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Chapter 6. Quasi-Newton Methods

Introduction

In the mid 1950s, W.C. Davidon, a physicist working at Argonne
National Laboratory, was using the coordinate descent method (see
Section 9.3) to perform a long optimization calculation. At that
time computers were not very stable, and to Davidon's frustration,
the computer system would always crash before the calculation was
finished. So Davidon decided to find a way of accelerating the itera-
tion. The algorithm he developed — the first quasi-Newton algorithm
— turned out to be one of the most creative ideas in nonlinear op-
timization. It was soon demonstrated by Fletcher and Powell that
the new algorithm was much faster and more reliable than the other
existing methods, and this dramatic advance transformed nonlinear

optimization overnight.
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Chapter 6. Quasi-Newton Methods

Introduction

During the following twenty years, numerous variants were proposed
and hundreds of papers were devoted to their study. An interesting
historical irony is that Davidon's paper [87] was not accepted for
publication; it remained as a technical report for more than thirty
years until it appeared in the first issue of the SIAM Journal on
Optimization in 1991 [88].
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Chapter 6. Quasi-Newton Methods

Introduction

During the following twenty years, numerous variants were proposed
and hundreds of papers were devoted to their study. An interesting
historical irony is that Davidon's paper [87] was not accepted for
publication; it remained as a technical report for more than thirty
years until it appeared in the first issue of the SIAM Journal on
Optimization in 1991 [88].

Quasi-Newton methods, like steepest descent, require only the gra-
dient of the objective function to be supplied at each iterate. By
measuring the changes in gradients, they construct a model of the
objective function that is good enough to produce superlinear con-
vergence. The improvement over steepest descent is dramatic, es-

pecially on difficult problems.
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Chapter 6. Quasi-Newton Methods

Introduction

Moreover, since second derivatives are not required, quasi-Newton
methods are sometimes more efficient than Newton's method. To-
day, optimization software libraries contain a variety of quasi-Newton
algorithms for solving unconstrained, constrained, and large-scale
optimization problems. In this chapter we discuss quasi-Newton
methods for small and medium-sized problems, and in Chapter 7 we

consider their extension to the large-scale setting.
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Chapter 6. Quasi-Newton Methods

Introduction

Moreover, since second derivatives are not required, quasi-Newton
methods are sometimes more efficient than Newton's method. To-
day, optimization software libraries contain a variety of quasi-Newton
algorithms for solving unconstrained, constrained, and large-scale
optimization problems. In this chapter we discuss quasi-Newton
methods for small and medium-sized problems, and in Chapter 7 we

consider their extension to the large-scale setting.

The development of automatic differentiation techniques has made
it possible to use Newton's method without requiring users to sup-
ply second derivatives; see Chapter 8. Still, automatic differenti-
ation tools may not be applicable in many situations, and it may
be much more costly to work with second derivatives in automatic
differentiation software than with the gradient. For these reasons,
quasi-Newton methods remain appealing.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The most popular quasi-Newton algorithm is the BFGS method,
named for its discoverers Broyden, Fletcher, Goldfarb, and Shanno.
In this section we derive this algorithm (and its close relative, the
DFP algorithm) and describe its theoretical properties and practical

implementation.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The most popular quasi-Newton algorithm is the BFGS method,
named for its discoverers Broyden, Fletcher, Goldfarb, and Shanno.
In this section we derive this algorithm (and its close relative, the
DFP algorithm) and describe its theoretical properties and practical

implementation.

We begin the derivation by forming the following quadratic model

of the objective function at the current iterate x:
1
mi(p) = fi + kaTp S ipTka. (1)

Here By is an n x n symmetric positive definite matrix that will be
revised or updated at every iteration. Note that the function value

and gradient of this model at p = 0 match f, and Vfy, respectively.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method

The minimizer py of this convex quadratic model, which we can

write explicitly as
Pk = _B;lvfka (2)

is used as the search direction, and the new iterate is

Xp+1 = Xk + QP (3)
where the step length «y is chosen to satisfy the Wolfe conditions.
This iteration is quite similar to the line search Newton method; the

key difference is that the approximate Hessian By is used in place of

the true Hessian.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Instead of computing By afresh at every iteration, Davidon proposed
to update it in a simple manner to account for the curvature mea-
sured during the most recent step. Suppose that we have generated
a new iterate x4 and wish to construct a new quadratic model, of
the form

Mis1(p) = fir1 + VL P+ %PTBk+1P'
What requirements should we impose on By 1, based on the knowl-

edge gained during the latest step?
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Instead of computing By afresh at every iteration, Davidon proposed
to update it in a simple manner to account for the curvature mea-
sured during the most recent step. Suppose that we have generated
a new iterate x4 and wish to construct a new quadratic model, of
the form
Mis1(p) = fir1 + VL P+ %PTBk+1P'

What requirements should we impose on By 1, based on the knowl-
edge gained during the latest step? One reasonable requirement is
that the gradient of my 1 should match the gradient of the objective
function f at the latest two iterates xx and xx+1. Since Vmy41(0)
is precisely Vfii1, the second of these conditions is satisfied auto-

matically. The first condition can be written mathematically as

Vmy 1 (—akpk) = Vg1 — axBig1pk = V.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

By rearranging, we obtain
Biiiakpx = Vi1 — Viy. (4)
To simplify the notation it is useful to define the vectors
Sk = Xkt1 — Xk = QkPk, Yk = Vi1 — Vi, (5)
so that (4) becomes
Bri15k = yk - (6)
We refer to this formula as the secant equation.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

By rearranging, we obtain
Biy1okpk = Vi1 — Vi, (4)

To simplify the notation it is useful to define the vectors

Sk = Xkt1 — Xk = QkPk, Yk = Vikt1 — Vi, (5)
so that (4) becomes
Bri15k = yk - (6)
We refer to this formula as the secant equation.

Given the displacement s, and the change of gradients yy, the secant
equation requires that the symmetric positive definite matrix By
map sk into yx. This will be possible only if s, and yj satisfy the

curvature condition '
sty >0, (7)

as is easily seen by premultiplying (6) by s;f.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

When f is strongly convex, the inequality
Sk Yk > 0 (7)

will be satisfied for any two points xx and Xjy1.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

When f is strongly convex, the inequality

Seyk >0 (7)
will be satisfied for any two points xx and xxyi1. However, this
condition will not always hold for non-convex functions, and in this
case we need to enforce (7) explicitly, by imposing restrictions on
the line search procedure that chooses the step length a.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

When f is strongly convex, the inequality

Sk Yk > 0 (7)
will be satisfied for any two points xx and xxyi1. However, this
condition will not always hold for non-convex functions, and in this
case we need to enforce (7) explicitly, by imposing restrictions on
the line search procedure that chooses the step length .. In fact, the
condition (7) is guaranteed to hold if we impose the Wolfe conditions

or strong Wolfe conditions on the line search.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

When f is strongly convex, the inequality
Sk Yk > 0 (7)
will be satisfied for any two points xx and xxyi1. However, this
condition will not always hold for non-convex functions, and in this
case we need to enforce (7) explicitly, by imposing restrictions on
the line search procedure that chooses the step length .. In fact, the
condition (7) is guaranteed to hold if we impose the Wolfe conditions
or strong Wolfe conditions on the line search. To verify this claim, we
note from (5) and the curvature condition that V£l s, > o V£ s,
and therefore
Yisk = (e = DV pr. (8)
Since co < 1 and since pk is a descent direction, the term on the

right is positive, and the curvature condition (7) holds.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method

When the curvature condition is satisfied, the secant equation (6)

always has a solution Byi1. In fact, it admits an infinite number

n(n—+1)

of solutions, since the degrees of freedom in a symmetric

positive definite matrix exceed the n conditions imposed by the se-
cant equation. The requirement of positive definiteness imposes n
additional inequalities — all principal minors must be positive — but

these conditions do not absorb the remaining degrees of freedom.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method

To determine By uniquely, we impose the additional condition that

among all symmetric matrices satisfying the secant equation, By
is, in some sense, closest to the current matrix By. In other words,
we solve the problem
mén | B — By subject to B=BTand Bs,=y,, (9)
where s, and yy satisfy
T
SikYk >0 (7)

and By is symmetric and positive definite.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Different matrix norms can be used in (9), and each norm gives
rise to a different quasi-Newton method. A norm that allows easy
solution of the minimization problem (9) and gives rise to a scale-
invariant optimization method is the weighted Frobenius norm
|Alw = [W2AWY2 g, (10)
n
where || - | £ is defined by |[C|% =tr(CTC) = 3

2
Cij'
i=1j

1
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Different matrix norms can be used in (9), and each norm gives
rise to a different quasi-Newton method. A norm that allows easy
solution of the minimization problem (9) and gives rise to a scale-

invariant optimization method is the weighted Frobenius norm
|Alw = W2 AW, (10)

where | - | is defined by ||C|2 =tr(CTC) = X > cg The weight
=1 j=1
matrix W can be chosen as any positive definite matrix satisfying

Wyk = Sg.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Different matrix norms can be used in (9), and each norm gives
rise to a different quasi-Newton method. A norm that allows easy
solution of the minimization problem (9) and gives rise to a scale-

invariant optimization method is the weighted Frobenius norm
|Alw = W2 AW, (10)

n

where || - | is defined by |[C|% =tr(CTC) = Z 2 c . The weight
i=1j=1

matrix W can be chosen as any positive definite matrix satisfying

WYy = sk. For concreteness, the reader can assume that

W=G, ",
where Gy is the average Hessian defined by
. 1
Gy = f (V2F)(xi + Tapy) dr - (11)
0
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The property

Yk = Graxpi = Gisk (12)
follows from Taylor's theorem. With this choice of weighting matrix
W, the norm (10) is non-dimensional, which is a desirable property,
since we do not wish the solution of (9) to depend on the units of

the problem.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The property

Yk = Graxpi = Gisk (12)
follows from Taylor's theorem. With this choice of weighting matrix
W, the norm (10) is non-dimensional, which is a desirable property,
since we do not wish the solution of (9) to depend on the units of
the problem. With a weighting matrix W satisfying Wy, = sx and

this weighted norm, the unique solution of (9) is

(DFP)  Byy1 = (I — pryisi ) Be(I — piskyt ) + pryiyi s (13)
with 1

= — 14

Pk }/I(rSk ( )

This formula is called the DFP updating formula, since it is the one
originally proposed by Davidon in 1959, and subsequently studied,
implemented, and popularized by Fletcher and Powell.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The inverse of By, which we denote by
Hi= B ',
is useful in the implementation of the method, since it allows the

search direction (2) to be calculated by means of a simple matrix-

vector multiplication.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The inverse of By, which we denote by

Hi= B ',
is useful in the implementation of the method, since it allows the
search direction (2) to be calculated by means of a simple matrix-
vector multiplication. Using the Sherman-Morrison-Woodbury
formula, we can derive the following expression for the update of
the inverse Hessian approximation Hj that corresponds to the DFP
update of By in (13):

Hiyiyi He | sksp 15
TH T . ( )
Yie FkYk Y Sk

(DFP) Hii1 = Hi —
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Hiyeyi Hic | sisi
DFP H = H, — + . 15
( ) e g v Hiyk Yi Sk (15)

Note that the last two terms in the right-hand-side of (15) are rank-

one matrices, so that H, undergoes a rank-two modification.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Hiyeyi Hic | sisi
DFP H = H, — + . 15
( ) e g v Hiyk Yi Sk (15)

Note that the last two terms in the right-hand-side of (15) are rank-
one matrices, so that H, undergoes a rank-two modification. It is

easy to see that

(DFP)  Bii1 = (I—pryisk ) Bk(I—pskyi ) +0kYiYie » (13)

is also a rank-two modification of Bk.

