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Chapter 11. Nonlinear Equations

Introduction
In many applications we do not need to optimize an objective func-
tion explicitly, but rather to find values of the variables in a model
that satisfy a number of given relationships. When these relation-
ships take the form of n equalities – the same number of equality
conditions as variables in the model – the problem is one of solving
a system of nonlinear equations. We write this problem mathemat-
ically as

r (x) = 0 , (1)

where r : Rn Ñ Rn is a vector-valued function; that is,

r (x) =


r1(x)
r2(x)

...
rn(x)

 .
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Chapter 11. Nonlinear Equations

Introduction
In this chapter, we assume that each function rj : Rn Ñ R, j = 1,
2, ¨ ¨ ¨ , n, is smooth. A vector x˚ for which (1) is satisfied is called
a solution or root of the nonlinear equations. In general, the system
(1) may have no solutions, a unique solution, or many solutions.

The techniques for solving nonlinear equations overlap in their mo-
tivation, analysis, and implementation with optimization techniques
discussed in earlier chapters. In both optimization and nonlinear
equations, Newton’smethod lies at the heart of many important
algorithms. Features such as line searches, trust regions, and in-
exact solution of the linear algebra sub-problems at each iteration
are important in both areas, as are other issues such as derivative
evaluation and global convergence.
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Chapter 11. Nonlinear Equations

Introduction
Because some important algorithms for nonlinear equations proceed
by minimizing a sum of squares of the equations; that is,

min
x

n
ÿ

j=1

r 2j (x) ,

there are particularly close connections with the nonlinear least-
squares problem discussed in Chapter 10. The differences are that
in nonlinear equations, the number of equations equals the num-
ber of variables (instead of exceeding the number of variables, as is
typically the case in Chapter 10), and that we expect all equations
to be satisfied at the solution, rather than just minimizing the sum
of squares. This point is important because the nonlinear equations
may represent physical or economic constraints such as conservation
laws or consistency principles, which must hold exactly in order for
the solution to be meaningful.
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Chapter 11. Nonlinear Equations

Introduction
Many applications require us to solve a sequence of closely related
nonlinear systems, as in the following example.
Example
An interesting problem in control is to analyze the stability of an
aircraft in response to the commands of the pilot. The following
is a simplified model based on force-balance equations, in which
gravity terms have been neglected.
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Introduction
Example (cont’d)
The equilibrium equations for a particular aircraft are given by a
system of 5 equations in 8 unknowns of the form

F(x) ” Ax + φ(x) = 0 ,

where F : R8 Ñ R5, the matrix A is given by

A =


´3.933 0.107 0.126 0 ´9.99 0 ´45.83 ´7.64

0 ´0.987 0 ´22.95 0 ´28.37 0 0
0.002 0 ´0.235 0 5.67 0 ´0.921 ´6.51
0 1.0 0 ´1.0 0 ´0.168 0 0
0 0 ´1.0 0 ´0.196 0 ´0.0071 0

,
and the nonlinear part is defined by

φ(x) =


´0.727x2x3 + 8.39x3x4 ´ 684.4x4x5 + 63.5x4x2

0.949x1x3 + 0.173x1x5
´0.716x1x2 ´ 1.578x1x4 + 1.132x4x2

´x1x5
x1x4

.
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Introduction
Example (cont’d)
The first three variables x1, x2, x3, represent the rates of roll, pitch,
and yaw, respectively, while x4 is the incremental angle of attack
and x5 the sideslip angle. The last three variables x6, x7, x8 are the
controls; they represent the deflections of the elevator, aileron, and
rudder, respectively.

For a given choice of the control variables x6, x7, x8 we obtain a
system of 5 equations and 5 unknowns. If we wish to study the
behavior of the aircraft as the controls are changed, we need to
solve a system of nonlinear equations with unknowns x1, x2, ¨ ¨ ¨ , x5
for each setting of the controls.
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Introduction
Despite the similarities between nonlinear equations and unconstrained
and least-squares optimization algorithms, there are also some im-
portant differences. To obtain quadratic convergence in optimiza-
tion we require second derivatives of the objective function, whereas
knowledge of the first derivatives is sufficient in nonlinear equations.

Quasi-Newton methods are perhaps less useful in nonlinear equa-
tions than in optimization. In unconstrained optimization, the ob-
jective function is the natural choice of merit function that gauges
progress towards the solution, but in nonlinear equations various
merit functions can be used, all of which have some drawbacks.
Line search and trust-region techniques play an equally important
role in optimization, but one can argue that trust-region algorithms
have certain theoretical advantages in solving nonlinear equations.
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Chapter 11. Nonlinear Equations

Introduction
Some of the difficulties that arise in trying to solve nonlinear equa-
tions can be illustrated by a simple scalar example (n = 1). Suppose
we have

r (x) = sin(5x) ´ x , (2)

as plotted in Figure 1 (in the next slide). From the figure we see
that there are three solutions of the problem r (x) = 0, also known
as roots of r, located at zero and approximately ˘0.519148. This
situation of multiple solutions is similar to optimization problems
where, for example, a function may have more than one local mini-
mum. It is not quite the same, however: In the case of optimization,
one of the local minima may have a lower function value than the
others (making it a “better” solution), while in nonlinear equations
all solutions are equally good from a mathematical viewpoint.
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Introduction

Figure 1: The function r (x) = sin(5x) ´ x has three roots.
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Chapter 11. Nonlinear Equations

Introduction
In this chapter we start by outlining algorithms related to New-
ton’s method and examining their local convergence properties. Be-
sides Newton’s method itself, these include Broyden’s quasi-Newton
method, inexact Newton methods, and tensor methods. We then
address global convergence, which is the issue of trying to force
convergence to a solution from a remote starting point. Finally, we
discuss a class of methods in which an “easy” problem – one to
which the solution is well known – is gradually transformed into the
problem F(x) = 0. In these so-called continuation (or homotopy)
methods, we track the solution as the problem changes, with the
aim of finishing up at a solution of F(x) = 0.
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Chapter 11. Nonlinear Equations

Introduction
Throughout this chapter we make the assumption that the vector
function r is continuously differentiable in the region D containing
the values of x we are interested in. In other words, the Jacobian
J (x) exists and is continuous. We say that x˚ satisfying r (x˚) = 0

is a degenerate solution if J (x˚) is singular, and a non-degenerate
solution otherwise.
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§11.1 Local Algorithms
‚ Newton’s method for nonlinear equations
Recall from Taylor’s Theorem that Newton’s method for minimizing
f : Rn Ñ R forms a quadratic model function by taking the first three
terms of the Taylor series approximation of f around the current
iterate xk. The Newton step is the vector that minimizes this model.
In the case of nonlinear equations, Newton’s method is derived in
a similar way, but with a linear model, one that involves function
values and first derivatives of the functions rj(x), i = 1, 2, ¨ ¨ ¨ ,m at
the current iterate xk. We justify this strategy by referring to the
following multi-dimensional variant of Taylor’s theorem.
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§11.1 Local Algorithms
Theorem
Suppose that r : Rn Ñ Rn is continuously differentiable in some
convex open set D and that x and x + p are vectors in D. We then
have that

r (x + p) = r (x) +
ż 1

0

J (x + tp)p dt. (3)

We can define a linear model Mk(p) of r (xk + p) by approximating
the second term on the right-hand side of (3) by J (x)p, and writing

Mk(p) ” r (xk) + J (xk)p . (4)

Newton’s method, in its pure form, chooses the step pk to be the
vector for which Mk(pk) = 0; that is, pk = ´J (xk)

´1r (xk). We
define it formally as follows.
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Chapter 11. Nonlinear Equations

§11.1 Local Algorithms
Algorithm 11.1 (Newton’s Method for Nonlinear Equations).

Choose x0;
for k = 0, 1, 2, ¨ ¨ ¨

Calculate a solution pk to the Newton equations
J (xk)pk = ´r (xk); (5)

xk+1 Ð xk + pk;
end (for)

We use a linear model to derive the Newton step, rather than a
quadratic model as in unconstrained optimization, because the lin-
ear model normally has a solution and yields an algorithm with rapid
convergence properties. In fact, Newton’s method for unconstrained
optimization can be derived by applying Algorithm 11.1 to the non-
linear equations ∇f (x) = 0.
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Chapter 11. Nonlinear Equations

§11.1 Local Algorithms
Another connection is with the Gauss-Newton method for nonlinear
least squares; the formula (5) is equivalent to

J T
k Jk pGN

k = ´J T
k rk (23)10

in the usual case in which Jk = J (xk) is non-singular. When the
iterate xk is close to a non-degenerate root x˚, Newton’s method
converges superlinearly, as we show in the theorem stated later.
Potential shortcomings of the method include the following.

1 When x0 is far from x˚, Algorithm 11.1 can behave erratically.
When Jk is singular, the Newton step may not even be defined.

2 First-derivative information may be difficult to obtain.
3 It may be too expensive to find the exact Newton step pk.
4 The root x˚ in question may be degenerate; that is, J (x˚) may

be singular.
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Chapter 11. Nonlinear Equations

§11.1 Local Algorithms
An example of a degenerate problem is the scalar function r (x) = x 2,
which has a single degenerate root at x˚ = 0. Algorithm 11.1, when
started from any nonzero x0, generates the sequence of iterates
xk =

1

2k x0, which converges to the solution 0, but only at a linear
rate.

As we show later in this chapter, Newton’s method can be modified
and enhanced in various ways to get around most of these problems.
The variants we describe form the basis of much of the available
software for solving nonlinear equations.

We summarize the local convergence properties of Algorithm 11.1
in the following theorem.
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§11.1 Local Algorithms
Theorem
Suppose that r is continuously differentiable in a convex open set
D Ď Rn. Let x˚ P D be a non-degenerate solution of r (x) = 0, and
let txku be the sequence of iterates generated by Algorithm 11.1.
Then when xk P D is sufficiently close to x˚, we have

}xk+1 ´ x˚} = o(}xk ´ x˚}) , (6)

indicating local Q-superlinear convergence. If in addition r is Lips-
chitz continuously differentiable in a neighborhood N of x˚; that is,

}∇r (x0) ´ ∇r (x1)} ď βL}x0 ´ x1} @ x0, x1 P N

for some βL ą 0, we have for all xk sufficiently close to x˚ that
}xk+1 ´ x˚} = O(}xk ´ x˚}2) , (7)

indicating local Q-quadratic convergence.
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§11.1 Local Algorithms
Proof.
Since r (x˚) = 0, we have from the previous theorem that

r (xk) = r (xk) ´ r (x˚) = J (xk)(xk ´ x˚) + w(xk, x˚) ,

where J is the Jacobian of r (that is, J = ∇r) and

w(xk, x˚) =
ż 1

0

[
J (x˚ + t(xk ´ x˚)) ´ J (xk)

]
(xk ´ x˚) dt .

Note that Newton’s direction pk satisfies J (xk)pk = ´rk. By the
fact that J (xk) is non-singular for sufficient large k, we have

´pk = (xk ´ x˚) + J (xk)
´1w(xk, x˚) @ k " 1 ;

thus rearranging terms we obtain
xk + pk ´ x˚ = ´J (xk)

´1w(xk, x˚) @ k " 1 . (8)

Next we estimate J ´1 and w in order to conclude (6) and (7). ˝
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Proof (cont’d).
By the property of integrals,

}w(xk, x˚)} =

›

›

›

›

ż 1

0

[
J (x˚ + t(xk ´ x˚)) ´ J (xk)

]
(xk ´ x˚)dt

›

›

›

›

ď

ż 1

0

}J (x˚ + t(xk ´ x˚)) ´ J (xk)}}xk ´ x˚} dt .

Therefore, by the continuous differentiability of r in D,
}w(xk, x˚)} = o(}xk ´ x˚}) . (9)

If in addition that r is Lipschitz continuously differentiable in a neigh-
borhood of x˚, the inequality above implies that

}w(xk, x˚)} ď

ż 1

0

βL(1 ´ t)}xk ´ x˚}2 dt = βL
2

}xk ´ x˚}2 @ k " 1 ,

giving the result
}w(xk, x˚)} = O(}xk ´ x˚}2) . (10)̋
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§11.1 Local Algorithms
Proof (cont’d).
Moreover, since J (x˚) is non-singular and D is open, there is a radius
δ ą 0 and a positive constant β˚ such that B[x˚, δ] Ď D and

}J (x)´1
} ď β˚ @ x P B[x˚, δ] . (11)

Therefore, for k " 1 so that xk P B[x˚, δ] and J (xk) is non-singular,
using (8), (9) and (11) we obtain

}xk+1 ´ x˚} = o(}xk ´ x˚}) ,

yielding desired estimate (6). Moreover, if in addition r is Lipschitz
continuously differentiable in a neighborhood of x˚, using (8), (10)
and (11) we obtain

}xk+1 ´ x˚} = O(}xk ´ x˚}2) ,

yielding desired estimate (7). ˝
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Proof (cont’d).
Moreover, since J (x˚) is non-singular and D is open, there is a radius
δ ą 0 and a positive constant β˚ such that B[x˚, δ] Ď D and

}J (x)´1
} ď β˚ @ x P B[x˚, δ] . (11)

Therefore, for k " 1 so that xk P B[x˚, δ] and J (xk) is non-singular,
using (8), (9) and (11) we obtain

}xk+1 ´ x˚} = o(}xk ´ x˚}) ,

yielding desired estimate (6). Moreover, if in addition r is Lipschitz
continuously differentiable in a neighborhood of x˚, using (8), (10)
and (11) we obtain

}xk+1 ´ x˚} = O(}xk ´ x˚}2) ,

yielding desired estimate (7). ˝
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Proof (cont’d).
Moreover, since J (x˚) is non-singular and D is open, there is a radius
δ ą 0 and a positive constant β˚ such that B[x˚, δ] Ď D and
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using (8), (9) and (11) we obtain

}xk+1 ´ x˚} = o(}xk ´ x˚}) ,

yielding desired estimate (6). Moreover, if in addition r is Lipschitz
continuously differentiable in a neighborhood of x˚, using (8), (10)
and (11) we obtain

}xk+1 ´ x˚} = O(}xk ´ x˚}2) ,

yielding desired estimate (7). ˝
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‚ Inexact Newton method
Instead of solving

J (xk)pk = ´r (xk) (5)

exactly, inexact Newton methods use search directions pk that satisfy
the condition

}rk + Jkpk} ď ηk}rk} for some ηk P [0, η] , (12)

where η P [0, 1) is a constant. As in Chapter 7, we refer to tηku as
the forcing sequence. Different methods make different choices of
the forcing sequence, and they use different algorithms for finding
the approximate solutions pk. The general framework for this class
of methods can be stated as follows.
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Framework 11.2 (Inexact Newton for Nonlinear Equations).

Given η P [0, 1);
Choose x0;
for k = 0, 1, 2, ¨ ¨ ¨

Choose forcing parameter ηk P [0, η];
Find a vector pk that satisfies

}rk + Jkpk} ď ηk}rk} (12)
xk+1 Ð xk + pk;

