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Chapter 6. Quasi-Newton Methods

Introduction
In the mid 1950s, W.C. Davidon, a physicist working at Argonne
National Laboratory, was using the coordinate descent method (see
Section 9.3) to perform a long optimization calculation. At that
time computers were not very stable, and to Davidon’s frustration,
the computer system would always crash before the calculation was
finished. So Davidon decided to find a way of accelerating the itera-
tion. The algorithm he developed – the first quasi-Newton algorithm
– turned out to be one of the most creative ideas in nonlinear op-
timization. It was soon demonstrated by Fletcher and Powell that
the new algorithm was much faster and more reliable than the other
existing methods, and this dramatic advance transformed nonlinear
optimization overnight.
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Introduction
During the following twenty years, numerous variants were proposed
and hundreds of papers were devoted to their study. An interesting
historical irony is that Davidon’s paper [87] was not accepted for
publication; it remained as a technical report for more than thirty
years until it appeared in the first issue of the SIAM Journal on
Optimization in 1991 [88].

Quasi-Newton methods, like steepest descent, require only the gra-
dient of the objective function to be supplied at each iterate. By
measuring the changes in gradients, they construct a model of the
objective function that is good enough to produce superlinear con-
vergence. The improvement over steepest descent is dramatic, es-
pecially on difficult problems.
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Chapter 6. Quasi-Newton Methods

Introduction
Moreover, since second derivatives are not required, quasi-Newton
methods are sometimes more efficient than Newton’s method. To-
day, optimization software libraries contain a variety of quasi-Newton
algorithms for solving unconstrained, constrained, and large-scale
optimization problems. In this chapter we discuss quasi-Newton
methods for small and medium-sized problems, and in Chapter 7 we
consider their extension to the large-scale setting.

The development of automatic differentiation techniques has made
it possible to use Newton’s method without requiring users to sup-
ply second derivatives; see Chapter 8. Still, automatic differenti-
ation tools may not be applicable in many situations, and it may
be much more costly to work with second derivatives in automatic
differentiation software than with the gradient. For these reasons,
quasi-Newton methods remain appealing.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
The most popular quasi-Newton algorithm is the BFGS method,
named for its discoverers Broyden, Fletcher, Goldfarb, and Shanno.
In this section we derive this algorithm (and its close relative, the
DFP algorithm) and describe its theoretical properties and practical
implementation.

We begin the derivation by forming the following quadratic model
of the objective function at the current iterate xk:

mk(p) = fk +∇f T
k p +

1

2
pTBk p . (1)

Here Bk is an n ˆ n symmetric positive definite matrix that will be
revised or updated at every iteration. Note that the function value
and gradient of this model at p = 0 match fk and ∇fk, respectively.
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§6.1 The BFGS Method
The minimizer pk of this convex quadratic model, which we can
write explicitly as

pk = ´B´1
k ∇fk , (2)

is used as the search direction, and the new iterate is

xk+1 = xk + αkpk , (3)

where the step length αk is chosen to satisfy the Wolfe conditions.
This iteration is quite similar to the line search Newton method; the
key difference is that the approximate Hessian Bk is used in place of
the true Hessian.
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§6.1 The BFGS Method
Instead of computing Bk afresh at every iteration, Davidon proposed
to update it in a simple manner to account for the curvature mea-
sured during the most recent step. Suppose that we have generated
a new iterate xk+1 and wish to construct a new quadratic model, of
the form

mk+1(p) = fk+1 +∇f T
k+1p +

1

2
pTBk+1p .

What requirements should we impose on Bk+1, based on the knowl-
edge gained during the latest step? One reasonable requirement is
that the gradient of mk+1 should match the gradient of the objective
function f at the latest two iterates xk and xk+1. Since ∇mk+1(0)

is precisely ∇fk+1, the second of these conditions is satisfied auto-
matically. The first condition can be written mathematically as

∇mk+1(´αkpk) = ∇fk+1 ´ αkBk+1pk = ∇fk .
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
By rearranging, we obtain

Bk+1αkpk = ∇fk+1 ´ ∇fk . (4)
To simplify the notation it is useful to define the vectors

sk = xk+1 ´ xk = αkpk , yk = ∇fk+1 ´ ∇fk , (5)
so that (4) becomes

Bk+1sk = yk . (6)
We refer to this formula as the secant equation.

Given the displacement sk and the change of gradients yk, the secant
equation requires that the symmetric positive definite matrix Bk+1

map sk into yk. This will be possible only if sk and yk satisfy the
curvature condition

sT
k yk ą 0 , (7)

as is easily seen by premultiplying (6) by sT
k .
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§6.1 The BFGS Method
When f is strongly convex, the inequality

sT
k yk ą 0 (7)

will be satisfied for any two points xk and xk+1. However, this
condition will not always hold for non-convex functions, and in this
case we need to enforce (7) explicitly, by imposing restrictions on
the line search procedure that chooses the step length α. In fact, the
condition (7) is guaranteed to hold if we impose the Wolfe conditions
or strong Wolfe conditions on the line search. To verify this claim, we
note from (5) and the curvature condition that ∇f T

k+1sk ě c2∇f T
k sk,

and therefore
yT

k sk ě (c2 ´ 1)αk∇f T
k pk . (8)

Since c2 ă 1 and since pk is a descent direction, the term on the
right is positive, and the curvature condition (7) holds.
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§6.1 The BFGS Method
When the curvature condition is satisfied, the secant equation (6)
always has a solution Bk+1. In fact, it admits an infinite number

of solutions, since the n(n + 1)

2
degrees of freedom in a symmetric

positive definite matrix exceed the n conditions imposed by the se-
cant equation. The requirement of positive definiteness imposes n
additional inequalities – all principal minors must be positive – but
these conditions do not absorb the remaining degrees of freedom.
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§6.1 The BFGS Method
To determine Bk+1 uniquely, we impose the additional condition that
among all symmetric matrices satisfying the secant equation, Bk+1

is, in some sense, closest to the current matrix Bk. In other words,
we solve the problem

min
B

}B ´ Bk} subject to B = BT and Bsk = yk , (9)

where sk and yk satisfy
sT
k yk ą 0 (7)

and Bk is symmetric and positive definite.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Different matrix norms can be used in (9), and each norm gives
rise to a different quasi-Newton method. A norm that allows easy
solution of the minimization problem (9) and gives rise to a scale-
invariant optimization method is the weighted Frobenius norm

}A}W ” }W 1/2AW 1/2}F , (10)

where } ¨ }F is defined by }C}2F = tr(C TC) =
n
ř

i=1

n
ř

j=1
c 2

ij . The weight

matrix W can be chosen as any positive definite matrix satisfying
Wyk = sk. For concreteness, the reader can assume that

W = sG ´1
k ,

where sGk is the average Hessian defined by
sGk =

ż 1

0

(∇2f )(xk + ταkpk) dτ . (11)
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
The property

yk = sGkαkpk = sGksk (12)
follows from Taylor’s theorem. With this choice of weighting matrix
W, the norm (10) is non-dimensional, which is a desirable property,
since we do not wish the solution of (9) to depend on the units of
the problem. With a weighting matrix W satisfying Wyk = sk and
this weighted norm, the unique solution of (9) is

(DFP) Bk+1 = (I ´ ρkyksT
k )Bk(I ´ ρkskyT

k ) + ρkykyT
k , (13)

with
ρk =

1

yT
k sk

. (14)

This formula is called the DFP updating formula, since it is the one
originally proposed by Davidon in 1959, and subsequently studied,
implemented, and popularized by Fletcher and Powell.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
The inverse of Bk, which we denote by

Hk = B´1
k ,

is useful in the implementation of the method, since it allows the
search direction (2) to be calculated by means of a simple matrix-
vector multiplication. Using the Sherman-Morrison-Woodbury
formula, we can derive the following expression for the update of
the inverse Hessian approximation Hk that corresponds to the DFP
update of Bk in (13):

(DFP) Hk+1 = Hk ´
HkykyT

k Hk
yT

k Hkyk
+

sksT
k

yT
k sk

. (15)
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§6.1 The BFGS Method

(DFP) Hk+1 = Hk ´
HkykyT

k Hk
yT

k Hkyk
+

sksT
k

yT
k sk

. (15)

Note that the last two terms in the right-hand-side of (15) are rank-
one matrices, so that Hk undergoes a rank-two modification. It is
easy to see that

(DFP) Bk+1 = (I´ρkyksT
k )Bk(I´ρkskyT

k )+ρkykyT
k , (13)

is also a rank-two modification of Bk. This is the fundamental idea
of quasi-Newton updating: Instead of recomputing the approximate
Hessians (or inverse Hessians) from scratch at every iteration, we
apply a simple modification that combines the most recently ob-
served information about the objective function with the existing
knowledge embedded in our current Hessian approximation.
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§6.1 The BFGS Method
‚ The derivation of the DFP updating formula
Let rsk = W ´1/2sk and ryk = W 1/2yk, we find that Wyk = sk if
and only if ryk = rsk. Moreover, the condition Bsk = yk becomes
W 1/2BW 1/2

rsk = ryk. For a given square matrix M, define rM =

W 1/2MW 1/2. Then Problem (9) can be reformulated as
min
rB

}rB ´ rBk}F subject to rB = rBT and rB ryk = ryk .

Therefore, we look for a symmetric positive definiteness matrix rBk+1

satisfying (I ´ rBk+1)ryk = 0 and minimizing the function

f (rB) ” }rB ´ rBk}2F = tr
(
(rB ´ rBk)

T(rB ´ rBk)
)
.

We differentiate the function and find that rBk+1 satisfies that
tr
(
(rBk+1 ´ rBk)

TδrB
)
= 0

whenever δrB is symmetric and satisfies that δrB ryk = 0.
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§6.1 The BFGS Method
‚ The derivation of the DFP updating formula
Let rsk = W ´1/2sk and ryk = W 1/2yk, we find that Wyk = sk if
and only if ryk = rsk. Moreover, the condition Bsk = yk becomes
W 1/2BW 1/2

rsk = ryk. For a given square matrix M, define rM =
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min
rB

}rB ´ rBk}F subject to rB = rBT and rB ryk = ryk .
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.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Choose an orthogonal matrix O such that Oryk = }ryk}en, where
en = [0, 0, ¨ ¨ ¨ , 0, 1]T. By the fact that tr(OMOT) = tr(M) for all
M and OδrB OTen = 0, we find that rB satisfies

0 = tr
(
(rBk+1 ´ rBk)

TδrB
)
= tr

(
(O(rBk+1 ´ rBk)OT)T(OδrB OT)

)
whenever δrB satisfies that the last row and the last column of
OδrB OT are zero. This implies that

O(rBk+1 ´ rBk)OT =


0 ¨ ¨ ¨ 0 a1n
... . . . ...

