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Chapter 10. Least-Squares Problems
Introduction

In least-squares problems, the objective function f takes the form
LR
F9 =5 D120, M)
j=1
where each r; is a smooth function from R"” to R. We refer to each

rj as a residual, and we assume throughout this chapter that m > n.

Ching-hsiao Arthur Cheng i g MAS037-*



Chapter 10. Least-Squares Problems
Introduction

In least-squares problems, the objective function f takes the form
LR
F9 =5 D120, M)
j=1
where each r; is a smooth function from R"” to R. We refer to each

rj as a residual, and we assume throughout this chapter that m > n.

Least-squares problems arise in many areas of applications. Many
who formulate a parametrized model for real-world applications use
a function of the form (1) to measure the discrepancy (£ £)
between the model and the observed behavior of the system.
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where each r; is a smooth function from R"” to R. We refer to each

rj as a residual, and we assume throughout this chapter that m > n.

Least-squares problems arise in many areas of applications. Many
who formulate a parametrized model for real-world applications use
a function of the form (1) to measure the discrepancy (£ £)
between the model and the observed behavior of the system.
By minimizing this function, they select values for the parameters
that best match the model to the data.
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Chapter 10. Least-Squares Problems
Introduction

In least-squares problems, the objective function f takes the form
LR
F9 =5 D120, M)
j=1
where each r; is a smooth function from R"” to R. We refer to each

rj as a residual, and we assume throughout this chapter that m > n.

Least-squares problems arise in many areas of applications. Many
who formulate a parametrized model for real-world applications use
a function of the form (1) to measure the discrepancy (£ £)
between the model and the observed behavior of the system.
By minimizing this function, they select values for the parameters
that best match the model to the data. In this chapter we show how
to devise efficient, robust minimization algorithms by exploiting the

special structure of the function f and its derivatives.
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Chapter 10. Least-Squares Problems

Introduction

By assembling the individual components r; from (1) into a residual

vector r: R” — R™, as follows
r(x) = [n(x), (), - m)]", (2)

we can rewrite f as f(x) = %Hr(x)“% The derivatives of f(x) can be
expressed in terms of the Jacobian matrix J(x), which is the m x n

matrix of first partial derivatives of the residuals, defined by

Vr(x)"
T
_ _ [ 95 | VrK)
J(X) = [Vr(X)] mxn |: aX, ] jizll’é:':,::,: - ) (3)
Vrm(x)F
where each Vrj(x), j=1,2,--- , mis the gradient of r; (represented

by a column vector).
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Chapter 10. Least-Squares Problems
Introduction

The gradient and Hessian of f can then be expressed as follows:

Z X)Vri(x) = J()'r (%), (4)

Z V() Vr(x i )(V2r)(x (5)

Jj=1
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Introduction

The gradient and Hessian of f can then be expressed as follows:
Z X)Vri(x) = J(x) r(x). (4)

V2f(x) = J(x i )(V2r)(x) . (5)

Jj=1
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Chapter 10. Least-Squares Problems
Introduction

The gradient and Hessian of f can then be expressed as follows:

Z X)Vri(x) = J()'r (%), (4)

Jj=1

V2f(x) = J(x i )(V2r)(x) . (5)

In many applications, the first partial derivatives of the residuals and
hence the Jacobian matrix J(x) are relatively easy or inexpensive to
calculate. We can thus obtain the gradient V£ (x) as written in for-

mula (4).
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Chapter 10. Least-Squares Problems
Introduction

The gradient and Hessian of f can then be expressed as follows:

Z X)Vri(x) = J()'r (%), (4)

Jj=1

V2f(x) = J(x i )(V2r)(x) . (5)

In many applications, the first partial derivatives of the residuals and
hence the Jacobian matrix J(x) are relatively easy or inexpensive to
calculate. We can thus obtain the gradient V£ (x) as written in for-
mula (4). Using J(x), we also can calculate the first term J (x)*J (x)
in the Hessian V2f(x) without evaluating any second derivatives of
the functions r;. This availability of part of V2f(x) “for free” is the

distinctive feature of least-squares problems.
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Chapter 10. Least-Squares Problems
Introduction

The gradient and Hessian of f can then be expressed as follows:

Z X)Vri(x) = J()'r (%), (4)

Jj=1

V2f(x) = J(x i )(V2r)(x) . (5)

Moreover, this term J(x)'J(x) is often more important than the
second summation term in (5), either because the residuals r; are
close to affine near the solution (that is, the V2r;(x) are relatively
small) or because of small residuals (that is, the rj(x) are relatively
small). Most algorithms for nonlinear least-squares exploit these

structural properties of the Hessian.
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Chapter 10. Least-Squares Problems

Introduction

The most popular algorithms for minimizing (1) fit into the line
search and trust-region frameworks described in earlier chapters.
They are based on the Newton and quasi-Newton approaches de-
scribed earlier, with modifications that exploit the particular struc-

ture of f.
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Chapter 10. Least-Squares Problems

Introduction

The most popular algorithms for minimizing (1) fit into the line
search and trust-region frameworks described in earlier chapters.
They are based on the Newton and quasi-Newton approaches de-
scribed earlier, with modifications that exploit the particular struc-
ture of f.

Section 10.1 contains some background on applications. Section
10.2 discusses linear least-squares problems, which provide important
motivation for algorithms for the nonlinear problem. Section 10.3
describes the major algorithms, while Section 10.4 briefly describes
a variant of least squares known as orthogonal distance regression.
Throughout this chapter, we use the notation || - | to denote the

Euclidean norm | - |

2, unless a subscript indicates that some other

norm is intended.
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Chapter 10. Least-Squares Problems

§10.1 Background

We discuss a simple parametrized model and show how least-squares

techniques can be used to choose the parameters that best fit the
model to the observed data.

We want to study the effect of a certain medication on a patient. We

draw blood samples at certain times after the patient takes a dose,
and measure the concentration of the medication in each sample,
tabulating the time t; and concentration y; for each sample.
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Chapter 10. Least-Squares Problems

§10.1 Background

We discuss a simple parametrized model and show how least-squares

techniques can be used to choose the parameters that best fit the

model to the observed data.

We want to study the effect of a certain medication on a patient. We
draw blood samples at certain times after the patient takes a dose,
and measure the concentration of the medication in each sample,
tabulating the time t; and concentration y; for each sample.

Based on our previous experience in such experiments, we find that
the following function ¢(x; t) provides a good prediction of the con-
centration at time t, for appropriate values of the five-dimensional
parameter vector x = (x1, X2, X3, X4, X5 )

o(x;t) = x1 + txo + t2x3 + xge 5L, (6)
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Chapter 10. Least-Squares Problems
§10.1 Background

Example (cont'd)

We choose the parameter vector x so that this model best agrees
with our observation, in some sense. A good way to measure the
difference between the predicted model values and the observations
is the following least-squares function:

,2 (x: 1) — yi]?, (7)

which sums the squares of the discrepancies between predictions and
observations at each t;. This function has precisely the form (1) if

we define
ri(x) = @(x; tj) — ;- (8)
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Chapter 10. Least-Squares Problems
§10.1 Background

Example (cont'd)

We choose the parameter vector x so that this model best agrees
with our observation, in some sense. A good way to measure the
difference between the predicted model values and the observations
is the following least-squares function:

,2 (x: 1) — yi]?, (7)

which sums the squares of the discrepancies between predictions and
observations at each t;. This function has precisely the form (1) if

ri(x) = e(x; tj) =y (8)
Graphically, each term in (7) represents the square of the vertical

distance between the curve (x; t) (plotted as a function of t) and
the point (tj, y;), for a fixed choice of parameter x; see Figure 1.

we define
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Chapter 10. Least-Squares Problems

§10.1 Background

Example (cont'd)

Figure 1: Model (7) (smooth curve) and the observed measurements, with

deviations indicated by vertical dotted lines.
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Chapter 10. Least-Squares Problems

§10.1 Background

Example (cont'd)

The minimizer x; of the least-squares problem is the parameter vec-
tor for which the sum of squares of the lengths of the dotted lines
in Figure 1 is minimized. Having obtained x,, we use ¢(x4;t) to
estimate the concentration of medication remaining in the patient’s

bloodstream at any time t.
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Chapter 10. Least-Squares Problems

§10.1 Background

Example (cont'd)

The minimizer x; of the least-squares problem is the parameter vec-
tor for which the sum of squares of the lengths of the dotted lines
in Figure 1 is minimized. Having obtained x,, we use ¢(x4;t) to
estimate the concentration of medication remaining in the patient’s

bloodstream at any time t.
v

This model is an example of what statisticians call a fixed-regressor
model. It assumes that the times t; at which the blood samples are
drawn are known to high accuracy, while the observations y; may
contain more or less random errors due to the limitations of the

equipment (or the lab technician!)
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Chapter 10. Least-Squares Problems

§10.1 Background

In general data-fitting problems of the type just described, the or-

dinate t in the model ¢(x;t) could be a vector instead of a scalar.
In the example above, for instance, t could have two dimensions,
with the first dimension representing the time since the drug was
admistered and the second dimension representing the weight of the
patient. We could then use observations for an entire population of
patients, not just a single patient, to obtain the “best” parameters

for this model.
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Chapter 10. Least-Squares Problems

§10.1 Background

The sum-of-squares function (7) is not the only way of measuring

the discrepancy between the model and the observations. Other
common measures include the maximum absolute value

max |06 1) — ] ©

1<j<m

and the sum of absolute values
el ) — v - (10)
j=1

By using the definitions of the ¢, and ¢; norms, we can rewrite

these two measures as

Fx) = lredlleo,  FO) = lr()], (11)
respectively. As we discuss in Chapter 17, the problem of minimiz-
ing the functions (11) can be reformulated a smooth constrained

optimization problem.
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Chapter 10. Least-Squares Problems

§10.1 Background

In this chapter we focus only on the ¢3-norm formulation (1). In

some situations, there are statistical motivations for choosing the

least-squares criterion. Changing the notation slightly, we let the

discrepancies between model and observation be denoted by ¢;:
gj=w(x;t) — ;.

It often is reasonable to assume that the ¢;'s are i.i.d. with a certain

variance o2 and probability density function g,(-). Under this as-

sumption, the likelihood of a particular set of observations y;, j =1,

2, -+, m, given that the actual parameter vector is x, is given by
p(y;x,o) Hgg £j) Hgg (x;t) —yj) - (12)
Given the observations y1, y2, -+, ¥m, the “most likely” value of x

is obtained by maximizing p(y; x, o) with respect to x. The resulting
value of x is called the maximum likelihood estimate.
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Chapter 10. Least-Squares Problems
§10.1 Background

Assume that the discrepancies follow a normal distribution. Then

( ) ’ 2 ( 27. )
gb— E) = (EXp p) .

plyixo) = (270%) ™ exp (- ;i CORNE

For any fixed value of the variance o2, it is obvious that p is max-
imized when the sum of squares (7) is minimized. To summarize:
When the discrepancies are assumed to be i.i.d. with a normal dis-
tribution function, the maximum likelihood estimate is obtained by

minimizing the sum of squares.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

Many models ¢(x; t) in data-fitting problems are linear functions of
x. In these cases, the residuals rj(x) defined by (8) also are linear,
and the problem of minimizing (7) is called a linear least-squares
problem. We can write the residual vector as r(x) = Jx — y for
some matrix J and vector y, both independent of x, so that the
objective is .
769 = g lJx—yIP, (13)
where y = —r(0). We also have
Vix)=JYUx—y), (V*)(x) =J1.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

Many models ¢(x; t) in data-fitting problems are linear functions of
x. In these cases, the residuals rj(x) defined by (8) also are linear,
and the problem of minimizing (7) is called a linear least-squares
problem. We can write the residual vector as r(x) = Jx — y for
some matrix J and vector y, both independent of x, so that the
objective is .
769 = g lJx—yIP, (13)
where y = —r(0). We also have
Vix)=JYUx—y), (V*)(x) =J1.

Note that the second term in

V2 (x) = J(x)'J(x) + > () (V?r)(x). (5)
j=1
disappears, because V2rj =0forallj=1,2,---, m.

Ching-hsiao Arthur Cheng it .5 % Bk it 222t MAS037-*



Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

It is easy to see that the f in (13) is convex — a property that
does not necessarily hold for the nonlinear problem (1). When f is
convex, any point x, for which Vf(x,) = 0 is the global minimizer

of . Therefore, a minimizer x, for problem
1
fx) = 5 x—ylI?, (13)
must satisfy the following linear system of equations:
Jxe = JTy. (14)

These are known as the normal equations for (13).
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

It is easy to see that the f in (13) is convex — a property that
does not necessarily hold for the nonlinear problem (1). When f is
convex, any point x, for which Vf(x,) = 0 is the global minimizer

of . Therefore, a minimizer x, for problem
F(3) = 5lx—yI?, (13)
must satisfy the following linear system of equations:
JTx, = JTy. (14)
These are known as the normal equations for (13).

In the following, we outline briefly three major algorithms for the
unconstrained linear least-squares problem. We assume in most of

our discussion that m > n and that J has full column rank.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

The first and most obvious algorithm is simply to form and solve
the normal equation (14) by the following three-step procedure:
@ compute the coefficient matrix JTJ and the right-hand side JTy;
@ compute the Cholesky factorization of the matrix JTJ;

© perform two triangular substitutions with the Cholesky factors

to recover the solution x.
The Cholesky factorization
JJ=R'R, (15)
where R is an nx n upper triangular with positive diagonal elements,

is guaranteed to exist when m > n and J has rank n.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

This method is frequently used in practice and is often effective,
but it has one significant disadvantage, namely, that the condition
number of JTJ is the square of the condition number of J. Since
the relative error in the computed solution of a problem is usually
proportional to the condition number, the Cholesky-based method
may result in less accurate solutions than those obtained from meth-
ods that avoid this squaring of the condition number. When J is
ill conditioned, the Cholesky factorization process may even break
down, since roundoff errors may cause small negative elements to

appear on the diagonal during the factorization process.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

A second approach is based on a QR factorization of the matrix J.
Since the Euclidean norm of any vector is not affected by orthogonal
transformations, we have

T
[Ix =yl =1Q (Jx=y)l (16)
for any m x m orthogonal matrix Q. Suppose we perform a QR
factorization with column pivoting on the matrix J to obtain

nea[{]-(o o[

0 ] = QR, (17)

where
@ Il is an n x n permutation matrix (hence, orthogonal);
@ Q@ is m x m orthogonal;

@ Q@ is the first n columns of @, while Q2 contains the last m—n
columns;

@ Ris n x n upper triangular with positive diagonal elements.
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

By combining (16) and (17), we obtain

Qr ? R Qly
2 _ i _ T, | ¥
o= - (8] | &

= [RITX) — Qi y|* + Q2 yI?. (18)

We can minimize |Jx — y|| by driving the first term to zero; that is,

2
(JI T x — y)

by setting
xs =IR1Qly.
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§10.2 Linear Least-Squares Problems

By combining (16) and (17), we obtain

Qr ? R Qly
2 _ i _ T, | ¥
o= - (8] | &

= [RITX) — Qi y|* + Q2 yI?. (18)

We can minimize |Jx — y|| by driving the first term to zero; that is,

2
(JI T x — y)

by setting
xs =IR1Qly.

This QR-based approach does not degrade the conditioning of the
problem unnecessarily. The relative error in the final computed so-
lution x, is usually proportional to the condition number of J, not
its square, and this method is usually reliable. Some situations,
however, call for greater robustness or more information about the

sensitivity of the solution to perturbations in the data (J or y).
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Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

A third approach, based on the singular-value decomposition (SVD)
of J, can be used in these circumstances. Recall that the SVD of J

is given by

J:U[S]VT:[Ul UQ}[OS}VTzulsvT, (19)
where
@ Uis m x m orthogonal,
@ U, contains the first n columns of U, Us the last m— n columns;
© Vs n x n orthogonal;
@ Sis nx ndiagonal, with diagonal elements oy > 09 > - - - >
o, > 0.
Note that JTJ = VS2VT, so that the columns of V are eigenvectors

of JTJ with eigenvalues O‘J-Q, j=12,---,n

Ching-hsiao Arthur Cheng it .5 % Bk it 222t MAS037-*



Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems

By following the same logic that led to (18), we obtain

S Uty
[SJomo- [ ]
2y
= |S(VTx) — Uly|* + |Us y|?. (20)

Again, the optimum is found by choosing x to make the first term
equal to zero; that is,

2
|Jx—y|? =

xe = VSTIULy.

Denoting the i-th columns of U and V by u; € R™ and v; € R”,
respectively, we have

Xe = Y, i _yv,-. (21)
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§10.2 Linear Least-Squares Problems

(21) 5
nooT
Xe = i;u’myv,- (21)
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I §_rank-deficient Bi" (*T"P Opfor < LFE) £HF % > Tt pE
¥ FEHNL I E L SVD zﬁ-?f/zjxjéﬁ’w ARG LA
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§10.2 Linear Least-Squares Problems

bakehz fE 2y A mf‘*‘ o 3% Cholesky f & % &
FEARFERF Y o F m>»n
oL A AT A RS XA

o SR

m»n® gt az ) rxig
xJ

EIS

i<

=

éf J % rank-deficient ¢ ill-conditioned P » & Jf i 2
Lo ST i b A

=0k 5 1Y

~

% i {7 pivoting 4% ¥ - QR » ;¥ 4. 7 $i%

PRGEEF TS EY > Ft A BcE ¥ At { 5 & (robust) o

Ching-hsiao Arthur Cheng #




Chapter 10. Least-Squares Problems

§10.2 Linear Least-Squares Problems
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§10.2 Linear Least-Squares Problems
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§10.2 Linear Least-Squares Problems
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§10.2 Linear Least-Squares Problems
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§10.2 Linear Least-Squares Problems
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§10.2 Linear Least-Squares Problems
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Chapter 10. Least-Squares Problems

§10.3 Algorithms for Nonlinear Least-Squares Problems

e The Gauss-Newton method
We now describe methods for minimizing the nonlinear objective
function (1) that exploit the structure of the gradient Vf and Hes-
sian V2f in
V() = J(x)'r(0), (4)
VE(x) = J0) () + 3 (V) (). (5)
j=1
The simplest of these methods — the Gauss-Newton method — can
be viewed as a modified Newton's method with line search. Instead
of solving the standard Newton equations (V2f)(xx)p = — (V) (xx),
we solve instead the following system to obtain the search direction

[
Uit ==yt (23)

Ching-hsiao Arthur Cheng it .5 % Bk it 222t MAS037-*



Chapter 10. Least-Squares Problems

§10.3 Algorithms for Nonlinear Least-Squares Problems

This simple modification gives a number of advantages over the

plain Newton's method. First, the use of the approximation
Vi~ I, (24)

saves us the trouble of computing the individual residual Hessians

VZ2r, j=1,2, -+, m, which are needed in the second term in (5).
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This simple modification gives a number of advantages over the
plain Newton's method. First, the use of the approximation

V2 ~ JE; (24)
saves us the trouble of computing the individual residual Hessians
Vzrj,j: 1,2, -+, m, which are needed in the second term in (5). In
fact, if we calculated the Jacobian Ji in the course of evaluating the
gradient Vf, = JkTrk, the approximation (24) does not require any
additional derivative evaluations, and the savings in computational

time can be quite significant in some applications.
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This simple modification gives a number of advantages over the
plain Newton's method. First, the use of the approximation
Vi~ I, (24)
saves us the trouble of computing the individual residual Hessians
Vzrj,j: 1,2, -+, m, which are needed in the second term in (5). In
fact, if we calculated the Jacobian Ji in the course of evaluating the
gradient Vf, = JkTrk, the approximation (24) does not require any
additional derivative evaluations, and the savings in computational
time can be quite significant in some applications. Second, there
are many interesting situations in which the first term J%J in (5)
dominates the second term (at least close to the solution xy), so
that JkTJk is a close approximation to V2, and the convergence

rate of Gauss-Newton is similar to that of Newton's method.
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The first term JTJ in (5) will be dominant when the norm of each
second-order term (that is, |rj(x)||V?r;(x)|) is significantly smaller
than the eigenvalues of JTJ. As mentioned in the introduction,
we tend to see this behavior when either the residuals r; are small
or when they are nearly affine (so that the |V2rj| are small). In
practice, many least-squares problems have small residuals at the

solution, leading to rapid local convergence of Gauss-Newton.
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A third advantage of Gauss-Newton is that whenever Jx has full
rank and the gradient Vfy is nonzero, the direction p" is a descent
direction for f, and therefore a suitable direction for a line search.
From (4) and the definition of pg"
TP = —Jir (23)
we have
(PE")" Vi = (P& i rie = = (PE") Jic e PR
= —|Jp? < 0. (25)
The final inequality is strict unless Jxpg" = 0, in which case we have
by (23) and full rank of Ji that Vf, = JkTrk = 0; that is, xx is a

stationary point.
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Finally, the fourth advantage of Gauss-Newton arises from the simi-
larity between the equations (23) and the normal equations (14) for
the linear least-squares problem. This connection tells us that p;"

is in fact the solution of the linear least-squares problem
.1
min §H_Ikp+ nd?. (26)

Hence, we can find the search direction by applying linear least-
squares algorithms to the sub-problem (26). In fact, if the QR or
SVD-based algorithms are used, there is no need to calculate the
Hessian approximation J,}‘Jk in (23) explicitly; we can work directly
with the Jacobian Ji. The same is true if we use a conjugate-
gradient technique to solve (26). For this method we need to per-
form matrix-vector multiplications with JkTJ , which can be done by
first multiplying by Jix and then by JkT.
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If the number of residuals m is large while the number of variables nis
relatively small, it may be unwise to store the Jacobian Jexplicitly. A
preferable strategy may be to calculate the matrix JTJ and gradient
vector JTr by evaluating rj and Vrj successively for j=1,2, ---, m

and performing the accumulations
J = Z (V) (V)T Z (Vr). (27)

The Gauss-Newton steps can then be computed by solving the sys-

tem (23) of normal equations directly.
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The sub-problem (26) suggests another motivation for the Gauss-
Newton search direction. We can view this equation as being ob-
tained from a linear model for the vector function r(xx + p) ~
2.

