B i 142 28 g =

MA5038-*

Ching-hsiao Arthur Cheng it .5 % Bk it 22t - MA5038-*



Chapter 12. Theory of Constrained Optimization

Chapter 12. Theory of Constrained Optimization
§12.1 Examples
§12.2 Tangent Cone and Constraint Qualifications
§12.3 First-Order Optimality Conditions
§12.4 First-Order Optimality Conditions: Proof
§12.5 Second-Order Conditions
§12.6 Other Constraint Qualifications
§12.7 A Geometric Viewpoint
§12.8 Lagrange Multipliers and Sensitivity
§12.9 Duality

Ching-hsiao Arthur Cheng it .5 % Bk it 22t - MA5038-*



Chapter 12. Theory of Constrained Optimization

Introduction

The second part of the textbook is about minimizing functions sub-
ject to constraints on the variables:

. _ ci(x) =0,ie&,
min f(x) subject to )
xeRn ci(x) >0,ieZ,

(1)
where f and the functions ¢; are all smooth, real-valued functions
on a subset of R"”, and Z and £ are two finite sets of indices. As
before, we call f the objective function, while ¢;, i € £, are the

equality constraints and c;, i € Z, are the inequality constraints.
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Chapter 12. Theory of Constrained Optimization

Introduction

The second part of the textbook is about minimizing functions sub-
ject to constraints on the variables:

ci(x) =0,ie&,
ci(x) =0,ieZ,

(1)

irel]iRnn f(x) subject to {
where f and the functions ¢; are all smooth, real-valued functions
on a subset of R”, and Z and £ are two finite sets of indices. As
before, we call f the objective function, while ¢;, i € £, are the
equality constraints and ¢;, i € Z, are the inequality constraints. We

define the feasible set 2 by
Q= {x|(Vie&)(ci(x) =0) and (Vie I)(ci(x) = 0)},
so that we can rewrite (1) more compactly as
min f(x). (2)

x€€)
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Chapter 12. Theory of Constrained Optimization

Introduction

In this chapter we derive mathematical characterizations of the so-
lutions of (2). Two types of optimality conditions are discussed:
© Necessary conditions are conditions that must be satisfied by
any solution point (under certain assumptions).

@ Sufficient conditions are those that, if satisfied at a certain point
Xy, guarantee that x, is in fact a solution.

Ching-hsiao Arthur Cheng it .5 % Bk it 22t - MA5038-*



Chapter 12. Theory of Constrained Optimization

Introduction

In this chapter we derive mathematical characterizations of the so-
lutions of (2). Two types of optimality conditions are discussed:

© Necessary conditions are conditions that must be satisfied by
any solution point (under certain assumptions).

@ Sufficient conditions are those that, if satisfied at a certain point
Xy, guarantee that x, is in fact a solution.

Optimality conditions for unconstrained optimization problems are:

© Necessary conditions: Local unconstrained minimizers x, satis-
fies that (Vf)(x:) = 0 and (V?f)(xs) positive semi-definite.

@ Sufficient conditions: Any point x, at which (Vf)(x,) = 0 and

(V2f)(x) is positive definite is a strong local minimizer of f.
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Introduction

In this chapter we derive mathematical characterizations of the so-
lutions of (2). Two types of optimality conditions are discussed:

© Necessary conditions are conditions that must be satisfied by
any solution point (under certain assumptions).

@ Sufficient conditions are those that, if satisfied at a certain point
Xy, guarantee that x, is in fact a solution.

Optimality conditions for unconstrained optimization problems are:

© Necessary conditions: Local unconstrained minimizers x, satis-
fies that (Vf)(x:) = 0 and (V?f)(xs) positive semi-definite.

@ Sufficient conditions: Any point x, at which (Vf)(x,) =0 and

(V2f)(x) is positive definite is a strong local minimizer of f.

In this chapter, we derive analogous conditions to characterize the
solutions of constrained optimization problems.
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Introduction

e Local and global solutions

We have seen already that global solutions are difficult to find even
when there are no constraints. The situation may be improved when
we add constraints, since the feasible set might exclude many of the
local minima and it may be comparatively easy to pick the global
minimum from those that remain. However, constraints can also

make things more difficult. As an example, consider the problem
min(xp + 100)® + 0.01x? subject to xy — cosx; = 0,

illustrated in Figure 1. Without the constraint, the problem has
the unique solution (0, —100)*. With the constraint, there are local

solutions near the points

X9 = (km,—1)T  for k= 41,43, 45, - .
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Intro

,,,,,,,,,,,,,, contours of f

Figure 1: Constrained problem with many isolated local solutions.
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Introduction

Definitions of the different types of local solutions are simple exten-
sions of the corresponding definitions for the unconstrained case.

Definition

@ A vector x, is a local solution of the problem (2) if x, € © and
there is a neighborhood N of x, such that f(x) > f(x,) for
xeN nQ.

@ A vector x, is a strict local solution (also called a strong local
solution) if x, € Q and there is a neighborhood A of x, such
that f(x) > f(xy) for all xe N " Q with x # x,.

© A point x, is an isolated local solution if x, € €2 and there is
a neighborhood N of x, such that x is the only local solution
in N n Q.

v
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Introduction

Definitions of the different types of local solutions are simple exten-
sions of the corresponding definitions for the unconstrained case.

@ A vector x, is a local solution of the problem (2) if x, € © and
there is a neighborhood N of x, such that f(x) > f(x,) for
xe N nQ.

@ A vector x, is a strict local solution (also called a strong local
solution) if x, € Q and there is a neighborhood A of x, such
that f(x) > f(xy) for all xe N " Q with x # x,.

© A point x, is an isolated local solution if x, € €2 and there is

a neighborhood N of x, such that x is the only local solution
in N n Q.

v

Note that isolated local solutions are strict, but that the reverse is
not true.
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Introduction

e Smoothness

Smoothness of objective functions and constraints is an important
issue in characterizing solutions, just as in the unconstrained case.
It ensures that the objective function and the constraints all behave
in a reasonably predictable way and therefore allows algorithms to

make good choices for search directions.

We saw in Chapter 2 that graphs of non-smooth functions contain
“kinks" or “jumps” where the smoothness breaks down. If we plot
the feasible region for any given constrained optimization problem,
we usually observe many kinks and sharp edges. Does this mean that
the constraint functions that describe these regions are non-smooth?
The answer is often no, because the non-smooth boundaries can

often be described by a collection of smooth constraint functions.
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Introduction

For example, Figure 2 shows a diamond-shaped feasible region in R?

that could be described by the single non-smooth constraint
Ixlle = bal+bel < 1.
It can also be described by the following set of smooth (in fact,
linear) constraints:
xi+x<1l, x1—xx<1, —xi+x<1, —xx—x2x<1. (3)

Each of the four constraints represents one edge of the feasible poly-
tope. In general, the constraint functions are chosen so that each

one represents a smooth piece of the boundary of €.

Ching-hsiao Arthur Cheng it .5 % Bk it 22t - MA5038-*



Chapter 12. Theory of Constrained Optimization
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Figure 2: A feasible region with a non-smooth boundary can be described
by smooth constraints.
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Introduction

Non-smooth, unconstrained optimization problems can sometimes
be reformulated as smooth constrained problems. An example is

the unconstrained minimization of a function
f(x) = max {X2, x},
which has kinks at x =0 and x = 1, and the solution at x, = 0. We

obtain a smooth, constrained formulation of this problem by adding

an artificial variable t and writing
mint st t>x, t> x>, (4)
Reformulation techniques such as (3) and (4) are used often in cases

where f is a maximum of a collection of functions or when f is a

1-norm or oco-norm of a vector function.
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Introduction

In the examples above we expressed inequality constraints in a slightly
different way from the form c¢;(x) > 0 that appears in the definition
(1). However, any collection of inequality constraints with > and <
and nonzero right-hand sides can be expressed in the form ¢;(x) = 0

by simple rearrangement of the inequality.
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§12.1 Examples

To introduce the basic principles behind the characterization of so-

lutions of constrained optimization problems, we work through three

simple examples.
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To introduce the basic principles behind the characterization of so-
lutions of constrained optimization problems, we work through three
simple examples.

We begin with the definition of one important terminology.

Definition

The active set A(x) at any feasible x consists of the equality con-
straint indices from & together with the indices of the inequality

constraints / for which ¢;(x) = 0; that is,
A(x) =€ u{ieI|ci(x) =0}.

At a feasible point x, the inequality constraint i € Z is said to be

active if ¢j(x) = 0 and inactive if the strict inequality ¢;j(x) > 0 is

satisfied.

.
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e A Single equality constraint

Our first example is a two-variable problem with a single equality

constraint:

min(x; + xp) subjectto X7 +x§ —2 =0 (5)
(see Flgure 12.3). In the language of (1), we have f(x) = x; + x2,
7 = = {1}, and ci1(x) = xf +x§ — 2.
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¢ A Single equality constraint

Our first example is a two-variable problem with a single equality

constraint:

min(x; + x;) subjectto xf 4+ xi —2=0 (5)
(see Figure 12.3). In the language of (1), we have f(x) = x1 + x2,
T =, &={1}, and c1(x) = xZ + x2 — 2. We can see by
inspection that the feasible set for this problem is the circle of radius
V/2 centered at the origin — just the boundary of this circle, not its
interior. The solution x, is obviously (—1,—1)T. From any other
point on the circle, it is easy to find a way to move that stays feasible
(that is, remains on the circle) while decreasing f. For instance, from
the point x = (1/2,0)T any move in the clockwise direction around

the circle has the desired effect.
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§12.1 Examples

Example (cont'd)

Figure 3: Problem (5), showing constraint and function gradients at various
feasible points.
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Example (cont'd)

We also see from Figure 3 that at the solution x, the constraint
normal V¢ (x) is parallel to (Vf)(xx). That is, there is a scalar A}
(in this case A\ = —1/2) such that

(V) (x) = A]Ver (x) . (6)
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Example (cont'd)

We also see from Figure 3 that at the solution x, the constraint
normal V¢ (x) is parallel to (Vf)(xx). That is, there is a scalar A}
(in this case A\ = —1/2) such that

(V) (x) = A7V (%) . (6)

We can derive (6) by examining first-order Taylor series approxima-
tions to the objective and constraint functions. To retain feasibility
with respect to the function ¢;(x) = 0, we require any small (but
nonzero) step s to satisfy that ¢;(x+ s) = 0; that is,

0=c(x+s)~cakx) + Vakx)'s=Ve(x)s.
Hence, the step s retains feasibility with respect to ¢y, to first order,

when it satisfies
Ve (x)'s=0. (7)
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Similarly, if we want s to produce a decrease in f, we would have
0> f(x+s)— f(x) ~ VF(x)'s,

or, to first order,
Vi(x)'s<0. (8)
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Similarly, if we want s to produce a decrease in f, we would have
0> f(x+s) — f(x) ~ VF(x)'s,
or, to first order,
Vi(x)'s<0. (8)
Existence of a small step s that satisfies both (7) and (8) strongly
suggests existence of a direction d (where the size of d is not small;
we could have d ~ s/|s| to ensure that the norm of d is close to 1)

with the same properties, namely

Va(x)'d=0 and VF(x)'d<O0. (9)
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Similarly, if we want s to produce a decrease in f, we would have
0> f(x+s) — f(x) ~ VF(x)'s,
or, to first order,
Vi(x)'s<0. (8)
Existence of a small step s that satisfies both (7) and (8) strongly
suggests existence of a direction d (where the size of d is not small;
we could have d ~ s/|s| to ensure that the norm of d is close to 1)

with the same properties, namely
Va(x)'d=0 and VF(x)'d<O0. (9)

If, on the other hand, there is no direction d with the properties (9),

then is it likely that we cannot find a small step s with the properties
(7) and (8). In this case, x, would appear to be a local minimizer.
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By drawing a picture, the reader can check that the only way that
a d satisfying (9) does not exist is if V£(x) and V¢ (x) are parallel;
that is, if the condition Vf(x) = A\Vci(x) holds at x, for some
scalar A;. If in fact V£ (x) and V¢ (x) are not parallel, we can set

= VaVar)' _ _
d=—(1-Rawp )V d=

QI‘ Q|

It is easy to verify that this d satisfies (9).
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Introduce the Lagrangian function
L(x,\1) = f(x) — Mea(x). (10)
Since Vi L(x, A1) = Vf(x) — A1 Vci(x), we can state the condition
(VF)(x) = Ve (x) (6)

equivalently as follows: At the solution x, there is a scalar A} such

that
Vi L(x4, A7) = 0. (11)
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Introduce the Lagrangian function
L(x,\1) = f(x) — Mea(x). (10)
Since Vi L(x, A1) = Vf(x) — A1 Vci(x), we can state the condition
(VF)(x) = Ve (x) (6)

equivalently as follows: At the solution x, there is a scalar A} such
that

Vi L(x4, A7) = 0. (11)
This observation suggests that we can search for solutions of the
equality-constrained problem (5) by seeking stationary points of the

Lagrangian function.
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Introduce the Lagrangian function

E(X, )\1) = f(X) — )\1C1(X) . (10)
Since Vi L(x, A1) = Vf(x) — A1 Vci(x), we can state the condition
(V) () = ATV (x) (6)

equivalently as follows: At the solution x, there is a scalar A} such
that

Vi L(x4, A7) = 0. (11)
This observation suggests that we can search for solutions of the
equality-constrained problem (5) by seeking stationary points of the
Lagrangian function. The scalar quantity A; in (10) is called a

Lagrange multiplier for the constraint ¢;(x) = 0.
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Though the condition (6) (equivalently, (11)) appears to be nec-
essary for an optimal solution of the problem (5), it is clearly not
sufficient. For instance, in the example above, condition (6) is sat-
isfied at the point x = (1,1)" (with A\; = 1/2), but this point is
obviously not a solution — in fact, it maximizes the function f on the

circle.
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Though the condition (6) (equivalently, (11)) appears to be nec-
essary for an optimal solution of the problem (5), it is clearly not
sufficient. For instance, in the example above, condition (6) is sat-
isfied at the point x = (1,1)" (with A\; = 1/2), but this point is
obviously not a solution — in fact, it maximizes the function f on the
circle. Moreover, in the case of equality-constrained problems, we
cannot turn the condition (6) into a sufficient condition simply by
placing some restriction on the sign of A;. To see this, consider re-
placing the constraint x? +x3 —2 = 0 by its negative 2—xZ —x3 = 0
in the example above. The solution of the problem is not affected,
but the value of A} that satisfies the condition (6) changes from
T=-1/2to0 A\f =1/2.
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e A single inequality constraint

This is a slight modification of the first example, in which the equal-

ity constraint is replaced by an inequality. Consider
min(x; +x2) st. 2—xZ—xi >0, (12)

for which the feasible region consists of the circle of problem (5)
and its interior (see Figure 4).
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e A single inequality constraint

This is a slight modification of the first example, in which the equal-

ity constraint is replaced by an inequality. Consider

min(x; +x2) st. 2—xZ—xi >0, (12)
for which the feasible region consists of the circle of problem (5)
and its interior (see Figure 4). Note that the constraint normal V¢;

points toward the interior of the feasible region at each point on
the boundary of the circle.
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e A single inequality constraint

This is a slight modification of the first example, in which the equal-

ity constraint is replaced by an inequality. Consider

min(x; +x2) st. 2—xZ—xi >0, (12)
for which the feasible region consists of the circle of problem (5)
and its interior (see Figure 4). Note that the constraint normal V¢;
points toward the interior of the feasible region at each point on

the boundary of the circle. By inspection, we see that the solution
is still (—1,—1)T and that the condition (6) holds for the value
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e A single inequality constraint

This is a slight modification of the first example, in which the equal-

ity constraint is replaced by an inequality. Consider

min(x; +x2) st. 2—xZ—xi >0, (12)

for which the feasible region consists of the circle of problem (5)
and its interior (see Figure 4). Note that the constraint normal V¢;
points toward the interior of the feasible region at each point on
the boundary of the circle. By inspection, we see that the solution
is still (—1,—1)T and that the condition (6) holds for the value

T = 1/2. However, this inequality-constrained problem differs from

the equality-constrained problem (5) of the first example in that the

sign of the Lagrange multiplier plays a significant role.
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Example (cont'd)

Figure 4: Improvement directions s from two feasible points x for the prob-

lem c at which the constraint is active and inactive, respectively.
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§12.1 Examples

As before, we conjecture that a given feasible point x is not optimal

if we can find a small step s that both retains feasibility and de-
creases the objective function f to first order. The main difference
between problems (5) and (12) comes in the handling of the feasibil-
ity condition. As in (8), the step s improves the objective function,

to first order, if V£(x)'s < 0. Meanwhile, s retains feasibility if
0<ci(x+s)~c(x)+Va(x)'s,
so, to first order, feasibility is retained if
a(x) + Ve (x) s> 0. (13)

In determining whether a step s exists that satisfies both (8) and

(13), we consider two cases, which are illustrated in Figure 4.
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Case |: Consider first the case in which x lies strictly inside the

circle, so that the strict inequality ¢;(x) > 0 holds.
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Case |: Consider first the case in which x lies strictly inside the

circle, so that the strict inequality ¢;(x) > 0 holds. In this

case, any step vector s satisfies the condition
a1 (x) + Ve (x)'s> 0, (13)

provided only that its length is sufficiently small.
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Case |: Consider first the case in which x lies strictly inside the
circle, so that the strict inequality ¢;(x) > 0 holds. In this
case, any step vector s satisfies the condition

c(x) + Ve (x)'s =0, (13)
provided only that its length is sufficiently small. In fact, when-
ever Vf(x) # 0, we can obtain a step s that satisfies both

Viix)'s <0 (8)

and (13) by setting
s=—aVf(x)

for any positive scalar « sufficiently small.
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Case |: Consider first the case in which x lies strictly inside the
circle, so that the strict inequality ¢;(x) > 0 holds. In this
case, any step vector s satisfies the condition

c(x) + Ve (x)'s =0, (13)
provided only that its length is sufficiently small. In fact, when-
ever Vf(x) # 0, we can obtain a step s that satisfies both

Viix)'s <0 (8)

and (13) by setting
s=—aVf(x)

for any positive scalar « sufficiently small. However, this defi-

nition does not give a step s with the required properties when

Vf(x) = 0. (14)
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Case Il: Consider now the case in which x lies on the boundary

of the circle, so that ¢;(x) = 0.
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Case Il: Consider now the case in which x lies on the boundary
of the circle, so that ¢;(x) = 0. The conditions (8) and (13)

therefore become
Vix)'s<0, Vea(x)'s>o0.
The first of these conditions defines an open half-space, while

the second defines a closed half-space, as illustrated in Figure 5

in the next slide.
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Case Il: Consider now the case in which x lies on the boundary
of the circle, so that ¢;(x) = 0. The conditions (8) and (13)

therefore become

Vix)'s<0, Vea(x)'s>o0.

The first of these conditions defines an open half-space, while
the second defines a closed half-space, as illustrated in Figure 5
in the next slide. It is clear from this figure that the intersection
of these two regions is empty only when Vf(x) and V¢i(x)

point in the same direction; that is, when

Vf(x) =MVei(x) for some A; = 0. (15)

Ching-hsiao Arthur Cheng it .5 % Bk it 22kt - MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.1 Examples

\/Any d in this cone is a good search
direction, to first order

Figure 5: A direction d that satisfies both (8) and (13) lies in the intersec-
tion of a closed half-plane and an open half-plane.
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Note that the sign of the multiplier is significant here. If (6) were
satisfied with a negative value of A\, then V£ (x) and V¢ (x) would
point in opposite directions, and we see from Figure 5 that the set
of directions that satisfy both (8) and (13) would make up an entire

open half-plane.

Ching-hsiao Arthur Cheng B2k - MA5S038-*



Chapter 12. Theory of Constrained Optimization
§12.1 Examples

Note that the sign of the multiplier is significant here. If (6) were
satisfied with a negative value of A\, then V£ (x) and V¢ (x) would
point in opposite directions, and we see from Figure 5 that the set
of directions that satisfy both (8) and (13) would make up an entire

open half-plane.

The optimality conditions for both cases | and Il can again be sum-
marized neatly using the Lagrangian function £ defined in
L(x, A1) = f(x) — Aia(x). (10)
When no first-order feasible descent direction exists at some point
Xx, we have that
Vi L (x5, A7) = 0 for some A\ = 0, (16)

where we also require that
Xfcl (%) = 0. (17)
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Condition

Neci(xe) =0 (17)
is known as a complementarity condition (3 4 if i ); it implies
that the Lagrange multiplier A\; can be strictly positive only when the
corresponding constraint ¢; is active. Conditions of this type play
a central role in constrained optimization, as we see in the sections

that follow.
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Condition

Neci(xe) =0 (17)

is known as a complementarity condition (3 4 if i ); it implies

that the Lagrange multiplier A\; can be strictly positive only when the

corresponding constraint ¢; is active. Conditions of this type play

a central role in constrained optimization, as we see in the sections

that follow. In case |, we have that c;(x,) > 0, so (17) requires that
T = 0. Hence,

(V) () = AT Ve (x) (6)
reduces to (Vf)(xsx) = 0, as required by (14).
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§12.1 Examples

Condition
Neci(xe) =0 (17)
is known as a complementarity condition (3 4 if i ); it implies
that the Lagrange multiplier A\; can be strictly positive only when the
corresponding constraint ¢; is active. Conditions of this type play
a central role in constrained optimization, as we see in the sections
that follow. In case |, we have that c;(x,) > 0, so (17) requires that

T = 0. Hence,

(VF)(x) = ATV (x) (6)
reduces to (Vf)(xx) = 0, as required by (14). In case Il, (17) allows

A} to take on a non-negative value, so (16) becomes equivalent to

Vf(x) = MVei(x) for some A\; = 0. (15)
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e Two inequality constraints

Suppose we add an extra constraint to the problem (12) to obtain

min(x; + x2) st. 2—xf —xi>0,x >0, (18)
for which the feasible region is the half-disk illustrated in Figure
6. It is easy to see that the solution lies at (—1/2,0)", a point at
which both constraints are active. By repeating the arguments for
the previous examples, we would expect a direction d of first-order

feasible descent to satisfy

Ve(x)'d=0 for ieZ={1,2} (19a)

and

Vi(x)'d< 0. (19b)
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Example (cont'd)

Figure 6: Problem (18), illustrating the gradients of the active constraints
and objective at the solution.

However, it is clear from Figure 6 that no such direction can exist
when x = (—4/2,0)T. The conditions V¢;(x)"d = 0 are satisfied for
i=1,2only if d=a1Vei(x) + aaVea(x) for some ¢, co = 0, but

it is clear by inspection that all such vectors d satisfy Vf(x)Td = 0.

= = = = =
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Example (cont'd)

Let us see how the Lagrangian and its derivatives behave for the
problem (18) and the solution point (—+/2,0)T. First, we include
an additional term A;ci(x) in the Lagrangian for each additional

constraint, so the definition of £ becomes

,C(X, )\) == f(X) — )\1C1(X) — )\QCQ(X),

where A = (A1, A\2)" is the vector of Lagrange multipliers.
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Example (cont'd)

Let us see how the Lagrangian and its derivatives behave for the
problem (18) and the solution point (—+/2,0)T. First, we include
an additional term A;ci(x) in the Lagrangian for each additional
constraint, so the definition of £ becomes

L(x,A) = f(x) — Mci(x) — Aaca(x),
where A = (A1, A\2)" is the vector of Lagrange multipliers. The
extension of condition (16) to this case is

Vi L(Xx, As) =0 for some A\, =0, (20)
where the inequality A, > 0 means that all components of A, are re-
quired to be non-negative. The non-negativity of the Lagrange mul-
tipliers is an important feature in the inequality constrained problem,
and (20) will be shown in the next slide.
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Example (cont'd)

By applying the complementarity condition (17) to both inequality

constraints, we obtain

)\TCl(X*) = O, )\;CQ(X*) =0. (21)
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Example (cont'd)

By applying the complementarity condition (17) to both inequality

constraints, we obtain
)\TCl(X*) = O, )\;CQ(X*) =0. (21)
When x, = (—/2,0)", we have

@)= 1 |- vae =72 ] vam =] .

so that it is easy to verify that V, L(x4, Ax) = 0 when we select \,
as follows:

Note that both components of A, are positive, so that (20) is sat-
isfied.




Chapter 12. Theory of Constrained Optimization
§12.1 Examples

Example (cont'd)
We consider now some other feasible points that are not solutions of

(18), and examine the properties of the Lagrangian and its gradient

at these points. For the point x = (1/2,0)", we again have that both

constraints are active (see Figure 7 in the next slide). However, it
is easy to identify vectors d that satisfies

Va(x)'d=0 for ieZ={1,2}, (19a)

Vi(x)'d<0. (19b)
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Example (cont'd)

We consider now some other feasible points that are not solutions of

(18), and examine the properties of the Lagrangian and its gradient

at these points. For the point x = (1/2,0)", we again have that both

constraints are active (see Figure 7 in the next slide). However, it
is easy to identify vectors d that satisfies

Va(x)'d=0 for ieZ={1,2}, (19a)

Vi(x)'d<0. (19b)

In fact, d = (—1,0)" is one such vector (there are many others). For

this value of x it is easy to verify that the condition Vi L(x, \) = 0

is satisfied only when A = (—1/(21/2), 1)T. Note that the first com-

ponent A; is negative, so that the conditions (20) are not satisfied

at this point.
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Example (cont'd)

Figure 7: Problem (18), illustrating the gradients of the active constraints

and objective at a non-optimal point. )
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Example (cont'd)

Finally, we consider the point x = (1,0)T, at which only the second
constraint ¢ is active. Since any small step s away from this point
will continue to satisfy ¢;(x+ s) > 0, we need to consider only the
behavior of ¢, and f in determining whether s is indeed a feasible
descent step. Using the same reasoning as in the earlier examples,

we find that the direction of feasible descent d must satisfy

Ve (x)'d=>0, VFfx)'d<o0. (22)
By noting that

vit)=| |, vat=| ] ],

it is easy to verify that the vector d = (—1/2,1/4)" satisfies (22)
and is therefore a descent direction.
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Chapter 12. Theory of Constrained Optimization
§12.1 Examples

To show that optimality conditions

Vi L(Xsx, Ax) =0 for some Ay =0 (20)
and
Afa(x) =0, Ac(x) =0, (21)
fail, we note first from (21) that since c¢;(x) > 0, we must have
A1 = 0. Therefore, in trying to satisfy Vi L(x, \) = 0, we are left to
search for a value Ao such that V£ (x) — AaVea(x) = 0. No such Ay
exists, and thus this point fails to satisfy the optimality conditions. )
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§12.2 Tangent Cone and Constraint Qualifications

T QN A LR R (1) T AR

Definition

© Given a feasible point x, we call {z} a feasible sequence ap-

proaching x if z, € Q (for all k sufficiently large) and zx — x.

@ A tangent is a limiting direction of a feasible sequence. To be
more precise, a vector d is said to be a tangent (or tangent
vector) to ) at a point x if there are a feasible sequence {z}
approaching x and a sequence of positive scalars {t,} with t, —
0 such that

Zk—X

The collection of all tangents to 2 at x is called the tangent

cone to the set Q) at x and is denoted by Tq(x).
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%% % 5 4 tangent cone To(x) F£§ &~  cone:
QO 0eTo(x): 975 keN 4 ze=x- P {z} A B¥ 78| -
Q deTgo(x)and a> 0= adeTq(x): & {z«} f= {tc} & & (23)
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%% % 5 4 tangent cone To(x) F£§ &~  cone:
QO 0eTo(x): 975 keN 4 ze=x- P {z} A B¥ 78| -
Q deTgo(x)and a> 0= adeTq(x): & {z«} f= {tc} & & (23)
FANRIE S P alt, ¥ 1% ade Ta(x) °
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¥ {7 8L x> active set A(x) E_#rF & UG iEE g(x) =0
index & » H #8547 5 AX) =€ u {ieZ]|c(x)=0}.

Given a feasible point x and the active constraint set A(x), the set

of linearized feasible directions F(x) is
d™Veci(x) =0 for all i€ &,
F(x)=<d

d™Veci(x) = 0 forall ie A(x) n T
27 tangent cone 4B > 2£F F 5 %@ F(x) » A cone-

v
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§12.2 Tangent Cone and Constraint Qualifications
BANPITEMELT 73w f o A active set e T3 © %
¥ {7 8L x> active set A(x) E_#rF & UG iEE g(x) =0
index & » H #8547 5 AX) =€ u {ieZ]|c(x)=0}.

Definition

Given a feasible point x and the active constraint set A(x), the set

of linearized feasible directions F(x) is
d™Veci(x) =0 for all i€ &,
F(x)=<d

d™Veci(x) = 0 forall ie A(x) n T
27 tangent cone 4B > 2£F F 5 %@ F(x) » A cone-

v

% &1 R hd > tangent cone N E_ K A REEINE & Q it fick
T WERENHSPEE - Ra o AP T E2 e E B

acitve set ¥ 1 j 4| Sfic ¢ FHE_K o
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A E ATy §12.1 ¢ e B b+ KZLP tangent cone fritit
LT ES e oo
Recall the equality-constrained problem

min(x; +x2) st. xf+x3 —2=0. (5)

Near the non-optimal point x = (—\/5, O)T, Figure 8 shows a feasible
sequence approaching x given by
—\/2-1/K2
= . 24
2= | V2D HE (24)
, we find that d = (0, —1)T is a tangent.
Note that the objective function f(x) = x; + x increases strictly as

By choosing tx = | zx — x|

we move along the sequence (24); that is, f(zx41) > f(z) for all

k=2,3,---. So x cannot be a solution of (5).
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Example (cont'd)

feasible sequence z;

,Vf

tangent d

Figure 8: Constraint normal, objective gradient, and feasible sequence for
problem (5).

v
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Example (cont'd)

Another feasible sequence is one that approaches x = (—+/2,0)"
from the opposite direction given by

ws[VETR)
1/k

It is easy to show that f decreases along this sequence and that
the tangents corresponding to this sequence are d = (O,a)T. In
summary, the tangent cone at x = (—v/2,0)" is {(0,d»)" | d» € R}.
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§12.2 Tangent Cone and Constraint Qualifications

Example (cont'd)

Another feasible sequence is one that approaches x = (—+/2,0)"
from the opposite direction given by

ws[VETR)
1/k

It is easy to show that f decreases along this sequence and that
the tangents corresponding to this sequence are d = (O,a)T. In
summary, the tangent cone at x = (—v/2,0)" is {(0,d»)" | d» € R}.

By the definition of the linearized feasible direction, we have
d=(di,db) e Fx) < 0=Veakx)'d=-2v2d.

Therefore, we obtain F(x) = {(0,d)" | d» € R}. In this case, we
have To(x) = F(x).
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Example (cont'd)
Suppose that the feasible set is defined instead by the formula Q2 =
{x| c1(x) = 0}, where

a(x) =0 +xi—2)2=0. (25)
Note that €2 is the same, but its algebraic specification has changed.

The vector d belongs to the linearized feasible set if
0=Vax)'d= [ 402 +x3 —2)x 40E + x5 — 2)x | [ Zl }
2
_ di
=[0 0] [ do ]

which is true for all (dy, d2)*. Hence, we have F(x) = R?, so for this

algebraic specification of €2, the tangent cone and linearized feasible

sets differ.

Ching-hsiao Arthur Cheng #%5 % Bk it 22kt - MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Example (Revisit of the 2nd example)

We now reconsider the problem

min(x; +x) st 2—x% —x3 =0. (12)
The solution x = (—1,—1)T is the same as the previous case, but
there is a much more extensive collection of feasible sequences that

converge to any given feasible point (see Figure 9).

*2

L
/C Figure 9: Feasible sequences converg-
| 5 ing to a particular feasible point for

\ the region defined by x + x§ < 2.
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Example (cont'd)

From the point x = (—+/2,0)T, the various feasible sequences de-
fined above for the equality-constrained problem are still feasible for
(12). There are also infinitely many feasible sequences that converge
to x = (—+/2,0)T along a straight line from the interior of the circle.
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Example (cont'd)

From the point x = (—+/2,0)T, the various feasible sequences de-
fined above for the equality-constrained problem are still feasible for
(12). There are also infinitely many feasible sequences that converge
to x = (—+/2,0)T along a straight line from the interior of the circle.

These sequences have the form
ze= (V2,0 + (1/Kw,

where w is any vector whose first component is positive (w; > 0).
The point z is feasible provided that |z < v/2; that s,

(=V2+ w1 /K + (wa/k)* < 2,
which is true when k = (w + w2)/(2v/2w).
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Example (cont'd)
In addition to these straight-line feasible sequences, we can also

define an infinite variety of sequences that approach (—+/2,0)" along

a curve from the interior of the circle. To summarize, the tangent

cone to this set at (—v/2,0)" is {(w1, wo)" | w1 > 0}.
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§12.2 Tangent Cone and Constraint Qualifications

Example (cont'd)

In addition to these straight-line feasible sequences, we can also
define an infinite variety of sequences that approach (—+/2,0)" along
a curve from the interior of the circle. To summarize, the tangent
cone to this set at (—v/2,0)" is {(w1, wo)" | w1 > 0}.

For the definition (12) of this feasible set, we have
de F(x) < 0<Vakx)'d= [—2x1 —2x; ] [gl] = 2v/2d;.
2

Hence, we obtain F(x) = Tq(x) for this particular algebraic specifi-

cation of the feasible set.
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- A g 0 AP U Lemma e

Let x be a feasible point. Then Tq(x) S F(x).
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- A g 0 AP U Lemma e

Let x be a feasible point. Then Tq(x) S F(x).