...
0 ¨ ¨ ¨ 0 a(n´1)n

a1n ¨ ¨ ¨ a(n´1)n ann

.
This shows that the minimizer Bk+1(= W ´1/2

rBk+1W ´1/2) is a
rank-two modification of Bk.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
For a given n ˆ n matrix M, let [M ](n´1)ˆ(n´1) denote the (n ´1)ˆ

(n ´ 1) matrix obtained by deleting the last row and last column of
M. Then the identity in the previous slide shows that[

OrBk+1OT]
(n´1)ˆ(n´1)

=
[
OrBkOT]

(n´1)ˆ(n´1)
.

To determine the last row and the last column of OrBk+1OT, we note
that the condition rBk+1ryk = ryk is equivalent to that

OrBk+1OTen = en .

Therefore, the last row and last column of OrBk+1OT is en. This
shows that

OrBk+1OT =

[[
OrBkOT]

(n´1)ˆ(n´1)
0

0 1

]
. (16)
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Note that

(DFP) Bk+1 = (I ´ ρkyksT
k )Bk(I ´ ρkskyT

k ) + ρkykyT
k , (13)

if and only if

rBk+1 = (I ´ ρkrykrsT
k )rBk(I ´ ρkrskryT

k ) + ρkrykryT
k .

Since ryk = rsk, it holds the identity

ρk =
1

yT
k sk

=
1

ryT
k rsk

=
1

ryT
k ryk

= }ryk}´2 ,

so to establish (13) it suffices to show that

rBk+1 = (I ´ syksyT
k )rBk(I ´ syksyT

k ) + syksyT
k . (13’)

where syk = ryk/}ryk}.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Note that
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k ) + ρkrykryT
k .

Since ryk = rsk, it holds the identity

ρk =
1

yT
k sk

=
1

ryT
k rsk

=
1

ryT
k ryk

= }ryk}´2 ,

so to establish (13) it suffices to show that

OrBk+1OT = (I ´ eneT
n)OrBkOT(I ´ eneT

n) + eneT
n . (13’)

where we use Osyk = en to conclude the identity. We note that (13’)
is equivalent to (16); thus the DFP updating formula is established.
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Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula
Theorem
Let A be an n ˆ n non-singular matrix, and U and V be matrices
in Rnˆp for some p between 1 and n. If pA = A + UV T, then pA
is non-singular if and only if (I + V TA´1U) is non-singular, and in
this case we have

pA ´1
= A´1 ´ A´1U (I + V TA´1U)´1V TA´1 . (17)

In particular, if the square non-singular matrix A undergoes a rank-
one update to become

sA = A + abT ,

where a, b P Rn, then if sA is non-singular, we have

sA´1
= A´1 ´

A´1abTA´1

1 + bTA´1a . (18)
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Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula
Proof.
We write the linear system (A + UV T)x = d as[

A U
V T ´Ipˆp

] [
x
ξ

]
=

[
d
0

]
where ξ = V Tx. Note that the (n + p) ˆ (n + p) matrix above can
be decomposed as[

A U
V T ´Ipˆp

]
=

[
Inˆn 0nˆp

V TA´1 Ipˆp

] [
A U

0pˆn ´(Ipˆp+V TA´1U)

]
;

thus the linear system (A + UV T)x = d is uniquely solvable if and
only if the linear system[

A U
0pˆn ´(Ipˆp+V TA´1U)

] [
x
ξ

]
=

[
d

´V TA´1d

]
is uniquely solvable. ˝
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Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula
Proof (cont’d).
Nevertheless, by the invertibility of A, the linear system[

A U
0pˆn ´(Ipˆp+V TA´1U)

] [
x
ξ

]
=

[
d

´V TA´1d

]
is uniquely solvable if and only if the system

(Ipˆp+V TA´1U)ξ = V TA´1d

is uniquely solvable so we establish that pA = A + UV T is non-
singular if and only if (I + V TA´1U) is non-singular. In this case,

ξ = (Ipˆp+V TA´1U)´1V TA´1d ;
thus, by solving Ax = d ´ Uξ, we obtain that the solution of the
linear system (A + UV T)x = d is given by

x = A´1
[
I ´ U(Ipˆp+V TA´1U)´1V TA´1

]
d . ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula
Proof (cont’d).
Nevertheless, by the invertibility of A, the linear system[

A U
0pˆn ´(Ipˆp+V TA´1U)

] [
x
ξ

]
=

[
d

´V TA´1d

]
is uniquely solvable if and only if the system

(Ipˆp+V TA´1U)ξ = V TA´1d

is uniquely solvable so we establish that pA = A + UV T is non-
singular if and only if (I + V TA´1U) is non-singular. In this case,

ξ = (Ipˆp+V TA´1U)´1V TA´1d ;
thus, by solving Ax = d ´ Uξ, we obtain that the solution of the
linear system (A + UV T)x = d is given by

x = A´1
[
I ´ U(Ipˆp+V TA´1U)´1V TA´1

]
d . ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula
Proof (cont’d).
Nevertheless, by the invertibility of A, the linear system[

A U
0pˆn ´(Ipˆp+V TA´1U)

] [
x
ξ

]
=

[
d

´V TA´1d

]
is uniquely solvable if and only if the system

(Ipˆp+V TA´1U)ξ = V TA´1d

is uniquely solvable so we establish that pA = A + UV T is non-
singular if and only if (I + V TA´1U) is non-singular. In this case,

ξ = (Ipˆp+V TA´1U)´1V TA´1d ;
thus, by solving Ax = d ´ Uξ, we obtain that the solution of the
linear system (A + UV T)x = d is given by

x = A´1
[
I ´ U(Ipˆp+V TA´1U)´1V TA´1

]
d . ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula
We can use the Sherman-Morrison-Woodbury formula to solve linear
systems of the form pAx = d. Since

x = A´1
[
I ´ U(Ipˆp+V TA´1U)´1V TA´1

]
d

= A´1d ´ (A´1U)
[
Ipˆp+V T(A´1U)

]´1V T(A´1d) ,

we see that x can be found by solving (p + 1) linear systems with
the matrix A (to obtain A´1d and A´1U), inverting the pˆp matrix
I + V TA´1U, and performing some elementary matrix algebra. In-
version of the p ˆ p matrix I+V TA´1U is inexpensive when p ! n.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
‚ The derivation of the DFP updating formula for Hk

We expand the DFP updating formula for Bk

(DFP) Bk+1 = (I ´ ρkyksT
k )Bk(I ´ ρkskyT

k ) + ρkykyT
k , (13)

as
Bk+1 = Bk ´ ρkyksT

k Bk ´ ρkBkskyT
k + ρ2kyk(sT

k Bksk)yT
k + ρkykyT

k

= Bk ´ ρkyk(Bksk)T ´ ρk(Bksk)yT
k + ρk(1 + ρksT

k Bksk)ykyT
k

= Bk ´ ρkyk(Bksk)T + ρk(µkyk ´ Bksk)yT
k

= Bk +
[

´ρkyk
...ρk(µkyk ´ Bksk)

][
Bksk

...yk
]T
,

where µk = 1 + ρksT
k Bksk.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Let A = Bk, U =

[
´ρkyk

...ρk(µkyk ´ Bksk)
]

and V =
[
Bksk

...yk
]
.

Then Bk+1 = A + UV T. Since

A´1U =
[

´ρkHkyk
...ρk(µkHkyk ´ sk)

]
, V TA´1 =

[ sT
k

¨ ¨ ¨
yT

k Hk

]
,

and
I + V TA´1U =

[
0 1

´ρkyT
k Hkyk ρkµkyT

k Hkyk

]
,

by the Sherman-Morrison-Woodbury formula we obtain that

Hk+1 =Hk ´
ρk

ρkyT
k Hkyk

[
´Hkyk

...µkHkyk ´ sk
][ρkµkyT

k Hkyk ´1

ρkyT
k Hkyk 0

][
sT
k

¨ ¨ ¨
yT

k Hk

]

=Hk ´
[

´Hkyk
...µkHkyk ´ sk

]ρkµk ´
1

yT
k Hkyk

ρk 0

[ sT
k

¨ ¨ ¨
yT

k Hk

]
.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Expanding the product of the matrices,

Hk+1 = Hk ´
[
´Hkyk

...µkHkyk ´ sk
]ρkµk ´

1

yT
k Hkyk

ρk 0

[ sT
k

¨ ¨ ¨
yT

k Hk

]

= Hk ´
[
´Hkyk

...µkHkyk ´ sk
]ρkµksT

k ´
yT

k Hk
yT

k Hkyk
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

ρksT
k


= Hk + Hkyk

(
ρkµksT

k ´
yT

k Hk
yT

k Hkyk

)
´ (µkHkyk ´ sk)ρksT

k

= Hk + ρkµkHkyksT
k ´

HkykyT
k Hk

yT
k Hkyk

´ ρkµkHkyksT
k + ρksksT

k

= Hk ´
HkykyT

k Hk
yT

k Hkyk
+ ρksksT

k ,

which is exactly the DFP updating formula for Hk.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
The DFP updating formula is quite effective, but it was soon super-
seded by the BFGS formula, which is presently considered to be the
most effective of all quasi-Newton updating formulae. BFGS up-
dating can be derived by making a simple change in the argument
that led to (13). Instead of imposing conditions on the Hessian ap-
proximations Bk, we impose similar conditions on their inverses Hk.
The updated approximation Hk+1 must be symmetric and positive
definite, and must satisfy the secant equation (6), now written as

Hk+1yk = sk .

The condition of closeness to Hk is now specified by the following
analogue of (9):

min
H

}H ´ Hk} subject to H = HT,Hyk = sk . (19)
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
The norm is again the weighted Frobenius norm described above,
where the weight matrix W is now any matrix satisfying Wsk = yk.
The unique solution Hk+1 to (19) is given by

(BFGS) Hk+1 = (I ´ρkskyT
k )Hk(I ´ρkyksT

k )+ρksksT
k , (20)

with ρk defined by (14).

How should we choose the initial approximation H0? Unfortunately,
there is no magic formula that works well in all cases. We can use
specific information about the problem, for instance

1 H0 is the inverse of an approximate Hessian at x0;
2 H0 is the identity matrix;
3 H0 is a multiple of the identity matrix, where the multiple is

chosen to reflect the scaling of the variables.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Algorithm 6.1 (BFGS Method).

Given starting point x0, convergence tolerance ε ą 0, inverse Hes-
sian approximation H0;

k Ð 0;
while }∇fk} ą ε;

Compute search direction
pk = ´Hk∇fk ; (21)

Set xk+1 = xk + αkpk, where αk is computed from a line
search procedure to satisfy the Wolfe conditions;

Define sk = xk+1 ´ xk and yk = ∇fk+1 ´ ∇fk;
Compute Hk+1 by means of (20);
k Ð k + 1;

end (while)
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Each iteration can be performed at a cost of O(n2) arithmetic oper-
ations (plus the cost of function and gradient evaluations); there are
no O(n3) operations such as linear system solves or matrix-matrix
operations. The algorithm is robust, and its rate of convergence is
superlinear (whose proof will be given in Section 6.4), which is fast
enough for most practical purposes. Even though Newton’s method
converges more rapidly (that is, quadratically), its cost per iteration
usually is higher, because of its need for second derivatives and so-
lution of a linear system.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
We can derive a version of the BFGS algorithm that works with the
Hessian approximation Bk rather than Hk. The update formula for
Bk is obtained by simply applying the Sherman-Morrison-Woodbury
formula to (20) to obtain

(BFGS) Bk+1 = Bk ´
Bk sksT

k Bk
sT
k Bk sk

+
ykyT

k
yT

k sk
. (22)

A naive implementation of this variant is not efficient for uncon-
strained minimization, because it requires the system Bkpk = ´∇fk
to be solved for the step pk, thereby increasing the cost of the
step computation to O(n3). We discuss later, however, that less
expensive implementations of this variant are possible by updating
Cholesky factors of Bk.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
‚ Properties of the BFGS Method
It is usually easy to observe the superlinear rate of convergence of
the BFGS method on practical problems. Below, we report the last
few iterations of the steepest descent, BFGS, and an inexact Newton
method on Rosenbrock’s function

f (x) = 100(x2 ´ x 2
1 )

2 + (1 ´ x1)2 .

The table gives the value of }xk ´ x˚}. The Wolfe conditions were
imposed on the step length in all three methods. From the starting
point (´1.2, 1), the steepest descent method required 5264 itera-
tions, whereas BFGS and Newton took only 34 and 21 iterations,
respectively to reduce the gradient norm to 10´5.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Note that the minimization problem (19) that gives rise to the BFGS
update formula does not explicitly require the updated Hessian ap-
proximation to be positive definite. Nevertheless, note that yT

k sk is
positive, so that the updating formula

(BFGS) Hk+1 = (I ´ρkskyT
k )Hk(I ´ρkyksT

k )+ρksksT
k , (20)

is well-defined. For any nonzero vector z, we have

zTHk+1z = wTHkw + ρk(zTsk)
2 ě 0 ,

where we have defined w = z ´ ρkyk(sT
k z). The right hand side can

be zero only if sT
k z = 0, but in this case w = z ‰ 0, which implies

that the first term is greater than zero. Therefore, we establish that
Hk+1 (obtained by the updating formula (20)) is positive definite
whenever Hk is positive definite.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
To make quasi-Newton updating formulae invariant to transforma-
tions in the variables (such as scaling transformations), it is neces-
sary for the objectives (9) and (19) to be invariant under the same
transformations. The choice of the weighting matrices W used to
define the norms in (9) and (19) ensures that this condition holds.
Many other choices of the weighting matrix W are possible, each
one of them giving a different update formula. However, despite
intensive searches, no formula has been found that is significantly
more effective than BFGS.

The BFGS method has many interesting properties when applied to
quadratic functions. We discuss these properties later in the more
general context of the Broyden family of updating formulae, of which
BFGS is a special case.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
It is reasonable to ask whether there are situations in which the
updating formula such as

(BFGS) Hk+1 = (I ´ρkskyT
k )Hk(I ´ρkyksT

k )+ρksksT
k , (20)

can produce bad results. If at some iteration the matrix Hk becomes
a poor approximation to the true inverse Hessian, is there any hope
of correcting it? For example, when the inner product yT

k sk is tiny
(but positive), then it follows from (20) that Hk+1 contains very large
elements. Is this behavior reasonable? A related question concerns
the rounding errors that occur in finite-precision implementation of
these methods. Can these errors grow to the point of erasing all
useful information in the quasi-Newton approximate Hessian?
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
These questions have been studied analytically and experimentally,
and it is now known that the BFGS formula has very effective self-
correcting properties. If the matrix Hk incorrectly estimates the cur-
vature in the objective function, and if this bad estimate slows down
the iteration, then the Hessian approximation will tend to correct it-
self within a few steps. It is also known that the DFP method is less
effective in correcting bad Hessian approximations; this property is
believed to be the reason for its poorer practical performance. The
self-correcting properties of BFGS hold only when an adequate line
search is performed. In particular, the Wolfe line search conditions
ensure that the gradients are sampled at points that allow the model
(1) to capture appropriate curvature information.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
It is interesting to note that the DFP and BFGS updating formulae
are duals of each other, in the sense that one can be obtained from
the other by the interchanges s Ø y, B Ø H. This symmetry is
not surprising, given the manner in which we derived these methods
above.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
‚ Implementation
A few details and enhancements need to be added to Algorithm
6.1 to produce an efficient implementation. The line search, which
should satisfy either the Wolfe conditions or the strong Wolfe con-
ditions, should always try the step length αk = 1 first, because
this step length will eventually always be accepted (under certain
conditions), thereby producing superlinear convergence of the over-
all algorithm. Computational observations strongly suggest that it
is more economical, in terms of function evaluations, to perform a
fairly inaccurate line search. The values c1 = 10´4 and c2 = 0.9 are
commonly used in the Wolfe condition.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
As mentioned earlier, the initial matrix H0 often is set to some
multiple βI of the identity, but there is no good general strategy
for choosing the multiple β. If β is too large, so that the first step
p0 = ´βg0 is too long, many function evaluations may be required
to find a suitable value for the step length α0. Some software asks
the user to prescribe a value δ for the norm of the first step, and
then set H0 = δ}g0}´1I to achieve this norm.
A heuristic that is often quite effective is to scale the starting matrix
after the first step has been computed but before the first BFGS
update is performed. We change the provisional value H0 = I by
setting

H0 Ð
yT

k sk
yT

k yk
I , (23)

before applying the updating formula (20) to obtain H1.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
Formula (23) attempts to make the size of H0 similar to that of
(∇2f )(x0)´1, in the following sense. Assuming that the average
Hessian defined in (11) is positive definite, there exists a square root
sG 1/2

k satisfying sGk = sG 1/2
k

sG 1/2
k . Therefore, by defining zk = sG 1/2

k sk

and using the relation yk = sGksk, we have

yT
k sk

yT
k yk

=
(sG 1/2

k sk)T
sG 1/2

k sk

(sG 1/2
k sk)T sGk sG

1/2
k sk

=
zT

k zk
zT

k
sGkzk

. (24)

The reciprocal of (24) is an approximation to one of the eigenvalues
of sGk, which in turn is close to an eigenvalue of (∇2f )(xk). Hence,
the quotient (24) itself approximates an eigenvalue of (∇2f )(xk)

´1.
Other scaling factors can be used in (23), but the one presented
here appears to be the most successful in practice.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
In (22) we gave an update formula

(BFGS) Bk+1 = Bk ´
Bk sksT

k Bk
sT
k Bk sk

+
ykyT

k
yT

k sk
. (22)

for a BFGS method that works with the Hessian approximation Bk

instead of the inverse Hessian approximation Hk. An efficient imple-
mentation of this approach does not store Bk explicitly, but rather
the Cholesky factorization LkDkLT

k of this matrix. A formula that
updates the factors Lk and Dk directly in O(n2) operations can be
derived from (22). Since the linear system Bkpk = ´∇fk also can be
solved in O(n2) operations (by performing triangular substitutions
with Lk and LT

k and a diagonal substitution with Dk), the total cost
is quite similar to the variant described in Algorithm 6.1.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
A potential advantage of this alternative strategy is that it gives us
the option of modifying diagonal elements in the Dk factor if they
are not sufficiently large, to prevent instability when we divide by
these elements during the calculation of pk. However, computational
experience suggests no real advantages for this variant, and we
prefer the simpler strategy of Algorithm 6.1.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method
The performance of the BFGS method can degrade if the line search
is not based on the Wolfe conditions. For example, some software
implements an Armijo backtracking line search (see Section 3.1):
The unit step length αk = 1 is tried first and is successively de-
creased until the sufficient decrease condition is satisfied. For this
strategy, there is no guarantee that the curvature condition yT

k sk ą 0

(7) will be satisfied by the chosen step, since a step length greater
than 1 may be required to satisfy this condition. To cope with this
shortcoming, some implementations simply skip the BFGS update
by setting Hk+1 = Hk when yT

k sk is negative or too close to zero.
This approach is not recommended, because the updates may be
skipped much too often to allow Hk to capture important curvature
information for the objective function f .
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Chapter 6. Quasi-Newton Methods

§6.2 The SR1 Method
In the BFGS and DFP updating formulae, the updated matrix Bk+1

(or Hk+1) differs from its predecessor Bk (or Hk) by a rank-2 matrix.
In fact, as we now show, there is a simpler rank-1 update that
maintains symmetry of the matrix and allows it to satisfy the secant
equation. Unlike the rank-two update formulae, this symmetric-
rank-1, or SR1, update does not guarantee that the updated matrix
maintains positive definiteness. Good numerical results have been
obtained with algorithms based on SR1, so we derive it here and
investigate its properties.
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Chapter 6. Quasi-Newton Methods

