## Differential Equations MA2042 Final Exam

National Central University, Jun. 14 2017

學號:\_\_\_\_\_ 姓名:\_\_\_\_

**Problem 1.** (15pts) Let  $x_1 = y$ ,  $x_2 = y'$  and  $x_3 = y''$ , then the third order equation

$$y''' + p(t)y'' + q(t)y' + r(t)y = 0 (0.1)$$

corresponds to the system

$$x_1' = x_2,$$
 (0.2a)

$$x_2' = x_3,$$
 (0.2b)

$$x_3' = -r(t)x_1 - q(t)x_2 - p(t)x_3. (0.2c)$$

Show that if  $\{y_1, y_2, y_3\}$  and  $\{\varphi_1, \varphi_2, \varphi_3\}$  are fundamental sets of equation (0.1) and (0.2), respectively, then  $W[y_1, y_2, y_3](t) = c W[\varphi_1, \varphi_2, \varphi_3](t)$ , where c is a non-zero constant and W and W denote the Wronskian functions given by

$$W[y_1, y_2, y_3](t) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} \quad \text{and} \quad W[\boldsymbol{\varphi}_1, \boldsymbol{\varphi}_2, \boldsymbol{\varphi}_3](t) = \det \left( \left[ \boldsymbol{\varphi}_1 \vdots \boldsymbol{\varphi}_2 \vdots \boldsymbol{\varphi}_3 \right] \right).$$

Problem 2. (15pts) Consider the initial value problem

$$y'' + 2y' + 5y = 0$$
,  $y(0) = 1$ ,  $y'(0) = 3$ .

Let  $x_1 = y$  and  $x_2 = y'$ . For  $\mathbf{x} = (x_1, x_2)^T$ ,  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ . Find the matrix  $\mathbf{A}$  and solve the initial value problem by finding  $\exp(\mathbf{A}t)$ .

**Problem 3.** Let  $P(t) = \frac{1}{t} \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix}$  and  $f(t) = \begin{bmatrix} t^2 \\ t^4 \end{bmatrix}$ .

- (a) (15pts) Find the solution  $\Phi$  to  $\Phi' = P(t)\Phi$  satisfying the initial condition  $\Phi(1) = I_2$ , where  $I_2$  is the 2 × 2 identity matrix.
- (b) (15pts) Find the general solution of the ODE  $\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$  using the method of variation of parameters.
- (c) (15pts) Find the general solution of the ODE  $\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$  using Theorem 8.28 in the lecture note.

**Problem 4.** (a) (20pts) Find the Jordan decomposition of the matrix  $\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & -8 \\ 1 & 0 & 0 & 16 \\ 0 & 1 & 0 & -14 \\ 0 & 0 & 1 & 6 \end{bmatrix}$ .

(b) (15%) Find the general solution to  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ .