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Chapter 1

Linear Algebra

1.1 Vector Spaces

Definition 1.1 (Vector spaces). A vector space V over a scalar field F is a set of elements
called vectors, together with two operations +:V xV — V and - : F x V — V), called the

vector addition and scalar multiplication respectively, such that
l. v+ w=w+ v forall v,we V.
2. (u+v)+w=u+ (v+w) for all u, v, we V.

3. There is a zero vector 0 such that v+ 0 = v for all ve V.

W

. For every v in V, there is a vector w such that v+ w = 0.
5. a-(v+w)=a-v+a-wfral aeF and v,we V.
6. a-(f-v)=(af) vioral a,feF and ve V.
7. (a+8)-v=a-v+ - -vioral a,feF and ve V.
8. 1l-v=wvforall ve V.
For notational convenience, we often drop the - and write aw instead of « - v.

Remark 1.2. In property 4 of the definition above, it is easy to see that for each v, there
is only one vector w such that v + w = 0. We often denote this w by —wv, and the vector

substraction — : V x V — V is then defined (or understood) as v — w = v + (—w).

1



2 CHAPTER 1. Linear Algebra

Example 1.3. Let F be a scalar field. The space F" is the collection of n-tuple v =

(V1,Va, -+, vy) with v; € F with addition + and scalar multiplication - defined by
(Vi V) A+ (W, W) = (Vi F W, Vg W)
a(vy, -, vy) = (v, -, avy) .

Then F" is a vector space.

Example 1.4. Let F = R or C, and V be the collection of all R-valued continuous functions

on [0, 1]. The vector addition + and scalar multiplication - is defined by

(f+9)(@) = f(x)+g(x) VSgeV,
(- f)(x) =af(x) VieV,ael.

Then V is a vector space, and is denoted by %€([0,1];F). When the scalar field under

consideration is clear, we simply use € ([0, 1]) to denote this vector space.

Definition 1.5 (Vector subspace). Let V be a vector space over scalar field F. A subset

W < V is called a vector subspace of V if itself is a vector space over F.

1.1.1 The linear independence of vectors

Definition 1.6. Let V be a vector space over a scalar field F. k vectors vy, vo, ---, v in V
is said to be linearly dependent if there exists (ay, -+, ) S F* (a1, - ,ax) # 0 such
that ayvy + asvy + -+ + apvp = 0. k vectors vy, v, -+, v, in V is said to be linearly
independent if they are not linearly dependent. In other words, {vy,--- , v} are linearly

independent if
a1+ + -+, =0 = ai=ar=---=0a,=0.
Example 1.7. The k vectors {1,z,2?%,--- , 2871} are linearly independent in ([0, 1]) for
all k e N.
1.1.2 The dimension of a vector space

Definition 1.8. The dimension of a vector space V is the number of maximum linearly
independent set in V, and in such case V is called an n-dimensional vector space, where
n the the dimension of V. If for every number n € N there exists n linearly independent

vectors in V, the vector space V is said to be infinitely dimensional.
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Example 1.9. The space F" is n-dimensional, and %’(]0, 1]) is infinitely dimensional (since

n—1

L,z,--- 2" ! are n linearly independent vectors in €([0, 1])).

1.1.3 Bases of a vector space

Definition 1.10 (Basis). Let V be a vector space over F. A set of vectors {v;}icr in V is

called a basis of V if for every v € V), there exists a unique {«;};cz < F such that

’022041"01‘-

ael

For a given basis B = {v;};cz, the coefficients {«;};er given in the above relation is denoted

by [v]s.
Example 1.11 (Standard Basis of F"). Let e; = (0,,---,0,1,0,---,0), where 1 locates at
the i-th slot. Then the collection {e;}!; is a basis of the vector space " over I since

n
(Oél,"’,Oén):ZOéiei VOZiGF.
=1

The collection {e;}I, is called the standard basis of F".

Example 1.12. Even though {1, x, -2k } is a set of linearly independent vectors, it
is not a basis of €’([0, 1]). However, let Z2(|0, 1]) be the collection of polynomials defined on
[0,1]. Then ([0, 1]) is still a vector space, and {1,z,---,2¥,---} is a basis of 22([0,1]).

1.2 Inner Products and Inner Product Spaces

Definition 1.13 (Inner product space). Let F = R or C. A vector space V over a scalar
field F with a bilinear form (-,-) : V x V — F is called an inner product space if the

bilinear form satisfies
1. (v,v) =0 forall ve V.
2. (v,v) =0 if and only if v = 0.

3. (v,w) = (w,v) for all v,w € V, where the bar over the scalar (w, v) is the complex

conjugate.

4. (v+w,u) = (v,u) + (w, u) for all u,v, we V.
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5. (av,w) = a(v, w) for all « € F and v, we V.
The bilinear form (-,-) is called an inner product on V.

Example 1.14 (Standard Inner Product on F"). Let F = R or C, and F" be the vector
space defined in Example 1.3. A special inner product on the vector space F* over F, called

the standard inner product on F”, is defined by
(’U, 'LU) = Zviwi 9
i=1

where v; and w; are the i-th component of v and w, respectively, and w; is the complex

conjugate of w;. We sometimes use v - w to denote (v, w).

Example 1.15. Let V = ([0, 1]; R). Define

(f,9) = L f(x)g(x)dx .

Then (‘5([0, 1;R), (-, )) is an inner product space. The norm induced by this inner product

is given by
1 1
1= [ | 1par)”.
and is called the L?-norm.

Proposition 1.16. Let V be an inner product space with inner product (-,-). The inner

product (-,-) on V induces a norm defined by

|v] =/ (v, v)
satisfying
L. |v]| =0 forallve V.
2. |v| =0 if and only if v=0.
3. |lav|| = |a||v| for alla e F and ve V.
4. v+ w|| < |v| + [|w| for all v, we V.
5. [(v,w)| < |v|||w| for all v,we V.
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Proof. Properties 1 through 3 are obvious. We focus on proving property 5 first, and as we

will see, property 4 is a direct consequence of property 5.

Let a € F satisfy (v, w) = |(v, w)|. Then |a| = 1. For all A € R,

(Aav + w, \av+ w) = (Aawv, A\av) + (Aav, w) + (w, Aav) + (w, w)
= X[ v]* + Aa(v, w) + Aa(v, w) + |w]?
= N[0 + 2A|(v, w)| + ]

Since the left-hand side of the quantity above is always non-negative for all A € R, we must

have

(v, w)[* = [[v]*|w]* < 0

which implies property 5. To prove property 4, we note that

[v+wl < [v] + |w| < v+ w|* < (Jo] + |w])*
< (v+wv+w) < o] + 2] w] + | w]|®

< Re(v, w) < |v]|w]
while the last inequality is valid because of property 5. =
Remark 1.17. The inequality in property 5 is called the Cauchy-Schwarz inequality.

Definition 1.18. Let (V, (- )) be an inner product space. A basis B of V is called orthog-
onal if u-v=0if u,ve B and u # v, and is called orthonormal if it is an orthogonal
basis such that |v| =1 for all ve B.

Definition 1.19 (Orthogoanl complement). Let (V, (-, )) be an inner product space over
scalar field F, and WW < V be a vector subspace of V. The orthogonal complement of
W, denoted by W+, is the set

W ={veV|(v,w)=0forall we W}.

Proposition 1.20. Let (V, (, )) be an inner product space over scalar field ¥, and VW be a

vector subspace of V. Then W' is a vector subspace of V.
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1.3 Normed Vector Spaces

The norm introduced in Proposition 1.16 is a good way of measure the magnitude of vectors.
In general if a real-valued function can be used as a measurement of the magnitude of vectors

if certain properties are satisfied.

Definition 1.21. Let V be a vector space over scalar field F. A real-valued function | - | :

YV — R is said to be a norm of V if

L. |v| =0 for all ve V.

2. |v| =0 if and only if v = 0.

3. ||av| = |a||v| for all ve V and o € F.

4. v+ w| < |v| + |w| for all v, we V.
The pair (V, | - |) is called a normed vector space.
Example 1.22. Let V =F", and | - |, be defined by

n 1
[Z|xi|p}p if 1<p<ow,
i=1

max |z;| if p=o0,
I<i<n

|z, =

where & = (21, ,2,). The function || - |, is a norm of F*, and is called the p-norm of F".

Theorem 1.23 (Holder’s inequality). Let 1 < p < o0. Then

(z,y)| < |zl,|yl, Vo yeF, (1.1)
where (-,-) is the standard inner product on F™ and p’ is the conjugate of p satisfying
1 1
p p

Proof. Let & = (x1,--+ ,x,) and y = (y1,- -+ ,yn) be given. Without loss of generality we
can assume that & # 0 and y # 0. Define ¢ = z/||z|, and ¥y = y/||y/ . Then |Z|, = 1 and
|yl = 1. By Young’s inequality

1 1.
ab < —a” + — 0P Va,b>=0,
p b
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we find that for 1 < p < o0,

n

Z (1 2 !yd”)

p IIpr e

|pr

n x|P P
Z k|p’: H Hp + ly| —

el " prlyl,

’HyH
which conclude the case for 1 < p < 0. The proof for the case that p = 1 or p = o0 is

trivial, and is left to the reader. O

Corollary 1.24 (Minkowski inequality). Let 1 < p < c0. Then
|z + yll, < [zl, + [yl Va,yeF".

Proof. We only prove the case that 1 < p < oo. First we note that

|+ ylh = low + yul” < 2 wr + yelP 7 (Jon] + |ykl)
k=1 k=1

= > |k + gl | + Z |+ yul" |y -
P i1

Let w = (|z1], |za], -, |2a|) and v = (|21 +y1[P7Y [zat12/P7, - [2atya|P7). By Holder’s
inequality,

1
7/

S b+ o = (1) < ol = fal, (D e+l )
k=1 k=1
p—1

= Jal( Yo+ uP) " = el a+ ylp
k=1

Similarly, we have Y] |z + yk[P" el < |yllplz + ylb~"; thus
k=1

lz+ylp < (l=l, + lylp) =+ 9lp™
which concludes the Minkowski inequality. O

Theorem 1.25. Let 1 < p < o0, and p' be the conjugate of p; that is, — —l— — =1. Then

||, = sup (z,y)| VaeF".
Yy p’:]'
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Proof. By Holder’s inequality, it is clear that ||, = sup |(cc, y)‘ for all £ € F*. On the
Iyl =1
Ty | P2

other hand, note that |.’L‘k|p = T '«T_k‘xk|p_2; thus lettlng Y = W
Lip

we find that ||y, =1
which implies that

1 n
(@, )| = ——= > [al” = | =,
HmHP k=1

which implies that sup |(z,y)| > |z,. o
lyl,/=1
Making use of Hoélder’s inequality (1.1) and the Riemann sum approximation of the

Riemann integral, we can conclude the following

1 1
Theorem 1.26. Let 1 < p < 0. If p’ is the conjugate of p; that is, , + P =1, then

| @@ ] < fblaly Vo E@.1LR),

where

([1repa) i1ep<o.

0

) = 0.
fle[g%\f(xﬂ if p

I £l =

Remark 1.27. The Minkowski inequality implies that

If +gle <flp+1lgle ¥ fige (0, 1;R).
In other words, the function | - |, : €([0,1];R) — R is a norm on %([0, 1];R), and is called

the LP-norm.

1.4 Matrices

Definition 1.28 (Matrix). Let F be a scalar field. The space M(m,n;F) is the collection

of elements, called an m-by-n matrix or m x n matrix over I, of the form

@11 A2 - Alp

Q21  A22 -+ Agp

Am1 Am2 - Amp
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where a;; € F is called the (7,7)-th entry of A, and is denoted by [A];;. We write A =
[@]1<i<mi1<j<n OF SIMply A = [@;j]mxn to denote that A is an m x n matrix whose (4, j)-th
entry is a;;. A is called a square matriz if m = n. The 1 x m matrix

Qix = [ Qi1 Q2 - Qin }

is called the i-th row of A, and the m x 1 matrix

is called the j-th column of A.

Definition 1.29 (Matrix addition). Let A = [ajjlmxn and B = [bjjlmxn be two m x n
matrices over a scalar field F. The sum of A and B, denoted by A 4+ B, is another m x n

matrix defined by A 4+ B = [a;; + b;j]mxn Or more precisely,

a;p +bnn aipg+bie - a, + by,

as; +bar  ase +by - ag, + by,
A4+ B=

Am1 + bml Am2 + bm2 e Amn + bmn

Definition 1.30 (Scalar multiplication). Let A = [a;j]mxn be an m x n matrix over a scalar
field F, and a € F. The scalar multiplication of o and A, denoted by oA, is an m x n matrix

defined by aA = [a;j]mxn Or more precisely,

Qapy  Qaz - Qdip

Qagzy Qagzy -+ Qdgp
oA =

Alm1  AGm2 - Almp

Proposition 1.31. The space M(m,n;F) is a vector space over F under the matriz addition

and scalar multiplication defined in previous two definitions.

Definition 1.32 (Matrix product). Let A € M(m,n;F) and B € M(n, ¢;F) be two matrices
over a scalar field F. The matrix product of A and B, denoted by AB, is an m x ¢ matrix
given by AB = [¢jj]mxn With ¢;; = i a;bi;. In other words, the (i,7)-th entry of the
product AB is the inner product of tllfg l’i—th row of A and the j-th column of B.
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Remark 1.33. The matrix product AB is only defined if the number of columns of A is
the same as the number of rows of B. Therefore, even if AB is defined, BA might not make
sense. When A and B are both n x n square matrix, AB and BA are both defined; however,
in general AB # BA.

Remark 1.34. Let v € F" be a vector such that the k-th component of v is the same as
the (i, k)-th entry of A € M(m,n;F), and w € F* be a vector such that the k-th component
of w is the same as the (k, j)-th entry of B € M(n, ¢;F). Then the (i, j)-th entry of AB is

simply the inner product of v and w in F".

1 0 2 2 -1 1
Example 1.35. Let A = [ } and B=|3 0 2. Then
0 -1 1
-1 1 0
0 1 1
AB = {—4 1 —2]

but BA is not defined.
Proposition 1.36. Let A € M(m,n;F), B e M(n, ¢;F) and C e M(¢, k;F). Then
A(BC) = (AB)C.

Definition 1.37 (The range and the null space of matrices). Let A € M(m,n;F). The
range of A, denoted by R(A), is the subset of F™ given by

R(A) = {AxecF"|zecF"},
and the null space of A, denoted by null(A), is the subset of F* given by
null(A) = {z e F* | Az =0} .

Proposition 1.38. Let A € M(m,n;F). Then R(A) and null(A) are vector subspaces of F"

and F™, respectively.

Definition 1.39 (Kronecker’s delta). The Kronecker delta is a function, denoted by 4, of
two variables (usually positive integers) such that the function is 1 if the two variables are

equal, and 0 otherwise. When the two variables are i and j, the value §(¢, ) is usually

s [0 iz,
BT 1 ifi=j.

written as d;;; that is,
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Definition 1.40 (Identity matrix). The identity matrix of size n, denoted by I,,, is the n x n

square matrix with ones on the main diagonal and zeros elsewhere. In other words,
In = [5ij]n><n7
where 0;; is the Kronecker delta.

When the size is clear from the context, 1, is sometimes denoted by I.

Definition 1.41 (Transpose). Let A = [a;j]mxn be a m x n matrix over scalar field F. The

transpose of A, denoted by AT, is the n x m matrix given by [AT];; = aj;.

By the definition of product of matrices, we can easily derive the following two proposi-

tions.
Proposition 1.42. Let A € M(m, n;F) and B € M(n, ¢;F). Then (AB)T = BTAT.

Proposition 1.43. Let A = [a;j]mxn be a m x n matriz over scalar field F, and (-, ) and

(v, )rm be the standard inner products on F* and F™, respectively. Then
(A, y)pm = (w,ﬁy)mn VeeF', yeF".

Definition 1.44 (Rank and nullity of matrices). The rank of a matrix A, denoted by
rank(A), is the dimension of the vector space generated (or spanned) by its columns. The

nullity of a matrix A, denoted by nullity(A), is the dimension of the null space of A.
Remark 1.45. The matrix AT is often called the conjugate transpose of the matrix A.

Remark 1.46. The rank defined above is also referred to the column rank, and the row
rank of a matrix is the dimension of the vector space spanned by its rows. One should
immediately notice that the column rank of A equals the dimension of R(A) and the row
rank of A equalis the dimension of R(AT).

Theorem 1.47. Let A € M(m,n;F). Then rank(A) + nullity(A) = n.

Proof. Without loss of generality, we assume that nulltiy(A) = k < n, and {vl, e ,vk} be
a basis of null(A). Then there exists n — k vectors {'ka, e ,'vn} such that {'01, e ,'vn}
is a basis of . We conclude the theorem by showing that {A'ka, e 7A'vn} is a basis of
R(A).
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First, we claim that {Aka, e ,Avn} is a linearly independent set of vectors. To see

this, suppose that axy1,--- , o, € F such that
Qpy1AV + - FapAv, = 0.

Then A(ogy1Vp1 + -+ + apvy) = 0 which implies that agi vk + - + ayv, € null(A).

Since {'vl, e 'vk} is a basis of null(A), there exist ay, -+, a; € F such that

QU] + OV = Q41 Vg+1 + -+ Qp Uy .

By the linear independence of {vl, e ,vn}, we must have oy = -+ = «,, = 0 which shows
the linear independence of {A'ka, e ,A'Un}.
Let we R(A). Then w = Aw for some v € F". Since {'vl, e ,'vn} is a basis of F", there

exist (1, -+, € F such that v = fyv; + --- + Byv,. As a consequence, by the fact that
Avj=0for1 <j <k,

w=Av=A(f1v1 + -+ fuvn) = f1Av 4+ BuAvy = Brp1Aviga + -+ BuAvy;
thus w can be written as a linear combination of {Avkﬂ, e ,Avn}. o

Theorem 1.48. The rank of a matriz is the same as the rank of its transpose. In other

words, for a given matriz the row rank equals the column rank.

Proof. Let A be a m x n matrix, and (-, -)pn, (+,-)pm be the standard inner products on F",

F™ respectively. Then Proposition 1.43 implies that

ye R(AA): < (y,Az)pm =0forall ze F* < (ATy, z)m = 0 for all z € F"
o ATy =0 < yenull(AT).

In other words, R(A)* = null(AT). Since the column rank of A is the dimension of R(A),

we must have
nullity (AT) = nullity(AT) = dim (R(A)") = m — the column rank of A.
On the other hand, Theorem 1.47 implies that
rank(A") + nullity (AT) = m;

thus the column rank of A is the same as the row rank of A. o
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Definition 1.49. Let A € M(n,n; F) be a square matrix. A is said to be invertible if there
exists B € M(n, n; F) such that AB = I,,. The matrix B is called the inverse matriz of A,
and is usually denoted by A~!.

Proposition 1.50. Let A € M(n, n;F) be invertible. Then rank(A) = rank(A~!) = n.

Proof. Since A(A7'b) = (AA')b = b for all b € F*, R(A) = F* which implies that
rank(A) = n. We next show that R(A™') = F*. Denote A~! by B, and let b € F".
Then BY(ATH) = (BT'AT)b = b since BPAT = (AB)T = I,. This observation implies that
R(B™) =TF", and the theorem is then concluded by Theorem 1.48. o

Proposition 1.51. Let A € M(n, n;F) be invertible. Then A~'A = AA~! =1,,.

Proof. We show that for all be F*, A='Ab = b. Since A is invertible, rank(A™') = n; thus
R(A™') = F™ which implies that for each b € F", there exists « € F such that A~z = b. As

a consequence,

(A7A)b = (AA) (A 'z) =AY (AA Dz = A 'z = b. o

1.4.1 Elementary Row Operations and Elementary Matrices

Definition 1.52 (Elementary row operations). For an n x m matrix A, three types of

elementary row operations can be performed on A:

1. The first type of row operation on A switches all matrix elements on the i-th row with

their counterparts on j-th row.

2. The second type of row operation on A multiplies all elements on the i-th row by a

non-zero scalar \.

3. The third type of row operation on A adds j-th row multiplied by a scalar p to the

i-th row.

The elementary row operation on an n x m matrix A can be done by multiplying A by
an n x n matrix, called an elementary matrix, on the left. The elementary matrices are

defined in the following

Definition 1.53 (Elementary matrices). An elementary matrix is a matrix which differs

from the identity matrix by one single elementary row operation.
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1. Switching the ig-th and jp-th rows of A, where ig # jo, is done by left multiplied A
by the matrix E = [e;;]nxn given by

o 1 if (4,7) = (do, jo) or (i,7) = (Jo,i0) or i = j = kg for some kg # i, jo,
Y1 0 otherwise,

or in the matrix form,

I T 0 NP ¢ B
o . 0 :
oo )
0O 0 O 1 : | < the ip-th row
1
E= 0 0
1
1 0O 0 0 . | < the jo-th row
0 1
0 0 . 0
|0 0 1 |
1 1

the 7p-th column  the jp-th column
2. Multiplying the kg-th row of A by a non-zero scalar A is done by left multiplied A by
the matrix E = [e;;]nxn given by
0 ifi+# 7,
€ij = A lf’l:]:ko,
1 otherwise,

or in the matrix form,

(1 0 : 0]
0 1 0
0 1
E=|: 0O X 0 : | < the kp-th row
1 0
0 1 0
| 0 : 0 1
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3. Adding the jg-th row of A multiplied by a scalar y to the ig-th row, where 7y # jp, is
done by left multiplied A by the matrix E = [e;;]nxn given by
1 ifi=j,
eij = M if (17.]) = (i07j0>7
0 otherwise,

or in the matrix form,

(1 0 0]

0 1 0 0
1 0 | « the ip-th row

0
E = 0 1 0 :
: 0 1 0

| O e 001

I

the jo-th column

Proposition 1.54. Fvery elementary matriz is invertible.

Theorem 1.55. Let A € M(n,n;F) be a square matriz. The following statements are

equivalent:
1. R(A) =T
2. rank(A) = n.
3. Ax = b has a unique solution x for all b e F".
4. A s invertible.
5. A =E E;_1---ExE;q for some elementary matrices Eq, -+, Ey.

Proof. Note that by definition 1,2,3 are equivalent, and Proposition 1.50 shows that 4 = 2.
The implication from 3 to 4 is due to the fact that the map b — @, where x is the unique
solution to Ax = b, is the inverse of A. Proposition 1.54 provides that 5 = 4. That 3 = 5
follows from that at most n(n 4+ 1) elementary row operations has to be applied on A to

reach the identity matrix. O
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1.5 Determinants

In order to introduce the notion of the determinant of square matrices, we need to talk
about permutations first. Note that there are many other ways of defining determinants,
but it is quite elegant to use the notion of permutations, and we can derive a lot of useful

results via this definition.

Definition 1.56 (Permutations). A sequence (ki, ks, -, k,) of positive integers not ex-
ceeding n, with the property that no two of the k; are equal, is called a permutation of

degree n. The collection of all permutations of degree n is denoted by P(n).

A sequence (ki, ks, -+ , k) can be obtained from the sequence (1,2,--- ,n) by a finite
number of interchanges of pairs of elements. For example, if k; # 1, we can transpose 1
and kp, obtaining (k1,---,1,---). Proceeding in this way we shall arrive at the sequence
(k1, ko, -+, ky) after n or less such interchanges of pairs.