§6.2 The SR1 Method
The symmetric rank-1 update has the general form Bk+1 = Bk +

σvvT, where σ is either +1 or ´1, and σ and v are chosen so that
Bk+1 satisfies the secant equation yk = Bk+1sk. By substituting
into this equation, we obtain

yk = Bk sk +
[
σvTsk

]
v . (25)

Since the term in brackets is a scalar, we deduce that v must be a
multiple of yk ´ Bk sk; that is, v = δ(yk ´ Bk sk) for some scalar δ.
By substituting this form of v into (25), we obtain

(yk ´ Bk sk) = σδ2
[
sT
k (yk ´ Bk sk)

]
(yk ´ Bk sk) , (26)

and it is clear that this equation is satisfied if (and only if) we choose
the parameters δ and σ to be

σ = sign
[
sT
k (yk ´ Bk sk)

]
, δ = ˘

ˇ

ˇsT
k (yk ´ Bk sk)

ˇ

ˇ

´1/2
.
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§6.2 The SR1 Method
Hence, we have shown that the only symmetric rank-1 updating
formula that satisfies the secant equation is given by

(SR1) Bk+1 = Bk +
(yk ´ Bksk)(yk ´ Bksk)T

(yk ´ Bksk)Tsk
. (27)

By applying the Sherman-Morrison formula, we obtain the corre-
sponding update formula for the inverse Hessian approximation Hk:

(SR1) Hk+1 = Hk +
(sk ´ Hkyk)(sk ´ Hkyk)T

(sk ´ Hkyk)Tyk
. (28)

This derivation is so simple that the SR1 formula has been rediscov-
ered a number of times.
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§6.2 The SR1 Method
It is easy to see that even if Bk is positive definite, Bk+1 may not
have the same property. (The same is, of course, true of Hk.) This
observation was considered a major drawback in the early days of
nonlinear optimization when only line search iterations were used.
However, with the advent of trust-region methods, the SR1 updat-
ing formula has proved to be quite useful, and its ability to generate
indefinite Hessian approximations can actually be regarded as one
of its chief advantages.

The main drawback of SR1 updating is that the denominator in
(27) or (28) can vanish. In fact, even when the objective function
is a convex quadratic, there may be steps on which there is no
symmetric rank-1 update that satisfies the secant equation. It pays
to reexamine the derivation above in the light of this observation.
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§6.2 The SR1 Method
By reasoning in terms of Bk (similar arguments can be applied to
Hk), we see that there are three cases:

1 If (yk ´ Bk sk)Tsk ‰ 0, then the arguments above show that
there is a unique rank-one updating formula satisfying the se-
cant equation, and that it is given by (27).

2 If yk = Bk sk, then the only updating formula satisfying the
secant equation is simply Bk+1 = Bk.

3 If yk ‰ Bk sk and (yk ´ Bk sk)Tsk = 0, then (26) shows that
there is no symmetric rank-one updating formula satisfying the
secant equation.
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§6.2 The SR1 Method
The last case (yk ‰ Bk sk and (yk ´ Bk sk)Tsk = 0) clouds an oth-
erwise simple and elegant derivation, and suggests that numerical
instabilities and even breakdown of the method can occur. It sug-
gests that rank-one updating does not provide enough freedom to
develop a matrix with all the desired characteristics, and that a rank-
two correction is required. This reasoning leads us back to the BFGS
method, in which positive definiteness (and thus non-singularity) of
all Hessian approximations is guaranteed.
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§6.2 The SR1 Method
Nevertheless, we are interested in the SR1 formula for the following
reasons:

1 A simple safeguard seems to adequately prevent the breakdown
of the method and the occurrence of numerical instabilities.

2 The matrices generated by the SR1 formula tend to be good
approximations to the true Hessian matrix – often better than
the BFGS approximations.

3 In quasi-Newton methods for constrained problems, or in meth-
ods for partially separable functions (see Chapters 18 and 7), it
may not be possible to impose the curvature condition yT

k sk ą

0, and thus BFGS updating is not recommended. Indeed, in
these two settings, indefinite Hessian approximations are desir-
able insofar as they reflect indefiniteness in the true Hessian.
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§6.2 The SR1 Method
We now introduce a strategy to prevent the SR1 method from break-
ing down. It has been observed in practice that SR1 performs well
simply by skipping the update if the denominator is small. More
specifically, the update (27) is applied only if

|sT
k (yk ´ Bk sk)| ě r }sk}}yk ´ Bk sk} , (29)

where r P (0, 1) is a small number, say r = 10´8. If (29) does not
hold, we set Bk+1 = Bk. Most implementations of the SR1 method
use a skipping rule of this kind.
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§6.2 The SR1 Method
為什麼我們在前一節中不鼓勵在 BFGS 方法的情況下跳過更
新，而在 SR1方法中卻主張跳過更新呢？The two cases are quite
different. The condition sT

k (yk´Bk sk) « 0 occurs infrequently, since
it requires certain vectors to be aligned in a specific way. When it
does occur, skipping the update appears to have no negative effects
on the iteration. This is not surprising, since the skipping condition
implies that sT

k
sGsk « sT

k Bk sk, where sG is the average Hessian over
the last step – meaning that the curvature of Bk along sk is already
correct. In contrast, the curvature condition sT

k yk ě 0 required for
BFGS updating may easily fail if the line search does not impose
the Wolfe conditions (for example, if the step is not long enough),
and therefore skipping the BFGS update can occur often and can
degrade the quality of the Hessian approximation.
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§6.2 The SR1 Method
We now give a formal description of an SR1 method using a trust-
region framework, which we prefer over a line search framework
because it can accommodate indefinite Hessian approximations more
easily.
Algorithm 6.2 (SR1 Trust-Region Method).

Given starting point x0, initial Hessian approximation B0, trust-
region radius ∆0, convergence tolerance ε ą 0, parameters
η P (0, 10´3) and r P (0, 1);

k Ð 0;
while }∇fk} ą ε

Compute sk by solving the sub-problem

min
s

[
∇f T

k s + 1

2
sTBks

]
subject to }s} ď ∆k; (30)
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while }∇fk} ą ε

Compute sk by solving the sub-problem

min
s

[
∇f T

k s + 1

2
sTBks

]
subject to }s} ď ∆k; (30)

Compute
yk = (∇f )(xk + sk) ´ ∇fk;
ared = fk ´ f (xk + sk); (actual reduction)

pred = ´

(
∇f T

k sk +
1

2
sT
k Bksk

)
; (predicted reduction)

if ared/pred ą η

xk+1 = xk + sk;
else

xk+1 = xk;
end (if)
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if ared/pred ą η

xk+1 = xk + sk;
else

xk+1 = xk;
end (if)
if ared/pred ą 0.75

if }sk} ď 0.8∆k
∆k+1 = ∆k;

else
∆k+1 = 2∆k;

end (if)
elseif 0.1 ď ared/pred ď 0.75

∆k+1 = ∆k;
else

∆k+1 = 0.5∆k;
end (if)
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elseif 0.1 ď ared/pred ď η

∆k+1 = ∆k;
else

∆k+1 = 0.5∆k;
end (if)
if |sT

k (yk ´ Bk sk)| ě r }sk}}yk ´ Bk sk}

Bk+1 = Bk+
(yk ´ Bksk)(yk ´ Bksk)T

(yk ´ Bksk)Tsk
(even if xk+1 = xk);

else
Bk+1 Ð Bk;

end (if)
k + 1 Ð k ;

end (while)
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§6.2 The SR1 Method
This algorithm has the typical form of a trust region method (cf.
Algorithm 4.1). For concreteness, we have specified a particular
strategy for updating the trust region radius, but other heuristics
can be used instead.

To obtain a fast rate of convergence, it is important for the matrix
Bk to be updated even along a failed direction sk. The fact that
the step was poor indicates that Bk is an inadequate approxima-
tion of the true Hessian in this direction. Unless the quality of the
approximation is improved, steps along similar directions could be
generated on later iterations, and repeated rejection of such steps
could prevent superlinear convergence.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

§6.2 The SR1 Method
This algorithm has the typical form of a trust region method (cf.
Algorithm 4.1). For concreteness, we have specified a particular
strategy for updating the trust region radius, but other heuristics
can be used instead.

To obtain a fast rate of convergence, it is important for the matrix
Bk to be updated even along a failed direction sk. The fact that
the step was poor indicates that Bk is an inadequate approxima-
tion of the true Hessian in this direction. Unless the quality of the
approximation is improved, steps along similar directions could be
generated on later iterations, and repeated rejection of such steps
could prevent superlinear convergence.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

§6.2 The SR1 Method
‚ Properties of SR1 Updating
One of the main advantages of SR1 updating is its ability to generate
good Hessian approximations. We demonstrate this property by
first examining a quadratic function. For functions of this type, the
choice of step length does not affect the update, so to examine the
effect of the updates, we can assume for simplicity a uniform step
length of 1; that is,

pk = ´Hk∇fk , xk+1 = xk + pk . (31)
It follows that pk = sk.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

§6.2 The SR1 Method
Theorem
Suppose that f : Rn Ñ R is the strongly convex quadratic function
f (x) = 1

2
xTQx+ bTx, where Q is symmetric positive definite. Then

for any starting point x0 and any symmetric starting matrix H0, the
iterates txku generated by the SR1 method

pk = ´Hk∇fk , xk+1 = xk + pk , (31)

where Hk satisfies the updating formula

(SR1) Hk+1 = Hk +
(sk ´ Hkyk)(sk ´ Hkyk)T

(sk ´ Hkyk)Tyk
, (28)

converge to the minimizer in at most n steps, provided that (sk ´

Hk yk)Tyk ‰ 0 for all k. Moreover, if n steps are performed, and if
the search directions pi are linearly independent, then Hn = Q´1.
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Proof.
Because of our assumption (sk ´ Hkyk)Tyk ‰ 0, the SR1 update is
always well-defined. We start by showing inductively that

Hk yj = sj for all j = 0, 1, ¨ ¨ ¨ , k ´ 1. (32)
In other words, we claim that the secant equation is satisfied not
only along the most recent search direction, but along all previous
directions. By definition, the SR1 update satisfies the secant equa-
tion, so we have H1y0 = s0. Therefore, (32) holds for k = 1. Let us
now assume that (32) holds for some value k ą 1 and show that it
holds also for k + 1. From this assumption, we have from (32) that

(sk ´Hk yk)
Tyj = sT

k yj ´yT
k (Hk yj) = sT

k yj ´yT
k sj = 0 @ j ă k, (33)

where the last equality follows because yℓ = Qsℓ for the quadratic
function we are considering here. ˝
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Proof (cont’d).
Using (33) and the induction hypothesis (32) in

(SR1) Hk+1 = Hk +
(sk ´ Hkyk)(sk ´ Hkyk)T

(sk ´ Hkyk)Tyk
, (28)

we have
Hk+1yj = Hk yj = sj for all j ă k.