Let d € Tq(x). Then there exist a feasible sequence {z} and a

sequence of positive scalars {t} satisfying klim ty =0 and
—00

. Z) — X
lim =d.
k—o0 tx

From the limit above, we have
z = x4+ td + o(ty);
thus Taylor's Theorem implies that
ci(zk) = ci(x) + Vei(x) (zx — x) + o[z — |
= ¢i(x) + Vi (x) d + o(ty) . o
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Proof (cont'd).
thus (from previous page) Taylor's Theorem implies that
i (26) = () + Vei(x) (2 — x) + ol]lz& — x1)
= ¢i(x) + teVei(x) d+ o(ty).
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Proof (cont'd).
thus (from previous page) Taylor's Theorem implies that
i (26) = () + Vei(x) (2 — x) + ol]lz& — x1)
= ¢i(x) + teVei(x) d+ o(ty).
Therefore, for i € £, we have

0=~ ci(z0) = Ve d +
k

o(tk)
tk

)
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§12.2 Tangent Cone and Constraint Qualifications

Proof (cont'd).
thus (from previous page) Taylor's Theorem implies that
i (26) = () + Vei(x) (2 — x) + ol]lz& — x1)
= ¢i(x) + teVei(x) d+ o(ty).
Therefore, for i € £, we have

0= Le(z) = Vei(x)Td+ 2
tk tk

)

while for ie A(x) n Z we have

0 < Lei(z) = Vei(x)Td+ 2
tx Lk
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Proof (cont'd).
thus (from previous page) Taylor's Theorem implies that
i (26) = () + Vei(x) (2 — x) + ol]lz& — x1)
= ¢i(x) + teVei(x) d+ o(ty).
Therefore, for i € £, we have

0=~ ci(z0) = Ve d +
k

o(tk)
tk

)

while for ie A(x) n Z we have

0 < Le(z) = Vei(x)Td+ 28
ty Lk
Passing to the limit as k — o0, we obtain
O Va(x)d=0ifie&.
Q@ Ve(x)'d=0ifie Ax) nT.
This shows that d € F(x); thus Tqo(x) < F(x). o

—rT = —_ = =
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Constraint qualifications #_FZ MR 4 ¥ (72 » & F(x) &2 tan-
gent cone To(x) 4p i enif it o FF + > % % #c constraint qual-
ifications 3% 3 iz B LA o I hoz w kPl S
FEEREE D A XxBHEHEELE QR FREFRETEFI S
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Constraint qualifications {fﬂré’i%ﬂ']@ it¥ 73 ek F(x) & tan-

gent cone To(x) 4p i enif it o FF + > % % #c constraint qual-
ifications ¥8 & B & & LAp K i e o2 B T B

FEEET D AXBEFEELE Qs FEFRETFD D
F) o bx B B0 B QA4S RRk 2 Tok)
1 o PRk o

G- BHIT Y To(x) fo F(x) 450 £3 phle i3 b x o
B L LEQAESP I (FL L i8- HhpF > T HUT
KEI\—FJ;\

cl(x)zl—xf—(x2—1)2>o, CQ(X):—X2>O, (26)
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Figure 10: Problem (26), for which the feasible set is the single point of
intersection between circle and line.
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g x = (0,0)7 > & & tangent cone #_ Tq(x) = {(0,0)T} »

Flo 973 e acd] x 07 FH | PRI AF LIy~ Pk

zk=x=(0,0)T o gt b > % 5 BT ¥ {7 B ML 3T 00 E
F(x) = {(d1,0)" | dy e R},

THREB KT o BRBBERT MBI T e FRG R

¥ TR oS R F1 7 5% & constraint qualifications o B

BiEx P & ¥ @ % &0 constraint qualifications T - B T_& 0

Ching-hsiao Arthur Cheng it .5 % Bk it 22t - MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Definition (LICQ)

For a given feasible point x (with corresponding active set A(x)),
we say that the linear independence constraint qualification (LICQ)
holds at x if the set of active constraint gradients {Vci(x) | i€ A(x)}

is linearly independent.

ARIILICQ 2wt ad BojF (¢ 87 78)
a(x) = +x3—-22=0, x= (2,07
fe
ax)=1-x2—(x—-12%>0, akx)=-x=>0 x=(0,0"
F AR E o - KR 4ok s & LICQ B iE @~ B active
constraint gradient ¥% % i 5 F o F -4 §12.6 ¢ & 2 H

constraint qualifications °

Ching-hsiao Arthur Cheng it .5 % Bk it 22kt - MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

e The relation between T(x) and F(x) given LICQ
BT Rhand®m (2 3 EFE) AP Ax) AA- BEA &

¥ {7 Bk x £ active constraint gradients #7 % = ehaErE AR AR

A" = [Vai)]ieaw - (27)
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

e The relation between T(x) and F(x) given LICQ

BT Rhand®m (2 3 EFE) AP Ax) AA- BEA &

¥ {7 8L x ¢ active constraint gradients # % = ghaEiE [ 7R AP
AR)T = [Vei()iean - (27)

Apg A2 LT lemma e

Let x be a feasible point at which the LICQ condition holds. Then
for every d € F(x) and sequence {ty} of positive scalars satisfying
klim tx = 0, there exists a feasible sequence {zx} such that
— 00

Z — X

lim =d (23)

k—oo Ty

and

C,‘(Zk) = thC,'(X)Td Vie .A(X) and k> 1.

= - =

(28) |
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

W.L.O.G. we can assume that all the constraints ¢;, i=1,2,--- , m
are active at x. Let d € F(x) be given, and suppose that {t,}72,

is any sequence of positive scalars such klim txy = 0. We first note
— 00

that the m x n matrix A(x) of active constraint gradients has full
row rank m since the LICQ holds at x.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

W.L.O.G. we can assume that all the constraints ¢;, i=1,2,--- , m
are active at x. Let d € F(x) be given, and suppose that {t,}72,
is any sequence of positive scalars such klgg) txy = 0. We first note
that the m x n matrix A(x) of active constraint gradients has full
row rank m since the LICQ holds at x. By the fact that
the null space of A(x) @ the range of A(x)" = R",

there exists an n x (n — m) matrix Z whose columns are a basis for
the null space of A(x); that is,

Ze R™(=m 7 has full column rank, A(x)Z=0. (29)
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

W.L.O.G. we can assume that all the constraints ¢;, i=1,2,--- , m
are active at x. Let d € F(x) be given, and suppose that {t,}72,
is any sequence of positive scalars such klgg) txy = 0. We first note
that the m x n matrix A(x) of active constraint gradients has full
row rank m since the LICQ holds at x. By the fact that
the null space of A(x) @ the range of A(x)" = R",

there exists an n x (n — m) matrix Z whose columns are a basis for
the null space of A(x); that is,

Ze R™(=m 7 has full column rank, A(x)Z=0. (29)
With ¢ = [ci]ica(x), define R: R" x R — R" by

c®—mwd]

R(zt) = Z%(z— x—td)
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Proof (cont'd).
Note that R(x,0) = 0. Moreover, the Jacobian of R(-, -) with respect
to z at point (z,t) = (x,0) is

V. R(x,0) = [ Az()T() ]

which is non-singular by construction of Z.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Proof (cont'd).
Note that R(x,0) = 0. Moreover, the Jacobian of R(-, -) with respect
to z at point (z,t) = (x,0) is
Ax)
VZR(X,O): |: ZT :|,

which is non-singular by construction of Z. Therefore, the Implicit
Function Theorem implies that the system

c(2) — tA(x)d ] B [ 0 ]

R(zt) = Z%(z— x—td) 0

(30)

has a unique solution zj (~ x) for all t, > 0 sufficiently small. The

Implicit Function Theorem also shows that klim ZKk = X.
—00
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Proof (cont'd).
Note that R(x,0) = 0. Moreover, the Jacobian of R(-, -) with respect
to z at point (z,t) = (x,0) is
A(x)
V.R(x,0) = [ 7T ],
which is non-singular by construction of Z. Therefore, the Implicit

Function Theorem implies that the system

c(2) — tAx)d ] _ [ 0 ]

R(zt) = Z%(z— x—td) 0

(30)

has a unique solution zj (~ x) for all t, > 0 sufficiently small. The

Implicit Function Theorem also shows that klim ZKk = X.
—00

We claim that {z} is a feasible sequence and satisfies desired prop-
erties (23) and (28). o
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Proof (cont'd).

First we show that
. Z — X
lim =d

k—oo  tk
holds for this choice of {zx}. Using the facts that

Q R(zk, tx) = 0 for sufficiently large k and

Q c(x)=[ci(X)]icax) =0,
Taylor's Theorem implies that for k sufficiently large,

o= = | e
_ [ A(x)(zk = x) + o[ zk — x[) — tA(x)d }
Z%(z — x— tyd)

] (2 — x— ted) + o[2x — x])).
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Proof (cont'd).
By dividing this expression by tx and using non-singularity of the
coefficient matrix in the first term, we obtain

Box_ gy oIy,
tk tk

from which it follows that (23) is satisfied (details required).
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Proof (cont'd).
By dividing this expression by tx and using non-singularity of the
coefficient matrix in the first term, we obtain

Box_ gy oIy,

tx tx
from which it follows that (23) is satisfied (details required). More-
over, since
. C(Zk) = tkA(X)d . 0
R(Zlﬁ tk) - |: ZT(Zk—X—tkd) :| - 0
for sufficiently large k, we find that
ci(z) = tuVei(x)'d  Vie A(x) and k> 1. (28)

To conclude the lemma, we show that {zx} is a feasible sequence;
that is, ¢i(zx) = 0 if ie £ and ¢i(zx) = 0 if i € Z for all sufficiently
large k. o
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Proof (cont'd).
Since d € F(x), the definition of the set of linearized feasible direc-
tions implies that for sufficiently large k,
icf = ci(zx)=tVea(x)'d=0,
ice AX)nT = ci(zx) = tVei(x)'d=0.
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications

Proof (cont'd).

Since d € F(x), the definition of the set of linearized feasible direc-

tions implies that for sufficiently large k,
icef = clzr) =tVe(x)d=0,
ice AX)nT = ci(zx) = tVei(x)'d=0.

Moreover, if i € Z n A(x)", we must have ¢;(x) > 0; thus by the fact

that lim z, = x we have
k—00
Gi(zk) >0 Yk>»1.
Therefore, the continuity of ¢; shows that for sufficiently large k,
iceInAX)" = c(z) > 0.

Combining all the cases discussed above, we conclude that {z} is

indeed feasible. o
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Chapter 12. Theory of Constrained Optimization

§12.2 Tangent Cone and Constraint Qualifications
AR I - B 78 x 0 1345 tangent cone To(x) HhE & 0 @
b x BER ELICQ i > BIF F(x) < Ta(x) °

it lemma B B & 7
C F(x) e lemma > B 0T 5

ZEB To(x)

Let x be a feasible point at which the LICQ condition holds. Then
Ta(x) = F(x).
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions

PR AR T xe F 5 RN Ed- FEY R

=4
B TR R R A BB P AR AT 0 32 AR

Ching-hsiao Arthur Cheng it b i 1 2% = MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions

R I g L E AP EA T KA (1) B

LA =Fx)— > Aicx). (31)

ieEUVT
AP S
‘iEEEAG

'

T IR KRB FEEFLL - PFIER S T
BAcr U Sl R (- FF e ) Sl -
Beg ad fyifans i B2 aA#H -

2
.

B it 2 * - MAB038-*
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions

Theorem (First-Order Necessary Conditions)

Suppose that x is a local solution of problem
ci(x)=0,ieé&,
ci(x) =0,ieT,

(1)

that the functions f and c; in (1) are continuously differentiable,

min f(x) subject to {

xeR"

and that the LICQ holds at x,. Then there is a Lagrange multiplier
vector A\, with components ¥, i € £ U Z, such that the following

i

conditions are satisfied.

Vi L (X, Ax) =0, (32a)
Ci(xx) =0 forallie€, (32b)

Ci(xx) =0 forallieZ, (32¢)
ANf=0 forallieZ, (32d)

Aici(xx) =0 forallieEUT. (32e)

Ching-hsiao Arthur Cheng #%5 % Bk it 22kt - MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions

Q iF i (32) i ¥ A5 Karush-Kuhn-Tucker % > i i KKT

i o
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions
Q iF i (32) i ¥ AL 5 Karush-Kuhn-Tucker i » f 4 KKT
//f /4_ ®

%
Q@ - B¥ (78 x. MAL 5 - B KKT point 4% 7 & A\, & &
KKT i 5% & o 4ept 67 (X, Ay) # #FEE - B KKT pair o
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions
Q %t (32) i ¥ 4AH 5 Karush-Kuhn-Tucker i 2 > i &£ KKT

i o

Q@ - B¥ (78 x. MAL 5 - B KKT point 4% 7 & A\, & &
KKT i 5% & o 4ept 67 (X, Ay) # #FEE - B KKT pair o
Q His- Big

Aici(xe) =0 forallieEuZ (32e)
I EE R R FR ALG] A activer B A \F =0
é—g?*ﬁ—-ﬁﬁrz{o
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions
Q it (32) i ¥ AL 5 Karush-Kuhn-Tucker i i » f§ # KKT

Q@ - B¥ (78 x. MAL 5 - B KKT point 4% 7 & A\, & &
KKT 6 i & o 4 41 (x, \y) 4 AL S — B KKT pair ¢
Q B i5- BiEe
Aici(xe) =0 forallieEuZ (32e)
BaaiEe 2 AR FR ALY i & activer BA N =0
R A AL #%EJJ#« » 3% inactive e & 3V T
& Lagrange 3 Bl 5 % » AP w02 (32a) ¢ %”‘J“,/TT A
3 A(x) gt P TR > R R LR G
0 = Vi L(xs, \s) = VF(x) — Z AV (xs) -
ieA(xs)
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions

o

A
4=

i 2 (32) H ¥ AL S Karush-Kuhn-Tucker i & > ff 4 KKT
- BT B X AR S £ B KKT point 40% % e A, & @
KKT i 2% 8o 4ot i (xe, Ae) # AL 5 — B KKT pair
Bty - Bige

£
™

Aici(xe) =0 forallieEuZ (32e)
BaaiEe 2 AR FR ALY i & activer BA N =0
R A AL #%EJJ#« » 3% inactive e & 3V T
J& ¢ Lagrange k& R 5 F o AP w02 E_(32a) ¢ %”‘J“,’TT *
i A(X*) m#ﬁ T AR eIE o TR IEEE

0 = VXE(X*,)\*) Vf X* — Z )\ VC,(X*)
i€ A(xg)

S B GE % g #p%;ﬁiw e ¥FA AL ,]ﬂa;ﬁ?ﬁﬂ.ﬁ. 2 ,ggu g

“3 ’ % ST~ Y e -
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions

Tt BREANRAER BRSBTSk

Definition (Strict Complementarity)

Given a local solution x, of problem (1) and a vector A, satisfy-
ing (32), we say that the strict complementarity condition holds if
exactly one of A¥ and c¢j(xy) is zero for each index i € Z; that is,
Af > 0 for each i€ Z n A(xy).
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions

I BEAERAEL > BEFES TR

Definition (Strict Complementarity)

Given a local solution x, of problem (1) and a vector A, satisfy-
ing (32), we say that the strict complementarity condition holds if
exactly one of A¥ and c¢j(xy) is zero for each index i € Z; that is,
Af > 0 for each i€ Z n A(xy).

Bt T A M ek R ¥ @7 B2 { F % AT active set A(xy) I
AF AR TR X o HWE TR AL (1) fof2 x 0 ¥ oav o B3F 508
e (32) e g Ao BRA ii%v e Xy Fedits & LICQ P& > ﬁ,\@m

A* {p{i—— Eﬂ ©
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions

LEd ARGz APHEY - BT kP KKT i o

Consider the minimization problem

1—X1—X2
. 312 14 1—x +x
_° S >
m)}n(xl 2) +(X 2) s.t. 14 Xt — x0 >0. (33)
14+x1 + xo

From Figure 11 we see that the solution is x, = (1,0)T at which
the first and second constraints in (33) are active. Denoting them
by ¢; and ¢z (and the inactive constraints by c3 and ¢;) so that
A(xy) = {1, 2}, we have that

VF(x) = [_1] Vei(x) = [:ﬂ V) = [ ; ]
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Chapter 12. Theory of Constrained Optimization

§12.3 First-Order Optimality Conditions

Example (cont'd)

3

Figure 11: Inequality-constrained problem (33) with solution at (1,0)T.

Therefore, the KKT conditions (32a)-(32e) are satisfied when we
set Ay = (3/4,1/4,0,0)T.