In general, a permutation (kq, ke, -+, k,) can be expressed as

Tlin,gn) " 'T(iQ,jz)T(iLﬁ)(lu 2, ,Il) = (kh k27 Ty, kn)u

where 7(; ;) is a “pair-interchange operator” which swaps the i-th and the j-th elements (of
the object fed into), and N is the number of pair interchanges. We call such pair-interchange

operators the permutation operator. Since 7(; ;) is the inverse operator of itself, we also have
(i) i)~ Tliwa) (R Ky k) = (1,2, ).

We remark here that the number of pair interchanges (from (1,2,--- ,n) to (ki, ko, - -, kn))
is not unique; nevertheless, if two processes of pair interchanges lead to the same permuta-

tion, then the numbers of interchanges differ by an even number. This leads to the following

Definition 1.57 (Even and odd permutations). A permutation (ki,---,k,) is called an
even (odd) permutation of degree n if the number required to interchange pairs of
(1,2,--- ,n) in order to obtain (ki, ks, - ,ky,) is even (odd).

Example 1.58. If n = 3, the permutation (3,1,2) can be obtained by interchanging pairs
of (1,2,3) twice:

7(2,3)

(1,2,3) 29 (3,2,1) 22 (3,1,2);
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thus (3, 1,2) is an even permutation of (1,2,3). On the other hand, (1,3, 2) is obtained by
interchanging pairs of (1,2, 3) once:
7(2,3)

(17 273) - (1737 2)7

thus (1, 3,2) is an odd permutation of (1,2, 3).

(Y 1)

Even permutations Odd permutations
Figure 1.1: Even and odd permutations of degree 3

For n = 3, the even and odd permutations can also be viewed as the orientation of the
permutation (ki, k2, k3). To be more precise, if (1,2,3) is arranged in a counter-clockwise
orientation (see Figure 1.1), then an even permutation of degree 3 is a permutation in the
counter-clockwise orientation, while an odd permutation of degree 3 is a permutation in the
clockwise orientation. From figure 1.1, it is easy to see that (3,1,2) is an even permutation

of degree 3 and (1, 3,2) is an odd permutation of degree 3.

Definition 1.59 (The permutation symbol). The permutation symbol ey, ,...x, is a function

of permutations of degree n defined by

1 if (ky, ko, -+, ky) is an even permutation of degree n,
Chikokn —

—1 if (ky, ko, -+, ky) is an odd permutation of degree n.

Remark 1.60. One can extend the domain the permutation symbol to all the sequence
(k1, ka2, -+, ky) by defining that ey, g,..k, = 0 if (k1, ka2, -+, ky) is not a permutation of degree

1.

Definition 1.61 (Determinants). Given an n x n matrix A = [a;;], the determinants of A,
denoted by det(A), is defined by

n

det(A) = Z Ekiko-kn Hagk,_,.

(k1 kn)eP(n) =1

n
We note that the product [] asm, in the definition of the determinant is formed by
=1
multiplying n-elements which appears exactly once in each row and column.
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Proposition 1.62. Let E be an elementary matriz. Then
1. det(E) # 0.
2. det(E) = det(ET).
3. If A is an n x n matriz, then det(EA) = det(E) det(A).

The proof of the proposition above is not difficult, and is left as an exercise.

Corollary 1.63. Let vy, -+, v, € R® be (column) vectors, ¢ € R, and
A= ['vlf f'vn},
B = [’U1; ’Ujfl)\’UJ’l)]+1 E’Un:|,
C= ['vlf f'vj_lfvj—kuvifvjﬂf E’Un} forsomei;éj.

Then det(B) = Adet(A), and det(C) = det(A).

Proof. The corollary is easily concluded since B = E;A and C = EsA for some elementary
matrices E; and Ey with det(E;) = ¢ and det(Ey) = 1. =

Corollary 1.64. Let A be an n x n matriz. Then A is invertible if and only if det(A) # 0.
Proof. (=) Since A is invertible, Theorem 1.55 implies that
A=E,E;,_1---EE;

for some elementary matrices Eq, - -+, Eg, and this corollary follows from Proposition
1.62.

(«) Note that A is invertible if and only if rank(A) = rank(A") = n. Therefore, if A is not
invertible, the row vectors of A are linearly dependent; thus there exists a non-zero

vectors (o, -+, ay) € F™ such that
a1V + QU + -y =0
where AT = [v;1---v,]. Suppose that a; # 0. Then

vj = G1vr + - G101 + Bia Vi o Bt
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thus after applying (n — 1)-times elementary row operations of the third type (adding
some multiple of certain row to another row) on A we reach a matrix whose j-th row

is a zero (row) vector. Thereofre, for some elementary matrices Eq, -+, E,_; we have
det(En_1 ce E1A> =0
which implies that det(A) = 0. o

Corollary 1.65. Let A be an nxn matriz. Then the determinant of A and A*, the transpose
of A, are the same; that is,
det(A) = det(A").

Proof. If A is not invertible, then AT is not invertible either because of Theorem 1.48.
Therefore, det(A) = 0 = det(AT).
Now suppose that A is invertible. Then Theorem 1.55 implies that

A =EE;1 - EE;
for some elementary matrices Eq, ---, Ex. Since all E]T’s are also elementary matrices, by
Proposition 1.62 we conclude that
det(AT) = det(ET - - - EY) = det(ET) - - - det(E})
= det(E}) - - - det(ET)
= det(Ey) - - -det(Ey) = det(Eg - - - E1) = det(A). o
Corollary 1.66. Let A, B be n x n matrices. Then det(AB) = det(A) det(B).

Proof. 1f A is not invertible, then AB is not invertible either; thus in this case det(A) det(B) =
0 = det(AB).
Now suppose that A is invertible. Then Theorem 1.55 implies that

A=EE;_i - EE;

for some elementary matrices Eq, - - -, E;. As a consequence, Proposition 1.62 implies that
det(AB) = det(Ey, - - - E1B) = det(Ey) det(Ey_1 - - - E1B)
= ... =det(Ey) - - - det(E;) det(B)
= det(Ey - - - E;) det(B) = det(A) det(B) . o
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Definition 1.67 (Minor, Cofactor, and Adjoint matrices). Let A be an n x n matrix, and

A(i,7) be the (n—1) x (n— 1) matrix obtained by eliminating the i-th row and j-th column

of A; that is,
[ an
A A Q(;—1)1
AGj) =] Y
A(i41)1
L an1

12

A(;—1)2

A (i4+1)2

Qn2

ai(j—-1) A1(j+1) (1n
Ai-1)(j—1)  Ai-1)(j+1) A(i—1)n
A(i+1)(j—1)  A+1)(j+1) A(i+1)n

an(jfl) an(j+1) Ann |

The (i, 7)-th minor of A is the determinant of A(4,7), and the (7, j)-th cofactor, is the
(7, 7)-th minor of A multiplied by (—1)""/. The adjoint matriz of A, denoted by Adj(A),

is the transpose of the cofactor matrix; that is,

[Adi(A)].. = (—1)" det (A(j,7)) -

1 2 3 -3 -3 6
Example 1.68. Let A= |3 —1 2 |. Then the minor matrix of Ais [-8 —1 2 |,
0 2 -1 |7 =T =T
-3 3 6 -3 8 7]
the cofactor matrix of Ais | 8 —1 —2|, and the adjoint matrixof Ais | 3 -1 7 |.
T =7 | 6 -2 —T7]

The following lemma provides a way of computing the minors of a matrix.

Lemma 1.69. Let A be an n x n matriz. Then

2

(klv"' 7kn)€P(n): ki=j

det (A(%,j)) = (—1)i+j Ekikgkn H Aok, -
1<{<n

L#7

Proof. Fix (i,7) € {1,2,--- ,n} x {1,2,--- ,n}. The matrix A(7, j) is given by A(7,7) = [bag],

where o, 6 =1,2,--- ,n—1, and
Ao if
A(a+1)B if
bap = .
ao(p1)  if
Aat1y(p+r) if
Each permutation (07,09, ,0,_1) of degree

(k1, ka2, -+, ky) of degree n such that

a<iand g <j,
a>iand g <j,
a<iand > 7,
a>iand > j.

n — 1 corresponds a unique permutation
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L. ki =j;
2. foreach7e{l,---,i—1}and te {i,i+1,--- ,n— 1},

e P SO A IS S
We now determine the sign of €,,4,...0,_, and € k,..k,- Note that if a process of pair inter-
changes of the permutation (01,09, ,0,_1) leads to (1,2, - ,n— 1), then similar process
of pair interchanges of the permutation (ki, ko, , ki—1,7, kiv1, -+, kn), by leaving the i-th
slot fixed, leads to the permutation of degree n
(1,2,---,7—1,3+1,--- i—1,7,4,---,n) if i> j,
(1,2,---,i—1,5,4,---,7—1,7+1,--- n) if i<y,
(1,2,-+,n) if j =i
For the case that i # j, another |i — j|-times of pair interchanges leads to (1,2,--- ,n). To
be more precise, suppose that ¢ > j. We first interchange the (i — 2)-th and the (i — 1)-th

components, and then interchange that (i — 3)-th and the (i — 2)-th components, and so on.

After (i — j)-times of pair interchanges, we reach (1,2,---  n). Symbolically,

(1727'” 7j_17]+17 ,i—l,j,i,"' ,Il)

LT aion
(1,2, j—1,j 41, ,i—2,j,i—1,---,n)
LTsio9
(1,2, j—1,j 41, ,i—3,j,i—2--,n)
l
l
(1,2,--- ,n).

Similar argument applies to the case ¢ < j; thus

Eorosmony = (= 1) lep ey = (= 1) gyt

As a consequence,

n—1
det (A(7, 7)) = > c—
=1

(01,02, ,on—1)€P(n—1)

= (—1)i+j Z Ekka-kn H Qg - o

(K1, kn)EP(n), ki=7 l<ten
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Theorem 1.70. Let A be an n x n matriz. Then
Adj(A)A = AAdj(A) = det(A)L,.

Proof. Let A = [a;;]. By definition of matrix multiplications,

(Adj(A)A)ij = Z Adj(A)), o Qg = Z [ Z Ekiko ki H agké] U j
m=1 m=1

(klv"' 7kn)€P(n)7k7n:i 1stsn

L#£m
Z Ekiko-kn Hag;w if 1= j,
= (k1, ,kn)EP(n) /=1
0 if 7 # .
The conclusion then follows from the definition of the determinant. o

Corollary 1.71. Let A = [a;;] be an n x n matriz, and C = [c;;| be the adjoint matriz of
A. Then

det(A) = 2 a;iCji = Z ajiCij <i<n.
=1 =1
. - Adj(A)
Corollary 1.72. Let A be an n x n matriz and det(A) # 0. Then the matrix det(A) is the
inverse matriz of A, or equivalently,
Adj(A) = det(A)A™. (1.2)

1.5.1 Variations of determinants

Let 0 be an operator satisfying the “product rule” §(fg) = fég+ (6f)g. Typically 6 will be

differential operators. By the definition of the determinant,

1) det(A) = 2 €k1k2”'kn5 H Qg
(K1, ,kn)EP(n) /=1

n

_ 2 [ Z Ekrka ko Oik; H aek’f]

(K1, kn)eP(n) 1%5“
Z Ehrha-hn O ik, 1_[ a’fk‘g:|
i (kl"" ,kn)GIP(n),ki:j 1<4<n

L#i

(—1)" det (A(4, 7)) da; -

I
& &
HM’ u[']’
— —
| —|

7

Therefore, we obtain the following
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Theorem 1.73. Let A be annxn matriz, and § be an operator satisfying §(fg) = fég+(5f)g

whenever the product makes sense. Then
ddet(A) = tr(Adj(A)dA), (1.3)
where 0A = [0a;j]nxn if A = [@ijlnxn. In particular, if A is invertible,

d det(A) = det(A)tr((A™'6A) .

Example 1.74. Let A(z) = [igg ggﬂ and § = % Then

§ det(A) ztr< {_kh _fg] Ul: Zi} ) —kf 4k — gk’ — hg'.

1.6 Bounded Linear Maps

Definition 1.75 (Linear map). Let ¥V and W be two vector spaces over a scalar field F. A

map L :V — W is called a linear map from V into W if
L(av+ w) = aL(v) + L(w) VaeF and v,we V.

For notational convenience, we often write Lv instead of L(v). When V and W are finite
dimensional, linear maps (from V into W) are sometimes called linear transformations
(from V into W).

Let Ly, Ly : V — W be two linear maps, and « € F be a scalar. It is easy to see that
ali 4+ Ly 'V — W is also a linear map. This is equivalent to say that the collection of

linear maps is a vector space, and this induces the following
Definition 1.76. The vector space Z(V, W) is the collection of linear maps from V to W.

Definition 1.77 (Boundedness of linear maps). Let (V, |-[ly) and (W, |-|lv) be two normed
vector spaces over a scalar field F. A linear map L : ¥V — W is said to be bounded if the

number
| Lllw

| L]z w) = sup | L]y = sup (1.4)

lofv=1 ve0 [vly
is finite. The collection of all bounded linear map from V to W is denoted by Z(V, W),
and #(V,V) is also denoted by (V) for simplicity.
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Remark 1.78. When the domain V and the target ¥V under consideration are clear, we

use | - || instead of | - | zv,w) to simplify the notation of operator norm.
Remark 1.79. If V is finite dimensional, then Z(V, W) = B(V,W).

Proposition 1.80. Let (V,| - [lv) and OV, |- |w) be two normed vector spaces over a scalar
field . Then (B(V,W),|-|) with | -| defined by (1.4) is a normed vector space. (Therefore,

| || 7s also called an operator norm).

Definition 1.81 (Dual space). Let (V,| - |) be a normed vector space over field F. An
element in Z(V,F) is called a bounded linear functional on V, and the space (Z(V,F), | -
| #(v,) is called the dual space of (V,] - [), and is usually denoted by V.

Definition 1.82. Let (V,| - |y) and (W, | - |lv) be two normed vector spaces over a scalar
field F, and L € Z(V,W). The collection of all elements v € V such that Lv = 0 is called
the kernel (or the null space) of L and is denoted by ker(L) or Null(L). In other words,

ker(L) = {ve V|Lv=0}.

Theorem 1.83 (Riesz Representation Theorem). Let (V, (+,-)y) be an inner product space,

and f :V — R be a bounded linear map. Then there exists a unique w € V such that
f(v) = (v,w)y forallveV.

Proof. The uniqueness for such a vector w is simply due to the fact that there is no non-
trivial vector which is orthogonal to itself.

Now we show the existence of w. If f(v) = 0 for all v € V, then w = 0 does the job.
Now suppose that ker(f) < V. Then there exists u € ker(f)* such that |ul, = 1.

For v € V, consider the vector y = f(v)u — f(u)v. Then y € ker(f); thus y- u = 0.

Therefore,

0= f(v)|ul}, - f(w)(v, )y = f(v) — (v, f(w)u)y

which implies that f(v) = (v, w)y with w = f(u)u. o
By the Riesz representation theorem, we conclude the following

Theorem 1.84. Let (V, (-, -)y) and OV, (-,-)w) be two inner product spaces. Then for all
Le BV, W), there exists a unique L* € B, V) such that

(Lv, w)y = (v, L*w)y VveV,weW.
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Definition 1.85 (Dual operator). Let V and W be two inner product spaces, and L : V —
W be a bounded linear map. The dual operator of L, denoted by L*, is the unique linear
map from W into V satisfying

(Lv, w)y = (v, L*w)y VveV,weW,
where (-,)y and (+,-)y are inner products on ¥V and W, respectively.

Definition 1.86 (Symmetry of linear maps). An linear map L € ZA(H) is said to be

symmetric if L = L*.

The last part of this section contributes to the following theorem which states that every
bounded linear maps near by (measured by the operator norm) an invertible bounded linear

map is also invertible.
Theorem 1.87. Let GL(n) be the set of all invertible linear maps on (R™, | - |2); that is,
GL(n) = {L € Z(R",R") | L is one-to-one (and onto)} .
1. If L e GL(n) and K € B(R",R™) satisfying |K — L||||L7!| < 1, then K € GL(n).
2. The mapping L — L' is continuous on GL(n); that is,

Ve>0,30>03 |[K'—LY <e whenever |K—L|<9.

Proof. 1. Let |[L7Y] = i and |K — L| = 8. Then § < a; thus for every z € R",

afzlp = o L7 Lafre < ol L7 | Lafrn = |Lafrn < |(L — K)2[zn + [ K|
< Blz)rn + | Kz|gn -

As a consequence, (o — f)|z|gn < |[Kz|ge and this implies that K : R* — R is

one-to-one hence invertible.

1 €
0L 208
then K € GL(n). Since L™' — K~' = K~}(K — L)L™!, we find that if |K — L|| < ¢,

2. Let L € GL(n) and € > 0 be given. Choose § = min«{ } If|[K—L| <4,
_ _ _ _ _ _ S
K =27 < 1B = L7 < KK = L2 < 1K
which implies that |K | < 2|L™!|. Therefore, if |[K — L| < 4,

|27 = K7 < [KHIK = LI < 2|70 < e o



26 CHAPTER 1. Linear Algebra

1.6.1 Matrix norms

Each m x n matrix A € M(m, n;F) induces a linear map L : F* — F™ in a natural way: let
A = [@ij]mxn De a m x n matrix, B = {e;}_, and B = {&,}, be the standard basis of F*

and F™, respectively. We define the linear map L : F* — F™ by

m n n
— ~ m _ n
Lx—ZZaijxjeieF ,  where :E—ijejelﬁ‘ ,

i=1j=1 j=1
or equivalently, [Lz|z = A[z]z. The linear map L is called the linear map induced by
the matrixz A.

By matrix norms it means the operator norm of the induced linear map. However,
as introduced in Section 1.6, the operator norm of a linear map depends on the norms
equipped on the vector spaces. In particular, we have introduced p-norm on F", and we

have the following

Definition 1.88. Let A € M(m,n;F) with induced linear map L : F* — F™. The p-norm
of A, denoted by | A],, is the operator norm of L : (F*,| - |,) — (F™, | - |,) given by

| L
|Al, = sup [Lx|, = sup L.
Jzllp=1 w20 [
Remark 1.89. We can also choose different p in the domain and the co-domain. In other
words, the (p,¢)-norm of A € M(m,n,F) is the operator norm of the induced linear map

Lz (B - flp) — (B, ] - [q) given by

| Lz
|Alp.q) = sup |Lz|, = sup 1
lzlp=1 e20 [Z[lp

From now on, for notational simplicity we use Az to denote [Lz|z if B is the

standard basis of the co-domain.

Example 1.90. Consider the case p =1 and p = o, respectively.

m m m
Lop=ooi Al = sup [ Ae]s = max{ Y layl, D, lagsl, - D lans]}-

[#]lco= j=1 j=1

Reason: Let x = (21,29, ,2,)T and A = [aij]nxm‘ Then

a1 + -+ A1 Lm,

A1+ + Ao T,
Ax =

Ap1T7 +--+ ApmTm
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1<igsn

Assume max Z ai;| = Z |lay;| for some 1 < k < n. Let
j=1
x = (sgn(ax),sgn(arz), -+ ,sgn(ax,)) -

Then ||z], =1, and |Az|, = D] |ak;|-
j=1

On the other hand, if ||z], = 1, then

m m m m
’ai1$1 -+ AioX2 + - Giml'm‘ < Z ’ai]" < max{ Z ]a1j|, Z ]a2j|, s Z ‘CLn]"};
Jj=1 j=1 j=1 j=1

m m m

thus | A, = max{ Z |yl Z |ag;l, -+ Z ]anj|}. In other words, || A is the largest
j=1 j=1 j=1
sum of the absolute value of row entries.

2.p=1 |A|, = maX{Z ‘ail‘72 |, - >Z ‘aim|} :
i=1 i=1 i=1

Reason: Let (-, -) denote the inner product in R™. Then for x € R* with |z, = 1, by
Holder’s inequality (1.1) and Theorem 1.25 we have

|Az]y = sup (Az,y) = sup (z,A%y) < sup |z]|A Y[

Jylo=1 Jylo=1 Jylo=1
= sup [ATyle = [A oo
Jyloo=1

thus |A|; = sup |Az|; < A" . Similarly, if y € R™ and |y|. = 1, then

[zl =1

[ A%yl = sup (z,A%y) = sup (Az,y) < sup [|Az|u]y]e

lzlli=1 lzli=1 lzlli=1

= sup [Az], = Al

lzlli=1

which implies that |AT], = sup [|[ATy|sx < |A]:. As a consequence,
lyllo=1

n n n
Al = AT = maxc { 3 Jaa|, 3 laials -+ > laim
=1 =1 =1
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1.7 Representation of Linear Transformations

In Section 1.6.1, we see that any m x n matrix is associated with a linear map. On the
other hand, suppose that V is a n-dimensional vector space with basis B = {v; };-1:1, and
W is a m-dimensional vector space with basis B = {w;}™,. Define V = [vl Do vn} and
W = ['wl Deed wm], and let L e Z(V,W). Since Lv; € W, for each 1 < j < n we can write
Lv; = i a;jw; for some coefficients a;;. Moreover, if u € V), then

i=1

n
u:ch'vj or c=[ulp or u= Ve,
j=1

and by the linearity of L,

n m

Lu= L( Z Cj’Uj) = 2 CjL’Uj = Z 2 cjaij'wi = Z < CLZ‘jCj> w; .
j=1

j=1 j=1li=1 i=1  j=1

Let bl = Z ai;Cj, and b= [bl, s ,bm]T. Then
j=1

J

[Lulz = b= Ac= Alu]z.
The discussion above induces the following

Definition 1.91. Let V, W be two vector spaces, dim()) = n and dim(W/) = m, and
B, B are basis of V, W, respectively. For L € Z(V, W), the matrixz representation of L

relative to bases B and B, denoted by (L] 5, is the matrix satisfying
[Luls = [Llgsluls Vue).

If Le Z(V,V), we simply use [L]|z to denote [L]g .

1.8 Matrix Diagonalization

Definition 1.92 (Eigenvalues and Eigenvectors). Let V be a finite dimensional vector spaces
over a scalar field F, and L € #(V). A scalar A € F is said to be an eigenvalue of L if
there is a non-zero vector v € V such that Lv = Av. The collection of all eigenvalues of L
is denoted by o(L).

For an eigenvalue A € F of L, a non-zero vector v € V satisfying Lv = Av is called an
eigenvector associated with the eigenvalue A\, and the collection of all v € V such that

Lv = \v is called the eigenspace associated with .
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Let dim(V) = n and B be a basis of V. Then if A € F is an eigenvalue of L € Z(V),

there exists non-zero vector v € V such that
[L|g[v]y = [Lv]p = A[v]s;

thus the matrix representation [L]g of L satisfies that [L]z — Al is singular (not invertible).
Therefore, det([L]g — AL,) = 0 which motivates the following

Definition 1.93. Let A € M(n,n;F) be a n x n matrix over scalar field F. An eigenvalue
of A is a scalar A € F such that det(A — AL,,) = 0.

Theorem 1.94. Let L € B(F") be symmetric. Then o(L) < R.

Proof. Let A\ € o(L), and v be an eigenvector associated with A. Then
A, V) = (A0, V)pn = (Lo, v)pn = (v, L*0)pn = (v, LY)p = (v, \v) = A\ (v, v)pm
which implies that \ € R. =

Lemma 1.95. Let L € B(F") be symmetric, and (-, ) be the standard inner product on
F". Then the two numbers

m= inf (Lu,u)pm and M = sup (Lu,u)pn

lleeflpn =1 e pn=1

belong to o(L).

