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Chapter 10. Least-Squares Problems

Introduction
In least-squares problems, the objective function f takes the form

f (x) = 1

2

m
ÿ

j=1

r 2j (x) , (1)

where each rj is a smooth function from Rn to R. We refer to each
rj as a residual, and we assume throughout this chapter that m ě n.

Least-squares problems arise in many areas of applications. Many
who formulate a parametrized model for real-world applications use
a function of the form (1) to measure the discrepancy (差異)
between the model and the observed behavior of the system.
By minimizing this function, they select values for the parameters
that best match the model to the data. In this chapter we show how
to devise efficient, robust minimization algorithms by exploiting the
special structure of the function f and its derivatives.
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Chapter 10. Least-Squares Problems

Introduction
By assembling the individual components rj from (1) into a residual
vector r : Rn Ñ Rm, as follows

r (x) = [r1(x), r2(x), ¨ ¨ ¨ , rm(x)]T , (2)

we can rewrite f as f (x) = 1

2
}r (x)}22. The derivatives of f (x) can be

expressed in terms of the Jacobian matrix J (x), which is the m ˆ n
matrix of first partial derivatives of the residuals, defined by

J (x) =
[
∇r (x)

]
mˆn =

[
Brj
Bxi

]
j=1,2,¨¨¨ ,m
i=1,2,¨¨¨ ,n

=


∇r1(x)T
∇r2(x)T

...
∇rm(x)T

 , (3)

where each ∇rj (x), j = 1, 2, ¨ ¨ ¨ ,m is the gradient of rj (represented
by a column vector).
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Introduction
The gradient and Hessian of f can then be expressed as follows:

∇f (x) =
m
ÿ

j=1

rj (x)∇rj (x) = J (x)Tr (x) , (4)

∇2f (x) =
m
ÿ

j=1

∇rj (x)∇rj (x)T +
m
ÿ

j=1

rj (x)(∇2rj)(x) (5)

In many applications, the first partial derivatives of the residuals and
hence the Jacobian matrix J (x) are relatively easy or inexpensive to
calculate. We can thus obtain the gradient ∇f (x) as written in for-
mula (4). Using J (x), we also can calculate the first term J (x)TJ (x)
in the Hessian ∇2f (x) without evaluating any second derivatives of
the functions rj. This availability of part of ∇2f (x) “for free” is the
distinctive feature of least-squares problems.

∇f (x) =
m
ÿ

j=1

rj (x)∇rj (x) = J (x)Tr (x) , (4)∇2f (x) =
m
ÿ

j=1

∇rj (x)∇rj (x)T +
m
ÿ

j=1

rj (x)(∇2rj)(x)

= J (x)TJ (x) +
m
ÿ

j=1

rj (x)(∇2rj)(x) .
(5)
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Introduction
The gradient and Hessian of f can then be expressed as follows:

∇f (x) =
m
ÿ

j=1

rj (x)∇rj (x) = J (x)Tr (x) , (4)

∇2f (x) = J (x)TJ (x) +
m
ÿ

j=1

rj (x)(∇2rj)(x) . (5)

Moreover, this term J (x)TJ (x) is often more important than the
second summation term in (5), either because the residuals rj are
close to affine near the solution (that is, the ∇2rj (x) are relatively
small) or because of small residuals (that is, the rj (x) are relatively
small). Most algorithms for nonlinear least-squares exploit these
structural properties of the Hessian.
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Introduction
The most popular algorithms for minimizing (1) fit into the line
search and trust-region frameworks described in earlier chapters.
They are based on the Newton and quasi-Newton approaches de-
scribed earlier, with modifications that exploit the particular struc-
ture of f .

Section 10.1 contains some background on applications. Section
10.2 discusses linear least-squares problems, which provide important
motivation for algorithms for the nonlinear problem. Section 10.3
describes the major algorithms, while Section 10.4 briefly describes
a variant of least squares known as orthogonal distance regression.
Throughout this chapter, we use the notation } ¨ } to denote the
Euclidean norm } ¨ }2, unless a subscript indicates that some other
norm is intended.
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Chapter 10. Least-Squares Problems

§10.1 Background
We discuss a simple parametrized model and show how least-squares
techniques can be used to choose the parameters that best fit the
model to the observed data.

Example
We want to study the effect of a certain medication on a patient. We
draw blood samples at certain times after the patient takes a dose,
and measure the concentration of the medication in each sample,
tabulating the time tj and concentration yj for each sample.
Based on our previous experience in such experiments, we find that
the following function φ(x ; t) provides a good prediction of the con-
centration at time t, for appropriate values of the five-dimensional
parameter vector x ” (x1, x2, x3, x4, x5):

φ(x ; t) = x1 + t x2 + t 2x3 + x4e´x5t . (6)
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Chapter 10. Least-Squares Problems

§10.1 Background
Example (cont’d)
We choose the parameter vector x so that this model best agrees
with our observation, in some sense. A good way to measure the
difference between the predicted model values and the observations
is the following least-squares function:

1

2

m
ÿ

j=1

[
φ(x ; tj) ´ yj

]2
, (7)

which sums the squares of the discrepancies between predictions and
observations at each tj. This function has precisely the form (1) if
we define

rj (x) = φ(x ; tj) ´ yj . (8)
Graphically, each term in (7) represents the square of the vertical
distance between the curve φ(x ; t) (plotted as a function of t) and
the point (tj, yj), for a fixed choice of parameter x ; see Figure 1.
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Chapter 10. Least-Squares Problems

§10.1 Background
Example (cont’d)

Figure 1: Model (7) (smooth curve) and the observed measurements, with
deviations indicated by vertical dotted lines.
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Chapter 10. Least-Squares Problems

§10.1 Background
Example (cont’d)
The minimizer x˚ of the least-squares problem is the parameter vec-
tor for which the sum of squares of the lengths of the dotted lines
in Figure 1 is minimized. Having obtained x˚, we use φ(x˚; t) to
estimate the concentration of medication remaining in the patient’s
bloodstream at any time t.

