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Chapter 8

System of Linear First-Order
Differential Equations

8.1 Preliminary Theory - Linear Systems

Definition 8.1. A system of n first-order equations
dxl

E = gl<t,$1,$2, o wrn) )
dl‘z o
ﬁ _92<tal‘17'x27'” 7xn)7 (81)
dxn.
E = gn(taxhx% e 7xn> 3
is called a first-order system. If each of the functions ¢, g2, - - -, g, in (8.1) in is linear in the
dependent variables xy, xs, - - -, ,, equation (8.1) is called the normal form of a first-order

linear equations (or simply called a linear system). In other words, a linear system is of the

form d
x
ditl . all(t>x1 + a12(t>l’2 + -+ aln(t)xn + fl(t) )
d
% = ax (t)r1 + age(t)x2 + - + az(t)zn + fo(t), (8.2)
dxn' '
Tt an1 ()21 + ana () T2 + - - & ann(E)2n + fu(t)

The linear system (8.2) is said to be homogeneous if f;(t) = 0 for all 1 < i < n; otherwise

it is non-homogeneous.

There are several reasons that we should consider system of first order ODEs, and here

we provide two of them.
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1. In real life, a lot of phenomena can be modelled by system of first order ODE. For

example, the Lotka-Volterra equation or the predator-prey equation

p'=—yp+apg=(—y+aq)p,
q = Bq—dpg=(B—0p)g,

can be used to described a predator-prey system. Let ¢ = (z1,72) = (p,q)T and
F(t,z) = (yr; — ax 2y, frg + 0x172) . Then the Lotka-Volterra equation can also be

written as

z'(t) = F(t,z(t)) . (8.3)
2. Suppose that we are considering a scalar n-th order ODE

y "M@ = fty®), Y1),y @)

Let (1) = y(t), z2(t) = y'(1), ---, 2,(t) =y~ (¢). Then (x1,--- ,z,) satisfies
1 (t) = @2(t) (8.4a)
wy(t) = x3(t) (8.4D)
o= (8.4c)
a(t) = f(t, 2o (), 2a(t), - za(t)) . (8.4d)
Let £ = (z1, -+ ,x,)T be a vector in R", and F(t, x) = (xz, e T, [y, ,xn))T

be a vector-valued function. Then (8.4) can also be written as (8.3).

e Matrix Form of a Linear System If X, A(¢), F(t) denote the respective matrices

) an(t) aw(t) - aw(t) S1(t)
x=| 71, Aw- am:(t) am:(t) aQ”:(t) . F(t) = fQ:(t) ,
- (1) ana(t) -+ aml(t) £a(0)

then the linear system (8.2) can be written in matrix form as
X' = AD)X + F(t). (8.5)
and a homogeneous linear system in matrix form as

X =AM)X. (8.6)
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Definition 8.2. A solution vector (or simply solution) on an interval I to the linear system
(8.5) is a vector-valued function
I (t)
i) t
X(1) - ®)
T (t)
whose entries are differentiable functions satisfying the system (8.5) on the interval.

Example 8.3. The functions

1 _ e~ 3 3ebt
Xlz[_lle%:[_eﬂ and X2:|:5:|66t:[5e6t1

are solution vectors of

, 13
X__5 3})(.

e Initial-Value Problem: Let ¢, denote a number in an interval I and

T

7y
XO = -2 3

In
where v;’s are constants for all 1 <4 < n. Then the problem

Solve : X' =At)X + F(t)

8.7
Subject to:  X(ty) = Xo (8.7)
is called an initial-value problem on the interval.

Theorem 8.4. Let the entries of the matrices A(t) and F(t) be functions continuous on
a common interval I that contains the point ty. Then there exists a unique solution of the

initial-value problem (8.7) on the interval.

Theorem 8.5 (Superposition Principle). Let X;, Xo, -+, Xy be a set of solution vectors

of the homogeneous system (8.6) on an interval I. Then the linear combination
X:ch1+ch2—|—---+cka,

where ¢;’s are constants for all 1 < i < k, is also a solution of the system on the interval.
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Example 8.6. The functions

cost
1 1 . t
X = —§Cost—|—§smt and X, = | e
—cost —sint 0
are solutions of the system
1 0 1
X' = 11 0 |X.
-2 0 —1
By the superposition principle the linear combination
cost 0

1 1 .
X=X +X,=0¢ —§Cost+§smt +cy | €

—cost —sint 0
is also a solution of the system.

Definition 8.7 (Fundamental Set of Solutions and Fundamental Matrix). Any set X, Xo,
.-+, X, of n linearly independent solution vectors of the homogeneous system (8.6) on an

interval I called a fundamental set of solutions of (8.6) on the interval, and the matrix
B(t) = [Xl(t)fXg(t)f X
is called a fundamental matrix of (8.6) on the interval.

Remark 8.8. A fundamental matrix ® of the homogeneous system (8.6) satisfies that
D' = A(t)®P.

Theorem 8.9. Let the entries of the matrices A(t) be continuous on an interval I. Then

there ezists a fundamental set of solutions of the homogeneous system (8.6) on the interval.

Theorem 8.10. Let the entries of the matrices A(t) be continuous on an interval I, and
X, Xy, -+, X, be a fundamental set of solutions of the homogeneous system (8.6) on the
interval. Then the general solution of the system on the interval can be expressed as a linear
combination of X1, -+, X, in exact one way; that is, there exists a unique constant vector
(c1,-++ ,¢p) such that

X(t)=aXq(t)+- + e X,u(t). (8.8)
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Proof. Let ty e I. By Theorem 8.4, for each e; = (0,---,0,1,0,--- ,0), there exists a unique
—_——
(i —1) slots

solution X = ¢,(t) to (8.6) satisfying the initial data X(ty) = €;. The set {¢, Y9, -, ¥, }

are linearly independent for otherwise there exists a non-zero vector (cy,--- ,¢,) such that

c1p1(t) + capy(t) + -+ cuip, (1) =0

which, by setting ¢t = ¢y, would imply that (ci, ¢, - , ¢ ) = 0, a contradiction.
We note that every solution X(¢) = [xl }T to (8.6) can be uniquely ex-
pressed by
X(t) = 21(0)p1 (1) + 22(0) o (£) + - -+ + 2 (0)p, (1) - (8.9)

In fact, z1(0), () + - - - + x,(0)¢p,,(t) is a solution to (8.6) satisfying the initial data
X(0) = [a1(0),- . xa(0)]

thus (8.9) is concluded from the uniqueness of the solution.
Now, since X1, -+, X,, are solution to (8.6), we find that

Span(Xb T 7Xn) < Span(sola T a90n>

Since {X7y, -, X,} are linearly independent, dim (span(Xl, e ,Xn)) = n; thus by the
fact that dim (span(e,--- ,¢,)) = n, we must have

span(X1, -+, X,) = span(p,, -+ ,@,).
Therefore, every solution X = ¢(t) of (8.6) can be (uniquely) expressed by (8.8). o

Theorem 8.11. Let X, be a given solution of the non-homogeneous system (8.5) on an
interval I and let
Xczch1+02X2+"'+Cana

denote the general solution on the same interval of the associated homogeneous system (8.6).

Then the general solution of the non-homogeneous system on the interval is
X=X.+X,.

Remark 8.12. The general solution X, of the associated homogeneous system (8.6) is

called the complementary function of the non-homogeneous system (8.5).
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Example 8.13. The function X, = [ _3§ t_+46 } is a particular solution of the non-homogeneous
system
, 13 12t — 11
X_{53]X+[ 3 1 (8.10)

From Example 8.3, we find that the general solution to (8.10) is

e 2 3ebt 1 3 12t — 11
X — C1 |: —6_2t + 02 566t + 5 3 X + _3 .
Next we provide a tool to determine if n solution vectors to the homogeneous system
(8.6) are linearly independent. We recall that in linear algebra n vectors vy, - - - , v, in R" are

linearly independent if and only if the determinant det([v;:vq: - -:v,]) # 0. This motivates

the following

Definition 8.14. Let

x11 Z12 L1k Lin

T21 T22 Lok Ton
X, = ] , Xo= ] , - X = ] , - X, =

Tnl Tn2 Tnk Tnn

be n vector-valued functions defined on an interval I. The Wronskian (or Wronskian deter-

minant) of X;,---, X, at t € I, denoted by W[X;, Xs,---, X,,](t), is the number

z1(t) z() - 21a(t)
WXy, X, X, (1) = det ([ X () X)X, (1)]) = walt) ealt) oo amll)
rt) wolt) o wlt)

Suppose that X7, .-+, X, are functions (but not necessary solution vectors of the homo-

geneous system (8.6)). The following two statements are true:
L if W[Xy, -+, X,](t) # 0 for some t € I, then X, -, X, are linearly independent;
2. if Xy,---, X, are linearly dependent, then W[X,,---, X, | =0.

However, the converse statement for the two statements above is not true. For example, the

-[] m xe[

two functions
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are linearly independent, but W[X, X5|(t) = 0 for all £ € R. In other words, the Wronskian
is not a very reliable tool to determine the linear independence/dependence of functions.

Nevertheless, we have the following

Theorem 8.15. Let

T11 T12 L1k T1in

T21 T22 Lok Ton
X, = , Xo= . , X = , X, = .

Tni Tn2 Tnk Lnn

be n solution vectors of the homogeneous system (8.6) on an interval I. Then the Wronskian

WI[Xy, Xa, -, X,] vanishes on the interval I if and only if it vanishes at some to € I.

Proof. Let A(t) = [a;j(t)]nxn, and rewrite z;; as xgz) Since X} = AX;, we must have
:zrg-i)/ = the ¢-th component of AX; = Z aikxék) :
k=1

thus using the properties of the determinants we find that

(1) 1) (1)
xgl) xél) R Z Ty Ln
: .: ; (i-1) (i-1) (i-1)
I 7 74 z]
xg)/ xg)/ x%)/ = 2 aikx§ ) D aik:x; ) > aikiﬂa(z)
. . . k=1 k=1 k=1
(i+1)  (i+1) (i4+1) ) . .
xT T n i+1 i+1 i+1
1 2 xg ) xé ) (i+1)
xgn) xén) i xgn) xé") Q)
lL‘gl) flfél) ZE7(11)
mgifl) xgifl) wslifl)
“row opgatlons” aiix(lz) aiixg) CL”JIS) e
:Egi—i-l) wgﬁ—s—l) xgH—l)
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Therefore,
:Ij'gl)/ xgl)/ o xg)/ xgl) xgl) o %(11)
(2) (2) (2)
—W = 4+ -4 : ) :
dt - xgn—l) :Lén—l) o $$Ln_1)

= (a11 4+ + )W =tr(A)W;

thus by the method of integrating factors,

W(t) = exp ( f t tr(A)(s) ds)W(to)

to

which implies that the Wronskian is identically zero (if W(¢g) is zero) or else never vanishes
(if W(ty) # 0). 5

Remark 8.16. The theorem above implies that if X, Xs, -+, X,, are n solution vectors

of the homogeneous system (8.6) on an interval I, then exactly one of the following cases

holds:
1. W[Xyq, -+, X,](t) =0 for all t € I, in which case Xy, , X,, are linearly dependent;
2. WXy, -, X,](t) # 0 for NO values of t € I, in which case X;,---, X, are linearly

independent.

8.2 Homogeneous Linear Systems
In this section, we consider the equation

X' =AX, (8.11)
where A is a constant n x n matrix.

Example 8.17. For a,b, c,d € R being given constants, we consider the linear system

;o _la b
X' =AX= L d} X (8.12)
or equivalently,
] = axy + bxy, (8.13a)

xy = cx1 + dag, (8.13b)
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b
d

implies that x; satisfies

where A = [CCL } and X = [z1,75]T. Using (8.13a), we have bzy = 1] — awzy; thus (8.13b)

ry — (a+d)xy + (ad — be)ry = 0.

Similarly, x, satisfies

zy — (a+d)xy + (ad — be)zy = 0.
We note that the characteristic equation for the two ODEs above are exactly the character-

. . . b
istic equation of the matrix {Z d] :

1. Suppose that A\; # Ay are distinct zeros of the characteristic equation, then
21(t) = k1eMt + kye?! and To(t) = ket + ke
for some constants ky, ks, k3, k4 satisfying

Ak1eMt 4+ Aokoe™t = (aky + bks)eM! + (aky + by)e™'
)\1]€3€>\1t + /\2]626/\2t = (Cl{fl + dk’g)@Alt + (C]CQ + dk’4)6>\2t .

Mt er2t) are linearly independent, we must have that ki, ko, ks, ky satisfy

a b kl - kl a b kQ . kg
R R A A | R
Observing that
. :cl(t) - ]ﬁe)\lt‘sze)\ﬁ o kl it ]{32 Aot
X(t) o |:I2(t):| o |:k'3€>\1t +l€4€>\2t o k’3 € + ]C4 € ’
by letting Ky = [ki, k3] and K, = [ko, k4]*, we conclude that the solution of the

system (8.12) can be expressed as

Since {e

X(t) = K16>\1t + K2€A2t s

where K, and K, satisfies that (A — M I)K; = (A — A1) Ky = 0. In particular, if
K, K, are respective eigenvectors associated with A\; and Ay, then {Kle’\lt, K2€)‘2t}

is a fundamental set of solutions of (8.12).
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2. Suppose that A is a repeated eigenvalue of the characteristic equation, then
r1(t) = kyte™ + koe™  and  ao(t) = kste + kye
for some ky, ko, k3, k4 satisfying
(ky + koX)eM + kyhteN = (aky + bks)ter + (akq + bky)eM
(ks + ka\)eMN + ksAteM = (cks + dky)teM + (cks + dky)e .

Since {e*, te*} are linearly independent,

a b ]{71 . ]{Zl a b k’Q . k’Q kl
1 R o I A Y R e
Let K, = [ky, ks]T and Ky = [ky, k4])T. Then the two identities above show that

(A—AD)K, =0, (8.14a)
(A- MK, = K, . (8.14b)

As a consequence,

(i) If A has two linearly independent eigenvectors v; and vy, then there exists no
solution to (8.14b) if K, is a non-zero vector satisfying (8.14a). In this case,
K can only be zero vector so that K5 is an eigenvector of A associated with
eigenvalue A. Therefore, {v;e*, voe?'} is a fundamental set of solutions of (8.12).
(ii) If A has only one linearly independent eigenvector K, then there exists a non-
zero K, satisfying (A — M)K, = K. In this case, {Kle’\t,Klte’\t + KQeM}
is a fundamental set of solutions of (8.12). We also note that in this case Ky
satisfies that (A — AI)2K, = 0 but (A — M) K, # 0 so that K, is a generalized

eigenvector of A (associated with A).

Motivated by Example 8.17, we are prompted to ask whether we can always find a

solution of the form

Xt)=| [ |eM=KeM,
Ky,
where K is a non-zero constant vector and A is a constant, for the general homogeneous

linear first-order system
X' =AX, (8.15)
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where A is an n x n matrix with constant entries. Suppose that X(t) = Ke is indeed a
solution to (8.15), then by the fact that %K@M = MKeM, we find that A\ and K satisfy
that

(A-XN)K =0.

In other words, for X(t) = Ke being a non-trivial solution to (8.15), A must be an

eigenvalue of A and K is a corresponding eigenvector.

8.2.1 The case that A has n linearly independent eigenvectors

Theorem 8.18. Let A\, Ao, -+, A\, be n eigenvalues of the coefficient matriz A of the
homogeneous system (8.15) and let K1, Ko, ---, K, be the corresponding eigenvectors such

that K1, -+ , K,, are linearly independent. Then the general solution of (8.15) on R is given

by
X(t) = A KieM + o Ko™ + - 4 ¢, K, e’

Proof. Note that the computation above shows that X; = K,e%" of the homogeneous
system (8.15). By the fact that K, -, K,, are linearly independent, we find that

WXy, -, X,(t) = ettt dot ([K Ky - iK,]) #0.
The desired result is then concluded from Theorem 8.10 and &.15. )

Example 8.19. Consider the linear system

41 1
X'=|15 -1|X. (8.16)
0 1 -3

Let A be the 3 x 3 matrix in (8.16). If X is an eigenvalue of A, then

—4 — )\ 1 1
0=det(A — ) = 1 5-X =1 |=M@A+NB-NB+N);
0 1 —-3-A
thus A = =3, —4 or 5. If K;, Ky and K3 are respective eigenvectors associated with

eigenvalues A\ = —3, Ay = —4 and A3 = 5, then

11 1 01 1 9 1 1 0
1 8 -1 |K,=|19 -1|Ky=|1 0 -1|Ks=10
0 1 0 01 1 0 1 -8 0
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and we choose

1 10 1
K1 = 0 s K2 = -1 and K3 = 8
1 1 1

1 10 1
Xt)=c1 |0 |eP 4| =1 e t+es| 8 |e™
1 1 1
Example 8.20. Consider the linear system
1 -2 2
X'=|-2 1 -2|X.
2 =2 1

The characteristic equation of the matrix given in the linear system is —(A+1)2(A—=5) =0
so that the eigenvalues of the matrix are —1 and ¢. There are two linearly independent
eigenvectors K, = [1,1,0]T and K, = [0,1,1]T associated with A = —1, while K3 =
[1,—1,1]7 is an eigenvector associated with A\ = 5. Therefore, Theorem 8.18 implies that

the general solution to the linear system above is

1 0 1
Xt)y=c |1|et+e |1|etHes|—1]e™.
0 1 1

Example 8.21. Consider the linear system

X' = {g _41 } X. (8.17)

Let A be the 2 x 2 matrix in (8.17). If X is an eigenvalue of A, then

0 = det(A — )

'6—)\ -1

T ‘:(6—)\)(4—>\)+5:)\2—10)\—|—29;

thus A = 5+ 2. If K; and K, are eigenvectors of A associated with the eigenvalues
M =5+ 2i and Ay = 5 — 2i, then

1+2i -1 [1-20 -1 _fo
{ 5 —1+2¢}K1_l 5 —1—2@}1{2_{0]
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and we choose
1

1
K&:{I—Qi} and Ké:{1+m]'

Therefore, the general solution of (8.17) is

1 - 1 :
_ (5+2i)t (5—2i)t
X<t)_cl{1—2i}€ +02[1+2i}e . (8.18)

Theorem 8.22. Let A be the coefficient matix having real entries of the homogeneous system

(8.11), and let K be an eigenvector corresponding to the complex eigenvalue X. Then
X, (t) = KeM and X,(t) = KeM
are solutions to (8.11), where ~ denotes the complex conjugate.