Proof. Suppose that M ¢ o(L). Let [u,v] = (Mu — Lu,v)p. Then [, -] is an inner product
on F*; thus the Cauchy-Schwarz inequality (Proposition 1.16) implies that

Hl/QHU UHl/Z'

Hu,v” < Hu,u

9

By Theorem 1.25, we find that

|Mu — Lulg = sup |[(Mu— Lu,v)m| = sup |[u,v]| < sup Hu,u]‘l/z‘[v,vﬂlm

vl =1 vl =1 vl =1

< (M —m)"*(Mu— Lu,u)il?  VueF", (1.5)

where we use the fact that sup Hv, v]|1/ - (M —m)"/? to conclude the last inequality.
Jolen=1
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Let B be the standard basis of F", and {u;};2; be a sequence of vectors in F* such that
|ug|m =1, and klim (Luyg, ug ) = M. Then (1.5) implies |[Muy — Lug|pm — 0 as k — 0.
—00
Since M ¢ o(L), M1, — [L]g is invertible; thus

[uk]B = (MIn - [L]B)_l(M[Uk]B — [L]B[Uk]g) — 0 in F"
which contradicts to |ug|m = 1 for all k € N. Hence M € o(L). Similarly, m € o(L). o

Definition 1.96 (Diagonalizable linear maps). Let V be a finite dimensional vector spaces
over a scalar field F. A linear map L : V — V is said to be diagonalizable if there is a

basis B of V such that each v € B is an eigenvector of L.

Theorem 1.97. Let L € AB(R") be symmetric. Then there exists an orthonormal basis of

R consisting of eigenvectors of L.

Example 1.98 (The 2-norm of matrices). Let (-, -)gr denote the inner product in Euclidean
space R*, and A € M(m,n;R). Since ATA is a symmetric n x n matrix, it is diagonalizable
by an orthonormal matrix P; that is, ATA = PAPT for some orthonormal n x n matrix P

and diagonal n x n matrix A = [)\;0;;]. Therefore,
|Az|3 = (Az, Ax)gm = (2, A" Az)gn = (2, PAPT2)ge = (PT2, AP 2)gn
which implies that

sup HAng = sup (PTZL‘,APT{L')Rn = sup (y,Ay)rn (Let y = P'z. then lylo = 1)

z2=1 [z]2=1 lyllz=1
= sup (g + Aoy + - + Aay)
[yl2=1
= max {)\1, e ,)\n} = maximum eigenvalue of ATA .

As a consequence, |Al; = y/maximum eigenvalue of ATA.

1.9 The Einstein Summation Convention

In mathematics, especially in applications of linear algebra to physics, the Einstein sum-
mation convention is a notational convention that implies summation over a set of indexed
terms in a formula, thus achieving notational brevity. According to this convention, when

an index variable appears twice in a single term it implies summation of that term over all
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the values of the index. For example, with this convention, the inner product u - v of two
vectors u, v € R", where u = (uy,--- ,u,) and v = (v, -+ ,vy), can be expressed as w;v;,
and the i-th component of the cross product u x v of two vectors u, v € R? can be expressed
as g;ul vk

In this book, we make a further convention that repeated Latin indices are summed

from 1 to n, and repeated Greek indices are summed from 1 to n — 1, where n is the space

dimension. In other words, we use the symbol f;g; to denote the sum > f;g;, and the symbol

i=1
n—1

faga to denote the sum > f,g,. Starting from the next Chapter, we use such summation
i=1
convention for notational simplicity.



Chapter 2

Differentiation of Functions of Several
Variables

2.1 Functions of Several Variables

Definition 2.1. Let V be a vector space (over a scalar field F). A V-valued function
f of n real variables is a rule that assigns a unique vector f(zy,---,x,) € V to each point
(1, ,x,) in some subset A of R". The set A is called the domain of f, and usually is
denoted by Dom(f). The set of vectors f(z,--- ,x,) obtained from points in the domain
is called the range of f and is denoted by Ran(f). We write f : A — V if f is a V-valued
function defined on A < R™.

If V =R, we simply call f: Dom(f) — R a real-valued function, while if ¥V = R™,
we simply call f: Dom(f) — V as a vector-valued function.

A vector field is a vector-valued function f : Dom(f) — V such that Dom(f) € V =R"»

for some n € N.

Definition 2.2. Let V be a vector space over R, A < R" be a set, and f,g: A — V be
V-valued functions, h : A — R be a real-valued function. The functions f + ¢, f — g and
hf, mapping from A to V, are defined by
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The map % : A\{x € A|h(z) =0} — V is defined by

(%)(x):% Voee A\{ze A|h(z) =0}.

Definition 2.3. A set U/ < R" is said to be open in R" if for each x € U, there exists r > 0
such that B(z,r), the ball centered at x with radius r given by

B(z,r) = {yeR”!Hx—y

Re < T}a

is contained in U. A set F < R" is said to be closed in R" if F°, the complement of F, is
open in R".
Let A < R" be a set. A point z is said to be

1. an interior point of A if there exists r > 0 such that B(zg,7r) € A;

2. an isolated point of A if there exists r > 0 such that B(zg,7) n A = {z0};

3. an exterior point of A if there exists r > 0 such that B(zg,r) < A%

4. a boundary point of A if for each r > 0, B(xg,7) n A # & and B(xg,r) n A* # .

The collection of all interior points of A is called the interior of A and is denoted by A.
The collection of all exterior points of A is called the exterior of A, and the collection of all
boundary point of A is called the boundary of A. The boundary of A is denoted by JA.
The closure of A is defined as A U @ A and is denoted by A. The derived set of A, denoted
by A’, is the collection of all points in A that are not isolated points.

A is said to be bounded in R" if there exists a constant M > 0 such that
|z|lgn < M VzeA (e A< B(0,M)).
A is said to be unbounded if A is not bounded.

The following theorem is a fundamental result in point-set topology. We omit the proof
since it is not the main concern in vector analysis; however, the result should look intuitive
and the proof of this theorem is not difficult. Interested readers can try to establish this

result by yourselves.

Theorem 2.4. Let A < R" be a set. Then
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1. A is open if and only if A = /Ol;
2. A is closed if and only if A= A;
3. A is closed if and only if 0A < A.

Definition 2.5 (Level Sets, and Graphs). Let A — R" be a set, and f : A — R be a
real-valued function. The collection of points in A where f has a constant value is called a
level set of f. The collection of all points (x, f(x)) is called the graph of f.

Remark 2.6. A level surface is conventionally called a level curve when n = 2.

2.2 Limits and Continuity

Definition 2.7. Let A < R" be a set, and f: A — R™ be a vector-valued function. For a

given xg € A’, we say that b € R™ is the limit of f at xg, written

lim f(x) =10 or flz) > basx— xg,

T—T0

if for each € > 0, there exists § = d(zp,e) > 0 such that
|f(z) — bllgm < & whenever 0 < ||z — zg|rs < 0 and z € A.
By the definition above, it is easy to see the following

Proposition 2.8. Let A < R" be a set, and f,g: A — R™ be a vector-valued functions.
Suppose that xo € A', f(x) = g(x) for all x € A\{xo}, and lim f(z) exists. Then lim g(z)
T—T0

T—To

exists and
lim g(z) = lim f(z).

T—T0 T—T0

The following proposition is standard, and we omit the proof.

Proposition 2.9. Let A < R" be a set, and f,g : A — R™ be vector-valued functions,

h: A — R be a real-valued function. Suppose that zg € A’, and lim f(z) = a, lim g(x) = b,
T—T0 T—x0

lim h(x) =c. Then

Jim (f +g)(2) = a+b, Jim (f —g)(z) =a—b,
lim (hf)(z) = ca, lim (f - g)(z) =a-b,

lim (%) =~ ifc#0.

T—T0
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Example 2.10. By Proposition 2.9,

lim r—zy+3 0—(0)(1)+3 _ 3
(z.)—(0,1) 2%y + 5y —y> — (0)2(1) +5(0)(1) - (1)° '
Example 2.11. Let f : (0,0) x (0,00) — R be given by f(x,y) = oy We can-
1. : (0, : , WA
not apply Proposition 2.9 to compute the limit  lim f (x,y), if the limit exists, since

(2,y)—(0,0)
. 1)1m (v —/y) = 0. Nevertheless, if (z,y) # (0,0),

ooy ale -yt E)
NN VRN NZRaN)

thus Proposition 2.8 and 2.9 imply that

flz,y) =

(VT +4/y);

lim f(z,y)= lim z(Wz+y)=0.

(z,y)—(0,0) (z,y)—(0,0)
Definition 2.12. Let A < R" be a set, and f : A — R™ be a vector-valued function. The

function f is said to be continuous at zp € A n A’ if lim f(x) = f(xo). In other words, f
T—xTo

is continuous at zq if
Ve > 0,30 =0(xg,e) > 03| f(x) — f(x)|rm < & whenever |z — zo|gn < d and x € A.

If f is continuous at each point of B € A n A’, then f is said to be continuous on B.

Remark 2.13. 1. The notation § = 6(x¢,€) means that the number ¢ could depend on x

and e.

2. Another way of interpreting the continuity of f at z( is as follows: f : A — R™ is

continuous at xy € U if

Ve >0,30 =0d(zxg,2) > 03 f(B(xo,0) n A) < B(f(x0),¢).

3. If A = U is an open set, we can assume that ¢ is chosen small enough so that
B(zg,0) < U in both Definition 2.7 and 2.12. In other words, lim f(z) = b if

T—T0

Ve> 0,30 =06(xg,e) >03|f(z)—0b

grm < € whenever 0 < ||z — xq[|gn <0,
and f:U — R™ is continuous at xg € U if

Ve> 0,30 =6(xg,e) > 03| f(z) — flxo)

grm < € whenever |z — zg|gn < 0.
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4. If A < R" is closed and bounded, and f : A — R™ is continuous, then for each £ > 0

we can choose ¢ depending only on & such that
|f(z) = f(y)||rm < & whenever ||z — y|gn < § and z,y € A.

The property (that § can be chosen independent of the point zy) is called uniform

continuity.

Theorem 2.14. Let U < R be open, and f : U — R™ be a vector-valued function. Then

the following assertions are equivalent:
1. f is continuous on U.

2. For each open set V < R™, f~Y(V) € U is open, where f~1(V) is the pre-image of V
under f defined by
') ={zecd|f(z) e V}.

Proof. Before proceeding, we recall that B < f~!(f(B)) for all B< U and f(f~'(B)) < B
for all B <€ R™.

“l = 2”7 Let a € f~'(V). Then f(a) € V. Since V is open in R™, e,y > 0 such that
B(f(a),ef@)) < V. By continuity of f (and Remark 2.13), there exists d, > 0 such
that

f(Ba,0,)) < B(f(a) £5@) -
Therefore, for each a € f~1(V), 34, > 0 such that
B(a,da) < [ (f(Bla.da))) = fH(B(f(a).55)) = (V).
Therefore, f~(V) is open.

“2= 1" Let a € U and € > 0 be given. Define V = B(f(a),e), then V is open. Since
a€ f~1(V) and f~'(V) is open by assumption, there exists § > 0 such that B(a,d) <
f71(V). Therefore,

f(B(a,0)) < f(f7'(V)) €V = B(f(a),e)

which (with the help of Remark 2.13) implies that f is continuous at a. =
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2.3 Definition of Derivatives and the Matrix Represen-
tation of Derivatives

Definition 2.15. Let 4 < R™ be an open set. A function f : U — R™ is said to be
differentiable at z(y € A if there is a linear transformation from R" to R™, denoted by
(Df)(zo) and called the derivative of f at x, such that

@) = f@0) = (D) )@ = 20)

2z |z — zo|gn

=0,

where (D f)(zo)(x — x¢) denotes the value of the linear transformation (D f)(xq) applied to
the vector x — xy. In other words, f is differentiable at zq € U if there exists L € Z(R", R™)
such that

Ve>0,30 >0 3| f(x) — f(zo) — L(x — z¢)|rm < &l|x — x0||gn whenever |z — zg|grs < 0.
If f is differentiable at each point of U, we say that f is differentiable on U.

Example 2.16. Let L : R® — R™ be a linear transformation; that is, there is a matrix
[L]mxn such that L(z) = [L]mxn[z], for all x € R®. Then L is differentiable. In fact,
(DL)(zo) = L for all zq € X since

lim |Lx — Lxg — L(x — x0)||gm

=0.
z—0 | — zo|rn

Example 2.17. Let f : R* - R be given by f(z,y) = 2*+2y. Define L, ) (z, y) = 2az+2y.

Then L, is a linear transformation (from R? to R) and

|22 4+ 2y — a® — 2b — Ly (z — a,y — b)|

Ve —a)?+(y - b)?
_ |22 + 2y — a® — 2b — 2a(z — a) — 2(y — b)|
Vo - tp
= Gl < |z —al;

Vi —ap+ (g bp

thus
_ |x2+2y—a2—2b—L(a’b)(q:—a,y—b)}
lim

(z,9)—(a,b) V(@ —a)?+ (y — b)?
Therefore, f is differentiable at (a,b) and (D f)(a,b) = L(ap)-

=0.
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Remark 2.18. Adopting the standard basis of R" and R™, a linear transformation L :
R™ — R™ has a matrix representation [L],x, such that L(x) = [L]nxu[z], for all z € R, In
the following, we will always use the standard basis for R" and R™ and use L and L(z) to
denote [L]mxm and [L]mxn[x]n, respectively, if L is a linear transformation from R™ to R™

and z € R®.

Proposition 2.19. LetU < R" be an open set, and f : U — R™ be differentiable at xq € U.
Then (D f)(xo), the derivative of [ at xq, is uniquely determined by f.

Proof. Suppose Ly, Ly € Z(R",R™) are derivatives of f at xy. Let ¢ > 0 be given and

re = 1. Since U is open, there exists r > 0 such that

e € R™ be a unit vector; that is, |e
B(zg,r) € U. By Definition 2.15, there exists 0 < § < r such that

|f(z) = f(wo) = Ln(x — zo)[rm _ e o [f(x) = flz0) = Lo(z — ao)[rm _ €
|z — xo|rn 2 |z — xo|rn 2

if 0 < ||z — zollgn < 0. Letting x = 29 + Ae with 0 < [A\| < J, we have

1
|Lie — Loe|pm = ——|Li(x — zo) — Lo(z — zo)||rm

Al
< ﬁ(}f(x) — f(zo) = Li(z — xo)HRm + || (@) = fzo) — Lo(x — I2)HRm)
_ Hf(x) — f(zo) — Li(z — Qfo)HRm X Hf(m) — f(w0) — La(z — x0) Rm
. |z — 2o/ |z — o
< 5 + 5 =c.

Since € > 0 is arbitrary, we conclude that Lie = Lse for all unit vectors e € R"™ which
guarantees that Ly = Lo (since if x # 0, Lz = ||$‘|R“Ll<ﬁ> = |@|go Lo (ﬁ) = Lyz). o
R» Rn

Example 2.20. (Df)(xg) may not be unique if the domain of f is not open. For example,
let A= {(x,y) }O <z<ly= O} be a subset of R?, and f : A — R be given by f(z,y) = 0.
Fix zg = (a,0) € A, then both of the linear maps

Li(r,y) =0 and Lo(z,y)=ay V(z,y)eR?

satisfy Definition 2.15 since

li |f(£l),0)—f(CL,O)—Ll(JI—CL,O)| _ li |f(l‘,0)—f((l,O)—LQ(SL'—(Z,O)| _
im = im =0.
(2,0)—(a,0) |(2,0) = (a,0)] g (2,0)—(a,0) | (,0) = (a,0)]
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Definition 2.21. Let {ex};_; be the standard basis of R*, &/ < R" be an open set, a € U
and f : U — R be a function. The partial derivative of f at a with respect to z;, denoted

of o
by ﬁ(a), is the limit

j
lim fla+ hej) — f(a)
h—0 h
if it exists. In other words, if a = (a1, - ,a,), then
é’_f(a) — lim flar, - ,aj_1,a; + h,aj, -, an) — flar, -+, ap) |
ox; h—0 3

Theorem 2.22. Suppose U < R" is an open set and f : U — R™ is differentiable at a € U.

Then the partial derivatives gfi(a) exists forallt =1,---m and j = 1,---n, and the matriz
Ly

representation of the linear transformation D f(a) (with respect to the standard basis of R

and R™) is given by

[ Of Ofi |
7, @ F(a) .
[Df(a)] = AT or [Df(a)],; = 5_9{;(@) :
0 frm O fin
| o (@ 5 (a)

Proof. Since U is open and a € U, there exists » > 0 such that B(a,r) < U. By the
differentiability of f at a, there is L € Z(R", R™) such that for any given ¢ > 0, there exists
0 < d < r such that

[f(x) — f(a) = L(z — a)|gm < €|z — a|ge whenever z € B(a,d).

In particular, for each i =1, --- ,m,

fila + he;) — fila)
h

<Hf(a+hej)—f(a) —LejHRm<8 VO<|hl<d,heR,

— (Lej)i Y

where (Le;); denotes the i-th component of Le; in the standard basis. As a consequence,

foreacht=1,--- ,m,

lim fz(a + hej) — fl(a)

lim Y = (Le;); exists

and by definition, we must have (Le;); = jfi (a). Therefore, L;; = g‘fi(a). o
Lj Lj
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Definition 2.23. Let &/ < R be an open set, and f : U4 — R™. The matrix

[ Jf ofr ] [ 0fi ofi T
(Jf)(z) = oo ()= : :
0 fm 0 fm 0 fm 0 fm

i 671»1 al‘n | i aiml(x) al‘n (ZE) |

is called the Jacobian matriz of f at x (if each entry exists).

Remark 2.24. A function f might not be differential even if the Jacobian matrix J f exists;
however, if f is differentiable at o, then (Df)(x) can be represented by (Jf)(x); that is,

[(Df)()] = (J ) ().
Example 2.25. Let f: R? — R3 be given by f(z1,7) = (22, 239, x{23). Suppose that f
is differentiable at x = (x1, z3), then

214 0
[(Df)(@)] = | 3afwy  af

da3x3 2xiws

Remark 2.26. For each x € A, Df(x) is a linear transformation, but D f in general is not

linear in z.

Example 2.27. Let f : R? - R be given by

fla,y) = { 332934?-/1/2 it (z,9)
’ 0 if (z,y)

[N N
~~ ~~
o o

==
S~— S~—

Then %(O, 0) = 25(0, 0) = 0; thus if f is differentiable at (0,0), then (D f)(0,0) = [0 0].
However,

f(x.y) — £0.0)— [0 0] MI_ ol bl s,

y 22+ y? (22 4 42)

|2y
(a2 +y2)2

2

thus f is not differentiable at (0, 0) since cannot be arbitrarily small even if 22+

is small.

Example 2.28. Let f : R? — R be given by

x ify=0,

flx,y)=1 vy ifz=0,
1 otherwise.
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aof _ o f(R0) = f(0,00 .k . of L e
Then 5:(:(0’0) = }111_% - = ilzlg(l)h = 1. Similarly, 8y(0’0) = 1; thus if f is

differentiable at (0,0), then (D f)(0,0) = [1 1]. However,

e = 100~ [ 1] 2] =17t~ e+
thus if xy # 0,
[f(z,y) = (@ +y)| =1 -2 —y| > 0as (z,3) - (0,0), 2y # 0.
Therefore, f is not differentiable at (0, 0).

2.4 Conditions for Differentiability

Proposition 2.29. LetU < R" be open, a €U, and f = (f1, -, fm) : U —> R™. Then f is
differentiable at a if and only if f; is differentiable at a for alli=1,--- ,m. In other words,

for vector-valued functions defined on an open subset of R,
Componentwise differentiable < Differentiable.
Proof. “=" Let (Df)(a) be the Jacobian matrix of f at a. Then
Ve>0,36>053|f(z)— f(a)— (Df)(a)(x—a)HRm <elx—algn if |z —algn <.

Let {e;}7, be the standard basis of R™, and L; € Z(R" R) be given by L;(h) =
el [(Df)(a )]h Then L; € Z(R",R) by Remark 1.79, and if |z — aljg= < 6,

\fi(z) — fila) = Li(z — a)| = |e; - (f(2) = f(a) — (Df)(a)(x — a))]
< | f(z) = fla) = (Df)(a)(z — a)| g < gz — alrn;
thus f; is differentiable at a with derivatives L;.

<" Suppose that f; : 4 — R is differentiable at a for each i = 1,--- ,m. Then there exists
L; € B(R™ R) such that

Ve> 0,36 >03|fi(z) — fila) — Li(z — a)| < —H:z:—a

Rn if HI‘-CL Rn < 6

Let L € Z(R",R™) be given by Lz = (Lyz, Loz, ,Lyz) € R™ if x € R*. Then
L e B(R*, R™) by Remark 1.79, and

|f(z) = fla) = L(z — )| < Z!fz fila) = Li(z — a)| < el — afjps

if |2 — algs <0 =min{d1, - ,6n}. =
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Theorem 2.30. LetUd < R" be open, a €U, and f:U — R. If

1. the Jacobian matriz of f exists in a neighborhood of a, and

2. at least (n — 1) entries of the Jacobian matrixz of f are continuous at a,

then f is differentiable at a.

Proof. W.L.O.G. we can assume that of ﬁ7 e of
ox1’ Oxa 0Tn—_1

are continuous at a. Let {e; i1

is continuous at a for ¢ =

be the standard basis of R*, and € > 0 be given. Since
1, ,n—1,

a.%'i

P P
35>09](%{Z() ai()‘ﬂjﬁ

On the other hand, by the definition of the partial derivatives,

Rn < 51 .

whenever |z — a

15, > 05 f(a+he;:)—f(a) _;:Uf;m)‘<jﬁwhenever0<|h|<5n.

Letk:x—aandézmin{él,--‘,5n}. Then
0 0
fa) = £(@) - [ @@ —a) + -+ @@ - )]
_ o1 di
=@+ k) = fl0) - @k = = Sk,
0 0
= [far+ ke k) = S a) = S @k == ok,
<[l B ) = fanan 0B - jf< )hi|

0
+’f(alaa2+k2a"' 7an+kn)_f(&17a27a3+k37"' >an+kn) 5.];( )kZ‘

+‘f(a17"'7an—17an+kn)_f(a'l7"'aan) 6f()kn

By the mean value theorem,

flay, - yajn,a5 + Ky, an + k) = flan, a5, a500 + Kja, s an + k)

= k];i (ay,-- ,aj_1,a; +0;kj, 0500 + kjya, - an + k)
for some 0 < 0; < 1; thusfor j=1,--- ,n—1,if |z — a|gn = ||k|re < 0,
‘f<a1;"' st a5+ ke an k) = fla, s ag, a0+ K, an + k) — 552( k;
‘a% ay, a1, a5+ 05k a0 + ki, an + k) — (Lf,(a) ki < —=|k;] .

ox; \/_ﬁ
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rn < 0 < 0,; thus

of

S

Moreover, if |z — allgn < 9, then |k,| < |k|gn = ||z — @

(a)kn

‘f(ab'" 7an—17an+kn) - f(ah”' 7an> < %|kn| .

As a consequence, if |z — allgn < , by Cauchy’s inequality,

1) = £l0) = [ @) o)+ + @)~ an)]|

EE oxn
e n
_ ﬁ; k5] < ekl = €]z — alge

which implies that f is differentiable at a. =
of of

Remark 2.31. When two or more components of the Jacobian matrix [67 e (97] of a
1 n

scalar function f are discontinuous at a point zy € U, in general f is not differentiable at xg.
For example, both components of the Jacobian matrix of the functions given in Example
2.27, 2.28, 2.44 are discontinuous at (0,0), and these functions are not differentiable at

(0,0).