end (for)
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The convergence theory for these methods depends only on the con-
dition (12) and not on the particular technique used to calculate pk.
The most important methods in this class, however, make use of iter-
ative techniques for solving linear systems of the form Jp = ´r, such
as GMRES (Saad and Schultz [273], Walker [302]) or other Krylov
space methods. Like the conjugate-gradient algorithm of Chapter
5 (which is not directly applicable here, since the coefficient ma-
trix J is not symmetric positive definite), these methods typically
require us to perform a matrix-vector multiplication of the form Jd
for some d at each iteration, and to store a number of work vectors
of length n. GMRES requires an additional vector to be stored at
each iteration, so must be restarted periodically (often every 10 or
20 iterations) to keep memory requirements at a reasonable level.
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The matrix-vector products Jd can be computed without explicit
knowledge of the Jacobian J. A finite-difference approximation to
Jd that requires one evaluation of r is given by the formula (8.11).
Calculation of Jd exactly (at least, to within the limits of finite-
precision arithmetic) can be performed by using the forward mode
of automatic differentiation, at a cost of at most a small multiple of
an evaluation of r. Details of this procedure are given in Section 8.2.
We do not discuss the iterative methods for sparse linear systems
here, but refer the interested reader to Kelley [177] and Saad [272]
for comprehensive descriptions and implementations of the most in-
teresting techniques. We prove a local convergence theorem for the
method, similar to the previous theorem.
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Theorem
Suppose that r is continuously differentiable in a convex open set
D Ď Rn. Let x˚ P D be a non-degenerate solution of r (x) = 0,
and let txku be the sequence of iterates generated by Framework
11.2. Then when xk P D is sufficiently close to x˚, the following
statements are true:

1 If η in Framework 11.2 is sufficiently small, the convergence of
txku to x˚ is Q-linear.

2 If ηk Ñ 0, the convergence is Q-superlinear.
3 If, in addition, J is Lipschitz continuous in a neighborhood of

x˚ and ηk = O(}rk}), the convergence is Q-quadratic.
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Proof.
We first rewrite (12) as

J (xk)pk + r (xk) = vk , where }vk} ď ηk}r (xk)} . (13)

Since x˚ is a non-degenerate root, we have as in (11) that there is
a radius δ ą 0 and a constant β˚ such that

}J (x)´1
} ď β˚ @ x P B[x˚, δ] .

By multiplying both sides of (13) by J (xk)
´1 and rearranging,

›

›pk + J (xk)
´1r (xk)

›

› =
›

›J (xk)
´1vk

›

› ď β˚ηk}r (xk)} . (14)

As in the proof of the previous theorem, we have that

r (x) = J (x)(x ´ x˚) + w(x, x˚) , (15)

where ρ (x) ” }w(x, x˚)}/}x ´ x˚} Ñ 0 as x Ñ x˚. ˝
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Proof (cont’d).
By reducing δ if necessary, we have from this expression that the
following bound holds for all x P B[x˚, δ]:

}r (x)} ď 2}J (x˚)}}x ´ x˚}+ o(}x ´ x˚}) ď 4}J (x˚)}}x ´ x˚} . (16)

We now set x = xk in (15), and use (14) and (16) to obtain

}xk + pk ´ x˚} =
›

›pk + J (xk)
´1(r (xk) ´ w(xk, x˚))

›

›

ď β˚ηk}r (xk)} +
›

›J (xk)
´1

›

›}w(xk, x˚)}

ď
[
4}J (x˚)}β˚ηk + β˚ρ(xk)

]
}xk ´ x˚} . (17)

By choosing xk close enough to x˚ that ρ(xk) ď 1/(4β˚), and choos-
ing η = 1/(16}J (x˚)}β˚), we have that the term in brackets in (17)
is at most 1/2. Hence, since xk+1 = xk + pk, this formula indicates
Q-linear convergence of txku to x˚, proving 1⃝. ˝
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Proof (cont’d).
Since ρ(xk) Ñ 0 as xk Ñ x˚, 2⃝ follows immediately from the fact
that the term in brackets in

}xk + pk ´ x˚} ď
[
4}J (x˚)}β˚ηk + β˚ρ(xk)

]
}xk ´ x˚} (17)

approaches to zero as xk Ñ x˚ and ηk Ñ 0. For 3⃝, as in the proof
of the previous theorem the Lipschitz continuous differentiability of
r implies that

}w(xk, x˚)} = O(}xk ´ x˚}2) .

If ηk = O(}rk}), using (16) we conclude that ηk = O(}xk ´ x˚});
thus (17) shows that

}xk+1 ´ x˚} = O(}xk ´ x˚}2) ;

thus proving quadratic convergence. ˝
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Proof (cont’d).
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‚ Broyden’s method
Secant methods, also known as quasi-Newton methods, do not re-
quire calculation of the Jacobian J (x). Instead, they construct their
own approximation to this matrix, updating it at each iteration so
that it mimics the behavior of the true Jacobian J over the step just
taken. The approximate Jacobian, which we denote at iteration k
by Bk, is then used to construct a linear model analogous to (4),
namely

Mk(p) = r (xk) + Bkp . (18)

We obtain the step by setting this model to zero. When Bk is non-
singular, we have the following explicit formula (cf. (5)):

pk = ´B´1
k r (xk) . (19)
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The requirement that the approximate Jacobian should mimic the
behavior of the true Jacobian can be specified as follows. Let sk and
yk be defined by

sk = xk+1 ´ xk , yk = r (xk+1) ´ r (xk) . (20)

From Taylor’s Theorem, sk and yk are related by the expression

yk =
ż 1

0

J (xk + tsk)skdt « J (xk+1)sk + o(}sk}) . (21)

We require the updated Jacobian approximation Bk+1 to satisfy the
following equation, which is known as the secant equation,

yk = Bk+1sk , (22)

which ensures that Bk+1 and J (xk+1) have similar behavior along
the direction sk.
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The secant equation does not say anything about how Bk+1 should
behave along directions orthogonal to sk. In fact, we can view (22)
as a system of n linear equations in n2 unknowns, where the un-
knowns are the components of Bk+1, so for n ą 1 the equation (22)
does not determine all the components of Bk+1 uniquely (the scalar
case of n = 1 gives rise to the scalar secant method). The most
successful practical algorithm is Broyden’s method, for which the
update formula is

Bk+1 = Bk +
(yk ´ Bksk)sT

k
sT
k sk

. (23)

The Broyden update makes the smallest possible change to the Ja-
cobian (as measured by the Euclidean norm }Bk ´ Bk+1}2) that is
consistent with (22), as we show in the lemma in the next slide.
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Lemma
Among all matrices B satisfying Bsk = yk, matrix Bk+1 defined by

Bk+1 = Bk +
(yk ´ Bksk)sT

k
sT
k sk

(23)

minimizes the difference }B ´ Bk}.

