671)}]
4

<h2[§+i(3+3+1+1)+% =h3(4+?):%h3

which further implies that |7,(k)| < 92 o



Problem 3. (15%) Let a € R be constants. Use the variation of parameter to find the general
solution to the equation

y” — 20y + oy = te®.

Solution: First we find a fundamental set of the corresponding homogeneous equation. Since the
characteristic equation (of the corresponding homogeneous equation) is A> —2aX +a? = 0 has double

root A = a, a fundamental set {1, vo} of the corresponding homogeneous equation is given by

p1(t)=e and ©o(t) = te™ .

ecxt t@at
ae® e 4 ote

variation of parameters (or formula (4.25) in the lecture note) we find that a particular solution to

Since the Wronskian of ¢ and ¢y is Wlp1, @o](t) = = e%* using the method of

the non-homogeneous equation is given by

t as . 08 t as ,as 3 3 3
se*se se*’e t t t

)= - | =/ ds+te ™ ds = ——e + e = et
yp( ) J{; e2as 0 e2as 3 2 6

Therefore, the general solution to the origin non-homogeneous equation is given by

3

t
y(t) = Cre® + Cote™ + geat .



Problem 4. (10%) Find the Wronskian (which is unique up to a constant multiple) of two solutions

m 7'(')1_]0

on (=3,

(cost)y” + (sint)y’ —ty = 0.

Solution: Let {¢1, 2} be a collection of two solutions of the ODE, and W (t) = 801

Wronskian of ¢, and ¢2. Then the Abel theorem implies that

sint T

W(t) =0 WE(_§’§)‘

W'(t) +

cost
Using the separation of variables, we have

aw
w

thus log |W (t)| = —log|sect| + C = log | cost| + C which further implies that

= —tantdt;

W(t) = Ccost

for some constant C.



Problem 5. (20%) Given a solution ¢;(t) = * to the equation
t2y” — 3ty’ + 4y = 0, t>0,
find the solution to the initial value problem
t*y" — 3ty’ + 4y = t* logt, y(1)=9'(1)=0,
where logt = Int = log, t.

Solution: First we rewrite the initial value problem as

3

4
y" — ;y’ + 5y = logt, y(1) =y'(1) =0.

Using formula (4.20) in the lecture note, we find that a (particular) solution of the non-homogeneous

equation
y" - §y’ + éy = logt
t 12

can be expressed by

e L ()]

logt)?

Since floft dt = (log )+ C and f dt = %(log t)® + D, we find that

1 logt 11 9 D
f;( dt) dt—ft(Q(logt) + C)dt = Clogt + (logt) t 5

thus the general solution to the non-homogeneous equation is

/2
y(t) = Cit*logt + Cyt* + 6(logt)

To validate the initial condition, C; and C5 must satisfy

0:2/(1):02’
Ozy/<1):C’1—|—202;

thus C; = Cy = 0. Therefore, the solution to the original initial value problem is y () = —(logt)3. o



Problem 6. Solve the differential equation

o2
o Z£21‘)y"(gv) + sin(2x) cos® zy’(z) — 2y(x) = 0, 0<zx< g (%)

following the steps below:

(1) (10%) Let t = tanx and 2(t) = y(arctant). Find the corresponding differential equation that

z satisfies (the function arctan is identical to tan™1).
(2) (10%) Find the general solution to the equation for z, and then use it to find a solution to (x).
Solution:

(1) Let t = tanz and 2(t) = y(tan='¢). Then

1
(1+2)

—2t
(1+12)2°

1
2'(t) = y'(tan" ' t) :

e and 2”(t) =y"(tan"'¢)

+ ' (tan"" t)
Therefore,
y'(tan™t) = (1 +H2'(t) and gy"(tan"'t) = (1 4+ 12)%2"(t) + 2t(1 +t*)2'(1).

Letting # = tan~!¢ in the ODE we find that

t? 2t
Sy (tan™" t) +

-1 1 Q.
T o sy (tan™' t) — 2y(tan™ ) = 0;

(1+1¢2)

thus
t22"(t) + 2t2'(t) — 22(t) = 0.

(2) Let r satisfy r(r — 1) +2r —2 = 0. Then r* + r — 2 = 0 which implies r = —2 and r = 1.

Therefore, the general solution of (x) is
2(t) = Cit ™2 + Cyt .

Therefore,
y(z) = z(tanx) = Cy cot? x + Cytan .



Problem 7. (15%) Let f : R — R be a continuous function. Show that the boundary value problem
y 2 2= f(t),  y(0)=0, y(r)=0 (x+)
has a solution if and only if JOW el f(t)sintdt = 0.
Proof. First we note that the solution to the corresponding homogeneous equation
y" +2y" +2y=0

is y(t) = Cre~t cost+Che ! sint since —1 417 are the roots of the characteristic equation A>+2A+2 = 0.
Let p1(t) = e P cost and ¢o(t) = e *sint. Then the Wronskian of ¢ and ¢y is

e“fcost e7fsint| o,
—e'sint e 'cost

e~ tcost e tsint
—e"tcost —etsint —e tsint+ e tcost

Wlew al(t) =

Using the method of variation of parameters (or formula (4.25) in the lecture note), we find that a

particular solution can be written as

t —5
yp(t) = —e* costf Lzssms ds+e™ " sintf
0 € 0

" f(s)e"*coss

6725

ds;
thus the general solution to the non-homogeneous ODE
y"+2y" + 2y = f(1)
is given by
y(t) = Cre " cost + Cye " sint + y, (1)
t

t
= Cre 'cost 4+ Coe 'sint —e™! costf f(s)e*sinsds+e" sintJ f(s)e’cossds.
0 0

Therefore, the boundary value problem (**) has a solution if and only if
0=y(0)=0C

and

0=y(r)=—-Cie"+e " fﬂ f(s)e’sinsds.
0
Therefore, the boundary value problem (*%) has a solution if and only if
Lﬂf(s)essinsds:O (% % %)
and the solution, provided that (x = x) holds, is given by

t t
y(t) = Cye 'sint — e cost J f(s)e®sinsds + e 'sint f f(s)e®cossds. D
0 0