Ching-hsiao Arthur Cheng #%5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Hiyeyi Hic | sisi
DFP H = H, — + . 15
( ) e g v Hiyk Yi Sk (15)

Note that the last two terms in the right-hand-side of (15) are rank-
one matrices, so that H, undergoes a rank-two modification. It is

easy to see that
(DFP)  Bi1 = (I—puysk ) Bi(I—pusiyi ) +piyicYi (13)

is also a rank-two modification of By. This is the fundamental idea
of quasi-Newton updating: Instead of recomputing the approximate
Hessians (or inverse Hessians) from scratch at every iteration, we
apply a simple modification that combines the most recently ob-
served information about the objective function with the existing

knowledge embedded in our current Hessian approximation.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

e The derivation of the DFP updating formula

Let 5, = W25, and 5, = W2y, we find that Wy, = s if
and only if ¥, = Sx. Moreover, the condition Bsy = yx becomes
W2BW/25, = ¥,
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

e The derivation of the DFP updating formula
Let 5, = W25, and 5, = W2y, we find that Wy, = s if
and only if ¥, = Sx. Moreover, the condition Bsy = yx becomes
W/2BW'/?3, = ¥,. For a given square matrix M, define M =
W/2MW?'/2. Then Problem (9) can be reformulated as

méin |B— By|r subject to B = B' and éf/k =Y
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

e The derivation of the DFP updating formula

Let 5, = W25, and 5, = W2y, we find that Wy, = s if
and only if ¥, = Sx. Moreover, the condition Bsy = yx becomes
W/2BW'/?3, = ¥,. For a given square matrix M, define M =
W/2MW?'/2. Then Problem (9) can be reformulated as

méin |B— By|r subject to B = B' and éf/k =Y

Therefore, we look for a symmetric positive definiteness matrix §k+1
satisfying (I — By+1)Y, = 0 and minimizing the function

f(B) = |B— Bl = tr((B— By (B~ By).
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

e The derivation of the DFP updating formula
Let 3, = W25, and y, = W2y, we find that Wy, = s, if
and only if ¥, = Sx. Moreover, the condition Bsy = yx becomes
W/2BW'/?3, = ¥,. For a given square matrix M, define M =
W/2MW?'/2. Then Problem (9) can be reformulated as

-~ ~ - ~T -

min | B — By||r subject to B= B and By, =Y.
B

Therefore, we look for a symmetric positive definiteness matrix §k+1
satisfying (I — ék+1))7k = 0 and minimizing the function

f(B) = |B— Byl = tr((B— BW)"(B—By)).-
We differentiate the function and find that §k+1 satisfies that

tr((ékH = ék)Téé) =0

whenever 6B is symmetric and satisfies that 5§)7k =0.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Choose an orthogonal matrix O such that Oy, = |y,|en where
e, = [0,0,---,0,1]T. By the fact that tr((OMOT) = tr(M) for all

M and OB 0%, = 0, we find that B satisfies
0 =tr((Bxp1 — Bi)T0B) = tr((O(Bry1 — Br)O")T(06BOY))
whenever 6B satisfies that the last row and the last column of

OS6BOT are zero.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Choose an orthogonal matrix O such that Oy, = |y,|en where
e, = [0,0,---,0,1]T. By the fact that tr((OMOT) = tr(M) for all

M and OB 0%, = 0, we find that B satisfies
0 =tr((Bxp1 — Bi)T0B) = tr((O(Bry1 — Br)O")T(06BOY))
whenever 6B satisfies that the last row and the last column of

O6BOT are zero. This implies that

0 000 0 ain
OB —BgOT = |
0 500 0 a<n71>n
ainp " a(nfl)n ann

This shows that the minimizer Byyi(= W_1/2:§k+1 W_1/2) is a
rank-two modification of By.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

For a given n x n matrix M, let [M](,_1)x(n—1) denote the (n—1) x
(n— 1) matrix obtained by deleting the last row and last column of

M. Then the identity in the previous slide shows that

[OBkJrlOT](n—Ux(n—l) - [OBkOT] (n=1)x(n—1) "
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

For a given n x n matrix M, let [M](,_1)x(n—1) denote the (n—1) x
(n— 1) matrix obtained by deleting the last row and last column of

M. Then the identity in the previous slide shows that
o T 0B OT
[OBkHO ](n—l)x(n—l) - [OBkO ](n—l)x(n—l)'

To determine the last row and the last column of OékHOT, we note

that the condition Byy1y, = y, is equivalent to that
0B 10%e, =e,.

Therefore, the last row and last column of OékHOT is ep.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

For a given n x n matrix M, let [M](,_1)x(n—1) denote the (n—1) x
(n— 1) matrix obtained by deleting the last row and last column of
M. Then the identity in the previous slide shows that
B T 0B OT
[OBkHO ](n—l)x(n—l) - [OBkO ](n—l)x(n—l)'
To determine the last row and the last column of OékHOT, we note

that the condition Byy1y, = y, is equivalent to that
0B 10%e, =e,.

Therefore, the last row and last column of OékHOT is e,. This

shows that

(16)
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Note that
(DFP)  Bii1 = (I— piywsk) Be(I — prskyi ) + pryiyi s (13)
if and only if

Biy1=(I~— Pk)’ksk )Bk(I ksk)/k) + pk)N/k)N/E'
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Note that
(DFP)  Big1 = (1— pyiss ) Bl — prsiyi) + piyiys (13)
if and only if
§k+1 = (I = pr¥isk )Bk(I ksk)/k) + pk)N/k)N/E'

Since y, = Sk, it holds the identity
ph= g = op = = |7l
- T AT~ AT~ - )
YeSk VS Vi

so to establish (13) it suffices to show that

Bit1 = (I -y ) Bl — yk) + Vi - (13)
where y, = yi./|[Vil.-
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Note that
(DFP)  Big1 = (1— pyiss ) Bl — prsiyi) + piyiys (13)
if and only if
§k+1 = (I = pr¥isk )Bk(I ksk)/k) + pk)N/k)N/E'

Since y, = Sk, it holds the identity
ph= g = or = = |7l
- T AT~ AT~ - )
YeSk VS Vi

so to establish (13) it suffices to show that

0By 10" = (I — e,eD)OBOT (I — epel) + epelb . (13)

where we use Oy, = e, to conclude the identity.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Note that
(DFP)  Big1 = (1— pyiss ) Bl — prsiyi) + piyiys (13)
if and only if
§k+1 = (I = pr¥isk )Bk(I ksk)/k) + pk)N/k)N/E'

Since y, = Sk, it holds the identity
ph= g = or = = |7l
- T AT~ AT~ - )
YeSk VS Vi

so to establish (13) it suffices to show that

0By 10" = (I — e,eD)OBOT (I — epel) + epelb . (13)
where we use Oy, = e, to conclude the identity. We note that (13’)
is equivalent to (16); thus the DFP updating formula is established.
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Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula

Let A be an n x n non-singular matrix, and U and V be matrices
in R"™P for some p between 1 and n. IFA = A+ UVT, then A

is non-singular if and only if (I 4+ VTA=YU) is non-singular, and in

this case we have
A=At oAty vTATLO)VEATL. (1)
In particular, if the square non-singular matrix A undergoes a rank-
one update to become
A=A+ ab",
where a, be R", then if A is non-singular, we have

R
1+ bTA-15°
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Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula

We write the linear system (A+ UV T)x=d as

) 2= 0]

where ¢ = VTx. Note that the (n+ p) x (n+ p) matrix above can
be decomposed as

A U ] _ [ ILixn Onxp|[ A u :

Ching-hsiao Arthur Cheng #%5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula

We write the linear system (A+ UV T)x=d as

) 2= 0]

where ¢ = VTx. Note that the (n+ p) x (n+ p) matrix above can
be decomposed as

A U | [ Iixn Onxp| | A U .
thus the linear system (A + UVT)x = d is uniquely solvable if and
only if the linear system

A U x| d
Opxn —(Ipxp+VIATIU) | | € |~ | —VTA I

is uniquely solvable. o
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Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula

Proof (cont'd).
Nevertheless, by the invertibility of A, the linear system
lomr i) [] = v
Opxn —(IpxptVTATIU) [ | €| | —VTATld
is uniquely solvable if and only if the system
(Ipxp+ VIATIU)E = VTAT

is uniquely solvable

|
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Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula

Proof (cont'd).
Nevertheless, by the invertibility of A, the linear system

o <t v [§] = [ —viana)
Opxn —(Ipup+VTATIU) || €] | —VTATH
is uniquely solvable if and only if the system
(Ipxp+ VIATIU)E = VTAT
is uniquely solvable so we establish that A = A+ UVT is non-
singular if and only if (I+ VTA=1U) is non-singular.
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Chapter 6. Quasi-Newton Methods

Sherman-Morrison-Woodbury Formula

Proof (cont'd).
Nevertheless, by the invertibility of A, the linear system

A U x| d
Opxn —(Ipxp+VTATIU) | | €| | —VTA™ld
is uniquely solvable if and only if the system
(Ipxp+ VIATIU)E = VTAT
is uniquely solvable so we establish that A = A+ UVT is non-
singular if and only if (I+ VTA=1U) is non-singular. In this case,
¢ = (Ipxp+VIATIU) VT A d;

thus, by solving Ax = d — U, we obtain that the solution of the
linear system (A+ UV T)x = dis given by

x=A"I-U(lpup+VTAU)'VTA 4. o
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Chapter 6. Quasi-Newton Methods
Sherman-Morrison-Woodbury Formula

We can use the Sherman-Morrison-Woodbury formula to solve linear

systems of the form Ax = d. Since
x=A"I=U(lpxp+VTATIU)TVTA ] d
— Al d— (A 1U) [Ipwp+ VT(ALU)] VT (A L),
we see that x can be found by solving (p + 1) linear systems with
the matrix A (to obtain A='d and A~!'U), inverting the p x p matrix

I+ VTA-U, and performing some elementary matrix algebra. In-

version of the p x p matrix I+ VTA~1U is inexpensive when p « n.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

e The derivation of the DFP updating formula for H
We expand the DFP updating formula for By
(DFP)  Bir1 = (I — pryasi) Be(l — psiyi) + Pyavi (13)
as
Bit1 = Bk — piyksi Bk — pkBrskyl + payi(si Bksk)yi + pryrYi
= Bi— piyk(Bisi)T — pi(Bisk)yi + pi(1 + pisi Bisk)yiyi
= Bic— piyk(Bisi) T + pil ity — Bisi)yi
= By + [*Pk)/kzpk(,uk}/k = Bksk)} [Bkskf)/kr,

where p =1+ [)kSZ Bysk.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Let A = By, U= [—piyk:pr(pkyx — Bsk)] and V = [Bisi:yi]-
Then By 1 = A+ UVT. Since

TP
Sk

AU = [_pkaYkEPk(,U«kaYk = Sk)} , viatl=
¥i Hk

)

and

0 1
I+ VTA~TlU= [ }
—piyYr Hiyie pravicys Hiyw
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Let A = By, U= [—piyk:pr(pkyx — Bsk)] and V = [Bisi:yi]-
Then By 1 = A+ UVT. Since

T
. - Sy
ATlU= [—pka)/kiPk(Mkayk - Sk)} , VATl =
TH
Yi Mk
and
0 1
I+ VviATlu= [ }
—piYi Hiv  prtiys Hicyi
by the Sherman-Morrison-Woodbury formula we obtain that
r T
Pk : Pty Hiye —110| Sk
His1 = Hk — —=— | — Hkyw: picHiyk — s
o PkYEHkYk[ ik k}[ pviHive 0 || yTH,
1 T
: Pklk — k
= Hy — [* Hiyk: piHryx — Sk} Yi Hiyx ot
Pk 0 Vi He

Ching-hsiao Arthur Cheng it .5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Expanding the product of the matrices,

Hiy1 = Hi — {* Hiy: peacHiyx — Sk}

= Ay — {* Hiy: pecHiyx — Sk}

Ching-hsiao Arthur Cheng

Pkitk — Sk
Yie Hiy )

| Pk 0 Yk Hy
B T

T Y Hk

T _
Pidtisi Vi Hicyw

PKSk
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Expanding the product of the matrices,

T
: Pkik — Sk
Hiy1 = Hi — {* Hiyic: pcHiye — Sk} Vi Hiy o
| Pk 0 Yk Hy
r T
T YiH«
: PklkSy —
= Hi— [* Hiyx: pacHiyx — Sk} ..... “ . YiHo
PKSk
= Hic+ Hiyi(pirksi — AL ) — (ucHiyx — si) pisi
K yTHiy &
H, TH ‘
= Hi + prikHiyrsy — % — prikHiyiSE + pisksy
Yi Hyx
Hiyryi Hi
= Hj — 2T PKSKS] »

Vi Hieyi
which is exactly the DFP updating formula for H.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The DFP updating formula is quite effective, but it was soon super-
seded by the BFGS formula, which is presently considered to be the

most effective of all quasi-Newton updating formulae.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The DFP updating formula is quite effective, but it was soon super-
seded by the BFGS formula, which is presently considered to be the
most effective of all quasi-Newton updating formulae. BFGS up-
dating can be derived by making a simple change in the argument
that led to (13). Instead of imposing conditions on the Hessian ap-
proximations By, we impose similar conditions on their inverses Hy.
The updated approximation Hjy; must be symmetric and positive

definite, and must satisfy the secant equation (6), now written as

Hit1yic = sk
The condition of closeness to Hy is now specified by the following

analogue of (9):
H}Hi’n |H— H| subject to H= H" Hy, =s.. (19)
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The norm is again the weighted Frobenius norm described above,
where the weight matrix W is now any matrix satisfying Ws, = y.
The unique solution Hy4q to (19) is given by

(BFGS)  Hiw1 = (I— prsiyy ) Hil— piyist) + psesy (20)
with py defined by (14).
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

The norm is again the weighted Frobenius norm described above,
where the weight matrix W is now any matrix satisfying Ws, = y.
The unique solution Hy4q to (19) is given by

(BFGS)  Hip1 = (I— prsiyi ) Hi(I— pryist ) + pisisy (20)
with py defined by (14).