This model is an example of what statisticians call a fixed-regressor
model. It assumes that the times tj at which the blood samples are
drawn are known to high accuracy, while the observations yj may
contain more or less random errors due to the limitations of the
equipment (or the lab technician!)
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Chapter 10. Least-Squares Problems

§10.1 Background
In general data-fitting problems of the type just described, the or-
dinate t in the model φ(x ; t) could be a vector instead of a scalar.
In the example above, for instance, t could have two dimensions,
with the first dimension representing the time since the drug was
admistered and the second dimension representing the weight of the
patient. We could then use observations for an entire population of
patients, not just a single patient, to obtain the “best” parameters
for this model.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 10. Least-Squares Problems

§10.1 Background
The sum-of-squares function (7) is not the only way of measuring
the discrepancy between the model and the observations. Other
common measures include the maximum absolute value

max
1ď j ďm

ˇ

ˇφ(x ; tj) ´ yj
ˇ

ˇ (9)

and the sum of absolute values
m
ÿ

j=1

ˇ

ˇφ(x ; tj) ´ yj
ˇ

ˇ . (10)

By using the definitions of the ℓ8 and ℓ1 norms, we can rewrite
these two measures as

f (x) = }r (x)}8 , f (x) = }r (x)}1 , (11)
respectively. As we discuss in Chapter 17, the problem of minimiz-
ing the functions (11) can be reformulated a smooth constrained
optimization problem.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 10. Least-Squares Problems

§10.1 Background
In this chapter we focus only on the ℓ2-norm formulation (1). In
some situations, there are statistical motivations for choosing the
least-squares criterion. Changing the notation slightly, we let the
discrepancies between model and observation be denoted by εj :

εj = φ(x ; tj) ´ yj .

It often is reasonable to assume that the εj’s are i.i.d. with a certain
variance σ2 and probability density function gσ(¨). Under this as-
sumption, the likelihood of a particular set of observations yj, j = 1,
2, ¨ ¨ ¨ , m, given that the actual parameter vector is x, is given by

p(y ; x, σ) =
m
ź

j=1

gσ(εj) =
m
ź

j=1

gσ(φ(x ; tj) ´ yj) . (12)

Given the observations y1, y2, ¨ ¨ ¨ , ym, the “most likely” value of x
is obtained by maximizing p(y ; x, σ) with respect to x. The resulting
value of x is called the maximum likelihood estimate.
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Chapter 10. Least-Squares Problems

§10.1 Background
Assume that the discrepancies follow a normal distribution. Then

gσ(ε) =
1

?
2πσ2

exp
(

´
ε2

2σ2

)
.

Substitution in (12) yields

p(y ; x, σ) = (2πσ2)´m/2 exp
(

´
1

2σ2

m
ÿ

j=1

[
φ(x ; tj) ´ yj

]2)
.

For any fixed value of the variance σ2, it is obvious that p is max-
imized when the sum of squares (7) is minimized. To summarize:
When the discrepancies are assumed to be i.i.d. with a normal dis-
tribution function, the maximum likelihood estimate is obtained by
minimizing the sum of squares.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems
Many models φ(x ; t) in data-fitting problems are linear functions of
x. In these cases, the residuals rj (x) defined by (8) also are linear,
and the problem of minimizing (7) is called a linear least-squares
problem. We can write the residual vector as r (x) = J x ´ y for
some matrix J and vector y, both independent of x, so that the
objective is

f (x) = 1

2
}J x ´ y}2 , (13)

where y = ´r (0). We also have
∇f (x) = J T(J x ´ y) , (∇2f )(x) = J TJ .

Note that the second term in

∇2f (x) = J (x)TJ (x) +
m
ÿ

j=1

rj (x)(∇2rj)(x) . (5)

disappears, because ∇2rj = 0 for all j = 1, 2, ¨ ¨ ¨ , m.
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§10.2 Linear Least-Squares Problems
It is easy to see that the f in (13) is convex – a property that
does not necessarily hold for the nonlinear problem (1). When f is
convex, any point x˚ for which ∇f (x˚) = 0 is the global minimizer
of f . Therefore, a minimizer x˚ for problem

f (x) = 1

2
}J x ´ y}2 , (13)

must satisfy the following linear system of equations:

J TJ x˚ = J Ty . (14)

These are known as the normal equations for (13).

In the following, we outline briefly three major algorithms for the
unconstrained linear least-squares problem. We assume in most of
our discussion that m ě n and that J has full column rank.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems
The first and most obvious algorithm is simply to form and solve
the normal equation (14) by the following three-step procedure:

1 compute the coefficient matrix J TJ and the right-hand side J Ty ;
2 compute the Cholesky factorization of the matrix J TJ ;
3 perform two triangular substitutions with the Cholesky factors

to recover the solution x˚.
The Cholesky factorization

J TJ = sRT
sR , (15)

where sR is an nˆn upper triangular with positive diagonal elements,
is guaranteed to exist when m ě n and J has rank n.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems
This method is frequently used in practice and is often effective,
but it has one significant disadvantage, namely, that the condition
number of J TJ is the square of the condition number of J. Since
the relative error in the computed solution of a problem is usually
proportional to the condition number, the Cholesky-based method
may result in less accurate solutions than those obtained from meth-
ods that avoid this squaring of the condition number. When J is
ill conditioned, the Cholesky factorization process may even break
down, since roundoff errors may cause small negative elements to
appear on the diagonal during the factorization process.
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§10.2 Linear Least-Squares Problems
A second approach is based on a QR factorization of the matrix J.
Since the Euclidean norm of any vector is not affected by orthogonal
transformations, we have

}J x ´ y} = }QT(J x ´ y)} (16)
for any m ˆ m orthogonal matrix Q. Suppose we perform a QR
factorization with column pivoting on the matrix J to obtain

JΠ = Q
[

R
0

]
=

[
Q1 Q2

] [ R
0

]
= Q1R , (17)

where
1 Π is an n ˆ n permutation matrix (hence, orthogonal);
2 Q is m ˆ m orthogonal;
3 Q1 is the first n columns of Q, while Q2 contains the last m´n

columns;
4 R is n ˆ n upper triangular with positive diagonal elements.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems
By combining (16) and (17), we obtain

}J x ´ y}2 =

›

›

›

›

›

[
QT

1

QT
2

]
(JΠΠTx ´ y)

›

›

›

›

›

2

=

›

›

›

›

›

[
R
0

]
ΠTx ´

[
QT

1 y
QT

2 y

]›
›

›

›

›

2

= }R(ΠTx) ´ QT
1 y}2 + }QT

2 y}2 . (18)
We can minimize }J x ´ y} by driving the first term to zero; that is,
by setting

x˚ = ΠR ´1QT
1 y .

This QR-based approach does not degrade the conditioning of the
problem unnecessarily. The relative error in the final computed so-
lution x˚ is usually proportional to the condition number of J, not
its square, and this method is usually reliable. Some situations,
however, call for greater robustness or more information about the
sensitivity of the solution to perturbations in the data (J or y).
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=

›
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A third approach, based on the singular-value decomposition (SVD)
of J, can be used in these circumstances. Recall that the SVD of J
is given by

J = U
[

S
0

]
V T =

[
U1 U2

] [ S
0

]
V T = U1SV T , (19)

where
1 U is m ˆ m orthogonal;
2 U1 contains the first n columns of U, U2 the last m´n columns;
3 V is n ˆ n orthogonal;
4 S is n ˆ n diagonal, with diagonal elements σ1 ě σ2 ě ··· ě

σn ą 0.
Note that J TJ = V S2V T, so that the columns of V are eigenvectors
of J TJ with eigenvalues σ2

j , j = 1, 2, ¨ ¨ ¨ , n.
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By following the same logic that led to (18), we obtain

}J x ´ y}2 =

›

›

›

›

›

[
S
0

]
(V Tx) ´

[
U T
1 y

U T
2 y

]›
›

›

›

›

2

= }S(V Tx) ´ U T
1 y}2 + }U T

2 y}2 . (20)

Again, the optimum is found by choosing x to make the first term
equal to zero; that is,

x˚ = VS´1U T
1 y .