. . . 1
r + Jxp, substituted into the function §|| : In other words, we

use the approximation
1 1
Fxe+p) = 3lr(ac+p)I* ~ 31 dp+ nl?,
and choose pg" to be the minimizer of this approximation.

Implementations of the Gauss-Newton method usually perform a line

search in the direction p,f”,

requiring the step length «ay to satisfy
conditions like those discussed in Chapter 3, such as the Armijo and

Wolfe condition.
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e Convergence of the Gauss-Newton method

The theory of Chapter 3 can applied to study the convergence prop-
erties of the Gauss-Newton method. We prove a global convergence
result under the assumption that the Jacobian matrix J has its sin-
gular values uniformly bounded away from zero in the region of

interest; that is, there is a constant v > 0 such that
[4(z] > Azl (28)
for all x in a neighborhood N of the level set
5 = {X| f(X) < f(X())} N (29)

where xq is the starting point for the algorithm.
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e Convergence of the Gauss-Newton method

The theory of Chapter 3 can applied to study the convergence prop-
erties of the Gauss-Newton method. We prove a global convergence
result under the assumption that the Jacobian matrix J has its sin-
gular values uniformly bounded away from zero in the region of

interest; that is, there is a constant v > 0 such that
[4(z] > Azl (28)
for all x in a neighborhood N of the level set
5 = {X| f(X) < f(X())} N (29)

where xq is the starting point for the algorithm. We assume here
and in the rest of the chapter that S is bounded. Our result is a

consequence of Zoutendijk's Theorem.
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Suppose each residual function r; is Lipschitz continuously differ-
entiable in a neighborhood N of the bounded level set S given by
(29), and that the Jacobian matrix J satisfies the uniform full-rank
condition (28) on N.
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Suppose each residual function r; is Lipschitz continuously differ-
entiable in a neighborhood N of the bounded level set S given by
(29), and that the Jacobian matrix J satisfies the uniform full-rank
condition (28) on N. If the iterates xi are generated by the Gauss-
Newton method with step lengths o satisfying the Wolfe conditions

f(xk + axpr) < F(xi) + crak Vi pr,

Vf(Xk F ()ékpk) K = CQka Pk

we have
lim Vf, = hm Jk ne=20.

k—00
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Suppose each residual function r; is Lipschitz continuously differ-
entiable in a neighborhood N of the bounded level set S given by
(29), and that the Jacobian matrix J satisfies the uniform full-rank
condition (28) on N. If the iterates xi are generated by the Gauss-
Newton method with step lengths o satisfying the Wolfe conditions

f(xk + axpr) < F(xi) + crak Vi pr,

Vi (xk+ ozkpk) = CQka Pk,

we have
lim Vf, = hm Jk ne=20.

k—00

We first check the validity of the sufficient conditions for applying

Zoutendijk's Theorem. o
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Proof (cont'd).

By the fact that each r; is Lipschitz continuously differentiable in
N, there exists L; > 0 such that

IV — V5 E)] < Lix— %] ¥YxXeN,1<j<m

Since NV is an open set containing the compact set S, there exist
r>0andy, ¥, -, Y such that

K
1. B(x,r) < N forall xe S. 2. S U (yi,) =N S .
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Proof (cont'd).
By the fact that each r; is Lipschitz continuously differentiable in
N, there exists L; > 0 such that

IV — V5 E)] < Lix— %] ¥YxXeN,1<j<m

Since NV is an open set containing the compact set S, there exist
r>0andy, ¥, -, Y such that

K
1. B(x,r) < N forall xe S. 2. S U (yi,) =N S .

Note that A is bounded; thus there exists B1 > 0 such that
Vel < B ¥xe A 1<j<m
Therefore, Taylor's Theorem implies that

I50) = R < KBilx =X VxXeN,1<j<m. o
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Proof (cont'd).

In other words, r; is Lipschitz continuous in /\7 for 1 < j< m, and

the boundedness of N again provides 33 > 0 such that

()] < B2 YxeN,1<j<m.
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Proof (cont'd).

In other words, r; is Lipschitz continuous in /\7 for 1 < j< m, and

the boundedness of N again provides 35 > 0 such that
()] < B2 YxeN,1<j<m.

From these upper bounds on r; and Vr; and the fact that r; and Vr;
are Lipschitz continuous on N, we find that V£ is Lipschitz contin-
uous in NV. Since f is bounded from below by zero, the assumptions

of Zoutendijk's Theorem are satisfied;
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Proof (cont'd).

In other words, r; is Lipschitz continuous in /\7 for 1 < j< m, and

the boundedness of N again provides 35 > 0 such that
()] < B2 YxeN,1<j<m.

From these upper bounds on r; and Vr; and the fact that r; and Vr;
are Lipschitz continuous on N, we find that V£ is Lipschitz contin-
uous in NV. Since f is bounded from below by zero, the assumptions

of Zoutendijk's Theorem are satisfied; thus

o0
Z cos?0, | VH|? < oo,

k=1

where 6 is the angle between the search direction p" and the

negative gradient —Vf,. o
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Proof (cont'd).
We now check that the angle 6 between the search direction pg"
and the negative gradient —Vf{, is uniformly bounded away from
m/2. Before proceeding, note that the smoothness of r; and the
compactness of S shows that

26T =[Sl < B ¥xeS

for some 8 > 0.
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Proof (cont'd).
We now check that the angle 6 between the search direction pg"
and the negative gradient —Vf{, is uniformly bounded away from
m/2. Before proceeding, note that the smoothness of r; and the
compactness of S shows that

e =4l <8 Vxe$
for some B > 0. Since

(P Ve = —[hp |2 and (2] = Alz] Vxe N,

we have for x, € S that

\V47 TGN J GN |2 2| AGN |2 2
cost = — WA _ el et
MV AN IeEN I I pM — B2IREN 12 B

It then follows from Zoutendijk's condition that Vf, — 0. o
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If Ji is rank-deficient for some k (so that a condition like (28) is not
satisfied), the coefficient matrix in

e = e (23)
is singular. Nevertheless, the system (23) still has a solution because
of the equivalence between this linear system and the minimization

problem |
min . [ Jkp =+ re? . (26)
p
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If Ji is rank-deficient for some k (so that a condition like (28) is not
satisfied), the coefficient matrix in
e = e (23)
is singular. Nevertheless, the system (23) still has a solution because
of the equivalence between this linear system and the minimization
problem |
min 5 [ Jkp =+ re? . (26)
P
In fact, there are infinitely many solutions for pg" in this case; each
of them has the form of -
u-:
X = Z ;’;yVi+ Z TiVi. (22)
oi#0 oi=0
However, there is no longer an assurance that cos 6y is uniformly

bounded away from zero, so we cannot prove a result like the theo-
rem above.
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The convergence of Gauss-Newton to a solution x, can be rapid
if the leading term Jka dominates the second-order term in the