Example 2.32. Let & = R*\{(z,0) e R? |z > 0}, and f : U — R be given by

cosTl 2L ify>0,
Va2 +y?
[l y) = arg(x +iy) = ™ ify=0,
2 —cos! T ify<0.
/2 +y2 Y
Then
, T ify#£0
0f e TvF0 af 2y D07
a_(xay) = y and a_(xay) = 1
v 0 if y=0, Y - ify=0.
€T
. of of . o .
Since Fp and 5, are both continuous on U, f is differentiable on U.
Yy

Definition 2.33. Let 4/ < R" be open, and f : U4 — R™ be differentiable on U. f is

said to be continuously differentiable on U if the partial derivatives gfl exist and
L

are continuous on U for e = 1,--- ,m and 5 = 1,--- ,n. The collection of all continuously
differentiable functions from ¢ to R™ is denoted by € (U; R™). The collection of all bounded
differentiable functions from U to R™ whose partial derivatives are continuous and bounded
is denoted by €' (U; R™).
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words, is it always true that lim f'(z) = f'(x¢)?
T—x0

Example 2.34. If f : R — R is differentiable at xy, must f’ be continuous at xy? In other
Answer: No! For example, take

gzrzsinl if x # 0,
fz) = v
0 it z = 0.
1° Show f(x) is differentiable at x = 0:
h) — h? sin 1
f'(0) = lim JO+h) = (O) = lim B — Jim sin - = 0
h—0 h—0 h—0
2° We compute the derivative of f and find that
2xsinl — cosl if x # 0,
) = P
0 it z =0.
However, lir% f'(x) does not exist.

Lj

Definition 2.35. Let 4/ < R" be open, and f : U — R be a function.
of

If the partial
. o of
x;, then the second-order partial derivatives

. 0% f
I (amj) is denoted by
In general, if the k-th order partial derivatives

derivative ——— exists in U and has partial derivatives (at every point in ) with respect to

6:@-8:5]- '
orf o
exists in U and has
8xikaazik71 tee 6:751-1
partial derivatives (at every point in U) with respect to x;,,,, then the (k + 1)-th order
: o 0 o* : or :
partial derivatives ( / > is denoted by / ; that is,
6$ik+1 al‘ikaxi]ﬁl 6:@1 63%“63% 0le
ak—l—lf B o < ak}f
6xik+1axik s 51’2'1 o 6902-“1

6.%%61‘%71 s 61’11> '

Theorem 2.36. Let U < R" be open, a € U, and f : U — R be a real-valued function.
2 2

Suppose that for some 1 < 1,5 < n, a—f, a—f, oy and f

al‘i al'j ax]a$l

é’:pié’xj
of a and are continuous at a. Then

exist in a neighborhood
0% f o2 f
8xl-§:cj (a) N axﬁxl (a) .
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Proof. W.L.O.G., we assume that f is a function of two variables; that is, n = 2. For fixed
h,k € R, define o(z,y) = f(z,y + k) — f(z,y) and ¢(z,y) = f(z + h,y) — f(z,y). Then

ola+h,b) —pla,b) = fla+h,b+k)— fla+ h,b) — f(a,b+ k) + f(a,b)
=(a,b+ k) —(a,b).

By the mean value theorem (Theorem A.9), for h, k # 0 and sufficiently small,

pla+h,b) — (a,b) = p.(a+ 018, b)h = [fo(a+ 01k, b+ k) — fo(a+01h,b)]h
= (fo)y(a+ 01k, b+ O:k)hk

for some 6,05 € (0,1), and similarly, for some 63,0, € (0, 1),
Y(a, b+ k) —(a,b) = (fy)s(a+ 0sh, b+ 04k)hk .

Therefore, for h, k # 0 and sufficiently small, there exist 6,05, 03,6, € (0,1) such that
(fo)y(a+ 01k, b+ 62k) = (fy)z(a+ O3h, b+ 04k). (2.1)

Let € > 0 be given. Since (f;), and (f,), are continuous at (a, b), there exist 6,2 > 0
such that

() — (Fy(aB)] < 5 i /o= a2+ (y— b7 <1,

‘<fw)y($ay) — (fa)y(a, b)| < % if \/(x —a)?+(y —0)%? < 6.

In particular, if § = min{d;, d2} and h, k # 0 satisfying v/ h? + k2 < 4,
|(fo)yla+ 01k, b+ 65k) — (fo)y(a,b)| + |(f2)y(a+ O3h, b+ 0:k) — (f2)y(a,b)| < e,

where 61,605, 05,0, € (0,1) are chosen to validate (2.1). As a consequence,

|(f2)y(a, %%h)(bﬂ
= |(fe)y(a,0) = (fa)y(a + 01h, b+ 02k) + (f2)y(a + O3h, b+ 04k) — (f.),(a,b)]
\thm+&mb+%m—«h (a,0)| + | (fo)y(a+ O3h, b+ 0sk) — (f2)y(a,b)| < e

which concludes the theorem (since € > 0 is given arbitrarily). =
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Example 2.37. Let f : R? - R be defined by

wy(@® —47) 4 (z,y) # (0,0),

flay) =4 =+
0 if (z,y) = (0,0).
Then A - .
Yy +dzxcy® —y° .
if (z,y) # (0,0),
Fay=q @ 000
0 if (z,y) = (0,0),
and

x® — 4a3y? — xy?
foy) = @
0 if (x,y) = (0,0),

if (x,y) # (0,0),

It is clear that f, and f, are continuous on R?; thus f is differentiable on R%. However,

. +(0,k) — f:(0,0
Fu0,0) = tig O £0.0)

while
fy(h,O) - fy(070) — 1 .
h Y

thus the Hessian matrix of f at the origin is not symmetric.

Definition 2.38. Let &/ < R" be open, and f : Y — R™ be a vector-valued function. The
function f is said to be of class €2 if f € €' (U;R™) and the second partial derivatives
2% f;
oxjoxy,

all ¢*-functions f : U — R™ is denoted by €*(U; R™).
In general, the function f is said to be of class €% if f € €*1(U;R™) and the k-th order
oFf
0x;, 0x;y, -+ 0%y,
1 <y, -, i, < n. The collection of all €*-functions f : U/ — R™ is denoted by €*(U; R™).

A function is said to be smooth or of class €% if it is of class €* for all positive

exists and is continuous in U for all 1 <7 <m and 1 < j,k < n. The collection of

partial derivatives exists and is continuous in I/ for all 1 < ¢ < m and

integer k.

Corollary 2.39. Let U < R™ be open, and f € €*(U;R). Then

02 f o2 f
(9331‘6.1']' (a) N 61']8371 (a)

Vaeld and 1 <1, <n.
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2.5 Properties of Differentiable Functions

2.5.1 Continuity of Differentiable Functions

Theorem 2.40. Let U < R" be open, and f: U — R™ be differentiable at xo € U. Then f

18 continuous at xg.

Proof. Since f is differentiable at x(, there exists L € Z(R", R™) such that
361> 05 £(@) = Flw0) = L(w = 20) |y < o — 2ol Y € Blao,by).

As a consequence,

| f(@) = f(x0)]gm < (IL] + 1) |z = z0|an V€ B(wo,d1). (2:2)
For a gi 0, let § = min {8, ————{. Then § > 0, and if z € B(zo, 6
or a given € > 0, le mm{ bS] +1)} en 6 > 0, and if x € B(xo,0),
€
11(0) — el < & <. :

Remark 2.41. In fact, if f is differentiable at xy, then f satisfies the “local Lipschitz
property”; that is,

IM = M(xg) > 0 and 6 = (xg) > 03 1if ||[x—xo|x <0, then ||f(z)—f(xo)|y < M|z—xo|x
since we can choose M = |L| + 1 and 6 = 6, (see (2.2)).

Example 2.42. Let f : R? — R be given in Example 2.27. We have shown that f is not
differentiable at (0,0). In fact, f is not even continuous at (0,0) since when approaching

the origin along the straight line zo = max,

lim f(z1,mzy) = lim mai __m # £(0,0) if m #0
(z1,mz1)—(0,0) b vV z1—0 (m2 + 1)I% - m? +1 ’ '

Example 2.43. Let f : R? — R be given in Example 2.28. Then f is not continuous at
(0,0); thus not differentiable at (0, 0).

Example 2.44. Let f : R? - R be given by
3

flay) =1 #*+?
0 if (z,y) = (0,0).

if (x,y) # (0,0),
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Then f,(0,0) =1 and f,(0,0) = 0. However,

(f(x,y)—f(o,o)—[l 0] M(: [y 038 (a.5) > (0.0)

N x? A+ 2 (22 +y2)2

Therefore, f is not differentiable at (0,0). On the other hand, f is continuous at (0, 0) since

|f(z,y) — f(0,0)] = | f(z,9)] < |z| = 0as (z,y) — (0,0).

2.5.2 The Product Rules

Proposition 2.45. Let U < R™ be an open set, and f : U — R™ and g : U — R be
differentiable at xqg € A. Then gf : A — R™ is differentiable at xy, and

D(gf)(xo)(v) = g(x0)(Df)(w0)(v) + (Dg)(wo)(v) f (o) - (2.3)

Moreover, if g(xg) # 0, then g : A — R™ 4s also differentiable at xq, and D(g)(ﬂﬂo) (R —

R™ s given by

9(xo) ((Df)(ifo)(v)) — (Dg)(w0)(v) f(x0)
9*(x0) '

D)) - (2.4

Proof. We only prove (2.3), and (2.4) is left as an exercise.
Let A be the Jacobian matrix of gf at xo; that is, the (7, j)-th entry of A is

6((9936];@)(96 ) = Q(SEO)SQ (o) + ‘955] (o) fi(z0) -

Then Av = g(o) (D) (20)(v) + (Dg) (x0) (0)  (2); thus

(9£)(x) = (g.f)(w0) — Az — x0) = g(xo) (f(x) — f(x0) — (D) (wo)(w — 20))
+ (9(z) = g(x0) — (Dg)(x0)(x — 20)) f(2)
+ ((Dg)(zo)(x — 20)) (f(2) = f(x0)) -

Since (Dg)(xo) € B(R™,R), |(Dg)(x0)| zm@nr) < o0; thus using the inequality

|(Dg)(wo)(2 — 0)| < |(Dg)(x0)
and the continuity of f at xy (due to Theorem 2.40), we find that

|(Dg) (o) (x
| — onIRn

7 (RD,R) HCIJ o I’OHRD

im " (@) - Flao)ga| <

T—T0

lim H Dg)(o HJ Rn R) Hf f(IU)HRm =0.

T—>T0
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As a consequence,

|(9.0)(x) = (9£)(w0) — Az — 20) | g

lim
T—T0 Hx - I’OHRU
< lo(eo)| i WO =0~ DD 20
T—T0 lz — zo[rn
+ 1lim [’9 ) — g(x0) _(Dg)(:L‘o ’Hf( )& }
T—TQ HSL’ ZL‘()HR
. [|(Dg) (o) (z — z0)| _
+ Jim [ @ — xOHRn Hsta) O)HRH*] =0

which implies that gf is differentiable at x¢ with derivative D(gf)(z¢) given by (2.3). o
e The differentiation of the Jacobian

Before going into the next section, we study the differentiation of a special determinant, the

Jacobian.

Example 2.46. Suppose that ¢ : Q@ < R* — () < R" is a given diffeomorphism
(thus det(Vey) # 0). Let M = Vi, and J = det(M). By Corollary 1.72, the adjoint
matrix of M is JM~'. Letting ¢ be a (first order) partial differential operator which satisfies
d(fg) = fog+ (0f)g, by Theorem 1.73 we find that

n Einstein’s summation
0 = tr(IM16M) = Y JAJGyY N ALY (2.5)
ij=1
where A7 = a;; with M™" = [ai]uxn, and f; = ;5
j

Remark 2.47. From now on we sometimes write the row index of a matrix as a super-script
for the following reason: if ¢ : Q € R* — R™ is a differentiable vector-valued function, then

V) is usually expressed by

Con o o]
ox1 0x9 0%y
B PO

Vi = ory 0z 0xy :

Om Ow  Om

| 0x1 Oxo . 0xn

0t
al'j’

thus the (i, 7) element of V1 i
7.
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Theorem 2.48 (Piola’s identity). Let v : Q € R® — () € R" be a €>-diffeomorphism,
and [a;;]nxn be the adjoint matriz of V. Then

Einstein’s summation n

(‘onventzon
s Z @ = 0. (2.6)
Jirg Ji —
4 O,

In other words, each column of the adjoint matriz of the Jacobian matriz of 1 is divergence-
free (see Definition 4.74).

Pmof. Let J = det(Vy) and A = (Vi)~'. Then aj; = JA]. Moreover, since AVy) = I,
Z AJy", = 0js; thus

0= [Z Ai%} k=) [AL T + Aly,]
r=1

which, after multiplying the equality above by Af and then summing over s, implies that

Al == Ay, AL (2.7)
r,s=1
As a consequence, by Theorem 2.36 we conclude that

_ Z Z [JA’"WWA{ A ’;JA;’] —0. o

j=1lr,s=1

-
D >

2.5.3 The Chain Rule

Theorem 2.49. Let U < R" and V < R™ be open sets, f: U — R™ and g : V — R’ be
vector-valued functions, and f(U) < V. If f is differentiable at xo € U and g is differentiable
at f(xo), then the map F = go f defined by

or in component,
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Proof. To simplify the notation, let yo = f(z9), A = (Df)(z9) € Z(R*,R™), and B =
(Dg)(yo) € B(R™,RY). Let ¢ > 0 be given. By the differentiability of f and g at zo and ¥,

there exists d1, dy > 0 such that if | — zg|ge < 01 and ||y — yo|lgm < d2, we have

|f(x) = f(x0) — A(z — 20) [ < min {1, m

£
lg(y) — 9(yo) — By — yo) |re < WHQ — Yol|rm -

Hiz = zofr=

Define

u(h) = f(wo+h) — f(wg) —Ah ¥V |[h]r: <61,
v(k) = g(yo + k) — g(vo) — Bk v |k

Rm < 52 .
Then if |A|ge < 7 and ||k||gm < 0o,

[P g < [Allgn s Ju(h)|en < |7 and

e -

TEIESY o)l < o275y

Let k = f(xg+ h) — f(zo) = Ah+u(h). Then }llirr(l) k = 0; thus there exists d3 > 0 such that

|k||gm < 02  whenever |h|gs < d3.

Since

F(xog+ h) — F(x0) = g(yo + k) — g(y0) = Bk +v(k) = B(Ah + u(h)) + v(k)
= BAh + Bu(h) +v(k),

we conclude that if |hllgn < 6 = min{dy, ds},

|F'(wo + h) = F(w0) = BAh[re < [Bu(h)|re + [[v(k)|re < [ Bl|u(h)|gm + WHM\R
£ £ € £
< Sl + g (AN + fu)aw) < Sl + S1hl = <lblie
which implies that F is differentiable at zo and [(DF)(zo)] = BA. o

Example 2.50. Consider the polar coordinate x = rcos 6, y = rsinf. Then every function
[ : R? - R is associated with a function F : [0,00) x [0,27) — R satisfying

F(r,0) = f(rcos,rsin@).
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Suppose that f is differentiable. Then F' is differentiable, and the chain rule implies that

or Ox '
[é’F é’F}_l@f M} or 00 _[af (9]0} cosf —rsind
or 00 ox 0y @ % or dy| |sin® rcosh |
or 00

Therefore, we arrive at the following form of chain rule
0 Odwd  Jdyo

0 ox 0 Gyi 0 _0r0 0yo
00  000x 000y

ar " arex ardy
which is commonly seen in Calculus textbook.

and

Example 2.51. Let f: R — R and F : R? — R be differentiable, and F(x, f(m)) =0 and
OF N 21 Cy {€9) _0F _0F

o # 0. Then f'(x) = By () where F, = 2 and F, = "

Example 2.52. Let v : (0,1) — R" and f : R® — R be differentiable. Let F(t) = f(y(t)).
Then /(1) = (DF) (+(1)'(0).

Example 2.53. Let f(u,v,w) = u?v + wv? and g(x,y) = (zy,sinz,e®). Let h = fog:
R? — R. Find &—h
ox
oh . .
Way I: Compute p directly: Since

hz,y) = f(g(z,y)) = f(zy,sinz, e”) = z?y?sinz + e sin® x,

we have
oh
ox
Way II: Use the chain rule:
oh _ofdor  0f0g2  Of 09s
or Oudxr Ovdr Ow Ox
= 2zy*sinz + (2%y® 4 2e” sinx) cos ¥ + €” sin® z.

= 2xy*sinx + 2°y* cos x + e* sin® x + 2e” sinz cos ¥ .

xT

=2uv -y + (u® + 2wv) - cosx + v - e

Example 2.54. Let F(z,y) = f(z*+v?), f: R > R, F: R? > R. Show that xaaj = yg—i

Proof: Let g(z,y) = 22 + y?, g : R? > R, then F(z,y) = (f o g)(z,y). By the chain rule,

{Z Zﬂ = ['(g(z,y)) - [Si 2‘;] = f(g(z.y)) [22 2y]
which implies that

=nfgay). 5 =20 (o).

oF _OF
Soy—=— = f'(g(z,y))2ry = x oy
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2.5.4 The Mean Value Theorem

Theorem 2.55. Let U < R™ be open, and f: U — R™ with f = (f1,---, fm). Suppose that
f is differentiable on U and the line segment joining x and y lies in U. Then there exist

points ci,- -+, Cm on that segment such that
fity) = fi(x) = (Df)(e)ly—x)  Vi=1,---,m.

Moreover, if U is convex and sup ||(Df)(x)|zm@rrm) < M, then
xeld

(@) = f@)|lgm < M|z —y|gn  YVa,yel.

Proof. Let 7 :[0,1] — R™ be given by v(t) = (1 —t)z + ty. Then by Theorem 2.49, for each
i=1,---,m, (fio~):[0,1] — R is differentiable on (0,1); thus the mean value theorem
(Theorem A.9) implies that there exists ¢; € (0, 1) such that

fily) = filx) = (fio (1) = (fio)(0) = (fio ) (t:) = (Dfi)e) (v (1)) ,

where ¢; = 7v(¢;). On the other hand, v'(¢;) =y — «.
Let g(t) = (f o7)(t). Then the chain rule implies that ¢'(t) = (Df)(v(t))(y — x); thus

lg" @) em < [(DHY O 2@ mmyly — 2o < Mz = ylen.

Define h(t) = (g(1) — g(0)) - g(¢). Then h : [0,1] — R is differentiable; thus by the mean
value theorem (Theorem A.9) we find that there exists £ € (0, 1) such that

thus by the fact that ¢(0) = f(x) and g(1) = f(y),

[£(x) = f()|Em = R(1) = h(0) < lg(1) = 9(0) [l (&) |
< M||f(x) = ()| ]z = ylen

which concludes the theorem. o

Example 2.56. Let f : [0,1] — R? be given by f(t) = (¢?,¢*). Then there is no s € (0, 1)
such that

(1,1) = f(1) = f(0) = f'(s)(1 = 0) = f(s)
since f'(s) = (2s,3s%) # (1,1) for all s€ (0,1).
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Example 2.57. Let f : R — R? be given by f(z) = (cosz,sinz). Then f(27) — f(0) =

(0,0); however, f'(z) = (—sinz,cosx) which cannot be a zero vector.

Example 2.58. Let f be given in Example 2.32, and U be a small neighborhood of the
curve
C={(z,y) |2 +y’=12<0} u{(z,+1)|0 <z <1}.

Then

-1 - f) =2

On the other hand,

(DHE@O.-2) = |5 s ) [_02} =

. 3. 2 . .3 .
which can never be g since }ﬂix < 3 if (z,y) € U while % > 3. Therefore, no point

+ y2 ‘
(x,y) in U validates

(D) y)((1,=1) = (1,1)) = f(1,-1) = f(L,1).

Example 2.59. Suppose that &/ < R" is an open convex set, and f : U4 — R is differen-
tiable and D f(z) = 0 for all € Y. Then f is a constant; that is, for some o € R™ we have
flz)=aforall zel.

Reason: Since U is convex, then the Mean Value Theorem can be applied to any z,y € U
such that f:(z)—fi(y) = Dfi(c:)(—y) = 0 (- Dfi = 0) fori = 1,2,- - ,m; thus f(z) = f(y)
for any z,y € U. Let a = f(x) € R™, then we reach the conclusion.

2.6 The Inverse Function Theorem ( ¥ & #c¥ 32 )

FoBe @8 % RiFzd- Boficns S d 3 FamiP 3 P& - Bt & %-
SRR N LA R F Sl bl4rZ & Sfc? > D A T SEPLY Y S
fioo AT R St e REAPL drg G A 0k = & Sdiesin! (& aresin) |,
cos™! (& arctan) % tan ! (& arctan) > :ZE F] 5 AP R & SfkhE s H
BATOTRF P E - - h (FtF Sz ) e Flot > R - BLax- B (2 #H
1) TERBAOIENE Sl FEAPER S I RE Sl AR - JHRERY G A

defe i - Bl - JRFEL O SEG A AP AN OLATRFEL -4
(2 g ¥ Rfpdde) chiFm T2 AT 24 - Behkr 38 TL (Theorem A.10) 2 i 4



§2.6 The Inverse Function Theorem 55

lg'FT ARZRFEFTOEEIF L F G BER o L A RS T
SR RAFEEEATR B LE - B 8§ A PRE (AL BT R A3
RBEIR A G R iER > TE_ (Df)(x) & B bounded linear map ¥ i3 {4 o
¥ B fe€t 78B4 Theorem 1.87 A i i f— B8z 4o% (Df)(xo) ¥ i
G 0 PRB - BASEA (Df)(x) F8F e AT T R e BE JBOLGiEE Y R (Df)
h- BEEFFIEBEEDR S FEAPEEL DaHm ] R OF SBF A 5 o
Before proceeding, we first prove the following important proposition which is used

crucially in the proof of the inverse function theorem.

Proposition 2.60 (Contraction Mapping Principle). Let F' < R be a closed subset (on
which every Cauchy sequence converges), and ® : F' — F be a contraction mapping; that

is, there is a constant 6 € [0,1) such that

|(x) — 2(y)

Rn < QH.T - yHRn :
Then there ezists a unique point x € F', called the fized-point of ©, such that ®(z) = x.

Proof. Let zg € F, and define x4 = ®(xy) for all k € N U {0}. Then

|r41 — ke = |@(2k) — @(wp1)] o < Ozt — Tima e < -+ < 0%y — mo|gn s

thus if ¢ > k,

|lze — 21 |mn < |28 — Zga|re + [Zhe1 — Trgollre + -+ [2m1 — 2|0
< (0" + 05 o+ 07 |y — wo e
Qk
1—46

SO +0+60*+-- )| — 20

Rn = Hxl - 1’0 Rn . (28)

k
1-0

Since 0 € [0,1), k}im |21 — 2o|re = 0; thus
—00

Ve>0,3N >05 |zr —zfllgn <€ VEk,{=N.

In other words, {zx}2, is a Cauchy sequence in F. By assumption, z; — z as k — oo for

some x € F. Finally, since ®(zy) = x4 for all £ € N, by the continuity of ® we obtain that

O(z) = klgglo O(zy) = l}grgo Tpp1 =T

which guarantees the existence of a fixed-point.
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Suppose that for some z,y € M, ®(z) = x and ®(y) = y. Then

|z = yllre = [@(2) = 2(y) | < Ollz — ylro
which suggests that |z — y[lgn = 0 or & = y. Therefore, the fixed-point of ® is unique.  ©

Now we state and prove the inverse function theorem.