Ching-hsiao Arthur Cheng




Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

e A fundamental necessary condition

dodh arid o B x AR S AE TR AT

ci(x)=0,ieé, 1)
ci(x)=0,ieZ,

xeR"

min f(x) subject to {

- B B 2R % ST e ] x T ] {z) $ RS 4 D
ki S f(ze) = F(x) o T 2% E7 0 dok H hidfho- B
o P ARG e FEP RSB RTF EE P

If x« is a local solution of (1), then we have

(V) (x)'d =0 for all de To(x).
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Suppose the contrary that there exists d € Tq(xx) for which
(VA)(xs)'d < 0. Let {z} = Q and {t,} = RT be sequences
satisfying

. . Zk— X
lim t, =0 and lim .
k—00 k—oo  tg

By Taylor's Theorem,
f(2k) = fxe) + (2k — %) (VF) () + o( [z — )
= f(x) + tedT(VF)(x:) + 0(tx)-
Since dT(Vf)(x:) < 0, the remainder term is eventually dominated

by the first-order term; thus
F(2) < F(x) + 3 5d"(VA)(x) V> 1.

Since dT(Vf)(xs) <0, x4 cannot be a local solution. o
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

ER SR OE AT - RF 2 o AR TR D
Ta(x) ® d 85 (VF)(x)Td> 00 x, 8% - LA~ B h 3"
Bol e To 2 B A BREEDOLVELRILDHT > 4oB)

minx; subject to xp = —x?. (34)

Figure 12: Problem (34),
showing various limiting di-
rections of feasible sequences
at the point (0, 0)T.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
SERAE S R E R R EA P RRART & ox = (0,0)T
i Eﬁ%ﬁﬂg v’ﬂs T EHI RS e d = (d,do)T % s
R ody =00 Fptd (VF)(x) = (0,1)F 28 17 5|

(VF)(x:) d = dy = 0.
2R

M X f{eﬁ%l - BAEIE]E 3 a>0 5% (o, —a?)T
ﬁﬁtﬁ" Thoxy NS lkiE > P T NEER o KRE XS R
it HAg:T
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

e Farkas’ lemma
EP - RiEEY BE & - A - BARA S Farkas' Lemma

g1 & alternative TIZ o 3% lemma ¥ g — B T_& 40 49 cone K -

K={By+ Cw|y=> 0}, (35)

E?¢ Bife Chulizinxmie nx p el » & y foow E_
FERRDEI S E

Ching-hsiao Arthur Cheng B2k - MA5S038-*



Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

e Farkas’ lemma

EP - kiR BOE & - A - BARF S Farkas' Lemma

,_\-.

e L alternative TIZ - 3% lemma ¥4 g — B L&k AT dhcone K&
K={By+ Cw|y=> 0}, (35)

He Bfe Crusbzinxmirnxp et > @ yfow &
FE AR DERS R o 1395 Farkas' Lemma » $20 5% 2 R %
BgrfafilfRe- (IWF-4) 22 B8R gRN K &
Bgn- B R w8 di ¥

gld<0, BY'd=>0, Cl'd=o. (36)
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Ea AR EB 13 M B3 =27 -Ci3 % n=2 i

R BT e Eﬁ"&?——hm{’ R o d d TR
- B~ 2|42 T 5 (separating hyperplane) » & &_#& R" ¥ - BT

-

5 ﬂ-’—"»—@?é_gbt?coneK/v\F’ao

Figure 13: Farkas’ Lemma: either g € K (left) or there is a separating
hyperplane (right).
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Lemma (Farkas)
Let Be R™™ Ce R"™P be given, and K be a set defined by
K= {By+ Cw|y>0,weRP}. (35)

For a given vector g € R", we have either that g € K or that there

exists d € R" satisfying

gld<0, BYd=0, CT'd=o, (36)
but not both.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Lemma (Farkas)
Let Be R™™ Ce R"™P be given, and K be a set defined by
K= {By+ Cw|y>0,weRP}. (35)

For a given vector g € R", we have either that g € K or that there

exists d € R" satisfying

gld<0, BYd=0, CT'd=o, (36)
but not both.

We show first that the two alternatives cannot hold simultaneously.
If g€ K, there exist vectors y > 0 and w such that g = By + Cw. If
there also exists a d with the property (36), we have

0> dlg=d"By+ dTCcw= (BTd)'y + (CTd)'w > 0.

Hence, we cannot have both alternatives holding at once. o
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

We now show that one of the alternatives holds. To be precise, we
show how to construct d with the properties (36) in the case that
g ¢ K. For this part of the proof, we need to use the property that
K is a closed set — a fact that is intuitively obvious but not trivial

to prove (see Lemma 12.15 in the textbook).
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

We now show that one of the alternatives holds. To be precise, we
show how to construct d with the properties (36) in the case that
g ¢ K. For this part of the proof, we need to use the property that
K is a closed set — a fact that is intuitively obvious but not trivial
to prove (see Lemma 12.15 in the textbook). Let {si} < K be a
minimizing sequence satisfying

inf |5~ g < sk — gll < inf Js— g + .

Then the fact that {si} € Kn B[g, inf |s— gl + 1] implies that there

exists a convergent subsequence {s } with limit 5 € K.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

We now show that one of the alternatives holds. To be precise, we

show how to construct d with the properties (36) in the case that
g ¢ K. For this part of the proof, we need to use the property that
K is a closed set — a fact that is intuitively obvious but not trivial
to prove (see Lemma 12.15 in the textbook). Let {si} < K be a
minimizing sequence satisfying

inf |s— g] < s — gl < inf |s— g+ ;.

seK seK k
Then the fact that {si} € Kn B[g, inf |s— gl + 1] implies that there
exists a convergent subsequence {s;} with limit s € K. Such 5'is the
vector in K that is closet to g in the sense of the Euclidean norm.
Since 5 € K, we have from the fact that K'is a cone that as € K for

all scalars o = 0. o
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§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

Since |as — g||? is minimized by o = 1, we have

d A AT /A~
2| _leas—gf=0 = E-g=0.  (37)
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

Since |as — g||? is minimized by o = 1, we have

d A AT /A~
2| _leas—gf=0 = E-g=0.  (37)

Now, let s be any other vector in K. Since K is convex, we have by
the minimizing property of s that

[5+6(s—3)—gl? > [5—g|® forall 9€[0,1],
and hence

20(s—35)T(5—g)+6%s—5)>=0 forallhe0,1].
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

Since |as — g||? is minimized by o = 1, we have

d A AT /A~
2| _leas—gf=0 = E-g=0.  (37)

Now, let s be any other vector in K. Since K is convex, we have by
the minimizing property of s that
[3+6(s—35)—gl? > [s—gl? forall € 0,1],
and hence
20(s—35)T(5—g)+6%s—5)>=0 forallhe0,1].
By dividing this expression by 6 and taking the limit as 8,0, we
have (s —35)Y(s — g) = 0. Therefore, because of (37),

s'(5—g)=0 forall seK. (38)

T 7= =
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

We claim now that the vector d = 5 — g satisfies the conditions
gld<o0, B%W=>=0, Cc'd=o0. (36)
Note that d # 0 because g ¢ K. We have from (37) that
d"g = d"(5—d) = (3— "5 — d"d = —[d|? < 0,

so that d satisfies the first property in (36).
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

We claim now that the vector d = 5 — g satisfies the conditions
gld<o0, B%W=>=0, Cc'd=o0. (36)
Note that d # 0 because g ¢ K. We have from (37) that
dg = d'(5— d) = (- g)'3 — dd = —[d| < 0,
so that d satisfies the first property in (36).
From (38), we have that d¥s > 0 for all s€ K, so that
dY(By+ Cw) =0 forall y>0 and all w.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

We claim now that the vector d = 5 — g satisfies the conditions
gld<o0, B%W=>=0, Cc'd=o0. (36)
Note that d # 0 because g ¢ K. We have from (37) that
dg = d'(5— d) = (- g)'3 — dd = —[d| < 0,
so that d satisfies the first property in (36).
From (38), we have that d¥s > 0 for all s€ K, so that
dY(By+ Cw) =0 forall y>0 and all w.

By fixing y = 0 we have that (CTd)Tw > 0 for all w, which is true
only if C'd = 0.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

We claim now that the vector d = 5 — g satisfies the conditions
gld<o0, B%W=>=0, Cc'd=o0. (36)
Note that d # 0 because g ¢ K. We have from (37) that
dg = d'(5— d) = (- g)'3 — dd = —[d| < 0,
so that d satisfies the first property in (36).
From (38), we have that d¥s > 0 for all s€ K, so that
dY(By+ Cw) =0 forall y>0 and all w.

By fixing y = 0 we have that (CTd)Tw > 0 for all w, which is true
only if CTd = 0. By fixing w = 0, we have that (BTd)y > 0 for
all y > 0, which is true only if BTd > 0.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).

We claim now that the vector d = 5 — g satisfies the conditions
gld<o0, B%W=>=0, Cc'd=o0. (36)
Note that d # 0 because g ¢ K. We have from (37) that
dg = d'(5— d) = (- g)'3 — dd = —[d| < 0,
so that d satisfies the first property in (36).
From (38), we have that d¥s > 0 for all s€ K, so that
dY(By+ Cw) =0 forall y>0 and all w.

By fixing y = 0 we have that (CTd)Tw > 0 for all w, which is true
only if CTd = 0. By fixing w = 0, we have that (BTd)y > 0 for
all y > 0, which is true only if BTd > 0. Hence, d also satisfies the

second and third properties in (36), and our proof is complete. ©
W

™7 = = =
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

il i % Farkas' Lemma & * *S 020 F T_3& 557 cone N

N:{ S AVei(x)

i€ A(xx)

{A}ieAps) SR A= 0if i€ A(x) N z},

+ (#? & Farkas’' Lemma ® * 12 % % cone K ¢ B 22 C A~
Wi B = [Vei(x)] C = [Vei(x)]
g = (V) (x) >

ieA(x)nT — ieA(x*)\I> JEGEN
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

il i % Farkas' Lemma & * *S 020 F T_3& 557 cone N

:{ S AVei(x)

i€ A(xx)

{A}ieAps) SR A= 0if i€ A(x) N z},

(#H ¢ 4 Farkas' Lemma ¥ * 14 % % cone K ev B &2 C 4~
4& B = [vci(x*)]ieA(x*)mI ERNEES [vci(x*)]ieA(x*)\I> L
Tg= (VA AP F NTAFET iz - 55 BRI
(Vie A(x) nZ)(\i = 0) ?"ﬁfi; F & Pitieapw ER 7

(VF)(x 2 AiVei(xs)
i€ A(xx)
BEGAE- B dRE
dT(VF)(xs) < 0, [Vei(x)] -

i€EA(xx)NT

d=0,[Velw)]. . ,d=0.

i€ A(xx)\Z

Ching-hsiao Arthur Cheng it .5 % Btk - MA5S038-*



Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

il i % Farkas' Lemma & * *S 020 F T_3& 557 cone N

:{ S AVei(x)

i€ A(xx)

{A}ieAps) SR A= 0if i€ A(x) N z},

F (H P %4 Farkas' Lemma ® * 11 % % cone K e B & C &
4& B = [vci(x*)]ieA(x*)mI ERNEES [vci(x*)]ieA(x*)\I> L
Tg= (VA AP F NTAFET iz - 55 BRI
(Vie A(x) nZ)(\i = 0) ?"ﬁfi; F & Pitieapw ER 7

(VF)(x 2 AiVei(xs)
i€ A(xx)

AEGR- B3 diEF

dT(VF)(xs) < 0, [Vei(x)] -

i€EA(xx)NT

d=0,[Velw)]. . ,d=0.

i€ A(xx)\Z
FREAZDI RFEARIL T A e i PSS BiEEE
RE d B Fx) (F278R)e
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

il i % Farkas' Lemma & * *S 020 F T_3& 557 cone N

N:{ S AVei(x)

i€ A(xx)

{A}ieAps) SR A= 0if i€ A(x) N z},

+ (H 7 % Farkas' Lemma * * ™ % % cone K th B ¥2 C »
ME B = [Val]iapnr £ €= [Vabwlicapz) @ &
Lg=(VAb) AFF UTABTREL - HEBEL
(Vie Alx) nI)(Ai = 0) 'ﬂ'ﬁfi; & {Mlicapw SR 7

(VF)(x 2 AiVci(xs)
i€ A(xx)

BEGA- B e de F(x,) €
dT(VF)(x) < 0.
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

il i % Farkas' Lemma & * *S 020 F T_3& 557 cone N

N:{ S AVei(x)

i€ A(xx)

{A}ieAps) SR A= 0if i€ A(x) N z},

+ (H 7 % Farkas' Lemma * * ™ % % cone K th B ¥2 C »
ME B = [Val]iapnr £ €= [Vabwlicapz) @ &
Lg=(VAb) AFF UTABTREL - HEBEL
(Vie Alx) nI)(Ai = 0) 'ﬂ'ﬁfi; & {Mlicapw SR 7

(VF)(x 2 AiVci(xs)
i€ A(xx)

BEGA- B e de F(x,) €
dT(VF)(x) < 0.

Flub o ok #9000 F ot Fx) e B d /G V() d>0

o P (V) (xe) B> cone N o
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Theorem (First-Order Necessary Conditions)

Suppose that x is a local solution of problem
ci(x)=0,ieé&,
ci(x) =0,ieT,

(1)

that the functions f and c; in (1) are continuously differentiable,

min f(x) subject to {

xeR"

and that the LICQ holds at x,. Then there is a Lagrange multiplier
vector A\, with components ¥, i € £ U Z, such that the following

i

conditions are satisfied.

Vi L (X, Ax) =0, (32a)
Ci(xx) =0 forallie€, (32b)

Ci(xx) =0 forallieZ, (32¢)
ANf=0 forallieZ, (32d)

Aici(xx) =0 forallieEUT. (32e)
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Suppose that x, € R” is a local solution of (1) at which the LICQ

holds. Then the established lemmas and theorem show that
Ta(xs) = F(xs) and  dT(VF)(x:) =0 VdeTo(x).
Therefore, d*(Vf)(x:) = 0 for all d € F(xy);
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Suppose that x, € R” is a local solution of (1) at which the LICQ

holds. Then the established lemmas and theorem show that

Ta(xs) = F(xs) and  dT(VF)(x:) =0 VdeTo(x).
Therefore, d*(Vf)(x:) = 0 for all d € F(x); thus Farkas’ Lemma
implies that there are multipliers {x\;},-eA(X*) C R such that

(VO(x) = Y AVe(x), Ai=0ifie Ax)nZ. (39)
i€ A(xx)
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Suppose that x, € R” is a local solution of (1) at which the LICQ

holds. Then the established lemmas and theorem show that
Ta(xs) = F(xs) and  dT(VF)(x:) =0 VdeTo(x).

Therefore, d*(Vf)(x:) = 0 for all d € F(x); thus Farkas’ Lemma
implies that there are multipliers {\i}jc 4(x,) S R such that

(VE)(x) = Y, AiVailx), Xi=0ifie Ax)nZ. (39)

i€ A(xy)

Define the vector A\, by
A —

{ A ifie A(xy), W

0 ifieZ\A(xy),

We claim that this choice of \., together with our local solution x,

satisfies the conditions (32). o
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof

Proof (cont'd).
We check these conditions in turn.
@ The condition (32a) follows immediately from (39) and the
definitions (31) of the Lagrangian function and (40) of ..
@ Since x, is feasible, the conditions (32b) and (32c) are satisfied.
© We have from (39) that A} > 0 for i € A(xx) N Z, while from
(40), \¥ =0 for ie Z\ A(x«). Hence, A} = 0 for i€ Z, so that
(32d) holds.
©Q We have for i € A(xis) n Z that ci(xx) = 0, while for i €
Z\ A(xx), we have A\¥ = 0. Hence Afcj(x,) = 0 for i€ Z, so
that (32e) is satisfied as well.

The proof is complete. o
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
EROLHRER Y o AR FNE X P LICQ & FAS T EM R
Ta(xs) = F(xx). (41)
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Chapter 12. Theory of Constrained Optimization

§12.4 First-Order Optimality Conditions: Proof
EROLHRER Y o AR FNE X P LICQ & FAS T EM R
Ta(xs) = F(xx). (41)

I IR G A P E R T R

Theorem (First-Order Necessary Conditions)

Suppose that x, is a local solution of the constrained optimization

problem (1) in which the functions f and c; are continuously differ-

entiable. If (41) holds, then there is a Lagrange multiplier vector
A« with components \* such that

Vi L (x4, M) = 0, (32a)

Gi(xx) =0 forallie€, (32b)

Ci(xx) =0 forallieZ, (32¢)

Af =0 foralliel, (32d)

(32e)

Aci(xe) =0 forallie & UT.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
PIP A 5 b AT AR INE X AP RSl f - F
fr active *LH| ¢ 4ot 4p 3 B B - FF e B GE 2 - KKT i
oo FpHIERREF ATBILERP F(x) ¥ e w >
B P A B0 B RS e FEIT I h S B R A 0 (T
wl (V) (x) >0)> & B 47 % (7 w(VF)(x) =0) -
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
TP WG AR b IR X P Sl o B
{r active 14| ¢ 4o 4p 3 M B - 2 & iE 2 - T KKT i
oo FpHIERREF ATBILERP F(x) ¥ e w >
PRt A B0 PR S Biceh- PEIT I P S B B R B 4T (T
wl (V) (x) >0)> & B 47 % (7 w(VF)(x) =0) -
Bk we Flxe) 2 wi(VF)(xe) = 00 7RE-H &~ Fp Eficcha 4
Voo 3R N ETARE X e w S e R A B 0 P RSl f
S S RER S T R N LR R T S
59%&&fﬁ%¢&&qﬁ%&$&ﬁwﬂm:r%&ﬁ’
PR g TR EA A P f Sl A4 B AR o Ak

b Z FERE BT Lagrangian B YA T e - AR x,
@ wl(VA)(x) =0 2 2 e Fx,) ? chehs o — 1 i F o
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
% F(xe) foil £ KKT i (32) e- & Lagrange % + v £

Ay 0 PP & critical cone C(xy, \y) 40 ¢

C (X, Ax) = {We F(x)

Veilx) ' w=0if ie A(x) N T & \F > o}
BAEE-Hd Fx) hTRF LT ERIES
W E C(Xe, Ax)
Veilx)w=0 ificé&,
e Vel w=0 ifie A(xs) " T and X* >0,
Vei(x) ' w=0 ifie A(x) nZ and \¥ = 0.