Hessian (5). Suppose that xi is close to x, and that assumption
dv>053|J(x)z| = v|z| forall ze R" (28)

is satisfied. Then, applying an argument like the Newton's method
analysis in Chapter 3, we have for a unit step in the Gauss-Newton
direction that
Xk + PEN — X = Xk — X — (JEJk)_1ka
— ()™ [ () Ok = %) + T = VA
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Let H to denote the second-order term in
V2 (x) = x) + Z () (V2r) (x (5)
By the Fundamental Theorem of Calculus we have

Vi — Vi, = Ll (JTI) (s + t(xk — X)) (X — %) At

—i—JolH(x* + t(xk = x*))(xk — Xy) dt.
Assuming Lipschitz continuity of H near x,, we have
Xk + PR = x|
< [ OER) ™ He + 00w =) =l + Ol = x])

=l

o [ Go] ™ HO) s — el + O = xa?) (30)

Ching-hsiao Arthur Cheng it .5 % i g MAS037-*



Chapter 10. Least-Squares Problems

§10.3 Algorithms for Nonlinear Least-Squares Problems

Hence, if ||[J7J(x)] 'H(x:)| « 1, we can expect a unit step of
Gauss-Newton to move us much closer to the solution x,, giving
rapid local convergence. When H(x,) = 0, the convergence is actu-

ally quadratic.
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Hence, if ||[J7J(x)] 'H(x:)| « 1, we can expect a unit step of
Gauss-Newton to move us much closer to the solution x,, giving
rapid local convergence. When H(x,) = 0, the convergence is actu-

ally quadratic.

When n and m are both large and the Jacobian matrix J is sparse,
the cost of computing steps exactly by factoring either Ji or JkTJk
at each iteration may become quite expensive relative to the cost
of function and gradient evaluations. In this case, we can design
inexact variants of the Gauss-Newton algorithm that are analogous
to the inexact Newton algorithms discussed in Chapter 7. We simply
replace the Hessian V?2f, in these methods by its approximation
JEJk. The positive semi-definiteness of this approximation simplifies

the resulting algorithms in several places.
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e The Levenberg-Marquardt method

Recall that the Gauss-Newton method is like Newton's method with
line search, except that we use the convenient and often effective
approximation

Vi~ I, (24)

for the Hessian.
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e The Levenberg-Marquardt method
Recall that the Gauss-Newton method is like Newton's method with
line search, except that we use the convenient and often effective
approximation

Vi~ I, (24)
for the Hessian. The Levenberg-Marquardt method can be obtained
by using the same Hessian approximation, but replacing the line
search with a trust-region strategy. The use of a trust region avoids
one of the weaknesses of Gauss-Newton, namely, its behavior when
the Jacobian matrix Jis rank-deficient, or nearly so. Since the same
Hessian approximations are used in each case, the local convergence

properties of the two methods are similar.
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The Levenberg-Marquardt method can be described and analyzed
using the trust region framework of Chapter 4. In fact, the Levenberg-
Marquardt method is sometimes considered to be the progenitor (7

£/) of the trust-region approach for general unconstrained optimiza-
tion discussed in Chapter 4.
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The Levenberg-Marquardt method can be described and analyzed
using the trust region framework of Chapter 4. In fact, the Levenberg-
Marquardt method is sometimes considered to be the progenitor (7
£/) of the trust-region approach for general unconstrained optimiza-
tion discussed in Chapter 4. For a spherical trust region, the sub-

problem to be solved at each iteration is
1 .
min 5HJkp—&- re|? subject to | p| < A, (31)
P

where A, > 0 is the trust-region radius. In effect, we are choosing

the model function my(-) to be

1 1
mi(p) = gl + (En) T+ L php.  (32)
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We drop the iteration counter k during the rest of this section and
concern ourselves with the sub-problem (31). The results of Chap-
ter 4 allow us to characterize the solution of (31) in the following
way: When the solution p® of the Gauss-Newton equations (23)
lies strictly inside the trust region (that is, [p®"| < A), then this
step p®" also solves the sub-problem (31). Otherwise, there is a
A > 0 such that the solution p = p*™ of (31) satisfies ||p| = A and

ST+ AD)p=—J"r. (33)

This claim is verified in the following lemma, which is a straightfor-
ward consequence of the key theorem in Section 4.3 that we recall/

state in the next slide.
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The vector p, is a global solution of the trust-region problem

. 1
minm(p) = f+g p+-p'Bp st. |p|<A.  (5),
peR” 2

if and only if p, is feasible and there is a scalar A = 0 such that the

following conditions are satisfied:

(B+ AD)ps = —g, (6a),
AA = lp«) =0, (6b),
(B+ M) is positive semi-definite. (6¢),

Ching-hsiao Arthur Cheng it .5 % Bk it 222t MAS037-*



Theorem (Key theorem in Section 4.3)

Chapter 10. Least-Squares Problems
§10.3 Algorithms for Nonlinear Least-Squares Problems

The vector p, is a global solution of the trust-region problem

. 1
minm(p) = f+g' p+-p'Bp st |pl<A.  (5),
peR” 2

if and only if py is feasible and there is a scalar A = 0 such that the

following conditions are satisfied:

(B+ AD)ps = —g, (6a),
AA = lp«) =0, (6b),
(B+ M) is positive semi-definite. (6¢),

Recall that the model function m under disccusion now is

1 1 o,
m(p) = 3l + (ST) o+ 557 Up. (32)

Ching-hsiao Arthur Cheng it .5 % Bk it 222t MAS037-*



Chapter 10. Least-Squares Problems

§10.3 Algorithms for Nonlinear Least-Squares Problems

The vector p*M is a solution of the trust-region sub-problem

min [Jp+ r|? subject to |p| < A,
p
if and only if p*™ is feasible and there is a scalar A\ > 0 such that

ST+ D)™ = —J7r, (34a)
AMA =) =0. (34b)
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The vector p*M is a solution of the trust-region sub-problem
min [Jp+ r|? subject to |p| < A,
P
if and only if p*™ is feasible and there is a scalar A\ > 0 such that

ST+ D)™ = —J7r, (34a)
A(A—[p™]) =0. (34b)

Since JTJ is positive semi-definite, it suffices to establish

LM

p" is a feasible solution < (3X > 0)((34a) A (34b)).
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The vector p*M is a solution of the trust-region sub-problem
min [Jp+ r|? subject to |p| < A,
P
if and only if p*™ is feasible and there is a scalar A\ > 0 such that

ST+ D)™ = —J7r, (34a)
A(A—[p™]) =0. (34b)

Since JTJ is positive semi-definite, it suffices to establish

LM

p" is a feasible solution < (3X > 0)((34a) A (34b)).

