Vector Analysis MA2014-* Final Exam
National Central University, Jan. 14 2016

Problem 1. Let F : R® — R? be a vector field given by F(z,y,2) = (M(z,y), N(z,y),0), where
M,N : R* - R be ¢'-functions, and C' be a simple closed plane curve r(t) = (z(t),y(t),0) for
t € [a, b] and r(t) moves counter-clockwise as ¢ increases. Suppose that C' is the boundary of a region

R < R2.

1. (10%) Show the Green theorem
§ (M, N,0) - dr:J (N, — M,)dA.
c R
2. (10%) Use M (z,y) = —y and N(z,y) = x to show that the area of R is given by
b
A®) =5 [ (@l 0 - v 0)dr

3. (15%) Compute the area enclosed by the Cardioid which has a polar representation r = (1 —
sin @) with 0 € [0, 27].

Proof. 1. Since curlF = (0,0, N, — M,), the Stokes theorem implies that

jEC(MNo) dr—fﬁF dr_ﬂcuﬂp NdA = H (0,0,N, — M,) - (0,0, 1) dA

fNMdA

2. Letting M(z,y) = —y and N(z,y) = x, we have N,(z,y) — M,(z,y) = 2; thus 1 implies that

a

%f (2(8)y' (1) — y(t)a'(8)) dt = %i(M, N,0) - dr — %Hzm _ A(R).

3. A parametrization of the Cardioid is

r(t) = (z(t),y(t)) = ((1 — sint) cost, (1 — sint) sint) te[0,2n].



Then 2 implies that the area enclosed by the Cardioid is

1 27

EJ [(1 —sint)cost(— costsint + (1 — sint) cost)
0

— (1 —sint)sint(— cos®t — (1 —sint)sint)]dt

1 2m
— §J (1 —sint)[cos®t — 2sint cos” ¢ + sint cos® ¢ + sin® ¢ — sin® ¢] dt

0
1 21 1 21 3
= —J (1 —sint)(1 —sint cos®t — sin® t)dt = —f (1 — sint)*dt = T,
2 J, 2 J, 2

[m]

Problem 2. Let D be the solid region enclosed by the torus T? = v([0,27] x [0, 27]), where ¢ is
given by

Y(u,v) = ((2 4 cosv) cosu, (2 + cosv) sinu,sinv) .

1. (10%) Compute v, x 1, as well as |1, x ¥, |gs.

Yy X Py
[tu % by |Rs

-1 Py X Py 1.
oy~ and Ton X ol o~ is the

2. (10%) Determine which one of the two vectors
outward-pointing unit normal N on T?2.
3. (15%) Let F : R® — R3 be given by F(z,y,2) = (y + 2%, x2,¢"siny). Use the divergence
theorem to compute the flux integral Jf F-NdS.
T2

Solution:
1. Since
Yu(u,v) = (= (24 cosv)sinw, (2 + cosv) cosu, 0)
Wy (u,v) = (— sin v cos u, — sin v sin u, cos v) ,
we have

(Y x ) (u,v)
= ((2+ cosv) cosucos v, (2 + cosv) sinucos v, (2 + cosv)(sin* usinv + sin v cos” u))

= (2 + cosv)( cosucosv,sinucosv,sinv) .

Therefore, [ty x 1,)(t, v)]lss = (2 + cos v).



2. We note that the outward-pointing unit normal at ¢(0,0) = (3,0,0) is (1,0,0). Since

Py X Py
——FF—F— X (0,0) = (1,0,0),
o il ) = (100
¢u X 1/11; 1 .. . 2
we find that Tow = ol o1~ is the outward-pointing unit normal N on T=.
u v||R3

3. Since divF = 0, by the divergence theorem,

JJF-NdS:J divFdz = 0.
D
T2

Problem 3. Let C be a smooth curve parametrized by

o Tom
r(t) = (costsint,sintsint, cost), te [—— —] :

1. (5%) Show that C'is a curve on the sphere S? centered at the origin with radius one.

2. (10%) Let v : R = (0,2m) x (0,7) — R3 given by (6, ¢) = (cos 0 sin ¢, sin f sin ¢, cos ¢) be a
local parametrization of S?. Find a curve on R such that the image of this curve under ¢ is C

(with the north pole of the sphere being excluded).

3. (15%) The curve C divides S? into two parts, and let ¥ be the part with smaller area. Find
the area of .

4. (15%) Let F : R® — R3 be a vector field given by F(z,y,z) = (y,—z,0). Compute the line
integral ff; F - dr using the definition of line integral.
c

5. (15%) Use the Stokes theorem to find the line integral §>‘ F . dr.
c

Proof. 1. Let (x,y,z) € C. Then x = costsint, y = sintsint,z = cost for some ¢ € [— 5,5].

Therefore,
22 4+ y? + 2% = cos® tsin®t + sin® tsin®t + cos® t = sin’t + cos’t = 1

which implies that (z,vy, z) € 2.



2. Let (6(t),¢(t)) € R be such that

¥(0(t), ¢(t)) = (costsint,sintsint, cost) Vie [ g g] :

)

™
2
cos O(t) cos ¢(t) and sintsint = sin O(t) cos ¢(t) further imply that 0(t) = ¢.

For t e [O, ] , the identity cost = cos ¢(t) implies that ¢(t) = ¢; thus the identities costsint =

On the other hand, for ¢t € [— g, O] , the identity cost = cos ¢(t), where ¢(t) € (0, ), implies
that ¢(t) = —t; thus the identities costsint = cosf(t)sin ¢(t) and sintsint = sin 6(t) sin ¢(t)
further imply that 6(t) = = + ¢.

3. First, we note that the first fundamental form associated with {R,} is

2

g(uﬂ)) = H<¢9 X w¢)<u>v)HR3
= H (—sin @ sin ¢, cos fsin ¢, 0) x (cos O cos ¢, sin 0 cos ¢, — sin @) H;B
= | (= cos B sin* ¢, — sin @ sin* ¢, —(sin” § + cos® §) sin ¢ cos ¢) H%s

= (cos? § + sin? 0) sin* ¢ + sin? ¢ cos?® ¢ = sin’ ¢.

Therefore, the area of the desired surface is

L s = Ll(z) VEdA = L LM sin ¢ dfd¢ = Lg(w — 2¢)sin ¢ do

- (—7TCOS¢+2¢COS¢—QSin¢>‘

_m

@
R
$=0

4. By the definition of line integral,

bl
jg F . dr —J (sin®t, — costsint, 0) - (cos2t—sith,Zsintcost,—sint)dt
c

g
= J (sin2 tcos®t — sin* t — 2sin?t cos? t) dt

2 21— cos2t t sin 2t
J_ sin ) 5 5 1

[NE]



5. Since curl F' = (0,0, —2), the Stokes theorem implies that

3 ("¢
jg F.dr= J (0,0,—2)-NdS = JI(E) —2cos ¢psingpd(0,¢) = —QJ f sin ¢ cos ¢ dOdo
J (m —2¢)sin2¢pdp = (—c082¢ gbcos?qﬁ—i——stqS)‘ ;2‘

0
™
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