Theorem 2.61 (Inverse Function Theorem). Let D < R™ be open, g € D, f: D — R" be
of class €*, and (D f)(xzo) be invertible. Then there exist an open neighborhood U of xy and
an open neighborhood V of f(xq) such that

1. f:U —V is one-to-one and onto;

2. The inverse function f=1:V — U is of class €*;

1

3. Ifw=f~'(y), then (Df)(y) = (Df)(x))
4. If f is of class €" for somer > 1, sois f~1.

Proof. We will omit the proof of 4 since it requires more knowledge about differentiation.
Assume that A = (Df)(xg). Then |A™'|gmors)y # 0. Choose A > 0 such that
2A| A7 p(rngny = 1. Since f € €', there exists § > 0 such that

|(Df) (@) — A

BRnR) = I(Df)(z) = (Df)(xo) ) <A whenever z € B(x¢,0) nD.

B(Rn Rn

By choosing  even smaller if necessary, we can assume that B(xo,d) € D. Let U = B(xo,9).
Claim: f:U — R" is one-to-one (hence f : U — f(U) is one-to-one and onto).

Proof of claim: For each y € R", define ¢, (z) =z + A" (y — f(z)) (and we note that every
fixed-point of ¢, corresponds to a solution to f(z) =y). Then

(Dgy)(x) =1d = ATH(Df)(x) = A7 (A — (Df)(2))
where Id is the identity map on R™. Therefore,

1
A— (Df)(x)H@(Ran) <3 Vz e B(xg,0).

(D) @) gy < 147 e

By the mean value theorem (Theorem 2.55),

1
Hapy(asl) — py(T2)||gn < §Hxl — Zo|gn V1,29 € B(xo,9), 1 # 2 (2.9)
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thus at most one z satisfies ¢,(x) = z; that is, ¢, has at most one fixed-point. As a
consequence, f : B(zg,d) — R" is one-to-one.

Claim: The set V = f(U) is open.

Proof of claim: Let b € V. Then there is a € V with f(a) = b. Choose r > 0 such that
Bla,r) = U. We observe that if y € B(b, Ar), then

we < JAT (y — f(a))

thus if y € B(b, A\r) and z € B(a,r),

- — T
e < [ A7 s oy |y = bl < AJA™ e oy = 55

ly(a) —a

1 r
et l2y(0) = allen < S e —allen + 5 <7

H‘Py(@ —afrn < HSOy(x) - ‘Py(a)

Therefore, if y € B(b, Ar), then ¢, : B(a,r) — B(a,r). By the continuity of ¢,

¢, : B(a,r) — Bla,r) .

On the other hand, (2.9) implies that ¢, is a contraction mapping if y € B(b, Ar); thus by the
contraction mapping principle (Proposition 2.60) ¢, has a unique fixed-point z € B(a,r).
As a result, every y € B(b, A\r) corresponds to a unique x € B(a,r) such that ¢,(z) = x or

equivalently, f(x) =y. Therefore,
B(b,Ar) < f(Bla,r)) < fU)=V.

Next we show that f~!:V — U is differentiable. We note that if xz € B(x,d),

_ _ 1

[DF)(@o) = (D) (@) s ) | A |z ) < AIAT [pqmn ey = 55
thus Theorem 1.87 implies that (D f)(z) is invertible if z € B(x,0).

Let b € V and k € R" such that b + k € V. Then there exists a unique a € U and

h = h(k) € R* such that a+ h e U, b = f(a) and b+ k = f(a + h). By the mean value

theorem and (2.9),

1
< —||h|lgn ;
LB

HQOy(CL + h) - Soy(a) Rn
thus the fact that f(a + h) — f(a) = k implies that

1
|h = A7 Elmn < S|Pz
which further suggests that

1 B B 1
Slhlee < JA™ Klen < JA™H | spgen [ Kl < o e (2.10)
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As a consequence, if k is such that b+ ke V,
If 0+ k) — f71(0) — (DF)(@)) K] Jath—a- (Df) (@) "'k

|l | |
(0h@) | D@

%(R" R™) | k||gn
1 |f(a+h) = fla) = (Df)(@)(R)|g. 2]
< ‘D a 7. n n
[((DH)@) | o g T s
-1
- H((Df)(a)) Z(R»R") fla+h)— f(a) = (Df)(a)(h)
A [ 2]l
Using (2.10), h — 0 as k — 0; thus passing £ — 0 on the left-hand side of the inequality
above, by the differentiability of f we conclude that

e ) = 170 — (D) @)k

IHO || k|| gn

Rn

]Rn

Rn

R —0.

This proves 3. o

Remark 2.62. Since f~! : V — U is continuous, for any open subset W of U f(W) =
(f~H71(W) is open relative to V, or f(W) = O n V for some open set O < R™. In other
words, if ¢ is an open neighborhood of xy given by the inverse function theorem, then
F(W) is also open for all open subsets W of U. We call this property as f is a local open

mapping at xg.

Remark 2.63. Since (Df)(xo) € B(R™ R"), the condition that (Df)(x) is invertible can

be replaced by that the determinant of the Jacobian matrix of f at x( is not zero; that is,

det ([(Df)(w0)]) # 0.

The determinant of the Jacobian matrix of f at x( is called the Jacobian of f at xy. The

O(fr, s fn)

Jacobian of f at z sometimes is denoted by J¢(x) or ———"="£.
a(fﬁl,"' a$n)

Example 2.64. Let f : R — R be given by

flx) =

X

:15—1—2.7:2sin1 if x # 0,
0 ifx=0.

Let 0 € (a,b) for some (small) open interval (a,b). Since f'(x) =1 — 2 cos = + 4x smf for

x # 0, f has infinitely many critical points in (a,b), and (for whatever reasons) these Crltlcal
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points are local maximum points or local minimum points of f which implies that f is not
locally invertible even though we have f/(0) =1 # 0. One cannot apply the inverse function

theorem in this case since f is not €.

Corollary 2.65. Let U = R be open, f:U — R" be of class €', and (D f)(z) be invertible
for all x e U. Then f(W) is open for every open set W < U.

AP )RR (local) F S #icTIZ (Theorem 2.61) 2_ {8 > AP 4™ K& R and_>

E.
b (global) F Sflc e P A ERZ T ¢ g . ﬁr%ﬁ@— fE uﬁtiﬁ’ Y
3 AR R (Df)(z) LI B R BT ﬁ; SRR S S AR P
ﬁﬁi@#@ﬁiT’&ﬁl—ké . mﬁ?

Example 2.66. Let f : R? — R? be given by

f(z,y) = (e" cosy, e”siny) .

Then

e*cosy —e¥siny
e*siny e*cosy

[(Df)(,y)] = [
It is easy to see that the Jacobian of f at any point is not zero (thus (D f)(x) is invertible for
all z € R?), and f is not globally one-to-one (thus the inverse of f does not exist globally)
since for example, f(x,y) = f(z,y + 27).

TR APARFRERALFINF A 2B NG LB F L ORI - Dl
T o Hie§sign definite %}u%\-‘r S HAIBIEREI N e A3 AR PR TR
(Df)(x) Pl FKP o mARFEIFRTRFL (Aot b)) Ta el IR (2EFDE S
B FIL ) EEAER KRG B PAEEREIBOF Sy o B

$$’L—vﬁm&béﬁim&mfﬁ—ﬁoé@&ﬁ@—ﬁﬁ%miwag@$
et Fl 4ok - H ¥ 8cS e ficdsign definite - 7R Sl B R P o 78 - H- on
(P15 Betb i enbl ) -

Theorem 2.67 (Global Existence of Inverse Function). Let D < R" be open, f: D — R"
be of class €*, and (D f)(x) be invertible for all x € K. Suppose that K is a connected (i
oo WEF - B) , closed and bounded subset of D, and f: 0K — R is one-to-one. Then

f: K — R" is one-to-one.

DR HF ST ILDEN ZR L MR TR Ae Y EP o
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2.7 The Implicit Function Theorem (*£ & #c % 32 )

Theorem 2.68 (Implicit Function Theorem). Let D < R™ x R™ be open, and F : D — R™
be a function of class €. Suppose that for some (xo,y0) € D, where o € R* and yy € R™,
F(zo,y0) =0 and

oy OYm
[(DyF)(%,yo)} = : : (%0, %0)

OFw = 0Fm

L dy1 OYm J

is invertible. Then there exists an open neighborhood U < R™ of xy, an open neighborhood

YV < R™ of yg, and f : U — V such that

—_

. F(x, f(x)) =0 for all z € U;

2. yo = f(@0);

3. (Df)(x) = —((D,F)(x, f(x))) (DF)(x, f(x)) for all x € U;
4. fis of class C";

5. If F is of class € for somer > 1, 50 is f.

Proof. Let z = (z,y) and w = (u,v), where x,u € R" and y,v € R™. Define w = G(z),
where G is given by G(z,y) = (x,F(x,y)) Then G : D — R™""™ and

I, 0
(DaF)(2,y)  (DyF)(x,y)

where [, is the n x n identity matrix and (D, F)(z,y) € Z(R",R™) whose matrix represen-

[(DG)(z,y)] =

tation is given by

0xy 0%y,
[(DF)a,p)] =] : -~ |(zy).

oF,, oF,,

L 021 0y |

We note that the Jacobian of G at (xo,yo) is det ([(DyF)(zo,y0)]) which does not vanish
since (DyF)(zo,yo) is invertible, so the inverse function theorem implies that there exists
open neighborhoods O of (g, yo) and W of (x, F(zo,y0)) = (20,0) such that
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(a) G : O — W is one-to-one and onto;

(b) the inverse function G=! : W — O is of class €7;

-1

(c) (DGY)(z, F(z,y)) = ((DG)(z,y))
By Remark 2.62, W.L.O.G. we can assume that O = U x V, where Y < R" and ¥V < R™
are open, and xg € U, yo € V.

Write G (u,v) = (c,p(u, v), Y(u, v)), where ¢ : W — U and ¢ : W — V. Then
(u,v) = G(p(u,v), ¥(u,v)) = (p(u,v), F(u, ¢ (u,v)))
which implies that ¢(u,v) = w and v = F(u, ¢ (u,v)). Let f(z) = ¢(z,0). Then (u, f(u)) €
U x V is the unique point satisfying F(u, f(u)) =0 if u e U. Therefore, f : U — V, and
F(z, f(z)) =0 Vezeld.

Since G(xo,10) = (20,0) = G(SCo,f(Io))y (20, Y0), (Sanf(xo)) € O,and G : O - W is
one-to-one, we must have yo = f ().
By (b) and (c), we have G™! is of class ¢!, and

-1

(DG (u,v) = ((DG)(,y))

As a consequence, 1) € €', and

(Dup)(u,v) (Dyp)(u,v) _ I, 0
(D) (u,0) (D) (u,0)|  |(DoF)(z,y) (DyF)(z,y)
i L, 0
(D F) () T (DF)xy) (DyF)(,y)

Evaluating the equation above at v = 0, we conclude that
-1
(Df)(u) = (Duh)(u,0) = = ((DyF)(u, f(u))) (D F) (u, f(u))
which implies 3. We also note that 4 follows from (b) and 5 follows from 3. o
Example 2.69. Let F(z,y) = 2% +y> — 1.

1. If (zo,y0) = (1,0), then F,(zo,y0) = 2 # 0; thus the implicit function theorem implies

that locally x can be expressed as a function of y.
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2. If (xo,y0) = (0,—1), then F,(z9,y0) = —2 # 0; thus the implicit function theorem

implies that locally y can be expressed as a function of x.

3. If (wo,y0) = (— %7 \f), then F,(7g,90) = —1 # 0 and F,(x0,90) = V'3 # 0; thus the

implicit function theorem implies that locally x can be expressed as a function of y

and locally y can be expressed as a function of x.

Example 2.70. Suppose that (z,y,u,v) satisfies the equation

zu+ yv? =0
v + y?u® =0

and (zo, Yo, uo,vo) = (1,—1,1,—-1). Let F(z,y,u,v) = (zu + yv*, xv® + y*u®). Then
F(0, Yo, to, vo) = 0.

8F1 8F1
1. Since (D, F)(xo, Yo, uo, Vo) = oz 0y (%0, Yo, o, Vo) = { Lo } is invertible
» PR 0Fy 0F; TR -1 -2 ’
or dy
locally (z,y) can be expressed in terms of w,v; that is, locally x = z(u,v) and y =
y(u,v).
0F, O0F
2. Since (DyF) (o, yo, uo, vo) = 0y Ju (20, Yo, wo, Vo) = [ L 1} is invertible
wk’)\ o, Yo, Uo, 0F, 0F,| \TorYo, U, 96 )
Oy ou

locally (y,u) can be expressed in terms of z, v.

Example 2.71. Let f: R® — R? be given by
f(z,y,2) = (xe¥ + ye*, xe® + zeY).

Then f is of class €', f(—1,1,1) = (0,0) and

eY we¥ +e* ye®
e? zeY xe* +e¥|’

(D) (g, 2)] = {

Since (D, . f)(—1,1,1) = {2 8} is invertible, the implicit function theorem implies that the

system

xe¥ +ye* =0
re* 4+ ze¥ =0
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can be solved for y and z as continuously differentiable function of = for x near —1 and (y, 2)

near (1,1). Furthermore, if we write (y, z) = g(z) for  near —1, then

~1
rooN |xeY +ef ye* ye? ey
g(z) = zeY xe® + ¢e¥ } [ '

2.8 Directional Derivatives and Gradient Vectors

Definition 2.72 (Directional Derivatives). Let f be real-valued and defined on a neighbor-

hood of z¢ € R”, and let v € R* be a unit vector. Then

(Dy f)(x0) jt tzof(Io +1v) = lim flao + t‘? — f(@o)

IH

is called the directional derivative ( > = ¥ #c) of f at x( in the direction v.

Remark 2.73. Let {e;}}_, be the standard basis of R". Then the partial derivative %(zo)
j

(if it exists) is the directional derivative of f at z in the direction e;.

Remark 2.74. Let f be a real-valued differentiable function defined on a neighborhood
of g € R", and let v € R" be a unit vector. For a curve 7 : (—§,d) — R" satisfying that

v(0) = 2 and 7/(0) = v, the chain rule shows that

d

2| (o) = (D) (ao)(v) = (Dof)(x0)

In other words, for a differentiable function f in a neighborhood of z(, the derivative
d

dt li—
tional derivative of a differential function f at z in the direction v can also be defined by

(f o) is independent of v as long as v(0) = xy and v/(0) = v. Therefore, direc-
0

the value —‘ ), where v : (—=4,6) — R" is any curve satisfying v(0) = zo and
7'(0)

Theorem 2.75. Let U < R" be open, and f : U — R be differentiable at xo. Then the

directional derivative of f at xo in the direction v is (D f)(xq)(v).

Proof. Since f is differentiable at zy, Ve > 0, 2 0 > 0 such that

[f(x) = f(w0) — (Df)(wo)(x — mo)| < —||95 — Zo[|ra whenever [z — zo[ps <.
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In particular, if x = z + tv with v being a unit vector in R* and 0 < |t| < 0, then

f(xo +tv) — f(mo) xo +1v) — f(w0) — (Df)(%)(t")’

~ )| = L

t i
_ |f@) = f(@o) — (Df) (o) (x — o) < e
It 2
thus (Dy f)(20) = (Df)(0)(v)- o
Remark 2.76. When v € R” but 0 < |v|ge # 1, we let v = Vﬂ) . Then the direction
RI’]

derivatives of a function f : U < R* — R at a € U in the direction v is

(Duf)(a) = lim L@+ = J(@).

t—0 t

Making a change of variable s = |t| Then
V|Rr

fla+tv) = f(a)

t s—0 S

(Df)(xo)(v) = [[v]ra(Df)(20)(v) =[]l lim

We sometimes also call the value (D f)(x¢)(v) the “directional derivative” of f in the “direc-

tion” v.

Example 2.77. The existence of directional derivatives of a function f at x in all directions
does not guarantee the differentiability of f at xy. For example, let f : R? — R be given as

in Example 2.44, and v = (v1,vs) € R? be a unit vector. Then

(Dyf)(0) = lim f(tvi tve) — £(0,0) = v,

t—0 t

However, f is not differentiable at (0,0). We also note that in this example, (D, f)(0) #
(Jf)(0)v, where (Jf)(0) = g;’;(o, 0) 2‘5(0, 0)| is the Jacobian matrix of f at (0,0).
Example 2.78. The existence of directional derivatives of a function f at x( in all directions
does not even guarantee the continuity of f at 5. For example, let f : R? — R be given by
.Z'yz
flay) =14 22+
0 if (x,y) = (0,0),

if (z,y) # (0,0),

Yy
and v = (v, vs) € R? be a unit vector. Then if v; # 0,

(D)) =ty 00D 2SO0y, Fvs Ve

t TS0 12V VY vy
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while if vi =0,
(D f)(0) = Tim L1 12) = f(0,0)

t—0 t

=0.

However, f is not continuous at (0, 0) since if (z, y) approaches (0, 0) along the curve z = my?
with m # 0, we have
4

. , my m
1 2 — 1 fr
yo0 Jmy™y) yo0 m?yt+yt m?+1

which depends on m. Therefore, f is not continuous at (0, 0).

Example 2.79. Here comes another example showing that a function having directional

derivative in all directions might not be continuous. Let f : R? — R be given by

xy .

0 ifz+y?=0,
and v = (v{,vs) € R? be a unit vector. Then if v, # 0,

e flvistve) = f(0,0) Pvive
(Dof)(0) = lim t ey

while if v; =0,

=0.

. f(tvi,tva) — £(0,0)

t—0

However, f is not continuous at (0, 0) since if (z,y) approaches (0, 0) along the polar curve

O(r) = g +sin~H(r — mr?) O<r«l,
we have
lim f(z,y) = lim 7”'2 ‘;089(7”) sinf(r) 7"(.—7;+ mr?) sin 0(r)
(z:)=(0,0) r—0t r28in” 0(r) + rcosO(r)  r—0+ rsin”(r) — r + mr?

z=r cos 0(r),y=rsin 6(r)
= lim (fr;r mr?)sinf(r) _ —1
r—0+ sinf(r) —1+mr  m

which depends on m. Therefore, f is not continuous at (0, 0).

Definition 2.80. Let &/ < R" be an open set. The derivative of a scalar function f : U/ — R
is called the gradient of f and is denoted by gradf or V f.
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Let 4 < R™ be an open set, a € U and f : U — R be a real-valued function. Suppose

that f € €(U;R) and (Vf)(a) # 0. Then ;j(a) # 0 for some 1 < k < n. W.L.O.G,,
k

of

we can assume that

(a) # 0. By the implicit function theorem, there exists an open
n

neighborhood ¥V < R*! of (ay, -+, a,_1) and an open neighborhood W < R of a,, as well as
a ¢*-function ¢ : V — R such that in a neighborhood of a the level set {z € U | f(z) = f(a)}

can be represented by z, = ¢(xq, -+ ,x,_1); that is,

f(xla “ 5 Tn-1, (;0('1717 T 731711_1)) = f<a> V(xl, e 71:11—1) eV.
Moreover,

. f:ﬁj ('rla “t s Tn-1, 90(1:1’ T 7xn—1>>

f:pn (‘1:17 e 7']‘,11717%0('%17 e 7xn71))

Oa; (X1, Ty1) =

Consider the collection of vectors {v;}1—] given by

0

Vi = —
J .
o0x;j

(Ila e 7xn—1790(x17‘ te 7xn—1>) (xla e JIn—l) € V

r=a

Then v}s are tangent vectors of the level surface. If {e;}7_, is the standard basis of R", then

fa?j(a)
" fan a,)) '

Therefore, the gradient vector (V f)(a) is perpendicular to v; for all 1 < j < n — 1 which

Uj:ej_'_(oa"' 7079096]'(@17"' aanfl)) =€ — (07 70

conclude the following

Proposition 2.81. Let U = R" be open and f € €1 (U;R); that is, f : U — R is contin-

wously differentiable. Then if (V f)(x¢) # 0, the vector _(V/)lwo) is the unit normal to
(V) (o) e

the level set {z e U| f(z) = f(z0)} at zo.

Example 2.82. Find the normal to § = {(z,y,2) |2* + y* + 22 =3} at (1,1,1) € S.
Solution: Take f(z,y,z) = x® + y> + 22 — 3. Then (Vf)(z,y,2) = (2x,2y,2z); thus
(Vf)(1,1,1) =(2,2,2) is normal to S at (1,1, 1).

Example 2.83. Consider the surface
S ={(z,y,2) ERS‘ZL‘Z —y* +ayz = 1}.

Find the tangent plane of S at (1,0, 1).
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Solution: Let f(x,y,2) = 2% —y*> + zyz. Then

S = {(x,y7z)€]R3|f(l’7y,Z) :f<170’1)};

that is, S is a level set of f. Since (Vf)(1,0,1) = (2,1,0) # (0,0,0), (2,1,0) is normal to
S at (1,0, 1); thus the tangent plane of S at (1,0,1) is 2(z — 1) +y = 0. o

(Vf)(xo)
[(V ) (o) |

is the direction in which the function f increases/decreases most rapidly (Ei& ¥ = /7 1%

Proposition 2.84. Let f: R" — R be differentiable. If (V f)(xo) # 0, then +

= %) at xg.

Proof. Let xy € R™ be given. Suppose that f increases most rapidly in the direction v,
then (Dyf)(zo) = sup (Duwf)(xo). Since f is differentiable, (D, f)(xo) = (Df)(zo)(w) =

[w]rn=1
(Vf)(zo) - w which is maximized in the direction _(Vh)@o) o

(V) (o) rm

Example 2.85. Let f : R* — R be given by f(z,y,2) = z?ysinz. Find the direction of
the greatest rate of change at (3,2,0).
Solution: We compute the gradient of f at (3,2,0) as follows:
_ (9 of of
(vf)<3a 27 0) - <a$ (37 27 0)7 ay (37 2a 0)7 Oz (37 27 O))
= (2zysin z, 2” sin z, 2%y cos 2))

= (0,0,18).

(x,y,z):(3,,2,0)

Therefore, the direction of the greatest rate of change of f at (3,2,0) is (0,0, 1).



Chapter 3

Multiple Integrals

3.1 Integrable Functions

Let us start our discussion on the integrability of functions of two variables.
Definition 3.1. Let A < R? be a bounded set. Define

a; = inf{z € R|(z,y) € A for some y € R},
by = sup {z € R|(z,y) € A for some y € R},
az = inf{y e R|(z,y) € A for some z € R},
b, = sup {y € R|(z,y) € A for some z € R}.

A collection of rectangles P is called a partition of A if there exists a partition P, of [a;, b1 ]

and a partition P, of [ag, bo],

Px:{a1:m0<m1<~~<xn:bl} and Py:{a2:y0<y1<~~<ym:b2},
such that

P = {Aij‘Aij = [z, it1] X [yj,yj41] for i =0,1,--- ;n—1land j=0,1,--- ,m—l}.

The mesh size of the partition P, denoted by ||P|| and also called the norm of P, is defined
by

Pl = max { /@it — )2 + (g1 —yp)? [ = 0.1, ;n = 1,5 = 0,1, ,m — 1},

The number /(2,41 — ;)2 + (yj+1 — y;)? is often denoted by diam(A;;), and is called the

diameter of A;;.