How should we choose the initial approximation Hy? Unfortunately,
there is no magic formula that works well in all cases. We can use
specific information about the problem, for instance
@ Hy is the inverse of an approximate Hessian at xp;
@ Hj is the identity matrix;
© Hy is a multiple of the identity matrix, where the multiple is
chosen to reflect the scaling of the variables.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Algorithm 6.1 (BFGS Method).
Given starting point xg, convergence tolerance € > 0, inverse Hes-
sian approximation Hy;
k< 0;
while |V > ¢;
Compute search direction
pr = —H V1 (21)
Set Xx11 = Xk + Pk, where ay is computed from a line
search procedure to satisfy the Wolfe conditions;
Define sk = xx+1 — Xk and yx = Vi1 — Vi
Compute Hyi1 by means of (20);
k<— k+1;
end (while)
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method

Each iteration can be performed at a cost of O(n?) arithmetic oper-

ations (plus the cost of function and gradient evaluations); there are
no O(n3) operations such as linear system solves or matrix-matrix
operations. The algorithm is robust, and its rate of convergence is
superlinear (whose proof will be given in Section 6.4), which is fast

enough for most practical purposes.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method

Each iteration can be performed at a cost of O(n?) arithmetic oper-

ations (plus the cost of function and gradient evaluations); there are
no O(n3) operations such as linear system solves or matrix-matrix
operations. The algorithm is robust, and its rate of convergence is
superlinear (whose proof will be given in Section 6.4), which is fast
enough for most practical purposes. Even though Newton's method
converges more rapidly (that is, quadratically), its cost per iteration
usually is higher, because of its need for second derivatives and so-

lution of a linear system.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

We can derive a version of the BFGS algorithm that works with the
Hessian approximation By rather than Hy. The update formula for

By is obtained by simply applying the Sherman-Morrison-Woodbury
formula to (20) to obtain

Bysksy Bk ykyE
BF B = B, — ks i 22
(BFGS) e 22)
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

We can derive a version of the BFGS algorithm that works with the
Hessian approximation By rather than Hy. The update formula for
By is obtained by simply applying the Sherman-Morrison-Woodbury
formula to (20) to obtain

Bisksy B | ykyi

(BFGS) Bii1 = Bi— (22)

SiBesk  yisk
A naive implementation of this variant is not efficient for uncon-
strained minimization, because it requires the system Byp, = —Vf
to be solved for the step px, thereby increasing the cost of the
step computation to O(n?®). We discuss later, however, that less
expensive implementations of this variant are possible by updating

Cholesky factors of By.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

e Properties of the BFGS Method

It is usually easy to observe the superlinear rate of convergence of
the BFGS method on practical problems. Below, we report the last
few iterations of the steepest descent, BFGS, and an inexact Newton

method on Rosenbrock’s function
f(x) = 100(xy — x2)% 4+ (1 — x1)?.

The table gives the value of |xx — x«|. The Wolfe conditions were
imposed on the step length in all three methods. From the starting
point (—1.2,1), the steepest descent method required 5264 itera-
tions, whereas BFGS and Newton took only 34 and 21 iterations,

respectively to reduce the gradient norm to 107>,
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

steepest BFGS | Newton
descent
1.827e-04 | 1.70e-03 | 3.48e-02
1.826e-04 | 1.17e-03 | 1.44e-02
1.824e-04 | 1.34e-04 | 1.82e-04
1.823¢-04 | 1.01e-06 | 1.17e-08
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Note that the minimization problem (19) that gives rise to the BFGS
update formula does not explicitly require the updated Hessian ap-

proximation to be positive definite.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Note that the minimization problem (19) that gives rise to the BFGS
update formula does not explicitly require the updated Hessian ap-
proximation to be positive definite. Nevertheless, note that y;fsk is

positive, so that the updating formula

(BFGS)  Hii1 = (I— prswyic )Hk(I— pryisk ) + prsksi (20)

is well-defined.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Note that the minimization problem (19) that gives rise to the BFGS
update formula does not explicitly require the updated Hessian ap-
proximation to be positive definite. Nevertheless, note that y;fsk is

positive, so that the updating formula
(BFGS)  Hyy1 = (I— psuyi ) Hk(I— pryrsi ) + prsksy » (20)
is well-defined. For any nonzero vector z, we have
ZTHk+1Z = WTHkW+ pk(szk)2 =0,

where we have defined w = z — piyk(si z). The right hand side can
be zero only if sEz = 0, but in this case w = z # 0, which implies

that the first term is greater than zero.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Note that the minimization problem (19) that gives rise to the BFGS
update formula does not explicitly require the updated Hessian ap-
proximation to be positive definite. Nevertheless, note that y;fsk is

positive, so that the updating formula
(BFGS)  Hiy1 = (I— piswyi ) Hi(I— piysk ) + pisksi » (20)

is well-defined. For any nonzero vector z, we have
ZTHk+1Z = WTHkW+ pk(szk)2 =0,

where we have defined w = z — piyk(si z). The right hand side can
be zero only if sEz = 0, but in this case w = z # 0, which implies
that the first term is greater than zero. Therefore, we establish that
Hi+1 (obtained by the updating formula (20)) is positive definite

whenever H, is positive definite.
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Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method

To make quasi-Newton updating formulae invariant to transforma-

tions in the variables (such as scaling transformations), it is neces-
sary for the objectives (9) and (19) to be invariant under the same

transformations.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

To make quasi-Newton updating formulae invariant to transforma-
tions in the variables (such as scaling transformations), it is neces-
sary for the objectives (9) and (19) to be invariant under the same
transformations. The choice of the weighting matrices W used to
define the norms in (9) and (19) ensures that this condition holds.
Many other choices of the weighting matrix W are possible, each
one of them giving a different update formula. However, despite
intensive searches, no formula has been found that is significantly
more effective than BFGS.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

To make quasi-Newton updating formulae invariant to transforma-
tions in the variables (such as scaling transformations), it is neces-
sary for the objectives (9) and (19) to be invariant under the same
transformations. The choice of the weighting matrices W used to
define the norms in (9) and (19) ensures that this condition holds.
Many other choices of the weighting matrix W are possible, each
one of them giving a different update formula. However, despite
intensive searches, no formula has been found that is significantly
more effective than BFGS.

The BFGS method has many interesting properties when applied to
quadratic functions. We discuss these properties later in the more
general context of the Broyden family of updating formulae, of which

BFGS is a special case.

Ching-hsiao Arthur Cheng it .5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method

It is reasonable to ask whether there are situations in which the

updating formula such as

(BFGS)  Hi1 = (I— prsivic ) Hi(I— piyrsic) -+ pisisic (20)
can produce bad results. If at some iteration the matrix Hy becomes
a poor approximation to the true inverse Hessian, is there any hope
of correcting it? For example, when the inner product yfsk is tiny
(but positive), then it follows from (20) that Hy1 contains very large
elements. Is this behavior reasonable? A related question concerns
the rounding errors that occur in finite-precision implementation of
these methods. Can these errors grow to the point of erasing all

useful information in the quasi-Newton approximate Hessian?

Ching-hsiao Arthur Cheng it .5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method

These questions have been studied analytically and experimentally,

and it is now known that the BFGS formula has very effective self-
correcting properties. If the matrix Hy incorrectly estimates the cur-
vature in the objective function, and if this bad estimate slows down
the iteration, then the Hessian approximation will tend to correct it-

self within a few steps.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

These questions have been studied analytically and experimentally,
and it is now known that the BFGS formula has very effective self-

correcting properties. If the matrix Hy incorrectly estimates the cur-
vature in the objective function, and if this bad estimate slows down
the iteration, then the Hessian approximation will tend to correct it-
self within a few steps. It is also known that the DFP method is less
effective in correcting bad Hessian approximations; this property is

believed to be the reason for its poorer practical performance.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

These questions have been studied analytically and experimentally,
and it is now known that the BFGS formula has very effective self-
correcting properties. If the matrix Hy incorrectly estimates the cur-
vature in the objective function, and if this bad estimate slows down
the iteration, then the Hessian approximation will tend to correct it-
self within a few steps. It is also known that the DFP method is less
effective in correcting bad Hessian approximations; this property is
believed to be the reason for its poorer practical performance. The
self-correcting properties of BFGS hold only when an adequate line
search is performed. In particular, the Wolfe line search conditions
ensure that the gradients are sampled at points that allow the model

(1) to capture appropriate curvature information.
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§6.1 The BFGS Method

It is interesting to note that the DFP and BFGS updating formulae
are duals of each other, in the sense that one can be obtained from
the other by the interchanges s « y, B < H. This symmetry is
not surprising, given the manner in which we derived these methods

above.

Ching-hsiao Arthur Cheng i g MAS037-*



Chapter 6. Quasi-Newton Methods

§6.1 The BFGS Method

¢ Implementation

A few details and enhancements need to be added to Algorithm
6.1 to produce an efficient implementation. The line search, which
should satisfy either the Wolfe conditions or the strong Wolfe con-
ditions, should always try the step length ay = 1 first, because
this step length will eventually always be accepted (under certain
conditions), thereby producing superlinear convergence of the over-
all algorithm. Computational observations strongly suggest that it
is more economical, in terms of function evaluations, to perform a
fairly inaccurate line search. The values ¢; = 107 and ¢, = 0.9 are

commonly used in the Wolfe condition.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

As mentioned earlier, the initial matrix Hy often is set to some
multiple BI of the identity, but there is no good general strategy
for choosing the multiple 5. If 3 is too large, so that the first step
po = —go is too long, many function evaluations may be required
to find a suitable value for the step length ay. Some software asks
the user to prescribe a value § for the norm of the first step, and

then set Hy = 6|/go| ~'I to achieve this norm.
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§6.1 The BFGS Method

As mentioned earlier, the initial matrix Hy often is set to some
multiple BI of the identity, but there is no good general strategy
for choosing the multiple 5. If 3 is too large, so that the first step
po = —go is too long, many function evaluations may be required
to find a suitable value for the step length ay. Some software asks
the user to prescribe a value § for the norm of the first step, and
then set Hy = 6|/go| ~'I to achieve this norm.

A heuristic that is often quite effective is to scale the starting matrix
after the first step has been computed but before the first BFGS
update is performed. We change the provisional value Hy = I by

setting

T
Yi Sk
Hoy « 2k 23
0 y;f)/k ( )

before applying the updating formula (20) to obtain H;.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

Formula (23) attempts to make the size of Hy similar to that of
(V2f)(xo) "', in the following sense. Assuming that the average
Hessian defined in (11) is positive definite, there exists a square root
G 12 satisfying Gy = Gl/2

and using the relation y, = Gy, we have

Gy 12 . Therefore, by defining z, = Gk/ Sk

—~1/2 —1/2
Yask _ (G "s)" G sz (24)

Yeve  (GY?s)T6G s 7 Gz
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§6.1 The BFGS Method

Formula (23) attempts to make the size of Hy similar to that of
(V2f)(xo) "', in the following sense. Assuming that the average
Hessian defined in (11) is positive definite, there exists a square root
G 12 satisfying Gy = Gl/2

and using the relation y, = Gy, we have

Gy 12 . Therefore, by defining z, = Gk/ Sk

—=1/2 —=1/2
y;fsk: (Gk Sk)TGk Sk _ Z’,}:Zk ) (24)

YaYe  (Gs)TGG s 7 Ghzk

The reciprocal of (24) is an approximation to one of the eigenvalues
of G, which in turn is close to an eigenvalue of (V2f)(xx). Hence,
the quotient (24) itself approximates an eigenvalue of (V2f)(x) "
Other scaling factors can be used in (23), but the one presented

here appears to be the most successful in practice.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

In (22) we gave an update formula

Bisksi Bk | ykVi

(BFGS) Bis1 = Bi — (22)

sy Bisk Yisk
for a BFGS method that works with the Hessian approximation By
instead of the inverse Hessian approximation Hy. An efficient imple-
mentation of this approach does not store By explicitly, but rather
the Cholesky factorization LkaLE of this matrix. A formula that
updates the factors Ly and Dy directly in O(n?) operations can be
derived from (22). Since the linear system Bypx = — Vi also can be
solved in O(n?) operations (by performing triangular substitutions
with L and LE and a diagonal substitution with Dy), the total cost

is quite similar to the variant described in Algorithm 6.1.
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Chapter 6. Quasi-Newton Methods
§6.1 The BFGS Method

A potential advantage of this alternative strategy is that it gives us
the option of modifying diagonal elements in the D, factor if they
are not sufficiently large, to prevent instability when we divide by
these elements during the calculation of px. However, computational
experience suggests no real advantages for this variant, and we

prefer the simpler strategy of Algorithm 6.1.
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§6.1 The BFGS Method

The performance of the BEGS method can degrade if the line search

is not based on the Wolfe conditions.
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The performance of the BEGS method can degrade if the line search
is not based on the Wolfe conditions. For example, some software
implements an Armijo backtracking line search (see Section 3.1):
The unit step length ay = 1 is tried first and is successively de-
creased until the sufficient decrease condition is satisfied. For this
strategy, there is no guarantee that the curvature condition yzsk >0
(7) will be satisfied by the chosen step, since a step length greater

than 1 may be required to satisfy this condition.
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The performance of the BEGS method can degrade if the line search
is not based on the Wolfe conditions. For example, some software
implements an Armijo backtracking line search (see Section 3.1):
The unit step length ay = 1 is tried first and is successively de-
creased until the sufficient decrease condition is satisfied. For this
strategy, there is no guarantee that the curvature condition y;(rsk >0
(7) will be satisfied by the chosen step, since a step length greater
than 1 may be required to satisfy this condition. To cope with this
shortcoming, some implementations simply skip the BFGS update

by setting Hxy1 = Hik when yzsk is negative or too close to zero.
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§6.1 The BFGS Method

The performance of the BEGS method can degrade if the line search
is not based on the Wolfe conditions. For example, some software
implements an Armijo backtracking line search (see Section 3.1):
The unit step length ay = 1 is tried first and is successively de-
creased until the sufficient decrease condition is satisfied. For this
strategy, there is no guarantee that the curvature condition yzsk >0
(7) will be satisfied by the chosen step, since a step length greater
than 1 may be required to satisfy this condition. To cope with this
shortcoming, some implementations simply skip the BFGS update
by setting Hxy1 = Hik when yzsk is negative or too close to zero.
This approach is not recommended, because the updates may be
skipped much too often to allow Hj to capture important curvature

information for the objective function f.
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Chapter 6. Quasi-Newton Methods
§6.2 The SR1 Method

In the BFGS and DFP updating formulae, the updated matrix By
(or Hi1) differs from its predecessor By (or Hi) by a rank-2 matrix.
In fact, as we now show, there is a simpler rank-1 update that
maintains symmetry of the matrix and allows it to satisfy the secant
equation. Unlike the rank-two update formulae, this symmetric-
rank-1, or SR1, update does not guarantee that the updated matrix
maintains positive definiteness. Good numerical results have been
obtained with algorithms based on SR1, so we derive it here and

investigate its properties.
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Chapter 6. Quasi-Newton Methods

§6.2 The SR1 Method

The symmetric rank-1 update has the general form By 1 = By +

ovvl, where o is either +1 or —1, and o and v are chosen so that

Byt satisfies the secant equation yx = Byi15Sk-
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§6.2 The SR1 Method

The symmetric rank-1 update has the general form By 1 = By +
ovvl, where o is either +1 or —1, and o and v are chosen so that
Byt satisfies the secant equation yx = Byii1Sk. By substituting

into this equation, we obtain
Yk = Bisk + [O'VTSk] V. (25)
Since the term in brackets is a scalar, we deduce that v must be a

multiple of yx — Bisk; that is, v = d(yx — Bksk) for some scalar .
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§6.2 The SR1 Method

The symmetric rank-1 update has the general form By 1 = By +
ovvl, where o is either +1 or —1, and o and v are chosen so that
Byt satisfies the secant equation yx = Byii1Sk. By substituting
into this equation, we obtain

Yk = Brsk + [O'VTSk] V. (25)
Since the term in brackets is a scalar, we deduce that v must be a
multiple of yx — Bisk; that is, v = d(yx — Bksk) for some scalar .
By substituting this form of v into (25), we obtain

(vk — Bisk) = 06° [sg (v — Bisk)] (vk — Bisk) (26)
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Chapter 6. Quasi-Newton Methods
§6.2 The SR1 Method

The symmetric rank-1 update has the general form By 1 = By +
ovvl, where o is either +1 or —1, and o and v are chosen so that
Byt satisfies the secant equation yx = Byii1Sk. By substituting
into this equation, we obtain

Yk = Brsk + [O'VTSk] V. (25)
Since the term in brackets is a scalar, we deduce that v must be a
multiple of yx — Bisk; that is, v = d(yx — Bksk) for some scalar .
By substituting this form of v into (25), we obtain

(vk — Bisk) = 00° [sg (vk — Bisk)] (v — Bisk) , (26)
and it is clear that this equation is satisfied if (and only if) we choose

the parameters § and o to be

o =sign[s; (vk — Bksk)], 6 = *|si (vk — Bksk)| e
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§6.2 The SR1 Method

Hence, we have shown that the only symmetric rank-1 updating
formula that satisfies the secant equation is given by

(yk — Bisi) (yk — Bis)™
(Yk — Brsi) s

(SR].) Byi1 = Bk + (27)

By applying the Sherman-Morrison formula, we obtain the corre-

sponding update formula for the inverse Hessian approximation Hj:

(sk — Hiyi) (s — Hiyi) *
SR1 H = H, + . 28
( ) ! “ (sk — Hiyi) T yx (28)

This derivation is so simple that the SR1 formula has been rediscov-

ered a number of times.
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It is easy to see that even if By is positive definite, By may not

have the same property. (The same is, of course, true of H.) This
observation was considered a major drawback in the early days of

nonlinear optimization when only line search iterations were used.
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§6.2 The SR1 Method

It is easy to see that even if By is positive definite, By may not
have the same property. (The same is, of course, true of H.) This
observation was considered a major drawback in the early days of
nonlinear optimization when only line search iterations were used.
However, with the advent of trust-region methods, the SR1 updat-
ing formula has proved to be quite useful, and its ability to generate
indefinite Hessian approximations can actually be regarded as one

of its chief advantages.
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§6.2 The SR1 Method

It is easy to see that even if By is positive definite, By may not
have the same property. (The same is, of course, true of H.) This
observation was considered a major drawback in the early days of
nonlinear optimization when only line search iterations were used.
However, with the advent of trust-region methods, the SR1 updat-
ing formula has proved to be quite useful, and its ability to generate
indefinite Hessian approximations can actually be regarded as one

of its chief advantages.

The main drawback of SR1 updating is that the denominator in
(27) or (28) can vanish. In fact, even when the objective function
is a convex quadratic, there may be steps on which there is no
symmetric rank-1 update that satisfies the secant equation. It pays

to reexamine the derivation above in the light of this observation.
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By reasoning in terms of By (similar arguments can be applied to
Hy), we see that there are three cases:

Q If (yx— Bksk)Tsk # 0, then the arguments above show that
there is a unique rank-one updating formula satisfying the se-
cant equation, and that it is given by (27).

Q If yx = Bysk, then the only updating formula satisfying the
secant equation is simply Byi1 = Bg.

© If yi # Byisk and (yx — Bisk) sk = 0, then (26) shows that
there is no symmetric rank-one updating formula satisfying the

secant equation.
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The last case (yx # Bxsk and (yx — Bksk) sk = 0) clouds an oth-
erwise simple and elegant derivation, and suggests that numerical
instabilities and even breakdown of the method can occur. It sug-
gests that rank-one updating does not provide enough freedom to
develop a matrix with all the desired characteristics, and that a rank-
two correction is required. This reasoning leads us back to the BFGS
method, in which positive definiteness (and thus non-singularity) of

all Hessian approximations is guaranteed.
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§6.2 The SR1 Method

Nevertheless, we are interested in the SR1 formula for the following

reasons:

@ A simple safeguard seems to adequately prevent the breakdown

of the method and the occurrence of numerical instabilities.
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§6.2 The SR1 Method

Nevertheless, we are interested in the SR1 formula for the following
reasons:
@ A simple safeguard seems to adequately prevent the breakdown
of the method and the occurrence of numerical instabilities.
@ The matrices generated by the SR1 formula tend to be good
approximations to the true Hessian matrix — often better than
the BFGS approximations.
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Chapter 6. Quasi-Newton Methods
§6.2 The SR1 Method

Nevertheless, we are interested in the SR1 formula for the following
reasons:
@ A simple safeguard seems to adequately prevent the breakdown
of the method and the occurrence of numerical instabilities.
@ The matrices generated by the SR1 formula tend to be good
approximations to the true Hessian matrix — often better than
the BFGS approximations.
© In quasi-Newton methods for constrained problems, or in meth-
ods for partially separable functions (see Chapters 18 and 7), it
may not be possible to impose the curvature condition y;fsk >
0, and thus BFGS updating is not recommended. Indeed, in
these two settings, indefinite Hessian approximations are desir-

able insofar as they reflect indefiniteness in the true Hessian.
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We now introduce a strategy to prevent the SR1 method from break-
ing down. It has been observed in practice that SR1 performs well
simply by skipping the update if the denominator is small. More
specifically, the update (27) is applied only if

| (v = Biesi)| = rlislllyx — Biesll (29)

where re (0,1) is a small number, say r = 1078, If (29) does not
hold, we set Byy1 = Bk. Most implementations of the SR1 method
use a skipping rule of this kind.
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RO A - &P 7 3B & BFGS 2 % el R T B {
#r o m 2 SR1 = jE ¢ Fri R peiE { #77% ? The two cases are quite
different. The condition s, L (yk— Bisk) ~ 0 occurs infrequently, since
it requires certain vectors to be aligned in a specific way. When it
does occur, skipping the update appears to have no negative effects
on the iteration. This is not surprising, since the skipping condition
implies that s, TGsy ~ Sk TB, 5., where G is the average Hessian over
the last step — meaning that the curvature of By along sy is already
correct. In contrast, the curvature condition skyk 0 required for
BFGS updating may easily fail if the line search does not impose
the Wolfe conditions (for example, if the step is not long enough),
and therefore skipping the BFGS update can occur often and can

degrade the quality of the Hessian approximation.
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We now give a formal description of an SR1 method using a trust-
region framework, which we prefer over a line search framework
because it can accommodate indefinite Hessian approximations more
easily.
Algorithm 6.2 (SR1 Trust-Region Method).
Given starting point xp, initial Hessian approximation By, trust-
region radius Ay, convergence tolerance £ > 0, parameters
ne (0,1073) and re (0,1);
k< 0;
while |Vf || > ¢

Compute s by solving the sub-problem

min [V£5s+ %STB;(S] subject to ||s|| < Ak (30)
S
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Compute
Yk = (Vf)(xk + Sk) — Vi
ared = fi — f(xx + sk); (actual reduction)

pred = —(kaTsk + %SEB/(S;(); (predicted reduction)

if ared/pred > 7
Xk+1 = Xk + Sk;
else
Xk+1 = Xks

end (if)
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if ared/pred > 0.75
i 5] < 0.8A

App1 = Ay
else
A1 =20y

end (if)
elseif 0.1 < ared/pred < 0.75

App1 = Ay
else
Apyr = 0.5A;

end (if)
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if |s¢ (v — Bisi)| = rlsilllyx — Breskl
(vk — Brsk) (v — Bisi) ™

Bk+1 = Bi+ O (even if Xk+1 = Xk);
else
Byy1 < B
end (if)
k+ 1<« k;
end (while)
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This algorithm has the typical form of a trust region method (cf.
Algorithm 4.1). For concreteness, we have specified a particular
strategy for updating the trust region radius, but other heuristics

can be used instead.
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§6.2 The SR1 Method

This algorithm has the typical form of a trust region method (cf.