Since Hk+1yk = sk by the secant equation, we have shown that (32)
holds when k is replaced by k + 1. By induction, then, this relation
holds for all k. If the algorithm performs n steps, and if these steps
tsju are linearly independent, we have

sj = Hnyj = HnQsj for all j = 0, 1, ¨ ¨ ¨ , n ´ 1.
It follows that HnQ = I; that is, Hn = Q´1. Therefore, the step
taken at xn is the Newton step, and so the next iterate xn+1 will be
the solution, and the algorithm terminates. ˝
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Proof (cont’d).
Consider now the case in which the steps become linearly dependent.
Suppose that sk is a linear combination of the previous steps:

sk = ξ0s0 + ¨ ¨ ¨ + ξk´1sk´1 ,

for some scalars ξ0, ¨ ¨ ¨ , ξk´1. From (32) we have that
Hk yk = HkQsk = ξ0HkQs0 + ¨ ¨ ¨ + ξk´1HkQsk´1

= ξ0Hk y0 + ¨ ¨ ¨ + ξk´1Hk yk´1

= ξ0s0 + ¨ ¨ ¨ + ξk´1sk´1 = sk .

Since yk = ∇fk+1 ´ ∇fk and since sk = pk = ´Hk∇fk from (31),
we have that

Hk(∇fk+1 ´ ∇fk) = ´Hk∇fk ,
which, by the non-singularity of Hk, implies that ∇fk+1 = 0. There-
fore, xk+1 is the solution point. ˝
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fore, xk+1 is the solution point. ˝
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Chapter 6. Quasi-Newton Methods

§6.2 The SR1 Method
The relation (32) shows that when f is quadratic, the secant equa-
tion is satisfied along all previous search directions, regardless of how
the line search is performed. A result like this can be established for
BFGS updating only under the restrictive assumption that the line
search is exact, as we show in the next section.
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Chapter 6. Quasi-Newton Methods

§6.2 The SR1 Method
For general nonlinear functions, the SR1 update continues to gener-
ate good Hessian approximations under certain conditions. Before
stating the last theorem in this section, we need to talk about the
uniform linear independence of a sequence.
Definition
A sequence of vectors txku Ď Rn is said to be uniformly linearly
independent if there exist integers m ě n, k0 ě 0 and a constant
c ą 0 such that, for each k ě k0,

max
"

ˇ

ˇ

ˇ

xx, xk+jy

}x}}xk+j}

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j = 1, ¨ ¨ ¨ ,m
*

ě c @ x P Rn .

In other words, the uniform linear independence of a sequence means
that, up to deleting the first few terms from the sequence, any
consecutive m terms, where m ě n, span Rn in a “certain” manner.
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Chapter 6. Quasi-Newton Methods

§6.2 The SR1 Method
Theorem
Suppose that f : Rn Ñ R is twice continuously differentiable, and
that its Hessian is bounded and Lipschitz continuous in a neighbor-
hood of a point x˚. Let txku be any sequence of iterates converging
to x˚. Suppose in addition that for some r P (0, 1) the inequality

|sT
k (yk ´ Bk sk)| ě r }sk}}yk ´ Bk sk} , (29)

holds for all k, and that the steps sk are uniformly linearly indepen-
dent. Then the matrices Bk generated by the SR1 updating formula
satisfy

lim
kÑ8

}Bk ´ (∇2f )(x˚)} = 0 .
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
So far, we have described the BFGS, DFP, and SR1 quasi-Newton
updating formulae, but there are many others. Of particular interest
is the Broyden class, a family of updates specified by the following
general formula:

Bk+1 = Bk ´
Bk sksT

k Bk
sT
k Bk sk

+
ykyT

k
yT

k sk
+ ϕk(sT

k Bk sk)vkvT
k , (34)

where ϕk is a scalar parameter and

vk =
[ yk

yT
k sk

´
Bk sk

sT
k Bk sk

]
. (35)
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
The BFGS and DFP methods are members of the Broyden class –
we recover BFGS by setting ϕk = 0 and DFP by setting ϕk = 1 in
(34). We can therefore rewrite (34) as a “linear combination” (the
exact terminology is affine combination) of these two methods; that
is,

Bk+1 = (1 ´ ϕk)B BFGS
k+1 + ϕkB DFP

k+1 .

This relationship indicates that all members of the Broyden class
satisfy the secant equation (6), since the BFGS and DFP matrices
themselves satisfy this equation. Also, since BFGS and DFP up-
dating preserve positive definiteness of the Hessian approximations
when sT

k yk ą 0, this relation implies that the same property will hold
for the Broyden family if 0 ď ϕk ď 1.
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
Much attention has been given to the so-called restricted Broyden
class, which is obtained by restricting ϕk to the interval [0, 1]. It
enjoys the following property when applied to quadratic functions.
Since the analysis is independent of the step length, we assume for
simplicity that each iteration has the form

pk = ´B´1
k ∇fk , xk+1 = xk + pk . (36)
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
Theorem
Suppose that f : Rn Ñ R is the strongly convex quadratic function
f (x) = 1

2
xTQx + bTx, where Q is symmetric and positive definite.

Let x0 be any starting point for the iteration (36) and B0 be any
symmetric positive definite starting matrix, and suppose that the
matrices Bk are updated by the Broyden formula (34) with ϕk P

[0, 1]. Define λ(k)1 ď ¨ ¨ ¨ ď λ
(k)
n to be the eigenvalues of the matrix

Q1/2B´1
k Q1/2 . (37)

Then for all k, we have

min
␣

λ
(k)
j , 1

(

ď λ
(k+1)
j ď max

␣

λ
(k)
j , 1

(

for j = 1, 2, ¨ ¨ ¨ , n. (38)

Moreover, the property (38) does not hold if the Broyden parameter
ϕk is chosen outside the interval [0, 1].

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
讓我們約略說明一下這個結果的重要性。如果矩陣 Q1/2B´1

k Q1/2

的特徵值 λ
(k)
i 都是 1，那麼 quasi-Newton 方法中用來逼近 Hes-

sian 的矩陣 Bk 將與二次目標函數的 Hessian 矩陣 Q 相同。雖
說這是理想情況，但我們會因此希望 Q1/2B´1

k Q1/2 的特徵值越

接近 1 越好。事實上，(38) 式告訴我們 Q1/2B´1
k Q1/2 的特徵值

tλ
(k)
i u 在 k 趨近 8 時是收斂到 1。例如，假設在第 k 次迭代時

最小的特徵值為 0.7。那麼，根據 (38) 式，在下一次迭代中，特
徵值將落在 [0.7, 1] 的範圍內。雖然我們無法確定這個特徵值是

否實際上已經更接近 1，但可以合理地期望它已經更接近 1。相
比之下，如果我們允許 ϕk 超出 [0, 1]，第一個特徵值可能會變得

小於 0.7。值得注意的是，即使在進行 line search 時不是 exact，
該定理的結果仍然成立。
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
Although the theorem seems to suggest that the best update formu-
las belong to the restricted Broyden class, the situation is not at all
clear. Some analysis and computational testing suggest that algo-
rithms that allow ϕk to be negative (in a strictly controlled manner)
may in fact be superior to the BFGS method. The SR1 formula is
a case in point: It is a member of the Broyden class, obtained by
setting

ϕk =
sT
k yk

sT
k yk ´ sT

k Bk sk
,

but it does not belong to the restricted Broyden class, because this
value of ϕk may fall outside the interval [0, 1].
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
In the remaining discussion of this section, we determine more pre-
cisely the range of values of ϕk that preserve positive definiteness.
The last term in

Bk+1 = Bk ´
Bk sksT

k Bk
sT
k Bk sk

+
ykyT

k
yT

k sk
+ ϕk(sT

k Bk sk)vkvT
k (34)

is a rank-one correction, which by the interlacing eigenvalue theo-
rem (in the next slide) increases the eigenvalues of the matrix when
ϕk is positive. Therefore, Bk+1 is positive definite for all ϕk ě 0. On
the other hand, by the interlacing eigenvalue theorem the last term
in (34) decreases the eigenvalues of the matrix when ϕk is negative.
As we decrease ϕk, this matrix eventually becomes singular and then
indefinite.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
Theorem (Interlacing Eigenvalue Theorem)
Let A P Rnˆn be a symmetric matrix with eigenvalues λ1, λ2, ¨ ¨ ¨ ,
λn satisfying λ1 ď λ2 ď ¨ ¨ ¨ ď λn, and let z P Rn be a vector with
}z} = 1, and α P R be a scalar. Then if we denote the eigenvalues
of A + αzzT by ξ1, ξ2, ¨ ¨ ¨ , ξn (in increasing order), we have for
α ą 0 that

λ1 ď ξ1 ď λ2 ď ξ2 ď ¨ ¨ ¨ ď λn ď ξn ,

with
n
ÿ

i=1

(ξi ´ λi) = α . (39)

If α ă 0, we have that
ξ1 ď λ1 ď ξ2 ď λ2 ď ¨ ¨ ¨ ď ξn ď λn ,

where the relationship (39) is again satisfied.
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
A little computation shows that Bk+1 is singular when ϕk has the
value

ϕc
k =

1

1 ´ µk
, (40)

where
µk =

(yT
k B´1

k yk)(sT
k Bk sk)

(yT
k sk)2

. (41)

By applying the Cauchy-Schwarz inequality to (41), we see that µk ě

1 and therefore ϕc
k ď 0. Hence, if the initial Hessian approximation

B0 is symmetric and positive definite, and if sT
k yk ą 0 and ϕk ą ϕc

k
for each k, then all the matrices Bk generated by Broyden’s formula
(34) remain symmetric and positive definite.
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
When the line search is exact, all methods in the Broyden class
with ϕk ě ϕc

k generate the same sequence of iterates. This result
applies to general nonlinear functions and is based on the observation
that when all the line searches are exact, the directions generated by
Broyden-class methods differ only in their lengths. The line searches
identify the same minima along the chosen search direction, though
the values of the step lengths may differ because of the different
scaling.

The Broyden class has several remarkable properties when applied
with exact line searches to quadratic functions. We state some of
these properties in the next theorem, whose proof is omitted.
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
Theorem
Suppose that a method in the Broyden class is applied to the strongly
convex quadratic function f (x) = bTx +

1

2
xTQx, where x0 is the

starting point and B0 is any symmetric positive definite matrix. As-
sume that αk is the exact step length and that ϕk ě ϕc

k for all k,
where ϕc

k is defined by

ϕc
k =

1

1 ´ µk
, µk =

(yT
k B´1

k yk)(sT
k Bk sk)

(yT
k sk)2

.

Then the following statements are true.
1 The iterates are independent of ϕk and converge to the solution

in at most n iterations.
2 The secant equation is satisfied for all previous search direc-

tions; that is, Bk sj = yj for j = 1, 2, ¨ ¨ ¨ , k ´ 1.
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
Theorem (cont’d)

3 If the starting matrix is B0 = I , then the iterates are identical
to those generated by the conjugate gradient method. In par-
ticular, the search directions are conjugate; that is,

sT
i Qsj = 0 for i ‰ j.

4 If n iterations are performed, we have Bn = Q.

Note that parts 1⃝, 2⃝, and 4⃝ of this result echo the statement
and proof of the theorem in Section 6.2, where similar results were
derived for the SR1 update formula.
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class
We can generalize the theorem slightly: It continues to hold if the
Hessian approximations remain non-singular but not necessarily pos-
itive definite. (Hence, we could allow ϕk to be smaller than ϕc

k,
provided that the chosen value did not produce a singular updated
matrix.) We can also generalize point 3⃝ as follows. If the starting
matrix B0 is not the identity matrix, then the Broyden-class method
is identical to the preconditioned conjugate gradient method that
uses B0 as preconditioner.
We conclude by commenting that results like the theorem would
appear to be of mainly theoretical interest, since the inexact line
searches used in practical implementations of Broyden-class methods
(and all other quasi-Newton methods) cause their performance to
differ markedly. Nevertheless, it is worth noting that this type of
analysis guided much of the development of quasi-Newton methods.
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
In this section we present global and local convergence results for
practical implementations of the BFGS and SR1 methods. We give
more details for BFGS because its analysis is more general and illumi-
nating than that of SR1. The fact that the Hessian approximations
evolve by means of updating formulas makes the analysis of quasi-
Newton methods much more complex than that of steepest descent
and Newton’s method.
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Although the BFGS and SR1 methods are known to be remarkably
robust in practice, we will not be able to establish truly global con-
vergence results for general nonlinear objective functions; that is,
we cannot prove that the iterates of these quasi-Newton methods
approach a stationary point of the problem from any starting point
and any (suitable) initial Hessian approximation. In fact, it is not
yet known if the algorithms enjoy such properties. In our analysis
we will either assume that the objective function is convex or that
the iterates satisfy certain properties. On the other hand, there are
well known local, superlinear convergence results that are true under
reasonable assumptions.

Throughout this section we use }¨} to denote the Euclidean vector or
matrix norm, and sometimes denote the Hessian (∇2f )(x) by G(x).
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
‚ Global Convergence of the BFGS Method
We study the global convergence of the BFGS method, with a prac-
tical line search, when applied to a smooth convex function from an
arbitrary starting point x0 and from any initial Hessian approxima-
tion B0 that is symmetric and positive definite. We state our precise
assumptions about the objective function formally, as follows.

Assumption 6.1.
There exists a convex set C such that

1 The level set S =
␣

x P Rn ˇ
ˇ f (x) ď f (x0)

(

is contained inside C.
2 The objective function f is twice continuously differentiable on

C, and there exist positive constants m and M such that

m}z}2 ď zT(∇2f )(x)z ď M}z}2 @ z P Rn, x P C . (42)
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Part 2⃝ of this assumption implies that the Hessian ∇2f is positive
definite on S and that f has a unique minimizer x˚ in S.

Recall the identity yk = sGkαkpk = sGksk, where sGk is the average
Hessian defined in

sGk =
[ ż 1

0

(∇2f )(xk + ταkpk) dτ
]
. (11)

Using this identity above and (42), we obtain
yT

k sk
sT
k sk

=
sT
k
sGksk

sT
k sk

ě m . (43)

Assumption 6.1 implies that sGk is positive definite, so its square root
is well-defined. Therefore, by defining zk = sG 1/2

k sk,

yT
k yk

yT
k sk

=
sT
k
sG 2

k sk
sT
k
sGksk

=
zT

k
sGkzk

zT
k zk

ď M . (44)
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Hessian defined in

sGk =
[ ż 1

0

(∇2f )(xk + ταkpk) dτ
]
. (11)

Using this identity above and (42), we obtain
yT

k sk
sT
k sk

=
sT
k
sGksk

sT
k sk

ě m . (43)

Assumption 6.1 implies that sGk is positive definite, so its square root
is well-defined. Therefore, by defining zk = sG 1/2

k sk,

yT
k yk

yT
k sk

=
sT
k
sG 2

k sk
sT
k
sGksk

=
zT

k
sGkzk

zT
k zk

ď M . (44)
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Theorem
Let B0 be any symmetric positive definite initial matrix, and let x0
be a starting point for which Assumption 6.1 is satisfied. Then the
sequence txku generated by Algorithm 6.1 (with ε = 0) converges
to the minimizer x˚ of f.

Proof.
Let θk be the angle between the steepest descent direction and the
search direction pk=´B´1

k ∇fk. We first prove that lim inf
kÑ8

}∇fk}=0,
using Zoutendijk’s condition

8
ÿ

k=0

cos2θk }∇fk}2 ă 8

(
ñ lim

kÑ8
cos2θk }∇fk}2 = 0

)
,

by showing that there exist δ ą 0 such that
#
␣

k P N
ˇ

ˇ|cos θk | ě δ
(

= 8 . ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
We first compute det(Bk+1) in terms of det(Bk). Since Bk is positive
definite, Bk = PkΛkPT

k for some orthogonal matrix Pk and diagonal
matrix Λk. Using the BFGS updating formula

(BFGS) Bk+1 = Bk ´
Bk sksT

k Bk
sT
k Bk sk

+
ykyT

k
yT

k sk
. (22)

we find that

Λ
´1/2
k PT

k Bk+1PkΛ
´1/2
k = I ´

ηkηT
k

}ηk}2
+

wkwT
k

yT
k sk

,

where ηk = Λ
1/2
k PT

k sk and wk = Λ
´1/2
k PT

k yk. Let Qk be an orthog-
onal matrix satisfying Qk

ηk
}ηk}

= en, and define vk = Qkwk. Then

QkΛ
´1/2
k PT

k Bk+1PkΛ
´1/2
k QT

k = I ´ eneT
n +

vkvT
k

yT
k sk

. ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Suppose that vk = [a1, a2, ¨ ¨ ¨ , an]T. Then

yT
k sk = wT

k ηk = (Qkwk)
T(Qkηk) = vT

k }ηk}en = }ηk}an

so that an ‰ 0. Therefore, the matrix I ´ eneT
n +

vkvT
k

yT
k sk

is given by


1 +
a1
an

a1
}ηk}

a2
an

a1
}ηk}

¨ ¨ ¨ ¨ ¨ ¨
an´1

an

a1
}ηk}

a1
}ηk}

a1
an

a2
}ηk}

1 +
a2
an

a2
}ηk}

a3
an

a2
}ηk}

¨ ¨ ¨
an´1

an

a2
}ηk}

a2
}ηk}

...
. . .

...
...

. . .
...

a1
an

an´1

}ηk}
1 +

an´1

an

an´1

}ηk}

an´1

}ηk}

a1
an

an
}ηk}

a2
an

an
}ηk}

¨ ¨ ¨ ¨ ¨ ¨
an´1

an

an
}ηk}

an
}ηk}



.

˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).

Note that ηk = Λ
1/2
k PT

k sk so that
}ηk}2 = ηT

k ηk = sT
k PkΛkPT

k sk = sT
k Bk sk .

Using the properties of determinants,

det
(

I ´ eneT
n +

vkvT
k

yT
k sk

)
=

an
}ηk}

=
}ηk}an
}ηk}2

=
yT

k sk
sT
k Bk sk

,

and the identity above further implies that
yT

k sk
sT
k Bk sk

= det
(
QkΛ

´1/2
k PT

k Bk+1PkΛ
´1/2
k QT

k
)

= det(Λ´1/2
k ) det(Bk+1) det(Λ´1/2

k ) =
det(Bk+1)

det(Λk)
.

Therefore, the fact that det(Λk) = det(Bk) shows that

det(Bk+1) = det(Bk)
yT

k sk
sT
k Bk sk

. ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).

Define mk =
yT

k sk
sT
k sk

, Mk =
yT

k yk
yT

k sk
, and qk =

sT
k Bk sk
sT
k sk

. Then

det(Bk+1) = det(Bk)
yT

k sk
sT
k sk

sT
k sk

sT
k Bk sk

= det(Bk)
mk
qk
. (45)

Moreover, since sk = αkpk,

cos θk =
pT

k ∇fk
}pk}}∇fk}

=
pT

k Bk pk
}pk}}Bkpk}

=
sT
k Bk sk

}sk}}Bksk}
.