68
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Definition 3.2. Let A € R? be a bounded set, and f : A — R be a bounded function. For
any partition P = {Aij ‘ Ay = (i, %ip1) X (Y5, Yj+1),0=0,--- ,n—1,7=0,--- ,m— 1}, the
upper sum and the lower sum of f with respect to the partition P, denoted by U(f, P)
and L(f,P) respectively, are numbers defined by

U(f’ P) = Z sup ?A(xv y>A(A1J) 5

o<i<n—1 (T,Y)€A;

o<jsm—1
L(f,P)= inf _Ax, A(A;)
(f ) os;” (z,y)eAijf( y) ( ])
o<jsm—1

where A(A;;) = (241 — ;) (yj4+1 —y;) is the area of the rectangle A;;, and 7" is an extension
of f, called the extension of f by zero outside A, given by

—A f(z) zeA,
f<x>:{ 0 x¢A.

The two numbers

J f(z,y)dA = inf{U(f,P)|P is a partition of A}
A

and
f f(z,y) dA = sup {L(f,P) | P is a partition of A}
A

are called the upper integral and lower integral of f over A, respectively. The function
f is said to be Riemann (Darboux) integrable (over A) if J f(z,y)dA = J f(z,y)dA,
A Ja
and in this case, we express the upper and lower integral as J f(z,y)dA, called the double
A

integral of f over A.

Similar to the case of double integrals, we can consider the integrability of a bounded

function f defined on a bounded set A < R" as follows

Definition 3.3. Let A < R" be a bounded set. Define the numbers ay,as,--- ,a, and
b17b27'” 7bn by

ak:inf{xkeR‘x:(xl,--~ ,Ty) € A for some xy, -+, Tp_1, Tpr1, ,xneR},

bk:sup{xke]R’x:(:r;l,'-- ,Ty) € A for some x1, -+, Tp_1, Tpy1, ,xneR}.
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A collection of rectangles P is called a partition of A if there exists partitions P®*) of

[ak, by], k=1,--- ,n, P® = {ak = x(()k) < xgk) << xg\]fz = bk}, such that
1 1 2 2 n n+1
P= {Aili?“i" AiliQ"’i" - [xl('l)’xl(dzrl} X [$§2),$5211] Ko X [xgn)’xl('n+l)j|7

z’k:O,l,---,Nk—l,kzl,---,n}.

The mesh size of the partition P, denoted by |P], is defined by

||7DH - ma’X{J Z(xg:zrl —$§I]:))2 Zk = 0717‘ . 7Nk - 17k = 17 U ,TL}.
k=1

n

The number , | > (:Uffll — :cgfj))2 is often denoted by diam(A;,;,..;,), and is called the di-
k=1

ameter of the rectangle A, ;,..;, .

Definition 3.4. Let A < R" be a bounded set, and f : A — R be a bounded function. For

any partition

Airigeviy, = [I(l) z}). ] [x(Q) 22 | x - x [x(n) x(n+1)},

i1 ) i+l i2 ) Vig+1 in ) Vingl

P = {Ailig---in

ik:O>17"'7Nk_1ak:17"'7n}7

the upper sum and the lower sum of f with respect to the partition P, denoted by
U(f,P) and L(f,P) respectively, are numbers defined by

U(f;P) = 2 sup [ (2)m(A),
Aep €
L(f,P) =Y. inf [ (2)m(A),

TEA
AeP

where v, (A) is the n-dimensional volume of the rectangle A given by

1 1 2 2 n n
(D) = (@8, — 2 @P, — 2Py @, — )

it A= [xf? - xﬁl”ﬂ] X [1’1(22) — 9‘32(2211] X e X [xgj) - :L’Z(:Zrl], and [ is the extension of f by
zero outside A given by

(3.1)

. flz) xze A,
{ 0 z¢A.
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The two numbers
J f(z)dz = inf{U(f,P) | P is a partition of A},
A

and

f f(z)dz = sup {L(f,P)|P is a partition of A}
Ja

are called the upper integral and lower integral of f over A, respective. The function
f is said to be Riemann (Darboux) integrable (over A) if J flz)dz = f f(z)dz,
A A

and in this case, we express the upper and lower integral as | f(z)dz, called the n-tuple
A

integral of f over A.

Definition 3.5. A partition P’ of a bounded set A < R" is said to be a refinement of
another partition P of A if for any A’ € P’, there is A € P such that A’ < A. A partition
P of a bounded set A < R" is said to be the common refinement of another partitions
P1,Pa, -+ ,Prof Aif

1. P is a refinement of P; for all 1 < j < k.
2. If P’ is a refinement of P; for all 1 < j < k, then P’ is also a refinement of P.

In other words, P is a common refinement of Py, Py, - - - , Py if it is the coarsest refinement.

(£+77

Figure 3.1: The common refinement of two partitions

Qualitatively speaking, P is a common refinement of Py, Py, -, Py if for each j =
L,---n, the j-th component ¢; of the vertex (ci,--- ,¢,) of each rectangle A € P belongs to
Pi(j) for some i =1,--- k.

Proposition 3.6. Let A < R" be a bounded subset, and f: A — R be a bounded function.
If P and P’ are partitions of A and P’ is a refinement of P, then

L(f,P) < L(},P) < U(f,P) < U(f,P).
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Corollary 3.7. Let A < R" be a bounded subset, and f : A — R be a bounded function. If
P1 and Py are partitions of A, then

L(f,P1) < U(f, P2).

Proof. Let P be the common refinement of P; and P,. Then Proposition 3.6 implies that
L(fupl)<L(f77))<U(f7P)<U(f7P2) =

Corollary 3.8. Let A < R" be a bounded subset, and f : A — R be a bounded function.
Then

L @)z < J_A f(@)dz.

Proof. Noting that for each given partition P of A, L(f,P) is a lower bounded for all
possible upper sum; thus

L(f,P) < J f(x)dx  for all partitions P of A
A

which further implies that J flz)dz < J f(z)dx. o
Ja A

Proposition 3.9 (Riemann’s condition). Let A € R™ be a bounded set, and f : A — R be

a bounded function. Then f is Riemann integrable over A if and only if
Ve > 0,3 a partition P of A 2U(f,P)— L(f,P) <e.
Proof. “=7 Let € > 0 be given. By the definition of infimum and supremum, there exist

partition P; and Py of A such that

ff(a;)dx—f<L(f,732) and ff(x)dx+§>U(f,7?1).
Ja 2 A 2

Let P be a common refinement of P; and P,. Since f is Riemann integrable over A,

J f(x)dx = j f(z)dz; thus Proposition 3.6 implies that
Ja A
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<" Let € > 0 be given. By assumption there exists a partition P of A such that U(f,P)—
L(f,P) <e. Then

0< Lf(x) dr — Lf(x) dr < U(f,P)~ L(f,P) <.

f(z)dx = f f(z)dz; thus f is Riemann
A A

integrable over A. =

Since € > 0 is given arbitrary, we must have J

Definition 3.10. Let P = {A1, Ay, --- , Ay} be a partition of a bounded set A € R". A
collection of N points {£1, -+, &y} is called a sample set for the partition P if § € Ay, for
all k=1,---, N. Points in a sample set are called sample points for the partition P.

Let A < R" be a bounded set, and f : A — R be a bounded function. A Riemann
sum of f for the the partition P = {Ay, Ag, -+, Ax} of A is a sum which takes the form

Z & Vn Ak

where the set = = {£1,&, -+, &y} is a sample set for the partition P.

Theorem 3.11 (Darboux). Let A < R" be a bounded set, and f : A — R be a bounded
function with extension TA given by (3.1). Then f is Riemann integrable over A if and only
if there exists I € R such that for every given € > 0, there exists 6 > 0 such that if P is a
partition of A satisfying |P|| < d, then any Riemann sums for the partition P belongs to the
interval (I —e,1+4€). In other words, f is Riemann integrable over A if and only if there

exists I € R such that for every given € > 0, there exists 6 > 0 such that
N —
}Z; (Ev(Ag) — 1| < (3.2)
whenever P = {Ay,--- , Ay} is a partition of A satisfying |P|| < 8 and {&,&, -+ &} is a

sample set for P.

Proof. The boundedness of A guarantees that A < [— g, g]n for some r > 0. Let R =
T Trqn
531"
<" Suppose the right-hand side statement is true. Let ¢ > 0 be given. Then there exists
6 > 0 such that if P = {Ay,---, Ay} is a partition of A satisfying ||P| < 8, then for
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all sets of sample points {{, -, &y} for P, we must have

ol —A £
‘kzlf (&)v(Ag) 1] < 1

Let P = {A,---, Ay} be a partition of A with [P| < §. Choose two sample sets
{&, - &} and {n, -+ ,nn} for P such that

() sup F(2) = o < F(&) < sup J(@);

(L’EAk LEEAk

(b) inf F'(@) + s > T (n) > inf ().

TEAL 41/(R)
Then
N N A
U(f,P) =Y, sup f(@)v(A) < Y [F (&%) + ()]< K
k=1 T€2%k k=1
N —A N g
= f (&)v( <I+ +— =1+ =
and
N —A N A 13
L(f.P) = ng I @w(Ar) > Z 77 0) = o ()
. N —A A g N A I g € 1 g
—;f () ( k)_4V(R)kZ‘1V( W>I=g—g=I-7.

As a consequence, I—§<L(f,73) <U(f,P) <I+§; thus U(f,P) — L(f,P) <e¢

“=7 Let [ = J f(z)dz, and € > 0 be given. Since f is Riemann integrable over A, there
A

exists a partition Py of A such that U(f,P1) — L(f,P1) < g Suppose that Pfi) =

{yo ,y1 , ,yml} for 1 <i < n. With M denoting the number m; + mso + - - - + my,,

we define
€

" 4L (M + ) (sup () —inf f'(R) +1)
Then 6 > 0. Our goal is to show that if P is a partition of A with |P| < § and
{&,--- &N} is a set of sample points for P, then (3.2) holds.

Assume that P = {Ay,Ay,--- Ay} is a given partition of A with ||P|| < 4.
Let P’ be the common refinement of P and P;. Write P’ = {A], Af,--- Al } and
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Ap = AP x AP s Al as well as AL = A x AP oo A By the

definition of the upper sum,

N
U(f.P) = sup [ (x)v(Ay)
k=1 :EEA;C
= Z sup f (2)v(Ar) + 2 sup f (2)v(Ax)
1<k<N with  TEAL 1<k<N with e
y§i)$A](:)for all %, j yg.i)eA](j)for some 1, j
and similarly,
UEP) = ) s e+ ), sup fr(ay).
TeA]

i
zeA) 1<k<N’ with

1<k<N’ with
yg.l)EA;C(’L)for some 1, j

y;i)¢Agi)for all 7,5
By the fact that A, € P if yji) ¢ A;fi) for all 7, j, we must have

> v(A) = > v(A}).
1<k< N’ with

1<k<N with
yj(.’L)eA;C(Z) for some 1, j

yg.i)eA;:)for some i, j
The equality above further implies that

ULPI-UGP) = > sipf@wd)— 3, sup @A)

1<k<N with
y;.l)EA;C(Z)fDr some 1, j

§i)EA(i)for some i, j

. —A
< ('R -mF(R) Y A,
1<k<N with
yy)eAl(:)for some 1, j

Moreover, for each fixed 1, 7,

U ave 557 <l o) +6] < [-5. 50"
1<k<N
yDeald

thus
DIov(Ay) <26 VI<i<nl<j<m.

1<k<N with
(OFNG)
yj EAk
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Therefore,
U(f7 P) - U(fu Pl)

< (s TR - TR)YY Y va

=1 j= 0 1<k<N with
Sea®d

< (Sup?A( 1nff Z Z 26" !
=1 35=0
<26r" H(my +mg A+ my, + n)(sup?A(R) - inf?R(A)) < % :
and the fact that U(f,P1) — L(f,P1) < g shows that
U(f,P) - L(f7731) + U(fvpl) - U(fvpl) <€
Therefore, for any sample set {£1, -+, &y} for P,
Z U(f,P)<I+e.
Similar argument can be used to show that
Z L(f,P)>1—¢
which concludes the Theorem. =

Definition 3.12. A bounded set A < R® is said to have wvolume if the characteristic

function of A, denoted by 14 and given by
1 ifxeA,

0 otherwise,

La(z) = {

is Riemann integrable over A, and the number f 14(x)dx is called the volume of A and
A

is denoted by v(A). If v(A) = 0, then A is said to have volume zero.

Remark 3.13. Having defined the indicator function, then for a bounded function f: A —
R with bounded domain A, any given partition P of A we have ?A = f1y4; thus

= 2 sup(fla)(@w(A)  and  L(f,P) = ) inf(fLa)(@)(A).

Aep €A AeP
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3.2 Properties of the Integrals
Proposition 3.14. Let A < R" be bounded, and f,g: A — R be bounded. Then

(a) If B< A, then L (flp)(x)dx = JB f(z)dx and L (f1)(z)dx = JBf(:U) dx

) [ s@ et [ g [ (@ < [ (Fro@ < [ f@)det [ glo)ar

(¢) If ¢ =0, then L (cf)(z)dx = CL f(z)dx and L (cf)(z)dx = CL flz)dzx. If c <O,
then L (cf)(z)dx = CL f(z)dzx and fA (cf)(z)dx = CJA f(z)dx

(d) If f <g on A, then f flz)dx < J g(x)dx and J flz)dx < J g(x) dx.
Ja Ja A A

(e) If A has volume zero, then f is Riemann integrable over A, and f f(z)dz =0.
A
Proof. We only prove (a), (b), (c) and (e) since (d) are trivial.

(a) Let € > 0 be given. By the definition of the lower integral, there exist partition P4 of
A and Pg of B such that

L(le)(x)dz—€<L(f13,PA) Z mfle (x)v(A)

AEP4

and

| e =5 <LPe) = 3 T @ma).
JB AePp

Let P’y be a refinement of P4 such that some collection of rectangles in P/, forms a

partition of B. Denote this partition of B by Pj. Since in£ T x) <0if A e P\Ph,
xe

Proposition 3.6 implies that

L(le)(x) dr 2 < L(f1p.Pa) < L(f1p. 7)) = 3] nf 75" (2)n(A)

AePy

PINEDIB L F RO

AeP,\Pj  AeP

< Y if F@u(d) = L(f.Pp) < L f(x) da.

AePy 4
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On the other hand, let 73A be a partition of A such that Pg < 75,4 and
€
A ———,
p YA < 5o
AE'PA\'PB,AK\B#Q

where M > 0 is an upper bound of | f|. Then

2 inf 7*(z)v(A) = —M Z 1/(A)>—E

N TEA N 2
AEPA\PB,AGB;'EQ AePA\Pp, AnB#Q

which further implies that

| Gra@ e = L1 By = 3 i T w(a)

A€73A

(X X o+ ¥ )

AEPB  AePA\Pp,AnB£Z AePA\Pg, AnB=

= L(f,Ps) + > 1nff Jf Ydx —¢.

AeﬁA\PB,AmB;é@

Therefore, we establish that

JB f(z)dr —¢ < JA(le)(x) dr < JB f(x)de + <.

Since € > 0 is given arbitrarily, we conclude that f (f1g)(x)dx = J f(z)dz. Similar
argument can be applied to conclude that j (f1p)(z)dx = J f(x)dx.

(b) Let € > 0 be given. By the definition of the lower integral, there exist partitions P;
and Py of A such that

JA f(z)dx — g < L(f,P1) and f g(x)dr — % < L(g,Ps).

JA

Let P be a common refinement of P; and P,. Then
L f(z) ds + Lg(x) do— = < LUf.Py) + L(f. Pa) < L(f,P) + L(g, P)
= > inf f(z)r(A) + ] inf gla)v(A)

Acp 8 Aep ™2
< Y T+ D) = LU +0.P) < [ ([ +9)(w)a

AeP L4
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Since € > 0 is given arbitrarily, we conclude that

fAf(ZB)dx+JAg(:v)dx<J(f+g)($)dx'

Similarly, we have f (f+9)( f f(z)dx + J g(x) dx; thus (b) is established.

It suffices to show the case ¢ = —1. Let € > 0 be given. Then there exist partitions

P, and P, of A such that

J—f(x)da:—e<L(—f,731) and U(f,P2)<ff($)d:1:—l—€.
JA A
Let P be the common refinement of P; and P,. Then

J —f(z)dr —e < L(—f,P1) < L(—f,P) < J —f(x)dx
Ja

A

and

| s <vP) < V(P < .f D) di b e
A
By the fact that

L(~f,P) = )] inf (=)' () — > sup f(x ~U(f.P),
Aep ™ Ao ael

we find that

J —f(x)de —e < L(—f,P)=-U(f,P) < —J f(z)dzx

JA A
and -

—f(z)dx = L(—f,P) = =U(f,P) > —J fla)de —¢.

JA A

Therefore,

[ ~s@tr—c<~[ s@ae< [ ~swarse

Since € > 0 is given arbitrarily, we conclude (c).

Since f is bounded on A, there exist M > 0 such that —M < f(z) < M for all z € A.

Therefore, —14 < % < 14 on A; thus (¢) and (d) imply that

0= L 14(2) dz — L La(z) dz > L %x)dx _ % L (@) da
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which implies that J f(z)dx < 0. Similarly, f — f(x) dz < 0 which further implies
A A

that f f(z)dx = 0. Therefore, by Corollary 3.8 we conclude that
JA

0 < _L (@) de < L (@) dz <0

which implies that f is Riemann integrable over A and J f(z)dx =0. o

Remark 3.15. Let A < R® be bounded and f,g : A — R be bounded. Then (b) of
Proposition 3.14 also implies that

JA(f —g)(z)dzr < JA f(z)dx — JAQ(J?) dz and L f(x)dz — J_Ag(x) dr < L(f - g)(x) dz

Corollary 3.16. Let A, B < R" be bounded such that A n B has volume zero, and f :
AU B — R be bounded. Then

_L f(z)dr + JB f(z)de < _LUB f(x)de < LUB f(@)de < L F(z)dw + L f(z) da

Proof. Note that fla+ flp = flaop+ fla~np on AU B. Therefore, (a), (b) of Proposition
3.14 and Remark 3.15 implies that

r

_Lﬂx) do+ f flayde = | (fLoa) do+ j

= (flavs — (—flanp))(z) dz
AuB

< flaop(x)dr — J (—fLlanp)(z) dz
AuB JAUB

- | t@ar- | ne

AuB JANB

(f15)(x) de < f (F1a+ flp)(x) da

JAUB

le

le

e

le

which, with the help of Proposition 3.14 (e), further implies that

Jf d:c+ff LUBf(:z:)d:L'.

The case of the upper integral can be proved in a similar fashion. =

Having established Proposition 3.14, it is easy to see the following theorem (except (c)).

The proof is left as an exercise.
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Theorem 3.17. Let A < R" be bounded, c € R, and f,qg: A — R be Riemann integrable.
Then

(a) f =+ g is Riemann integrable, and J (f+g)(x)de = J f(z)dz + f g(x)dz.
A A A
(b) cf is Riemann integrable, and f (cf)(x)dx = cf f(z)de.
A A
(c) |f| is Riemann integrable, and ‘J f(z) dx) < j |f(z)|dz.
A A

(d) If f < g, then L f(x) de < L g(x) dx.

(e) If A has volume and |f| < M, then ’f f(z) d:v’ < Mv(A).
A

Definition 3.18. Let A < R"” be a set and f : A — R be a function. For B < A, the
restriction of f to B is the function f{B : A — R given by f|p = f1p. In other words,

_( f(z) ifzeB,
f‘B($)_{ 0 ifzeAB.

The following two theorems are direct consequences of (a) of Proposition 3.14 and Corol-
lary 3.16.

Theorem 3.19. Let A, B < R" be bounded, B < A, and f : A — R be a bounded function.
Then f is Riemann integrable over B if and only if f|p is Riemann integrable over A. In

either cases,
f f}B(:p)dx:J f(x)dx.
A B

Theorem 3.20. Let A, B be bounded subsets of R* be such that An B has volume zero, and
f:AuB — R be bounded such that f!A and f‘B are all Riemann integrable over A u B.

Then f is Riemann integrable over A U B, and

LUB (@) do = L (@) de + JB f(z) da.

3.3 Integrability for Almost Continuous Functions

Lemma 3.21. Let A < R" be a bounded set of volume zero. If B < A, then B has volume

ZET0.
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Proof. By (a), (d) and (e) of Proposition 3.14,

0= LlB(az)dx: _LlB(a:)dx: fBlB(x)dw

and _ _
0= f 1p(x)dx = f 1p(x)dx = f 1p(x)dx.
A A B
Therefore, J 15(z) dx = 0 which implies that B has volume zero. o
B

k

Lemma 3.22. Let Ay,--- , A, € R" be bounded sets of volume zero. Then | J A; has volume
j=1

zero.

Proof. 1t suffices to prove the case for £ = 2. Suppose that A; and A, are bounded sets
of volume zero, and A = A; U As. By Lemma 3.21, A; n A has volume zero; thus (e) of

Proposition 3.14 and Corollary 3.16 imply that

_L 1a(z)dx = Llwb La(z)dx > Ll 14(2) do + f 1a(z)da = 0

Y o J Az
and _ _ _ _
f 1a(x)dx = J 14(x)de < J 1A(x)d$+J 14(x)dz =0.
A A1UA; Ay Ap
Therefore, L 14(z) dz = 0 which implies that A has volume zero. o

Theorem 3.23. Let A < R" be a bounded set such that 0 A has volume zero, and f : A - R
be a bounded function. If f is continuous except perhaps on a set of volume zero, then f is

Riemann integrable over A.

Proof. Let R be a closed cube such that A € Rand 0AndR = . We show that TA = flyu

is Riemann integrable over R and by (a) of Proposition 3.14, we then obtain that

_L f(x)de = J (f1a)(z)dx = fR(flA)(x) do = L( f1a)(x)dx = L f(z)dz

R
which implies that f is Riemann integrable over A.
Let € > 0 be given. Suppose that the collection of discontinuities of f is D, and
B =0AuD. Since 0 A and D has volume zero, Lemma 3.22 implies that B has volume
zero; thus (a) of Proposition 3.14 then implies (with B € R in mind) that

L 1p(z)dx = JB 1p(r)dz =0  and L 15(z) da = JB 15(z)dz = 0.
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Therefore, J 1p(x)dx = 0, so there exists a partition P; of R such that
R

£

Z I/(A) = U(].B,Pl) <

AeP1,ANBAD Q[SUP 7A(R) - inf?A(R) + 1] '

Let U = int( U A). Then B < U. Since the discontinuity of TA is a subset of
AeP1, AnB#

B, 7A : RnU' — R is continuous. Since R n U’ is closed and bounded, ?A is uniformly

continuous; thus there exists 6 > 0 such that

‘—A —A

[ (@)= f (%)} <

if 21,29 € RnU" and |x1 — 2o < 0.

2v(R)

Let P be a refinement of P; such that |P| < J, and define two classes Cy, Cy of
rectangles in P by C} = {A’ eP ‘ A" & A for all A € Py satisfying A n B # @} and Cy =
{A" e P|A"¢ C1}. Then if A’ e Cy, then A’ € R\U'; thus

U7 P) = L(F"P) = 3 [sup(F 1r)(w) = inf (7" 1a) (&) |w()

AlePp e’

(2 I ) [ - 7))
< ﬁ Z v(A') + [supfA(R)—inffA(R)} Z V(A"

AeCq A’eCy

= @+ [swF R -t (®)] Y ua)

2v(R) AePi ,AnB#Z
S [sup?A(R) — inf?A(R)]e .
2 Q[SUPTA(R) —inf 7 (R) + 1] ’
and we conclude that f is Riemann integrable over A by Riemann’s condition. =

3.4 The Fubini theorem

If f:[a,b] > R is continuous, the fundamental theorem of Calculus can be applied to
computed the integral of f over [a,b]. In the following two sections, we focus on how the

integral of f over A < R", where n > 2, can be computed if the integral exists.