Nevertheless, (34a) and (34b) are simply (6a), and (6b), in the
key theorem in Section 4.3, respectively, for the case B = JTJ and
g=p. o
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Note that the equations
(JY+ND)p=—JTr (33)

are just the normal equations for the following linear least-squares

ming [ )=+ [¢]

Just as in the Gauss-Newton case, the equivalence between (33) and

problem:
2

(35)

(35) gives us a way of solving the sub-problem without computing

the matrix-matrix product J™J and its Cholesky factorization.
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e Implementation of the Levenberg-Marquardt method

To find a A that approximately matches the given A in the lemma,
we can use the root-finding algorithm described in Chapter 4. It is
easy to safeguard this procedure: The Cholesky factor R is guaran-
teed to exist whenever the current estimate A\ is positive, since
the approximate Hessian B = JTJ is already positive semi-definite.
Because of the special structure of B, we do not need to compute
the Cholesky factorization of B+ Al from scratch in each iteration of
Algorithm 4.1. Rather, we present an efficient technique for finding

the following QR factorization of the coefficient matrix in (35):

Ry | _ AT J
MIECIN L (36)
where Q) is orthogonal, Ry is upper triangular. The upper triangular
factor R satisfies RERA = JTJ+ AL
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We can save computer time in the calculation of the factorization
(36) by using a combination of Householder and Givens transforma-
tions. Suppose we use Householder transformations to calculate the
QR factorization of J alone as

J=Q

] . (37)

We then have

R Qr J
R C A
The leftmost matrix in this formula is upper triangular except for
the n nonzero terms of the matrix AI. These can be eliminated
by a sequence of n(n+ 1)/2 Givens rotations, in which the diago-
nal elements of the upper triangular part are used to eliminate the

nonzeros of Al and the fill-in terms that arise in the process.
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The first few steps of this process are as follows:

@ rotate row n of R with row n of v/AI, to eliminate the (n, n)
element of \/XI;

@ rotate row (n—1) of Rwith row (n—1) of v/AI to eliminate the
(n—1,n—1) element of the latter matrix. This step introduces
fill-in in position (n — 1,n) of v/AI, which is eliminated by
rotating row n of R with row (n — 1) of v/AI, to eliminate the
fill-in element at position (n — 1, n);

© rotate row (n — 2) of R with row (n — 2) of v/AI, to eliminate
the (n — 2) diagonal in the latter matrix. This step introduces
fill-in in the (n —2,n — 1) and (n — 2, n) positions, which we
eliminate by - --

and so on.
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If we gather all the Givens rotations into a matrix Qy, we obtain
from (38) that

| R Rx
Q) 0 = 0 |,
VAT 0
and hence (36) holds with
Q= { & I }Q\

The advantage of this combined approach is that when the value of
A is changed in the root-finding algorithm, we need only recalculate
@, and not the Householder part of the factorization (38). This
feature can save a lot of computation in the case of m > n, since
just O(n®) operations are required to recalculate Q\ and Ry for
each value of ), after the initial cost of O(mn?) operations needed

to calculate Q in (37).
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Least-squares problems are often poorly scaled. Some of the vari-
ables could have values of about 104, while other variables could be
of order 1075, If such wide variations are ignored, the algorithms
above may encounter numerical difficulties or produce solutions of
poor quality. One way to reduce the effects of poor scaling is to use
an ellipsoidal trust region in place of the spherical trust region de-
fined above. The step is confined to an ellipse in which the lengths of
the principal axes are related to the typical values of the correspond-

ing variables. Analytically, the trust-region sub-problem becomes
1 .
min §HJkp+ re|? subject to | Dyp| < A, (39)
P

where Dy is a diagonal matrix with positive diagonal entries.
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The solution of (39) satisfies an equation of the form
(Jedk+ ADR) P = — I r, (40)

and, equivalently, solves the linear least-squares problem

[ o o+ [

The diagonals of the scaling matrix D can change from iteration to

2
min

i (41)

iteration, as we gather information about the typical range of values
for each component of x. If the variation in these elements is kept
within certain bounds, then the convergence theory for the spherical
case continues to hold, with minor modifications. Moreover, the

technique described above for calculating R\ needs no modification.
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For problems in which m and n are large and J is sparse, we may
prefer to solve (31) or (39) approximately using the CG-Steihaug
algorithm, Algorithm 7.2 from Chapter 7, with JkTJk replacing the
exact Hessian V?2f,. Positive semi-definiteness of the matrix JkTJk
makes for some simplification of this algorithm, because negative
curvature cannot arise. It is not necessary to calculate JkTJk explicitly
to implement Algorithm 7.2; the matrix-vector products required by
the algorithm can be found by forming matrix-vector products with

Jx and JkT separately.
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e Convergence of the Levenberg-Marquardt method

It is not necessary to solve the trust-region problem
1
min 5HJkp—i- > subject to |p| < Ak (31)
P

exactly in order for the Levenberg-Marquardt method to enjoy global
convergence properties. The following convergence result can be ob-
tained as a direct consequence of a theorem concerning the global
convergence of trust-region method with trust-region radius modifi-

cation given by Algorithm 4.1 in Chapter 4.
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Consider solving the minimization problem

. 1 ,
min mi(p) = fi+ &P+ 3P Bip st [l <7Ak, (34

using Algorithm 4.1, where v > 1 is a fixed constant in (3’)4. Sup-
pose that |By| < [ for some constant 3, that f is bounded from
below on the level set S = {x|f(x) < f(xo)} and Lipschitz contin-
uously differentiable in the neighborhood S(Ry) for some Ry > 0,

and that all approximate solutions of (3’)4 satisfy the inequalities

mi(0) — mi(pk) > cilgx| min (Ak, |gkk|)

for some constant c; € (0,1]. We then have liin inf | gkl = 0. More-
— 00

over, if n > 0, then lim |gx| = 0.
k—00
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§10.3 Algorithms for Nonlinear Least-Squares Problems

Letn € (0,1/4) in Algorithm 4.1 of Chapter 4, and suppose that the
level set S defined by S = {x|f(x) < f(xo)} is bounded and that
the residual functions rj, j=1, 2, ---, m are Lipschitz continuously
differentiable in a neighborhood N of S. Assume that for each k,

the approximate solution py of
2 *HJkP +nd®  subject to |p| < yAk,
where v > 1, satisfies the inequality

_jT
mi(0) — milpe) > S min (A, |J§§:') (42)

for some constant c; € (0,1]. We then have that

lim V£ = lim Jin=0.
k—00 k—0o0
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The smoothness assumption on r; and the compactness of S imply
that we can choose a constant 3 > 0 such that |JIJ| < B for
all iterates k. Also note that the objective f is bounded below
(by zero). Hence, the assumptions of the theorem concerning the
global convergence of trust-region method with trust-region radius

modification given by Algorithm 4.1 in Chapter 4 are satisfied, and

the result follows immediately. =
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As in Chapter 4, there is no need to calculate the right-hand side in

the inequality

mu(0) = m(p) > | min (A, D) ag)
Y

or to check it explicitly. Instead, we can simply require the decrease

given by our approximate solution py of
1
min 5HJkp—i- re|? subject to |p|| < Ax (31)
P

to at least match the decrease given by the Cauchy point, which can

be calculated inexpensively in the same way as in Chapter 4.
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As in Chapter 4, there is no need to calculate the right-hand side in
the inequality

mu(0) = m(p) > | min (A, D) ag)
Y

or to check it explicitly. Instead, we can simply require the decrease

given by our approximate solution py of
1
min 5HJkp—i- re|? subject to |p|| < Ax (31)
P

to at least match the decrease given by the Cauchy point, which can
be calculated inexpensively in the same way as in Chapter 4. If we
use the iterative CG-Steihaug approach, Algorithm 7.2, the condition
(42) is satisfied automatically for ¢; = 1/2, since the Cauchy point is
the first estimate of py computed by this approach, while subsequent

estimates give smaller values for the model function.
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The local convergence behavior of Levenberg-Marquardt is similar

to the Gauss-Newton method. Near a solution x; at which the first
term of the Hessian (sz)(x*) in