We then obtain that
}Bk sk}2

sT
k Bk sk

=
}Bk sk}2}sk}2

(sT
k Bk sk)2

sT
k Bk sk
}sk}2

=
qk

cos2θk

so that by taking the trace of Bk+1 in the updating formula (22),

tr(Bk+1) = tr(Bk) ´
}Bk sk}2

sT
k Bksk

+
}yk}2

yT
k sk

. (46)
˝

det(Bk+1) = det(Bk)
yT

k sk
sT
k sk

sT
k sk

sT
k Bk sk

= det(Bk)
mk
qk
. (45)

(46)
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).

Define mk =
yT

k sk
sT
k sk

, Mk =
yT

k yk
yT

k sk
, and qk =

sT
k Bk sk
sT
k sk

. Then

det(Bk+1) = det(Bk)
yT

k sk
sT
k sk

sT
k sk

sT
k Bk sk

= det(Bk)
mk
qk
. (45)

Moreover, since sk = αkpk,

cos θk =
pT

k ∇fk
}pk}}∇fk}

=
pT

k Bk pk
}pk}}Bkpk}

=
sT
k Bk sk

}sk}}Bksk}
.

We then obtain that
}Bk sk}2

sT
k Bk sk

=
}Bk sk}2}sk}2

(sT
k Bk sk)2

sT
k Bk sk
}sk}2

=
qk

cos2θk

so that by taking the trace of Bk+1 in the updating formula (22),

tr(Bk+1) = tr(Bk) ´
qk

cos2θk
+ Mk . (46)

˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Let ψ : GL(n,R) Ñ R be defined by

ψ(B) = tr(B) ´ ln |det(B)| .

By the spectral decomposition of symmetric matrices and the in-
equality x ´ 1 ě ln x for x ą 0, we have

ψ(B) ą 0 for all positive definite B.

Using (45) and (46) we obtain
ψ(Bk+1) = tr(Bk+1)´ ln(det(Bk+1))

= tr(Bk) ´
qk

cos2θk
+ Mk ´ ln(det(Bk)) ´ ln mk + ln qk

= ψ(Bk) + ln cos2θk + (Mk ´ ln mk ´ 1)

+
[
1 ´

qk
cos2θk

+ ln qk
cos2θk

]
.

(47)
˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Again by the inequality x ´ 1 ě ln x for x ą 0, the term inside the
square brackets of (47) is non-positive so we have for all k P N,

ψ(Bk+1) ď ψ(Bk) + (Mk ´ ln mk ´ 1) + ln cos2θk .

Therefore,
k
ÿ

j=0

ψ(Bj+1) ď
k
ÿ

j=0

ψ(Bj) +
k
ÿ

j=0

(Mj ´ ln mj ´ 1) +
k
ÿ

j=0

ln cos2θj

ñ ψ(Bk+1) ď ψ(B0) +
k
ÿ

j=0

(Mj ´ ln mj ´ 1) +
k
ÿ

j=0

ln cos2θj .

By (43) and (44), mk ě m and Mk ď M for all k P N; thus

0 ă ψ(Bk+1) ď ψ(B0) + c(k + 1) +
k
ÿ

j=0

ln cos2 θj , (48)

where c = M ´ ln m ´ 1, W.L.O.G., is assumed to be positive. ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Now we show that there exists δ ą 0 such that

#
␣

j P N
ˇ

ˇ| cos θj| ě δ
(

= 8 .

Assume the contrary that cos θj Ñ 0. Then there exists k1 ą 0 such
that

ln cos2 θj ă ´2c for all j ą k1,
where c = M ´ ln m ´ 1 is the constant defined previously.
Using this inequality in (48) we find that for all k ą k1,

0 ă ψ(B0) + c(k + 1) +
k1
ÿ

j=0

ln cos2 θj +
k
ÿ

j=k1+1

(´2c)

= ψ(B0) +
k1
ÿ

j=0

ln cos2 θj + 2ck1 + c ´ ck ,

and the right-hand side approaches ´8 as kÑ8, a contradiction. ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Therefore, there exists a subsequence of indices t jkuk=1,2,¨¨¨ such
that cos θjk ě δ ą 0. By Zoutendijk’s result this limit implies that
lim

kÑ8
}∇fjk} = 0, so we conclude that

lim inf
kÑ8

}∇fk} = 0 .

Finally we show that xℓ Ñ x˚. Before proceeding, we show that
xjk Ñ x˚. Nevertheless, by the mean value theorem,

(xjk ´ x˚)
T∇fjk = (xjk ´ x˚)

T(∇2f )(rx)(xjk ´ x˚)

for some rx on the line segment joining xjk and x˚. Since rx P C, by
Assumption 6.1 and the Cauchy-Schwartz inequality we obtain

m}xjk ´ x˚}2 ď (xjk ´ x˚)
T(∇2f )(rx)(xjk ´ x˚)

= (xjk ´ x˚)
T∇fjk ď }xjk ´ x˚}}∇fjk} . ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Since ∇fjk Ñ 0, we conclude that xjk Ñ x˚.
By Taylor’s Theorem, Assumption 6.1 implies that

f (x) ě f (x˚) +
m
2

}x ´ x˚}2 @ x P C ;

thus
}xℓ ´ x˚}2 ď

2

m
[
f (xℓ) ´ f (x˚)

]
@ ℓ P N .

In particular, for all k P N and ℓ ą jk, we have
}xℓ ´ x˚}2 ď

2

m
[
f (xℓ) ´ f (x˚)

]
ď

2

m
[
f (xjk) ´ f (x˚)

]
.

Passing to the limit as ℓ Ñ 8, we obtain
lim sup
ℓÑ8

}xℓ ´ x˚}2 ď
2

m
[
f (xjk) ´ f (x˚)

]
@ k P N .

Since the right-hand side converges to 0 as k Ñ 8, we conclude
that lim supℓÑ8 }xℓ ´ x˚} = 0, establishing the result. ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
The theorem above can be shown to hold for all ϕk P [0, 1) in

Bk+1 = Bk ´
Bk sksT

k Bk
sT
k Bk sk

+
ykyT

k
yT

k sk
+ ϕk(sT

k Bk sk)vkvT
k , (34)

but the argument seems to break down as ϕk Ñ 1´ because some
of the self-correcting properties of the update are weakened consid-
erably.

An extension of the analysis just given shows that the rate of con-
vergence of the iterates is linear. In particular, we can show that the
sequence }xk ´ x˚} converges to zero rapidly enough that

8
ÿ

k=1

}xk ´ x˚} ă 8 (49)

We will not prove this claim, but rather establish that if (49) holds,
then the rate of convergence is actually superlinear.
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
‚ Superlinear convergence of the BFGS method
The analysis of this section makes use of the Dennis and Moré char-
acterization

lim
kÑ8

}(Bk ´ ∇2f (x˚))pk}

}pk}
= 0

of superlinear convergence. It applies to general nonlinear – not just
convex – objective functions. For the results that follow we need to
make an additional assumption.

Assumption 6.2.
The Hessian ∇2f is Lipschitz continuous at x˚; that is, there exist
L, δ ą 0 such that

›

›(∇2f )(x) ´ (∇2f )(x˚)
›

› ď L}x ´ x˚} @ x P B(x˚, δ) .
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Theorem
Suppose that f is twice continuously differentiable and that the
iterates generated by the BFGS algorithm converge to a minimizer
x˚ at which ∇2f˚ is positive definite and Assumption 6.2 holds.
Suppose also that

8
ÿ

k=1

}xk ´ x˚} ă 8 (49)

holds. Then xk converges to x˚ at a superlinear rate.

Proof.
We first show that Assumption 6.1 is satisfied near x˚. Since ∇2f˚

is positive definite, by the continuity of ∇2f we find that there exists
δ ą 0 such that

m}z}2 ď zT(∇2f )(x)z ď M}z}2 @ x P B(x˚, δ) . ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Since xk Ñ x˚, W.L.O.G. we can assume that

x0 P B(x˚, δ) and f (x0) ´ f (x˚) ă
mδ2

8
.

Note that by Taylor’s theorem, we have
f (x) ě f (x˚) +

m
2

}x ´ x˚}2 @ x P B(x˚, δ) .

Therefore, if f (x) ď f (x0) and x P B(x˚, δ), we have

}x ´ x˚} ď

d

2
[
f (x0) ´ f (x˚)

]
m ă

δ

2
.

This shows that the level set S =
␣

x
ˇ

ˇ f (x) ď f (x0)
(

has at least
two connected components: one inside B(x˚, δ/2) and one out-
side B(x˚, δ). Since BFGS algorithm generates sequence of iterates
whose function value decreases, W.L.O.G. we can assume that As-
sumption 6.1 is satisfied. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Since xk Ñ x˚, W.L.O.G. we can assume that

x0 P B(x˚, δ) and f (x0) ´ f (x˚) ă
mδ2

8
.

Note that by Taylor’s theorem, we have
f (x) ě f (x˚) +

m
2

}x ´ x˚}2 @ x P B(x˚, δ) .

Therefore, if f (x) ď f (x0) and x P B(x˚, δ), we have

}x ´ x˚} ď

d

2
[
f (x0) ´ f (x˚)

]
m ă

δ

2
.

This shows that the level set S =
␣

x
ˇ

ˇ f (x) ď f (x0)
(

has at least
two connected components: one inside B(x˚, δ/2) and one out-
side B(x˚, δ). Since BFGS algorithm generates sequence of iterates
whose function value decreases, W.L.O.G. we can assume that As-
sumption 6.1 is satisfied. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
By the Dennis and Moré characterization, to show superlinear con-
vergence of the BFGS algorithm we need to show that

lim
kÑ8

}(Bk ´ G˚)sk}

}sk}
= 0 ,

where we recall that G˚ = (∇2f )(x˚). By the boundedness and the
positive definiteness of G˚, it is equivalent to that

lim
kÑ8

}G´1/2
˚ (Bk ´ G˚)sk}

}G1/2
˚ sk}

= 0 . (50)

Define the quantities
rsk = G1/2

˚ sk , ryk = G´1/2
˚ yk , rBk = G´1/2

˚ BkG´1/2
˚ .