Proof.
Let B be any matrix that satisfies Bsk = yk. By the fact that
›

›ssT/sTs
›

› = 1 for any vector s, we have

}Bk+1 ´ Bk} =
›

›

›

(yk ´ Bksk)sT
k

sT
k sk

›

›

›
=

›

›

›

(B ´ Bk)sksT
k

sT
k sk

›

›

›

ď }B ´ Bk}

›

›

›

sksT
k

sT
k sk

›

›

›
= }B ´ Bk}.

Therefore, Bk+1 P argmin
B : yk = Bsk

}B ´ Bk}, and the result is proved. ˝
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In the specification of the algorithm below, we allow a line search
to be performed along the search direction pk, so that sk = αpk for
some α ą 0 in the formula (20).
Algorithm 11.3 (Broyden).

Choose x0 and a non-singular initial Jacobian approximation B0;
for k = 0, 1, 2, ¨ ¨ ¨

Calculate a solution pk to the linear equations
Bk pk = ´r (xk) ; (24)

Choose αk by performing a line search along pk;
xk+1 Ð xk + αkpk;
sk Ð xk+1 ´ xk;
yk Ð r (xk+1) ´ r (xk);
Obtain Bk+1 from the formula (23);

end (for)
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Under certain assumptions, Broyden’s method converges superlin-
early. This local convergence rate is fast enough for most practical
purposes, though not as fast as the Q-quadratic convergence of New-
ton’s method. We illustrate the difference between the convergence
rates of Newton’s and Broyden’s method with a small example. The
function r : R2 Ñ R2 defined by

r (x) =
[

(x1 + 3)(x 3
2 ´ 7) + 18

sin(x2e x1 ´ 1)

]
(25)

has a non-degenerate root at x˚ = (0, 1)T. We start both methods
from the point x0 = (´0.5, 1.4)T, and use the exact Jacobian J (x0)
at this point as the initial Jacobian approximation B0. Results are
shown in Table 11.1.
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Newton’s method clearly exhibits Q-quadratic convergence, which is
characterized by doubling of the exponent of the error at each itera-
tion. Broyden’s method takes twice as many iterations as Newton’s,
and reduces the error at a rate that accelerates slightly towards the
end.
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The function norms }r (xk)} approach zero at a similar rate to the
iteration errors }xk ´ x˚}. As in
r (xk) = r (xk)´ r (x˚)

= J (xk)(xk ´x˚)+
ż 1

0

[
J (x˚ + t(xk ´x˚))´J (xk)

]
(xk ´x˚) dt ,

we have that

r (xk) = r (xk) ´ r (x˚) « J (x˚)(xk ´ x˚) ,

so by non-singularity of J (x˚), the norms of r (xk) and (xk ´ x˚) are
bounded above and below by multiples of each other. For our ex-
ample problem (25), convergence of the sequence of function norms
in the two methods is shown in Table 11.2.
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The convergence analysis of Broyden’s method is more complicated
than that of Newton’s method. We state the following result without
proof.
Theorem
Suppose that r is continuously differentiable in a convex open set
D Ď Rn. Let x˚ P D be a non-degenerate solution of r (x) = 0.
Then there are positive constants ε and δ such that if the starting
point x0 and the starting approximate Jacobian B0 satisfy

}x0 ´ x˚} ď δ and }B0 ´ J (x˚)} ď ε , (26)

the sequence txku generated by Broyden’s method is well-defined
and converges Q-superlinearly to x˚.
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The second condition }B0 ´J (x˚)} ď ε in (26) is difficult to guaran-
tee in practice. In contrast to the case of unconstrained minimiza-
tion, a good choice of B0 can be critical to the performance of the
algorithm. Some implementations of Broyden’s method recommend
choosing B0 to be J (x0), or some finite-difference approximation to
this matrix.

The Broyden matrix Bk will be dense in general, even if the true
Jacobian J is sparse. Therefore, when n is large, an implementation
of Broyden’s method that stores Bk as a full n ˆ n matrix may be
inefficient. Instead, we can use limited-memory methods in which
Bk is stored implicitly in the form of a number of vectors of length n,
while the system (24) is solved by a technique based on application
of the Sherman-Morrison-Woodbury formula.
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‚ Tensor methods
In tensor methods, the linear model Mk(p) used by Newton’s method
(4) is augmented with an extra term that aims to capture some of the
nonlinear, higher-order, behavior of r. By doing so, it achieves more
rapid and reliable convergence to degenerate roots, in particular, to
roots x˚ for which the Jacobian J (x˚) has rank n ´ 1 or n ´ 2. We
give a broad outline of the method here, and refer to Schnabel and
Frank [277] for details.
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We use pMk(p) to denote the model function on which tensor meth-
ods are based; this function has the form

pMk(p) = r (xk) + J (xk)p +
1

2
Tk(p, p) , (27)

where Tk is a tensor defined by n3 elements (Tk)ijℓ whose action on
a pair of arbitrary vectors u and v in Rn is defined by[

Tk(u, v)
]

i = the i-th component of Tk(u, v)

=
n

ÿ

j=1

n
ÿ

ℓ=1

(Tk)ijℓujvℓ .