V2 = S0 + 20 097 ©)

dominates the second term, the model function in (31), the trust re-
gion becomes inactive and the algorithm takes Gauss-Newton steps,

giving the rapid local convergence expression
G
[xic + PR™ — X«

1
< [ 1) H 00— 50k~ el + O~ xl?)
0

-1

~ [ ()] H Ol — xell + O(xk — %) (30)
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e Method for large-residual problems
In large-residual problems, the quadratic model in (31) is an inad-
equate representation of the function f because the second-order

part of the Hessian V2f(x) is too significant to be ignored.
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§10.3 Algorithms for Nonlinear Least-Squares Problems

e Method for large-residual problems

In large-residual problems, the quadratic model in (31) is an inad-
equate representation of the function f because the second-order
part of the Hessian V2f(x) is too significant to be ignored. In data-
fitting problems, the presence of large residuals may indicate that
the model is inadequate or that errors have been made in monitor-

ing the observations.
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§10.3 Algorithms for Nonlinear Least-Squares Problems

e Method for large-residual problems

In large-residual problems, the quadratic model in (31) is an inad-
equate representation of the function f because the second-order
part of the Hessian V2f(x) is too significant to be ignored. In data-
fitting problems, the presence of large residuals may indicate that
the model is inadequate or that errors have been made in monitor-
ing the observations. Still, the practitioner may need to solve the
least-squares problem with the current model and data, to indicate
where improvements are needed in the weighting of observations,

modeling, or data collection.
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§10.3 Algorithms for Nonlinear Least-Squares Problems

On large-residual problems, the asymptotic convergence rate of Gauss-
Newton and Levenberg-Marquardt algorithms is only linear — slower
than the superlinear convergence rate attained by algorithms for

general unconstrained problems, such as Newton or quasi-Newton.
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§10.3 Algorithms for Nonlinear Least-Squares Problems

On large-residual problems, the asymptotic convergence rate of Gauss-
Newton and Levenberg-Marquardt algorithms is only linear — slower
than the superlinear convergence rate attained by algorithms for
general unconstrained problems, such as Newton or quasi-Newton.
If the individual Hessians V2rj are easy to calculate, it may be bet-
ter to ignore the structure of the least-squares objective and apply
Newton's method with trust region or line search to the problem of

minimizing f.

Ching-hsiao Arthur Cheng i gy MAS037-*



Chapter 10. Least-Squares Problems

§10.3 Algorithms for Nonlinear Least-Squares Problems

On large-residual problems, the asymptotic convergence rate of Gauss-
Newton and Levenberg-Marquardt algorithms is only linear — slower
than the superlinear convergence rate attained by algorithms for
general unconstrained problems, such as Newton or quasi-Newton.
If the individual Hessians V2rj are easy to calculate, it may be bet-
ter to ignore the structure of the least-squares objective and apply
Newton's method with trust region or line search to the problem of
minimizing f. Quasi-Newton methods, which attain a superlinear
convergence rate without requiring calculation of Vzrj, are another
option. However, the behavior of both Newton and quasi-Newton
on early iterations (before reaching a neighborhood of the solution)

may be inferior to Gauss-Newton and Levenberg-Marquardt.
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§10.3 Algorithms for Nonlinear Least-Squares Problems

Of course, we often do not know beforehand whether a problem will
turn out to have small or large residuals at the solution. It seems
reasonable, therefore, to consider hybrid algorithms, which would
behave like Gauss-Newton or Levenberg-Marquardt if the residuals
turn out to be small (and hence take advantage of the cost sav-
ings associated with these methods) but switch to Newton or quasi-

Newton steps if the residuals at the solution appear to be large.
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There are a couple of ways to construct hybrid algorithms. One
approach, due to Fletcher and Xu (see Fletcher [101]), maintains
a sequence of positive definite Hessian approximations By. If the
Gauss-Newton step from xj reduces the function f by a certain
fixed amount, then this step is taken and By is overwritten by JkTJk.
Otherwise, a direction is computed using By, and the new point xx11
is obtained by performing a line search. In either case, a BFGS-like
update is applied to By to obtain a new approximation Byii. In
the zero-residual case, the method eventually always takes Gauss-
Newton steps (giving quadratic convergence), while it eventually
reduces to BFGS in the nonzero-residual case (giving superlinear

convergence).
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A second way to combine Gauss-Newton and quasi-Newton ideas
is to maintain approximations to just the second-order part of the

Hessian. In other words, we design a sequence of matrices Sy that

m

approximate only the summation term > ri(xx)V2ri(xx) in (5), and
j=1

then use the overall Hessian approximation

Bk = J i + Sk

in a trust-region or line search model for calculating the step py.
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A second way to combine Gauss-Newton and quasi-Newton ideas
is to maintain approximations to just the second-order part of the

Hessian. In other words, we design a sequence of matrices Sy that

m

approximate only the summation term > ri(xx)V2ri(xx) in (5), and
j=1

then use the overall Hessian approximation

Bk = J i + Sk

in a trust-region or line search model for calculating the step px. Up-
dates to Sy are devised so that the approximate Hessian B) mimics
the behavior of the corresponding exact quantities over the step just
taken. The update formula is based on a secant equation, which

arises also in the context of unconstrained minimization in Chapter
6.
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§10.3 Algorithms for Nonlinear Least-Squares Problems

In the present instance, there are a number of different ways to
define the secant equation and to specify the other conditions needed
for a complete update formula for Si. In the probably best-known

algorithm due to Dennis, Gay and Welsch, the secant equation
Sk+1(Xkr1 — xx) = the right-hand side

is motivated in the following way. Ideally, Sx11 should be a close

approximation to the exact second-order term at x = xx1; that is,
m

Skt1 & Z (k+1)V G(Xk+1) .

so the right-hand side of the secant equation should approximate

m

D i(Xir1) V(X 1) (K1 — i) -
=il
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§10.3 Algorithms for Nonlinear Least-Squares Problems

To avoid the computation of V2rj, we replace each of them with an
approximation (B;) k41 and impose the condition that (B;) ;1 should
mimic the behavior of its exact counterpart V2rj over the step just
taken:

(B k1 (Xkt1 — Xi) = Vri(xit1) — Vri(xi)

= (row j of (J(ka))T — (row j of (J(xk))T.
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§10.3 Algorithms for Nonlinear Least-Squares Problems

To avoid the computation of V2rj, we replace each of them with an
approximation (B;) k41 and impose the condition that (B;) ;1 should
mimic the behavior of its exact counterpart VQrJ- over the step just
taken:
(Bi) k1 (Xky1 — xk) = Vri(xxr1) — Vri(xx)
— (row j of (J (xsct1))F — (row j of (J (x¢))"

This condition leads to a secant equation on Sii1, namely,
m
Sir1 (ka1 — Xi0) = DO 1(Xte1) (B i1 (Xier1 — Xi)
Jj=1

i i(xier1) [ (row j of J (xkq1))" — (row j of (J (xi))*]

=1

T
= S k1 — I g -
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As usual, this condition does not completely specify the new approx-
imation Siy1. Dennis, Gay, and Welsch add requirements that Sy
be symmetric and that the difference Sy 1 — Sk from the previous
estimate Sy be minimized in a certain sense, and derive the following
update formula:

(= Se)y" +y(rF = Sks)" (v = Sk)'s

_ _ T
Sk+1 = Sk + _yTS (yTS)2 Yy (43)

where

T T T T
S= Xkl — Xk, Y= Jk+1fk+1 — Ji i, yﬁ = Jk+1fk+1 — Ji Mg -
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As usual, this condition does not completely specify the new approx-
imation Siy1. Dennis, Gay, and Welsch add requirements that Sy
be symmetric and that the difference Sy 1 — Sk from the previous
estimate Sy be minimized in a certain sense, and derive the following
update formula:

(= Se)y" +y(rF = Sks)" (v = Sk)'s

_ _ T
Sk+1 = Sk + _)/TS (yTS)2 Yy (43)

where

S =Xpet1 — Xk, ¥=Jarkrr — Jire, Y= JE1ne — JEn -
Note that (43) would be identical to the DFP update for uncon-
strained minimization if y = y#. Dennis, Gay, and Welsch use their
approximate Hessian JkTJk + Sy in conjunction with a trust-region
strategy, but a few more features are needed to enhance its perfor-

mance.
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One deficiency of its basic update strategy for Sy is that this matrix
is not guaranteed to vanish as the iterates approach a zero-residual

solution, so it can interfere with superlinear convergence.
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One deficiency of its basic update strategy for Sy is that this matrix
is not guaranteed to vanish as the iterates approach a zero-residual
solution, so it can interfere with superlinear convergence. This prob-
lem is avoided by scaling Sy prior to its update; we replace S by
TSk on the right-hand side of (43), where

|sTy#] )
" |sTSks|/

Tk = Mmin (1
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§10.3 Algorithms for Nonlinear Least-Squares Problems

One deficiency of its basic update strategy for Sy is that this matrix
is not guaranteed to vanish as the iterates approach a zero-residual
solution, so it can interfere with superlinear convergence. This prob-
lem is avoided by scaling Sy prior to its update; we replace S by
TSk on the right-hand side of (43), where

|sTy#] )
" |sTSks|/

Tk = Mmin (1

A final modification in the overall algorithm is that the Sy term is
omitted from the Hessian approximation when the resulting Gauss-

Newton model produces a sufficiently good step.
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§10.4 Orthogonal Distance Regression

In the example in Section 10.1 we assumed that no errors were made
in noting the time at which the blood samples were drawn, so that
the differences between the model ¢(x;tj) and the observation y;

were due to inadequacy in the model or measurement errors in y;.

We assumed that any errors in the ordinates — the times t; — are tiny

by comparison with the errors in the observations.
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§10.4 Orthogonal Distance Regression

In the example in Section 10.1 we assumed that no errors were made
in noting the time at which the blood samples were drawn, so that
the differences between the model ¢(x;tj) and the observation y;
were due to inadequacy in the model or measurement errors in y;.
We assumed that any errors in the ordinates — the times t; — are tiny
by comparison with the errors in the observations. This assumption
often is reasonable, but there are cases where the answer can be
seriously distorted if we fail to take possible errors in the ordinates
into account. Models that take these errors into account are known
in the statistics literature as errors-in-variables models, and the re-
sulting optimization problems are referred to as total least squares
in the case of a linear model or as orthogonal distance regression in

the nonlinear case.
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§10.4 Orthogonal Distance Regression

We formulate this problem mathematically by introducing perturba-
tions ¢; for the ordinates t;, as well as perturbations ¢; for y;, and
seeking the values of these 2m perturbations that minimize the dis-
crepancy between the model and the observations, as measured by
a weighted least-squares objective function. To be precise, we relate
the quantities tj, y;, d;, and ¢; by

yi=exti+6)+ei, j=1,2,---,m, (44)
and define the minimization problem as
1 09, o0 -
i%}lgj 5121 wie; +di6;  subject to (44). (45)

The quantities w; and d; are weights, selected either by the modeler
or by some automatic estimate of the relative significance of the

error terms.
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§10.4 Orthogonal Distance Regression

It is easy to see how the term “orthogonal distance regression” orig-
inates when we graph this problem; see Figure 2 (in the next slide).
If all the weights w; and d; are equal, then each term in the summa-
tion (45) is simply the shortest distance between the point (t;, y;)
and the curve p(x; t) (plotted as a function of t). The shortest path
between each point and the curve is orthogonal to the curve at the

point of intersection.
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Figure 2: Orthogonal distance regression minimizes the sum of squares of
the distance from each point to the curve.
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§10.4 Orthogonal Distance Regression

Using the constraints (44) to eliminate the variables ¢; from (45),

we obtain the unconstrained least-squares problem

H)},i&n F(x,0) = = Z o(x; tj + 0; )] dj25j2

. 2m (46)
= 9 Z ']‘Q(Xa 6)
j=1
where § = (61,02, -+ ,0m)" and we have defined

j 7t+5_ [ .f.:]~727“'7 )

) = § MIFCOTH D) —a] = Sl
li—mOj—m ifj=m+1,--- 2m.

Note that (46) is now a standard least-squares problem with 2m
residuals and m + n unknowns, which we can solve by using the

techniques in this chapter.
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A naive implementation of this strategy may, however, be quite ex-
pensive, since the number of parameters (m + n) and the number
of observations (2m) may both be much larger than for the original

problem.
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§10.4 Orthogonal Distance Regression

A naive implementation of this strategy may, however, be quite ex-
pensive, since the number of parameters (m + n) and the number
of observations (2m) may both be much larger than for the original
problem. Fortunately, the Jacobian matrix for (46) has a special
structure that can be exploited in implementing the Gauss-Newton
or Levenberg-Marquardt methods. For instance, we have

o dle(ti+6j5x) — yjl

%8 a6, =0 forij=1,2,-- ,m,i+#j

and

@:O forj=m+1,.--- . 2m,i=1,2,--- ,n.
6x,-

Additionally, we have for j=1,2,--- .mand i=1,2,--- , m that

00; 0 otherwise.
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Hence, we can partition the Jacobian of the residual function r de-
fined by (47) into blocks and write
J v
J(x,0) = 48
x9=17 5] (48)
where Vand D are mx m diagonal matrices and J is the mx n matrix
of partial derivatives of the functions wjo(t;+ d;; x) with respect to

X.
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Hence, we can partition the Jacobian of the residual function r de-
fined by (47) into blocks and write
J Vv

J(x,é):{o D] ) (48)
where Vand D are mx m diagonal matrices and J is the mx n matrix
of partial derivatives of the functions wjo(t;+ d;; x) with respect to
x. Boggs, Byrd, and Schnabel [30] apply the Levenberg-Marquardt
algorithm to (46) and note that block elimination can be used to

solve the sub-problems

S+ AD)p=—J"r (33)
and )
J r
il aJ e o] )
efficiently.
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Given the partitioning (48), we can partition the step vector p and
the residual vector r accordingly as

Px ’r\l
= 9 r = PN .
P {Pé] [@]

and write the normal equations (33) in the partitioned form

AT~ AT ~T
T J+A1 Jv [px}:_ J 7
vJ V2 4+ D? + I Ps V7 + Dr
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§10.4 Orthogonal Distance Regression

Given the partitioning (48), we can partition the step vector p and
the residual vector r accordingly as

Px ’r\l
= 9 r = PN .
P {W] [@]

and write the normal equations (33) in the partitioned form

AT~ AT ~T
T J+A1 Jv [px}:_ J 7
vJ V2 4+ D? + I Ps V7 + Dr

Since the lower right sub-matrix V2 + D? + M is diagonal, it is
easy to eliminate ps from this system and obtain a smaller n x n
system to be solved for p, alone. The total cost of finding a step is
only marginally greater than for the m x n problem arising from the

standard least-squares model.
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