Algorithm 4.1). For concreteness, we have specified a particular
strategy for updating the trust region radius, but other heuristics

can be used instead.

To obtain a fast rate of convergence, it is important for the matrix
B to be updated even along a failed direction sx. The fact that
the step was poor indicates that By is an inadequate approxima-
tion of the true Hessian in this direction. Unless the quality of the
approximation is improved, steps along similar directions could be
generated on later iterations, and repeated rejection of such steps

could prevent superlinear convergence.
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e Properties of SR1 Updating
One of the main advantages of SR1 updating is its ability to generate
good Hessian approximations. We demonstrate this property by
first examining a quadratic function. For functions of this type, the
choice of step length does not affect the update, so to examine the
effect of the updates, we can assume for simplicity a uniform step
length of 1; that is,

pk = —HkVfi,  Xkr1 = Xk + pk- (31)

It follows that py = sk.
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Suppose that f: R" — R is the strongly convex quadratic function

1 . .
f(x) = > TQx+ bTx, where Q is symmetric positive definite. Then
for any starting point xy and any symmetric starting matrix H, the
iterates {xx} generated by the SR1 method
pk = —HiVic, X1 = Xk + pr, (31)
where Hy satisfies the updating formula

(sk — Hiyie) (sk — Hiyie) ™
(sk — Hiyi) Tyi

(SRl) Hk+1 = Hi+ , (28)

converge to the minimizer in at most n steps, provided that (s, —

Hiyi) Y yi # 0 for all k. Moreover, if n steps are performed, and if

the search directions pj are linearly independent, then H, = Q1.
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Because of our assumption (sx — Hyyk) T yk # 0, the SR1 update is
always well-defined. We start by showing inductively that

Hyyj=s; forall j=0,1,--- , k—1. (32)
In other words, we claim that the secant equation is satisfied not

only along the most recent search direction, but along all previous
directions.
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§6.2 The SR1 Method

Because of our assumption (sx — Hyyk) T yk # 0, the SR1 update is
always well-defined. We start by showing inductively that

Hyyj=s; forall j=0,1,--- , k—1. (32)
In other words, we claim that the secant equation is satisfied not
only along the most recent search direction, but along all previous

directions. By definition, the SR1 update satisfies the secant equa-
tion, so we have H;yp = sg. Therefore, (32) holds for k = 1.

Ching-hsiao Arthur Cheng #%5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods
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Because of our assumption (sx — Hyyk) T yk # 0, the SR1 update is
always well-defined. We start by showing inductively that
Hyyj=s; forall j=0,1,--- , k—1. (32)
In other words, we claim that the secant equation is satisfied not
only along the most recent search direction, but along all previous
directions. By definition, the SR1 update satisfies the secant equa-
tion, so we have Hiyy = sg. Therefore, (32) holds for k = 1. Let us
now assume that (32) holds for some value k > 1 and show that it
holds also for k4 1. From this assumption, we have from (32) that

(sk—Hiyi) "y = seyi—yi (Hky)) = seyi—yisi=0 Yj<k, (33)

where the last equality follows because yy = Qs for the quadratic

function we are considering here. o
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Proof (cont'd).
Using (33) and the induction hypothesis (32) in

(sk — Hiyie) (sk — Hiyie) ™
SR1 Hisr = Hi+ : 28
( ) et g (sk — Hiyi) Tyi (28)

we have
Hii1yj = Hkyj='s; for all j < k.
Since Hi11yk = sk by the secant equation, we have shown that (32)

holds when k is replaced by k+ 1. By induction, then, this relation
holds for all k.
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Proof (cont'd).
Using (33) and the induction hypothesis (32) in

(sk — Hiyie) (sk — Hiyie) ™
SR1 Hisr = Hi+ : 28
( ) et g (sk — Hiyi) Tyi (28)

we have
Hiy1yj = Hkyj = s; for all j < k.

Since Hi11yk = sk by the secant equation, we have shown that (32)
holds when k is replaced by k+ 1. By induction, then, this relation
holds for all k. If the algorithm performs n steps, and if these steps
{sj} are linearly independent, we have

= Hpy; = H,Qs; forall j=0,1,---,n—1.

It follows that H,Q = I; that is, H, = QL.
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Using (33) and the induction hypothesis (32) in

(sk — Hiyie) (sk — Hiyie) ™
SR1 Hisr = Hi+ : 28
( ) et g (sk — Hiyi) Tyi (28)

we have

Hiy1yj = Hkyj = s; for all j < k.
Since Hi11yk = sk by the secant equation, we have shown that (32)
holds when k is replaced by k+ 1. By induction, then, this relation
holds for all k. If the algorithm performs n steps, and if these steps
{sj} are linearly independent, we have

sj= H,y;j= H,Qs; forall j=0,1,--- ,n—1.
It follows that H,Q = I; that is, H, = Q~!. Therefore, the step

taken at xj, is the Newton step, and so the next iterate x,41 will be
the solution, and the algorithm terminates. o
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Proof (cont'd).

Consider now the case in which the steps become linearly dependent.
Suppose that s is a linear combination of the previous steps:
sk =&oSo + -+ + Ek—15k—1,
for some scalars &y, - -+, £x—1. From (32) we have that
Hikyk = HkQsk = EoHk@so + - - - + {1 HkQsk—1
= CoHkyo + -+ + Ek—1Hkyk—1
= 8050 + - + Ek—15k—1 = Sk-
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§6.2 The SR1 Method

Proof (cont'd).

Consider now the case in which the steps become linearly dependent.

Suppose that s is a linear combination of the previous steps:
sk =&oSo + -+ + Ek—15k—1,
for some scalars &y, - -+, £x—1. From (32) we have that
Hiyk = HkQsk = §oHkQso + -+ + §k—1HkQsp—1
= CoHkyo + -+ + Ek—1Hkyk—1
= 8050 + - + Ek—15k—1 = Sk-
Since yx = Vfxy1 — Vi and since sy = px = —H V£, from (31),

we have that
Hi(Vfir1 — Vi) = —H Vi,

which, by the non-singularity of Hy, implies that V1 = 0. There-

fore, xk41 is the solution point. o
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The relation (32) shows that when f is quadratic, the secant equa-

tion is satisfied along all previous search directions, regardless of how
the line search is performed. A result like this can be established for
BFGS updating only under the restrictive assumption that the line

search is exact, as we show in the next section.
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For general nonlinear functions, the SR1 update continues to gener-

ate good Hessian approximations under certain conditions. Before
stating the last theorem in this section, we need to talk about the

uniform linear independence of a sequence.

Definition

A sequence of vectors {xx} < R" is said to be uniformly linearly
independent if there exist integers m > n, kp = 0 and a constant
¢ > 0 such that, for each k > ko,

max { 7<X’ Xt}

[l

‘jzl,'-‘,m}ZC VxeR".

v

In other words, the uniform linear independence of a sequence means
that, up to deleting the first few terms from the sequence, any

consecutive m terms, where m > n, span R” in a “certain” manner.
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Suppose that f: R" — R is twice continuously differentiable, and
that its Hessian is bounded and Lipschitz continuous in a neighbor-
hood of a point x,. Let {xx} be any sequence of iterates converging

to xx. Suppose in addition that for some re (0,1) the inequality
s (vie = Biesi)| = rllsillly — Bisall, (29)

holds for all k, and that the steps sy are uniformly linearly indepen-
dent. Then the matrices By generated by the SR1 updating formula
satisfy

lim |Bx — (V2F)(x)]| = 0.
k—00
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So far, we have described the BFGS, DFP, and SR1 quasi-Newton
updating formulae, but there are many others. Of particular interest
is the Broyden class, a family of updates specified by the following

general formula:

BkSkSEBk yky;f T T
aF + Pk(s; Brsk)viv 34
sEBksk y;fsk ( = ) ko ( )

Biy1 = Bk —

where ¢y is a scalar parameter and

Yk B sk
vom |2 Bise ] 5
y;fsk SE Bk Sk ( )
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The BFGS and DFP methods are members of the Broyden class —
we recover BFGS by setting ¢, = 0 and DFP by setting ¢, = 1 in
(34). We can therefore rewrite (34) as a “linear combination” (the
exact terminology is affine combination) of these two methods; that
is,
Bir1 = (1 — o) BT + 0B, -

This relationship indicates that all members of the Broyden class
satisfy the secant equation (6), since the BFGS and DFP matrices

themselves satisfy this equation.
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§6.3 The Broyden Class

The BFGS and DFP methods are members of the Broyden class —
we recover BFGS by setting ¢, = 0 and DFP by setting ¢, = 1 in
(34). We can therefore rewrite (34) as a “linear combination” (the
exact terminology is affine combination) of these two methods; that
is,
Bir1 = (1 — o) BT + 0B, -

This relationship indicates that all members of the Broyden class
satisfy the secant equation (6), since the BFGS and DFP matrices
themselves satisfy this equation. Also, since BFGS and DFP up-
dating preserve positive definiteness of the Hessian approximations
when sEyk > (), this relation implies that the same property will hold
for the Broyden family if 0 < ¢y < 1.
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Much attention has been given to the so-called restricted Broyden
class, which is obtained by restricting ¢y to the interval [0, 1]. It
enjoys the following property when applied to quadratic functions.
Since the analysis is independent of the step length, we assume for

simplicity that each iteration has the form

pk=—B; 'V, Xet1 =X+ pk. (36)
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Suppose that f: R" — R is the strongly convex quadratic function

f(x) = % TQx + b'x, where Q is symmetric and positive definite.
Let xo be any starting point for the iteration (36) and By be any
symmetric positive definite starting matrix, and suppose that the
matrices By are updated by the Broyden formula (34) with ¢y €

[0, 1]. Define A(lk) < <\ to be the eigenvalues of the matrix
Ql/sz_lQl/z. (37)

Then for all k, we have
min{)\g-k), 1} < /\(ij) < max{)\s.k), 1} forj=1,2,---,n. (38)

Moreover, the property (38) does not hold if the Broyden parameter

¢k is chosen outside the interval [0, 1].
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BAP YRR - TR BERNER P 4ok aEE QY28 1QY2
i e (B )\(ik) 7.5'35'\1 » PR - quasi-Newton = 2 # #* % ig T Hes-
sian eh4E' By #-¥7 - = P & S #iceh Hessian 4B Q 4P e o B2
WA EHR LAEEFNF 2 QB IQY? ki AR
#&i"r 1Axds - 9 1 > (38) A2 QY2B, QY2 chipkit
{)\ } Bk ABiT o0 PFERET AT 1o Gldr B A% ki A
B ] m#@‘réﬁc@_% 0.7 78 A > 95 (38) 3% > T - ZB ke » 4
AE T [0.7,1] g P o BE ARG R R R B A AL
TR Sl #BIT 1l RF UEATEEEHY T S BT 1o
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BAPGERP - TR PE R o ok md Q2B QY2
B )\(,-k) FRE_ 1 7R quasi-Newton * j% @ * %igiT Hes-
sian (B By 22 - =X P & 30 #iceh Hessian 4B Q 48 o B2
FEH TP R R o (e A g g FpF Q1/2Bk_101/2 g i 1B AR
B LAz o $9 1 0 (38) A2 A m QY2B, QY2 kit
) h kBT oo PR EYACE] 1o bldr s BR AS kX AE
Bol e e s 0.7 78R > 345 (38) &4 0 AT - @k o
HiE #-5% e [0.7,1] chie BIPN o BE AR A P B 2 FE RS B 4 2
TEE e S BITl RTULAEEGY T S RITLAp
2T o ek A R g dgd [0,1] 0 B - BHAET L §RE
A3 0.7 EEAR E TR 42T line search PF 4 E_exact »
SR AE R P RA 2 o
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Although the theorem seems to suggest that the best update formu-
las belong to the restricted Broyden class, the situation is not at all
clear. Some analysis and computational testing suggest that algo-
rithms that allow ¢, to be negative (in a strictly controlled manner)

may in fact be superior to the BFGS method.
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§6.3 The Broyden Class

Although the theorem seems to suggest that the best update formu-
las belong to the restricted Broyden class, the situation is not at all
clear. Some analysis and computational testing suggest that algo-
rithms that allow ¢, to be negative (in a strictly controlled manner)
may in fact be superior to the BFGS method. The SR1 formula is
a case in point: It is a member of the Broyden class, obtained by

setting .
Sk Yk
(/)ki T . TB )
Si Yk — S Bk Sk

but it does not belong to the restricted Broyden class, because this

value of ¢, may fall outside the interval [0, 1].
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In the remaining discussion of this section, we determine more pre-

cisely the range of values of ¢, that preserve positive definiteness.