Denoting the i-th columns of U and V by ui P Rm and vi P Rn,
respectively, we have

x˚ =
n
ÿ

i=1

u T
i y
σi

vi . (21)
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(21) 式

x˚ =
n
ÿ

i=1

u T
i y
σi

vi (21)

提供了有關 x˚ 敏感性的有用信息。當 σi 較小時，x˚ 對於影響

u T
i y 值的 y 的擾動以及 J 的擾動特別敏感。這樣的信息在 J 幾
乎是 rank-deficient 時（亦即 σn/σ1 ! 1 時）尤其有用，因此有時

使用需付出更多計算量的 SVD 演算法來獲取這種敏感性信息是
相當值得的。
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上述的三種方法都有其適用的情境。基於 Cholesky 的演算法在
m " n 且存儲 J TJ 而非 J 本身實際可行時特別有用。當 m " n
且 J 為稀疏矩陣時，這種方法可能也比替代方案更經濟。然而，
當 J 為 rank-deficient 或 ill-conditioned 時，必須修改此方法，以
允許對 J TJ 的對角元素進行 pivoting 操作。QR 方法避免了對條
件數進行平方運算，因此在數值上可能更為穩健 (robust)。
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§10.2 Linear Least-Squares Problems
演算法的穩健性 (robustness) 通常是指演算法對輸入的變化或擾
動有良好的適應能力，且在面對不確定性或異常情況時能維持良

好的性能。具體來說，演算法的穩健性表現在以下幾個方面：

1 對 noise 的容忍度：一個穩健的演算法應該能夠處理輸入中
的 noise 或隨機變動，而不至於產生過度的影響或錯誤。

2 對參數變化的穩定性：如果演算法的性能不會過度受到輸入

參數的小幅度變化的影響，則它被視為是穩健的。

3 處理異常情況的能力：穩健的演算法應該能夠處理輸入中的

異常情況或極端值，而不至於崩潰或產生不合理的輸出。

4 數值穩定性：對於數值計算而言，演算法應該在面對浮點數

誤差、數值不穩定性或數值爆炸的情況下保持穩定。

總的來說，演算法的穩健性是指它在各種不同條件下都能夠保持

良好性能的特性，而不容易因為輸入的變化或不確定性而失效。
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儘管可能是最花計算量的方法，奇異值分解 (SVD) 方法是所有
方法中最穩健 (robust) 且可靠的。當矩陣 J 真正是 rank-deficient
時，一些奇異值 σi 恰好為零，而對於任意係數 τi，形如

x˚ =
ÿ

σi‰0

u T
i y
σi

vi +
ÿ

σi=0

τivi (22)

的任意向量 x˚ 都是 (20) 的 minimizer。通常，具有最小範數的
解是最理想的 – 我們可以通過在 (22) 中將每個 τi 設為零來取得

最小範數的解。當 J 具有 full rank 但是是 ill-conditioned 時，最
後幾個奇異值 σn, σn´1, ¨ ¨ ¨ 相對於 σ1 特別小。在 (22) 中的係
數 u T

i y/σi 在 σi 較小時對 u T
i y 的擾動特別敏感，因此，通過從

(22) 式等號右邊的第一個和中省略這些項目，可以獲得對擾動
不太敏感、比真實解更為穩健的近似解。
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當問題的規模很大 (n " 1) 時，使用如共軛梯度法的迭代方法來
解決 normal equation (14) 可能是有效的。直接實施共軛梯度法
(Algorithm 5.2) 需要在每次迭代中執行一次矩陣 J TJ 與向量的乘
法。這個操作可以通過連續使用 J 和 J T 進行乘法來完成；我們

只需要能夠對這兩個矩陣執行矩陣–向量乘法來實現此算法。共
軛梯度法的一些修改方案已經被提出，這些方案涉及每次迭代

執行相似工作量的情況（分別與 J 和 J T 進行一次矩陣–向量乘
法），但具有更優越的數值特性。Paige 和 Saunders 在 [234] 中
提出了一些替代方案，他們尤其提出了一種名為 LSQR 的算法，
已成為非常成功的方法的基礎。
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§10.3 Algorithms for Nonlinear Least-Squares Problems
‚ The Gauss-Newton method
We now describe methods for minimizing the nonlinear objective
function (1) that exploit the structure of the gradient ∇f and Hes-
sian ∇2f in

∇f (x) = J (x)Tr (x) , (4)

∇2f (x) = J (x)TJ (x) +
m
ÿ

j=1

rj (x)(∇2rj)(x) . (5)

The simplest of these methods – the Gauss-Newton method – can
be viewed as a modified Newton’s method with line search. Instead
of solving the standard Newton equations (∇2f )(xk)p = ´(∇f )(xk),
we solve instead the following system to obtain the search direction
pGN

k :
J T

k Jk pGN
k = ´J T

k rk . (23)
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This simple modification gives a number of advantages over the
plain Newton’s method. First, the use of the approximation

∇2fk « J T
k Jk (24)

saves us the trouble of computing the individual residual Hessians
∇2rj, j = 1, 2, ¨ ¨ ¨ , m, which are needed in the second term in (5). In
fact, if we calculated the Jacobian Jk in the course of evaluating the
gradient ∇fk = J T

k rk, the approximation (24) does not require any
additional derivative evaluations, and the savings in computational
time can be quite significant in some applications. Second, there
are many interesting situations in which the first term J TJ in (5)
dominates the second term (at least close to the solution x˚), so
that J T

k Jk is a close approximation to ∇2fk and the convergence
rate of Gauss-Newton is similar to that of Newton’s method.
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The first term J TJ in (5) will be dominant when the norm of each
second-order term (that is, |rj (x)|}∇2rj (x)}) is significantly smaller
than the eigenvalues of J TJ. As mentioned in the introduction,
we tend to see this behavior when either the residuals rj are small
or when they are nearly affine (so that the }∇2rj} are small). In
practice, many least-squares problems have small residuals at the
solution, leading to rapid local convergence of Gauss-Newton.
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A third advantage of Gauss-Newton is that whenever Jk has full
rank and the gradient ∇fk is nonzero, the direction pGN

k is a descent
direction for f , and therefore a suitable direction for a line search.
From (4) and the definition of pGN

k

J T
k Jk pGN

k = ´J T
k rk (23)

we have
(pGN

k )T∇fk = (pGN
k )TJ T

k rk = ´(pGN
k )TJ T

k Jk pGN
k

= ´}Jk pGN
k }2 ď 0 . (25)