It suffices to show that
lim

kÑ8

}(rBk ´ I)rsk}

}rsk}
= 0 . (50’)

˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
By pre- and post-multiplying the BFGS update formula (22) by
G´1/2

˚ and grouping terms appropriately, we obtain

rBk+1 = rBk ´
rBkrskrsT

k rBk

rsT
k rBkrsk

+
rykry

T
k

ryT
k rsk

. (22’)

Since this expression has precisely the same form as the BFGS for-
mula (22) and Assumption 6.1 is satisfied (near x˚), it follows from
the argument leading to (47) that

ψ(rBk+1) = ψ(rBk) + ln cos2 rθk + ( rMk ´ ln rmk ´ 1)

+
[
1 ´

rqk

cos2 rθk
+ ln rqk

cos2 rθk

]
,

(51)

where

cos rθk =
rsT
k rBkrsk

}rsk}}rBkrsk}
, rqk =

rsT
k rBkrsk
}rsk}2

, rMk =
ryT

k ryk
ryT

k rsk
, rmk =

ryT
k rsk

rsT
k rsk

. ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Next we show that

}ryk ´ rsk}

}rsk}
ď sc

[
}xk+1 ´ x˚} + }xk ´ x˚}

]
(52)

for some constant sc. By Assumption 6.2, and recalling the definition
sGk =

[ ż 1

0

(∇2f )(xk + ταkpk) dτ
]
, (11)

we have
}sGk ´ G˚} ď

ż 1

0

›

›(∇2f )(xk + ταkpk) ´ (∇2f )(x˚)
›

› dτ

ď

ż 1

0

L}xk + ταkpk ´ x˚} dτ

ď L
ż 1

0

}τ(xk+1 ´ x˚) + (1 ´ τ)(xk ´ x˚)} dτ

ď
L
2

[
}xk+1 ´ x˚} + }xk ´ x˚}

]
. ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Recalling the identity yk = sGksk (12), we have

yk ´ G˚sk = (sGk ´ G˚)sk ;

thus
ryk ´ rsk = G´1/2

˚ (sGk ´ G˚)G´1/2
˚ rsk .

Using the estimate for }sGk ´ G˚} from the previous page, we obtain

}ryk ´ rsk} ď }G´1/2
˚ }2}rsk}}sGk ´ G˚}

ď
1

2
}G´1/2

˚ }2}rsk}L
[
}xk+1 ´ x˚} + }xk ´ x˚}

]
,

so, by setting sc =
1

2
}G´1/2

˚ }2L , we conclude

}ryk ´ rsk}

}rsk}
ď sc

[
}xk+1 ´ x˚} + }xk ´ x˚}

]
. (52)

˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Let εk = }xk+1 ´ x˚} + }xk ´ x˚}. From (52),

}ryk} ´ }rsk} ď sc εk}rsk}, }rsk} ´ }ryk} ď sc εk}rsk},

so that
(1 ´ sc εk)}rsk} ď }ryk} ď (1 + sc εk)}rsk} . (53)

By squaring (52) and using (53), we obtain
(1 ´ sc εk)2}rsk}2 ´ 2ryT

k rsk + }rsk}2 ď }ryk}2 ´ 2ryT
k rsk + }rsk}2

ď sc 2ε2k }rsk}2,
and therefore
2ryT

k rsk ě (1 ´ 2sc εk + sc 2ε2k + 1 ´ sc 2ε2k )}rsk}2 = 2(1 ´ sc εk)}rsk}2.

It follows from the definition of rmk that

rmk =
ryT

k rsk

rsT
k rsk

ě 1 ´ sc εk . (54)
˝
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k rsk
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˝
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˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
By combining (53) and (54), we obtain also that

rMk =
ryT

k ryk
ryT

k rsk
ď

(1 + sc εk)2
1 ´ sc εk

. (55)

Since xk Ñ x˚, we have that εk Ñ 0; thus there exists K ą 0 such
that sc εk ă

1

2
for all k ě K. Using (55) we find that

rMk ď 1 +
7sc/2

1 ´ sc εk
εk ď 1 + 7sc εk ” 1 + c εk @ k ě K . (56)

Again by the non-positiveness of the function h(t) = 1´ t+ ln t, we
conclude that

´x
1 ´ x ´ ln(1 ´ x) = h

(
1

1 ´ x

)
ď 0 @ x ă 1 .

Therefore,
ln(1 ´ sc εk) ě

´sc εk
1 ´ sc εk

ě ´2sc εk @ k ě K . ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
The inequality ln(1 ´ sc εk) ě ´2sc εk for k ě K and (54) imply that

ln rmk ě ln (1 ´ sc εk) ě ´2sc εk ą ´2c εk @ k ě K . (57)

We can now use (57) and the inequality
rMk ď 1 + c εk @ k ě K (56)

in the inequality

ψ(rBk+1) = ψ(rBk) + ln cos2 rθk + ( rMk ´ ln rmk ´ 1)

+
[
1 ´

rqk

cos2 rθk
+ ln rqk

cos2 rθk

] (51)

to obtain that
0 ă ψ(rBk+1) ď ψ(rBk) + 3c εk + ln cos2rθk

+
[
1 ´

rqk

cos2rθk
+ ln rqk

cos2rθk

] @ k ě K . (58)
˝
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§6.4 Convergence Analysis
Proof (cont’d).
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ln rmk ě ln (1 ´ sc εk) ě ´2sc εk ą ´2c εk @ k ě K . (57)

We can now use (57) and the inequality
rMk ď 1 + c εk @ k ě K (56)

in the inequality

ψ(rBk+1) = ψ(rBk) + ln cos2 rθk + ( rMk ´ ln rmk ´ 1)

+
[
1 ´

rqk

cos2 rθk
+ ln rqk
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).
Rearranging terms in (58), by the non-positiveness of ln cos2θ and
the function h(t) = 1 ´ t + ln t we have

0 ă

[
ln 1

cos2rθj
´

(
1 ´

rqj

cos2rθj
+ ln rqj

cos2rθj

)]
ď

[
ψ(rBj) ´ ψ(rBj+1)

]
+ 3c εj

@ j ě K .

By summing this expression, by the fact that ψ(B) ą 0 for positive
definite B we have that for J ą K,

J
ÿ

j=K

(
ln 1

cos2rθj
+
ˇ

ˇ

ˇ
1 ´

rqj

cos2rθj
+ ln rqj

cos2rθj

ˇ

ˇ

ˇ

)
ď ψ(rBK) ´ ψ(rBJ+1) + 3c

J
ÿ

j=K
εj

ď ψ(rBK) + 3c
J
ÿ

j=K
εj . ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).

Making use of the condition
8
ř

k=1

}xk ´ x˚} ă 8 (49) we find that
8
ÿ

j=K
εj =

8
ÿ

j=K

[
}xj+1 ´ x˚} + }xj ´ x˚}

]
ď 2

8
ÿ

j=1

}xj ´ x˚} ă 8 .

Passing to the limit as J Ñ 8, we conclude that
8
ÿ

j=K

(
ln 1

cos2rθj
+
ˇ

ˇ

ˇ
1 ´

rqj

cos2rθj
+ ln rqj

cos2rθj

ˇ

ˇ

ˇ

)
ă 8 .

Since the term in the parenthesis is non-negative, we obtain the
following two limits

lim
jÑ8

ln 1

cos2rθj
= 0 , lim

jÑ8

[
1 ´

rqj

cos2rθj
+ ln rqj

cos2rθj

]
= 0 ,

which further imply that
lim
jÑ8

cos rθj = 1, lim
jÑ8

rqj = 1 . (59)
˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Proof (cont’d).

Finally, recalling the definition of cos rθk and rqk, we have

}(rBk ´ I)rsk}2

}rsk}2
=

}rBkrsk}2 ´ 2rsT
k rBkrsk + rsT

k rsk

rsT
k rsk

=
rq2

k

cos2 rθk
´ 2rqk + 1 ,

and the right-hand side converges to 0 because of (59); thus

lim
kÑ8

}(rBk ´ I)rsk}

}rsk}
= 0 (50’)

We remind the reader that (50’) is equivalent to the Dennis-Moré
characterization

lim
kÑ8

}(Bk ´ G˚)sk}

}sk}
= 0

of the superlinear convergence. Therefore, xk Ñ x˚ at a superlinear
rate. ˝
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
‚ Convergence analysis of the SR1 method
The convergence properties of the SR1 method are not as well un-
derstood as those of the BFGS method. No global results or local
superlinear results like the previous two theorems have been estab-
lished, except the results for quadratic functions discussed earlier.
There is, however, an interesting result for the trust-region SR1 al-
gorithm, Algorithm 6.2. It states that when the objective function
has a unique stationary point and the condition

|sT
k (yk ´ Bk sk)| ě r }sk}}yk ´ Bk sk} (29)

holds at every step (so that the SR1 update is never skipped) and the
Hessian approximations Bk are uniformly bounded, then the iterates
converge to x˚ at an (n + 1)-step superlinear rate. The result does
not require exact solution of the trust-region sub-problem (30).
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Theorem
Suppose that the iterates xk are generated by Algorithm 6.2. Sup-
pose also that the following conditions hold:

1 The sequence of iterates does not terminate, but remains in
a closed, bounded, convex set D, on which the function f is
twice continuously differentiable, and in which f has a unique
stationary point x˚;

2 the Hessian ∇2f (x˚) is positive definite, and ∇2f is Lipschitz
continuous in a neighborhood of x˚;

3 the sequence of matrices tBku is uniformly bounded;
4 condition (29) holds at every iteration, where r is some constant

in (0, 1).
Then lim

kÑ8
xk = x˚, and we have that lim

kÑ8

}xk+n+1 ´ x˚}

}xk ´ x˚}
= 0.
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis
Note that the BFGS method does not require the boundedness as-
sumption 3⃝ to hold. As we have mentioned already, the SR1 update
does not necessarily maintain positive definiteness of the Hessian ap-
proximations Bk. In practice, Bk may be indefinite at any iteration,
which means that the trust region bound may continue to be active
for arbitrarily large k. Interestingly, however, it can be shown that
the SR1 Hessian approximations tend to be positive definite most
of the time. The precise result is that

lim
kÑ8

#
␣

j
ˇ

ˇ 1 ď j ď k,Bj is positive semi-definite
(

k = 1 ,

under the assumptions of the theorem above. This result holds
regardless of whether the initial Hessian approximation is positive
definite or not.
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