Definition 3.24. Let A < R" and B < R™ be bounded sets, S = A x B be a product set in
R*™ and f : S — R be bounded. For each fixed x € A, the lower integral of the function
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f(z,-) : B — R is denoted by f f(z,y) dy, and the upper integral of f(z,:) : B — R is
JB

denoted by f f(z,y)dy. If for each z € A the upper integral and the lower integral of
B

f(z,-) : B — R are the same, we simply write J f(z,y) dy for the integrals of f(z,-) over
B

B. The integrals j f(z,y)dx, f f(z,y) dx and f f(z,y) dx are defined in a similar way.
A Ja A

Theorem 3.25 (Fubini’s Theorem). Let A < R® and B < R™ be bounded sets, and f :
A x B — R be bounded. For x € R* and y € R™, write z = (x,y). Then

LXB“Z”“ L( JBﬂx,y)dy)d:c f f Fo.)dy)d J (33)
LxB f(z)dz < JB (_L f(:z:,y)dw)dy < L (L f(x,y)d:v)dy < Lng(z) dz.  (34)

In particular, if f: A x B — R is Riemann integrable, then

[ serae= ([ stmanan)ae= [ (] i)
= [ ([ semas)as = [ ([ stwna)as.

Proof. 1t suffices to prove (3.3). Let € > 0 be given. Choose a partition P of A x B such
that L(f,P) > f f(2)dz — . Since P is a partition of A x B, there exist partition P,
AxB

of A and partitian P, of B such that P = {A =RxS ‘ ReP,,Se Py}. By Proposition
3.14 and Corollary 3.16, we find that

J ([ s an)a= | v |
D f D ffAXBxydy da:

ReP, SePy

» ZJ JfAXBxydy dm

ReP, SePy

and

f(@,y)15(y) dy ) d

SePy S

WV

\%

inf (@, )1 (S)ra(R)

(z,y)eRx S

\%

ReP,SePy

- Z ( inf 7 (2, y)vnm(D) = L(f,P) > f(z)dz —¢.

AeP TY)EA JAxB
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Since € > 0 is given arbitrarily, we conclude that

JAXB flz)dz < JB <_L f(x,y)dx> dy .

Similarly, J <J f(x,y)dy) dr < j f(2) dz; thus (3.3) is concluded. o
A B AxB

Corollary 3.26. Let S < R" be a closed and bounded set such that 05 has volume zero,
¢1,2 1 S — R be continuous maps such that p1(z) < @a(x) for allz € S, A = {(z,y) €
R* x R|z € S,¢1(x) <y < pa(x)}, and f : A — R be continuous. Then f is Riemann

integrable over A, and

L [z, y)d(z,y) = L (FZ(@ f(z,y) dy) dx . (3.5)

v1(x)
Proof. To establish that f is Riemann integrable over A, by Theorem 3.23 it suffices to show

that 0 A has volume zero. Let m = IIliSI} ¢1(x) and M = max wa(x). Since
xTre e
A< {(z,01(x)) |z e S} u{(z,pa(x)) |z € S}u (S x [m, M]),

to see 0 A has volume zero it suffices to show that 05 x [m, M], {(z,¢1(z)) |z € S} and
{(z,2(x)) |z € S} have volume zero because of Lemma 3.21 and 3.22. Note that Theorem
3.23 implies that ¢, is Riemann integrable over S; thus for a given € > 0 there exists
partition P of S such that

U(er, P) — L(p1,P) <e.
Let B = U A x [infyen P1°(2), supgen P1°(2)]. Then C' = {(z,¢1(z)) |z € S} = B

AEP,ANS#F
and

0< J 1e(z)dz < f 1p(z)dz < Z (suppr®(z) — inf 21°(x)) x va(A)
c B AeP ANS2G TEA zel
< U(

01, P) — L(p1,P) <e.

Therefore, C' = {(z,¢1(z)) |z € S} has volume zero and similarly, {(z, 2(z)) |z € S} has
volume zero.

Now we show that 05 x [m, M] has volume zero. Since ¢S has volume zero in R*, for a
given € > 0 there exists a partition P of ¢S such that

3

U@l —_.
( S’P><M—m+1
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Then 05 x [m, M| < U A x [m, M], and as above
AeP, ARG ST

f Losapman(2)dz < Y va(A) x (M —m) < (M —m)U(15,P) <.
9S8 x[m,M] AP, AN S£D

Therefore, .S x [m, M] has volume zero; thus we establish that f is Riemann integrable
over A.

Next we prove (3.5). Note that A < S x [m, M]; thus Theorem 3.20 and the Fubini
Theorem imply that

[ femaen =] Femden= [ ([ 7ena)n
- [([ 7).

Noting that [m, M] has a boundary of volume zero in R, and for each z € S, f (z,) is

continuous except perhaps at y = ¢1(z) and y = @o(x), Theorem 3.23 implies that f (z,-)
M_ M _

is Riemann integrable over [m, M| for each x € S; thus J fA(:L’,y) dy = f fA(x,y) dy

which further implies that -

ffxy (x,y) f Jf xydy)d:z‘ (3.6)

For each fixed x € S, let A, = {y € R‘gpl x) <y < po(x } Then f (z,y) = f(z,y)1a, ()

for all (z,y) € S x [m, M] or equivalently, f" (z,-) = f(z,-)| 4, for all z € S; thus Proposition
3.14 (a) implies that

M_ w2 ()
f 7 <x,y>dy=f f(x,y>dy=f fay)dy Vzes. (3.7)
m Ay

w1(z)

Combining (3.6) and (3.7), we conclude (3.5). D

Example 3.27. Let A = {(x,y) € ]R2|0 <zr<l,x<y< 1}, and f: A — R be given by
f(x,y) = zy. Then Corollary 3.26 implies that
J ﬁf dx_lflzl.
o \2 1 8 8

Jf(x,y)dAle(leydy>dx:L

On the other hand, since A = { z,y) € R? ‘ 0<y<1l,0<z< y} we can also evaluate the

integral of f over A by

1 Y L 20 2=y 1
Yy

:UydA:f nydx dy:J— —.
JA 0<0 ) 0o 2

1.3

Y
du = | 2 du =
x:Oy J;)Q Y 8
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Example 3.28. Let A = {(x,y) € R2 | 0<z<l,yr<y< 1}, and f: A — R be given by
flz,y) = ¢¥’. Then Corollary 3.26 implies that

L fa,y) dA = Ll (ff eygdy>da:.

Since we do not know how to compute the inner integral, we look for another way of finding

the integral. Observing that A = {(z,y) e R*|0 <y < 1,0 < z < y*}, we have

1 y? 3 1 3 1 3=l e—1
dA = Vdr)dy = | PV dy = '] = .
Lf(x,y) L(L e :v) y Lye y=3ze"] 3

Example 3.29. Let A < R? be the set {(xl,acg,a:g,) e R? } xr1 = 0,20 =2 0,23 = 0,and z; +
Ty + o3 < 1}, and f : A — R be given by f(x1,z2,23) = (x1 + 22 + x3)%. Let S =
[0,1] x [0,1] x [0,1], and f : R® — R be the extension of f by zero outside A. Then

Theorem 3.23 implies that f is Riemann integrable. Write Ty = (29, x3), T2 = (21, 23) and

T3 = (r1,72). Theorem 3.20 implies that

Lf(w)dw - f Fla)do

and Theorem 3.25 implies that

| F@e=| (] F@ ) o
S [0,1] [0,1]x[0,1]

Let A,, = {(ml,xg) € Rﬂxl >0,20=>0,01 +29<1— xg}. Then for each x3 € [0, 1],

N 1—x3 l—x3—x2
f f(i/L‘\g,l’g)df/L‘\g = J f(i/l,‘\g,l'g)di/l?\g = J (J f(.%’1,$2,$3)d$1>dl’2.
[0,1]x[0,1] Agg

0 0

Computing the iterated integral, we find that

rl - rl—x3 l—z3—x9
J f(z)dx = ( (J (1 4+ 22 + %3)2d$1>d$2:| drs
A Jo tJo 0
Jo Jo 3 x1=0
rl 1—x3 1 3
JOo -JO 3 3
2 T 1 1 1 15—-10+1 1
S T VPSS Rt L
Jo \4 3 12 4 6 60 60 10
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Example 3.30. In this example we compute the volume w, of the n-dimensional unit ball.
By the Fubini theorem,

1 17$% 17:1:%7---7%21_1
:f J J dan - dy
-1J- 1—x% - 1—x%—~~-—a:12]_1
1 acl 1 xry— *-T?,,I n—1
Note that the integral f f dy, -+ dry is in fact wy (1 —2%) 2 | the
/1 lfx%f---faﬁ

volume of (n — 1)—d1men810na1 ball of radius 4/1 — z?; thus

1 3
Wy = J wn1(l—z )nzldx = 2wy 1f cos" 0db . (3.8)
-1 0

Integrating by parts,

s s ezg s
JQ cos" 0 df = JQ cos" 10 d(sinf) = cos" ! fsin 0‘9 +(n—1) JQ cos" 2 0 sin* 0 do)
0 0 =0 0

jus

=(n-1) JQ cos" 2 0(1 — cos? ) db

0

3 —1 (2
J cos" 0df = i J cos"20df .
0 n 0

which implies that

As a consequence,

. (n_(i)( T —3) 32f cos@df  if nis odd,
J cos" 0db =
0 (n—l f do if n is even,
Il
and the recursive formula (3.8) implies that w, = QM;_QW. Further computations shows
that B
@M, ifnisodd,
nn—2)---3
wn - n—2
mu) if n is even
nn—2)---47° '

Q0
Let I' be the Gamma function defined by I'(t) = J vt te @ dx for t > 0. Then ['(z +1) =
0

xI'(z) for all x > 0, I'(1) = 1 and F(%) = /7. By the fact that w; = 2 and wy = 7, we can

express wy, as
T2

K

Wp =
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3.5 The Change of Variables Formula

Fubini theorem can be used to find the integral of a (Riemann integrable) function over a
rectangular domain if the iterated integrals can be evaluated. However, like the integral of
a function of one variable, in many cases we need to make use of several change of variables
in order to transform the integral to another integral that is easier to be evaluated. In this
section, we establish the change of variables formula for the integral of functions of several

variables.

Theorem 3.31 (Change of Variables Formula). Let U < R" be an open set with volume,
and v : U — R" be an one-to-one € -mapping with €*-inverse; that is, =1 : Y(U) — U
is also continuously differentiable. Assume that the Jacobian of 1, J = det([D1)]), does not
vanish in U. If f :(U) — R is Riemann integrable, then (f o)J is Riemann integrable

over U, and

0 Ty, 7‘7;11)

J fly)dy = J (f o y)(2)|J(x)| dw = J (f o1)(2) M de.
YY) U u

The proof of Theorem 3.31 is very lengthy and requires a bit more knowledge about the

integration, so we only present the proof of a much simpler case.

Theorem 3.32. Let D < R® be an open rectangle, and 1) : R® — R™ be an one-to-one €>
mapping such that ¢» = 1d outside B(0,r) for some r > 0; that is, ¥(z) = x if |x| = r.
Assume that the Jacobian of 1, J = det(V), does not vanish in R*. If f : D — R is of
class €' and is compactly supported in D; that is, Cl({x eD ‘ f(x) # 0}) c D, then

L fly)dy = L—l(D)(f o) (x)J(z) dx .

Proof. W.L.O.G. we can assume that D = [-R, R|" is a cube and B(0,7)c=D (or equiva-
lently, 0 < r < R). Then ¢)~!(D) = D since ¢ = Id outside B(0, R). Define

Y1
g(y177yn):J f(znya"'vyn)dzy
—R
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[D(g o )]
(D]
and M = [Dys] | By the property of determinants and the chain rule, we find that
| (Do
- dg oY, &, dg ov; dg Y 7
— o0 — — 0 _J 7
2;1(8y7 /¢)8x1 ggl(ﬁyj /w)ﬁxg ;:1(5y7 /¢)8xn
det(M) = det ( o1 0 o
L 61'1 a$2 8xn
[ (99 Y1 (g 1 dg Y1 ]
GV G Vw7 Gw Ve,
—-det< ox 0x9 Oxy, )
L 8561 5$2 axn i
3561 (99:2 afL‘n
g
(0ylcy¢>det< : : : = (fo)J.
0 0t Yn
&xl aIQ al'n
On the other hand, letting A = (D%)™!, then
Adj(M);, = (1) det (M(1,])) = Adj([Dy]);, = JAT.

Computing the determinant by expanding along the first row, we obtain that

det(M) = i Mi;Adj(M);, =

j=1 j=1

thus we conclude the identity

fov)] :i )JA]

J=1
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Therefore, with d/x\] denoting dx; - --dxj_1dz;y1 - - - dxy, the Fubini theorem and the Piola
identity imply that

JD [(fo¢)J](x)d$:Z;JRRJRR FR(} ) 3ad daydz,
ST

(g 01)JA]]

Tj=—

Since ¥ = Id outside B(0,7), we find that J = 1 and AJ = §,; on @D; thus by the definition

of g,
fD [(f o )] (z)de = fR J_RR o J_RRg(R, o, Tp) dTy = JD flx) da | .

1
Example 3.33. Suppose that f : [0, 1] — R is Riemann integrable and f (1—2)f(x)dx =
0

1 rx
5. We would like to evaluate the iterated integral f f f(z —y) dydz.
0 Jo
It is nature to consider the change of variables (u,v) = (v — y, z) or (u,v) = (x — y,y).

Suppose the later case. Then (z,y) = g(u,v) = (u + v,v); thus

11
Jg(u,v) = ‘0 1‘ 1.
Moreover, the region of integration is the triangle A with vertices (0,0), (1,0), (1,1), and
three sides y = 0, z = 1, x = y correspond to u = 0, u +v = 1 and v = 0. Therefore, if

E denotes the triangle enclosed by u = 0, v = 0 and u + v = 1 on the (u,v)-plane, then
g(E) = A, and

Llff(m—y)dydazzd

f— ) d(z,y) = f(E) f(x— ) d(z.y)

£ (g1 0) — g, 0)) [T, 11, 0)] d(ur,0) = f f  f(u) dvdu

(1 —u)f(u)du=5.

STy T

Example 3.34. Let A be the triangular region with vertices (0,0), (4,0), (4,2), and f :
A — R be given by
flxy) =yvo —2y.
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Let (u,v) = (z,z — 2y). Then (z,y) = g(u,v) = (u, ?), thus
1 0 1
Jolu,v) =1 1| = ~3
2 2

u T

Figure 3.2: The image of F under g

Therefore,

(E)
L 1 (*r2 2 57 |v=u
= J (u — v)v/vdvdu = —f [—uv% - —v%} du
0 0 4: 0 3 5 v=0

Example 3.35. Let A be the region in the first quadrant of the plane bounded by the
curves zy —x+y=0and x —y =1, and f: A — R be given by

f(x,y) = 2y (@ +y)e 0
We would like to evaluate the integral J flz,y)d(z,y).
A

Let (u,v) = (ry — x + y,x — y). Unlike the previous two examples we do not want
to solve for (z,y) in terms of (u,v) but still assume that (z,y) = g(u,v). By the inverse

function theorem,

- 1 1
—y+l—a2-1  ao+y’

Jg(u, v)

(wo)=g~ () ‘@(x, y)
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Moreover, the curve xy — x + y = 0 corresponds to u = 0, while the lines x —y = 1 and
y = 0 correspond to v = 1 and u + v = 0, respectively; thus if £ is the region enclosed by
u=0,v=1and u+v =0, then A= g(FE).

Therefore,

Jf U—|—U ”dudv—gf e dv
1

1.2
=5

—1).
Example 3.36 (Polar coordinates). In R?, when the domain over which the integral is taken
is a disk D, a particular type of change of variables is sometimes very useful for the purpose
of evaluating the integral. Let (z,y) = (zo + rcosf,yo + rsinf) = ¢(r, ), where (x¢, yo) is
the center of D under consideration. If the radius of D is R, then D, up to removing a line
segment with length R, is the image of (0, R) x (0,27) under ¢. Note that the Jacobian of
Y is
o1 0y '
or 00 cosf —rsiné
Jlﬁ(T? 9) = =
02 dv2|  [sinf rcosf
or 00

Therefore, if f: D — R is Riemann integrable, then

=7.

ff@wﬂ%w—f f@wamw—j (f o 0) (. Oy (r,0)| d(r, 0)
D »((0,R)x(0,2m)) (0,R)x(0,2m)

:J flxg+rcosl,yo+rsind)rd(r,0).
(0,R) x (0,27)
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Example 3.37 (Cylindrical coordinates). In R, when the domain over which the integral

is taken is a cylinder C; that is, C = D x [a, b] for some disk D and —o0 < a < b < R, then

the change of variables

Y(r,0,z) = (vg +rcosb,yo+ rsind, z)

O<r<R,0<f0<2m,a<z<b,

where (z9,yo) is the center of D and R is the radisu of D, is sometimes very useful for

evaluating the integral. Since the Jacobian of v is

Jy(r,0, 2)

oY1 0Y1 0
or 00 0z
Og  0thy 0o
or 00 0z
03  0vY3 03
or 00 0z

cos) —rsinf 0
= [sinf rcosf O0|=r,
0 0 1

we must have

r

f(z,y,2)d(z,y, z)
¥((0,R)%(0,2m) x [a,b])

[ (fo¢)(r,0,z)‘J¢(r,9,z)|d(r,@, 2)

fcf<x,y,z> da,,2) = |

B -J (0,R)x(0,27) x [a,b]

:,J fzog+rcost,yo+rsinb, z)rd(r,0,z).
(0,R)x (0,2m) x [a,b]

Example 3.38 (Spherical coordinates). In R?, when the domain over which the integral is

taken is a ball B, the change of variables
V(p, 0, ) = (xo+ pcoshsing,yo+ psinfsing, zg+pcosp) 0<p<R,0<0<2m,0< <,

where (xg, 90, 20) is the center of B and R is the radius of B, is often used to evaluate the

integral a function over B. Since the Jacobian of % is

dr 01 0P

dp 00 09 cosfsing —psinfsing pcosfcos o
Ju(p,0,0) = 661/;)2 8;22 8;2)2 = |sinflsin¢ pcosfsing psinfcos o

s O3 s cos ¢ 0 —psin¢

dp 00  0¢

= —p?cos? Osin® ¢ — p?sin® O sin ¢ cos® ¢ — p® cos? @ sin ¢ cos® ¢ — p® sin? fsin® ¢

= —p?sin® ¢ — p?sinpcos® p = —p*sin g,
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if the radius of B is R, we must have
| fvs) e = | Fla.y, ) d(z,y.2)
B $((0,R) % (0,27) x (0,))

(f o) (p,0,9)|y(p, 0, 9)| d(p,0, ¢)

»I;O,R)X(O,QW)X(O,TF)
f(zo + pcosfsin g, yo + psinfsin @, 2 + pcos @) p*sin @ d(r, 0, 2) .

A[(O,R) % (0,27) x (0,7)



Chapter 4

Vector Calculus

4.1 The Line Integrals

4.1.1 Curves

Definition 4.1. A subset C' € R" is called a curve if C is the image of an interval I € R
under the continuous map 7 : [ — R" (that is, C' = y([)). The continuous map v : [ — R"
is called a parametrization of the curve. A curve C is called simple if it has an injective
parametrization; that is, there exists v : I — R" such that y(I) = C and v(x) = v(y)
implies that x = y. A curve C with parametrization v : [ — R is called closed if I = [a, b]
for some closed interval [a,b] € R and v(a) = v(b). A simple closed curve C is a closed

curve with parametrization = : [a,b] — R™ such that +y is one-to-one on (a,b).

Example 4.2. A line segment joining two points Py, P, € R" is a curve. It can be parame-
terized by 7 : [0, 1] — R™ defined by v(¢) =tP, + (1 — t)F.

Example 4.3. A circle on the plane is a simple closed curve. In fact, a circle centered at
the (zg,y0) with radius r has the following parametrization: ~ : [0,27] — R? defined by
v(0) = (xo + rcosb,yo + rsinf).

Example 4.4. Figure eight is the zero level set of F'(z,y) = 2% —a?(2? —1?) for some a # 0.
It can also be parameterized by 7 : [0, 47] — R? defined by v(6) = (acos g, g sin ) .
Definition 4.5 (Length of Curves). The length of curve C' € R" parameterized by ~ :

[a,b] — R" is defined as the number

Rn keNanda:t0<t1<---<tk:b}.

k
() =sup{ Y |v(t:) = y(ti)

96
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Definition 4.6 (Rectifiable curves). A curve C' € R with parametrization v : I — R is
called rectifiable if there is an homeomorphism ¢ : I -1 , where T is again an interval,

such that the map yo ¢ : I >R is Lipschitz.

Remark 4.7. 1. By an homeomorphism it means a continuous bijection whose inverse is

also continuous.

2. We can think of a curve as an equivalence class of continuous maps v : [ — R", where
two parametrization v : I — R™ and 7 : I — R" are equivalent if and only if there is
an homeomorphism ¢ : I — I such that ¥ = v o . Each element of the equivalence
class is a parametrization of the curve and thus a rectifiable curve is a curve which

has a Lipschitz continuous parametrization.

3. The length of a rectifiable curve parameterized by v : [a,b] — R is finite since by

choosing a Lipschitz parametrization 7 : [¢, d] — R", the number

{Z\h Dl

is bounded from above by M (d — ¢), where M is the Lipschitz constant of 7.

-<tk:d}

Example 4.8 (Non-rectifiable curves). Let C' < R? be a curve parameterized by

o (tesin D) if e (0,1],
7(t>{ (0,0)t if t=0.

1 1 1 2
4(7([n+1,n ) = () - 7(n+1/z gz + nH/Q) 1k > 7

= 00, by the remark above we conclude that ([0, 1]) is not a rectifiable

and Z

- n+1 / 2
curve
Definition 4.9. A curve C < R" is said to be of class €% or a €*-curve if there exists
a parametrization v : I — R" such that v is k-times continuously differentiable. Such a
parametrization is called a €*-parametrization of the curve. If there exists a parametrization
v : I — R which is of class €* for all k € N, then the curve is said to be smooth. A curve
C < R" is said to be regular if there exists a &€ '-parametrization v : I — R" such that
v'(t) # 0 for all t € I.
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Theorem 4.10. Let C = R" be a curve with €*-parametrization vy : [a,b] — R™. Then

b
~ [ Ol at.

Proof. Let € > 0 be given. Since 7 : [a,b] — R™ is ¢!, there exists § > 0 such that

17/ (t) = '(5)| g < T/n(b—a)

By the definition of the length of curves, there exists a partition P = {a =ty <t; < -+ <
tr, = b} of [a, b] such that

0) -7 <2 h

W.L.O.G., we can assume that |P| < 6. For each component ~; of 7, the mean value

whenever st € [a,b],|s —t| <.