The final inequality is strict unless Jk pGN
k = 0, in which case we have

by (23) and full rank of Jk that ∇fk = J T
k rk = 0; that is, xk is a

stationary point.
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Finally, the fourth advantage of Gauss-Newton arises from the simi-
larity between the equations (23) and the normal equations (14) for
the linear least-squares problem. This connection tells us that pGN

k
is in fact the solution of the linear least-squares problem

min
p

1

2
}Jk p + rk}2 . (26)

Hence, we can find the search direction by applying linear least-
squares algorithms to the sub-problem (26). In fact, if the QR or
SVD-based algorithms are used, there is no need to calculate the
Hessian approximation J T

k Jk in (23) explicitly; we can work directly
with the Jacobian Jk. The same is true if we use a conjugate-
gradient technique to solve (26). For this method we need to per-
form matrix-vector multiplications with J T

k Jk, which can be done by
first multiplying by Jk and then by J T

k .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 10. Least-Squares Problems

§10.3 Algorithms for Nonlinear Least-Squares Problems
If the number of residuals m is large while the number of variables n is
relatively small, it may be unwise to store the Jacobian J explicitly. A
preferable strategy may be to calculate the matrix J TJ and gradient
vector J Tr by evaluating rj and ∇rj successively for j = 1, 2, ¨ ¨ ¨ , m
and performing the accumulations

J TJ =
m
ÿ

i=1

(∇rj)(∇rj)
T , J Tr =

m
ÿ

i=1

rj (∇rj) . (27)

The Gauss-Newton steps can then be computed by solving the sys-
tem (23) of normal equations directly.
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The sub-problem (26) suggests another motivation for the Gauss-
Newton search direction. We can view this equation as being ob-
tained from a linear model for the vector function r (xk + p) «

rk + Jkp, substituted into the function 1

2
} ¨ }2. In other words, we

use the approximation

f (xk + p) = 1

2
}r (xk + p)}2 «

1

2
}Jkp + rk}2 ,

and choose pGN
k to be the minimizer of this approximation.

Implementations of the Gauss-Newton method usually perform a line
search in the direction pGN

k , requiring the step length αk to satisfy
conditions like those discussed in Chapter 3, such as the Armijo and
Wolfe condition.
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‚ Convergence of the Gauss-Newton method
The theory of Chapter 3 can applied to study the convergence prop-
erties of the Gauss-Newton method. We prove a global convergence
result under the assumption that the Jacobian matrix J has its sin-
gular values uniformly bounded away from zero in the region of
interest; that is, there is a constant γ ą 0 such that

}J (x)z} ě γ}z} (28)

for all x in a neighborhood N of the level set

S =
␣

x
ˇ

ˇ f (x) ď f (x0)
(

, (29)

where x0 is the starting point for the algorithm. We assume here
and in the rest of the chapter that S is bounded. Our result is a
consequence of Zoutendijk’s Theorem.
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Theorem
Suppose each residual function rj is Lipschitz continuously differ-
entiable in a neighborhood N of the bounded level set S given by
(29), and that the Jacobian matrix J satisfies the uniform full-rank
condition (28) on N . If the iterates xk are generated by the Gauss-
Newton method with step lengths αk satisfying the Wolfe conditions

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk ,

∇f (xk + αkpk)
Tpk ě c2∇f T

k pk ,

we have
lim

kÑ8
∇fk = lim

kÑ8
J T

k rk = 0 .

Proof.
We first check the validity of the sufficient conditions for applying
Zoutendijk’s Theorem. ˝
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Newton method with step lengths αk satisfying the Wolfe conditions

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk ,

∇f (xk + αkpk)
Tpk ě c2∇f T

k pk ,

we have
lim

kÑ8
∇fk = lim

kÑ8
J T

k rk = 0 .

Proof.
We first check the validity of the sufficient conditions for applying
Zoutendijk’s Theorem. ˝
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Proof (cont’d).
By the fact that each rj is Lipschitz continuously differentiable in
N , there exists L1 ą 0 such that

}∇rj (x) ´ ∇rj (rx)} ď L1 }x ´ rx } @ x, rx P N , 1 ď j ď m .

Since N is an open set containing the compact set S, there exist
r ą 0 and y1 , y2 , ¨ ¨ ¨ , yK such that

1. B(x, r) Ď N for all x P S. 2. S Ď
K
ď

k=1

B(yk, r) ” rN Ď N .

Note that rN is bounded; thus there exists β1 ą 0 such that

}∇rj (x)} ď β1 @ x P rN , 1 ď j ď m .

Therefore, Taylor’s Theorem implies that

}rj (x) ´ rj (rx)} ď Kβ1}x ´ rx } @ x, rx P rN , 1 ď j ď m . ˝
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Proof (cont’d).
In other words, rj is Lipschitz continuous in rN for 1 ď j ď m, and
the boundedness of N again provides β2 ą 0 such that

}rj (x)} ď β2 @ x P rN , 1 ď j ď m .

From these upper bounds on rj and ∇rj and the fact that rj and ∇rj

are Lipschitz continuous on rN , we find that ∇f is Lipschitz contin-
uous in rN . Since f is bounded from below by zero, the assumptions
of Zoutendijk’s Theorem are satisfied; thus

8
ÿ

k=1

cos2θk}∇fk}2 ă 8 ,

where θk is the angle between the search direction pGN
k and the

negative gradient ´∇fk. ˝
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Proof (cont’d).
We now check that the angle θk between the search direction pGN

k
and the negative gradient ´∇fk is uniformly bounded away from
π/2. Before proceeding, note that the smoothness of rj and the
compactness of S shows that

}J (x)T} = }J (x)} ď β @ x P S
for some β ą 0. Since

(pGN
k )T∇fk = ´}Jk pGN

k }2 and }J (x)z} ě γ}z} @ x P rN ,

we have for xk P S that

cos θk = ´
(∇fk)TpGN

k
}pGN

k }}∇fk}
=

}Jk pGN
k }2

}pGN
k }}J T

k Jk pGN
k }

ě
γ2}pGN

k }2

β2}pGN
k }2

=
γ2

β2
ą 0.