The last term in

Bisksi Bk | YiVi T g
Bii1 = Bk — kX + k4 Ok(s, Brsk)vkv 34
+ SEBksk yESk ( k ) k ( )
is a rank-one correction, which by the interlacing eigenvalue theo-
rem (in the next slide) increases the eigenvalues of the matrix when

@ is positive.
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Theorem (Interlacing Eigenvalue Theorem)

Let A e R"™" be a symmetric matrix with eigenvalues A1, Ag, - - -,
Ap satisfying A1 < Ay < --- < A\, and let ze R" be a vector with
|z| =1, and a € R be a scalar. Then if we denote the eigenvalues
of A+ azz' by &1, &, -+, &, (in increasing order), we have for

a > 0 that

with
M- =a. (39)
If o« < 0, we have that

<A <& <A< <E < A,

where the relationship (39) is again satisfied.
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§6.3 The Broyden Class

In the remaining discussion of this section, we determine more pre-

cisely the range of values of ¢, that preserve positive definiteness.

The last term in

Bisksi Bk . ykyi T T
+ + or(s, Brsk) vV, 34
S’E Bk sk y’ESk (Zs ( k ) k ( )

Biy1 = Bk —
is a rank-one correction, which by the interlacing eigenvalue theo-
rem (in the next slide) increases the eigenvalues of the matrix when
¢y is positive. Therefore, By, 1 is positive definite for all ¢, = 0. On
the other hand, by the interlacing eigenvalue theorem the last term
in (34) decreases the eigenvalues of the matrix when ¢y is negative.
As we decrease ¢y, this matrix eventually becomes singular and then

indefinite.
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A little computation shows that By is singular when ¢4 has the

value 1
— , 40
o= (40)
where
_ (YEB;l)/k)(SEBkSk) (41)

S (7P
By applying the Cauchy-Schwarz inequality to (41), we see that py >
1 and therefore ¢ < 0. Hence, if the initial Hessian approximation
By is symmetric and positive definite, and if sgyk > 0 and ¢y > ¢j,
for each k, then all the matrices By generated by Broyden's formula

(34) remain symmetric and positive definite.
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Chapter 6. Quasi-Newton Methods
§6.3 The Broyden Class

When the line search is exact, all methods in the Broyden class
with ¢, > ¢ generate the same sequence of iterates. This result
applies to general nonlinear functions and is based on the observation
that when all the line searches are exact, the directions generated by
Broyden-class methods differ only in their lengths. The line searches
identify the same minima along the chosen search direction, though
the values of the step lengths may differ because of the different

scaling.

The Broyden class has several remarkable properties when applied
with exact line searches to quadratic functions. We state some of

these properties in the next theorem, whose proof is omitted.
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class

Suppose that a method in the Broyden class is applied to the strongly
convex quadratic function f(x) = b'x + %XTQX, where xqo is the
starting point and By is any symmetric positive definite matrix. As-
sume that «y is the exact step length and that ¢, > ¢j, for all k,
where ¢ is defined by
sio L e GEBCBs)
L — pu (Vi Sk)?

Then the following statements are true.
@ The iterates are independent of ¢y and converge to the solution
in at most n iterations.

@ The secant equation is satisfied for all previous search direc-

tions; that is, Bysj = y;j for j=1,2,---  k— 1.
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Chapter 6. Quasi-Newton Methods
§6.3 The Broyden Class

Theorem (cont'd)

© If the starting matrix is By =1, then the iterates are identical
to those generated by the conjugate gradient method. In par-
ticular, the search directions are conjugate; that is,

s?Qsj =0 fori#j.

@ If n iterations are performed, we have B, = Q.
4

Note that parts @), @, and @ of this result echo the statement
and proof of the theorem in Section 6.2, where similar results were

derived for the SR1 update formula.
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§6.3 The Broyden Class

We can generalize the theorem slightly: It continues to hold if the
Hessian approximations remain non-singular but not necessarily pos-
itive definite. (Hence, we could allow ¢ to be smaller than ¢,
provided that the chosen value did not produce a singular updated
matrix.)
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Chapter 6. Quasi-Newton Methods
§6.3 The Broyden Class

We can generalize the theorem slightly: It continues to hold if the
Hessian approximations remain non-singular but not necessarily pos-
itive definite. (Hence, we could allow ¢ to be smaller than ¢,
provided that the chosen value did not produce a singular updated
matrix.) We can also generalize point (3) as follows. If the starting
matrix By is not the identity matrix, then the Broyden-class method
is identical to the preconditioned conjugate gradient method that
uses By as preconditioner.
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Chapter 6. Quasi-Newton Methods

§6.3 The Broyden Class

We can generalize the theorem slightly: It continues to hold if the

Hessian approximations remain non-singular but not necessarily pos-
itive definite. (Hence, we could allow ¢ to be smaller than ¢,
provided that the chosen value did not produce a singular updated
matrix.) We can also generalize point (3) as follows. If the starting
matrix By is not the identity matrix, then the Broyden-class method
is identical to the preconditioned conjugate gradient method that
uses By as preconditioner.

We conclude by commenting that results like the theorem would
appear to be of mainly theoretical interest, since the inexact line
searches used in practical implementations of Broyden-class methods
(and all other quasi-Newton methods) cause their performance to
differ markedly. Nevertheless, it is worth noting that this type of
analysis guided much of the development of quasi-Newton methods.
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

In this section we present global and local convergence results for
practical implementations of the BFGS and SR1 methods. We give
more details for BFGS because its analysis is more general and illumi-
nating than that of SR1. The fact that the Hessian approximations
evolve by means of updating formulas makes the analysis of quasi-
Newton methods much more complex than that of steepest descent

and Newton's method.
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Although the BFGS and SR1 methods are known to be remarkably
robust in practice, we will not be able to establish truly global con-
vergence results for general nonlinear objective functions; that is,
we cannot prove that the iterates of these quasi-Newton methods
approach a stationary point of the problem from any starting point
and any (suitable) initial Hessian approximation. In fact, it is not

yet known if the algorithms enjoy such properties.
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis

Although the BFGS and SR1 methods are known to be remarkably
robust in practice, we will not be able to establish truly global con-
vergence results for general nonlinear objective functions; that is,
we cannot prove that the iterates of these quasi-Newton methods
approach a stationary point of the problem from any starting point
and any (suitable) initial Hessian approximation. In fact, it is not
yet known if the algorithms enjoy such properties. In our analysis
we will either assume that the objective function is convex or that
the iterates satisfy certain properties. On the other hand, there are
well known local, superlinear convergence results that are true under

reasonable assumptions.

Throughout this section we use |- | to denote the Euclidean vector or

matrix norm, and sometimes denote the Hessian (V?f)(x) by G(x).
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis

¢ Global Convergence of the BFGS Method

We study the global convergence of the BFGS method, with a prac-
tical line search, when applied to a smooth convex function from an
arbitrary starting point xg and from any initial Hessian approxima-
tion By that is symmetric and positive definite. We state our precise

assumptions about the objective function formally, as follows.
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

¢ Global Convergence of the BFGS Method

We study the global convergence of the BFGS method, with a prac-
tical line search, when applied to a smooth convex function from an
arbitrary starting point xg and from any initial Hessian approxima-
tion By that is symmetric and positive definite. We state our precise

assumptions about the objective function formally, as follows.

Assumption 6.1.

There exists a convex set C such that
QO The level set S={xe R"|f(x) < f(xo)} is contained inside C.
@ The objective function f is twice continuously differentiable on

C, and there exist positive constants m and M such that

m|z|? < Z°(V3F)(x)z< M|z|> VzeR"xe C. (42)
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§6.4 Convergence Analysis

Part () of this assumption implies that the Hessian V£ is positive

definite on S and that f has a unique minimizer x, in S.
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Part () of this assumption implies that the Hessian V£ is positive

definite on S and that f has a unique minimizer x, in S.

Recall the identity y, = Gropr = Gisi, where Gy is the average
Hessian defined in

_ 1
Gy = [J- (VQf)(Xk—i-Takpk) dr| . (11)
0
Using this identity above and (42), we obtain

T T A
YicSk _ Si Ghsik >m. (43)

T T
Sk Sk Sk Sk
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Part () of this assumption implies that the Hessian V£ is positive
definite on S and that f has a unique minimizer x, in S.

Recall the identity y, = Gropr = Gisi, where Gy is the average
Hessian defined in

_ 1
Gy = [J- (VQf)(Xk—i-Takpk) dr| . (11)
0
Using this identity above and (42), we obtain

T T A
YicSk _ Si Ghsik >m. (43)

T T
Sk Sk Sk Sk

Assumption 6.1 implies that G is positive definite, so its square root

is well-defined. Therefore, by defining z, = @;/25;(,

. _
Vi yi _ st Gy sk _ z Grzi <M. (44)

ar = r
Y Sk S;f GkSk Z Zk
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Let By be any symmetric positive definite initial matrix, and let xq
be a starting point for which Assumption 6.1 is satisfied. Then the
sequence {xx} generated by Algorithm 6.1 (with e = 0) converges

to the minimizer x, of f. |

Bk it 222t MAS037-*
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Let By be any symmetric positive definite initial matrix, and let xq

be a starting point for which Assumption 6.1 is satisfied. Then the
sequence {xx} generated by Algorithm 6.1 (with e = 0) converges

to the minimizer x, of f.

Let 0 be the angle between the steepest descent direction and the
search direction px=—B, 'Vfi. We first prove that h;fn inf|Vf| =0,
— 00
using Zoutendijk's condition
Z cos20 |V Fi|* < oo < = khm cos? 0, ||V |? = ()).

k=0
by showing that there exist 6 > 0 such that

#{keN||cosbi| =6} = 0. o

= = = =
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

We first compute det (B 1) in terms of det(Bx). Since By is positive
definite, By = PkAkPE for some orthogonal matrix Py and diagonal
matrix Ax. Using the BFGS updating formula

Bisksy Be | ykyi (22)
SE Bk Sk yESk

(BFGS) Bi1 = By —

we find that
A PP B PP =1

COMKE | wkw
Iml®  yesk

where nx = Ai/2PEsk and wy = A;1/2Pfyk.
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis

Proof (cont'd).
We first compute det (B 1) in terms of det(Bx). Since By is positive

definite, By = PkAkPE for some orthogonal matrix Py and diagonal
matrix Ax. Using the BFGS updating formula

Bisksy Bk ykyE
BF B = B, — L b 22
(BFGS) k41 k T, + e (22)

we find that

T
A PPl B PP =1 — ey
ko TRk [nel2 ™ yEsi

Wi WE

)

where nx = A1/2PTsk and wy = A;1/2Pfyk. Let Qx be an orthog-

onal matrix satisfying QkH f = e,, and define vy = Qiwy. Then
T
QkA;l/Q'DEBkH PkAZI/QQ =1—eqep + k‘;" o
Yi Sk
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis

Proof (cont'd).

Suppose that vy = [a1, a2, -+ ,an] . Then
T o T T _
Vi Sk = Wik = (Qrwi) ™ (Quni) = Vi Inkllen = [mk]an
. e Ver,{ . g
so that a, # 0. Therefore, the matrix I —e,e;, + — is given by
Yi s
r 212 o 1 oo oo o=l &1 g
an [kl an 7 an |l [
ar ap ap ay a3 a an—1 a2 az
an [« an [0l an [|ml an x| (7l
ﬂ an—1 dn—1 an—1 an—1
an [l an il Il
i an 2 an dn—1 an an
L an [l an ||ml an [l el 5
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§6.4 Convergence Analysis

Proof (cont'd).