Proof. The theorem is concluded from the fact that if X is a complex eigenvalue of a real
matrix A with a corresponding eigenvector K, then \ is also an eigenvalue of A with a

corresponding eigenvector K. =

In Example 8.21, it is desirable to rewrite a solution such as (8.18) in terms of real-valued

functions. Using the Euler formula
et = ¢%(cos B + isin B) Va,BeR,

letting Cy = ¢1 + ¢ and Cy = (¢ — ¢2)i, (8.18) becomes

Gy —Cai
- 2

= C’1< E} et cos 2t — [_02] e sin 2t> + C’g( {ﬂ e sin 2t + [_02] e cos 2t> .

In general, if K is an eigenvector of A (with real entries) associated with the complex

X(t) [ L ] e”(cos 2t + isin 2t) +

C1+Cyi 1
1—-2¢

5 . 22} ¢”(cos 2t — i sin 2t)

eigenvalue A = a + 13, where o, f € R, then
KeM = Ke®(cos Bt + isin t) and KM = Ke®(cos Bt — isin Bt) .
By the superposition principle,

1 — 1 = ] —
X (t) = §(Ke’\lt + Ke) = §(K+ K)e® cos Bt + %(K— K)e™ sin Bt
and

Xo(t) = - (—KeM + I_(ej‘t) = —%(K— K)e™ cos Bt + %(K+ K)e sin 3t

N | .



14 CHAPTER 8. System of Linear First-Order Differential Equations

are also solutions to the homogeneous system (8.11). By defining
B, — %(K+ K) and By=-“(K-K), (8.19)
we conclude the following

Theorem 8.23. Let A = a+ if be a complex eigenvalue of the coefficient matriz A with
real entries in the homogeneous system (8.11), and let By and By denote the column vectors
defined in (8.19). Then

X, (t) = (Bj cos ft — Bysin t)e™ and X, (t) = (Bycos t + By sin 3t)e™
are linearly independent solutions of (8.11) on R.

Remark 8.24. We note that B; and B, are the real part and the imaginary part of K,

respectively.

8.2.2 The case that A does not have n linearly independent eigen-
vectors

In this sub-section we consider, in contrast to the previous sub-section, the case that the
matrix A does not have n linearly independent eigenvectors. Then there exists at least one
eigenvalue A\ of A whose corresponding eigenspace has dimension less than the algebraic
multiplicity of A\. To be more precise, there exist A and m € N such that (x — \)™ is a factor
of the characteristic equation det(A — zI) = 0 while (z — X\)™*"! is not a factor, but there
are only p linearly independent eigenvectors Ky, -- , K, of A associated with A for some
p<m.

Suppose the simplest case that A is the only eigenvalue of A. Then Theorem 8.9 and
8.10 show that there are (n — p) solutions whose union with the set {Kje” ‘ 1 <5< p}
forms a basis of the solution space. Motivated by Example 8.17, in this case we look for

non-zero constant vectors K satisfying that
(A-AM)’K=0 and (A—-)M)K #0,

and expect that (A — A\I) Kte + Ke* is a non-trivial solution of the homogeneous system
(8.11). We note that if (A — M[)2K = 0, then X(t) = (A — M) KteM + KeM is indeed a
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solution to (8.11) since

X'~ AX = %[(A ~ADKteM + KeM] — A[(A - M) Kte + KeV]

= (A - MN)KeM + M\A - M) KteM + AKeM — A(A — M) Kte — AKeM
=—(A - AI)’KteM = 0.

Suppose that the dimension of the null space of the matrix (A — AI)? is ¢, and K1,

K, -, K, are linearly independent vectors satisfying
(A-XN)’K;=0 and (A-)MDK; #0 Vp+1<j<gq.
By the fact that the set
{K;eM|1<j<p}u{(A-M)Kte" + K;eM|p+1<j<q} (8.20)

is a linearly independent set, we find that if ¢ = n, then the set given in (8.20) is a
fundamental set of solutions of (8.11).

On the other hand, if ¢ < n then there exist (n—¢) linearly independent solutions whose
union with the set given in (8.20) forms a fundamental set of solutions of (8.11). Having the
experience from Example 8.17 and the solutions of second-order linear ODEs with constant

coefficients in Chapter 4, we expect that there is a solution of the form
L2 + JteM + KeM

for some vectors K, J and L. This is indeed the case, and we have the following

Theorem 8.25. Let A be the coefficient matriz in the homogeneous system (8.11), and A
be an eigenvalue of A with algebraic multiplicity m. Then m linearly independent solution

to (8.11) are given by

X1<t> = K11€/\t,
Xg(t> = Kzlte)\t + K226)\t s

tm_l

tm—Z
e)xt + Km2

Xom(t) = Komi o5, (m—2)!

At At
€ ++Kmm€ 9

where K;; are vectors for all1 <t <m and1 < j <i.
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Remark 8.26. Assume the conditions in Theorem above, and let

tffl tEfQ

_ At Ao At At
X(t)—Kg(e_l)!e +Kg_1(£_2)!€ + -4+ Kote™ + Kqe™. (8.21)
Then
X' -AX=K ﬁe%rK 1 M4 4 KyeM — (A= MDX(t)
fe=2)! =3y 2
tf—l tf—Q
= —(A-)K, = 1)!6’\t + [K;— (A-N)K,_] = 2)!&
-3
+ [Kg_l — (A — )\I)Kg_g} ([ — 3)'6>\t + -4 [KQ _ (A _ )\I)Kl}e/\t
so that the fact that {eM, teM, t2eM, .. *~1eM} is a linearly independent set implies that

X is a solution to (8.11) & (A —AM)K,=0and K; = (A - AN)K,_; forall 2 < j </
< (A—ADK,=0and K; = (A— ) 'K, forall 2 < j < (.

We then immediately conclude that X given by (8.21) is a solution to (8.11) with leading

coefficient vector K, # 0 if and only if
(A=K, =0, (A-X)"'K;#0 and K,=(A- MY 'K forall 2 <j < /(.
The statement above provides a way to find solutions to (8.11) of the form given by (8.11).

Example 8.27. Consider the linear system

;. |3 —18
X' =AX = { 9 _g X.
The matrix A has a repeated eigenvalue A = —3 with algebraic multiplicity 2, but the
corresponding eigenspace is 1-dimensional and is spanned by the eigenvector K; = [3,1]T.
Therefore, we immediately obtain one solution X;(t) = Kie™3 and there exists a solution
of the form

X,(t) = (A +3)Kte ™ + Ke ™
for some K satisfying (A + 3I)2K = 0 and (A + 3I)K # 0. Since

, [6 —181[6 —187 [0 0
(4 +31) _{2 6|2 6]~ [00
we can choose K = [1;0]T (or any K which is not an eigenvector of A) and obtain another

solution

X,(t) = [g] te 3 + H te 3",
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Example 8.28. Consider the linear system

X' =AX = X.

S O N
N Ot O

1
2
0

The matrix A has a repeated eigenvalue A = 2 with algebraic multiplicity 3, and the
corresponding eigenspace is 1-dimensional and is spanned by the eigenvector K; = [1,0,0]T.
Therefore, we immediately obtain one solution X;(¢) = Ke*. To obtain another two

linearly independent solution, we first look for solutions of the form

(A —2I)Kte* + Ke*,

where K satisfies (A — 2I)?K = (0 but (A — 2I) K # 0. Since
016 0 1 6] 00 5
A-212=|oos5||loos|=|000],
0 00 0 00 0 00

we choose K = [0, 1,0]T and obtain another solution

1
X,(t) = |0] te* +
0

o = O
®
~+

We note that there will be no other linearly independent solution of the form (A —2I) Kte* +
Ke? since the null space of (A — 2I)? is 2-dimensional. Therefore, there must be a solution
of the form )

(A 21)21(%@’” 4 (A - 2Kt + Ke?
where K satisfies (A — 2I)> K = 0 but (A — 2I)>K # 0. We then choose K = [0, 0, 1] and

obtain

) /2 6 0
X3(t) = |0 Eet—l— 5| te! + |0f €
0 0 1

so that {X 1, Xo, X 3} is a fundamental set of solutions to the system given above.

8.3 Non-homogeneous Linear Systems

In this section we focus on solving the linear system

X'= A()X + F(t), (8.22)
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where A is an n x n matrix. By Theorem 8.11, it suffices to find a particular solution so
that general solutions to (8.22) can be expressed as the sum of this particular solution and

linear combinations of functions in a fundamental set of solution of (8.6).

8.3.1 The method of undetermined coefficients

When A is a constant matrix, the method of undetermined coefficients sometimes provides
a quick way of finding a particular solution when the entries F' are constants, polynomials,
exponential functions, sines and cosines or finite sums and products of these functions. We
will ignore this method here since there are certain restrictions, depending on the form for

applying this method.

8.3.2 The method of variation of parameters

Let {X 1, Xo, - ,Xn} be a fundamental set of solutions of the homogeneous system (8.6)
on an interval I (here we do not exclude the possibility that A = A(t)), and ®(t) =
[X1(t): -+ 1 X,(t)] be a fundamental matrix of the homogeneous system (8.11) on the

interval. Then
1. &' = A(t)®;
2. Theorem 8.15 implies that ®(t) is non-singular for all ¢ € I;

3. Theorem 8.10 implies that every solution X to (8.11) on the interval can be expressed

as X(t) = ®(t) C for some constant vector C = [c, ¢, , c)T.

The method of variation of parameters of finding a particular solution to (8.22) is to find a
solution of the form
X,(1) = @) U(1)

for some vector-valued function U. By the product rule,

d

7 [ @U@ =2'(t)U®R)+ @)U (t) = AO)P(H)Ut) + (1) U'(1);

thus X, = ® U is a particular solution to (8.22) if and only if
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Since ® is non-singular, we find that
X, = ® U is a particular solution to (8.22) if and only if U'(t) = & '(t)F(t).
Therefore, a particular solution can be expressed as
Xﬂﬂzz@@X[é‘%ﬂF@)ﬁ (8.23)

and the general solution of (8.22) can be expressed as
_na:¢@c+¢@J¢4@Fmﬁ

for some constant vector C = [cy, ¢z, ,¢,]T.

Example 8.29. Consider the linear system

, =31 3t
X—AX+F—[2 _4}X+Lt1

on R. We first find a fundamental set of the associated homogeneous system. Note that

there are two distinct eigenvalues \y = —2 and Ay = —5 with corresponding eigenvectors
K, =[1,1]" and Ky = [1,—2]". Therefore, X;(t) = Kie ? and X,(t) = Koe ™ forms a

fundamental set of the associated homogeneous system. Therefore,

P _5t
e e
‘I’(t) = e—2t 2654
_26215 16%
is a fundamental matrix. Since <I>’1(t) = i’ |
Lo L o5
3¢ 3¢
i o[22 1y
et e 3¢ 3¢ 3t
X,(t) = o2t 9,5t 1 1 ot dt
i ] L5t it
| 3 3
B 1
e e J 2te! + et e {621‘/ o5t } te!
672t _267515_ teSt %64t 67215 _26751‘/ ;teE)t
6, 21 1 -
Op 2l Lot
|5 Tr
3 21 1
“t— =4 = —t

, using (8.23) we find that

1 2t 1 t
——e —e

2 T3
1l

25 12
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is a particular solution of the linear system above. Therefore, the general solution to the

linear system is

6, 27 1,

e 2 eH c1 5 50 4
X(t)_le_zt 26—5t:||:621+ §_§+17t

) 50 2

Example 8.30. Consider the linear system
0 1 et
X' =A)X+ F(t) = 0 2 X+ [tQ}
t

Note that the associated homogeneous system X’ = A(#)X has two linearly independent

solution

X (t) = {H and  Xo(t) = { v } .

3t?

3
Let ®(t) = [ (1) ?ftz ] Using (8.23) we obtain a particular solution
t
X 1 B (1 B8] [e ; 1 4 =3 |Te ;
WD=1032]] |0 StQ} {ﬂ} t_[o 3t2” 0 L {tQ} !
3t2
_ — t3 t4 4
1B e—% A I G t4 b
=0 32 ] 13 dt:[o&?] t12 6;24
) L3 3

Therefore, the general solution to the non-homogeneous linear system is
1 t3 C1
X(t)_{o StQ} LJ*

Initial-Value Problem: Suppose that ® is a fundamental matrix of the homogeneous
system X' = A(t)X. Then the solution to the initial-value problem

1
et + =
4

t3

X' =A{t)X + F(t) Viel,
X(t9) = Xo,

where ty € 1, is
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8.4 Matrix Exponential

Note that one way to see that x(t) = ce? is a solution to 2’ = Az, where X is a constant, is

to differentiate the power series representation of the exponential function

ee}
o (A)F A°t? A"
exp(At) = > Sl M e
k=0
and see that o . o
d AFgh—l P At
d—e”:Z - 1‘:2 o :)\Z_k' = M.
t k=1 (k —1)! k=0 ' k=0 " o Ak
Motivated by the computation above, we find that the “power series” ) x is a solution
k=0 F:
to X' = AX since “formally” we can differentiate the series above and obtain that
d &AM & AR & AN ARtk
— =Y =Y =4 . (8.24)
| Z — 1) Z | |
dt = K = (k—1)! = K = K
We note that the computation above is indeed correct since the sequence of functions
o ARR o X ANtk
{ > o } converges uniformly to ] o on any bounded interval I. Motivated
k=0 7 Jn=l k=0 R~

by the Maclaurin series of the exponential function and the computation above, we have

the following

Definition 8.31. The exponential of an n x n matrix M, denoted by e or exp(M), is a
matrix defined by

1 1 1 1
M e e —_— 2 —_— 3 DY —_— k EI I N — — k
eM = exp(M) =Ton + M+ 5y M? + S MP oo S ME + _I;)MM .
With this definition (of exponential of matrices), (8.24) can be written as %eAt = AeAt,
In the following, we focus on the evaluation of the power series e4t = Y X
k=0
By the knowledge from linear algebra,
A=PAP! (8.25)
for some invertible matrix P, where A is of the Jordan canonical form
J O --- 0

e

(8.26)

o -~ 0 J,
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in which each O is zero matrix, and each Jj is a square matrix of the form AI or

0 1 0 -~ 0] [N 1 0 - 0
00 1 " 0 A 1 :
Jo=XMN+|: . . - ol=1|: . . 0 (8.27)
: 0 1 : B N |
_O 0 O_ _0 O A_

Pl —o =k — k!
0
(A1) |
=P(% )P
k=0
Since A takes the form (8.26), we find that
(Jit) o .- o
k-l
(At)k — 0 ('1'275) . . O
0 e O (Jgit)k

If J = A for some A, then (Jt)* = AT so that e’ = eMI. On the other hand, if J takes
the form (8.27), then by the fact that \I commutes with (J — M), we find that

Jb = AL+ (J - D))" = Zk] CENI(J = AT) .

=0
By the fact that

There are j copies of 0’s here

—
[0 0 1 0 07
0 0 1 0
(J — ALyl = I
0 1
0
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1) (k — 1
so that with C* denoting the number kk—1)--(k=m+1)

Y

m!
[ \F ARl ChNF=2 ... .. Ok \Fomtd 7
0 )\k k‘)\k_l . . Cﬁz—2)\k—m+2
I ' B :
ChAk-=2
: Ce Ce O )\k k)\k—l
i 0 ... .. c. 0 )\k |
Therefore, if J is an m x m matrix taking the form (8.27),
C g P P Bov T T
e te 5¢ 3¢ 4° (mf1)!e
0 eM teM ﬁ@“ "
2! 2 (m —2)!
: At A\t Y
eIt — i (Jt)k . : 0 € te ae
a Kl : : . . . .
k=0 : : . . . .
0 Mg Lon
2!
. . . . O e)\t te)\t
i o .- 0 eMt |

Using (8.25), letting Y = P~' X, by the fact that P is a constant matrix we find that

Y =P 'X' =P 'AX=AP'X=AY.

Y,

Y,
Write Y = . , where Y} is a ng x 1 column vector if Jy is ny x ng matrix. Then for

Y,
each 1 < k < ¢ we have Y} = J Y}, so it suffices to solve the linear system Y' = JY,
where J is in diagonal form or J takes the form (8.27). Once we obtain a solution Y to the

equation above, the solution X to (8.11) is then obtained by letting X = PY.

Example 8.32 (Example 8.28 Revisit). Consider the linear system

X' =AX = X

S O N
SN =
N Ot O
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that we discussed in Example 8.28. Note that

2 16 56 0 210 5 6 0
025 |=]050 0 21 050 ,
00 2 00 1 00 2 0 01
from the discussion above we conclude that the general solution to the given linear system
is given by
[ 5 6 0] 210 Ch
X(t)y=1]10 5 0 |exp 02 1|t Cy
| 0 0 1 ] 00 2 Cs
_ - T 2 _
5607 [ te S| TG
=105 0 0 2t et Cy
| 0 0 1 ] 0 0 e | C3
_ - I 2
56 0 Cre? + Cyte?t + C?’%e%
=10 5 0 Che?t + Cyte?t
| 0 0 1 ] I Cye?
O 5 6 0
= (Cl + Cgt + %) 0 €2t + (Cg + Cgt) 5 €2t + 03 0 €2t .
0 0 1

In terms of the fundamental set {X 1, Xo, Xg} given in Example 8.28, the general solution
above is

X(t) = (5C, + C9) X1 4+ 5Cy Xo(t) + C5 X5(t)

Example 8.33. Consider the linear system X’ = A X, where
-1

4 -2 0 2 -2 00 1141 00[|-2 001
A 0 6 -2 0 |-2 1100400 |-2110
10 2 2 0l [-2210[]|0040[[|-2210
0 -2 0 6 -2 0 1 110 0 0 6([|—-2 0 11
From the discussion above, we find that the general solution to the given linear system is
(1 -1 -2 —1] 4100 Ch
|0 1 1 2 0400 Cy
XO=1o o 1 —1|*P|loo4ol'||c
-1 0 0 1 0 006 Cy
(1 —1 —2 —1] [e* te* 0 0 C
10 1 1 2 0 e 0 0 Cy
10 0 1 -1 0 0 e* 0 Cs
-1 0 0 1]|0 0 0 € Cy
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Example 8.34. Consider the linear system X' = A X, where

6 5 9 4 200121 0 0][1 -1 —2 -1
4_ |8 6 -1 8 _|-2110[{020 0|0 1 1 2
1 1 0 1 —2210/|00 -1 1]l0 0 1 -1
0 -1 1 2 2011|000 0 —1]|-1 0 0 1

From the discussion above, we find that the general solution to the given linear system is

200 1 21 0 0 C
2110 02 0 0 Cy
Xt =199 10 |]o0o -1 1||]c
2 01 1] 00 0 -1 C,
20 0 1T e 0 o01[C
2110/ lo e 0 ol
=2 2 1 00 0 et tet Cs
20110 0 0o |G

e The construction of Jordan decompositions: Let A € M,,,, be given.