It then follows from Zoutendijk’s condition that ∇fk Ñ 0. ˝
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If Jk is rank-deficient for some k (so that a condition like (28) is not
satisfied), the coefficient matrix in

J T
k Jk pGN

k = ´J T
k rk . (23)

is singular. Nevertheless, the system (23) still has a solution because
of the equivalence between this linear system and the minimization
problem

min
p

1

2
}Jk p + rk}2 . (26)

In fact, there are infinitely many solutions for pGN
k in this case; each

of them has the form of
x˚ =

ÿ

σi‰0

u T
i y
σi

vi +
ÿ

σi=0

τivi . (22)

However, there is no longer an assurance that cos θk is uniformly
bounded away from zero, so we cannot prove a result like the theo-
rem above.
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The convergence of Gauss-Newton to a solution x˚ can be rapid
if the leading term J T

k Jk dominates the second-order term in the
Hessian (5). Suppose that xk is close to x˚ and that assumption

D γ ą 0 Q }J (x)z} ě γ}z} for all z P Rn (28)

is satisfied. Then, applying an argument like the Newton’s method
analysis in Chapter 3, we have for a unit step in the Gauss-Newton
direction that

xk + pGN
k ´ x˚ = xk ´ x˚ ´

(
J T

k Jk
)́ 1∇fk

=
(
J T

k Jk
)́ 1

[(
J T

k Jk
)
(xk ´ x˚) +∇f˚ ´ ∇fk

]
.
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Let H to denote the second-order term in

∇2f (x) = J (x)TJ (x) +
m
ÿ

j=1

rj (x)(∇2rj)(x) . (5)

By the Fundamental Theorem of Calculus we have

∇fk ´ ∇f˚ =
ż 1

0

(
J TJ

)(
x˚ + t(xk ´ x˚)

)
(xk ´ x˚) dt

+
ż 1

0

H(x˚ + t
(
xk ´ x˚)

)
(xk ´ x˚) dt .

Assuming Lipschitz continuity of H near x˚, we have

}xk + pGN
k ´ x˚}

ď

ż 1

0

›

›

(
J T

k Jk
)´1H

(
x˚ + t(xk ´ x˚)

)›
›}xk ´ x˚}dt +O(}xk ´ x˚}2)

«
›

›

[
J TJ (x˚)

]´1H(x˚)
›

›}xk ´ x˚} +O(}xk ´ x˚}2) . (30)
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Hence, if

›

›[J TJ (x˚)]
´1H(x˚)

›

› ! 1, we can expect a unit step of
Gauss-Newton to move us much closer to the solution x˚, giving
rapid local convergence. When H(x˚) = 0, the convergence is actu-
ally quadratic.

When n and m are both large and the Jacobian matrix J is sparse,
the cost of computing steps exactly by factoring either Jk or J T

k Jk

at each iteration may become quite expensive relative to the cost
of function and gradient evaluations. In this case, we can design
inexact variants of the Gauss-Newton algorithm that are analogous
to the inexact Newton algorithms discussed in Chapter 7. We simply
replace the Hessian ∇2fk in these methods by its approximation
J T

k Jk. The positive semi-definiteness of this approximation simplifies
the resulting algorithms in several places.
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‚ The Levenberg-Marquardt method
Recall that the Gauss-Newton method is like Newton’s method with
line search, except that we use the convenient and often effective
approximation

∇2fk « J T
k Jk (24)

for the Hessian. The Levenberg-Marquardt method can be obtained
by using the same Hessian approximation, but replacing the line
search with a trust-region strategy. The use of a trust region avoids
one of the weaknesses of Gauss-Newton, namely, its behavior when
the Jacobian matrix J is rank-deficient, or nearly so. Since the same
Hessian approximations are used in each case, the local convergence
properties of the two methods are similar.
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The Levenberg-Marquardt method can be described and analyzed
using the trust region framework of Chapter 4. In fact, the Levenberg-
Marquardt method is sometimes considered to be the progenitor (前
身) of the trust-region approach for general unconstrained optimiza-
tion discussed in Chapter 4. For a spherical trust region, the sub-
problem to be solved at each iteration is

min
p

1

2
}Jkp + rk}2 subject to }p} ď ∆k , (31)

where ∆k ą 0 is the trust-region radius. In effect, we are choosing
the model function mk(¨) to be

mk(p) =
1

2
}rk}2 + (J T

k rk)
Tp +

1

2
pTJ T

k Jk p . (32)
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We drop the iteration counter k during the rest of this section and
concern ourselves with the sub-problem (31). The results of Chap-
ter 4 allow us to characterize the solution of (31) in the following
way: When the solution pGN of the Gauss-Newton equations (23)
lies strictly inside the trust region (that is, }pGN} ă ∆), then this
step pGN also solves the sub-problem (31). Otherwise, there is a
λ ą 0 such that the solution p = pLM of (31) satisfies }p} = ∆ and

(J TJ + λI)p = ´J Tr . (33)

This claim is verified in the following lemma, which is a straightfor-
ward consequence of the key theorem in Section 4.3 that we recall/
state in the next slide.
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Theorem (Key theorem in Section 4.3)
The vector p˚ is a global solution of the trust-region problem

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)4

if and only if p˚ is feasible and there is a scalar λ ě 0 such that the
following conditions are satisfied:

(B + λI)p˚ = ´g , (6a)4
λ(∆ ´ }p˚}) = 0 , (6b)4

(B + λI) is positive semi-definite. (6c)4

Recall that the model function m under disccusion now is

m(p) = 1

2
}r}2 + (J Tr )Tp +

1

2
pTJ TJ p . (32)
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Lemma
The vector pLM is a solution of the trust-region sub-problem

min
p

}Jp + r}2 subject to }p} ď ∆,

if and only if pLM is feasible and there is a scalar λ ě 0 such that

(J TJ + λI)pLM = ´J Tr , (34a)
λ(∆ ´ }pLM}) = 0 . (34b)

Proof.
Since J TJ is positive semi-definite, it suffices to establish

pLM is a feasible solution ô (Dλ ě 0)
(
(34a) ^ (34b)

)
.