If we followed the reasoning behind Newton’s method, we could
consider building Tk from the second derivatives of r at the point
xk; that is,

(Tk)ijℓ =
[
∇2ri(xk)

]
jℓ .
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However, use of the exact second derivatives is not practical in most
instances. If we were to store this information explicitly, about n3/2
memory locations would be needed, about n times the requirements
of Newton’s method. Moreover, there may be no vector p for which
pMk(p) = 0, so the step may not even be defined.

Instead, the approach described in [277] defines Tk in a way that
requires little additional storage, but which gives pMk some poten-
tially appealing properties. Specifically, Tk is chosen so that pMk(p)
interpolates the function r (xk + p) at some previous iterates visited
by the algorithm. That is, we require that

pMk(xk´j ´ xk) = r (xk´j) for j = 1, 2, ¨ ¨ ¨ , q, (28)

for some integer q ą 0.
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By substituting from (27), we see that Tk must satisfy the condition

1

2
Tk(sjk, sjk) = r (xk´j) ´ r (xk) ´ J (xk)sjk,

where
sjk ” xk´j ´ xk , for j = 1, 2, ¨ ¨ ¨ , q.

In [277] it is shown that this condition can be ensured by choosing
Tk so that its action on arbitrary vectors u and v is

Tk(u, v) =
q

ÿ

j=1

aj(sT
jku)(sT

jkv) ,

where aj, j = 1, 2, ¨ ¨ ¨ , q, are vectors of length n. The number of
interpolating points q is typically chosen to be quite modest, usually
less than

?
n. This Tk can be stored in 2nq locations, which contain

the vectors aj and sjk for j = 1, 2, ¨ ¨ ¨ , q.
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This technique can be refined in various ways. The points of in-
terpolation can be chosen to make the collection of directions sjk

more linearly independent. There may still not be a vector p for
which pMk(p) = 0, but we can instead take the step to be the vector
that minimizes } pMk(p)}2, which can be found by using a special-
ized least-squares technique. There is no assurance that the step
obtained in this way is a descent direction for the merit function
1

2
}r (x)}2 (which is discussed in the next section), and in this case

it can be replaced by the standard Newton direction ´J ´1
k rk.
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We now consider practical variants of the Newton-like methods dis-
cussed above, in which line-search and trust-region modifications to
the steps are made in order to ensure better global convergence be-
havior.
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‚ Merit functions
As mentioned above, neither Newton’s method (5) nor Broyden’s
method (19), (23) with unit step lengths can be guaranteed to con-
verge to a solution of r (x) = 0 unless they are started close to
that solution. Sometimes, components of the unknown or function
vector or the Jacobian will blow up. Another, more exotic, kind of
behavior is cycling, where the iterates move between distinct regions
of the parameter space without approaching a root. An example is
the scalar function

r (x) = −x 5 + x 3 + 4x ,
which has five non-degenerate roots. When started fromthe point
x0 = 1, Newton’s method produces a sequence of iterates that
oscillates between 1 and −1 without converging to any of the roots.
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The Newton and Broyden methods can be made more robust by us-
ing line-search and trust-region techniques similar to those described
in Chapters 3 and 4. Before describing these techniques, we need to
define a merit function, which is a scalar-valued function of x that
indicates whether a new iterate is better or worse than the current
iterate, in the sense of making progress toward a root of r. In un-
constrained optimization, the objective function f is itself a natural
merit function; most algorithms for minimizing f require a decrease
in f at each iteration. In nonlinear equations, the merit function is
obtained by combining the n components of the vector r in some
way.
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The most widely used merit function is the sum of squares, defined
by

f (x) = 1

2
}r (x)}2 = 1

2

n
ÿ

j=1

r 2j (x) . (29)

Here we remark that the factor 1/2 is introduced for convenience.
Any root x˚ of r obviously has f (x˚) = 0, and since f (x) ě 0 for all
x, each root is a minimizer of f . However, local minimizers of f are
not roots of r if f is strictly positive at the point in question. Still,
the merit function given by (29) has been used successfully in many
applications and is implemented in a number of software packages.
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Figure 2: Plot of 1

2

[
sin(5x)−x

]2, showing its many local minima.
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The merit function for the example r (x) = sin(5x) ´ x is plotted in
Figure 2. It shows three local minima corresponding to the three
roots, but there are many other local minima (for example, those at
around ˘1.53053). Local minima like these that are not roots of f
satisfy an interesting property. Since

∇f (x˚) = J (x˚)
Tr (x˚) = 0 , (30)

we can have r (x˚) ‰ 0 only if J (x˚) is singular.

Since local minima for the sum-of-squares merit function may be
points of attraction for the algorithms described in this section,
global convergence results for the algorithms discussed here are less
satisfactory than for similar algorithms applied to unconstrained op-
timization.
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Other merit functions are also used in practice. One such is the ℓ1

norm merit function defined by

f1(x) = }r (x)}1 =
m

ÿ

j=1

|rj(x)| .