) < 4(C).

theorem implies that for some &; € [t;_1, 1],

’Yj(t> 7]( 1) = (5@)( i—tic1);

thus for each ¢ € {1,--- |k} and s; € [t;_1, 1],

€
1 (t:) = v5(tir) — ) (sa) (s — ti)| < |7 (&) — ) (s0)|[t: — tica| < mﬁi —tia].
As a consequence, for each i € {1,--- ,k} and s; € [t;—1, 1],
y(te) = ¥t = 1 (30) g s — - 1|\ [t = () = ' (50) (= i)

n

=[5 )

J=1

< HW(tz) —y(tiz1) — ' (si)(ti —
-

4(b —a)

which further implies that

|25 16 = ) = X5 (50

Therefore, for a =ty < sop <t1 <81 - < s, <t =0,

-3 <Xl

Since |y’| is Riemann integrable over [a, b], we must have

|t; — tiq|

S
Rn|ti —tl’,1|’ < Z_l

Rn

t; —ti,ﬂ < 6(0) +%

(C) — & < L7/, P f ()|t < U7z, P) < £C) + ¢,

and the theorem is concluded because € > 0 is given arbitrarily. =
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Example 4.11. The length of the elliptic helix C' parameterized by

v(t) = (acost,bsint, ct) te [0, g}

can be computed by

(C) = J2 1y (t) |radt = f2 \/CL2 sin?t + b2 cos?t + 2 dt .
0 0

bQ_ 2

1. When a < b, letting k = ﬁ, then

Q) = \/b2+02f2 V1 —k2sin®tdt.
0

2
2. When a > b, letting k = 4/ a27b then
a“+c

10 = v+ @ [ Vi-Fedii =T [ Vit
0 0

The integral E(k, f V1 — k2sin® t dt, where 0 < k? < 1, is called the elliptic integral

function of the second kind, and E(k) = E(k,g) is called the complete elliptic
integral of the second kind.

Definition 4.12. Let C' < R" be a curve with finite length. An arc-length parametriza-
tion of C is an injective parametrization = : [a,b] — R such that the length of the curve

v([a, s]) is exactly s — a; that is,
((v([a,s])) =s—a Vsela,b.

Example 4.13. Let C' be the circle centered at the origin with radius R. Then the
parametrization

v(s) = (R cos , Rsin s€ (0,27 R],

R)

is an arc-length parametrization of C'. To see this, we note that

— | 10l dt = | [(sin o8 )|t = [ dt=s Vs p2rR),
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In general, the arc-length parametrization of a rectifiable curve exists, and we have the

following

Theorem 4.14. Let C' < R" be a rectifiable simple curve. Then there exists a arc-length

parametrization of C.

Proof. We only prove the case that C' has a regular ¢'-parametrization v : [a, b] — R™.

Let s(t) = f [7/(t)|re dt’. Note that the s : [a,b] — R is strictly increasing since the
fundamental theaorem of Calculus implies that s'(t) = ||v'(¢)|ge > 0 for all ¢ € [a,b]. The
Inverse Function Theorem (Theorem A.10) then guarantees the existence of a ¢'-inverse
w ' 0,0(C)] = [a,b] and we have u/(f) = ——

s'(u(t))
implies that ¥ : [0, £(C)] — R™ is a ¢ '-parametrization of C', and Theorem 4.10 implies that

Define 4% = v o u. Then the chain rule

(O50) = | T Wlodt = | I O @les dt = [ 19 @) o)
S 1 S
= | s'(ut) g dt = f dt = s
Jo |s"(u(t))] 0
which implies that 7 : [0, £(C)] is an arc-length parametrization of C. o

Theorem 4.15. Let C < R® be a €' -curve with an arc-length parametrization v : [ — R®.
Then ||7'(s)|gn = 1 for all s € I.

Proof. Suppose that I = [a,b]. Since v : I — R" is an arc-length parametrization of C, we

must have

s—a:JHM@MWﬁ viel.

Differentiating both sides of the equality above in ¢, the fundamental theorem of Calculus

implies that 1 = |y'(s)||g= for all s e I. o

4.1.2 The line element and line integrals
Line elements
Definition 4.16. A curve C' < R" is said to be piecewise ¢* (smooth, regular) if there exists

a parametrization 7 : [a,b] — R" and a finite set of points {a = tg < t; < -+ < ty = b}
such that 7 : [t;, t;41] — R™ is €% (smooth, regular) for all i € {0,1,--- , N — 1}.
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Definition 4.17. Let %¢ be the collection of all piecewise regular curves. The line element

is a set function s : Z¢ — R that satisfies the following properties:
1. s(C) >0 for all C € Zc.

2. If C € % is the union of finitely many regular curves C', - - - , Cj that do not overlap

except at their end-points, then

s(C) =s(Cy) + -+ s(Cy).

3. The value of s agrees with the length on straight line segments; that is,
s(L) =¢(L) for all line segaments L .

Line integrals of scalar functions

Definition 4.18. Let C' < R" be a simple rectifiable curve with an injective Lipschitz

parametrization 7y : [a,b] — R* and f : C — R be a real-valued function. The line

integral of f along C', denoted by J f ds, is the number
c

k
Sup { ; (ﬁew([itl;lfl,ti}) f(é-))g(fy([tl 1,1 ‘ ke N a=ty<t1 < - <t = b}

provided that it is identical to

inf {

When C'is a closed curve, we also use \(ﬁ f ds to denote the line integral of f along C' to
c

M?r

sup F(E) (Y ([tios,t ‘keNa—t0<t1 --<tk:b}.

i=1 &ev([ti—1,ti])

emphasize that the curve C' is a closed loop.

Remark 4.19. Since the parametrization « is required to be injective, the line integral of

f along C' is independent of the choice of the parametrization.

Remark 4.20. In particular, if f =1, then ¢(C) = f lds = j ds.
c c

Remark 4.21. If the curve C is a line segment {(x, 0) ‘ a<x< b}, then the line integral
of f along C is simply the Riemann integral of f over [a,b] (by treating f as a function of
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Remark 4.22 (The interpretation of the line integrals). Let C' be a piecewise smooth curve,
and f(x) denote the density of the curve C' at position z. Suppose that f is continuous on

C and x = 7(t). Then f(z) is computed by

im m(y([t, ¢ + At]))
at—0 L(y([t, t + At])) '

f@) = f(y(t) =

where m(-) denotes the mass. Let ¢ > 0 be given. Then by the continuity of f o~ and the
definition of limit, there exists d > 0 such that

’(foy)(t)—(foy)(s)’<@ it t,selab], [t—s| <4

and

[FO@)eCy([t ¢+ At])) —m(y([t, ¢ + At])| < C(y([t,t + At]))ﬁ if |At] <4

thus if P ={a =1ty <t; <--- <tx = b} is a partition of [a,b] with |P| < J, the total mass
k

of the curve m(C'), given by m(C) = >, m(y([ti—1,%])), validates the following estimate:

m(C) = 3, FOr(s) o fios. )] < 5
AS a consequence,
k
—e< Zﬁ@v([lt?flt E(y([ti-1, ti])) < Zg (s[;lp . FEO([tier, t])) <m(C) + ¢

which implies that the line integral of f along C' is exactly the mass of the curve.

Theorem 4.23. Let C < R" be a simple curve with €*-parametrization v : [a,b] — R®,

and f: C — R be a real-valued continuous function. Then

wa—j () | () o (4.1)

Proof. Let € > 0 be given. Since f o~ and «' are continuous on [a,b], |fo~vy|+ |7/ |re < M
on [a,b] for some M > 0, and there exists § > 0 such that

£
’(foy)(s)—(foy)(t)’<8(M+1)(b_a) whenever st € [a,b], |s—t] <§
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and
€

r = S+ 1)(b—a)

whenever st € [a,b], |s—t] <.

[7'(s) =~'(t)
b
Moreover, since f o~ and 4’ are both continuous on [a, b], the integral f FOv@) |7 (@) |re dt

exists; thus there exists a partition P = {a = to < t; < --- < t, = b} of [a,b] with |P|| < ¢
such that
k

sup  (f(v()y()|rn) — _inf (f(v(S))H’V’(S)HRnDIti—tH|<§- (4.2)

i=1 Se[ti_l,ti] se[tifl 7ti]

Let s;,7; € [t;_1,t;] be such that

sup  (f(v() |7 () lrs) = f(7(s2)) |7/ (5:) g and sup  f(§) = fy(ri)).

te[tifl,ti} 567([ti*17ti])

Moreover, by Theorem 4.10 and the mean value theorem for integrals, there exists ¢; €
[ti—1,t;] such that

gu 8 = |7 (4:) polti = tica];

ewwqmmzﬁi%@>

thus
€

et t)) = s | < e

Therefore, by the fact that s;, 75, q; € [ti1,t;] and |t; — t;_1| < 6,
e (FOrDIY (8)lrn ) [ts = tioa| — e FEOY([tizs, ti]))‘
= [FOEN 50 = FOED)I (@) g1 = b
(s) = f(v(ri Hh 5

n‘ti_t

|t — ti1].

Rn

<|f (76 golti = tioa| + | F(y )|V (s0) = 7' (a0) | gulti = tia
< mﬁi — i,
and summing the inequality above over ¢ we obtain that
k k
2, sw (FO DY () rn) 1t = tica] = ;gev(?srlm)f(é)ﬁ(v([tz 1,1 ‘ <7
Similarly,
k
)Z%gg Y Gl —tia| = 1 nt AU (st < 3
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thus using (4.2) we find that

| (o @1 Ol de = < L((F o)1 oosP) - 5

a
k k

<>, il OOt t)) <D sup FEOL ([t b))

o1 e (intil) i—1 &ev([ti—1,ti])

g P+ 5 < f (f o) () (1)t + .

<U((fo)y T

Since € > 0 is chosen arbitrary, we conclude (4.1). o

Example 4.24. Let C' be the upper half part of the circle centered at the origin with radius
R > 0 in the zy-plane. Evaluate the line integral f yds.
c

First, we parameterize C' by
v(t) = (Rcost, Rsint) tel0,n].

Then

f yds = J Rsint|(—Rsint, Rcost)|y,dt = f R’sintdt = 2R*.
c 0 0

Example 4.25. Find the mass of a wire lying along the first octant part of the curve of
intersection of the elliptic paraboloid z = 2 — 22 — 2¢? and the parabolic cylinder z = 2
between (0,1,0) and (1,0, 1) if the density of the wire at position (x,y, z) is o(z,y, z) = xy.

Note that we can parameterize the curve C' by
v(t) = (t,V1—12,¢*) tel0,1].

Therefore, the mass of the curve can be computed by

dt

! _ ! V1 =24+ 12+ 482(1 — 12)
ds = | tv1—2](1, ——— 2 dt:f 1 — ¢2
Jooe= |, T=PI0, 7 0 - | Vie

! 1 1[4
:f t«/2—(1—2t2)2dt21—1f \/2—u2du:§f4 200829d0:%(ﬁ+2).
0 -1

-1
Line integrals of vector fields

We recall that a vector field is a vector-valued function whose domain and co-domain are

subsets of identical Euclidean space R".
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Let C be a simple regular curve parameterized by v : I — R", and F : C' — R" be a
vector field. The line integral of F along C in the direction of v (or the oriented

line integral of F along C) is defined as the line integral of the scalar function F - T
along C', where T is the unit tangent of C' given by
v’ 1
T=——09" on C. 4.3
ke 3
Given another parametrization ¢ : I — R® of C' such that (¢’ 0 ¢™1)- (7' 0y~1) > 0 (that is,

the orientation of C' given by ¢ and 7 are the same), using the chain rule we obtain that

Y = 56097 o)1) = (¢ 067 0 (D6 o) (1), (1.4

Since ¢ Loy : I — I, (¢~ on)’ is a scalar function; thus (4.4) and the fact that (¢'o¢™1)-
(7" oy71) > 0 implies that v/ oy™! = ¢(¢’ 0 ¢™!) for some positive scalar function ¢ : C' — R.
Therefore,
<i;/o _1:’77/07_1 on C. (4.5)
|9’ |l 17" [ re
In other words, the tangent vector T is well-defined on C'; thus the line integral of F' along
C in the direction of the parametrization v is a well-defined quantity.
Suppose that I = [a,b]. Using (4.1), we find that

b / b
LF-Tds - f (For)t)- %wmw dt = f (For)(t)-~/(t)dt

Let 7 : I — R® be an arc-length parametrization of C' such that (7' o r71) - (v o y™) > 0

. . d . .
on C. Then (4.5) implies that T = d—z In terms of notation, we also write T ds as dr; thus

LF-dr: LF-Tds _ Jb(Foy)(t)-fy’(t)dt.

a

Remark 4.26 (The interpretation of line integrals of vector fields). Consider the work done
by moving an object along a smooth curve C' parameterized by v : I — R" with a continuous
variable force F : C' — R" from ~y(a) to (b) (that is, in the direction of the parametrization
of 7). Since the work done by a constant force is the inner product of the displacement and
the force, we find the the work done by the force F along the small portion y([t;, t;41]), from

v(t;) to y(tiy1), of the curve, where |t; — t;11| < 1, is approximately

(F - T)(v(t:)(([ti, tia))) = F(y(8:)) - T(y())(v([ti, tia])) -
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Summing over all the portions, we conclude that the work done by the force F along the
curve (), in the direction of the parametrization v, is approximately

k-1

Z (F - T)(y(t:)(v([ti; tiva]))

=0

which converges to the line integral J (F-T)ds. Therefore, the line integral of vector fields
c

F along C' in the direction of the parametrization « is simply the work done by the force F

in moving an object along the curve C' from the starting point to the end point.

Example 4.27. Let F(z,y) = (y%, 2zy). Evaluate the line integral f F - dr from (0,0) to
c
(1,1) along

1. the straight line y = =,
2. the curve y = 22, and

3. the piecewise smooth path consisting of the straight line segments from (0, 0) to (0, 1)
and from (0,1) to (1,1).

For the straight line case, we parameterize the path by v(t) = (¢,t) for ¢t € [0, 1]. Then

1 1
f F-dr:f (t2,2t2)-(1,1)dt:f 3t%dt = 1.
C 0

0

For the case of parabola, we parameterize the path by v(t) = (¢,#?) for t € [0,1]. Then

1

1
J F-dr:J (t4,2t3)-(1,2t)dt:f 5ttdt = 1.
C

0 0

For the piecewise linear case, we let Cy denote the line segment joining (0,0) and (0, 1),

and let Cy denote the line segment joining (0,1) and (1,1). Note that we can parameterize
C; and Cy by

n(t) =(0,t) tef0,1] and ()= (1) te[0,1],

respectively. Therefore,

1 1
JF~dr— Fedr+ F.dr_f<t2,0).(o,1)dt+J(1,2t).<1,0)dt_1.
C C1 0 0

Ca
We note that in this example the line integrals of F over three different paths joining (0, 0)

and (1,1) are identical.
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Example 4.28. Let F(x,y) = (y, —z). Evaluate the line integral f F - dr from (1,0) to
c
(0,—1) along

1. the straight line segment joining these points, and

2. three-quarters of the circle of unit radius centered at the origin and traversed counter-

clockwise.

For the first case, we parameterize the path by v(¢t) = (1 —t, —t) for ¢ € [0,1]. Then

LF-drzfl(ft,tfl)-(fl,l)dt:fldtzl.

0 0

For the second case, we parameterize the path by ~(t) = (cost,sint) for ¢ € [0, 3%}
Then
3n 3n
2 2 37
J F-dr= f (sint,—cost) - (—sint,cost) dt = J (-1)dt = ——.
c 0 0 2
We note that in this example the line integrals of F' over different paths joining (1,0) and
(0, —1) might be different.

4.2 Conservative Vector Fields

In the previous section, we define the line integral of a force along a curve in a given
orientation. In Example 4.27, we see that the line integrals along three different paths
connecting two given points are the same, while in Example 4.28 the line integrals along
two different paths (connecting two given points) are different. In this section, we are

interested in the rule of judging whether the line integral is path independent or not.

Definition 4.29 (Conservative Fields). A vector field F : D < R* — R" is said to be
conservative if F = V¢ for some scalar function ¢ : D — R. Such a ¢ is called a (scalar)

potential for F on D.

Theorem 4.30. Let D be an open, connected domain in R*, and let F be a smooth vector

field defined on D. Then the following three statements are equivalent:
(1) F is conservative in D.

(2) jg F - dr = 0 for every piecewise smooth, closed curve C' in D.
c
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(3) Given and two point Py, P, € D, f F - dr has the same value for all piecewise smooth
c

curves in D starting at Py and ending at P;.

Proof. (1) = (2): Suppose that F' = V¢ in D for some scalar function ¢ : D — R. Let
C < R" be a piecewise smooth closed curve parameterized by v : [a, b] — R" such
that v : [t;_1,t;] > R" is smooth for all 1 <i < N, where a =ty <ty <--- <ty =0b.
Let C; = y([ti—1,t;]). Then the chain rule 1mphes that

jgp dr=>" f Vo - d'r‘—ZL21V¢07 ) (t) dt
N

—ZL (tdt = (6 07)(1)

=1

t=t;

= o(v(b)) = ¢(v(a)) = 0.

t=ti_1

(2) = (3): Let Cy and Cy be two piecewise smooth curves in D starting at Py and ending
at P, parameterized by v, : [a,0] — R” and 7, : [¢,d] — R", respectively. Define
v :la,b+d—c] — R" by

(t) = 71(t) if t € [a, 0],
TOZ o d—t) iftelbbrd—d.
Then C' = 7([a,b+ d — ¢]) is a piecewise smooth closed curve; thus
b b+d—c
O:jg F . dr= J (Fovy)(t) -fyl/(t)dt—f (Fovy)(b+d—t)y(b+d—t)dt
(& a b
d
= F-dr—J (Foy)(t)ywt)dt=] F-dr— | F-dr.
Cq c 1 Ca
(3) = (1): Let Py € D. For x € D, define ¢(x f F - dr, where C is any piecewise

smooth curve starting at Py and ending at x. Note that by assumption, ¢ : D — R is
well-defined.

Choose § > 0 such that B(z,d) < D. Let C be a piecewise smooth curve joining
Fy, and L be the line segment joining = and x + he;, where 0 < h < 0 and e; =
(0,---,0,1,0,---,0) is the unit vector whose j-th component is 1. Then with the

parametrization of L: y(t) = x + te; for t € [0, k], we have

o(x + hej) — ¢(z) _lf Fodr

1k
Y =7 :EJ;)F(.T‘i‘tej)'ejdt;
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thus passing to the limit as h — 0, we find that

0¢
a—mj(l’) = F(z) -e;.

As a consequence, F(z) = (V¢)(x) which implies that F' is conservative. o

Let D R? and F = (M,N): D — R% If F is conservative, then M = ¢, and N = ¢,
for some scalar function ¢ : D — R; thus if ¢ is of class €%, we must have M, = N,. In
other words, if F : D — R? is a smooth vector field, then it is necessary that M, = N,. The

converse statement is not true in general, and we have the following counter-example.

Example 4.31. Let D < R? be the annular region D = {(x,y) ‘ 1 <2?2+9% < 4}, and

consider the vector field F(z,y) = ( 21 5 2:5: 5). Then
Z y- Y

oy z? — 92 0 -z

8_yx2+y2 (22 +g2)2 - 6‘_Ix2+y2;

however, if F' = V¢ for some differentiable scalar function ¢ : D — R, we must have

Y

z\ L, = 5 5
¢z, y) P

which further implies that
b(w,y) = t; + 1)

Using that ¢, (x,y) = ﬁy?’ we conclude that f is a constant function; thus

¢(z,y) = arctan L +C.
)

Since ¢ is not differentiable on the positive x-axis, F # V¢.

Definition 4.32. A connected domain D is said to be simply connected if every simple

closed curve can be continuously shrunk to a point in D without any part ever passing out
of D.

Theorem 4.33. Let D = R? be simply connected, and F = (M, N) : D — R? be of class
¢'. If M, = N,, then F is conservative.

The theorem above can be proved using Theorem 4.30 and Green’s theorem (Theorem
4.90), and is left till Section 4.8 (where Green’s theorem is introduced).
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4.3 The Surface Integrals

4.3.1 Swurfaces

Definition 4.34. A subset ¥ € R? is called a surface if for each p € ¥, there exist an open
neighborhood U < X of p, an open set V < R?, and a continuous map ¢ : 4 — V such
that ¢ : U — V is one-to-one, onto, and its inverse ¢ = ! is also continuous. Such a
pair {U, ¢} is called a coordinate chart (or simply chart) at p, and {V, ¢} is called a (local)

parametrization at p.

Remark 4.35. In some literatures the surface is defined in the following equivalent but
reversed way: A subset ¥ € R? is a surface if for each p € 3, there exists a neighborhood
UZR3of pandamap : V —UNY of an open set V < R? onto U n X < R? such that v is
a homeomorphism; that is, 1 has an inverse ¢ = 1)~ : i " ¥ — V which is continuous. The
mapping v is called a parametrization or a system of (local) coordinates in (a neighborhood
of) p.

Definition 4.36 (Regular surfaces). A surface ¥ < R3? is said to be regular if for each
p € X, there exists a differentiable local parametrization {V,1} of ¥ at p such that Di(q),
the derivative of ¢ at ¢, has full rank for all ¢ € V; that is, Di(q) : R> — R3 is one-to-one
for all ¢ € V. The range of the map Dy (w_l(p)) is called the tangent plane of ¥ at p,
and is denoted by T,X.

In the following, we always assume that Dv(q) has full rank for all ¢ € V if {V, ¢}

is a local parametrization of a regular surface © < R?.

Remark 4.37. Write ¢ : V — ¥ as

Y(u,v) = (x(u,v),y(u,v),z(u,v)) )
Then if ¢ = (ug, vo),

Ty (o, Vo) Ty (o, Vo) '
(DY) ()] = | yuluo,vo) yoluo,vo) | = [[Wa]i[w.2]] -

Zu(Um Uo) Zv<u07 Uo)

The injectivity of D) (q) is then translated to that the two vectors

V.1 (w0, v0) = Vultg, vo) = (Tu(to, v0), Yu(to, Vo), zu(tio, Vo))

V2 (o, vo) = ¥y (g, vo) = (xv(u()aUO)va(anUO)vZv(u0>/00))
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are linearly independent. Therefore, the range of D (q) is the span of the two vectors 1,1 (q)
and 1,5 (¢) and is indeed a plane for all g € V.

Let p € ¥ and ¢ = ¢!(p). Since Di(q) is injective, each v € T, X corresponds a
unique vector (a,b) € R? such that v = ab,; (q) + 0,5 (¢). This vector (a,b) € R? satisfies
[v] = [D@D(q)} [a,b]T, and can be computed by

-1

m = ([Dw(q)}T[Dzb(q)]) [Dy(q)] " [v].

Example 4.38. Let §* = {(z,y,2) € R*|2? + y> + 22 = 1} be the unit sphere in R®. If
p = (Z0, Yo, 20) € S?, then either zg, yo or zy is non-zero. Suppose that zy # 0. Choose r > 0
such that (z — x9)* + (y — yo)? < 1. Define

b, y) = (x,y,4/1 — a2 —y?) if zp >0,
’ (x,y,—/1 — 22 —y?) if 25 <0,

Y = B((a:o,yo),r), and U = (V). Then ¢ : ¥V — U is a bijection. Let ¢ = ¢~ Then
{U, p} is a coordinate chart at p; thus S? is a surface.

There exists another coordinate chart. Let U; = S?\(0,0,—1) and Uy = S*\(0,0,1).
Define the map ¢; : Uy — R? by that ¢;(p) is the unique point on R? such that (0,0, —1),
©1(p) and (z,y, 0) are on the same straight line. Similarly, define ¢y : Uy — R? by that q(p)
is the unique point on R? such that (0,0,1), p2(p) and (z,y,0) are on the same straight
line. It is easy to check that if p € S?, then either {U;, ