Vector Analysis MA2014-* Final Exam

National Central University, Jan. 14 2016

Problem 1. Let $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field given by $\mathbf{F}(x,y,z) = (M(x,y),N(x,y),0)$, where $M,N:\mathbb{R}^2 \to \mathbb{R}$ be \mathscr{C}^1 -functions, and C be a simple closed plane curve r(t) = (x(t),y(t),0) for $t \in [a,b]$ and $\mathbf{r}(t)$ moves counter-clockwise as t increases. Suppose that C is the boundary of a region $\mathbb{R} \subseteq \mathbb{R}^2$.

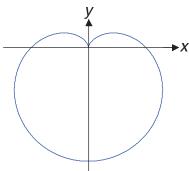
1. (10%) Show the Green theorem

$$\oint_C (M, N, 0) \cdot d\mathbf{r} = \iint_{\mathbf{R}} (N_x - M_y) d\mathbf{A}.$$

2. (10%) Use M(x,y) = -y and N(x,y) = x to show that the area of R is given by

$$\mathcal{A}(\mathbf{R}) = \frac{1}{2} \int_{a}^{b} \left(x(t)y'(t) - y(t)x'(t) \right) dt.$$

3. (15%) Compute the area enclosed by the Cardioid which has a polar representation $r = (1 - \sin \theta)$ with $\theta \in [0, 2\pi]$.



Proof. 1. Since $\operatorname{curl} \boldsymbol{F} = (0, 0, N_x - M_y)$, the Stokes theorem implies that

$$\oint_C (M, N, 0) \cdot d\mathbf{r} = \oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R \operatorname{curl} \mathbf{F} \cdot \mathbf{N} \, d\mathbb{A} = \iint_R (0, 0, N_x - M_y) \cdot (0, 0, 1) \, d\mathbb{A}$$

$$= \iint_R (N_x - M_y) \, d\mathbb{A}.$$

2. Letting M(x,y) = -y and N(x,y) = x, we have $N_x(x,y) - M_y(x,y) = 2$; thus 1 implies that

$$\frac{1}{2} \int_a^b \left(x(t)y'(t) - y(t)x'(t) \right) dt = \frac{1}{2} \oint_C (M, N, 0) \cdot dr = \frac{1}{2} \iint_{\mathbf{R}} 2d\mathbb{A} = \mathcal{A}(\mathbf{R}).$$

3. A parametrization of the Cardioid is

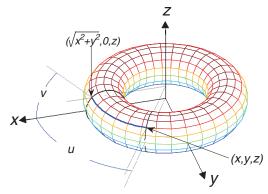
$$\mathbf{r}(t) = (x(t), y(t)) = ((1 - \sin t)\cos t, (1 - \sin t)\sin t)$$
 $t \in [0, 2\pi]$.

Then 2 implies that the area enclosed by the Cardioid is

$$\frac{1}{2} \int_0^{2\pi} \left[(1 - \sin t) \cos t \left(-\cos t \sin t + (1 - \sin t) \cos t \right) \right] dt
- (1 - \sin t) \sin t \left(-\cos^2 t - (1 - \sin t) \sin t \right) dt
= \frac{1}{2} \int_0^{2\pi} (1 - \sin t) \left[\cos^2 t - 2 \sin t \cos^2 t + \sin t \cos^2 t + \sin^2 t - \sin^3 t \right] dt
= \frac{1}{2} \int_0^{2\pi} (1 - \sin t) (1 - \sin t \cos^2 t - \sin^3 t) dt = \frac{1}{2} \int_0^{2\pi} (1 - \sin t)^2 dt = \frac{3\pi}{2}.$$

Problem 2. Let D be the solid region enclosed by the torus $\mathbb{T}^2 \equiv \psi([0, 2\pi] \times [0, 2\pi])$, where ψ is given by

$$\psi(u,v) = ((2+\cos v)\cos u, (2+\cos v)\sin u, \sin v).$$



- 1. (10%) Compute $\psi_u \times \psi_v$ as well as $\|\psi_u \times \psi_v\|_{\mathbb{R}^3}$.
- 2. (10%) Determine which one of the two vectors $\frac{\psi_u \times \psi_v}{\|\psi_u \times \psi_v\|_{\mathbb{R}^3}} \circ \psi^{-1}$ and $\frac{\psi_v \times \psi_u}{\|\psi_u \times \psi_v\|_{\mathbb{R}^3}} \circ \psi^{-1}$ is the outward-pointing unit normal \mathbf{N} on \mathbb{T}^2 .
- 3. (15%) Let $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $\mathbf{F}(x,y,z) = (y+z^2,xz,e^x\sin y)$. Use the divergence theorem to compute the flux integral $\iint_{\mathbb{T}^2} \mathbf{F} \cdot \mathbf{N} \, dS$.

Solution:

1. Since

$$\psi_u(u, v) = \left(-(2 + \cos v)\sin u, (2 + \cos v)\cos u, 0\right),$$

$$\psi_v(u, v) = \left(-\sin v\cos u, -\sin v\sin u, \cos v\right),$$

we have

$$(\psi_u \times \psi_v)(u, v)$$

$$= ((2 + \cos v)\cos u \cos v, (2 + \cos v)\sin u \cos v, (2 + \cos v)(\sin^2 u \sin v + \sin v \cos^2 u))$$

$$= (2 + \cos v)(\cos u \cos v, \sin u \cos v, \sin v).$$

Therefore, $\|\psi_u \times \psi_v\|(u,v)\|_{\mathbb{R}^3} = (2 + \cos v)$.

2. We note that the outward-pointing unit normal at $\psi(0,0)=(3,0,0)$ is (1,0,0). Since

$$\frac{\psi_u \times \psi_v}{\|\psi_u \times \psi_v\|_{\mathbb{R}^3}}(0,0) = (1,0,0),$$

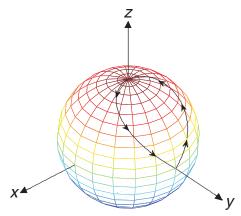
we find that $\frac{\psi_u \times \psi_v}{\|\psi_u \times \psi_v\|_{\mathbb{R}^3}} \circ \psi^{-1}$ is the outward-pointing unit normal **N** on \mathbb{T}^2 .

3. Since $\operatorname{div} \mathbf{F} = 0$, by the divergence theorem,

$$\iint_{\mathbb{T}^2} \mathbf{F} \cdot \mathbf{N} \, dS = \int_{\mathcal{D}} \operatorname{div} \mathbf{F} dx = 0 \,.$$

Problem 3. Let C be a smooth curve parametrized by

$$\mathbf{r}(t) = (\cos t \sin t, \sin t \sin t, \cos t), \qquad t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$



- 1. (5%) Show that C is a curve on the sphere \mathbb{S}^2 centered at the origin with radius one.
- 2. (10%) Let $\psi : R \equiv (0, 2\pi) \times (0, \pi) \to \mathbb{R}^3$ given by $\psi(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$ be a local parametrization of \mathbb{S}^2 . Find a curve on R such that the image of this curve under ψ is C (with the north pole of the sphere being excluded).
- 3. (15%) The curve C divides \mathbb{S}^2 into two parts, and let Σ be the part with smaller area. Find the area of Σ .
- 4. (15%) Let $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field given by $\mathbf{F}(x,y,z) = (y,-x,0)$. Compute the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ using the definition of line integral.
- 5. (15%) Use the Stokes theorem to find the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$.

Proof. 1. Let $(x, y, z) \in C$. Then $x = \cos t \sin t$, $y = \sin t \sin t$, $z = \cos t$ for some $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Therefore,

$$x^{2} + y^{2} + z^{2} = \cos^{2} t \sin^{2} t + \sin^{2} t \sin^{2} t + \cos^{2} t = \sin^{2} t + \cos^{2} t = 1$$

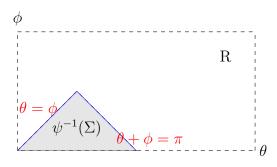
which implies that $(x, y, z) \in \mathbb{S}^2$.

2. Let $(\theta(t), \phi(t)) \in \mathbb{R}$ be such that

$$\psi \left(\theta(t), \phi(t) \right) = \left(\cos t \sin t, \sin t \sin t, \cos t \right) \qquad \forall \, t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$$

For $t \in \left[0, \frac{\pi}{2}\right]$, the identity $\cos t = \cos \phi(t)$ implies that $\phi(t) = t$; thus the identities $\cos t \sin t = \cos \theta(t) \cos \phi(t)$ and $\sin t \sin t = \sin \theta(t) \cos \phi(t)$ further imply that $\theta(t) = t$.

On the other hand, for $t \in \left[-\frac{\pi}{2}, 0\right]$, the identity $\cos t = \cos \phi(t)$, where $\phi(t) \in (0, \pi)$, implies that $\phi(t) = -t$; thus the identities $\cos t \sin t = \cos \theta(t) \sin \phi(t)$ and $\sin t \sin t = \sin \theta(t) \sin \phi(t)$ further imply that $\theta(t) = \pi + t$.



3. First, we note that the first fundamental form associated with $\{R, \psi\}$ is

$$g(u,v) = \|(\psi_{\theta} \times \psi_{\phi})(u,v)\|_{\mathbb{R}^{3}}^{2}$$

$$= \|(-\sin\theta\sin\phi,\cos\theta\sin\phi,0) \times (\cos\theta\cos\phi,\sin\theta\cos\phi,-\sin\phi)\|_{\mathbb{R}^{3}}^{2}$$

$$= \|(-\cos\theta\sin^{2}\phi,-\sin\theta\sin^{2}\phi,-(\sin^{2}\theta+\cos^{2}\theta)\sin\phi\cos\phi)\|_{\mathbb{R}^{3}}^{2}$$

$$= (\cos^{2}\theta+\sin^{2}\theta)\sin^{4}\phi+\sin^{2}\phi\cos^{2}\phi=\sin^{2}\phi.$$

Therefore, the area of the desired surface is

$$\int_{\Sigma} dS = \int_{\psi^{-1}(\Sigma)} \sqrt{g} \, dA = \int_{0}^{\frac{\pi}{2}} \int_{\phi}^{\pi - \phi} \sin \phi \, d\theta d\phi = \int_{0}^{\frac{\pi}{2}} (\pi - 2\phi) \sin \phi \, d\phi$$
$$= \left(-\pi \cos \phi + 2\phi \cos \phi - 2\sin \phi \right) \Big|_{\phi = 0}^{\phi = \frac{\pi}{2}} = \pi - 2.$$

4. By the definition of line integral,

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^{2} t, -\cos t \sin t, 0) \cdot (\cos^{2} t - \sin^{2} t, 2 \sin t \cos t, -\sin t) dt$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^{2} t \cos^{2} t - \sin^{4} t - 2 \sin^{2} t \cos^{2} t) dt$$

$$= -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2} t dt = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 - \cos 2t}{2} dt = -\left(\frac{t}{2} - \frac{\sin 2t}{4}\right)\Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = -\frac{\pi}{2}.$$

5. Since $\operatorname{curl} \mathbf{F} = (0, 0, -2)$, the Stokes theorem implies that

$$\begin{split} \oint_C \pmb{F} \cdot d\pmb{r} &= \int_{\Sigma} (0,0,-2) \cdot \mathbf{N} \, dS = \int_{\psi^{-1}(\Sigma)} -2\cos\phi\sin\phi \, d(\theta,\phi) = -2 \int_0^{\frac{\pi}{2}} \int_{\phi}^{\pi-\phi} \sin\phi\cos\phi \, d\theta d\phi \\ &= -\int_0^{\frac{\pi}{2}} (\pi-2\phi)\sin2\phi \, d\phi = \left(\frac{\pi}{2}\cos2\phi - \phi\cos2\phi + \frac{1}{2}\sin2\phi\right)\Big|_{\phi=0}^{\phi=\frac{\pi}{2}} \\ &= -\frac{\pi}{2} - \frac{\pi}{2} + \frac{\pi}{2} = -\frac{\pi}{2} \, . \end{split}$$