£ 3 s A# MA5501
Homework Assignment 3
Due May. 15. 2023

Problem 1. Grover’s algorithm can be tweaked to work with probability 1 if we know the number
of solutions exactly. Let n € N, N = 2" and f : {0,1}" — {0,1} be a Boolean function. Suppose
that there is exactly one x € {0, 1}" satisfying f(z) = 1 (thus the Hamming weight ¢ = 1).

1. Define a new function g : {0,1}"*' — {0,1} by

1 if f(]1]2 © Jn) =1and .jn—i—l = 07

g(jl o '.]njnJrl) = { 0 otherwise.

Show how you can implement the following (n + 1)-qubit unitary
S+ lay = (=1)*@]a)
based on the implementation of Uy satisfying
Up - |wlb)y = [a)lo® f(a))  Vae{0,1}",be {01},
2. Let v € [0,27) and let R,(27) be the reflection about y-axis with angle 2 so that R, (2v)
cosy —sin~y

siny cosvy
unitary. What is the probability (as a function of ¥) that measuring the state A|0"™!) in the

has the matrix representation [ } Let A = H®" ® R,(27) be an (n + 1)-qubit

computational basis gives a solution j € {0,1}"*! for ¢ (that is, such that g(j) = 1)?

3. Give a quantum algorithm that finds the unique solution with probability 1 using O(+v/N)

queries to f.

Problem 2. Let ne N, N = 2" f:{0,1}" — {0,1} be a Boolean function, and ¢ is the Hamming
weight of f; that is, ¢ = #{x € {0,1}"|f(:v) = 1}. Suppose that we know that ¢ € {1,2,--- s}
for some known s « N. Give a quantum algorithm that finds a solution with probability 1, using

O(VsN) queries to f.

Problem 3. In this problem we talked about modified Grover algorithm for unknown cardinality
of f~1({1}), where f : {0,1}" — {0,1} is the function for which we look for objects whose function
value is 1. We assume that S = f~!}({1}) is non-empty and t = #S « N (in fact, it requires

that t < ZN for the following quantum algorithm to work). Let J = [v/N| + 1. Randomly select
j€{0,1,---,J—1} with equal probability 1/.J. Apply j-times the Grover iterate G = H®"RH®"U,
to |1y to transform the state |¢)y) to the state

V5> = G|ty
Here R is the reflection about zero state, and Uy is the (n 4 1)-qubit oracle satisfying

Uslo)ly) = [o)ly @ f(x)),  Vxe{0,1}",ye{0,1}.

Measure the final quantum state and obtain x € {0, 1}".



1
1. Show that the probability of obtaining x € S is not less than T

1
2. Figure out an algorithm for general that gives an x € S with probability not less than 1 if ¢ is

. 3
not necessary satisfying ¢ < ZN .

Hint of 1: Let sin?4 = % Then (show that) Sm% < J and then apply the result in Problem 5 of

the midterm exam.

Problem 4. In this problem you are asked to provide matlab® codes for the last step in the Shor
algorithm. Let N € N be a (large) number taking the form N = pq, where p, ¢ are prime numbers,
and L € N satisfy N? < 2 < 2N?. Let x € Z% be given (so you also have the function f(a) = z* mod
N). Suppose that the quantum part of the Shor algorithm provides b € {0, 1}£ upon measurement

(so b is also given). Write a program to produces irreducible fractions % satisfying

1
2m?2

b n

‘——— and m < 2572
2L m

| <
and check whether the denominator of these irreducible fractions are the period of the function
f(a) = z* mod N (for given z).

Problem 5. Let V be the vector space spanned by three monomials 1, x and z?, and let (-, -) :

V x V — R be an inner product on V given by

1
=1\ [fl@)g(z)dz.
-1
1. Use the Gram-Schmidt process to find an orthonormal basis of V.

2. Let L : V — R be defined by
L(p) = p'(0),
where p’ is the derivative of p. Show that L € V*.

3. Find ¢ € V satisfying L(p) = {(q,p) for all pe V.

Problem 6. For matrices A = [ay] and B = [by] of the same size m x n, define the Hadamard
product of A and B, denoted by A® B, as an m x n matrix whose (k, £)-entry is give by aysbge; that
is,

C - A@ B, C - [de y Cry = akgbkg . (01)
In matlab®, the Hadamard product of A and B can be computed by A® B = A .« B. In the

following, we will always use . to denote the Hadamard product.
Let H, be the unnormalized Hadamard matrix whose (k,f)-entry is given by (—1)*=1e (=1,
and r; be the (j + 1)-th row of H,,. Define ¢ : {0,1}" — {rg, 1, -+ ,T2n_1} by
U Ja, -+ s dn) =15 A j = (juja-Jn)2-

For example, for the case n = 2 the map ¢ is given by

0,00 — m=[1 1 1 1
0,1) = m= |1 -1 1 —1|_

v (1,0) —» r= |1 1 -1 -1 =H. (*)
(1,1) = m= |1 -1 -1 1



Show that ¢ : ({0, 1}",®) — ({1“0, T, Ton 1}, ) is a group isomorphism, where @ is the element-

wise addition in Zs; that is,
(@1, 22,7+, 20) @ (Y1, Y2 1 Yn) = (L1 D Y1, T2 D Y2, -+, T D Yn) -
In other words, show that ¢ : {0,1}" — {7rg, 1, -+, r9n_1} defined above is a bijection and
ki, k) ® (L, ) =7 xry k= (kiky--kp)gand £ = (Goly---L,)y. (o)
For example, in the example above (x) implies that
0((0, 1)@ (1,1)) = ¢(1,0) =
while
e(0,1).xp(1,1)=r.xr3=[1 =1 1 =1].»[1 -1 -1 1]=[1 1 -1 —1]=mnr

so that ¢((0,1) @ (1,1)) = (0,1). = p(1,1).



