
量子計算的數學基礎 MA5501
Homework Assignment 3

Due May. 15. 2023

Problem 1. Grover’s algorithm can be tweaked to work with probability 1 if we know the number
of solutions exactly. Let n P N, N = 2n, and f : t0, 1un Ñ t0, 1u be a Boolean function. Suppose
that there is exactly one x P t0, 1un satisfying f(x) = 1 (thus the Hamming weight t = 1).

1. Define a new function g : t0, 1un+1 Ñ t0, 1u by

g(j1 ¨ ¨ ¨ jnjn+1) =

"

1 if f(j1j2 ¨ ¨ ¨ jn) = 1 and jn+1 = 0;

0 otherwise.

Show how you can implement the following (n+ 1)-qubit unitary

Sg : |ay ÞÑ (´1)g(a)|ay

based on the implementation of Uf satisfying

Uf : |ay|by ÞÑ |ay|b ‘ f(a)y @ a P t0, 1un, b P t0, 1u .

2. Let γ P [0, 2π) and let Ry(2γ) be the reflection about y-axis with angle 2γ so that Ry(2γ)

has the matrix representation
[
cos γ ´ sin γ
sin γ cos γ

]
. Let A = Hbn b Ry(2γ) be an (n + 1)-qubit

unitary. What is the probability (as a function of γ) that measuring the state A|0n+1y in the
computational basis gives a solution j P t0, 1un+1 for g (that is, such that g(j) = 1)?

3. Give a quantum algorithm that finds the unique solution with probability 1 using O(
?
N)

queries to f .

Problem 2. Let n P N, N = 2n, f : t0, 1un Ñ t0, 1u be a Boolean function, and t is the Hamming
weight of f ; that is, t = #

␣

x P t0, 1un
ˇ

ˇ f(x) = 1
(

. Suppose that we know that t P t1, 2, ¨ ¨ ¨ , su

for some known s ! N . Give a quantum algorithm that finds a solution with probability 1, using
O(

?
sN) queries to f .

Problem 3. In this problem we talked about modified Grover algorithm for unknown cardinality
of f´1(t1u), where f : t0, 1un Ñ t0, 1u is the function for which we look for objects whose function
value is 1. We assume that S = f´1(t1u) is non-empty and t ” #S ! N (in fact, it requires
that t ď

3

4
N for the following quantum algorithm to work). Let J = t

?
N u + 1. Randomly select

j P t0, 1, ¨ ¨ ¨ , J´1u with equal probability 1/J . Apply j-times the Grover iterate G = HbnRHbnUf,˘

to |ψ0y to transform the state |ψ0y to the state

|ψjy = Gj|ψ0y .

Here R is the reflection about zero state, and Uf is the (n+ 1)-qubit oracle satisfying

Uf |xy|yy = |xy|y ‘ f(x)y , @x P t0, 1un, y P t0, 1u .

Measure the final quantum state and obtain x P t0, 1un.



1. Show that the probability of obtaining x P S is not less than 1

4
.

2. Figure out an algorithm for general that gives an x P S with probability not less than 1

4
if t is

not necessary satisfying t ď
3

4
N .

Hint of 1: Let sin2 θ =
t

N
. Then (show that) 1

sin 2θ
ď J and then apply the result in Problem 5 of

the midterm exam.

Problem 4. In this problem you are asked to provide matlab® codes for the last step in the Shor
algorithm. Let N P N be a (large) number taking the form N = pq, where p, q are prime numbers,
and L P N satisfy N2 ă 2L ď 2N2. Let x P Z˚

N be given (so you also have the function f(a) = xa mod
N). Suppose that the quantum part of the Shor algorithm provides b P t0, 1uL upon measurement
(so b is also given). Write a program to produces irreducible fractions n

m
satisfying

ˇ

ˇ

b

2L
´

n

m

ˇ

ˇ ă
1

2m2
and m ă 2L/2

and check whether the denominator of these irreducible fractions are the period of the function
f(a) = xa mod N (for given x).

Problem 5. Let V be the vector space spanned by three monomials 1, x and x2, and let x¨, ¨y :

V ˆ V Ñ R be an inner product on V given by

xf, gy =

ż 1

´1

f(x)g(x) dx .

1. Use the Gram-Schmidt process to find an orthonormal basis of V.

2. Let L : V Ñ R be defined by
L(p) = p 1(0) ,

where p 1 is the derivative of p. Show that L P V˚.

3. Find q P V satisfying L(p) = xq, py for all p P V.

Problem 6. For matrices A = [akℓ] and B = [bkℓ] of the same size m ˆ n, define the Hadamard
product of A and B, denoted by AdB, as an mˆ n matrix whose (k, ℓ)-entry is give by akℓbkℓ; that
is,

C = A d B , C = [ckℓ] , ckℓ = akℓbkℓ . (0.1)

In matlab®, the Hadamard product of A and B can be computed by A d B = A .˚B. In the
following, we will always use .˚ to denote the Hadamard product.

Let Hn be the unnormalized Hadamard matrix whose (k, ℓ)-entry is given by (´1)(k´1)‚ (ℓ´1),
and rj be the (j + 1)-th row of Hn. Define φ : t0, 1un Ñ tr0, r1, ¨ ¨ ¨ , r2n´1u by

φ(j1, j2, ¨ ¨ ¨ , jn) = rj if j = (j1j2 ¨ ¨ ¨ jn)2 .

For example, for the case n = 2 the map φ is given by

φ :

$

’

’

&

’

’

%

(0, 0) ÞÑ

(0, 1) ÞÑ

(1, 0) ÞÑ

(1, 1) ÞÑ

r0 =
r1 =
r2 =
r3 =


1 1 1 1
1 ´1 1 ´1
1 1 ´1 ´1
1 ´1 ´1 1

 ” H2 . (‹)



Show that φ : (t0, 1un,‘) Ñ
(
tr0, r1, ¨ ¨ ¨ , r2n´1u, .˚

)
is a group isomorphism, where ‘ is the element-

wise addition in Z2; that is,

(x1, x2, ¨ ¨ ¨ , xn) ‘ (y1, y2, ¨ ¨ ¨ , yn) = (x1 ‘ y1, x2 ‘ y2, ¨ ¨ ¨ , xn ‘ yn) .

In other words, show that φ : t0, 1un Ñ tr0, r1, ¨ ¨ ¨ , r2n´1u defined above is a bijection and

φ
(
(k1, ¨ ¨ ¨ , kn) ‘ (ℓ1, ¨ ¨ ¨ , ℓn)

)
= rk .˚ rℓ @ k = (k1k2 ¨ ¨ ¨ kn)2 and ℓ = (ℓ1ℓ2 ¨ ¨ ¨ ℓn)2 . (˛)

For example, in the example above (‹) implies that

φ
(
(0, 1) ‘ (1, 1)

)
= φ(1, 0) = r2

while

φ(0, 1). ˚ φ(1, 1) = r1. ˚ r3 =
[
1 ´1 1 ´1

]
. ˚

[
1 ´1 ´1 1

]
=

[
1 1 ´1 ´1

]
= r2

so that φ
(
(0, 1) ‘ (1, 1)

)
= φ(0, 1). ˚ φ(1, 1).