This function is studied in Chapters 17 and 18 in the context of
algorithms for constrained optimization.

In the rest of Section 11.2, the minimization algorithms introduced
in Chapter 3 and 4, including line search method and trust-region
methods, are used to solve for nonlinear equations (or zeros of merit
functions). The theory behind these algorithms are more or less
identical to those we have seen in Chapter 3 and 4, and we omit
here.
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‚ Motivation
如前所述，基於牛頓的方法都有一個缺點：除非在感興趣的區域

內 J (x)是 non-singular的，否則它們有可能收斂到 merit function
的相對極小值，而不是非線性系統的解。在本節中我們介紹的連

續法更有可能在複雜情況下收斂到 r (x) = 0 的解。它們的基本

動機很容易描述：與其直接處理原始問題 r (x) = 0，我們建立一

個相對簡單的方程系統（求其解是簡單的）。然後，我們逐漸將

這個簡單系統轉換為原始系統 r (x)，並隨著解從簡單問題的解移
動到原始問題的解。
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One simple way to define the so-called homotopy map H(x, λ) is as
follows:

H(x, λ) = λr (x) + (1 ´ λ)(x ´ a) , (31)

where λ is a scalar parameter and a P Rn is a fixed vector. When
λ = 0, (31) defines the artificial, easy problem H(x, 0) = x´a, whose
solution is obviously x = a. When λ = 1, we have H(x, 1) = r (x),
the original system of equations. To solve r (x) = 0, consider the
following algorithm: First, set λ = 0 in (31) and set x = a. Then,
increase λ from 0 to 1 in small increments, and for each value of λ,
calculate the solution of the system H(x, λ) = 0. The final value of
x corresponding to λ = 1 will solve the original problem r (x) = 0.
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This naive approach sounds plausible, and Figure 3 illustrates a situ-
ation in which it would be successful. In this figure, there is a unique
solution x of the system H(x, λ) = 0 for each value of λ in the range
[0, 1]. The trajectory of points (x, λ) for which H(x, λ) = 0 is called
the zero path.

Figure 3: Plot of a zero path: Trajectory of points (x, λ) with H(x, λ) = 0.
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Unfortunately, however, the approach often fails, as illustrated in
Figure 4. Here, the algorithm follows the lower branch of the curve
from λ = 0 to λ = λT, but it then loses the trail unless it is lucky
enough to jump to the top branch of the path. The value λT is
known as a turning point, since at this point we can follow the path
smoothly only if we no longer insist on increasing λ at every step.
In fact, practical continuation methods work by doing exactly as
Figure 4 (in the next slide) suggests; that is, they follow the zero
path explicitly, even if this means allowing λ to decrease from time
to time.
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Figure 4: Zero path with turning points. The path joining (a, 0) to (x˚, 1)

cannot be followed by increasing λ monotonically from 0 to 1.
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‚ Practical continuation methods
In one practical technique, we model the zero path by allowing both
x and λ to be functions of an independent variable s that represents
arc length along the path; that is, (x(s), λ(s)) is the point that we
arrive at by traveling a distance s along the path from the initial
point (x(0), λ(0)) = (a, 0). Because we have that

H(x(s), λ(s)) = 0 @ s ě 0 ,

we can take the total derivative of this expression with respect to s
to obtain

B

BxH(x, λ)ẋ +
B

Bλ
H(x, λ)λ̇ = 0 , where (ẋ , λ̇) =

(dx
ds ,

dλ
ds

)
. (32)
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The vector (ẋ(s), λ̇(s)) is the tangent vector to the zero path, as we
illustrate in Figure 4. From (32), we see that this vector lies in the
null space of the n ˆ (n + 1) matrix[

B

BxH(x, λ) B

Bλ
H(x, λ)

]
. (33)

When this matrix has full rank, its null space has dimension 1, so
to complete the definition of (ẋ , λ̇) in this case, we need to assign
it a length and direction. The length is fixed by imposing the nor-
malization condition

}ẋ(s)}2 + }λ̇(s)}2 = 1 @ s ě 0 (34)

which ensures that s is the true arc length along the path from (0, a)
to (x(s), λ(s)).
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We need to choose the sign to ensure that we keep moving forward
along the zero path. A heuristic that works well is to choose the sign
so that the tangent vector (ẋ , λ̇) at the current value of s makes an
angle of less than π/2 with the tangent point at the previous value
of s.
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We can outline the complete procedure for computing (ẋ , λ̇) as fol-
lows:
Procedure 11.7 (Tangent Vector Calculation).

Compute a vector in the null space of (33) by performing a QR
factorization with column pivoting,

QT
[

B

BxH(x, λ) B

Bλ
H(x, λ)

]
Π =

[
R w

]
,

where Q is n ˆ n orthogonal, R is n ˆ n upper triangular, Π is
an (n + 1) ˆ (n + 1) permutation matrix, and w P Rn.