Nevertheless, (34a) and (34b) are simply (6a)4 and (6b)4 in the
key theorem in Section 4.3, respectively, for the case B = J TJ and
g = pLM. ˝

(J TJ + λI)pLM = ´J Tr , (34a)

λ(∆ ´ }pLM}) = 0 . (34b)
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Note that the equations

(J TJ + λI)p = ´J Tr (33)
are just the normal equations for the following linear least-squares
problem:

min
p

1

2

›

›

›

›

[
J?
λI

]
p +

[
r
0

]›
›

›

›

2

. (35)

Just as in the Gauss-Newton case, the equivalence between (33) and
(35) gives us a way of solving the sub-problem without computing
the matrix-matrix product J TJ and its Cholesky factorization.
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‚ Implementation of the Levenberg-Marquardt method
To find a λ that approximately matches the given ∆ in the lemma,
we can use the root-finding algorithm described in Chapter 4. It is
easy to safeguard this procedure: The Cholesky factor R is guaran-
teed to exist whenever the current estimate λ(ℓ) is positive, since
the approximate Hessian B = J TJ is already positive semi-definite.
Because of the special structure of B, we do not need to compute
the Cholesky factorization of B+λI from scratch in each iteration of
Algorithm 4.1. Rather, we present an efficient technique for finding
the following QR factorization of the coefficient matrix in (35):[

Rλ

0

]
= QT

λ

[
J?
λI

]
, (36)

where Qλ is orthogonal, Rλ is upper triangular. The upper triangular
factor Rλ satisfies RT

λRλ = J TJ + λI.
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We can save computer time in the calculation of the factorization
(36) by using a combination of Householder and Givens transforma-
tions. Suppose we use Householder transformations to calculate the
QR factorization of J alone as

J = Q
[

R
0

]
. (37)

We then have  R
0?
λI

 =

[
QT

I

] [
J?
λI

]
. (38)

The leftmost matrix in this formula is upper triangular except for
the n nonzero terms of the matrix λI. These can be eliminated
by a sequence of n(n + 1)/2 Givens rotations, in which the diago-
nal elements of the upper triangular part are used to eliminate the
nonzeros of λI and the fill-in terms that arise in the process.
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The first few steps of this process are as follows:

1 rotate row n of R with row n of
?
λI, to eliminate the (n, n)

element of
?
λI;

2 rotate row (n´1) of R with row (n´1) of
?
λI to eliminate the

(n´1, n´1) element of the latter matrix. This step introduces
fill-in in position (n ´ 1, n) of

?
λI, which is eliminated by

rotating row n of R with row (n ´ 1) of
?
λI, to eliminate the

fill-in element at position (n ´ 1, n);
3 rotate row (n ´ 2) of R with row (n ´ 2) of

?
λI, to eliminate

the (n ´ 2) diagonal in the latter matrix. This step introduces
fill-in in the (n ´ 2, n ´ 1) and (n ´ 2, n) positions, which we
eliminate by ¨ ¨ ¨

and so on.
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If we gather all the Givens rotations into a matrix sQλ, we obtain
from (38) that

sQT
λ

 R
0?
λI

 =

 Rλ

0
0

 ,

and hence (36) holds with
Qλ =

[
Q

I

]
sQλ .

The advantage of this combined approach is that when the value of
λ is changed in the root-finding algorithm, we need only recalculate
sQλ and not the Householder part of the factorization (38). This
feature can save a lot of computation in the case of m " n, since
just O(n3) operations are required to recalculate sQλ and Rλ for
each value of λ, after the initial cost of O(mn2) operations needed
to calculate Q in (37).
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Least-squares problems are often poorly scaled. Some of the vari-
ables could have values of about 104, while other variables could be
of order 10´6. If such wide variations are ignored, the algorithms
above may encounter numerical difficulties or produce solutions of
poor quality. One way to reduce the effects of poor scaling is to use
an ellipsoidal trust region in place of the spherical trust region de-
fined above. The step is confined to an ellipse in which the lengths of
the principal axes are related to the typical values of the correspond-
ing variables. Analytically, the trust-region sub-problem becomes

min
p

1

2
}Jkp + rk}2 subject to }Dkp} ď ∆k , (39)

where Dk is a diagonal matrix with positive diagonal entries.
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The solution of (39) satisfies an equation of the form

(J T
k Jk + λD2

k )pLM
k = ´J T

k rk , (40)

and, equivalently, solves the linear least-squares problem

min
p

›

›

›

›

[
Jk?
λDk

]
p +

[
rk
0

]›
›

›

›

2

. (41)

The diagonals of the scaling matrix Dk can change from iteration to
iteration, as we gather information about the typical range of values
for each component of x. If the variation in these elements is kept
within certain bounds, then the convergence theory for the spherical
case continues to hold, with minor modifications. Moreover, the
technique described above for calculating Rλ needs no modification.
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For problems in which m and n are large and J is sparse, we may
prefer to solve (31) or (39) approximately using the CG-Steihaug
algorithm, Algorithm 7.2 from Chapter 7, with J T

k Jk replacing the
exact Hessian ∇2fk. Positive semi-definiteness of the matrix J T

k Jk

makes for some simplification of this algorithm, because negative
curvature cannot arise. It is not necessary to calculate J T

k Jk explicitly
to implement Algorithm 7.2; the matrix-vector products required by
the algorithm can be found by forming matrix-vector products with
Jk and J T

k separately.
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‚ Convergence of the Levenberg-Marquardt method
It is not necessary to solve the trust-region problem

min
p

1

2
}Jkp + rk}2 subject to }p} ď ∆k (31)

exactly in order for the Levenberg-Marquardt method to enjoy global
convergence properties. The following convergence result can be ob-
tained as a direct consequence of a theorem concerning the global
convergence of trust-region method with trust-region radius modifi-
cation given by Algorithm 4.1 in Chapter 4.
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Theorem
Consider solving the minimization problem

min
pPRn

mk(p) = fk + gT
k p +

1

2
pTBk p s.t. }p} ď γ∆k , (3’)4

using Algorithm 4.1, where γ ě 1 is a fixed constant in (3’)4. Sup-
pose that }Bk} ď β for some constant β, that f is bounded from
below on the level set S =

␣

x
ˇ

ˇ f (x) ď f (x0)
(

and Lipschitz contin-
uously differentiable in the neighborhood S(R0) for some R0 ą 0,
and that all approximate solutions of (3’)4 satisfy the inequalities

mk(0) ´ mk(pk) ě c1}gk} min
(
∆k,

}gk}

}Bk}

)
for some constant c1 P (0, 1]. We then have lim inf

kÑ8
}gk} = 0. More-

over, if η ą 0, then lim
kÑ8

}gk} = 0.
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Theorem
Let η P (0, 1/4) in Algorithm 4.1 of Chapter 4, and suppose that the
level set S defined by S =