(42)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
B F(xe) foid & KKT #f i (32) ¢0— & Lagrange %+ » &
Ay 0 PP & critical cone C(xy, \y) 40 ¢

Veilx) ' w=0if ie A(x) N T & \F > o}

C o, M) = {we Flx)
FEE-Hd Fla) PTG T B GG
w € C (X, Asx)
Vei(x) w=0 ifie&,
o { Veilx)Tw=0 if ie A(x) T and A¥ > 0,
Vei(x) ' w=0 if ie A(x) T and \¥ = 0.

(42)

Critical cone # 7 7Rut (¢ A 2\ P9 44 p 45 50 fiesg 7 ] { s prs
€ Ao 3t Mg FT A en Lagrange k+ A £ & I £ active 7

$XTH LA R 2 % o
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

1345 critical cone & (42) 3973 T\ A(xy) P €7 inactive
index i § Af=0 % g » APz @5

we C(xe de) = ANVe(x)w=0if ie£UZ.  (43)

F oo 35 % - B KKT i i (32a) {v Lagrangian sz & (31)
ey

we Clxe, Ae) = wh(VF)(x = Mw!Vei(x) = 0.

ieEVT
Fet o critical cone C(xg, Ay) & 7 7 8- G L a2mef
A F R AR KPR F(x) 7w o
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
1345 critical cone & (42) 3973 T\ A(xy) P €7 inactive
index i § Af=0 % g » APz @5

we C(xe de) = ANVe(x)w=0if ie£UZ.  (43)

F oo 35 % - B KKT i i (32a) {v Lagrangian sz & (31)
ey
we C(xe, ) = wh(VF)(x Z MNwtVei(x) = 0.
ieEUT

Fet o critical cone C(xg, Ay) & 7 7 8- G L a2mef
{@i‘g%vr, Al j\B T ]:(X*) 1 @ o

Remark: — B f§ 5 35 C(xq, \x) 97 3% 5 Fxy) ¥ #9742
Lagrange 3k + 2L 7 17 X 38 PU4] 2304 5 2 38 U418 @ 7 ehAT
Fx)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Consider the problem

minx; subjectto xp =0,1— (x; —1)? —xF >0, (44)
illustrated in Figure 14. It is not difficult to see that the solution is
x: = (0,0)%, with active set A(x,) = {1,2} and a unique optimal
Lagrange multiplier A, = (0,0.5)".
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Consider the problem

minx; subjectto xp =0,1—(x; —1)2 = x§ >0, (44)
illustrated in Figure 14. It is not difficult to see that the solution is
= (0,0)T, with active set A(xx) = {1,2} and a unique optimal
Lagrange multiplier A, = (0,0.5)". Since the gradients of the active
constraints at x; are (0, 1)T and (2,0)7, respectively, the LICQ holds,
so the optimal multiplier is unique. The linearized feasible set is then

F(xy) = {d‘ dTm > o,dTm > o} ={d|d >0},

while the critical cone is

C%, Ax) = {We]:(x*)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Example (cont'd)

Figure 14: Problem (44), showing F(xx) and C(xx, Ax).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

F IR < PR e B E R o

Theorem (Second-Order Necessary Conditions)

Suppose that xy is a local solution of

ci(x)=0,i€&,
, : (1)

ci(x) =0,ieZ,

and that the LICQ condition is satisfied at x,. Let \. be the La-

grange multiplier vector for which the KKT conditions

min f(x) subject to {

xeR"

Vi L (X, M) =0, (32a)
Gi(xx) =0 forallie€&, (32b)
Ci(x¢) =0 forallieZ, (32¢)
ANf>0 forallieZ, (32d)
Aci(xs) =0 forallie & UT. (32e)
are satisfied. Then
wWEV2 L(xe, M)w =0 for all we C(xx, ). (45)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Let w e C(x«, Ax) be given. Since the LICQ condition holds at x, and

C(Xx, Ax) S F(x4), there exist a feasible sequence {z,} approaching
X, and a sequence {tx} of positive scalars approaching 0 such that
Zk — Xy

lim =w (23)

k— 00 tx

and
ci(zk) = t,iVei(xe)'w  Vie A(xy) and k> 1. (28)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Let w e C(x«, Ax) be given. Since the LICQ condition holds at x, and

C(Xx, Ax) S F(x4), there exist a feasible sequence {z,} approaching

X, and a sequence {tx} of positive scalars approaching 0 such that

lim 2% =y (23)

k— 00 tx

and

ci(z) = V() w  Vie A(x) and k» 1. (28)
The fact that the multiplier corresponding to inactive constraint is
zero implies that for k sufficiently large,

L(zg, Ay) = F(2x) — Z Aci(zy) = f(zk) — Z Aci(zk)

i€e€EUT i€ A(xx)

= f(zx) — t Z AFV G (x) w. o
i€ A(xx)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).

Since w e C(xy, A ), using (43) (which shows that A*V¢;(x,) w = 0
for all ie £ U Z) we obtain that
E(zk, /\*) = f(Zk) 5
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Since w e C(xy, A ), using (43) (which shows that A*V¢;(x,) w = 0
for all ie £ U Z) we obtain that
L(zky Ax) = F(2k).
On the other hand, using Taylor's Theorem expression and continuity
of the Hessians V2f and V2¢;, i€ £ U Z, we obtain
L(z1 M) = L(X, M) F (26 — xi) T Ve £(X, M) (46)

1
+ §(zk—x*)TV L(Xey M) (2 — X ) + o(sz—x*Hz).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Since w e C(xy, A ), using (43) (which shows that A*V¢;(x,) w = 0
for all ie £ U Z) we obtain that

L(zky Ax) = F(2k).
On the other hand, using Taylor's Theorem expression and continuity
of the Hessians V2f and V2¢;, i€ £ U Z, we obtain

L(Zis M) = L(Xes M)+ (2 — X ) T Vi £ (X, Ase) (46)
2 (2= X TV AL Gt M) (26— ) + 02— s ).

By the complementarity conditions (32e), £(x., Ax) = f(x;). From
(32a), Vi L(xx, Ax) = 0 so the second term on the right-hand side

is zero. Also note that the limit (23) can be rewritten as

Z — Xy = tpw + O(tk). o
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Therefore,
F(26) = F(3) + 3 EPWE VL xw M)W+ o(87).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Therefore,
F(z) = Flx) + %tEWTV)?X[,(X*, AW+ ot2).
If wIV2 L(xs, \s)w < 0, then f(zi) < f(xs) for k » 1, contradict-
ing the fact that x, is a local solution. Hence, the condition
wiV2 L(xe, A )w =0 for all we C(xy, Ay) (45)

must hold, as claimed. o

v
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Therefore,
F(26) = F(3) + 3 EPWE VL xw M)W+ o(87).
If wIV2 L(xs, \s)w < 0, then f(zi) < f(xs) for k » 1, contradict-
ing the fact that x, is a local solution. Hence, the condition
wiV2 L(xe, A )w =0 for all we C(xy, Ay) (45)

must hold, as claimed. o

v

T RIRY ATt ehs fp A E g A k2R ] s e &
(== A S SR -y s S O
O 7 Z & & & the constraint qualification, 12 %
Q 7 E3¢ (45) A Bk B 50
wWEV2 L(x, A )w > 0 for all we C(xy, As)\{0} (48)
Bk o
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Theorem (Second-Order Sufficient Conditions)
Suppose that for some feasible point x, € R" there is a Lagrange
multiplier vector Ay such that the KKT conditions

VL (X, M) = 0, (32a)
Gi(xx) =0 forallie€&, (32b)

Ci(x) =0 forallieZ, (32¢)
Af=0 forallieZ, (32d)

Aici(xe) =0 forallie £ UT. (32e)

are satisfied. Suppose also that

WEV2 L(x, A)w >0 for all we C(x, A\)\{0}.  (48)
Then x is a strict local solution for
ci(x)=0,ieé,
ci(x) >0,ieT.

min f(x) subject to {

xeR"
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Before proceeding, note that the set C = {d € C(Xu, Ax) | Id| = 1}
is a compact subset of C(xx, Ax), so by (48),

min d* V2 L(x, \x)d = 0 > 0.
deC

Since C(xx, \+) is a cone, we have that w/|w| € C if and only if
w € C(X«, Ax)\{0}. Therefore, condition (48) implies that

wWEV2 L (X, A )w = o w|?  for all we C(xx, As), (49)

where o > 0 is defined above.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Before proceeding, note that the set C = {d € C(Xu, Ax) | Id| = 1}
is a compact subset of C(xx, Ax), so by (48),

min d* V2 L(x, \x)d = 0 > 0.
deC

Since C(xx, \+) is a cone, we have that w/|w| € C if and only if
w € C(X«, Ax)\{0}. Therefore, condition (48) implies that

wWEV2 L (X, A )w = o w|?  for all we C(xx, As), (49)

where o > 0 is defined above. Moreover, by Taylor's Theorem the
KKT condition (32a,e) shows that

L(x,As) = F(x) + %(X* X )TV 2 L (X, A ) (X — Xy

+o(flx = x[%). 5
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Now we prove the result by showing that every feasible sequence
{z} approaching x, satisfies

f(zi) = Fx) + %sz — x> Vk>»1.
Suppose the contrary that there is a feasible sequence {z,} approach-
ing x, with

F(zi) < Fx) + %sz —xe|? Vk>»1. (51)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Now we prove the result by showing that every feasible sequence
{z} approaching x, satisfies

f(zk) = f(x) + %HZk — x| Vk»1.

Suppose the contrary that there is a feasible sequence {z,} approach-
ing x, with

F(zi) < Fx) + %sz —xe|? Vk>»1. (51)

By taking a subsequence if necessary, we can identify a limiting

direction d such that
q Zj — Xy
lim =d.

k—oo |Zk — X« || -
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Now we prove the result by showing that every feasible sequence
{z} approaching x, satisfies

f(zi) = Fx) + %sz — x> Vk>»1.
Suppose the contrary that there is a feasible sequence {z,} approach-
ing x, with

F(zi) < Fx) + %sz —xe|? Vk>»1. (51)
By taking a subsequence if necessary, we can identify a limiting
direction d such that

Zk — Xy = tpd + O(tk), ty = HZk*X*H.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).

Now we prove the result by showing that every feasible sequence

{z} approaching x, satisfies

f(zi) = Fx) + %sz — x> Vk>»1.
Suppose the contrary that there is a feasible sequence {z,} approach-
ing x, with

F(zi) < Fx) + %sz —xe|? Vk>»1. (51)
By taking a subsequence if necessary, we can identify a limiting
direction d such that

Zx — xe = ted+ 0(tk),  tk = |2k — x| -
We then have d € Tq(xy), and the fact that To(xx) S F(xx) shows
that d e F(xy). o
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).

Now we prove the result by showing that every feasible sequence

{z} approaching x, satisfies

f(zi) = Fx) + %sz — x> Vk>»1.
Suppose the contrary that there is a feasible sequence {z,} approach-
ing x, with

F(zi) < Fx) + %sz —xe|? Vk>»1. (51)
By taking a subsequence if necessary, we can identify a limiting
direction d such that

Zx — xe = ted+ 0(tk),  tk = |2k — x| -
We then have d € Tq(xy), and the fact that To(xx) S F(xx) shows
that d € F(xx). Next we show that d e C(x, \«). o
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
If d were not in C(x, A« ), we could identify some index j € A(xx) NZ
such that the strict positivity condition

ANV e (x) d> 0 (52)
is satisfied, while for the remaining indices i € A(xx), we have

AV ¢ (x) d = 0.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).

If d were not in C(x, A« ), we could identify some index j € A(xx) NZ

such that the strict positivity condition
ANV (x) d> 0 (52)
is satisfied, while for the remaining indices i € A(xy), we have
AV ¢ (x) d = 0.
From Taylor's Theorem, for this particular value of j we have that
Ar6i(zi) = AFi(x) + ArVe06) (2 — %) + o1z — x«)
= ARV G () d + o(t).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).

If d were not in C(x, A« ), we could identify some index j € A(xx) NZ
such that the strict positivity condition

ANV (x) d> 0 (52)
is satisfied, while for the remaining indices i € A(xy), we have
AV ¢ (x) d = 0.
From Taylor's Theorem, for this particular value of j we have that
N6 (2i) = Aei(x) + NV G ()T (2 — xe) + 0]z — xal)
= tiAF V¢ (%) d+ o(t).
Recall the Lagrange function

,C(X, )\> = f(X) — Z )\,'C,'(X). O

ieEVT
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Since {z} is feasible, the KKT condition (32d) implies that

,C(Zk, )\* = f Zk Z )\*C, Zk ( )— /\;3‘cj(zk)

ieEVT

< f(zi) — 6N VG (%) d + o(t) -

On the other hand, (50) shows that

L(zi, Ax) = F(x) + frk 2dV V2 L (%, A )d + 0(t]);

(53)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Since {z} is feasible, the KKT condition (32d) implies that

,C(Zk, )\* = f Zk Z )\*C, Zk ( )— /\;3‘cj(zk)

ieEVT

< f(zi) — 6N VG (%) d + o(t) -

On the other hand, (50) shows that
L(zi, Ax) = F(x) + ftk e d" Ve L%, Ai)d + o(t);
thus, combining the equality above and (53), we conclude that
F(zk) = f(xe) + AN Ve () d + o(t)
which, because of (52), is a contradiction to

Fzk) < F(x) + %sz —x|? Vk>»1.

(53)
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Therefore, d € C(x4, A«), and hence (49) shows that

dTV2 L(x, A\ )d = o||d|?.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Therefore, d € C(x4, A«), and hence (49) shows that

dTV2 L(xe, A )d = a|d]|.
By the Taylor series estimate (50), we obtain that
f(zk) = — D Arci(zi) = L(z1 M)

IGSUI

= f(X*) *tk dTV2 [,(X*, )\*)d+ O(tZ)
> f(x) + §|\Zk — % [” + o[z — x[?) -

This inequality again yields the contradiction to (51).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Proof (cont'd).
Therefore, d € C(x4, A«), and hence (49) shows that

dTV2 L(xe, A )d = a|d]|.
By the Taylor series estimate (50), we obtain that
f(zk) = — D Arci(zi) = L(z1 M)

IGSUI
= f(X*) *tk dTV2 [,(X*, )\*)d+ O(tZ)
> f(x) + gl\zk—X*HQ +o([lzk — ).

This inequality again yields the contradiction to (51).

every feasible sequence {zc} approaching x, must satisfy
f(zi) = f(x:) + %sz — x> Vk»1,

SO Xy iIs a strict local solution.

Therefore,
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

We now return to the 2nd example in Section 12.1 to check the
second-order conditions for problem

min(x; +x) st. 2—xZ—x3>0. (12)
In this problem we have the Lagrange function

L(xA) = (x1+x2) — M (2 — x¢ — x3),
and £ = &, T = {1}. The KKT conditions (32) are satisfied by
xi = (—1,—1)T, with A¥ = 1/2. The Lagrangian Hessian at x; is

2 20F 0 1 0
VoL (e Ax) = [ 0 o ] - {o 1 ]
which is positive definite, so it certainly satisfies the conditions of

the theorem above. We conclude that x, = (—1,—1)T is a strict

local solution for (12).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

For a more complex example, consider the problem
min —0.1(x; —4)* + x3 st. x2+xi —1>0, (54)
in which we seek to minimize a non-convex function over the ex-

terior of the unit circle. Obviously, the objective function is not
bounded below on the feasible region, since we can take the feasible

[10] [20] {30} {40} .....