Set
v = Π

[
R ´1w

´1

]
;

Set (ẋ , λ̇) = ˘v/}v}, where the sign is chosen to satisfy the angle
criterion mentioned above.
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Since we can obtain the tangent at any given point (x, λ) and since
we know the initial point (x(0), λ(0)) = (a, 0), we can trace the
zero path by calling a standard initial-value first-order ordinary dif-
ferential equation solver (such as ode45 in matlab®), terminating
the algorithm when it finds a value of s for which λ(s) = 1.
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A second approach for following the zero path is quite similar to
the one just described, except that it takes an algebraic viewpoint
instead of a differential-equations viewpoint. Given a current point
(x, λ), we compute the tangent vector (ẋ , λ̇) as above, and take
a small step (of length ε, say) along this direction to produce a
“predictor” point (x P, λP ); that is,

(x P, λP ) = (x, λ) + ε(ẋ , λ̇) .

Usually, this new point will not lie exactly on the zero path, so
we apply some “corrector” iterations to bring it back to the path,
thereby identifying a new iterate (x+, λ+) that satisfies H(x+, λ+) =
0. This process is illustrated in Figure 5 in the next slide.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 11. Nonlinear Equations

§11.3 Continuation/Homotopy Methods
A second approach for following the zero path is quite similar to
the one just described, except that it takes an algebraic viewpoint
instead of a differential-equations viewpoint. Given a current point
(x, λ), we compute the tangent vector (ẋ , λ̇) as above, and take
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Figure 5: The algebraic predictor-corrector procedure, using λ as the fixed
variable in the correction process.
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During the corrections, we choose a component of the predictor step
(x P, λP ) – one of the components that has been changing most
rapidly during the past few steps – and hold this component fixed
during the correction process. If the index of this component is
j, and if we use a pure Newton corrector process (often adequate,
since (x P, λP ) is usually quite close to the target point (x+, λ+)),
the steps will have the form BH

Bx
BH
Bλ

eT
j

[
δx
δλ

]
=

[
´H
0

]
,

where the quantities BH/Bx, BH/Bλ, and H are evaluated at the
latest point of the corrector process.
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The last row of this system serves to fix the j-th component of
(δx, δλ) at zero; the vector ej P Rn+1 is a vector with n + 1 com-
ponents containing all zeros, except for a 1 in the location j that
corresponds to the fixed component. Note that in Figure 5 the λ

component is chosen to be fixed on the current iteration. On the
following iteration, it may be more appropriate to choose x as the
fixed component, as we reach the turning point in λ.

The two variants on path-following described above are able to follow
curves like those depicted in Figure 4 to a solution of the nonlinear
system. They rely, however, on the nˆ(n+1) matrix in (33) having
full rank for all (x, λ) along the path, so that the tangent vector is
well-defined. The following result shows that full rank is guaranteed
under certain assumptions.
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Theorem
Suppose that r is twice continuously differentiable. Then for almost
all vectors a P Rn, there is a zero path emanating from (0, a) along
which the n ˆ (n + 1) matrix[

B

BxH(x, λ) B

Bλ
H(x, λ)

]
(33)

has full rank. If this path is bounded for λ P [0, 1), then it has
an accumulation point (sx, 1) such that r (sx) = 0. Furthermore, if
the Jacobian J (sx) is non-singular, the zero path between (a, 0) and
(sx, 1) has finite arc length.

The theorem assures us that unless we are unfortunate in the choice
of a, the algorithms described above can be applied to obtain a path
that either diverges or else leads to a point sx that is a solution of
the original nonlinear system if J (sx) is non-singular.
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We conclude with an example to show that divergence of the zero
path – the less desirable outcome of the theorem above – can happen
even for innocent-looking problems.

Example
Consider the system r (x) = x 2 ´ 1, for which there are two non-
degenerate solutions +1 and ´1. Suppose we choose a = ´2 and
attempt to apply a continuation method to the function

H(x, λ) = λ(x 2 ´ 1) + (1 ´ λ)(x+ 2) = λx 2 + (1 ´ λ)x+ (2 ´ 3λ),

obtained by substituting into (31). The zero paths for this function
are plotted in Figure 6. As can be seen from that diagram, there
is no zero path that joins (´2, 0) to either (1, 1) or (´1, 1), so the
continuation methods fail on this example.
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§11.3 Continuation/Homotopy Methods
Example (cont’d)

Figure 6: Zero paths for the example. There is no continuous zero path
from λ = 0 to λ = 1.
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Chapter 11. Nonlinear Equations

§11.3 Continuation/Homotopy Methods
Example (cont’d)
Using the formula for a quadratic root, for a fixed λ the solution to

H(x, λ) = λx 2 + (1 ´ λ)x + (2 ´ 3λ) = 0

is given by

x =
´(1 ´ λ) ˘

a

(1 ´ λ)2 ´ 4λ(2 ´ 3λ)

2λ
.

Now, when the term in the square root is negative, the corresponding
values of x are complex; that is, there are no real roots x. It is easy
to verify that such is the case when

λ P

(
5 ´ 2

?
3

13
,
5 + 2

?
3

13

)
« (0.118, 0.651) .

Note that the zero path starting from (´2, 0) becomes unbounded,
which is one of the possible outcomes of the theorem just stated.
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Chapter 11. Nonlinear Equations

§11.3 Continuation/Homotopy Methods
This example indicates that continuation methods may fail to pro-
duce a solution even to a fairly simple system of nonlinear equa-
tions. However, it is generally true that the Homotopy methods are
more reliable than the merit-function methods described earlier in
the chapter. The extra robustness comes at a price, since contin-
uation methods typically require significantly more computational
effort than the merit-function methods.
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