Step 1: Let Ay, Ao, -+, Ax be the distinct eigenvalues of A with multiplicity mq, maq, - - -,
my,. We first focus on how to determine the block
AY o0 ... O
j
2 -
Aj= O j,‘j n 0 )
0 - 0 A/
whose diagonal is a fixed eigenvalue \; with multiplicity m; for some j € {1,2,--- , k},
and the size of Ay) is not smaller than the size of Agi“) fori=1,---,7; —1. Once
all A’s are obtained, then
A, O -+ O
A~ O A, . O
O - 0O A,

Step 2: Let E; and K, denote the eigenspace and the generalized eigenspace associated
with \;, respectively. Then r; = dim(E;) and m; = dim(K;). Determine the smallest
integer n; such that

m; = dim (ker(A — \;I)™).
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Find the value

pg'e) = dim(ker(A — \I)°) for £e{1,2,-- n;}

(0)

and set p;~ = 0. Construct an r; x n; matrix whose entries only takes the value 0 or

1 and for each ¢ € {1,--- ,n;} only the first p;e) — py_l) components takes value 1 in
the ¢-th column of this matrix. Let ng‘) be the sum of the i-th row of the matrix just

obtained. Then Ago is a sy) X 550 matrix.

Step 3: Next, let us determine matrix P. Suppose that

Example 8.35. Find the Jordan decomposition of the matrix A =

P=[uli ™ iVl (VY]
Then A[ e f’u,g-mj)} = ['u,;-l)f f’u,g-mj)}Aj. Divide {’u,gl),--- ,ug-mj)} into 7,
groups
{ul?, } {u] ()H : u;s§1)+s§2))},-.. , and {u; ()b T )“)7... Lu™)

so that for each £ € {1,--- ,r;}, we let the (-th group refer to the group of vectors

(s bts41) (PasiT 12) (s +-+s589)
uj 9 ’U,] PR ’U,] .

We then set up the first group by picking up an arbitrary non-zero vectors v, €
ker (A — )%\ ker (A — A% ') and let

= (A - )\jI)Sg'l)*ivl forie{l,---, s —1}.

U, J

Inductively, once the first ¢ groups of vectors are set up, pick up an arbitrary non-zero

vector vei1 € ker ((A — A, ) \ker ((A - )\jI)Sgul)_l) such that vy is not in the

span of the vectors from the first ¢ groups, and define

(NI OO (e4+1) .
'u,; g (A —N\I)% o Tupyq forie{l,--- | EZH) —1}.

This defines the (¢4 1)-th group. Keep on doing so for all ¢ < r; and for j € {1,--- |k},

we complete the construction of P.

oo o
(e
o |
)

o OO
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If X is an eigenvalue of A, then \ satisfies

4—-N =2 0

9
0 6-\ -2 0 6-1 =2 0

0 =det(A — ) = 0 5 9-% o 4=\ 2 2-Xx 0
0 -2 0 6-—2)\ -2 0 6-A
=@ =N[6=X*2 =2 +406-X1)]=(6-N)E=N[(6-)(2—X) +4]
= (A—4)°(1—6)

Let \y =4, Ay =6, m; = 3 and my = 1. Note that

dim (ker(A —4I)) =2 and dim (ker(A4 — 4I)%) = 3.
Therefore, ny = 2 and pgl) =2, pf) = 3. We then construct the matrix according to Step 2

above, and the matrix is a 2 x 2 matrix given by E (1)] . This matrix provides that s; = 2

4 10
and s, = 1; thus the block associated with the eigenvalue A = 4,is [0 4 0] . Therefore,
00 4
4 100
0400
A= 0040
00 06

First, we note that the eigenvector associated with A = 6 can be chosen as (1,0,0,1)".
Computing ker ((A — 4I)) and ker ((A — 4I)?), we find that

ker ((A — 4I)) = span((1,0,0,0)",(0,1,1,1)"),

ker ((A — 4I)*) = span((1,0,0,0)",(0,1,0,2)",(0,1,2,0)") .
We note that either (0,1,0,2)" or (0,1,2,0)" is in ker ((A — 4I)), we can choose v =
(0,1,0,2)T. Then (A —4T)v = (2,2,2,2)". Finally, for the third column of P we can choose
either (1,0,0,0)™ or (0,1,1,1)" (or even their linear combination) since these vectors are
not in the span of (2,2,2,2)T and (0, 1,0,2). Therefore,
1
or P=

N DO DN DO
NN O = O
—_ o O
NN DN DN
N O = O
— == O
_ o O =

0
0
0

satisfies A = PAP .
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a 01 00
0 a 010
Example 8.36. Let A = [0 0 a 0 1|. Then the characteristic equation of A is
000 a6
0000 a

(a — N)?; thus A = a is the only eigenvalue of A. First we compute the kernel of (A — al)?
for various p. With e; = (0,---,0,1,0,---,0)T denoting the i-th vector in the standard
——

(i — 1)-slots
basis of R®, we find that
ker((A — al)) = {(z1,22,0,0)" | 21,2, € R} = span(ey, e3),
ker((A — al)?) = {(xl, Ty, T3, T4,0)" ‘ X1, X9, T3, Ty € ]R} = span(ey, ey, €3, ;) ,

ker((A — al)®) = R® = span(ey, e, €3, €4, €3) .

The matrix obtained by Step 2 is E 1 (1)] which implies that the two Jordan blocks is of
size 3 x 3 and 2 x 2. Therefore,

a 1 0 0 O
0O al 00
A=10 0 a 0 O
000 al
0000 a

We note that es € ker ((A — al)?)\ ker ((A — aI)?); thus the first three column of P can
be chosen as
P(1:3)=[(A—al)’es;:(A—al)es es] = [e1iesies].

To find the last two columns, we try to find a vector w € ker ((A — aI)?)\ ker ((A — al)) so
that w is not in the span of {e;, es, e5}. Therefore, we may choose w = ey; thus the last
two columns of P is

P(4:5) = [(A —al)ey: 64} = [82 : 64}

which implies that

10000
00010
P=|01000
00001
00100



Chapter 10

System of Nonlinear First-Order
Differential Equations

10.1 Autonomous Systems

Definition 10.1. A system of first-order differential equations is said to be autonomous if
the system can be written in the form

dl‘l

ﬁ = gl(xlax% e 7xn) )
dt g2(T1, T2, yn) (101)
da:n.
W = gn(mhx% e 7‘1.11) )
Example 10.2. The most famous autonomous system is obtained the pendulum system
d*0 g
— 4+ =sinf =0:
dt> L
letting x = 0 and y = 6’, then
a' =y,
y' = —% sin .

Notation: Let X and g(X) denote the respective column vectors

xl(t) gl(mlax%“' 7xn)

(1) g2(1, w2, -+, 2p)
X<t) = . ) g<X) = . )

SEn(t) gn($1,$2,'-' 7'TTL)

29
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then the autonomous system (10.1) can be written in the form X’ = g(X).
When the independent variable ¢ is interpreted as time, the autonomous system (10.1)
is also called a dynamical system. When n = 2, the system in (10.1) is called a plane

autonomous system, and we write the system as

dzx
= = P ) )
ZZ/ ) (10.2)

If P(z,y) and Q(z,y) and the partial derivatives P, P,, ()., @, are continuous in a region
R of the plane, then a solution of the plane autonomous system (10.2) is unique and of one

of the three basic types:

1. A constant solution z(t) = xg, y(t) = yo (or X(t) = X, for all £). A constant solution
is called a critical or stationary point. When the particle is placed at a critical point
Xy, it remains there indefinitely. For this reason a constant solution is also called an
equilibrium solution or simply equilibrium. Note that Xy = [0, yo]T is an equilibrium
if P(x0,10) = Q(z0,%0) = 0.

2. A periodic solution = = z(t), y = y(t). A periodic solution is called a cycle. If p is
the period of the solution, then X (¢ + p) = X(¢) for all ¢t and a particle placed on the

curve at X, will cycle around the curve and return to Xy in p units of time.

3. A solution x = z(t), y = y(t) defines an arc - a plane curve that does not cross itself

(by the uniqueness of the solution to initial-value problems).

Example 10.3. Consider the autonomous system

x' =2z + 8y,
y'=—x—2y.

The general solution to the linear system above is

x(t) = c1(2cos 2t — 28in 2t) + (2 cos 2t + 2sin 2t) ,
y(t) = —c1 cos 2t — cosin 2t ;

thus every solution is periodic with period p = 7.
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Example 10.4. Consider the autonomous system

v’ =~y —ava? +y?,
y' =z —y\/22+1y2.
Let us rewrite the differential equations above in polar coordinate. Let r = /22 + y? and

0 = arctan 2. Then
X

dr_l( d:):+ dy) and d@_l(_ dx+ dy>
at ~ r\"ar " Var " at — 2\ Var T
so that r, 0 satisfy ' = —r? and 0’ = 1. Therefore, r(t) = and 6(t) =t + ¢, for some

constants ¢y, ¢o; thus

t+c1

x(t) = r(t) cos(t) = %ﬁl@)
szr@gnmozﬂ%%gﬁ_

for some constant

1
The trajectory is given by the polar graph of the polar equation r = Ttc

c(=c1 — o).
If an initial condition X(0) = (3,3) is imposed to the autonomous system, the solution

is then given by
cos(t +m/4)

t++2/6
1

_ sin(t +7/4)

x(t) = y(t) = W

whose trajectory is an arc r =

0++2/6—1/4

Example 10.5. Suppose in terms of polar coordinate an autonomous system is written as
dr
dt
do
dt

The general solution is given by r(t) = 3+ c;e7%% 0(t) =t + ca.

= 0.5(3—1),

=1.

1. If an initial condition (r,0)(0) = (1, g) is imposed, the trajectory is
r=3—2e50-3)
so that r — 3 as t — 0.

2. If an initial condition (r,0)(0) = (3, 0) is imposed, the solution is (z,y) = (3 cost, 3sint)

so that the trajectory is a circle with radius 3.
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10.2 Stability of Autonomous Systems

Suppose that X, is an equilibrium of a plane autonomous system, and X = X(t) is a solution
of the system that satisfies the initial condition X(0) = X, # X.. Some fundamental

question that we would like to answer in the study of autonomous system are:
1. Will the particle return to the equilibrium; that is, tlim X(t) = X;.
—00
2. If the particle does not return to the equilibrium, does it remain close to the equilib-
rium or move away from the equilibrium? In mathematical terms, we would like to

know if there exists (small) § > 0 such that | X(¢) — X.| < ¢ for large enough ¢ or

there exists an increasing sequence {t,}>_; such that |X(t,) — X.| = 0.

Definition 10.6. Let X, be an equilibrium of an autonomous system, and X = X(t) is a
solution of the system that satisfies the initial condition X(0) = X, # X..

1. X, is called a stable equilibrium if for every ¢ > 0, there exists 6 > 0 such that if
the initial point X, satisfies | Xo — X | < 9, then | X (t) — X.| < e for all t > 0. If in
addition there exists 0y > 0 such that tlim X(t) = X, whenever | Xy — X.| < do, X

—00

is called an asymptotically stable equilibrium.

2. X, is called an unstable equilibrium if there exists p > 0 such that for any » > 0
there is at least one initial position X satisfying | Xq — X.| < r and ¢ > 0 such that
|1 X(t) — X.| = p.

10.2.1 Stability Analysis for plane autonomous systems
We first investigate the stability of linear plane autonomous system
z' =ar+by, (10.3a)
y' =cx+dy. (10.3b)
Let A = [ Z Z ] Suppose that A = det(A) # 0 so that 0 is the only equilibrium. Note
T2 —4A
2

that the eigenvalues of A is given by A\ = , where 7 = a + d.
1. The case 72 — 4A > 0: Then the general solution to system (10.3) is given by
X(t) = clKle)‘lt + C2K2€)\2t s

where A1, Ay are the eigenvalues and K, K5 are corresponding eigenvectors.



§10.2 Stability of Autonomous Systems 33

(a) If A\;, A2 < 0 (which corresponds to the case 72 — 4A > 0,7 < 0,A > 0), then
lim X (¢) = 0 which shows that 0 is a stable equilibrium.

t—o0
(b) If A1, A2 > 0 (which corresponds to the case 72 —4A > 0,7 > 0, A > 0), then

tlim ‘X (t)| = o0 unless ¢; = ¢ = 0. In this case, 0 is an unstable equilibrium.
—00

(c) If A\ < 0 < A; (which corresponds to the case 72 — 4A > 0,A < 0), then
tli_)rg) | X (t)| = o0 unless ¢; = 0. Therefore, even though X(¢) still approaches zero
along the line determined by K, if X, lies on this line, 0 is still an unstable
equilibrium (and is called a saddle equilibrium).

2. The case 72 — 4A = 0: Then A has a repeated eigenvalue \ = g

(a) If A has two linearly independent eigenvectors K; and Ko, then the general
solution to system (10.3) is given by

X(t) = ClKle)\t + CQKQQM 5

Then 0 is stable if and only if A < 0 (or 7 < 0). In this case, 0 is called a

degenerate stable/unstable node.

(b) If A has only one linearly independent eigenvector K, then there exists Ky # 0
such that (A —AI)?K;, = 0 but (A — M) K> # 0. In this case the general solution
to system (10.3) is given by

X(t) = o KieM + ¢ (A+ %I)KQte)‘t + K2€>\t] ’

Then 0 is stable if and only if A < 0 (or 7 < 0). In this case, 0 is again called a
degenerate stable/unstable node.

VIA =72

3. The case 72 —4A < 0: Then \; = a+iB and Ay = a—if for a = % and g = 5

In this case, the general solution to system (10.3) is given by
X(t) = ¢1(Bj cos Bt — Bysin Bt)e™ + co( By cos Bt + By sin Bt)e™ .

(a) If o = 0 (which corresponds to the case 72 —4A < 0 and 7 = 0), then A has pure
imaginary eigenvalues and the general solution are periodic with period p = il
In this case the trajectory of solutions are ellipses centered at the equilibrium 0,

so 0 is also called a center.
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(b) If a # 0 (which corresponds to the case 72 —4A < 0 and 7 # 0), then 0 is stable
if and only if @« < 0 (or 7 < 0). In this case, 0 is called a stable (or unstable if

a > 0) spiral equilibrium.
Theorem 10.7. Let X = X(t) denote the solution to a linear plane autonomous system

X' = AX satisfying the initial condition X(0) = Xg, where det(A) # 0 and X, # 0.

1. lim X(t) = 0 if and only if the eigenvalues of A has negative real parts.

t—00

2. X (t) is periodic if and only if the eigenvalues of A are purely imaginary.

3. In all other cases, given any neighborhood of the origin, there is at least one Xq in

the neighborhood for which X (t) becomes unbounded as t increases.

10.3 Linearization and Local Stability
Theorem 10.8. Let x. be an equilibrium of the autonomous first-order differential equation
x' = g(z) (so g(xz.) = 0), where g is continuously differentiable in a neighborhood of x..

1. If ¢'(z.) <0, then x. is an asymptotically stable equilibrium.

2. If g'(x.) > 0, then x. is an unstable equilibrium.

Proof. Suppose that g'(z.) # 0. Since g’ is continuous in a neighborhood of ., there exists
0 > 0 such that

g ()|
2

Note that for every t > 0, the mean value theorem implies that

'(t) = g(x(t)) = g(we) + 9"(§(1)) (x(t) — zc) = ¢"(§(1)) ((t) — ) (10.4)

for some £(t) between x, and z(t).

l9'(z) — g'(ze)| < whenever |z — x| <.

1. If g’"(x.) < 0, then

3g/égje) - g/(gj) -

Let g € [z, — /2,2, + 6/2]. We claim that z(t) € [ze — /2,2, + 0/2] for all t > 0.
Suppose the contrary that {t > 0| |z(¢)—z.| > §/2} is non-empty so that ¢, = inf {t >
0||(t) — x| > §/2} € R. The continuity of = then implies that |z(t,) — z.| = §/2 and
|z(t) — x| <6/2if t < t,.

<0 whenever |r—z. <.
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(a) If z(t.) = x.+0/2, then there exists ; > 0 such that z(t) € (x., x.+9) for all t €
(tx —61,tx+01). However, (10.4) implies that z'(t) < 0 for all t € (t, —d1,t.+1).
This then implies that |z(t) — z.| < /2 for all ¢t € [0, ¢, + 1), a contradiction to
that ¢, = inf {t > 0| |z(t) — z.| = §/2}.

(b) If z(ts) = x. — /2, then there exists d, > 0 such that z(t) € (z.—J,z.) forall t €
(tx — 02, tx+092). However, (10.4) implies that x'(t) > 0 for all t € (t, — 9, . +2).
This then implies that |z(t) — z.| < /2 for all ¢t € [0, ¢, + d2), a contradiction to
that ¢, = inf {t > 0| |z(t) — z.| = §/2}.

Having established that x(t) € [z, — /2,2, + /2] for all ¢t > 0, we find that
/
(we)

Q

(z(t) — ) ifze <a(t)<ze+4,

z'(t) = g'(zc) (z(t) —ze) ifze—08<z(t) <ze.

Therefore,

d g'(zc)
— — <
7 In|z(t) — x| < 5 vVt >0

which implies that

/
|z(t) — x| < |z — x| €xp (g (;e)t) Vit>0.

Therefore, tlim x(t) = x. which shows that z. is an asymptotically stable equilibrium.
—0

2. If g’(x.) > 0, then there exists 0 > 0 such that

39’ ()

!/
0< g'(ze) <g'(z) < — whenever |z — x| <4,

2
and (10.4) further implies that

g'(we)

/
=
(1) > 2

(z(t) —ze) if ze <a(t) <z 40,

z'(t) < g’(;e) (z(t) —z.) ifaze—0<ua(t) <.

or equivalently,

d g'(z.)
. — 2
7 In |z(t) — z.| >

Therefore, if 0 < |z(t) — x| < § for t € [0,T7,

if 0 <|z(t) —x| <0.

/
[2(t) — o] > |0 — el exp (L50)  vielo,T]

0
which shows that |z(t) — z.| > 2 for some ¢t € R no matter how small |zg — z,| is.

Therefore, z. is an unstable equilibrium if ¢'(z.) > 0. o
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Example 10.9. Analyze the stability of equilibria of the logistic differential equation z’ =

%x(K — x), where r and K are positive constants.

Let g(z) = %x(K — ), and z, be an equilibrium. Then xz, = 0 or z, = K. Since
g'(0) =r and ¢'(K) = —r, by Theorem 10.8 we conclude that K is an asymptotically stable

equilibrium but 0 is an unstable equilibrium.

Theorem 10.10. Let X, be an equilibrium of the autonomous first-order differential equa-
tion X' = g(X), where g is continuously differentiable in a neighborhood of X. (that is,
each component of g has continuous first partial derivatives in a neighborhood of X.), and
A = (Dg)(X.) be the Jacobian matrix of g at X..