Note that 7, = Al/2 PTsk so that

[kl = mi e = Sk Pl iPi sk = sk Bicsi.
Using the properties of determinants,
;T
det (I—ene 4F Vkvk) = an = an”a; — Tyksk ,
Yi Sk 7 7l Si Bi sk
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

Note that 7, = Al/2 PTsk so that

[kl = mi e = Sk Pl iPi sk = sk Bicsi.
Using the properties of determinants,
;T
det (I—ene 4F Vkvk) = an = an”a; — Tyksk ,
Yi Sk 7 7l Si Bi sk

and the identity above further implies that

T
ik et (QkA_1/2PEBk+1 PkA_1/2 Qr)

siBiesk s2, det(Biga)
-1/2 ~1/2 et(Bit1
= det(A, /") det(Byy1) det(A, 7)) = det(hy)
Therefore, the fact that det(Ax) = det(Bx) shows that
T
_ Yk Sk 5
det(BkH) = det(Bk) SEBkSk .
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

iy T TR
Define my = @ M, = % and qx = Skask Then
Sy Sk Y Sk S S
iy iy
Yk Sk Si Sk my
det(By = det(By)—=— = det(By)— . 45
( +1) ( )SESkSEBkSk ( )Qk ( )
Moreover, since sy = auxpx,
pi Vi Pi Bipx Sk Bicsk

cos Oy = = = .
1ol VA | oxlll Brpxll Ikl Brsk]

We then obtain that

IBisil> _ I1Bisel®|Isll® sgBrsk _ ax

sy Biesk (sfBisk)?  |skl|? cos20)
so that by taking the trace of By in the updating formula (22),
2 2
tr(Big1) = tr(By) — [Besd” | Ivd” (46)

ar T
Sk BkSk Yi Sk O

= = = =
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

TR
Define my = y,’}Sk, My = y"yk ,and gk = Skask Then
SkSk yk sksk
iy
yksk Si Sk my
det(B = det(B = det(By)— . 45
(Besr) = det(B % 2% — der(B)TE . (45)
Moreover, since sy = auxpx,
pi Vi Pi Bipx Sk Bicsk

cos 0, = = — .
1ol VA | oxlll Brpxll Ikl Brsk]

We then obtain that

IBisil> _ I1Bisel®|Isll® sgBrsk _ ax

siBisk  (SFBisk)?  ||sk? cos?0y

so that by taking the trace of By in the updating formula (22),

tr(Bis1) = tr(Be) — —% 4 M. (46)

c0s20,
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

Let ¢ : GL(n,R) — R be defined by

Y(B) =tr(B) — In|det(B)] .
By the spectral decomposition of symmetric matrices and the in-
equality x— 1 > In x for x > 0, we have

¥(B) > 0 for all positive definite B.
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

Let ¢ : GL(n,

R) — R be defined by

Y(B) =tr(B) — In|det(B)] .
By the spectral decomposition of symmetric matrices and the in-
equality x — 1 > In x for x > 0, we have
¥(B) > 0 for all positive definite B
d (46) we obtain
Y(Bi+1) = tr(Bit1)

Using (45) an

— 1n(det(Bk+1))

= tr(Bx) — o 20 + My — In(det(Bk)) — In mk + In g
¢(Bk) + In COSQGk a4 (Mk — In my — 1)
L qk (47)
+|! cos26, o cos20, ] o
Ching-hsiao Arthur Cheng #t %
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§6.4 Convergence Analysis

Proof (cont'd).

Again by the inequality x — 1 > In x for x > 0, the term inside the

square brackets of (47) is non-positive so we have for all ke N,

Y(Byy1) < W(Bk) + (My —Inmy — 1) + In cos?6y.
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

Again by the inequality x — 1 > In x for x > 0, the term inside the

square brackets of (47) is non-positive so we have for all ke N,

Y(Byy1) < W(Bk) + (My —Inmy — 1) + In cos?6y.
Therefore,

k
Y $(Bjs1) <
j=0

= (Bk1) < ¥(Bo) +

K
(Mj—Inm; — 1) + Z In cos?6

MR‘
.M»

¥(B)) +

j=0 j=0

R

(Mj—Inm; — 1)+ Z In cos®

0 j=0

J
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Proof (cont'd).

Again by the inequality x — 1 > In x for x > 0, the term inside the

square brackets of (47) is non-positive so we have for all ke N,

V(Bis1) < (Bi) + (M — In my — 1) + In cos®6; .

Therefore
K K K
Z Y(Bjt1) Z Y(B Z —Inm;—1) Z In cos?0
j=0 j=0
D
= Y(Byy1) < ¢ Z —lnm;j—1) Z In cos®
: J:

By (43) and (44), mx = m and My < M for all ke N;
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

Again by the inequality x — 1 > In x for x > 0, the term inside the

square brackets of (47) is non-positive so we have for all ke N,

Y(Byy1) < W(Bk) + (My —Inmy — 1) + In cos?6y.
Therefore,

k
Y $(Bjs1) <
j=0

= (Bk1) < ¥(Bo) +

K
(Mj—Inm; — 1) + Z In cos?6

MR‘
.M»

2, V(B +

j=0 j=0

R

k
(Mj—Inm; — 1)+ Z In cos®

0

J

By (43) and (44), mx = m and My < M for aII k € N; thus
0 < Y(Biy1) < Y(Bo) + clk+1) + Z In cos? 6}, (48)
j=0

where c= M —1Inm— 1, W.L.O.G., is assumed to be positive. o]
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Proof (cont'd).

Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Now we show that there exists § > 0 such that

#{jeN||cosb| =} = 0.

Assume the contrary that cos 6; — 0.
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Proof (cont'd).

Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Now we show that there exists § > 0 such that

#{jeN||cosb| =} = 0.

Assume the contrary that cos ; — 0. Then there exists k; > 0 such

that
In cos? 0; < —2c for all j> ki,

where c = M — In m — 1 is the constant defined previously.
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Proof (cont'd).

Now we show that there exists § > 0 such that

#{jeN||cosb| =} = 0.

Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Assume the contrary that cos ; — 0. Then there exists k; > 0 such

that
In cos? 0; < —2c for all j> ki,

where c = M — In m — 1 is the constant defined previously.

Using this inequality in (48) we find that for all k > ki,
K

0<9¥(By)+clk+1)+ iln00829-+ Z (—2¢)

j=0 j=ki+1

= (By) + Zlncos 0+ 2cky + c— ck,

Jj=0

and the right-hand side approaches —oo as k— o0, a contradiction. o©
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Proof (cont'd).

Therefore, there exists a subsequence of indices {jx}k=12.. such
that cosj, = § > 0. By Zoutendijk's result this limit implies that
klim |V |l = 0, so we conclude that

—00

liminf ||V =0.
k—00

Ching-hsiao Arthur Cheng i gy MAS037-*



Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

Therefore, there exists a subsequence of indices {jx}k=12.. such
that cosj, = § > 0. By Zoutendijk's result this limit implies that

klim |V |l = 0, so we conclude that
— 00
liminf ||V =0.
k—00
Finally we show that x; — x,. Before proceeding, we show that
Xj, — Xxx. Nevertheless, by the mean value theorem,
(X — %) TV, = (x5, — %) T(VZF)(X) (5, — X&)

for some X on the line segment joining x;, and Xxi.
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Proof (cont'd).

Therefore, there exists a subsequence of indices {jx}k=12.. such
that cosj, = § > 0. By Zoutendijk's result this limit implies that
klingo |V |l = 0, so we conclude that

liminf ||V =0.

k—00
Finally we show that x; — x,. Before proceeding, we show that

Xj, — Xxx. Nevertheless, by the mean value theorem,
T T o2\ (3
(Xjk - X*) ijk = (Xjk - X*) (V f)(X)(XJk - X*)
for some X on the line segment joining x;, and x,. Since X € C, by
Assumption 6.1 and the Cauchy-Schwartz inequality we obtain
‘ T -
mllxj, = xe? < (x5, = x) T (V26)(X) (), — x:)

= (x5, = %) " Vi, < |, = x[[[VE, . o |
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§6.4 Convergence Analysis

Proof (cont'd).

Since V£, — 0, we conclude that xj, — x,.
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Proof (cont'd).

Since V£, — 0, we conclude that xj, — x,.
By Taylor's Theorem, Assumption 6.1 implies that
f() > f(x) + Flx—xl>  Vxe C;
thus
I — xa2 < %[f(xw —f(x)] VeeN.

In particular, for all ke N and ¢ > ji, we have

e = %ol < 2 [0) = £0x)] < 2[F0g3) = F()].
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Proof (cont'd).

Since V£, — 0, we conclude that xj, — x,.
By Taylor's Theorem, Assumption 6.1 implies that

f() > f(x) + Flx—xl>  Vxe C;
thus

I — xa2 < %[f(xw —f(x)] VeeN.
In particular, for all ke N and ¢ > ji, we have

e = xall® < 2[700) — F()] < 2 [FO3) = Fxn)]

Passing to the limit as ¢ — o0, we obtain

limsup | xg — x| < %[f(xjk) —f(x)] VkeN.
—0
Since the right-hand side converges to 0 as k — o0, we conclude

that lim sup,_, ., [|x¢ — x«| = 0, establishing the result. o
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

The theorem above can be shown to hold for all ¢, € [0,1) in

Bisksi Bk | ykVi

Bit1 = By — + dul(sk Brs) vievi » (34)

sy Bisk Vi sk
but the argument seems to break down as ¢, — 1~ because some
of the self-correcting properties of the update are weakened consid-

erably.
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Chapter 6. Quasi-Newton Methods

§6.4 Convergence Analysis

The theorem above can be shown to hold for all ¢, € [0,1) in

Bisksi Bk | ykVi

Bit1 = By — + dul(sk Brs) vievi » (34)

sy Bisk Vi sk
but the argument seems to break down as ¢, — 1~ because some
of the self-correcting properties of the update are weakened consid-

erably.

An extension of the analysis just given shows that the rate of con-
vergence of the iterates is linear. In particular, we can show that the

sequence ||xx — xx|| converges to zero rapidly enough that
Q0
S e — xl < o0 (49)
k=1

We will not prove this claim, but rather establish that if (49) holds,
then the rate of convergence is actually superlinear.
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§6.4 Convergence Analysis

e Superlinear convergence of the BFGS method
The analysis of this section makes use of the Dennis and Moré char-

acterization
li 1B = V2f Os))pill _

0
k=00 e

of superlinear convergence. It applies to general nonlinear — not just

convex — objective functions.
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Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

e Superlinear convergence of the BFGS method

The analysis of this section makes use of the Dennis and Moré char-

acterization
li 1B = V2f Os))pill _

0
k=0 e

of superlinear convergence. It applies to general nonlinear — not just
convex — objective functions. For the results that follow we need to
make an additional assumption.

Assumption 6.2.

The Hessian V?f is Lipschitz continuous at x; that is, there exist
L,6 > 0 such that

H(VQf)(X) — (sz)(x*)H < Li|x— x| Vx€ B(xx,0).
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Suppose that f is twice continuously differentiable and that the

iterates generated by the BFGS algorithm converge to a minimizer
Xy at which V?f, is positive definite and Assumption 6.2 holds.
Suppose also that

0

Z Xk — x| < 0 (49)

k=1
holds. Then x, converges to x, at a superlinear rate.
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Suppose that f is twice continuously differentiable and that the

iterates generated by the BFGS algorithm converge to a minimizer
Xy at which V?f, is positive definite and Assumption 6.2 holds.
Suppose also that

0

Z Xk — x| < 0 (49)

k=1
holds. Then x, converges to x, at a superlinear rate.

We first show that Assumption 6.1 is satisfied near x,. Since V2f,

is positive definite, by the continuity of V2f we find that there exists
0 > 0 such that

m|z|? < ZY(V*F)(x)z < M|z|?> VY xe B(xs,6). o

Ching-hsiao Arthur Cheng #%5 % Bk it 222t MAS037-*



Proof (cont'd).
Since xx — xs, W.L.O.G. we can assume that

x0€ Blx,d) and f(xo) — F(x) < T
Note that by Taylor's theorem, we have

f(x) = f(xe) + gHX— x| Vxe B(xs,9).
Therefore, if f(x) < f(xp) and x € B(xx,d), we have

2 [f(xo) — f(x*)}

m

Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

[x — x| < <g.
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Proof (cont'd).

Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Since xx — xs, W.L.O.G. we can assume that

X0 € B(xx,0) and f(xp) — f(xs) < =
Note that by Taylor's theorem, we have

f(x) = f(xe) + gHX— x| Vxe B(xs,9).

Therefore, if f(x) < f(xp) and x € B(xx,d), we have

mé?