␣

x
ˇ

ˇ f (x) ď f (x0)
(

is bounded and that
the residual functions rj, j = 1, 2, ¨ ¨ ¨ , m are Lipschitz continuously
differentiable in a neighborhood N of S. Assume that for each k,
the approximate solution pk of

min
p

1

2
}Jkp + rk}2 subject to }p} ď γ∆k ,

where γ ě 1, satisfies the inequality

mk(0) ´ mk(pk) ě c1}J T
k rk} min

(
∆k,

}J T
k rk}

}J T
k Jk}

)
(42)

for some constant c1 P (0, 1]. We then have that

lim
kÑ8

∇fk = lim
kÑ8

J T
k rk = 0 .
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Proof.
The smoothness assumption on rj and the compactness of S imply
that we can choose a constant β ą 0 such that }J T

k Jk} ď β for
all iterates k. Also note that the objective f is bounded below
(by zero). Hence, the assumptions of the theorem concerning the
global convergence of trust-region method with trust-region radius
modification given by Algorithm 4.1 in Chapter 4 are satisfied, and
the result follows immediately. ˝
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As in Chapter 4, there is no need to calculate the right-hand side in
the inequality

mk(0) ´ mk(pk) ě c1}J T
k rk} min

(
∆k,

}J T
k rk}

}J T
k Jk}

)
(42)

or to check it explicitly. Instead, we can simply require the decrease
given by our approximate solution pk of

min
p

1

2
}Jkp + rk}2 subject to }p} ď ∆k (31)

to at least match the decrease given by the Cauchy point, which can
be calculated inexpensively in the same way as in Chapter 4. If we
use the iterative CG-Steihaug approach, Algorithm 7.2, the condition
(42) is satisfied automatically for c1 = 1/2, since the Cauchy point is
the first estimate of pk computed by this approach, while subsequent
estimates give smaller values for the model function.
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The local convergence behavior of Levenberg-Marquardt is similar
to the Gauss-Newton method. Near a solution x˚ at which the first
term of the Hessian (∇2f )(x˚) in

∇2f (x) = J (x)TJ (x) +
m
ÿ

j=1

rj (x)(∇2rj)(x) (5)

dominates the second term, the model function in (31), the trust re-
gion becomes inactive and the algorithm takes Gauss-Newton steps,
giving the rapid local convergence expression

}xk + pGN
k ´ x˚}

ď

ż 1

0

›

›

(
J T

k Jk
)´1H

(
x˚ + t(xk ´ x˚)

)›
›}xk ´ x˚}dt +O(}xk ´ x˚}2)

«
›

›

[
J TJ (x˚)

]´1H(x˚)
›

›}xk ´ x˚} +O(}xk ´ x˚}2) . (30)
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‚ Method for large-residual problems
In large-residual problems, the quadratic model in (31) is an inad-
equate representation of the function f because the second-order
part of the Hessian ∇2f (x) is too significant to be ignored. In data-
fitting problems, the presence of large residuals may indicate that
the model is inadequate or that errors have been made in monitor-
ing the observations. Still, the practitioner may need to solve the
least-squares problem with the current model and data, to indicate
where improvements are needed in the weighting of observations,
modeling, or data collection.
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§10.3 Algorithms for Nonlinear Least-Squares Problems
On large-residual problems, the asymptotic convergence rate of Gauss-
Newton and Levenberg-Marquardt algorithms is only linear – slower
than the superlinear convergence rate attained by algorithms for
general unconstrained problems, such as Newton or quasi-Newton.
If the individual Hessians ∇2rj are easy to calculate, it may be bet-
ter to ignore the structure of the least-squares objective and apply
Newton’s method with trust region or line search to the problem of
minimizing f . Quasi-Newton methods, which attain a superlinear
convergence rate without requiring calculation of ∇2rj, are another
option. However, the behavior of both Newton and quasi-Newton
on early iterations (before reaching a neighborhood of the solution)
may be inferior to Gauss-Newton and Levenberg-Marquardt.
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Of course, we often do not know beforehand whether a problem will
turn out to have small or large residuals at the solution. It seems
reasonable, therefore, to consider hybrid algorithms, which would
behave like Gauss-Newton or Levenberg-Marquardt if the residuals
turn out to be small (and hence take advantage of the cost sav-
ings associated with these methods) but switch to Newton or quasi-
Newton steps if the residuals at the solution appear to be large.
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There are a couple of ways to construct hybrid algorithms. One
approach, due to Fletcher and Xu (see Fletcher [101]), maintains
a sequence of positive definite Hessian approximations Bk. If the
Gauss-Newton step from xk reduces the function f by a certain
fixed amount, then this step is taken and Bk is overwritten by J T

k Jk.
Otherwise, a direction is computed using Bk, and the new point xk+1

is obtained by performing a line search. In either case, a BFGS-like
update is applied to Bk to obtain a new approximation Bk+1. In
the zero-residual case, the method eventually always takes Gauss-
Newton steps (giving quadratic convergence), while it eventually
reduces to BFGS in the nonzero-residual case (giving superlinear
convergence).
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A second way to combine Gauss-Newton and quasi-Newton ideas
is to maintain approximations to just the second-order part of the
Hessian. In other words, we design a sequence of matrices Sk that
approximate only the summation term

m
ř

j=1
rj(xk)∇2rj(xk) in (5), and

then use the overall Hessian approximation

Bk = J T
k Jk + Sk

in a trust-region or line search model for calculating the step pk. Up-
dates to Sk are devised so that the approximate Hessian Bk mimics
the behavior of the corresponding exact quantities over the step just
taken. The update formula is based on a secant equation, which
arises also in the context of unconstrained minimization in Chapter
6.
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In the present instance, there are a number of different ways to
define the secant equation and to specify the other conditions needed
for a complete update formula for Sk. In the probably best-known
algorithm due to Dennis, Gay and Welsch, the secant equation

Sk+1(xk+1 ´ xk) = the right-hand side

is motivated in the following way. Ideally, Sk+1 should be a close
approximation to the exact second-order term at x = xk+1; that is,

Sk+1 «
m
ÿ

j=1

rj(xk+1)∇2rj(xk+1) .

so the right-hand side of the secant equation should approximate
m
ÿ

j=1

rj(xk+1)∇2rj(xk+1)(xk+1 ´ xk) .
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To avoid the computation of ∇2rj, we replace each of them with an
approximation (Bj)k+1 and impose the condition that (Bj)k+1 should
mimic the behavior of its exact counterpart ∇2rj over the step just
taken:
(Bj)k+1(xk+1 ´ xk) = ∇rj(xk+1) ´ ∇rj(xk)

= (row j of (J (xk+1))
T ´ (row j of (J (xk))T.

This condition leads to a secant equation on Sk+1, namely,

Sk+1(xk+1 ´ xk) =
m
ÿ

j=1

rj(xk+1)(Bj)k+1(xk+1 ´ xk)

=
m
ÿ

j=1

rj(xk+1)
[
(row j of J (xk+1))

T ´ (row j of (J (xk))T
]

= J T
k+1rk+1 ´ J T

k rk+1 .
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As usual, this condition does not completely specify the new approx-
imation Sk+1. Dennis, Gay, and Welsch add requirements that Sk+1

be symmetric and that the difference Sk+1 ´ Sk from the previous
estimate Sk be minimized in a certain sense, and derive the following
update formula:

Sk+1 = Sk +
(y 7 ´ Sks)yT + y(y 7 ´ Sks)T

yTs ´
(y 7 ´ Sks)Ts

(yTs)2 yyT , (43)

where
s = xk+1 ´ xk , y = J T

k+1rk+1 ´ J T
k rk , y 7 = J T

k+1rk+1 ´ J T
k rk+1 .