1. If every eigenvalue of A has negative real part, then X, is an asymptotically stable

equilibrium.

2. If one of the eigenvalue of A has positive real part, then X. is an unstable stable

equilibrium.

Example 10.11. Classify (if possible) the stability of the equilibria of each of the plane
autonomous system X' = g(X) as stable or unstable.

22 +y? —6

2y } . In this case g(x,y) = 0 if and only if (x,3) = (£1/2,2). The

1. g(z,y) = [
Jacobian matrix of g is
| 2z 2y
g = | 5o ]
so that

2\@4}

Doz = | V2 Y 2 4]

wd (D22~ [ V24
Therefore, (1/2,2) is an unstable equilibrium since det(Dg)(v/2,2) < 0 (which implies
that one of the eigenvalues is positive). On the other hand, (Dg)(—+/2,2) is negative
definite so that (—+/2,2) is a stable equilibrium.

0.012(100 — z — y)
2. g(z,y) =

0.05y(60 — y — 0.2x)
(0,60), (100,0) and (50,50). The Jacobian matrix of g is

} . In this case g(z,y) = 0 if and only if (z,y) = (0,0),

0.01(100 — 2z — y) —0.01z

(Dg)(x,y) = { ~0.0ly 0.05(60 — 2y — 0.2z)
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so that
a0 =5 5| wawen=| G0
(Dg)(100,0) = [ o _21] . (Dg)(50,50) = { o :g:g] |
Therefore, (0,0), (0,60), (100,0) are unstable equilibrium, and (50,50) is a stable
equilibrium.

10.3.1 The stability for the plane autonomous system

e Classification of Equilibria

Let X, be an equilibrium of the autonomous system X' = g(X) for some continuously
differentiable function g, and A = (Dg)(X.) be the Jacobian matrix of g at X, with
7 =tr(A) and A = det(A). We can obtain some additional “geometric” information from

the corresponding linear system when considering plane autonomous system:

1. In five separate cases (stable equilibrium, stable spiral equilibrium, unstable spiral
equilibrium, unstable equilibrium and saddle) the equilibrium may be categorized like

the equilibrium in the corresponding linear system.

Ad

Stable Unstable 12 =4A
spiral spiral
? 2] 7 ?
Stable node \ A A / / Unstable node
|
72-4A <0
|
Stable ? ? 2" Unstable

9 / 9

Figure 10.1: Geometric summary of some conclusions
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2. If 72 = 4A and 7 > 0, the equilibrium is unstable, but we are not able to determine
whether X, is an unstable spiral, unstable node, or degenerate unstable node. Simi-
larly, if 72 = 4A and 7 < 0, the equilibrium is stable but may be either a stable spiral,

a stable node or a degenerate stable node.

3. If 7=0and A > 0, the eigenvalues of (Dg)(X,) are pure imaginary and in this case

X, may be either a stable spiral, an unstable spiral or a center.

Example 10.12. Consider the differential equation maz” + kx + k12® = 0 for k& > 0 which
represents a general model for the free, undamped oscillations of a mass m attached to a
nonlinear spring. If £ =1 and k; = —1, the spring is called soft, and the plane autonomous
system corresponding to the nonlinear equation is

dx

azyzgl(:ﬁ,y),
d
d—izw?’—x:gg(azy)-

9 Erﬂ y)} .

There are three equilibria of the system: (0,0), (1,0) and (—1,0). Let g(z,y) = [g
2

Then (Dg)(x,y) = {39520— 1 (1)]

1. (Dg)(0,0) = {_01 (1)] whose eigenvalues are +i. In this case (0,0) is a center of

the corresponding linear system, but we do not know if (0,0) is a stable or unstable

equilibrium of the original nonlinear system.

2. (Dg)(1,0) = (Dg)(—1,0) = B é} whose eigenvalues are ++/2. Therefore, the equi-

librium (1,0) and (—1,0) are saddle points of the corresponding linear system and the

original nonlinear system.

e The Phase-Plane Method

Plotting the vector field V(z,y) = (P(z,y),Q(z,y)) (near an equilibrium) will help us
determine the stability of the equilibria of the autonomous system

da
dt
dy _
dt

= P(z,y),

Qx,y);
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however, it is in general not possible for us to plot “all” the behavior of the vector field. On

the other hand, the solution of the first-order equation

dy _ Qz,y)
dr  P(z,y)

provides almost as much information as the vector field since each initial data (z¢,yo) cor-

responding to an integral curves (x(t),y(t)) of solutions to the differential equation above.

Example 10.13. Use the phase-plane method to classify the equilibrium (0, 0) of the plane

autonomous system

v =y,

y' =a?.
We note that the Jacobian matrix at (0,0) is the zero matrix; thus we does not know the
stability of the equilibrium (0,0) from the previous method. Nevertheless, we solve the

differential equation

dy 2

dr

C@m| 8

and find that the integral curves are given by y3 = 2% + C. Therefore, if we start from the
initial data (zg,vo), the trajectory is the curve y* = a3 + y3 — 23 so that (z(t), y(t)) moves
beyond any bound as t increases. Therefore, no matter how close the initial data (xo,yo) to

the equilibrium (0, 0) is, X(t) = (x(¢),y(t)) moves away from the equilibrium as ¢ increases.

Y4

o]
-

Figure 10.2: Phase portrait of nonlinear system in Example 10.13
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Example 10.14. In this example we try to determine the stability of the equilibrium (0, 0)
of the differential equation

=y,

y' = —x.

obtained from considering the soft spring in Example 10.12. We solve the differential equa-

. dy 2P -z ) . .
tion T " and obtain that the integral curve are given by
2 4 2
x x
2 4 2

or equivalently,

1
Yt = 5(3(:2—1)2—1-00,

1
where Cy = y2 — 5(;103 — 1)? if the integral curve passes (g, yo).

-

Figure 10.3: Phase portrait of nonlinear system in Example 10.14

Now we try to determine the stability of the equilibrium (0, 0). Suppose that (o, yo) are

1
very closed to (0,0), say (zo,y0) = (z0,0) with xy « 1, then Cy = —5(.7:3 — 1)? so that the
integral curve passing through (zo,yo) is
2 L. o o 1. o Lo o5 2 2
V= e 1) a1 = L - 2)a? ).

The right-hand side is positive if —xg < < ¢, and in this case each x corresponds to two y;
thus the trajectory of the solution X = X(¢) satisfying the initial condition X (0) = (x,0)

is a closed curve. Therefore, (0,0) is a center.
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10.4 Autonomous Systems as Mathematical Models
) ) . . d*0 g .
Example 10.15. Consider the pendulum differential equation prel +f sinf = 0. Let x =0,
y=0" and X = (z,y). Then
r =Y,
/

g
=——sinx.
Yy 7 sinw

We would like to examine the solution satisfying X (0) = (6y,0) and X(0) = (0,wy). Note
that the trajectory of the solution satisfies that

dy gsinz

de Ly

so that with the initial condition X (0) = (0, yo), the trajectory satisfies

2 L
- fg(cosx—cosxo+ %yg)

V4

1. For the case X(0) = (y,0): In this case we have
2
2

Yy = fg(cosx —cosfy) .

As long as 6y # (2n + 1)7 for some integer n, from the phase portrait we see that the
solution is periodic. We also note that ((2n+ 1), 0) is an unstable equilibrium/saddle
node of the system since the eigenvalues of the Jacobian matrix at ((2n + 1)7,0) are
+1.

2. For the case X(0) = (0,wp): In this case we have

2_2_9 _ £2
Yy = L(cosa: 1+2gw).
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(a) If |wo| < \/%, then letting 6y € (0, 7) satisfying cosfy = 1 — 2ng§ so that the
trajectory satisfies that
y? = 2fg(cosx —cosb) .
In this case, the dynamics is the same as the one with initial data (g, 0) so that
every x € (—6p,0y) corresponds to two y’s; thus the trajectory is closed and we

obtain periodic solutions.

(b) If |wo| = 4 /4397 then the trajectory is an arc of finite length and does not form a

closed curve (so that the solution is not periodic).

4
(c) If |wo| > 4 /fg, then the trajectory is an arc of infinite length and does not form

a closed curve (so that the solution is not periodic).

Example 10.16 (Nonlinear Oscillations: the Sliding Bead). Consider a bead with mass
m slides along a thin wire whose shape is described by z = f(x), and we are interested in
the dynamics of the z-coordinate of the bead. Under the effect of gravity, the tangential
force F' due to the gravity ¢ has magnitude mgsinf so that the z-component of F is
F, = —mgsinfcosf. Since tanf = f'(z), we find that

f'(x)
1+ f/(x)?"

Assume the existence of a damping force D, acting in the direction opposite to the motion,

F, = —mgsinfcosf = —mg

is a constant multiple of the velocity of the bead. The z-component of D is then D, = —fpx’;

thus the Newton second law shows that z satisfies that

/
i
and with y = x’, we obtain the corresponding plane autonomous system
' =y
P i C) B

YT e mY
We note that the equilibrium (z1,y;) of the system above satisfies that f’(z1) = 0 and
y1 = 0. At such a point (z1,y;), the Jacobian matrix of the right-hand side function is

0 1
A= .
[ —gf"(x1) —B/m ]

Therefore,
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1. if f”(xz1) < 0, then f attains a relative maximum at z; so that we can expect that

(z1,y1) is an unstable equilibrium. In fact, (z1,y;) is an unstable saddle point since

A =det(A) < 0.

2. if f”(z1) > 0, then f attains a relative minimum at z; so that we can expect that

(x1,1) is a stable equilibrium.

(a) if 8> 0, then tr(A) < 0 so that (x1,%) is a stable equilibrium. Moreover, if 32 >
4gm? f" (1) (which corresponds to the “overdamped” system), then (z1,y) is a
stable node, while if 32 < 4gm? f”(x1) (which corresponds to the “underdamped”

system), then (x1,y;) is a stable sspiral equilibrium.

(b) if 5 =0, then the eigenvalues of A is purely imaginary. We use the phase-plane
method and find that the trajectory (z(t),y(t)) satisfies

dy  gfl@) B

de (14 f'(x)2)y  m

which shows that

e (e f(x)
y2 = —2ge ™ m J (1 n f’(I)2) dx

’

or
T 2Bz

2 2 Z26(z—ag) e m fl(a') /
y: =ys — 2ge m f —— _dx
0 v (L f(27)?)

if the initial condition (z(0),y(0)) = (o, ¥yo) is imposed. This “shows” that the
solution (x(t),y(t)) is periodic if (xg,yo) ~ (z1,y1) so that (z1,y;) is a center.

Example 10.17 (Lotka-Volterra Predator-Prey Model). Let z,y denotes the population/
number of the predators and the prey, respectively. The Lotka-Volterra model takes the
form
v’ =z(—a+by) = —ax + bxy = g:1(z,y)
y' =y(—cx +d) = —cxy + dy = g2(,y) ,
where a, b, ¢, d are positive constants. Let g = [g1, go]".
We first note that the equilibrium of this plane autonomous system are (0,0) and

(d/c,a/b), and the corresponding Jacobian matrices are

I

0  bd/c ]

—a 0
Alzwg)(o,m:[ ; d] wd 4= (Dg)dfcom = | "
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thus (0,0) is a saddle point.
Since A, has purely imaginary eigenvalues A\ = ++/adi, we need more information to

determine the nature of the equilibrium (d/c, a/b). Using the phase-plane method, we solve
dy _ y(—cz+d)
dr — x(—a+ by)
and obtain that
by —alny =—cr+dlnz + ¢,

for some constant ¢; or equivalently,

a

xde—cxy e—by = ¢y

for some constant cg. Let F(z) = 2%~ and G(y) = y%e . Then F and G attain their
maximum at z = d/c and y = a/b, respectively. Note that with the exception of 0 and the

absolute maximum, F' and G each take on all values in their range precisely twice.

_FJI. G 4
i s Graph of G(y)
B A | Graph of F(x)
| ! I ____I _______________
L | |
| | | |
| | | |
| | | |
| | | |
| | | |
| [ | |
| | | - | e
n dfc X3 x ¥ alb ¥a ¥
(a) Maximum of F at x= d/c (b) Maximum of G at y = a/b

These graphs can be used to establish the following properties of a solution curve that
originates at a point Xy = (¢, yo) in the first quadrant but X, is not an equilibrium. We
note that in this case ¢y = F'(20)G(yo) must satisfy that F'(d/c)G(a/b) > co.

1. If y = a/b, the equation F'(2)G(y) = ¢o has exactly two solution z,, and x,; satisfying
Ty < dfc < xp since
Co

V= Gl

< F(dfe)

€0

G(a/b)

which implies that F(z) = has precisely two solutions x,, and zj; that satisfy

Ty < dfc < xp.
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2. If &, < 1 < 7, then F(21)G(y) = co has exactly two solutions y; and y, that satisfy

y1 < a/b < yo since

Co Co
0< < < G(a/b).
Flan) ~ Flajg = ¢/
Yi
X
0 .
I
i
albl-———3-—-—¢—-4+-—-4
I I | |
| 1 | I
i I * i
I I I I
I I I Lo,
X dic x; xy X

Figure 10.4: Periodic solution of the Lotka-Volterra model

3. If x is outside the interval [x,, x)], then F(z) < G(izo/b); thus F(x)G(y) = ¢ has no

solution since such y must satisfy

Co

F o) > G(a/b).

Gy) =

From the discussion above, we also conclude that the equilibrium (d/c,a/b) is a center.

We note that similar argument can be applied to obtain ¥, and y,; such that

C
2. Each y € (Ym,yn) corresponds to two x, called z1,xq, such that F(x;) = F(xq) =
o
G(y)

3. If y & [Ym, Ym], there is no x satisfying F(z)G(y) = c.
This implies that the solution curve originates from X, looks more like a “circle”.

Example 10.18 (Lotka-Volterra Competition Model). The Lotka-Volterra competition

model takes the form

x' = ;{—llx([(l —x —apy),

r
y’ = —Qy(Kg - Y- 0421@ )
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where aq9, 91 = 0, 11,79, K1, K5 > 0. The numbers K; and K, > 0 are the maximum
population of the two competitors that the environment can support, respectively.
The points (0,0), (K7,0) and (0, K3) are equilibria of this plane autonomous system.

Moreover, if ajoan; # 1, the lines K1 — x — a9y = 0 and Ky — y — a1 = 0 intersect to
K —appKy Ko — an Ky
1 — a7 1 — apam

produce a fourth equilibrium X = (z,9) = ( ) Since the Jacobian

matrix of the right-hand side function is

%(Iﬁ — 22 — aq2y) _7“1]?112
J(QT? y) - o021 9 9
I, Y E(KE — 2y — a911)

by Theorem 10.10 we find that

1. Since the eigenvalues of J(0,0) are 71,75, we conclude that (0,0) is an unstable equi-

librium.

2. Since the eigenvalues of J(K;,0) are —r; and %(KQ — a1 K1), we conclude that
2
(K71,0) is an asymptotically stable equilibrium if Ky — a9 K7 < 0 and a saddle point
if K2 — Oé21K1 > 0.
3. Since the eigenvalues of J(0, Ky) are —ry and %(Kl — a12K3), we conclude that
1
(0, K3) is an asymptotically stable equilibrium if K; — a2 K5 < 0 and a saddle point
if K1 — 0612K2 > 0.
4. If (z,9) is in the first quadrant, by the fact that the trace and the determinant of
J(z,7y) are

~~T1 T2
T=—-0T——Y— and A= (1—a1p00)0Y——,

y ( 120021)7Y e
respectively, we find that (7, ¢) is an asymptotically stable equilibrium (but not stable
spiral equilibrium) if ajo0i9; < 1 since
1L T2
K1 K

7'2 — 4A = ([/L'\,r—l — gr—2)2 + 40412&21

0
K VT, -

and (Z,7) is a saddle point if aace; > 1.



Chapter 11

Fourier Series

To begin the story, let us first consider the 1-dimensional heat equation

ug(z,1) = Qe (1) Vt>0,ze(0,7), (11.1a)
u(z,0) = up(x) Vael0n], (11.1Db)
u(0,t) = u(m, t) =0 Vit >0, (11.1c)

where o? > 0 is a constant, and u is an unknown function of x and ¢ with u, and .,
2

denote a;: and g ;L, respectively. The conditions (11.1b) and (11.1c) are called the initial

condition and boundary condition of this heat equation, respectively, and ug is called the
initial data. We will not explain why we want to study this equation until next chapter,
but instead we will use the procedure of solving this problem to motivate some important
ideas in mathematics.

In order to solve (11.1) using what we have learned from the last chapter, we discretize
the interval (0,7) by {0 = 2o < 1 < -+ < 41 = 7}, where z; = % Let h =7/(n+1),
n

and define ¢;(t) = u(z;,t). Then under the assumption that u is four times continuously
differentiable, (11.1) implies that

do; o? )
o ﬁ(%‘ﬂ —2p; + 1) = O(h?) foralll<j<nandt>0,
©i(0) = up(z;) foralll <j<n,
@o(t) = Pny1(t) =0 forall t >0,

where we have used the central difference approximation

gy He ) =26(@) £ Sl =)

72 + O(h?)

47
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for the second derivative (if f is four-times continuously differentiable). Therefore, naively
we look for the solution to the ODE

BAGH I R R 07 [ é1(t) T
o (t) 1 -2 1 0 - v .. 0 ¢2(t)
6s(t) 001 -2 1 0 - - 0| | o5t
d : 210 0 0 :
de| oo | TR S T s 2
Gna(t) 0 0 1 -2 1 0] |¢uslt)
Gn_1(t) 0 0O 1 -2 1 Gn_1(t)
L gbn@) A L 0 v e e 0 1 _2_ L ¢n(t) _
with initial condition
[¢1(0) $2(0) ¢n(0)}T = [Uo(ifl) ug(z2) Uo(wn)}T ) (11.3)

and treat ¢;(t) as an approximated value of ¢;(t) (and expect that as h — 0 we can obtain
information about u from these values of ¢). Now you see why what we learn from solving

a linear system can help us. Let

[ ¢1(t) ] i UO(«TI) ] —2 1 0 -+ e e 0
P2(1) uo(2) I =2 1 0 - e 0
gbg(t) ”U,O(,fl'jg) 0 1 —2 1 0 ...... O
: 2 .
X = ' 5 XO - and A = a_ ' 0 0 0 )
. h? : . R 0
Pn—2(1) o (Tn—2) 0 0 1 -2 1 0
Gr—1(t) U (Zn_1) 0 0 1 -2 1
L () L uo(zn) | L0 0 1 —2]
then (11.2) and (11.3) provide the initial-value problem
X' =AX, X(0) = Xy. (11.4)
In order to solve the linear system above, let us find the eigenvalue of A. Let B = %A.

2

dx?’
2

dx?

Since B is used to approximate the differential operator we first try to find functions,

the so-called eigen-functions of the differential operator (subject to the zero boundary

condition). This is to find non-trivial functions v satisfying

U”(l‘)
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We note that A\ has to be negative since if A > 0 we must have v = 0. If A < 0, then the
general solution to the ODE v” = \v is

v(z) = ¢ cosV—AT + ¢y sin vV —Az

and the boundary condition v(0) = v(7) = 0 implies that A\ = —¢? for some ¢ € N and v(z)
is a constant multiple of sin(¢z). Therefore, we conjecture that the vector
[sin(lzy) sin(lzy) --- sin(ﬁxn)]T

is an eigenvector of B. To see this is the case, we let § = (h = Ejl Then by the identity
n

sin((j — 1)8) + sin((j + 1)0) — 2sin(j6) = —2sin(j6)(1 — cosb),

we find that
[ -2 1 1] sing |
1 -2 1 sin(20)
S sin(36)
1 -2 1 :
I 1 =2 | | sin(nd) |
sin(26) 4 sin(06) — 2sin 0 ] [ sin 0 |
sin @ + sin(36) — 2sin(20) sin(26)
sin(260) + sin(46) — 2sin(30 sin (36
: o) i) ~2sn@) | )
sin(nf) + sin((n — 2)6) — 2sin((n — 1)0) sin((n — 1))
| sin((n —1)6) + sin((n + 1)0) — 2sin(nf) | | sin(nf)

202(1 — cos(£h))
72
and the corresponding eigenvectors are K, = [sin({z;) sin(fzy) --- sin(lx,)] .

The computation above shows that A has eigenvalues A\, = —

forl<f<n
T

solution X of the initial-value problem (11.4) is then

X t) = Z Cgng/\Zt,
(=1

n
where ¢y, -+ , ¢, are chosen so that >, ¢,K, = X,. Note that the symmetry of A implies
=1

that K, - K; = 0 if £ # j; thus by the fact that

= 26
KZ . KZ = Z sin2(€x] Z COS xj = g ,
: =
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2
we conclude that ¢, = — Xy - K, so that
n

5 2
X(t)=>, ~(Xo- K)eMK, .

(=1
Since each component of X correspond to an approximated value of the true solution u at
some x;, passing to the limit as n — o0 we conjecture that the solution to the 1-d heat

equation (11.1) is
0
u(z,t) = Z Coe=*® sin(lz),
=1

T

where Cy = lim %XO K, = if uo(x) sin(lz) dz.

n—ao0 0

11.1 Orthogonal Functions

Definition 11.1. 1. The “inner product” of two real-valued functions f and ¢g on an interval

[a, b] is the number
b
s = | Fwgla) ds.

and the “square norm” of a function f on [a, b] is the number
’ 3
122 (ap) = (J f(z)? dx) .

2. Two real-valued functions f and g are said to be orthogonal on an interval [a, b] if
b
(F9)an = | f@gle)dz =0.

3. A set of real-valued functions {gbo, 01, G2, - } is said to be orthogonal on an interval

[a, b] if

b
(Oms> On)r2(ap) = J Om(x)p(x)dr =0 if m#n.
It is called an orthonormal set on [a, b] if ¢ r2¢ap) = 1 for all k€ N U {0}.
Example 11.2. The set { cos({z)|¢ € N U {0}} = {1,cosz,cos2z,---,} is an orthogonal

set on [—m, 7| since if k # £,

s 1 Z
J cos(kx) cos(fx) dx = 5 f [Cos(k‘ — )z +cos(k+ 0)x| dr =0.

—Tr —Tr
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Moreover, since

4 1 (" m ifl#0
2 == 1 2 = ’
J cos®(fx) dx QJ [1+ cos(2(z)] du { 2w =0,

—T —T

we conclude that {\/1277} v {coi./(?c) ‘é € N} is an orthonormal set on [—m, 7.
Given a function f defined on [a,b] and an infinite orthogonal set {¢0, 01, P, - - } on

[a, b], we would like to know if f can be expressed as

f= Z Cee
£=0

for some sequence {cy}”,, where the sum converges in some sense. An orthogonal set
which makes the decomposition above possible for “all” f defined on [a, b] is called a com-
plete orthogonal set. We note that every “square integrable” functions f on [0, 7] (that is,

I fz2(0,7) < o0) can be written as
00]
f - Z qubf )
=1

for some sequence {s;};2,, where ¢,(z) = sin(¢z) for all £ € N and the sum converges in the

sense

=0.
L2(0,m)

lim Hf - Zn] SeQe
1

n—0o0

In other words, {sin(&c) V € N} is a complete orthogonal set on [0, 7].

A non-rigorous reason: For each n € N, the matrix

I R T R 0
1 =2 1 0 oo e 0
o 1 -21 0 - - 0
B:% 0 0 -0 ’
0
0 0 1 -2 1 0
0 0o 1 -2 1
0 - 0 1 -2

: o d? . . . . .
a discretization of g3 8 symmetric so that the eigenspace is identical to R™. Note that
x
the eigenspace of B is span{Kl, K, -, Kn}, where K is the evaluation of sin(¢z) on the
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set [L, o ] so that if f is a function defined on [0, 7], then
n+1 n+1 n+1
27
[ TGS n+1} Z‘Sf (11.5)
for some real numbers s&n), sé"), s, Passing to the limit as n — o0, we expect that
0
fla) =) ssin(lx) (11.6)
=1

for some sequence {s;};2, (here each s, should be the limit of sén) as n — o). We also note
that the coefficients sﬁn) in (11.5) is given by
(n) F, - KZ
SZ —
K, K,

and again with ¢,(x) = sin({z),
P Koo lim AR (f> Be) L2(0,7)

hmsé):hm an—lK e —qﬁwn K e P
n—aoo n—0oo . 1m i
n+1 ¢ ¢ n—oo 1 + S L2(0,m)

so that (11.6) becomes
Z .

Z f¢€L207r

H¢€HL2 (0,7)

2

. . . . d . .
Bottom line: The collection of eigenfunctions of ] (with certain homogeneous boundary

condition) forms an “orthogonal basis” on [0, 7].

11.2 Fourier Cosine and Sine Series

From the introduction above, we have some ideas about why {Sin(fx) |€ € N} forms a
complete orthogonal set. In this section, we investigate further these concepts. We recall
that an n x n real matrix A is said to be symmetric if A = AT. To understand the concept

even deeply, let L : R™ — R" be a linear transformation. Then L is said to symmetric if
(Lz,y) = (z, Ly) Ve, ye R",

here (-, ) is the inner product on R™. In general, if (V,{-,-)) is an inner product space, a

linear map L : V — V is said to be self-adjoint (an analogy of symmetry) if

(Lz,y) =(z,Ly) Vz,yeV.
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Since we have defined the inner product of functions defined on an interval, we can talk about
2

d
the “symmetry” of the linear map el For f, g being twice continuously differentiable on

Jf

[a, b], integrating by parts we obtain that

[ o= s

L

Therefore, if f'(z)g(z) — f(2)g'(x) vanish at the end-points x = a and x = b, we have

(5 xzf 9) 1 J f(w)g(x) da = Lbf(x)g"(x) dz = (1. d‘fgg)p(a’b). (11.7)

In other words, if certain boundary conditions (such as vanishes at the end-points) are
2

. ds . .
imposed, then —— is “symmetric”.
dx

Example 11.3. Identity (11.7) holds if f, g are twice continuously differentiable on [a, b]

and f, g satisfy on of the following boundary conditions:
1. f, g vanish at the end-points z = a and = = b,
2. f’, ¢’ vanish at the end-points x = a and x = b,
3. f, g vanish at the left end-points = a and f’, g’ vanish at the right end-point x = b,
4. f’, g’ vanish at the left end-points x = a and f, g vanish at the right end-point x = b,

Definition 11.4. A function v : [a,b] — R is called an eigenfunction of the differentiable
d? e . .
operator 752 OB [a,b] if v is not a zero function and there exists a constant A such that

dd—;v(x) = \v(x) Vaela,b.
We also note that if f, g are eigenfunctions of the symmetric differential operator da:22
corresponding to eigenvalues A and pu, respectively; that is,
d? d?
LH@) =M@ and Loy =pgle)  Voelat),

then
M9y = (" 9 2@ = (F,9 ) 2@y = 1(f5 9) 2(ap) -
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Since A # p, we have (f,g)r2(ap) = 0. In other words, eigenfunctions corresponding to
d2
different eigenvalues of the symmetric differential operator 73 are orthogonal.
Recall that a symmetric nxn real matrix has n linearly independent eigenvectors that are

mutually orthogonal and these n eigenvectors form a basis of R™. Similarly, the collection of
d2
“maximal” mutually orthogonal eigenfunctions of 72 on [a,b] form a complete orthogonal
Xr
d2
set in the sense that if {¢x};2; is a maximal mutually orthogonal eigenfunctions of 203 o
X
[a, b], then for every “square integrable” f defined on [a, b],

tim - 3 fo
k=1

=0,
L2(a,b)

(fs Pr) 120 p)

where fj, = .
NI

Example 11.5. We have “shown” that {sin(fm) ‘ ¢ € N} forms a complete orthogonal set on

[0, ]. Now suppose that we look for a complete orthogonal set on [0, p] with the boundary
2

s . . : d
condition v’(z) = 0 at the end-point z = 0 and = = p for eigenfunction v of ol Then
X
there exists A such that

v"(z) = Mv(xz) Vaxel0,p], v'(0) =v'(p) =0. (11.8)

1. If A > 0, then the general solution of the differential equation is v(z) = CheVA 4
Cge_\ﬁ\”" and the boundary condition implies that C; = Cy = 0.

2. If A =0, then the solution to the boundary-value problem (11.8) is constant.

3. If A < 0, then the general solution of the differential equation is v(x) = C} cos(v/—Ax)+
Cysin(v/—Ax). To satisfies the boundary condition, we must have

0=v'(0) = Cov/—Acos0

so that C'y = 0, and
0=12'(p) = C1vV—Asin(v/—=Xp)

which implies that v/—Ap = {7 for £ € N. Therefore, the collection of eigenvalues are

2 . . . . brx
{)\g ’ M =——,0eNuU {0}} with corresponding eigenfunctions ¢, = cos —— so that
p p

{ cos 67; ‘E € N U {0}} forms a complete orthogonal set on [0, p].
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o . . ./ .
Similar argument can be applied to obtain that { sin = ‘E e N } is a complete orthogonal
p

set on [0, p|.

Because of the identities

P P
JCOSQkﬂ-—deE:JSiHQkW—xd$:E VkeN,
0 p 0 p 2

the fact that {Sin 67;: ‘E € N} and {cos 67;6 ) ¢eNuv {O}} are both complete orthogonal

sets on [0, p] motivates the following

Definition 11.6. 1. The Fourier cosine series of a function f defined on the interval (0, p)

is

2 (P k
whenever the sum makes sense, where ¢, = f f(z) cos T g,
D Jo p

2. The Fourier sine series of an odd function f defined on the interval (0, p) is

0
k=1 p
2 (P . krmx
whenever the sum makes sense, where s = = | f(z)sin — dx.
P Jo p

Example 11.7. Consider the function f(z) = z* on the interval (0, L).

1. We first expand f in a cosine series. Integrating by parts, for k € N we have

2 JL 9 kmx p 2 (L:zc2  krxze=L 2L (*  kmzx p )
ck=— | 2°cos—dr=—(——sin— — — | xsin—dx
"7 L), L L\ kr L om0 krJ,
4 (—Lx krx Z’ZL_’_ L (- kJﬂ'ZL‘d > 4L2 cos(km)  4L?(—1)k
= —— coS —— — | cos—dx) = =
km \ km L la=0 k7 J L k2m? k272
while . ,
2 2L
Co = Zfo v dr = =~

Therefore, the cosine series of f is

L2 &AL~k knx

_|_
3 = k22 L
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2. Next we expand f in a sine series. Integrating by parts, for all kK € N we have

2 (F g . kmx 2 /—Lx? krx=L 2L (F kmx
Sk:ZL z sdex:Z< o COSTIZO +H . :Ucosde>
_2[LCOT | 2L L g bt L )]
L km km \km L le=0 k7 ) L
| 2L3(—1)kH N AL?[(—1)F —1]
k k373

Therefore, the sine series of f is

O 20— ALA[(-1)F = 1]\ | kma
Z( [ Ko )SmL'

k=1
Since {¢g ‘ ¢¢(x) = sin @E eN } are collection of odd functions and forms a complete
p

orthogonal set on [0, p|, for an odd function f defined on (—p,p), the sine series >, sp¢y of
k=1

the restriction of f on (0, p) has the properties that

lim | ) s
k=1

n—0

L2(0,m)

thus the fact that | f — 3 seu] o = 2|f = 3 546e] a(y.., implies that
k=1 ’ k=1 ’

=0.

L2(—7,m)

n—0o0

lim Hf - i Sk Pk

In other words, the sine series can be used to approximate odd functions on a symmet-
ric interval. Similarly, the cosine series can be used to approximate even functions on a

symmetric interval; thus we have the following

Definition 11.8. 1. The Fourier cosine series of an even function f defined on the interval

(=p,p) is

2 (P krx
whenever the sum makes sense, where ¢, = f f(z) cos — dx.
P Jo p

2. The Fourier sine series of an odd function f defined on the interval (—p,p) is
a0

S sin ——
k=1 p

2 (P . kmax
whenever the sum makes sense, where s, = f f(x)sin — dz.
P Jo p
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Even though the convergence behavior of the cosine and sine series is in the sense of

L?-norm, we still have some pointwise convergence result.

Theorem 11.9. Let f: (0,p) — R be a piecewise continuous function such that f’, which

exists everywhere except possibly at finitely many points, be piecewise continuous on (0,p).
Then

f(x+)_gf(x_):%+chcos——28k81n— Vre (0,p),

Q0

co krx . kmx . . .

where -+ > epcos —— and Y. spsin —— are the cosine and the sine series for f, respec-
k=1 p k=1 p

tively, and f(z¥) = hhm+ f(z + h) is the right/left limit of f at x. Moreover,
—0x
z—0t T—p—

54—2% lim f(x) and %—i—;ck(—l)k: lim f(z).

Example 11.10. From Example 11.7, the cosine series of f : (0, L) — R given by f(z) = x*

1S

L? N AL (1) krx
- COS .
3 = k272 L

Theorem 11.9 then implies that

1?2 & 4L(—-1)* L2 412 &
L? = lim f(:c):——i—Z#coslm— ZkZ’

iy 2,2
rz—L 3 el k2m

L2

ALY~k L2 412 & (—1)’f
0= D= T L e Tyt L
k=1 k=1
and
I L2 G4l (-1 kr
— =21 1 } = cos—
4 2[36%(1{?2) Ut )+xﬁ(1[r/l)l2 f(@) 3 +1<;Z_:1 k272 5
L2 G4ALX(-1)*  2kn L2 L2 G (—1)F
-3t okeEnz (ST T3 w4
o (2k)m ™=
1 B 7T2 ) (_l)k B 71'2
Therefore, kgl el and kg Ea Tt

Example 11.11. Let f: (0,7) — R be defined by

fx) =

r if0<x<m/2,
ifr/2<z<m.
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Then if k € N,
2 (2 kmx 2 T kmx|z=3 T (2 kmax
— rsin — dx = — [——cos— cos—dx]
T Jo T ml kw T le=0 kT s
1 km 2
= ——COS— + —5—Ssin —

= — sin? — =
2
kzlkﬂ

%:%Lim+f( )+ lim f(z )] Z(—%COST-FI{;TSHI?
2
™

) 1—cosk7r = 1
‘Z 2. GE TR

2
k=1
which shows that

1 1 = 1 2
1 I S N
Tttt ;(%-1)2 g

11.3 Fourier Series

In the previous section, we introduce the cosine and sine series of functions defined on the
interval (0, p) or the cosine/sine series of even/odd functions define on the interval (—p, p).
Since every function f : (—p,p) — R can be written as the sum of an even function and an

odd function, or to be more precise °

fla) = f (=) +2f(33) L f@) 2f(ff?) = (@) + fona(z).

we expect that a general function f : (—p,p) — R can be approximated by linear combina-

tions of sine and cosines.
Note that the cosine and the sine series for fe,en and foqq are given respectively by

e¢] o0

Co kmx . kmx
5 + Cj, COS —— and Sp Sin ——
k=1 p k=1 p

where N - ,
f Jeven () cos Lx dr = f f(x) cos T g
PJp p
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nd 2 (" k 1 (7 3
sk:—f foaa(z )smﬂd:ﬂ— f(x )smﬂda:
P Jo p PJp p

The discussion above motivates the following

Definition 11.12. The Fourier series of a function f defined on the interval (—p, p) is
k k
—I— Z (ck CoS ﬂ + sp sin ﬂ)
p

whenever the sum makes sense, where

1 (7 k 1 (7 k
cx=—-1 flz )cosﬂd:v and sk——f f(a:)smﬂd:r;
pJ., p pJ., p

are called the Fourier coefficients of f.

Suppose that f is defined on [0, p). The periodic extension of f is the function F' : R — R
satisfying F' = f on I and F(z + p) = F(x) for all x € R. The Fourier series of F' is called

the Fourier series of f. Since

% f_pp F(z) cos L o J J (x) cos — dx}

(" k
:—f F(x—p)cos(—d + - fF(a:)cosixdx
p p P Jo p

k
ff cos—ﬂxdx

and similarly,

1 (" 1+ (—1)F (7
—f F(:E)sin]mxcw: +; ) Jf(x)sinlm;fxd:v,
0

PJyp p

we find that ¢ and s, vanish if k is odd. This induces the following

Definition 11.13. The Fourier series of a function f defined on the interval (0, p) is

e}
2k 2k
@+Z <ckcos mv%—sksin mj),
2 k=1 p p

whenever the sum makes sense, where

2 (? 2k 2 (? 2k
= —f f(z) cos ;m dx and Sk = —J f(z)sin " .
0
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We note that the Fourier series of f is the same as the Fourier series of the restriction

of the periodic extension of f on [—p/2,p/2).

Example 11.14. In Example 11.7 we compute the cosine and sine series of the function
f:[0,L) - R given by f(z) = z°>. Now we compute the Fourier series of f. From the
computations in Example 11.7; we find that

o2 L? L?

o= 5 and C’“:W’Sk:_ﬁ if ke N;

thus the Fourier series of f is given by

I? P& /1 2krx 1 . 2kmx
?+— (—COS — —sIn )

k2 L k L

T =
Similar to Theorem 11.9, we have the following
Theorem 11.15. Let f : [—p, p| — R be a piecewise continuous function such that f', which

exists everywhere except possibly at finitely many points, be piecewise continuous on [—p,p).
Then

fa)+ fa) e, &
=3+ (

kmx . kmx
: ckcos—+sksm—> Voe (—p,p),
p

p
where f(xT) = hli%l+ flz+h) and f(z™) = hli%l— f(z+h) are the right limit and the left limit

of [ at x, respectively. Moreover,

f)+f((=p)") a < ko
5 =35 T kzl(*l) Ck;

that is, the evaluation of the Fourier series at p and —p are the same and is the average of

the left limit of f at p and the right limit of f at —p.

Example 11.16. Consider the function

fz) =

0 —nm<x<0,
T—z 0<z<m.

We compute the Fourier coefficients as follows. For k € N,

a=r 1 (" 1
- EJ cos(kx) d:c] =7

=0 0

—(m — ) cos(kx)
k

Sk = 1 Jﬂ-(ﬂ' —x)sin(kx) dx = % [

™ Jo
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and

L[ L f(m —a)sin(kz)p=r 1 ("

Cp = —J (m — x) cos(kx) dx = — [(W z)sin(kz) + —f sin(kx) dﬂ”}
T Jo ™ k e=0 k Jo
—cos(kx) o= 1 —(—1)*
Y 7 S M
while L
CO—%J;] (m —z)dx = z

We note that the case x = 0 implies that

T ol —(=1)F
P

which shows the identity

1 0]
1+ =+ — G
+32+ i sz—1 8

We also note that the identity above can be obtained by

so that

e Gibbs phenomenon: When f has a jump discontinuity at some point x(, the Fourier
series of f behaves “strangely” near xy. In fact, under the condition in Theorem 11.15, for
a jump discontinuity zg of f (which means f(zJ) # f(z;)) we have

lim S, (0 + %) = f(ag) +c[f(z3) = f(zg)]

n—o0

lim S, (o — g) = flay) —c[f(=d) — f(z)]

n—00
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where S,,(x) is the n-th partial sum of the Fourier series of f; that is,

) - .

Sp(z) = o5 T Z (ck coskx + sy sinkz)
k=1
. 1 (Tsinz 1

and c¢ is the constant ¢ = f dr — = ~ 0.089490....
T) < 2
y ¥y
s T ' ™, I ' ' T ~
3 3t

[
(]
T

- A A 1 o
=% =& | 1 2 3 -3 -2 -1 1 2 3
(a) Si(x) (b) Sq(x)
¥y ¥
, ' . ~ — . 2

3 L
2 2
1 1
X X
g i 2 3 = =5 510
(c) S|5(.T) (d) SIF{-r}

Figure 11.1: Partial sums of the Fourier series of f given in Example 11.16.

We note that the presence of the Gibbs phenomenon does not violate the fact that

7}1_{20 |f = Sullz2(-ppy = 0.

11.4 Sturm-Liouville Problem

The regular Sturm-Liouville problem is the eigenvalue problem

d

- [r(2)y'] + [a(z) + Ap(z)]y =0 z € (a,b), (11.9a)
Avy(a) + Buy'(a) = 0. (11.90)
Asy(b) + Bay'(b) =0, (11.9¢)
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where (A1, By) # (0,0), (A, B2) # (0,0) are given constant vectors, p,q,r are given real-

valued continuous functions on [a, b] satisfying
1. p,r >0 on [a,b], 2. r’ is continuous on [a, b],
and \ and y are unknowns to be solved. If there exists A € R and non-trivial y satisfy-

ing (11.9), A is called an eigenvalue and y is called an eigenfunction corresponding to th

eigenvalue \.
Theorem 11.17. Consider the reqular Sturm-Liouville problem.
1. There exist an infinite number of real eigenvalues that can be arranged in increasing

order Ay < Ag < --+ < A\, < --- such that \,, — o0 as n —

2. Fach eigenvalue corresponds to only one eigenfunction (except for nonzero constant

multiples).
3. Figenfunctions corresponding to different eigenvalues are linearly independent.

4. The set of eigenfunctions corresponding to the set of eigenvalues is orthogonal with

respect to the weighted inner product

(g = f p(2)f(2)g(x) da

Proof of 4. Let y,, and ¥, be eigenfunctions corresponding to eigenvalues \,, and \,, re-

spectively. Then
d
= [r@)ym] + [a(2) + Xnp(2)]ym =0, (11.10a)

% [r(@)yn] + [a(@) + Aap(@)]yn = 0. (11.10b)

Multiplying (11.10a) by y, and (11.10b) by y,, and subtracting the two resulting equations,
we find that

d d
(A = A)P(@)ymYn = Y= [1(@)y0] = yn = [1(@)y] 5
thus integrating by parts implies that

b
(o — ) f D) (@) ()

a

- f b <ym(a:)% [r(@)yn(@)] - yn(a:% [r(@)ys(@)] ) da

= () [ym (@) (x) = yu(@)yp ()] (1L.11)

r=a
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Since y,,, and y,, satisfy the boundary conditions

Ay (a) + By, (a)
Aryn(a) + Blyé(a) =

e s ]= 0]

by the fact (Ai,Bi) # (0,0) we must have y,,(a)y,(a) — y.(a)y),(a) = 0. Similary,
Ym (b)) (b) — yn(b)y, (b) = 0; thus (11.11) implies that

0,

or equivalently,

(o — ) j D)o (@)y() d = 0. 5

a



Chapter 12

Boundary-Value Problems in
Rectangular Coordinates

Definition 12.1. A partial differential equation (PDE) is an equation which imposes rela-
tions between the various partial derivatives of a multi-variable function. A PDE is said to
be linear if it is linear in the unknown and its derivatives, and is said to be nonlinear if it

is not linear.

In the following, we focus on linear PDEs with two independent variables (sometimes
two spatial variables x,y, and sometimes one temporal variable ¢ and one spatial variable

12.1 Separable Partial Differential Equations

In this section, we are interested in finding solutions of a linear second-order PDE given by

*u %u o*u ou ou
228 1B U D B =
Ox? + 0x0y + C&’yz + ox * oy tFu=G,

where A, B,C, D, E, F,G are given constants. The PDE above is said to be homogeneous
if G=0.
12.1.1 Separation of variables

In the method of separation variables we look for a particular solution of the form of a
product of a function of x and y so that u(z,y) = X (z)Y (y). With this assumption it is

sometimes possible to reduce a linear PDE in two variables to two ODEs.

65
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. . o%u ou
Example 12.2. Find product solutions of pr i 46—.
T Y
Suppose that u(z,y) = X(2)Y (y). Then X"Y =4XY" so that
X// Y/
oy

Since the left-hand side is a function of x and independent of y, while the right-hand side
is a function of y and is independent of z, we must have
X// Y/
XY
for some constant A € R. Therefore, X” +4AX =0and Y’ + AY =0.

—A

1. If A =0, then X(z) = az + b and Y (y) = ¢ for some constants a,b,c. Therefore,
u(z,y) = Az + B for some constants A, B.

2. If A <0, then A = —a? for some a € R so that
X(z) = 012 4+ Che 2% | Y (y) = Cse™?.
Therefore, u(z,y) = Ae2*+e*y 4 Be=20+0% for some constants A, B.
3. If A > 0, then A\ = o? for some o € R so that
X(z) = Cy cos(2az) + Cysin(2az), Y (y) = Cye @Y.
Therefore, u(x,y) = e~ [Acos(2cx) 4 Bsin(2cx)] for some constants A, B.

Theorem 12.3 (Superposition Principle). If uy, us, -+ ,ux are solutions of a homogeneous

linear PDE, then the linear combination
U = C1Uy + CoUg + - - - + CrUy,
where c¢i.s are constants, is also a solution.

Throughout the remainder of the chapter we shall assume that whenever we have an
infinite set uq, us, - - - of solutions of a homogeneous linear equation, we can construct another

solution u by forming the infinite series

)
u = Z CrlUy ,
k=1

where cﬁgs are constants.
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12.1.2 Classification of equations

Definition 12.4. The linear second-order PDE

*u %u o%u ou
A— + B —+D—+F
ox? + 0xoy O&y + ox +

au—i—Fu-G
dy

where A, B,C, D, E, F,G are real constants, is said to be
1. hyperbolic if B? — 4AC > 0,
2. parabolic if B? —4AC = 0,

3. elliptic if B2 — 4AC < 0.

12.2 Classical PDEs and Boundary-Value Problems

Let 2 < R™ be an open set (with smooth boundary). For a real-valued function u : 2 — R

and a vector-valued function u : Q2 — R"™ (so that u = (uy,us, - ,u,) for some real-valued
functions uq, ug, - -+ ,uy,), we define some important differential operators as follows:
ou  ou ou
Vo (20 2y
0o 0 0 = Ouy,
dive = V - :<77 7) Uk
vu=V-u oxy’ Oxy’ 7 Oy, (g, uz, Z oxy,
2 2 2
Ay =divVu =V - Vu au—i-au—i-a—u,
oz} 0x3  Ox2

2 2 2
Au:é’7121+01;+6u

7 Tt o = (A, Aug, e Auy) .
1 2 n

We remark that A is also denoted by V2 in engineering applications (since A = V - V).

12.2.1 Heat equation

Suppose that you are interested in the temperature distribution of a body in space. Let €2
be the region that the body occupies, and u(x, t) be the temperature of the body at location
z (in © and in Cartesian coordinate) and time ¢ (which is always assume to larger than the
initial time). With o(z) and s(z) denoting the density and the specific heat of the body at

location @, respectively, and k(x,t) denoting the thermal diffusivity at location & and time
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t (the higher the thermal diffusivity, the faster the heat propagation), u (which is assumed

to be quite smooth) must satisfy the heat equation

ou

E@:’ t) = div[k(z, t)Vu(z, t)] VeeQandt>0.

o(x)s(z)

With the presence of a heat source () in the body (here J Q(x,t) dr denotes the rate of
U

heat energy flows into the body through the region U for all U < Q), the heat equation is

modified as

g(m)s(m)%(m, t) = div[s(z, ) Vu(@, 1)] + Qz,t) YaeQandt>0.
To fully determine the temperature, an initial condition and some type of boundary condi-

tions have to be imposed:

1. Initial condition: this describes the temperature distribution at a certain time ¢ = ¢,

(which is usually assume to be 0). In mathematical terms, it is
u(zx,0) = up(x) Vae
for some given function wuy.

2. Boundary condition: the boundary conditions introduces some physical constraints

that is imposed to the system.

(a) Dirichlet boundary condition: the temperature on the boundary of €2 is given.

In mathematical terms, it is
u(z,t) = g(x, 1) Vezedandt >0

for some given function g.

(b) Neumann boundary condition: the normal derivative of the temperature on the

boundary of €2 is given. In mathematical terms, it is

ou
8_N(q;,t):g(x,zf) Veedandt >0

for some given function g, where % is the directional derivative of w in the

outward pointing direction N (so that 2131 =Vu- N). When there is not heat

energy that can flow in and out of the body (the case of insulation, g = 0).
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(c) Robin boundary condition: the normal derivative of the temperature is propor-
tion to the difference of the temperature on the boundary. In mathematical
terms, it is

ou

ﬁ(w,t)—i-hU(w,t):g Veedland t >0

for some constant h > 0 and g.

(d) Mixed type boundary condition: Different type of boundary conditions are im-
posed on different portion of the boundary. In mathematical terms, if 02 is the

disjoint union of I'y, I's and I'3, we have

u(zx, t) = g1(z,t) Vezeliandt >0,

M(wt)=g(et) Yeelyandt>0,

ou

a—N(w,t)—i-hu(a:,t) = g3(z, 1) Vezelszandt>0.

The heat equation is the prototype of the parabolic equations.

12.2.2 Wave equation

Suppose that you are interested in the vibration of a string or a membrane (of a drum). Let
2 < R™ be the region of interests, and u(x,t) denotes the displacement of the point labeled
« (which means we choose some way to “identify” the particles with points in §2) and time
t. With o(x) denoting the density of the particle labelled &, under certain circumstances u

(which is assumed to be quite smooth) satisfies

0%u

C (@) = div] T(z)

1+ |Vu(z,t)|?

o(x) Vu(z, t)} VeeQandt >0,

where Vu is replaced by w, is  is 1-dimensional (that is, in the case of string). If some
force f that can affect the vibration is introduced into the system, the equation is modified

as

%u [ T(x)

Q(w)@(ma t) = div " |vu(m’t)|2VU(iB, t)} + f(z, 1) VezeQandt>0,

In the real world application, |Vu| « 1, and we assume that ¢ and T" are independent of x

so that the equation becomes

2
Q%(w’t):TAu@’t)‘l'f(%t) VeeQandt>0.
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To fully determine the displacement, two initial conditions and some type of boundary

conditions have to be imposed.

1. Initial condition: this describes the displacement and the velocity at a certain time

t = to (which is usually assume to be 0). In mathematical terms, it is
u(x,0) = up(x), u(x,0) = ui(x) Vae
for some given functions uy and wuy.

2. Boundary condition: similar to the boundary conditions in the heat equations, one

type of boundary conditions is imposed. We note that the Neumann boundary condi-
u _
ON
string (or the membrane) is not fixed.

tion 0 on 0f2 corresponds to the unconstraint case; that is, the boundary of the

The wave equation is the prototype of the hyperbolic equations.

12.2.3 Laplace’s equation/Poisson’s equation

Laplace’s equation in two and three dimensions occurs in time-independent problems involv-
ing potentials such as electrostatic, gravitational, and velocity in fluid mechanics. Moreover,
a solution of Laplace’s equation can also be interpreted as a steady-state temperature dis-

tribution of the heat equation. The Laplace/Poisson equation takes the form
Au(z) = div[Vu(z)] = Vu(z) = f(z) Ve,

where f is a given function. The equation above is called Laplace’s equation if f = 0 and is
called Poisson’s equation if f is not the zero function.

To fully determine the unknown function u, one type of boundary conditions has to
be imposed. However, it does not require the initial condition since the problem is time-

independent. The Laplace/Poisson equation is the prototype of the elliptic equations.

12.3 Heat Equation

In this section, we focus on solving the 1-d heat equation

ou 5 0%u
u(0,t) = u(L,t) =0 t>0, (12.1b)

u(z,0) = f(x) O<z<lL. (12.1¢)
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: . . . 0
First, we use the method of separation of variables to find product solutions to a—? =
2

0422;; Suppose that u(x,t) = X (x)T(t). Then

T'H)X(z) = T () X" ()

which shows that there exists A € R such that

X// T/
I Y
X o?T

Clearly we have T'(t) = Aot

(we ignore the constant). On the other hand, in order to
solve X, we need boundary conditions for X. Because of (12.1b), we choose the boundary

condition X (0) = X (L) = 0 so that in order to obtain non-trivial X, the discussion from

. . . n27r2 . nNnTx
the previous chapter implies that A = I and X(z) = sin —— for some n € N. The
discussion above provides a product solution
Un(7,t) = 12 'sin ?

o0
Next we look for a solution of the form u(x,t) = > A,u,(x,t) satisfying (12.1¢). We note

that this amounts to find a sequence {4, }*_; such that
nma
Z A, sin —

We note that this is the same as finding the sine series of f so that we find that

Jf sin@dx ¥neN. (12.2)

Therefore, the solution u of the 1-d heat equation (12.1) is

Q0
. NTI _a?n2x2, nwT
u(z,t) :Z f sm—d:v L2 smT.

Remark 12.5. 1. The procedure above is also called solving the heat equation using the

method of separation of variables.

2. The procedure above is not rigorous even if we assume that the infinite linear combi-

nation of u,, is also a solution. A more rigorous approach is stated as follows. For each
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t > 0, the temperature u(z,t) is a function of x, vanishes on the boundary x = 0 and
x = L, so that u(z,t) can be represented (pointwise) using the sine series (the cosine
series and the Fourier series of u do not satisfy the vanishing boundary condition).
Therefore, for each ¢ > 0 the coefficients {s, }>*_; used to represent the function w is a

function of ¢t so that

nwT
Z A, (t) sin —
Assume that the derivatives of v can be carried inside the infinite sum. Then

ZA Sinm, (9u ZA sin?

so that

2

0 a? e
0= a—;‘(x,t) - g [ MAn(t)] sin ”—Z”’

This implies that A,, satisfies the differential equation

o’n?r?
12

and the initial condition for the differential equation above should satisfy

A1) =

An(t) =0, (12.3)

. nmx
Z A, (0) sin —

This implies that
J f(z sin 2% d | (12.4)
Solving ODE (12.3) with initial condition (12.4), we obtain A,,(¢) so that the solution

u to (12.1) is determine.

. For 1-d heat equation (12.1a) with other type of homogeneous boundary conditions,

one should choose different complete orthogonal set to represent the solution u. The

complete orthogonal set that we should use should obey the boundary conditions.

. For the case with heat source, one should write the heat source in terms of the complete

orthogonal basis and then group all the terms together. For example, if (12.1a) is
modified as
ou 2(32u

pn —(x,t) = 32 —(z,t) + q(x,t), O<ax<L,t>0, (12.1a")
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Q0

here q(z,t) = > B,(t)sin ?, then we repeat the procedure in 2 and find that A,
n=1

should satisfy

AL ()

ST At = Bolt),  Au(0) = A,.

The solution A,, can be found by the method of integrating factor. We note that with

the presence of ¢, one cannot find a product solution satisfying (12.1a).

5. For the case with inhomogeneous boundary condition, one should first find a func-
tion g(z,t) that satisfies the boundary condition, then form a new unknown function
v(x,t) = u(z,t) — g(x,t). Then v satisfies a heat equation (with a heat source) but
v satisfies a homogeneous boundary condition (and probably a different initial condi-

tion). For example, consider the heat equation

ou 5 0%u
E—a@ O<zx<L,t>0,
uw(0,t) = a(t) ,u(L,t) = b(t) t>0,
u(z,0) = f(x) O<z<L.

— X

7 a(t) + %b(t). Then ¢(0,t) = a(t) and g(L,t) = b(t) so that
v(x,t) = u(x,t) — g(x,t) satisfies

Let g(x,t) = L

v 0%
E—&@%—gt(ac,t) O<z<L,t>0,
v(0,t) =0,v(L,t) =0 t>0,
v(z,0) = f(x) — g(z,0) 0<xz<L.

The heat equation above can be solved by procedure stated in 4.

12.4 Wave Equation

In this section, we focus on solving the 1-d wave equation

Pu_ it

a2 = C O<z<L,t>0, (12.5a)
u(0,t) = u(L,t) =0 t>0, (12.5Db)

au

u(z,0) = f(x), = (x,0) = g(x) O<z<L. (12.5¢)
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. : . 02 02
We first use the method of separation of variables to find product solutions to U _ 20t

o2 0z’
Suppose that u(z,t) = X (z)T(t). Then
T"#)X(z) = T (#) X" ()

which shows that there exists A € R such that
X// T//
X T

Because of (12.1b), we choose the boundary condition X (0) = X (L) = 0 so that in order to

obtain non-trivial X, we must have A = a? > 0 so that

—A.