2[f(xo) — f(x*)} - é
m 2"

This shows that the level set S = {x|f(x) < f(xp)} has at least
two connected components: one inside B(x4,0/2) and one out-
side B(xx,d). Since BFGS algorithm generates sequence of iterates
whose function value decreases, W.L.O.G. we can assume that As-

HX— X*H <

sumption 6.1 is satisfied. o
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Proof (cont'd).

By the Dennis and Moré characterization, to show superlinear con-
vergence of the BFGS algorithm we need to show that

I(Bx — G )sill

lim —————= =0,
koo Ik
where G: = (V2f)(x4). By the boundedness and the

positive definiteness of Gy, it is equivalent to that
—1/2
i 165 2(Be= Gosl _
k—00 61/2 B
1G" sl

(50)

Ching-hsiao Arthur Cheng #%5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

By the Dennis and Moré characterization, to show superlinear con-
vergence of the BFGS algorithm we need to show that

i [Bi= sl _
koo Ik
where G: = (V2f)(x4). By the boundedness and the

positive definiteness of Gy, it is equivalent to that
i 165 2(Be= Gosl _

50
koo 6 e
Define the quantities
~ 1/2 . —-1/2 & —1/2 —1/2
Sk:G*/ Sk yk:G* /yk, Bk:G* /BkG* / o
It suffices to show that N
i 1(Be— D3l _ (50")
k—»oo Sk 0

Ching-hsiao Arthur Cheng #%5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

By pre- and post-multiplying the BFGS update formula (22) by

G;1/2 and grouping terms appropriately, we obtain

B ~  BiSiSBe | Y
Bk+1 = Bk - i~

= (227)
S, Bisk Yk Sk

Since this expression has precisely the same form as the BFGS for-
mula (22) and Assumption 6.1 is satisfied (near x), it follows from
the argument leading to (47) that
(Big1) = ¥(Bi) + Incos0y + (My — In iy — 1)
5 - 51
L R o (51)

cos? 6y cos2 0
where
= AN N ~T~
Sk Bysk ~ S Bysi S~ ViV ~ Vi«
Sek—ﬁ? 9k = =12 k= Tr~» Mk= 75 - O
ISk || BrSk|| 15l Vis 53,
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Proof (cont'd).

Next we show that

1Yk = Skl

HEkH <cC [HXkJrl — X*H + HXk — Xx H] (52)

for some constant c.
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Proof (cont'd).

Next we show that

1Yk = Skl

HEkH <cC [HXkJrl — X*H + HXk — Xx H] (52)

for some constant ¢. By Assumption 6.2, and recalling the definition

G = [Jl(v2f)(xk + Tapk) dT:| , (11)
we have i

_ 1
166~ Gull < [[I(92F) e+ 7ape) = (V2F) )] o
1
< J L|[xx + Toukpr — x«| dr
0

1
< L s = x) + (1= )0 = x) ] dr

L
< 5 err = xell + lxe = ] - =
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Proof (cont'd).

Recalling the identity y, = Gisy (12), we have

Yk — Gisk = (Gi — Gy)sg;
thus
Ve —Sk= G2 (Gr— GG 5.

Using the estimate for | Gx — G.|| from the previous page, we obtain
o —1/2y2~ || 7
9% — 3kl < 162?23l G — G

1y ~—1/2
< S 162 IPIBL [1xker — Xl + k= xe ]

_ | -
s0, by setting ¢ = _ |G, Y2121 we conclude

Wi S < & ot = xell + ok = ] (52)
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Proof (cont'd).

Let ex = |[xkr1 — X« | + [|xk — x«||. From (52),

Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

IYil — Isll < Cexliskll, 15kl — 1Yl < cexllskl,
so that
(1 —cea)lskll < Iyell < (1 + cen) |5kl - (53)
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Proof (cont'd).

Let ex = |[xkr1 — X« | + [|xk — x«||. From (52),

Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

IYil — Isll < Cexliskll, 15kl — 1Yl < cexllskl,
so that
(1 —cea)lskll < Iyell < (1 + cen) |5kl - (53)

By squaring (52) and using (53), we obtain

(1 — Cer) 3kl — 27k 3 + I3l < IkaH2 — 29 5 + |5
< e |15l
and therefore

29k Sk > (1 — 2cex + e + 1 — ) |3 = 2(1 — caw) |3
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Proof (cont'd).

Let ex = |[xkr1 — X« | + [|xk — x«||. From (52),

17kl = T3kl < cexlisill, I3kl = 1Yl < cenlsill
so that
(1 = e 8kl < [yl < (1 + Cer) |3l - (53)
By squaring (52) and using (53), we obtain
(1 — Cer)[18l® — 257 3k + I3l < ||YkH2 — 255k + |31
< &g 5,
and therefore
29k 5k > (1 — 2Cex + S2ef + 1 — ) [3l> = 2(1 — Cew) 3.

It follows from the definition of my that

21—55;(.
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Proof (cont'd).

By combining (53) and (54), we obtain also that

~T ~ — 2

> 1+ ceg

i = e < X (55)
Y Sk 1-— Cé&x

Since xx — xs, we have that g, — 0; thus there exists K > 0 such

_ 1
that ce < = for all k> K.
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Proof (cont'd).

By combining (53) and (54), we obtain also that

~T ~ — 2

> 1+ ceg

i = e < X (55)
Y Sk 1-— Cé&x

Since xx — xs, we have that g, — 0; thus there exists K > 0 such
that cex < % for all k> K. Using (55) we find that
7c/

M
« 1—cex

IN

1+

ex<1+Tcepy=1+ce Vk=K. (56)
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Proof (cont'd).

By combining (53) and (54), we obtain also that

~T ~ — 2

= 14+c

= 2 < G2 (55)
Y Sk 1-— Cé&x

Since xx — xs, we have that g, — 0; thus there exists K > 0 such
that cex < % for all k> K. Using (55) we find that

Mk <1+ s

— e <1+ 7ce=1+cer Vk=K. (56)
1—C5k

Again by the non-positiveness of the function h(t) = 1 —t+1Int, we
conclude that

= —ln(l—x):h(i><0 Vx<1.
1—x 1—x
Therefore, N
In(1 —cex) > “%k > _2ce Vk=K. o
1-— CEk
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Proof (cont'd).

The inequality In(1 — cex) = —2ce, for k> K and (54) imply that

Inmg >1In (1 — cex) = —2cex > —2cex Vk= K. (57)
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Proof (cont'd).

The inequality In(1 — cex) = —2ce, for k> K and (54) imply that
Inmg >1In(1—cex) = —2cex > —2cex Yk= K. (57)

We can now use (57) and the inequality

~

M <1l4cee YVhk=K (56)
in the inequality

(Big1) = ¥(Bi) + Incos0y + (My — In iy — 1)
—i—[l— G 1 1n a&]

cos2 0y cos2 0y

(51)

to obtain that

0 < w(BkH) w(Bk) + 3cex + In cos20,
Vk= K. 58
+[1— k~+ln qkw} {28)

cos20y cos20y

Ching-hsiao Arthur Cheng it .5 % i gy MAS037-*



Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

Rearranging terms in (58), by the non-positiveness of In cos?6 and
the function h(t) =1 — t+ Int we have

0<|ln—r = (1- L 47}
cos?6; cos?6; cos?0; Vi= K.

< [¥(B) — ¢(Bj1)] + 3ce;

Ching-hsiao Arthur Cheng #%5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

Rearranging terms in (58), by the non-positiveness of In cos?6 and
the function h(t) =1 — t+ Int we have

0<|ln—r = (1- L 47}
cos?6; cos?6; cos?0; Vi= K.

< [¥(B) — ¥(Bjs1)] + 3ce;
By summing this expression, by the fact that ¢/(B) > 0 for positive
definite B we have that for J > K,

> (ln L ‘1— T 4m- D )
=k cos?6; cos?6; ; cos?6;
< P(Bk) —¥(Bis1) +3c ) g
Qw(BK)—i-?)CZ - o
j=K
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Proof (cont'd).

a0
Making use of the condition ] ||xx — x«|| < o0 (49) we find that
k=1

o © X
Y= 2 [xrn = xall + I = xell] <23 x5 — x| < 0.
j=K

j=K j=1

Passing to the limit as J — oo, we conclude that

8

<1n +‘1— j~+ln qf~)<oo.
00529

cos?6; cos?6;

=K
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Proof (cont'd).

a0
Making use of the condition ] ||xx — x«|| < o0 (49) we find that
k=1

0
Z &=, [er = ol + ;= o] <23} g = xell < 0.

j=K j=1
Passmg to the limit as J — o0, we conclude that
0 ~ ~
Z(ln +‘1 G 4l I )<oo.
cos20; cos?6; cos?6;

=K
Since the term in the parenthesis is non-negative, we obtain the

following two limits

lim In ]
j—  cos? 0 Jj—o

=0, lim {1— % +1n qu}:O./
cos?6; cos?6;
which further imply that
lim 0059 =1, limg;=1. (59)
[m}

J—o® Jj—®©
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Proof (cont'd).

Finally, recalling the definition of cos 0y and 4k, we have

|(Be— D3> _ [Bidil® — 28 BiSk+ Sk Sk _ 2%, +1
Ik ||? Ezgk cos? 0 k ’

and the right-hand side converges to 0 because of (59); thus

5 s
i 1Bk =Dl _
k—00 A

0 (50")

Ching-hsiao Arthur Cheng #%5 % Bk it 222t MAS037-*



Chapter 6. Quasi-Newton Methods
§6.4 Convergence Analysis

Proof (cont'd).

Finally, recalling the definition of cos 0y and 4k, we have

|(Bi — D3> _ B3 ~ 25 Bide+ 3% _ &% 55 . 4
~2 - T — 2 ~ qk + Y
ISkl Sk Sk cos? 0

and the right-hand side converges to 0 because of (59); thus

~

I(Bk — D)si|

lim =0 (50")

k—>c0 [kl
We remind the reader that (50°) is equivalent to the Dennis-Moré

characterization
. By — G
i 1B — G5l _
k=00 [Isk

0

of the superlinear convergence. Therefore, x, — x, at a superlinear

rate. 0
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e Convergence analysis of the SR1 method

The convergence properties of the SR1 method are not as well un-
derstood as those of the BFGS method. No global results or local
superlinear results like the previous two theorems have been estab-

lished, except the results for quadratic functions discussed earlier.
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e Convergence analysis of the SR1 method

The convergence properties of the SR1 method are not as well un-
derstood as those of the BFGS method. No global results or local
superlinear results like the previous two theorems have been estab-
lished, except the results for quadratic functions discussed earlier.
There is, however, an interesting result for the trust-region SR1 al-
gorithm, Algorithm 6.2. It states that when the objective function
has a unique stationary point and the condition

|5k (v = Bisi)| = rslllyx — Bisil (29)
holds at every step (so that the SR1 update is never skipped) and the
Hessian approximations By are uniformly bounded, then the iterates

converge to x, at an (n+ 1)-step superlinear rate. The result does

not require exact solution of the trust-region sub-problem (30).
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Suppose that the iterates xi are generated by Algorithm 6.2. Sup-
pose also that the following conditions hold:

@ The sequence of iterates does not terminate, but remains in
a closed, bounded, convex set D, on which the function f is
twice continuously differentiable, and in which f has a unique
stationary point X,

@ the Hessian V2f(x,) is positive definite, and V*f is Lipschitz
continuous in a neighborhood of x,.;

© the sequence of matrices {By} is uniformly bounded;

Q condition (29) holds at every iteration, where r is some constant

in (0,1).
Then lim x, = xs, and we have that lim Pctntr = >l _
k—a0 k—0 Xk — X«

T = = =
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Note that the BFGS method does not require the boundedness as-
sumption (3) to hold. As we have mentioned already, the SR1 update
does not necessarily maintain positive definiteness of the Hessian ap-
proximations By. In practice, By may be indefinite at any iteration,
which means that the trust region bound may continue to be active

for arbitrarily large k.
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Note that the BFGS method does not require the boundedness as-
sumption (3) to hold. As we have mentioned already, the SR1 update
does not necessarily maintain positive definiteness of the Hessian ap-
proximations By. In practice, By may be indefinite at any iteration,
which means that the trust region bound may continue to be active
for arbitrarily large k. Interestingly, however, it can be shown that
the SR1 Hessian approximations tend to be positive definite most

of the time. The precise result is that

) #{j | 1 < j < k, Bj is positive semi—definite}
lim =1,
k—00 k
under the assumptions of the theorem above. This result holds
regardless of whether the initial Hessian approximation is positive

definite or not.
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