0 b O ) 0 ) O )

and note that f(x) approaches —oo along this sequence. Therefore,
no global solution exists, but it may still be possible to identify a
strict local solution on the boundary of the constraint. We search for

such a solution by using the KKT conditions (32) and the second-
order conditions of in the previous theorem.

sequence
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Example (cont'd)

By defining the Lagrangian for (54) in the usual way, it is easy to

verify that
ZEPYE s v el R G5
—0.2 - 2A 0
V2.L(x,\) = [ 0 e } (55b)

The point x, = (1,0)" satisfies the KKT conditions with \¥ = 0.3
and the active set A(xx) = {1}. To check that the second-order
sufficient conditions are satisfied at this point, we note that

Veula) = { 2 }

so that the critical cone is simply
C(X*, A*) = {(0, WQ)T ’ Wy € R}
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

Example (cont'd)

Now, by substituting x, and A, into (55b), we have for any w €
C(xx, Ax) with w # 0 that wy # 0 and thus
—04 O 0
wIV2 L(xs, A )W = [ 0 wy ] [ 0 14 ] [ W ]
= 1l.4wg > 0.

Hence, the second-order sufficient conditions are satisfied, and we
conclude from the previous theorem that (1,0)T is a strict local
solution for (54).
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

e Second-order conditions and projected Hessians

SRR RR R AERT 6 - fE

wWV2 L(xe, Ae)w = 0 for all we C(xx, \x) (45)

wWEV2 L(xe, A )w > 0 for all we C(xy, M)\ {0} (48)
Wiess e { 3 3 %FDOANMAE o 12T AP Ak B KKT
EiE(32) ek F A R E BRI A (2 ErE- ) iR o
LB fAERT o D FFiE i enA) 0¥ & * Lagrangian £ Hessian &
V2 L(Xe, Mg ) HHE Clxe, A\s) A0 B 03 3 B chm (5308 (two-
sided projection) ki& {7 E 7 o

Ching-hsiao Arthur Cheng it .5 % Bk it 22t - MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

ifieé&,
if ie A(x¢) nZ and A\¥ >0,
if ie A(x,) nZ and \¥ =0.
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

ARAFIEREKKT 52 (32) ehk 3 A\, B EEBEIHE (T
$30E B T A(x) ¢ 9 index i 585 AF > 0) o A
WE C(Xe, A\x) B 2 FEE

Vei(x) w=0 ifieé&,

Vei(x) w=0 ifieA(xs)nZand \* >0,
T - .

AT = F i
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

AR TIE R L KKT 2 (32) ehk 3+ A, % BRI A1 (7
W E B E TN A) ® dindex i 85 AF > 0) B2 25
WE C(Xe, A\x) B 2 FEE
Vei(x) w=0 ifieé&,
Vei(x) w=0 ifieA(xs)nZand \* >0,
T *

A3 B £3 i

Fpt oo F % EKKT i85  (32) ehak 3\, b KBt I 47 11pF
Cxas Ax) = Null([Vei(x) ]y ) = Null(A(xs))

T - B
2 Alx) = [Vei(x) ]ieA(X) v (27) NP AT EE o H e EH
BB AEITT 0 C(xe, Ax) A_t Xy /il active constraint gradient
A5 & HE R 50 null space °
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

g1 (29) #gie > o

the null space of A(x) @ the range of A(x;)" = R",
AT EE- BELEF AT nx (n—rank(A(xy))) B Z> H
T E span B C(xe, Ag) 5

C(Xs, Ax) = {Zu‘ ue R”fra“k(A(X*))}.

Ching-hsiao Arthur Cheng it .5 % Bk it 22t - MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
22 (29) #g i > | A

the null space of A(x,) @ the range of A(x;)" = R”

AipET T H- BE G AEFATD nx (n—rank(A(xy))) L Z> H
T E span B C(xe, Ag) 5

Clxe \s) = {Zu

ue Rnfrank(A(x*)) }

B dedf 0 KKT B8 (32) 80 A, % EBRAE T AT I
b g ik - B R F grE - B (BArE A x. s B LICQ i i
FE) o Bl A(xy) 7o fkE

C(Xxy Ax) = {Zu‘ ue R"_M(X*)l},
Fl & gt R T A x, active constraint 1B #ic |A(x,)| 16 5 A(x,k)T

77 range SR o

Ching-hsiao Arthur Cheng it .5 % Bk it 22kt - MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Flo o E s BOKKT 8 12 (32) ehk 3 A\, i BRI A (2
Brg- ) PFo - ppe gt
WIV2 L(xe, A )w = 0 for all we C(xx, \s) (45)

v E AT GE A

U ZTV2 L(xe, M) Zu =0V ue RTank(AGs)

EELHEE R TZIVEL(G,A)Z 5 20 e -
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
Flo o E s BOKKT 8 12 (32) ehk 3 A\, i BRI A (2
Hrib— ) PFo D PP R GEE
WIV2 L(xe, A )w = 0 for all we C(xx, \s) (45)

v E AT GE A

U ZTV2 L(xe, M) Zu =0V ue RTank(AGs)

R EE R TZTVEL (6 A)Z 5 21 R o RS

SPEAL
wWEV2 L(xe, A)w >0 for all we C(xy, \s)\{0}  (48)

T E R S T ZOV2EL(x, M) Z B RAEE

Ching-hsiao Arthur Cheng #%5 % Bk it 22kt - MA5038-*



Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions
BT RAPRES 0 ZV LT EREFHET > FIL L R (2

EE M) FEFRELT RER
E

P E e Z - 487 2 % active constraint graident 4B i *

QR # 3 Bt iten- Hf E hmd (I A s LER
FAMEE SrE- i) AP Alx) TEE (27) Y g
BHEE QR A 24T 5

M&F:Q{g]z[Q [

He RE-Br+=43%>QE nxn i

QlRa

| S

/Ja
ﬁ‘n“
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Chapter 12. Theory of Constrained Optimization

§12.5 Second-Order Conditions

BT hkANPRET  ZF UGBy EE T r ey (2
L) EREFELT AR

B

P E e Z - 487 2 % active constraint graident 4B i *

QR A fF o fut it eh— fhdk i B i (TR N % LR
FAMEE SrE- i) AP Alx) TEE (27) Y g
BHEE QR A fEET S

Amsz{g]Z[Q @}[5]2@&

HY RE-Br= &3, QH nxnehit 2EL 40k R
AV e APF %Y Z=Q 4wk R :‘isingular i (£
7+ active constraint graident /4 4pi% ) » P & QR iEA2 P @& *
column pivoting ikt fc3d s A2/ ¥ 00 K jlw Zo
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

A & ¢ AP E AT K constraint qualifications > T & §12.2 {v
§12.4 st nik i > iRET FF Q R T RO AR
Xe T Q ek A AR o
% #7F active constraint AR OFRT o WG A g e R ILE
b,‘ eR # ¥ T

ci(x) = aj x+ b; (56)
FERT MM T T e E Fx) BARAIHTIEY TR §

Foom o ¥ IEMEIT 0 A HEP LT 7 Lemma o

Suppose that at some x, € Q, all active constraints ¢;(-), i € A(xx),

are linear functions. Then F(xy) = Ta(X).
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

A & ¢ AP E AT K constraint qualifications > T & §12.2 {v
§12.4 st nik i > iRET FF Q R T RO AR
Xe T Q ek A AR o
% #7F active constraint AR OFRT o WG A g e R ILE
b,‘ eR # ¥ T

ci(x) = aj x+ b; (56)
FERT MM T T e E Fx) BARAIHTIEY TR §

Foom o ¥ IEMEIT 0 A HEP LT 7 Lemma o

Suppose that at some x, € Q, all active constraints ¢;(-), i € A(xx),

are linear functions. Then F(xy) = Ta(X).

2

AT Flx) = Talx) T KKT it &2 aigit (- )
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

Proof of Lemma (in the previous slide).

It suffices to show that F(x,) S Ta(xx).
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

Proof of Lemma (in the previous slide).
It suffices to show that F(x,) S Ta(xx). Let we F(xy). By the def-
inition of feasible direction set and the form (56) of the constraints,

F(x) 4 aid=0 forall j€ &,
Xg) = :
* ald>0forall ie A(x,) nZ
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

Proof of Lemma (in the previous slide).
It suffices to show that F(x,) S Ta(xx). Let we F(xy). By the def-

inition of feasible direction set and the form (56) of the constraints,
aid=0 forall j€ &,

ald>0forall ie A(x,) nZ
First, note that there is a positive scalar t such that the inactive

constraint remain inactive at x, + tw, for all te [0, t]; that is,
Ci(xe +tw) >0 forall ie Z\ A(x,) and all t€|0,¢t].
Now define the sequence zx by
zZk =X« + (t/K)w, k=1,2,---.

By the choice of t, we find that z. is feasible with respect to the

inactive inequality constraints i€ Z\ A(xy,). o
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§12.6 Other Constraint Qualifications

Proof (cont'd).
Moreover, since aiw = 0 for all i€ Z n A(x), we find that for all
i€eZ N A(xy),

ci(zk) = ci(z) — ¢i(x) = af (2 — x) = (E/k)afw > 0,
so that z is also feasible with respect to the active inequality con-
straints ¢;, i € Z n A(xy).
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

Proof (cont'd).

Moreover, since aiw = 0 for all i€ Z n A(x), we find that for all
i€eZ N A(xy),

ci(zk) = ci(z) — ¢i(x) = af (2 — x) = (E/k)afw > 0,
so that z is also feasible with respect to the active inequality con-
straints ¢;, i € Z n A(x,). Finally, for i € £, by the fact that x, is
feasible and we F(x,), we have a,-TW: 0 so that
alzi+ b= al (x« + (t/K)w) + bi = a} x4 + b =0;

thus zy is feasible with respect to the equality constraints ¢;, i€ £.

Hence, z is feasible for each k= 1,2, ---. In addition, we have that
2k —Xe _ (f_/k)w “w,
t/k t/k
so that w is the limiting direction of {z}. Hence, we Tq(xx). ©

= = = =
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

2

B2 2% T 9 4 active constraint WA, - FEEY - B
constraint qualification » 2 & % % +* LICQ £ it § 53+ % { %
TR BT - B RARS RS T - B ARE R

Let C1(X1,X2) =x1+x9—1 and CQ(Xl,XQ) = 2x1 + 2x9 — 2. Then
at x= (1,0)%, A(x) = {1,2} but clearly

[Veix)]jeap = [Var(x) i Ver(x) ]

does not has full rank; thus LICQ does not hold at x.
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

¥ - B3 * e LICQ 42 B 4 Mangasarian-Fromovitz constraint
qualification (MFCQ) °

Definition (MFCQ)

We say that the Mangasarian-Fromovitz constraint qualification
(MFCQ) holds at x, if there exists a vector w € R” such that

Veilx) w>0 forall ie A(xy) nZ,
Vei(xe) w=0 forallieé&,

and the set of equality constraint gradients {Vc;(x)|i € £} is

linearly independent.
”
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

¥ - B3 * e LICQ 42 B 4 Mangasarian-Fromovitz constraint
qualification (MFCQ) °

Definition (MFCQ)

We say that the Mangasarian-Fromovitz constraint qualification
(MFCQ) holds at x, if there exists a vector w € R” such that

Vei(x) w>0 forallie A(xy) nZ,
Vei(xe) w=0 forallieé&,

and the set of equality constraint gradients {Vc,-(x*) |i € 8} is
linearly independent.

Z &3 § 2% active inequality constraint 7 “Bcft” 7 Z 3¢ o
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Remark: (fiz* §12.9 éh¥tin @) ¥ Uz

e we R % &
Vei(x) w> 0 forall ie A(xs) N Z,
Vei(xs) w=0forall ie&.

%

5B RAL

2 )\,‘VC,‘(X*) = 0,
max >, Aj subject to i€ A(xx)
ARIMACH je A (x4) nT Ai=0, i€ A(x) nZ,

B S F -
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Remark: (&% §12.9 cn¥f %324 ) ¥ UFEP

e we R % &
Vei(x) w> 0 forall ie A(xs) N Z,
Vei(xs) w=0forall ie&.

%

Z LR R 4L
2 )\,‘VC,‘(X*) = 0,
max >, Aj subject to i€ A(xx)
AeRMCH! je A(xy) T Ai=0, ie Alxy) T,

B S F -

AR P EL VR REORIE L PR F
y‘y> O}m{[Vc,(x*) W’WERW}:{O}.

i€ A(xgx)nT
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

Bt » {Vei(x)|ie &) Eaiiips it is > AP E s

Let xe Q. Then MFCQ holds at x if and only if the system (for \)
Z )\;VC,' (X) = 0,
eevt )\,'C,'(X) = 0, i€ I,

Ai=0, iel,

only has zero solution.
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

Bt » {Vei(x)|ie &) Eaiiips it is > AP E s

Let xe Q. Then MFCQ holds at x if and only if the system (for \)

Z )\;VC,'(X) :07
eevt )\,'C,'(X) = 0, i€ I,
ANi=0, iel,

only has zero solution.

o MFCQ #5227 LICQ 182 2 2 B %FHw £ B "SR
‘f“" W M pF > A active constraint gradients 0 “AR 4 L ¢ 7
ENUF T TR F LS o
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications
Bt » {Vei(x)|ie &) Eaiiips it is > AP E s

Let xe Q. Then MFCQ holds at x if and only if the system (for \)
Z )\;VC,'(X) = 0,
eevt )\,'C,'(X) = 0, i€ I,
A= 0, i€ I,

only has zero solution.

o MFCQ #5227 LICQ 182 2 2 B %FHw £ B "SR
m&v: M"BF > %4 active constraint gradients 7 ‘A £ ¢ 7
FNUFTH B REG JF 2L REHAL T E NP EEd
it I 23 e MFCQ % local solution x,. i &0 B E ¥/
W E_KKT 52 N\, (B 5 feis) gwi— 4o
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

MFCQ &+ LICQ 35 ehix i - 4% LICQ A& & - P active
constraint gradient 7 &A% FJUt 0T R BT K hE L kA
Veilxe) ' w=1 forallie A(xs) nZ,
Vei(xs) w=0 forallieé&,

f&@ we Fgt o AR T UGEHE Y w b I MFCQ A ¢ e

o

\;ﬂ\g ~=h
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

MFCQ &+ LICQ g 33 i ©* o 4o % LICQ A% & > R active
constraint gradient 7 &A% FJUt 0T R BT K hE L kA
Veilxe) ' w=1 forallie A(xs) nZ,
Vei(xs) w=0 forallieé&,
FfE we Flgt o AT OLEE L wibEEMFCQ A ¢ e
¥ - 2a 0 FoudE s i s L MRCQ e 2 3% & LICQ 7

=y

C1(X1,X2) =2— (Xl — 1)2 — (X2 — 1)2,

C2(X1,X2) =2— (Xl = 1)2 = (X2 4F 1)2,

Cg(Xl,Xg) = X1
be the constraint functions for inequality constraints. Then MFCQ
holds at x = (0,0)" but LICQ does not hold at x.

= = = =
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

TR & MFCQ %3 7 LICQ 16 ¢h- FA 2 & iE i (7 KKT
) 2% (AFAH) MFCQ A2 7 - BRFHEF T
¥ §ovis L KKT i 2 (32) ¢ Lagrange % £ A\ ik & 0
%‘gy,}_ ( LICQ enfrm™ » 2B R &d - Bre— e £ )\, &
SRR hpdgR)e
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Chapter 12. Theory of Constrained Optimization

§12.6 Other Constraint Qualifications

FUEP & MFCQ F4# 7 LICQ {8 eh— FF & if 2 (% KKT
Ei) &% (AFAH) MFCQ 22 7 - f[%%u%ﬁmltt%*’ R
3 %t is & KKT g% (32) ¢ Lagrange &k + % & A\, 0 f &
e (A LCQ diFmRT » R éd - Bri- e g A\, !
Fo Fpapdg R

__,\
i

~

Z & 73 % #9E_> constraint qualifications F_i# 17 40|+ ig 1T & 43 e
DA TEERZEL BIEE o Bdr T R xo = X12 fe x2<x12 T_
KPR L1 E T 78 x, = (0,0)T o AP435 hiE @ constraint

qualifications ?KZ W B AT

F(x) = {(w1,0)" |wy € R}

AR F P X T ET 7R R Ak
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint

Bis o APRI- BE S - A BRES > v BT RT

E QeanSmagk > a2 Bt A S dican it ey i o KSR
&R kg o PR AL (1) 7 MR G

min f(x) subject to xe (2, (57)
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint
Bt A PRTI- BEA - FRBRES v BB LRT
B QS mAk o B A Bt AT Sl B i o S P

&R kg o PR AL (1) 7 MR G

min f(x) subject to xe (2, (57)

HY QEF 8 o

Hh o AP E R AT TR x kR £ Q 99 normal cone o
F

Definition
The normal cone to the set () at a point x € (Q is defined as

Nq(x) = {v ‘ viw < 0 for all we TQ(X)},

where Tq(x) is the tangent cone to the set Q2 at x. Each vector

ve Nq(x) is said to be a normal vector.
v

Bk it 22kt - MA5038-*
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint
$H0I0RE (57) e A R G2 [ H A o e

Suppose that x, is a local minimizer of f in Q2. Then
—Vf(xx) € No(xs).
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint
R AL (57) eh- e e RGEE LY [ H A ot e

Suppose that x, is a local minimizer of f in Q2. Then
—Vf(xx) € No(xs).

Let d € To(xs) be given, there exist a feasible sequence {z} and a
sequence of positive scalars {tx} such that
zx = x4 + tgd+ o(ty) VkeN.
Since x; is a local solution and fis continuously differentiable, by
Taylor's Theorem we have
0 < f(zi) — F(xe) = 5V F () d 4 o(t) .

By dividing by tx and passing to the limit as kK — o0, we find that
Vf(x) d > 0. o
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint

Proof (cont'd).

Therefore,
—VFf(x) d<0 VdeTo(x).

We then conclude from the definition of the normal cone that
—Vf(xx) € Na(xx). o
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint

Proof (cont'd).

Therefore,

—Vi(x)'d<0 VdeTo(xs).
We then conclude from the definition of the normal cone that
—Vf(xx) € Na(xx). o

d B (1) R 3Rfaeris Len- fE 2 & it (KKT ig i) A ipeg
Bt e a2 77 No(xe) £ active constraint gradients =7 conic

combination

N:{ 3 AVei(x)

i€ A(xx)

Aitieape) SR, Ai > 0if i€ Alx) N I}

LR GARIM A F LCQHEs 2, a gk (12
i)
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint

Suppose that the LICQ holds at x,. Then the normal cone Ngq(xs)
is simply —N, where N is the set defined by

N—{ DT AVGi(xs)

i€ A(xx)

{Aitieat) SR A 20 ifie A(x) N I}.

V.
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint

Suppose that the LICQ holds at x,. Then the normal cone Ngq(xs)
is simply —N, where N is the set defined by

N—{ DT AVGi(xs)

i€ A(xx)

{Aitieat) SR A 20 ifie A(x) N I}.

.

By Farkas' Lemma, we have that
geN = gld=0 forall de F(x).
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint

Suppose that the LICQ holds at x,. Then the normal cone Ngq(xs)
is simply —N, where N is the set defined by

N—{ DT AVGi(xs)

{Aitieat) SR A 20 ifie A(x) N I}.
i€ A(xx)

.

By Farkas' Lemma, we have that

geN = gld=0 forall de F(x).
Since LICQ holds at xy, F(xs) = Tq(xx); thus it follows by switching
the sign of this expression that

ge—N < gld<0 forall deTo(x:).
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Chapter 12. Theory of Constrained Optimization

§12.7 A Geometric Viewpoint

Suppose that the LICQ holds at x,. Then the normal cone Ngq(xs)
is simply —N, where N is the set defined by

N—{ DT AVGi(xs)

{Aitieat) SR A 20 ifie A(x) N I}.
i€ A(xx)

.

By Farkas' Lemma, we have that
geN = gld=0 forall de F(x).
Since LICQ holds at xy, F(xs) = Tq(xx); thus it follows by switching
the sign of this expression that
ge—N < gld<0 forall deTo(x:).

We then conclude from the definition of the normal cone that

Nq(xx) = —N, as claimed. o
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity

fd BT P o Lagrange k+ £ Eﬁ,é‘hi%: o fip— &P
AP BB Lagrange 3 AF p AP dE T - BT A
BPARE f(x) $30 U] ¢ i AR L o AR NS
dpm 1 fArie AR U g T Tdad & TR i3 e
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity

B BT > Lagrange k+ £ 3 E ﬁ,m,&;& hiz- &Y o
AP BB Lagrange 3 AF p AP dE T - BT A
P AR F(x) H30UF] ¢ i g L o e S EE N
dpm 1 fArie AR U g T Tdad & TR i3 e

%A PE R - B inactive 4] i ¢ A(xe) BFooci(xe) > 00 fE
X o BelE fxe) AP 3 2B F A7 AR e ok A
P ¢ 3BT g E 0 v R € E inactive 90 x, 17 2R
Bl R RE el FRfR o d 3N KKT %12 (32e) » # AF =0
Lagrange 3k =+ ®rrp 2 P34 i 2 £ & -
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity

BT Ok EE LA Eactive tho TR ALK A P ] eh L £
A ER B R e B og(x) = —¢|| V(x| & * &
G(x) =00 B & EH9-) » I EH (8 nfE xe(e) PAREF

fe i1 active constraint set (& T 2L Z_active s (& ik R A
active e17) > ¥ ¥ lagrange k+ X I 3 & (B iEET

B Pt T Ao FEIE 2 dl et A Ak { Bfe e RA) o
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity

£ KB L] 7 Eactive o LA A P A ot £ if
BEMER &R e B oG(x) = —¢|| V(x| @ * &
Ci(x) =0° BK e &43-] > MIWHFH DR x(e) MARE G 4p
fe i1 active constraint set (& T 2L Z_active s (& ik R A
active ¢11) » ¥ ¥ Lagrange 3+ X Flerdgd 2 & (B IEET
W BRI A oo FF iR Rt a4k { Bt TA) o AN

iP5 IR
—e|Vai (x| = ci(x(e)) = ci(x) & (xule) = xa) Vei(x4),
2 gerg 3 B2 je Ala) AP}

0= ¢j(x«(2)) — ¢j(x) ~ (xx(€) — x:)T Vi (xa) -
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity

e pF o 7o g es KKT i i
Vi L (X, As) = 0. (32a)
K53t f(xe(e)) enid o d Taylor 23 & F i ik i 54 i
F(xs(e)) — Fxe) & (x:(€) = %) V(%)
> AF(xa(e) — x:) 'V ¢ (x4)

JEA(x%)
~ —el V(I

i‘é«Fﬁ“f € fsP-cARBITT 0 &' s APFIRIZE & x(c) i &

_fOal(e) = =AF[Valx) - (58)
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity

5]

R RAATE AT R ek M| Ve xR AR
EHE B AR S Ak BB R C) 0 Rl

€ 55 o dodk ¥t F 4 active constraint A¥ (54F £ F 5 78
B RS b b8 enpe] %ﬁvi§JZ€i+&l§B*$E)§_iﬁz
Fih-ENT AR LR ERHmERNPLUT
T

Definition
Let x, be a solution of the problem (1), and suppose that the KKT
conditions (32) are satisfied. We say that an inequality constraint

ci is strongly active or binding if i € A(x,) and A¥ > 0 for some
Lagrange multiplier A\, satisfying (32). We say that ¢; is weakly
active if i€ A(x) and A\¥ = 0 for all A, satisfying (32).
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Chapter 12. Theory of Constrained Optimization

§12.8 Lagrange Multipliers and Sensitivity

FEAZAE S PHEORE RSB E B DR o B
4o AP U i - B active constraint ¢; B 4F 5 10¢ k¥
RALehA i FTRAEF R A2 Geh (o v 2 dpk v 7 4
fetp e enfd ) > w2 g HRDBFERIF AT B NF/10 HrB- o
Ra ood 3 |[Ve(x)| 4 10|Vei(xe)| 7B~ > ke A Vei(x)|
A g ¥ - 2 G o kAP RS TS 107 78
- KKT i 2 (32) @ ihfk 3 10AT 407 &A% 10A] 7B~k o F]pt o
1:‘_( 8) " ’E‘IF’E Jr*“#ﬁf"mfmﬂﬂér*f‘ﬁ‘f’ 10 & » =
& F A pardp

N

2
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Chapter 12. Theory of Constrained Optimization

§12.9 Duality
A G P > AP BN R L] B 2 (duality theory)
- & o BRI KPR - BERFEE 0 @
#% 17 % & 3% 7] ¢ Augmented Lagrangian Method ° ¥t % 32 % &
REHEATAR T 2L 2RE] 0 5 convex non-smooth optimization
w;@ﬁ&i"ﬁﬁﬁjiﬁﬁ%i°ﬂ%@ﬁ%%ﬁ%ﬁ@

,j_xjy s

PR OFEINER BB 13 %

Bk it 22t - MA5038-*

Ching-hsiao Arthur Cheng



Chapter 12. Theory of Constrained Optimization

§12.9 Duality
hA g o A g g b R gt 1B 325 (duality theory)
- W& o HRIERAR Y REF R B - B &R S
% 17 F & 3 7|+ Augmented Lagrangian Method ° %t 32 % e
REHEATAR T 2L 2RE] 0 5 convex non-smooth optimization
ﬁi%ﬁ&&w‘ﬁﬁ%ﬂéﬁﬁ%ioﬂ%ﬁﬁ%ﬂﬁ%ﬁ&
AR OF B IMER S ERNGFEYTH 13§ -

=N

oo

i 32 2 7 A P Ao JUR & B T R A b d oy 2
- BFEARNE 2 BFAREEES B B 4L (dual problem)
BRhAOBRGFEFIE (278l AEAERT 5 FRES
primal FFAL) 3 Fik X chfp Mdd o AR EFIRT o $ig AT AH
B RAGRPREL F A EA AHBFIRT > HB T
FIEES B @R ALY PRSP R
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Chapter 12. Theory of Constrained Optimization

§12.9 Duality

do b siE o B RS AT KRR primal Fv“%é‘ﬁa‘ i
A R E A S RN E TR AL (1) dE kR 4
Q 3 F:UP] (LA MEEU] - B case 7 14K
ERUFEHES QPRI ENU) T E= >
Q PHSlicf ol fen 7 %5842 | ddk —¢ &L
#c > 33, 1 convex optimization °
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Chapter 12. Theory of Constrained Optimization

§12.9 Duality

do b riE o HHE RALS S AR KRR primal BALGE 2 o
RE YRR A S BT R R (1) sk 20
O i} R 1UH (H L7 SR U - 2 case 7 U #
ERAGEHS QPRI ENY) T E=F 0 F
@ Pt f e T f i, 3 % R TR U Sl ¢ L
#c > 33, 1 convex optimization °
L s ,Fa.g*—‘f"‘ mBE2ENL e TH- B Eddk
c(x) = ( .. ,Cm(x))T s NPT UL R S

mIiRn f(x) subjectto ¢(x) =0 (59)
xeR"

it R LR R LT8R 2 Lagrangian (10) @ H 4 7 3
L(x,\) = f(x) — )\Tc(x),
He¢ NeR™ & Lagrange k+ = £ o
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Chapter 12. Theory of Constrained Optimization
Convexity

BEFEEFHHm LR 0 AP AEH - B S E G .
”'Ff 3N ﬂ“i‘}”féﬁ:nl% & CRLIS sk W

Definition

A subset C of a vector space is said to be convex if
(1-t)x+tye C Vxye C,te|0,1].

\,

Definition

Let C be a convex set, and f: C — R be a function.
@ fis said to be convex if for all x,ye C and te [0, 1],

f(I-t)x+ty) < (1 —t)f(x)+ tf(y).
@ fis said to be strictly convex if for all distinct x,y € C and
te (0,1),

F((1—t)x+ ty) < (1 — t)f(x) + tf(y).

BTk I G101 T feendy Sl ® i 2

\
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Chapter 12. Theory of Constrained Optimization

Convexity

Let C be a convex set, and f: C — R be a differentiable function.
O fis convex if and only if
fly) = f(x) + V) (y—x) VxyeC.
@ f is strictly convex if and only if
f(y) > F(x) + VA (y=x) YxyeCx#y.
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Chapter 12. Theory of Constrained Optimization

Convexity

Let C be a convex set, and f: C — R be a differentiable function.
O fis convex if and only if

fly) = f(x) + V) (y—x) VxyeC.
@ f is strictly convex if and only if
f(y) > F(x) + VA (y=x) YxyeCx#y.
Proof |
O (=) Let x,ye C. Forall te|0,1],
F((L=t)x+ ty) < (1 — OF (x) + tf(y);
thus for t € (0, 1],

F((A—t)x+ty) — F(x)
t

< fy) — f(x).
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Chapter 12. Theory of Constrained Optimization

Convexity

Let C be a convex set, and f: C — R be a differentiable function.
O fis convex if and only if

fy) > f(x) + V() (y=x) VxyeC.
@ f is strictly convex if and only if
f(y) > F)+ V) (y=x) VxyeCx+#y.
O (=) Let x,ye C. Forall te|0,1],
F((A—-t)x+ ty) < (1 = t)f(x) + tf(y);

thus

. f(Ql-1t)x — f(x
tl_lf(% (-1 ‘:t}/) ) < f(y) _ f(X).
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Chapter 12. Theory of Constrained Optimization

Convexity

Let C be a convex set, and f: C — R be a differentiable function.
O fis convex if and only if

fy) > f(x) + V() (y=x) VxyeC.
@ f is strictly convex if and only if
f(y) > F)+ V) (y=x) VxyeCx+#y.
O (=) Let x,ye C. Forall te|0,1],
F((A—-t)x+ ty) < (1 = t)f(x) + tf(y);

thus




Chapter 12. Theory of Constrained Optimization

Convexity

Let C be a convex set, and f: C — R be a differentiable function.
O fis convex if and only if

fy) > f(x) + V() (y=x) VxyeC.
@ f is strictly convex if and only if
f(y) > F)+ V) (y=x) VxyeCx+#y.
O (=) Let x,ye C. Forall te|0,1],
F((A—-t)x+ ty) < (1 = t)f(x) + tf(y);

thus

f(x+t(y—x) — f(x) < f(y) _ f(X).

Note that the limit is the directional derivative of f at x along
direction y — x; thus o




Chapter 12. Theory of Constrained Optimization

Convexity

Let C be a convex set, and f: C — R be a differentiable function.
O fis convex if and only if

fy) > f(x) + V() (y=x) VxyeC.
@ f is strictly convex if and only if
f(y) > F)+ V) (y=x) VxyeCx+#y.
O (=) Let x,ye C. Forall te|0,1],
F((A—-t)x+ ty) < (1 = t)f(x) + tf(y);

thus
Vi(x ) (y—x) = lim flxt tly =) = &9 < fy) — f(x).

t—0t t
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Chapter 12. Theory of Constrained Optimization

Convexity

Let C be a convex set, and f: C — R be a differentiable function.
O fis convex if and only if

f(y) = f(x) + VF()' (y=x) VxyeC.
@ f is strictly convex if and only if
f(y) > F)+ V) (y=x) VxyeCx+#y.
O (=) Let x,ye C. Forall te|0,1],
F((A—-t)x+ ty) < (1 = t)f(x) + tf(y);

thus
VFO)T(y— x) = lim LOHEEO=XN =) ey pi.

t—0t t
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Chapter 12. Theory of Constrained Optimization

Convexity

Proof (cont'd).
O (<) Let x,y€ C, t€[0,1], and suppose that
fw) = f(2) + VF(2'(w—2) Vw,zeC.
Let z= (1—-t)x+ ty and w = x or w = y in the inequality
above, we obtain
f(x) = F((1-t)x+ ty) + V(- t)x+ ty) (t(y — X))
and

f(y) = fF((1—t)x+ ty) + VF(1-t)x+ ty) (1 -t)(x— y)).
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Chapter 12. Theory of Constrained Optimization

Convexity

Proof (cont'd).
O (<) Let x,y€ C, t€[0,1], and suppose that
fw) = f(2) + VF(2'(w—2) Vw,zeC.
Let z= (1—-t)x+ ty and w = x or w = y in the inequality
above, we obtain
f(x) = F(1—t)x+ ty) + tVF(1—t)x+ ty) (y — x)
and

f(y) = fF((1—t)x+ ty) + (1 — OVF(L—t)x+ ty) (x — y).
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Chapter 12. Theory of Constrained Optimization

Convexity

Proof (cont'd).
O (<) Let x,y€ C, t€[0,1], and suppose that
fw) = f(2) + VF(2'(w—2) Vw,zeC.

Let z= (1—-t)x+ ty and w = x or w = y in the inequality
above, we obtain
f(x) = f((1—t)x+ ty) + tVFA(1—t)x+ ty) (y — x)
and
f(y) = F((1=t)x+ ty) + (1 = OVF(L-)x+ ty)T (x = y).
Therefore,
(1=t)f(x)+ tf(y)
2 (1= )f(A-t)x+ty) + tF((1-t)x+ ty)
=f((1-t)x+ ty);
thus fis convex. o
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Chapter 12. Theory of Constrained Optimization

Convexity

Proof (cont'd).
Q (<) Let x,ye C, x+# y, t€ (0,1), and suppose that
fw) > f(2) + VF(2'(w—2) Vw,ze Cw# z

Let z= (1-t)x+ ty and w = x or w = y in the inequality
above (w # z since te (0, 1)), we obtain
f(x) > F((L—t)x+ ty) + t V(1 —t)x+ ty) (y — x)
and
fly) > F(A—t)x+ ty) + (1 = ) VF((1—t)x+ ty) (x — y).
Therefore,
(I —=t)f(x)+ tf(y)
> (1—t)f(A—t)x+ ty) + tF((1—t)x+ ty)
=f((1-t)x+ ty);
thus fis strictly convex. o
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Chapter 12. Theory of Constrained Optimization

Convexity

Proof (cont'd).
@ (=) From @ we have
f(y) = fFX)+ V) (y—x) VYxyeC,x+#y.
so it suffices to shows that
Fy) # F(X) + VFX) (y—x) Vx,ye C,x#y.
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Chapter 12. Theory of Constrained Optimization

Convexity

Proof (cont'd).
@ (=) From @ we have
f(y) = fFX)+ V) (y—x) VYxyeC,x+#y.
so it suffices to shows that
fly) # f(x)+ VFx) " (y—x) VYxye Cx#y.
Suppose the contrary that there exist x, y € C, x # y such that
F(y) = F(x) + VF)T (v = ).
Let t € (0,1), and z= (1—t)x+ ty. Then z— x = t(y — x),
and the strict convexity of f shows that
f(z) <(1-t)f(x)+ tf(y) = f(x)+ t[f(y) — f(x)]
= £(x) + V()" (y — X)
— F(x) + VA (2= X) < F(2),
a contradiction. =

T = = =
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§12.9 Duality
#Hin P ol g R” > R AL RE

i

-

CRNE LT TR LT P I S

D = Dom(q) = {A|g(\) > —a0}.
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§12.9 Duality
#Hin P ol g R” > R AL RE

CRNE LT TR LT P I S

ZEALAE > A (60) ®FE infimum P ZEH DL TN
) F1 3 minimizer > A A E AP AR 2 F ¢ “tdp )
BRBEY PR AN RE A8 F f fr —q AN S
=z (ZEAPERR 2AEDTR) > Sdk L(,)) + 043
Beo BRABHRT 0 G BINECL ERL 2B FE

B
i
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§12.9 Duality
£ LR AL

m%@n f(x) subjectto c(x) =0 (59)
x€eR"
i AT R R (1) R4
max g(\) subjectto A= 0. (61)
€ n
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§12.9 Duality
£ VLR LR RE

m%@n f(x) subjectto c(x) =0 (59)
x€eR"
i AT R R (1) R4
max g(\) subjectto A= 0. (61)
€ n

Consider the problem
min 0.5(x{ +x3) subjectto x3 —1>0. (62)

(x1,x2)

The Lagrangian is
L(x1,x2,\) = 0.5(x% + x3) — A(x1 — 1).
If we hold ) fixed, £ a convex function of (x1, x2)T; thus the infimum

of L is achieved when the partial derivatives with respect to x; and

Xy are zero; thatis, xy — A =0, xo = 0.
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Example (cont'd)

By substituting these infimal values into £(x1, x2, A), we obtain the
dual objective (60):
g(A) =0.5(A24+0) —A(A—1) = —0.5A% + .
Hence, the dual problem of (61) is
max —0.5A% 4+ \ (63)

A=0

which clearly has the solution A = 1.
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Example (cont'd)

By substituting these infimal values into £(x1, x2, A), we obtain the
dual objective (60):
g(A) =0.5(A24+0) —A(A—1) = —0.5A% + .
Hence, the dual problem of (61) is
max —0.5A% 4+ \ (63)

A=0

which clearly has the solution A = 1.

B & P ARIRA o SRR T I B AT e e 2 X LR R AR
min f(x) subject to ¢(x) =0 (59)

xeR"
B APy - BREENEINER RIS gD
(concavity) fr# Z &% D L+ (convexity) °
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§12.9 Duality

The function q defined by (60) is concave and its domain D is

convex.
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§12.9 Duality

The function q defined by (60) is concave and its domain D is

convex.

For any A\g and A; in R™, any x€ R”, and any « € [0, 1], we have
L(x (1 —a) o+ ar1) = (1 —a)L(x, o) + aLl(x,\).

By the fact that the infimum of a sum is greater than or equal to the

sum of infimums, taking the infimum of both sides in the expression

.

above we obtain
g((1 —a)Xo + X)) = (1 — a)g(Xo) + aq(A1),

confirming concavity of q.
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§12.9 Duality

The function q defined by (60) is concave and its domain D is

convex.

For any A\g and A; in R™, any x€ R”, and any « € [0, 1], we have
L(x (1 —a) o+ ar1) = (1 —a)L(x, o) + aLl(x,\).

By the fact that the infimum of a sum is greater than or equal to the

.

sum of infimums, taking the infimum of both sides in the expression
above we obtain

g((1 —a)Xo + X)) = (1 — a)g(Xo) + aq(A1),
confirming concavity of g. If both Ay and \; belong to D, this
inequality implies that q((l—oz)A0+a)\1) > —o0 also, and therefore
(1 — a)Ao + a\; € D, verifying convexity of D. o

_————— == =
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§12.9 Duality
BT ORI SR AL

max q(A) subjectto A =0 (61)
AeR"
g~ BLI T primal B4R
min f(x) subject to ¢(x) = 0. (59)
xeR"

Bol - BTR o iEBEE LRI T hRIL o

Theorem (Weak Duality)
For any x feasible for (59) and any A = 0, we have q(\) < f(X).
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§12.9 Duality
T ORAREN AL
max q(A) subjectto A =0 (61)
AeR"
g~ BLI T primal B4R
min f(x) subject to ¢(x) = 0. (59)
xeR"

Bol - BTR o iEBEE LRI T hRIL o

Theorem (Weak Duality)
For any x feasible for (59) and any A = 0, we have q(\) < f(X).

By the definition of g,
g\ = inf [£(x) - Me(x)] < F(x) — Ae(x) < f(%),

where the final inequality follows from A = 0 and c¢(x) = 0. o

= = = =
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N AFEEOBBREE > APLE D
min f(x) subjectto c(x) =0 (59)

xeR"

¢ KKT & (32) 40 #7

VF(X) — Ve(X)\ =0, (64a)
c(x) =0, (64b)

A =0, (64c)

Aici(X) =0, i=1,2,---,m, (64d)

B¢ Ve(x) &4 T eahnx mAELirl i ¢
VC@):[VQ@o;va@;-ungAA].
T-RBREE ¥t (59) ehb B Lagrange 3k - TiEET

ij%%ﬂ:iLwl)nﬁ*o
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§12.9 Duality

(Theorem ..
Suppose that f and —c;, i =1, 2, ---, m are convex functions on

R" that are differentiable at a KKT point X to
)r(ré]iRr% f(x) subject to c(x) =0, (59)
where c(x) = (c1(x), c2(x), - - ,cm(x))T. Then x is a solution to
(59). Moreover, any X\ for which (x, \) satisfies the KKT conditions
VFf(X) = Ve(X)A =0, (64a)
c(x) =0, (64b)
A0, (64c)
Nici(X) =0, i=1,2,---,m, (64d)

is a local solution of the dual problem

max q(\) subject to A = 0. (61)
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§12.9 Duality

Suppose that (X, \) satisfies the KKT condition (64). We have from

A > 0 that £(-,\) is a convex and differentiable function. Hence,

for any x, we have
L(x,N) = LX)+ Ve L(E N (x—X) = L(x, N,

where the last equality follows from (64a).
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§12.9 Duality

Suppose that (X, \) satisfies the KKT condition (64). We have from

A > 0 that £(-,\) is a convex and differentiable function. Hence,

for any x, we have
L(x,N) = LX)+ Ve L(E N (x—X) = L(x, N,
where the last equality follows from (64a). Therefore, we have
q(\) = inf £(x, ) = L(x,\) = f(X) = Me(%) = f(x),

where the last equality follows from (64d).
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§12.9 Duality

Suppose that (X, \) satisfies the KKT condition (64). We have from

A > 0 that £(-,\) is a convex and differentiable function. Hence,

for any x, we have
L(x,N) = LX)+ Ve L(E N (x—X) = L(x, N,
where the last equality follows from (64a). Therefore, we have
q(\) = inf £(x, ) = L(x,\) = f(X) = Me(%) = f(x),
where the last equality follows from (64d).
On the other hand, the weak duality implies that
g\) < f(x) YA=0;
thus it follows from g(\) = f(x) that X is a solution to (59) and A

is a solution of (61). o
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§12.9 Duality

AR I A%k S B E R FV e ©F e LICQ &4 9 constraint
qualification % (59) ek 3R fE X Jws = (2 & To(x) = F(x)) »
7R B B KKT if 2 ehd i Lagrange 3k & 8.3 e o ig BRLRH

M 3 4e™ Corollary -

Suppose that f and —c;, i = 1, 2, ---, m be convex functions on
R" that are differentiable at a solution X to

min f(x) subject to c(x) =0, (59)

xeRM
If LICQ holds at X; that is, {Vci(x)|i€ A(X)} is linearly indepen-
dent or equivalently, the matrix [ch(’?)]ieA(;) has full rank, then

there is a solution of the dual problem

max q(\) subject to A = 0. (61)
eR
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§12.9 Duality
In previous example of solving

min 0.5(x + x3) subjectto x3 —1>0, (62)

(x1,x2)

we see that A = 1 is both an optimal Lagrange multiplier for problem
(62) and a solution of its dual problem

max —0.5)\% 4+ \. (63)
A=0

Note too that the optimal objective for both problems is 0.5.
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§12.9 Duality
In previous example of solving

min 0.5(x + x3) subjectto x3 —1>0, (62)

(x1,x2)

we see that A = 1 is both an optimal Lagrange multiplier for problem
(62) and a solution of its dual problem

max —0.5)\% 4+ \. (63)
A=0

Note too that the optimal objective for both problems is 0.5.

v

BT ORAPED T B - B IILNI|A G AN TS B KA
(61) enfz g P o2 % ki R 4o B AL (59) hfiE o ot i & AL PR
BEEEE S L(,N) R BEY N BB o AP
dod f B e M E R HNEB =12, mr— L
Bt hen® X\ >00 RIEEBEE 2 o
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§12.9 Duality
Suppose that f and —c;, i=1, 2, - -+, m are convex and continuously

differentiable on R". Suppose that

@ X is a solution of
min f(x) subject to c(x) =0, (59)

PEY
and LICQ holds at x (or Tqo(x) = F(X));
@ )\ solves the dual problem

max q(A) subjectto A =0, (61)
AeRn?

and the infimum inf £(x, \) is attained at X.
X

~

Assume further that L(-, \) is a strictly convex function. Thenx = X
(that is, X is the unique solution of (59)), and \ is a Lagrange
multiplier for x (that is, (X, X) satisfies the KKT condition).
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Suppose the contrary that X # X. Since X = argmin £(x, X) we
X

have V, L(X, X) = 0; thus the strict convexity of L(-, X) implies that

L) = LZA) > VLE AN (x—8)=0.
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§12.9 Duality

Suppose the contrary that X # X. Since X = argmin £(x, X) we
X

have V. L(X, X) = 0; thus the strict convexity of L(, X) implies that
L) = LZA) > VLE AN (x—8)=0.
Since LICQ holds at X, there is A satisfying the KKT conditions (64).
By the previous theorem A solves the dual problem (61) so that
£xA) = a() = a(}) = LX),
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§12.9 Duality

Suppose the contrary that X # X. Since X = argmin £(x, X) we
X

have V, L(X, X) = 0; thus the strict convexity of L(-, X) implies that
L) = LZA) > VLE AN (x—8)=0.
Since LICQ holds at X, there is A satisfying the KKT conditions (64).
By the previous theorem \ solves the dual problem (61) so that
L(x,A) =q(X) = q() = L&, X).
Therefore,

~ =

L) > LR, A) = L(X, ).
In particular, R -
~\e(x) > —Ae(x) =0,
where the final equality follows from the KKT condition (64d). Since

A >0 and c(x) = 0, we have —XTC()_() < 0, a contradiction. o
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§12.9 Duality

Proof (cont'd).

Therefore, x = X. Moreover, the identities (from the previous slide)
L) =L(%A) and f(x) = L(X, )

imply that f(x) = L(X, X) This identity shows that XTC()?) = 0.

Since A > 0 and c(x) = 0, we must have X,-c,-(i) = 0 for all

1 < i < m; thus the KKT condition holds at (X, X) o

v
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§12.9 Duality

Proof (cont'd).

Therefore, x = X. Moreover, the identities (from the previous slide)
L) =L(%A) and f(x) = L(X, )

imply that f(x) = L(X, X) This identity shows that XTC()?) = 0.

Since A > 0 and c(x) = 0, we must have X,-c,-(i) = 0 for all

1 < i < m; thus the KKT condition holds at (X, X) o

v

In previous example of solving
min 0.5(xf +x3) subjectto x3 —1>0, (62)

(x1,x2)
at the dual solution A = 1, the infimum of £(x1,x2, A) is achieved
at (x;,x2) = (1,0)T, which is the solution of the original problem
(62).
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- 8w i cngtis B AL T i 5303 B 0 [ ehitig A
4 Wolfe $+i% » 2 & if 4o
max L£(x,\) subjectto Vi L(x,A\) =0, A>0. (65)

X, A
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- B A A s A A e R N B A I ahit i A
4 Wolfe $+i% » B & i e
max L£(x,\) subjectto Vi L(x,A\) =0, A>0. (65)

XA
DT s % fRHR T Wolfe #1821 SUR 1 B AT
m]%n f(x) subjectto c¢(x) =0 (59)
xeR"

ePRE % o
Suppose that f and —c;, i=1, 2, ---, m are convex and continu-
ously differentiable on R". Suppose that (X, )\) is a solution pair of
(59) at which LICQ holds; that is, X is a solution of (59) and \ is a

corresponding Lagrange multiplier vector (whose existence is guar-

anteed by one of previous theorem). Then (x, \) solves the problem
(65).
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Since (X, \) is a solution pair of (59), it holds the KKT conditions
(64) so that (X, \) satisfies the constraint

ViL(x,A\) =0, A=>0 (66)
and that £(x, \) = f(x).
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§12.9 Duality

Since (X, \) is a solution pair of (59), it holds the KKT conditions
(64) so that (X, \) satisfies the constraint

ViLl(x,A) =0, A=0 (66)
and that £(x,\) = f(X). Therefore, for any pair (x, \) that satisfies
(66) we have that

L(x,A) = f(X) = f(x) — Xc(x) = L(x,\)
> L(x\) + Ve L AT (X — x) = L(x, A),
where the second inequality follows from the convexity of L(-, ).
We have therefore shown that (X, \) maximizes £ over the con-

straints (66), and hence solves
max L£(x,\) subjectto Vi L(x,A\) =0, A >0. (65)

XA O
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Example (Linear Programming)

Chapter 12. Theory of Constrained Optimization
§12.9 Duality

An important special case of (59) is the linear programming problem
min c'x subject to Ax—b=0, (67)
for which the dual objective is

g(\) = infc' x— X' (Ax— b) = inf(c — ATA) x+ bTA.

If ¢ — ATX # 0, the infimum is clearly —o0 (we can set x to be a
large negative multiple of —(c — AT)) to make q arbitrarily large
and negative). When ¢ — AT\ = 0, on the other hand, the dual
objective is simply bTX. In maximizing g, we can exclude \ for
which ¢ — AT\ # 0 from consideration. Hence, we can write the
dual problem (61) as follows:

max b*\ subject to ATA=c,A>0. (68)
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Example (Linear Programming (cont’'d))

Chapter 12. Theory of Constrained Optimization
§12.9 Duality

The Wolfe dual of (67) can be written as
max c'x — AT(Ax—b) subjectto ATA=c, A>0

X’
and by substituting the constraint AT\ —c = 0 into the objective we
obtain (68) again. For some matrices A, the dual problem (68) may

be computationally easier to solve than the original problem (67).
v
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Example (Linear Programming (cont’'d))

Chapter 12. Theory of Constrained Optimization
§12.9 Duality

The Wolfe dual of (67) can be written as
max c'x — AT(Ax—b) subjectto ATA=c, A>0

X’
and by substituting the constraint AT\ —c = 0 into the objective we
obtain (68) again. For some matrices A, the dual problem (68) may
be computationally easier to solve than the original problem (67).

Example (Convex Quadratic Programming)

|

Consider
min ;x Gx+ c'x subjectto Ax—b=0,
where G is a symmetric positive definite matrix. The dual objective
for this problem is
g(\) = inf £(x A) = ir)}f%xTGx—i— Tx— X (Ax— b).
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Example (Convex Quadratic Programming (cont'd))

Since G is positive definite, £(-,\) is a strictly convex quadratic

function; thus the infimum is achieved when VL (x, A) = 0; that is,
Gx+c—ATA=0. (69)

Hence, we can substitute for x in the infimum expression and write

the dual objective explicitly as follows:
g(\) = —%(ATA — TGN ATA— T 4+ b

Alternatively, we can write the Wolfe dual form (65) by retaining x
as a variable and including the constraint (69) explicitly in the dual
problem, to obtain

r(na;)c %XTGX—l- c'x—X'(Ax—b) subject to Gx+c—ATA =0, > 0.
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Example (Convex Quadratic Programming (cont'd))
To make it clearer that the objective is concave, we can use the
constraint to substitute (c— ATA)Tx = —x'Gx in the objective, and

rewrite the dual formulation as follows:

r(na),\})c—;xTGx—i—)\Tb subject to  Gx+c—ATA=0, A >0.

A F) Wolfe $ti5 2758 7 § & G £ & o
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