X(z) = C) cos(ax) + Cysin(ax), X(0)=X(L)=0.

The condition X (0) = 0 implies that C} = 0, and the condition X (L) = 0 further implies
22

that L = nm for some n € Z. This shows that A\ = nL—;r and X (z) = sin ”Lﬂ for some
n € N. On the other hand, T,,(t) = T'(t) satisfies
*n2r?
T/ + LT (1) =0
so that . .
T, (t) = A, cos T + B, sin CTZT
0
Therefore, the solution u(z,t) = >’ <An cos Can + B, sin Cmrt) sin n—zx The exact value
n=1
of A, and B, should follow from the initial condition (12.5¢): since
= nmx
f(z) = u(z,0) = ,;An sin ——
. 0 & L 0
and (assuming that g 7;1 = ngl a)
(@) = L0y 3 O gy
g o ~r L
thus
A _2 Lf( )sinwd and B, = 2 ’ ( )sinwd

As a summary, the solution to (12.5) is

= 2 L .. nmy cnmt 2 L . nmy .
u(x,t):Z;(z ) f(y)sdeycos 7 +— g(y)sdeysm

S —.

cmrt) . NTT
L

enm J L
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Remark 12.6. For inhomogeneous PDE or inhomogeneous boundary condition, see Remark
12.5.

12.5 Laplace’s Equation

In this section, we first focus on solving the boundary-value problem

0 02

u
@(x,y%l—a—zﬂ(:v,y):o O<z<a,0<y<b, (12.6a)
ou ou
u(z,0) =0, u(z,b) = f(z) 0<z<a. (12.6¢)

We note that (12.6b) is a Neumann boundary condition g;\é = 0 on {0,a} x (0,b), while

(12.6¢) is a (inhomogeneous) Dirichlet boundary u = 0 on (0,a) x {0} and u = f on
(0,a) x {b}. Therefore, (12.6) has mixed type boundary conditions.

Remark 12.7. You may ask if there is a non-trivial solution if f is the zero function. The
answer is No because of the maximum principle which states that if Au = 0 in §2, then the
maximum (and the minimum as well) of u cannot occur in the interior of 2. That is why we
have to consider the Laplace equation with inhomogeneous boundary condition right away

(to obtain a non-trivial solution).

We again try to find product solutions u(x,y) = X ()Y (y) of (12.6). Using (12.6a), we
obtain that X" (z)Y (y) + X(2)Y"(y) = 0; thus

X"a) _ Y"y) _
X() Y(y)

for some constant A € R. From the boundary condition (12.6b), we first look for non-trivial
X satisfying the boundary condition X'(0) = X'(a) = 0; that is, X is a solution to the
BVP
X"(z)+AX(z) =0, X'(0)=X'(a)=0.
TL27T

2
- and X (x) = cos ? for some n € N u {0}. The

From Example 11.5, we find that A =

corresponding Y satisfies

n?m?

Y'(y) -

Y(y)=0

a?



76 CuaPTER 12. Boundary-Value Problems in Rectangular Coordinates

which produces

A, ex B, ex Ty ifneN,
R

Aoy + Bg ifn=0.
Due to the boundary condition u(x,0) = 0, we expect that Y (0) = 0 so that A, + B, =0

for n e N and Ay = 0; thus Y(y) = 1[exp (@) — exp (_ﬂ)] = sinh Y if n e N or
2 a a a
Y (y) = Aoy if n = 0 so that

cos "L ginh Y ifneN
un(@,y) = ¢ ¢
Y ifn=0.
Now we look for solution u to (12.6) of the form

u(z,y) = A0y+2A cos—su hmry.

n=1

We note that such a u “should” have satisfied (12.6b) and u(z,0) = 0. Now we determine
the coefficient A,, so that u(x,b) = f(x) for 0 < 2 < a. This amounts to find the cosine

series of f so that f can be expressed as

flz) = A0b+ZA cos—s& h””y

n=1
Therefore,
1 (J“ 2 @ nmwE
= — f(x) dx) and A, = —f f(x) cos — dx
av ™ Jo a sinh b Jy a
a
so that
. 1 nTYy
@ 2 = @ nmwT nrg Sinh 0
a

Remark 12.8. 1. For the Laplace equation

0%u 0%u
2 y)+7( Y) =

(O7y) - ( ay):
w(z,0) =0, u(z,b) = f(z) O<z<a.

O<zrx<a,0<y<b,

0<y<b,
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the method of separation of variables provides the solution

nmwy
9 X sinh
u(z,y) ——Z J f(z Sin@dx>sinm—ab.
a = @ ginh ™
2. The boundary-value problem
2 2
g’;‘( y)—l—g—u( ,y) =0 O<z<a,0<y<b, (12.7a)
u(0,y) = F(y),ua,y) = Gly)  0<y<b, (12.7b)
u(z,0) = f(z), u(z,b) = g(z) O<z<a. (12.7¢)

can be solved using of the superposition principle. First we find solutions to the

following two problems

f& )+§2( y) =0 O<z<a,0<y<b, (12.8a)
v(0,y) =v(a,y) =0 0<y<b, (12.8b)
v(z,0) = f(x), v(z,b) = g(z) O<z<a. (12.8¢)
and
%w 0%w
W(x’eraT/?(x’y):O 0<z<a,0<y<b, (12.9a)
w(0,y) = F(y),w(a,y) = G(y) 0<y<b, (12.9b)
w(z,0) = w(z,b) =0 0<z<a. (12.9¢)

The solution u to (12.7) then can be written as u = v + w. Laplace’s equation with

mixed type boundary conditions can be solved in a similar fashion.

Remark 12.9. Consider the Poisson equation

0%u 02

@(x7y>+aiyz(x7y):f(‘x7y) O<x<a,0<y<b, (1210&)
u(0,y) = u(a,y) =0 0<y<b, (12.10b)
u(z,0) = u(x,b) =0 0O<z<a. (12.10c¢)

For each 0 < y < b, write
o0
nmx nwx
= An in — d n i _7
u(z,y) Z (y) sin - an Z fn(y) sin
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where f,(y f f(z,y) sm—dx Then
% %u . n?m? . nmw
2Ty + @(Iay) = nzl |:An<y) — 5 Aa(y) | sin —

which implies that A,, satisfies the differential equation

n2m?

An(y) = —5Auy) = fuly)

and the variation of parameter formula provides a particular solution

Yo(y) = < [ cosh w J falz smh "2 4z + sinh f fn(z) cosh O e
nm a
_a fn( )Smhwdz
nm a

so that
An(y) = C,, cosh nry + S, sinh nry + Y. (y).
a a

The boundary condition (12.10c) implies that A,(0) = A, (b) = 0; thus C,, = 0 and S,, =

Yo (b . _ |
— (nib. The computation above provides the solution
sinh 7 . - nry
=2 [Yaly) — Yalb)—25 | sin 2 (12.11)
n=1 sinh e a

Question: Is u given above really a solution to (12.10)?
Answer: No! In general we do not know if Y,, — 0 as n — o0; thus the series given by

(12.11) may not converge.

12.6 Non-homogeneous Boundary-Value Problems

For the heat and wave equations, see Remark 12.5.

12.7 Orthogonal Series Expansions

Consider the heat equation

(3u 2@
g(x,t) = 2+q(:c t) O<x<L,t>0, (12.12a)
u(0,1)=0, & =—hu(L1) £>0, (12.12b)

u(z,0) = f(x) O<z<L, (12.12¢)
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where h > 0 is a constant.

First we look for eigenfunctions v satisfying

d2

@v(x) = \v(z), v(0) =v'(L) + ho(L) = 0. (12.13)
d2
We note that with this boundary condition, ) is “symmetric” since
XL

(u",v)1200,) = J uw"(z)v(x) dz = u'(x)v(z) - J u'(x)v'(z) dz

0 z=0 0

L

=u'(L)v(L) —u(L)v' (L) + Jo u(z)v'(x) dz

= —hu(L)v(L) + hu(L)v(L) + (u,v") 20, = (u,v")120.1) -

1. A = 0: the eigenfunction takes the form v(z) = Ax + B, and the boundary condition
implies that
B=0 and A+ h(AL+ B)=0;

thus A = B = 0.

2. A= 32 > 0: the eigenfunction takes the form v(z) = Ae’* + Be =7 and the boundary

condition implies that
A+B=0 and ABePt — BBe Pl + h(AePt + BePl) = 0;
thus A =B =0.

3. A = —f3? < 0: the eigenfunction takes the form v(z) = Acos Sz + Bsin Sz, and the

boundary condition implies that
A=0 and —AﬁsinﬁL—l—BﬁcosﬁL—i—h(AcosﬁL—l—BsinﬂL):0;

thus to obtain non-trivial solutions, §cos L + hsin L =0 or

tan A, — —% . (12.14)
Equation (12.14) has infinitely many roots. Suppose that the positive roots of (12.14),
in increasing order, are given by 1, 82, -, Bn, - -. Then A = — /2 is an eigenvalue to
the eigenvalue problem (12.13) and a corresponding eigenfunction is v, (z) = sin ,,x;

thus we obtain a complete orthogonal set {v,} ;.
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We then express the solution to (12.12) as
u(z,t) = Z Ap(t) sin Bz

as well as

@)= Y B, B = o — [ g t)smpadr

n=1 anHp (0,L) 0

Here we note that

L L i
' 1—cos28,x L sin26,L L h
9 - 2 . n _ n— _ I
s = | s e = | IS e = 5 SR = Sy

Then (12.12a) implies that A, satisfies the differential equation
AL(t) + 0B Au(t) = Ba(t)

while (12.12b) implies that A, satisfies the initial condition
A,(0) = J f(z)sin fyxde .
||UnHL2 0,L)

Remark 12.10. When the PDE (especially the heat or wave equations) itself is homoge-
neous, one can always try the method of separation of variables by looking for production

solution wu(z,t) = X (x)T'(t) first. The procedure of solving for such an X is exactly the
d2
same as finding eigenfunctions of subJect to some homogeneous boundary conditions.

12.8 Higher-Dimensional Problems

In this section we consider the heat equation

2 2
aa (z,y) =’ 22(56 y) + Z—y?;(x,y) O<z<b,0<y<c,t>0, (12.15a)
u(0,y,t) = u(b,y,t) =0 O<y<et>0, (12.15b)
u(z,0,t) = u(z,c,t) =0 O<z<bt>0, (12.15¢)
u(z,y,0) = f(x,y) 0<zx<b,0<y<c. (12.15d)
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Let us first try the method of separation of variables; that is, we first look for product
solutions of the form u(z,y,t) = X (2)Y (y)T(t). Such X,Y,T must satisfy

X (@)Y ()T'(t) = o*| X" (@)Y ()T (t) + X (x)Y”(y)T(t)]

or equivalently,
X'@) Yy | T'®)

X(@) Yy Tt
Since the left-hand side of the equality above is a function of x, while the right-hand side

of the equality above is a function of y and ¢, we must have

X”(x) B _Y”(y) T/(t) _
X))~ Y Terre =

for some constant A € R. This further implies that

Y'(y) _ T()
Yy  oT(1)

+A=—u

for some constant p € R.

Because of boundary condition (12.15b) and (12.15¢), we impose the boundary conditions
X(0) =X(b) =0and Y(0) =Y(c) = 0; thus

mmnx

A= mb2 and X (z) = sin VmeN, (12.16a)
2_2
= nC;r and Y (y) =sin n—:y VneN. (12.16b)
Moreover,
2 2,2 m*  n’
T(t) = exp [—a*(A + p)t] = exp [—oz T (b—2 + C—Q)t] :
Therefore,
2 2
9 9o/M n . mTmx . nﬂ'y
Umn(T,y,t) = exp [—oz s (b—2 + C—Z)t} sin sin ——=

is a product solution for all m,n € N.

Remark 12.11. The collection of functions

. nm
sin nry for some m,n € N}
C

{v(:z;, ) ‘ v(x,y) = sin mr

2 2
< + z on the square Q = [0, b] x [0, ¢] with boundary condition
or? = oy?

v=0 on O0f).

are eigenfunctions of A =
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In other words, there exists v € R (here v = X\ + u given above by (12.16)) such that

—Av(z,y) = vu(z,y) V(z,y) e,
v(z,y) =0 V(z,y) € oN.

Having obtain product solution, now we assume that the solution u to (12.15) can be

written as
m2  n? . mwr | nwy
U(Ql,y, m;IAmnumn X y7 m;IAmneXp[ (b2 +07)ti| Sin b SIHT.
The initial condition (12.15d) implies that A, ,, should satisfy
Z Amn sm sin —= nry
m,n=1 ¢
which shows that A,,, is given by
4 r
Apn=—| flz,y)sin M7 Gin @ dA
’ be .JQ
4

72 sin @ dy) dx

=7 Job (ch(fﬁ,y) sin

4

mmx nmy

b
(Lf(x,y)sin 2 sdem




Chapter 14

Integral Transforms

14.1 Error Function

The error function erf and complementary error function erfc are, respectively, defined by

2 [ .
erf(zx f and erfe(x) = —J e " dt.
~ U V7,

We have the following properties:

1. lim erf(z) =1, lim erf(x) = —1.

Tr—00 r——00

2. lim erfc(x) =0, lim erfc(z) = 2.

r—00 r——00

3. \/2;7[: exp (— og) di = ;[erf(\/;?) —arf( L)) for all pg e R

f(t),a>0 Z[f(t)] = F(s) f(t),a>0 ZIf(t)] = F(s)
Lew o oL a5 —

. e ente(bi + ) L
ere( ;) o e (Wi + ) erte(h) (bffb)

Table 14.1: Laplace transform of some functions

83



84 CHAPTER 14. Integral Transforms

a2
Now we verify formula 1-3 given in Table 14.1. Let fi(t) = \/17641 and Fi(s) =
s
Z[f1](s). By the substitution of variable t = a

25’
1 e © 1 \/2si 1,7 adu
F1<S):JO \/_7-‘-76 4t6 tdt \/_E—\/@ exXp |:—a\2/§(u+)i|m

. va exp
orst Jo VU

Replacing u by l, we find that
u

I O I e I

2

ve (71 X [ a\/g(u%—i)]du.

OOLeXp [—a;/g(u%—i)] du—ljOO (} \/>>exp[ CL\Z/E(u—l—l)}du.

By the substitution of variable \/u = v, we find that

wiexp[—a\;g(u—i—i)}du:Joo(l—k%)exp[ \f(v%— )}dv

0

1
and further substitution 2z = v — - shows that

fo\%exp [—a;/g(l“ri)} duzro exp[ ;f(a: +2 = —GWJ — oz
0 —o0

thus by the fact that J

0

exp < 55 2) dt = v/2mo?, we conclude that
0

1

Y exp [ a;/E (u—i—%)] du = LOO \/% exp [—af (u+%)} du = \/%6“\/53411 . (14.1)

As a consequence,
/2 —avs
Fi(s) = va - M e—avsgt = & :
2msa a \/g

Next we compute the Laplace transform of the function fo(t) = % Again by
wu 2V 3
the substitution of variable ¢ = 35

* a o2 ©a [24/5\3 a\/s 1\] a
e e tdt = (—) ex [— u—+ - ] ——du
J;) I/ 73 0 Qﬁ P ( u)
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2
A —We_“\/gs_% = e W5,
a

thus (14.1) shows that

F(s) = ZLf)(s) = \/;

=

Finally we compute the Laplace transform of the function f3(t) = erfc(%/%). Integrating
by parts,
o0 —st t=00 1 o0 d a
Fy(s) =& = | erfe(-2)etdt = erfe(-2 )" —J ot Zerfe (-2 ) dt
3(s) [f3](s) Jo er C(2\/z)€ er C<2\/i) s —i—s ) e er 0(2\/%)
1(* ./ 2 _\d a 1(* a _& 1 e~
=- =T | ———=dt = - Twetdt = =L = i
J (=) G5 Sjohtgwe ~Z1f(s) = —

14.2 Laplace Transform

Recall that if f : [0,00) — R is a function, then the Laplace transform of f, denoted by
Z[f], is

21f)(s) = j " petdr

whenever the integral exists. Often time we write F' = Z[f]. If u is a function of z (in some
interval) and ¢ > 0, then we define the Laplace transform of u by

Ulx,s) = ZLul(x,s) = JOO u(z,t)e " dt.

0

Similar to the formula

ZIf)(s) =sF(s) = f(0)  and  Z[f"|(s) = s"F(s) = sf(0) — f'(0),

we have
g[%&} (z,5) = sU(z,s) —u(z,0), (14.2a)
0%u 9
X[@} (x,8) = s°U(x,s) — su(x,0) — u(z,0). (14.2D)
Moreover,

2 © a2 2 [~ ?
,Sf[a u} (x,s) = J d u(m,t)e_St dt=" d f u(z, t)e™* dt = Z_U(%S)- (14.3)

pre e a7 ), 22
Identities (14.2) and (14.3) are the key formula that we will use to solve the initial-boundary

value problems.
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Example 14.1. Consider the wave equation

APu Pu
u(0,t) =u(l,t) =0 t>0, (14.4Db)
0
u(z,0) =0, a—? = sinnx 0<z<l. (14.4c)
t=0

Let U(x,s) = ZL[u(x,-)](s). Using (14.2) and (14.3) we find that

@U(af;, 5) — s?U(x,s) = —sinnz. (14.5)
(

A particular solution to the “ODE” above is

T

— sin y sinh sy — sin my cosh sy

Uy(x,s) = —cosh sz f dy + sinh sx
0

W cosh sy, sinh sy o Wilcosh sy, sinh sy

h - . h T
_ coshst J sin y sinh sy dy — SR 5% f sin y cosh sy dy .
S 0 o 0

Integrating by parts,

f v . — cos my sinh sy
sin 7y sinh sy dy =
0 T

y=r g5 [*
+ — | cosmycosh sy dy
y:0 m 0
— cos mx sinh sz n s [sin 7y cosh sy ’y:z s
y=0

- — f sin 7y sinh sy dy]
T Jo

™ ™ ™

—cosmxsinhsx s . s (" .
= + — sinTwcoshsey — — | sinmysinhsydy;
™ Jo

™ 2
and
v —cosmycoshsyy== s [ )
sin my cosh sy dy = + — | cosmysinh sy dy
0 T y:() n 0
1 —cosmxcoshsr srsinmysinhsyy== s [ .
= + — — — | sinmycoshsydy
T T T y=0 T Jy
1 —cosmrcoshsr s | . s ("
= + — sinwzsinh st — — | sinwycosh sy dy ;
T 2 2
0
thus
v ) ssin mx cosh sx — m cos ma sinh sx
sin y sinh sy dy = ,
s? + w2
0
T ssin x sinh sz — wcosmx cosh sz +
sin y cosh sy dy = .
s2+ 72
0
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Therefore, a particular solution is given by

ssinmx — 7 sinh sz
s(s? + m?)

Up(z) =

so that the solution to (14.5) is

. sin Tx
U(x,s) = Cy(s) cosh sz 4+ Cy(s) sinh sz + ey

—msinhsz . . . o
here the term % in U, is absorbed into Cy(s). Note that the boundary condition
S(S ™

(14.4b) implies that U(0,s) = U(1, s) = 0; thus C(s) = Cy(s) = 0. Therefore,

sin Tx

s2 + 72

g[u('xv )](S) = U(.T, 8) =
Since ﬁ is the Laplace transform of the function f(t) = sinxt, we conclude that
s

I :
u(z,t) = —sinnwtsinmz.
m

Example 14.2. Consider the wave equation

2 2
%_02%— x>0,t>0, (14.6a)
. ou
u(0,t) = :}1_130(9—3: =0 t>0, (14.6b)
0
u(m,O):O,a—z =0 x>0, (14.6¢)
t=

where g is a constant (denoting the gravitational acceleration).
Let U(zx,s) = ZL[u(x,)](s). Using (14.2) and (14.3) we find that

a2

s*U(x,s) = cQwU(x, s) — %
so that U satisfies the “ODE”
0? 52 g

A particular solution to the ODE above is U,(z, s) = —%; thus the general solution to the
S

ODE above is
9
s3

U(z,s) = Ci(s)exp (zx) + Cy(s) exp (—zx) -
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The boundary condition (14.6b) implies that U(0,s) = 0 and lim a—U(q;, s) = 0; thus

z—w0 0T

Cis) =L and  Ou(s)=0.

: 2 . :
Therefore, U(x, s) = % exp (—%s) — s% Since — is the Laplace transform of the function

f(t) = t?, by the fact that i
L0y (D) f(E — a)](s) = e Z[f](s)

we conclude that

Example 14.3. Consider the heat equation
ou *u

a(m,t) = @(:v,t) 0<z<1,t>0, (14.8a)
u(0,t) =0, u(1,t) = o t>0, (14.8Db)
u(z,0) =0 0<z<l1, (14.8¢)

where ug is a given constant.

Let U(zx,s) = ZL[u(x,")](s). Using (14.2) and (14.3) we find that
Py

ﬁU(x, s) —sU(x,s) =0. (14.9)

Moreover, the boundary condition (14.8b) implies that
U(0,s) =0 and U(l,s) = ZLul(s) = —. (14.10)

Since the Laplace transform is always (assumed to be) defined on s > « for some a € R,
W.L.O.G. we can assume that o > 0 so that the general solution to the ODE (14.9) is

Uz, s) = Cy(s) cosh/sz + Cy(s) sinh /sz .
The boundary condition (14.10) shows that

Ci(s) =0 and Csy(s) =
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thus
up sinh y/sx e@=1s _ o—(a+1)y/s

ssinh /s - s(1 —e2v5)

Since s > 0, the geometric series expansion implies that

1 e 2n

Uz,s) =

thus

e(a:—l)\f_e (z+1)4/s 2 e—(2n+1- )4/ 6—(2n+1+x)\/§:|

Uz, s) = ug ZeQ”W—uZ[ _

S

Q0 o0
Assuming that £~ >} = Y £~! using formula 3 of Table 14.1 we obtain that
n=0 n=0

e~ (2n+14x)4/s

ulet) = LU )0 = w0 S {£ [M] (t) -2~ | ———| )}

o () (223
__uojz er (2”‘*1‘%$) —exf<2”2h2f””>}. (14.11)

On the other hand, we can solve (14.8) using the method of separation of variables as

follows. Let g(x,t) = zug and v(z,t) = u(x,t) — zug. Then v satisfies that

2
Z@w) gﬂxw O<a<1t>0, (14.12a)
v(0,8) =0, v(1,t) =0 t>0, (14.12b)
u(z,0) = —zug O<z<l1, (14.12¢)

Because of the boundary condition (14.12b), the solution v can be expressed as

©¢]
Z )sin(nwx)

n=1
where A,, satisfies the ODE
Al () +nPr2 A, (t) =

as well as the initial condition

x=0

1
A, (0) = —2ug | xsin(nmz)dr = —2ug|x - cos(nmz)
0 —nm

z=1 N Jl CoOSNTT dz} _ 2ug(—1)" |

g nm nm
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Therefore,
2ug(—1)"
An(t) _ UO( ) e—n27r2t
nm
so that .
2ug )" .
? Z SlIl nmwr.
Therefore, the solution of (14.8) is given b
2up )"
u(z,t) = zug + —0 Z ™! sinnra . (14.13)

Question: Are solutions to (14.8) provided by (14.11) and (14.13) the same? In other
words, is there a unique solution to (14.8)7?
Answer: The two expressions of solutions to (14.8) represent the unique solution of (14.8).

In fact, if u; and uy are two solutions to (14.8), then v = u; — uy satisfies

ov 0%v

at(x t) = o (7, 1) O<z<1,t>0, (14.14a)
v(0,t) =0, v(1,t) =0 t>0, (14.14D)
v(z,0) =0 0<z<l. (14.14c)

Integrating %%v(w,tﬂ on [0, 1], using (14.14a) we obtain that

1 1 1
J —ﬁv(x t)*dr = f v(x, t)v(x,t) de = f (@, t) vz (2, t) da Vt>0.
2 6’75 0 0
Integrating by parts, we find that
[ Zote, 7 e = otz
——uv(x,t)* dr = v(x,t)v,(x,t

and the boundary condition (14.14b) further shows that

1 (o ) ! )
— | —v(z,t)*de=—| v(z,t)"dzx.
2 ), ot 0

Assuming that the time derivative can be pulled out of the integral, we obtain that

10 1 1
—J v(m,t)de——f v(x,t)?dr <0;
0 0

=1

1
—J v (7, 1) do Vit>0,
0

=0

20t

1
thus the function f(t) = f v(z,t)?dt is a non-negative decreasing function. Since the
0

initial condition (14.14¢) implies that f(0) = 0, we conclude that f(¢) = 0 for all £ > 0; thus
v(z,t) =0 for all x € [0,1] and ¢ > 0.
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14.3 Fourier Transform

14.3.1 The Fourier transform, and the Fourier inversion formula

In this section, we extend the study of the Fourier series. Recall that if f : (—p,p) — R is

a “good” function, then

where the Fourier coefficient of f is given by

1 (7 1 (P
Cp = — f(y)cos@dy VneNuU{0} and sn:—f f(y)sin@dy VneN.
pJ., p pJ., p

Using the Euler identity € = cos + isin 6,

flx) = “© i [C—n<eXP (Zn;x> + exp (m;m;)> + S—é(GXP (Zn;rx) — exp <m;r:v)>]

2 4l 2i
1[ i ( —i8,) ex (mwx) + (¢ + isp) ex (—mﬂx)ﬂ
1[ i —18,)ex (zmrzv) + i (c_p +1is_p)ex (mm:)]
9 ~ n p D i -n -n p .
=2i fly y+2 J fly m;ydy>6m5z + > ( f( Je y)eTy}
P -Pp n=-—ao
Z mﬂ(;v—y) dy
TL_f()O

Suppose that p » 1 and p € N. Making use of the Riemann sum to approximate the integral
(by partition [—pm, prr] into 2p? intervals), we find that

o= 5 [ s e LY [ wes [T )]
Xr) = — e p X — exX 1—\T —
» 2] I y w2, y)exp i y)|dy
1 (® Pl nm T
2m_p(n2_p2f(y) p i =] ) dy
1 (P pT 1 [P p .
~ e@=y) ge g __J e€@=y) 4.\ d
) ( _mf() ay=5-| ( W) ) d
L |
~ o f fly @dy> 7 . (14.15)
™ J-
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This motivates the following

o0
Definition 14.4. Let f : R — R be an integrable function; that is, J ‘f(a:)‘ dr < oo.

1. The Fourier transform of f, denoted by f or Z|[f], is the function

76 = #f)(e) = fo Fa)e = de

Sometimes we will also write .Z,[f(x)](§) to denote the Fourier transform of f, where

the sub-index z in .%, means the variable to be integrated.

2. The inverse Fourier transform of f, denoted by f or .Z1[f], is the function
- 1 0 )
flo =100 =5 | faed.
™ —Q0

Theorem 14.5 (Fourier Inversion Formula). Let f : R — C be an integrable function such

that f 1S also integrable. Then

~
A~

f(x) = f(z) = f(z) wheneven f is continuous at x.

Remark 14.6. Under the assumptions of Theorem 14.5, if in addition f is real-valued, then

if f is continuous at =z,

- ([so s £ ([ o)
% Z( if ) cos é(x )dy>d§
= %LOO (r; f(y)(cos€x cos €y + sinEx sin &y) dy) de
B %f ( _O; fy)cos €y dy) coséx + (ﬁo f(y)siny dy) sin €z ds .

The integral

: L i I fi f(y) cosy dy) cos & + (JZ f(y)siny dy ) sin &z de

is called the Fourier integral of function f, and the Fourier inversion formula says that under

suitable conditions the Fourier integral of f is identical to f.
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We also note that if in addition f is even, then

ra) =2 [ (| stwreosercosyay)de =2 [ ( | sty cosrcosgyay) de.

Similarly,

1 0 o] 2 o0 o0
flz) = —f (J f(y) cosfzcosfydy) dé = —J <f f(y) cosﬁxcosfydy) dé
™ Jo —0 ™ Jo 0
whenever f is odd (and satisfies the assumption in Theorem 14.5).

Q0
Now suppose that f : (0,00) — R be integrable; that is, f ]f(x)| dr < . Let F be the
0
even extension of f; that is, F'(z) = f(|x|) for all z € R. Then F is integrable on R. Then

F(¢) = f : F(2)e™ do = f

—00 —00

oe]

F(zx)cos(xz€) dx = 2 f:? f(x) cos(z€) dx

since the imaginary part is an odd function. Moreover, the identity above also shows that a
is an even function. Therefore, if F is also integrable, the Fourier Inversion Formula implies
that

f@) = o [ Fleercae= L [ B costag) e

2m —o0
=21 0 contue ) costat)

whenever f is continuous at x.
On the other hand, we can consider the odd extension of f. Similar to the discussion
above, under the condition that f is integrable (on (0,00)) and the Fourier transform of the

odd extension of f is integrable, then

2 Q0 Q0
flz) = —J (J f(y) sin(yé) dy) sin(z€) d§ whenever f is continuous at .
T Jo 0
The discussion above motivates the following
o0
Definition 14.7. Let f : (0,20) — R be an integrable function; that is, J ‘f(x)‘ dx < oo.
0

1. The Fourier cosine transform, denoted by Z..s[f], is the function

Fonlf1(€) = fo " Fw) cos(z€) dx.



94 CHAPTER 14. Integral Transforms

2. The inverse Fourier cosine transform, denoted by .Z![f], is the function

FLNO =2 [ 1) costag) s

3. The Fourier sine transform, denoted by Z,[f], is the function

Zal1(6) = f " fo)sin(a€) dr.

4. The inverse Fourier sine transform, denoted by .%_.![f], is the function

FRO =2 [ fta)snag) o

Theorem 14.8. Let f: (0,0) — R be an integrable function.
1. If Zeos|f] is also integrable, then

Feos [971} (z) = F} [9@5] (x) = f(x) wheneven f is continuous at x.

CcOos Ccos

2. If Zaulf] is also integrable, then

Fsin [ﬁ’l} (z) = F.! [ﬁsin] (x) = f(x) wheneven f is continuous at x.

Remark 14.9. The integrals

% L ’ ( JOOO f(y) cos(yg) dy) cos(x€) dg
and

2[7( [ 1wsintug) dy) sina) de

are called the Fourier cosine integral and the Fourier sine integral of function f, respectively.
Therefore, Theorem 14.8 says that under suitable conditions the Fourier cosine and sine

integrals of f are identical to f.

2
Example 14.10. Let g(x) = exp (—x—) Then

202
0 0 s 2¢\2 2¢2
g]\(g) _ J_oo e*x2/20’267ix£ do — J_OO exp (_ (l’ ‘;;UQ 5) _ 0'25 )d:c
ot N (x +i0%6)?
= exXp (— )J_ooeXp (—T) dx

2
Y P - e g Yy
=e e 22 dy = V2mo?e .
—Q0
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Next we compute the inverse Fourier transform of §. Since we have obtained that

2 O'2§2

Falexp (—55)](6) = VamoZexp (- =) (14.16)

2 - ~
and note that a(f) = V2mo?exp (— 2(16/0_)2>, by the fact that f(é) = (—g) we find that
x PN 1 1 5 (—x)? 22
g9(zr) = %g(—x) =5V 2702 27?; exp (— 5 ) = exp (—QT‘Q) ;

thus we establish that E(x) = g(x).

Example 14.11. Let f : [0,00) — R be defined by f(z) = e~ for some ¢ > 0. Then using

the formula

J o sin(br) da = L L >+_bf costbr)] | )
Je‘” st — [a Cosfle +be sin(bx)] |
we find that
Full© = [ sinag)ao = T ZERON T €
P STt P S

14.3.2 Properties of Fourier Transform

1. Suppose that f is continuous and integrable on R such that f’ is piecewise continuous

on every finite interval. If | l|im f(x) =0, then integration by parts implies that
x|—00

FNO = [ rweas = pwes

I Tl
=€ J_ f(z)e™ do = iﬁ‘f(f)
which shows R
Zf'1(&) =i f (&) (14.17)

If in addition f’ is continuous and integrable such that f” is also piecewise continuous

on every finite interval and |1|irn f'(xz) =0, we have
T|—00

FL1"(€) = —€2f(&). (14.18)
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2. Suppose that f is continuous and integrable on [0, 00) such that f’ is piecewise con-
tinuous on every finite interval. If lim f(z) = 0, then integrating by parts implies
T—00

that
Fanl[1(€) = L f'(z)sin(xf) de = f(x)sin(xf)
= _gioj\cos[.ﬂ (5) :

i: - JOOO f(x)% sin(z€) dx

Similarly, Feos[f'](€) = §Fanlf](€) — £(0).
If in addition f’is continuous and integrable such that f” is also piecewise continuous

on every finite interval and lim f’(x) = 0, then
r—00

&O}\sin[f//] (f) = _éfQCOS[f/] (5) = _£2ysin[f] (g) + gf(())

so we obtain that

Fanlf"1(€) = =€ Fanl 1(€) + ££(0). (14.19)
Similarly, under the same assumption
ngcos[f//} (5) - _fzfg\cos[f} (5) - f/<0) . (1420)

14.3.3 Solving PDE using the Fourier transform

The Fourier transform can be used to study the heat equation and the wave equation when
the spatial domain of interests is R, while the Fourier cosine or sine transform can be used
when the spatial domain of interests is (0, c0). In particular, if considering PDEs on (0, o)
with Dirichlet boundary condition at x = 0, the Fourier sine transform can be used, and we

use the Fourier cosine transform when a Neumann boundary condition at x = 0 is imposed.

Example 14.12. Solve the heat equation

0 02

a—:;(l’,t) = aza—;;(x,t) —w<zr<wt>0, (14.21a)
‘1|im u(x,t) =0 t>0, (14.21b)
T |—00
u(z,0) = f(x) —0 < <. (14.21c)

Let U(§,t) = Zu(-,1)](€), and assume that solution u satisfies

, 0
(z,t)e ™ dr = —

P (" Ou
Zlu0](€) = | L

* , oU
o J u(zx,t)e " dx o (&,1).

—00
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Then (14.21a) and (14.18) imply that U satisfies
Up(€,1) + 22U (E,t) = 0. (14.22)

Moreover, the initial condition (14.21c) implies that

A~

U(§,0) = Z[f1(&) = (&) (14.23)
Solving the ODE (14.22) subject to the initial condition (14.23), we find that
Ue.t) = e ().

Therefore,

u(w, 1) = ﬁ‘l[Uc,t)[( )= gi f C e ag

]. 2 2 1 © © 2¢2 3
e &7t lyﬁ (473 _ —asgct —i(z—y)¢
27r J f dy) ds = 27Tf (J_ ¢ f(y)e dy) ds

oe]

and the Fubini Theorem (that we assume that we can apply) further shows that

u(z,t) = i foo (IOO e~ E (1 — 2)e#E d§> dz
f flx [ _0‘252 27?20@15[ flx— =z exp( o t> dz

_ |z —y|?
_\/47ra2t J_Oof(x—z)exp( 2a2t> dz = \/47ra2 f Iy (_ 40t )dy

In particular, if f is the function

ug if |z] <1,
f(x):{ 0 if;x:>1
where ug is a constant, then
12
u(z,t) = \/WJ - 4@2? ) dy
The substitution of variable s = xa;\/% (here we assume that a > 0) shows that
w [ £
u(z,t) = \/ﬁf”i e 20/t(—ds) = \F e ds
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2
Xp (* ﬁ), and define the convolution of two

Remark 14.13. Let H(x,t) =
functions ¢ and h by

(g x ) = | " ywhie — y)dy = | " e — )h(y)dy.

—a0 —0Q0

1
e
VATt

Then the solution u to (14.21) can be written as

e, t) = (H(0) % ) = (Hx D) = | f0)H—y.0)dy.
The function H is called the heat kernel.

Example 14.14. Consider the Laplace equation

52 52
a—;g(fc,yHa—;(:v,y):O O<zx<m,y>0, (14.24a)
uw(0,y) =0, u(m,y)=e"Y y>0, (14.24D)
g—Z(x,O) =0 O<z<m. (14.24c)

Let U(x,§) = Feos|u(zx,-)](&) = JOOO u(z,y) cos(y&) dy. Assume that

© 2y 02 [ o2
L @(:&y) cos(yg) dy = @L u(x,y) cos(y§) dy = W(x’f) .

Using (14.20), we conclude from (14.24a) and (14.24c) that U = U(x, §) satisfies that
2
@O - U@ =0 O<z<m >0,

thus
Uz, &) = C1(€) cosh(z) + Co(§) sinh(z€) .
Moreover, (14.24b) implies that

1
U<07§> =0 and U<7T7§) = rég ’
where we have used Example 14.11 to conclude the second equality. Therefore,
1

Ci(§) =0 and C1(§) cosh(m€) + Cy(&) sinh(7w€) = e

which shows that inh(z€)
sinh(x
U8 = T ) sinn(m)
Therefore,
2 (” 2 ([ sinh(2€) cos(y§)
) =2 | Ul g eos(ue)ds = = | SIS ac.
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