Note that (43) would be identical to the DFP update for uncon-
strained minimization if y = y 7. Dennis, Gay, and Welsch use their
approximate Hessian J T

k Jk + Sk in conjunction with a trust-region
strategy, but a few more features are needed to enhance its perfor-
mance.
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One deficiency of its basic update strategy for Sk is that this matrix
is not guaranteed to vanish as the iterates approach a zero-residual
solution, so it can interfere with superlinear convergence. This prob-
lem is avoided by scaling Sk prior to its update; we replace Sk by
τkSk on the right-hand side of (43), where

τk = min
(
1,

|sTy 7|

|sTSk s|

)
.

A final modification in the overall algorithm is that the Sk term is
omitted from the Hessian approximation when the resulting Gauss-
Newton model produces a sufficiently good step.
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§10.4 Orthogonal Distance Regression
In the example in Section 10.1 we assumed that no errors were made
in noting the time at which the blood samples were drawn, so that
the differences between the model φ(x ; tj) and the observation yj

were due to inadequacy in the model or measurement errors in yj.
We assumed that any errors in the ordinates – the times tj – are tiny
by comparison with the errors in the observations. This assumption
often is reasonable, but there are cases where the answer can be
seriously distorted if we fail to take possible errors in the ordinates
into account. Models that take these errors into account are known
in the statistics literature as errors-in-variables models, and the re-
sulting optimization problems are referred to as total least squares
in the case of a linear model or as orthogonal distance regression in
the nonlinear case.
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Chapter 10. Least-Squares Problems

§10.4 Orthogonal Distance Regression
We formulate this problem mathematically by introducing perturba-
tions δj for the ordinates tj, as well as perturbations εj for yj, and
seeking the values of these 2m perturbations that minimize the dis-
crepancy between the model and the observations, as measured by
a weighted least-squares objective function. To be precise, we relate
the quantities tj, yj, δj, and εj by

yj = φ(x ; tj + δj) + εj , j = 1, 2, ¨ ¨ ¨ ,m, (44)
and define the minimization problem as

min
x,δj,εj

1

2

m
ÿ

j=1

w 2
j ε

2
j + d 2

j δ
2
j subject to (44). (45)

The quantities wj and dj are weights, selected either by the modeler
or by some automatic estimate of the relative significance of the
error terms.
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Chapter 10. Least-Squares Problems

§10.4 Orthogonal Distance Regression
It is easy to see how the term “orthogonal distance regression” orig-
inates when we graph this problem; see Figure 2 (in the next slide).
If all the weights wj and dj are equal, then each term in the summa-
tion (45) is simply the shortest distance between the point (tj, yj)

and the curve φ(x ; t) (plotted as a function of t). The shortest path
between each point and the curve is orthogonal to the curve at the
point of intersection.
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Chapter 10. Least-Squares Problems

§10.4 Orthogonal Distance Regression

Figure 2: Orthogonal distance regression minimizes the sum of squares of
the distance from each point to the curve.
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Chapter 10. Least-Squares Problems

§10.4 Orthogonal Distance Regression
Using the constraints (44) to eliminate the variables εj from (45),
we obtain the unconstrained least-squares problem

min
x,δ

F(x, δ) = 1

2

m
ÿ

j=1

w 2
j
[
yj ´ φ(x ; tj + δj)

]2
+ d 2

j δ
2
j

=
1

2

2m
ÿ

j=1

r 2j (x, δ)
(46)

where δ = (δ1, δ2, ¨ ¨ ¨ , δm)T and we have defined

rj(x, δ) =
#

wj
[
φ(x ; tj + δj) ´ yj

]
if j = 1, 2, ¨ ¨ ¨ ,m,

dj´mδj´m if j = m + 1, ¨ ¨ ¨ , 2m.
(47)

Note that (46) is now a standard least-squares problem with 2m
residuals and m + n unknowns, which we can solve by using the
techniques in this chapter.
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Chapter 10. Least-Squares Problems

§10.4 Orthogonal Distance Regression
A naive implementation of this strategy may, however, be quite ex-
pensive, since the number of parameters (m + n) and the number
of observations (2m) may both be much larger than for the original
problem. Fortunately, the Jacobian matrix for (46) has a special
structure that can be exploited in implementing the Gauss-Newton
or Levenberg-Marquardt methods. For instance, we have

Brj
Bδi

=
B[φ(tj + δj; x) ´ yj]

Bδi
= 0 for i, j = 1, 2, ¨ ¨ ¨ ,m, i ‰ j,

and
Brj
Bxi

= 0 for j = m + 1, ¨ ¨ ¨ , 2m, i = 1, 2, ¨ ¨ ¨ , n.

Additionally, we have for j = 1, 2, ¨ ¨ ¨ ,m and i = 1, 2, ¨ ¨ ¨ ,m that

Brm+j
Bδi

=

#

dj if i = j,
0 otherwise.
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Chapter 10. Least-Squares Problems

§10.4 Orthogonal Distance Regression
Hence, we can partition the Jacobian of the residual function r de-
fined by (47) into blocks and write

J (x, δ) =
[

pJ V
0 D

]
, (48)

where V and D are mˆm diagonal matrices and pJ is the mˆn matrix
of partial derivatives of the functions wjφ(tj + δj; x) with respect to
x. Boggs, Byrd, and Schnabel [30] apply the Levenberg-Marquardt
algorithm to (46) and note that block elimination can be used to
solve the sub-problems

(J TJ + λI)p = ´J Tr (33)
and

min
p

1

2

›

›

›

›

[
J?
λI

]
p +

[
r
0

]›
›

›

›

2

(35)

efficiently.
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Chapter 10. Least-Squares Problems

§10.4 Orthogonal Distance Regression
Given the partitioning (48), we can partition the step vector p and
the residual vector r accordingly as

p =

[
px
pδ

]
, r =

[
pr1
pr2

]
,

and write the normal equations (33) in the partitioned form[
pJ

T
pJ + λI pJ

T
V

V pJ V 2 + D2 + λI

] [
px
pδ

]
= ´

[
pJ

T
pr1

Vpr1 + Dpr2

]
.

Since the lower right sub-matrix V 2 + D2 + λI is diagonal, it is
easy to eliminate pδ from this system and obtain a smaller n ˆ n
system to be solved for px alone. The total cost of finding a step is
only marginally greater than for the m ˆ n problem arising from the
standard least-squares model.
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