Problem 1. Solve the wave equations

$$\frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \frac{\partial^2 u}{\partial x^2}(x,y) \qquad 0 < x < L, t > 0$$

with the following boundary and initial conditions:

1.
$$u(0,t) = u(L,t) = 0$$
 for $t > 0$, and $u(x,0) = \frac{1}{4}x(L-x)$, $\frac{\partial u}{\partial t}\Big|_{t=0} = 0$ for $0 < x < L$.

2.
$$u(0,t) = u(L,t) = 0$$
 for $t > 0$, and $u(x,0) = 0$, $\frac{\partial u}{\partial t}\Big|_{t=0} = \sin \frac{\pi x}{L}$ for $0 < x < L$.

3.
$$u(0,t) = u(L,t) = 0$$
 for $t > 0$, and $u(x,0) = \frac{\partial u}{\partial t}\Big|_{t=0} = x(L-x)$ for $0 < x < L$.

Problem 2. Find a solution of the initial-boundary value problem

$$\frac{\partial^2 u}{\partial t^2}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,y) - u(x,y) \qquad 0 < x < \pi, t > 0,$$

$$u(0,t) = u(\pi,t) = 0 \qquad t > 0,$$

$$u(x,0) = f(x), \frac{\partial u}{\partial t}\Big|_{t=0} = 0 \qquad 0 < x < \pi$$

where

$$f(x) = \begin{cases} x & \text{if } 0 < x < \pi/2, \\ \pi - x & \text{if } \pi \le x < \pi. \end{cases}$$

Problem 3. The vertical displacement u(x,t) of an infinitely long string is determined from the initial-value problem

$$\frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \frac{\partial^2 u}{\partial x^2}(x,t) \qquad x \in \mathbb{R}, t > 0,$$
(0.1a)

$$u(x,0) = f(x), \quad \frac{\partial u}{\partial t}\Big|_{t=0} = g(x) \quad x \in \mathbb{R}.$$
 (0.1b)

This problem can be solved by the following procedures.

- (1) Show that the wave equation (0.1a) can be put into the form $\frac{\partial^2 v}{\partial \eta \partial \xi} = 0$ by means of the substitution $\xi = x + ct$ and $\eta = x ct$, and $v(\xi, \eta) = u(\frac{\xi + \eta}{2}, \frac{\xi \eta}{2c})$.
- (2) Integrating the partial differential equation given in (1) to find that

$$u(x,t) = F(x+ct) + G(x-ct)$$

for some functions F and G. Use this expression of solution and the initial condition (0.1b) to show that

$$F(x) = \frac{1}{2}f(x) + \frac{1}{2c} \int_{x_0}^x g(y) \, dy + C$$

and

$$G(x) = \frac{1}{2}f(x) - \frac{1}{2c} \int_{x_0}^x g(y) \, dy - C \,,$$

where x_0 is arbitrary and C is a constant.

(3) Use the result in (2) to show that

$$u(x,t) = \frac{f(x+ct) + f(x-ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(y) \, dy.$$

Problem 4. Solve the Laplace equations

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = 0 \qquad 0 < x < a, 0 < y < b,$$

with the following boundary conditions:

$$1. \ \frac{\partial u}{\partial x}(0,y) = u(0,y), \ u(a,y) = 1 \text{ for } 0 < y < b, \text{ and } \frac{\partial u}{\partial y}(x,0) = \frac{\partial u}{\partial y}(x,b) = 0 \text{ for } 0 < x < a.$$

2.
$$a = 1, b = \pi, u(0, y) = \cos y, u(1, y) = 1 + \cos 2y \text{ for } 0 < y < \pi, \text{ and } \frac{\partial u}{\partial y}(x, 0) = \frac{\partial u}{\partial y}(x, \pi) = 0$$
 for $0 < x < 1$.

Problem 5. Consider the Laplace equations

$$\begin{split} \frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) &= 0 \qquad 0 < x < a \,, 0 < y < b \,, \\ \frac{\partial u}{\partial y}(x,0) &= \frac{\partial u}{\partial y}(x,b) &= 0 \qquad 0 < x < a \,, \\ \frac{\partial u}{\partial x}(0,y) &= 0 \,, \frac{\partial u}{\partial x}(a,y) &= g(y)0 \,\, 0 < y < b \,. \end{split}$$

Explain why a necessary condition for a solution u to exist is that g satisfy

$$\int_0^b g(y)\,dy = 0.$$

The condition above is called a compatibility condition.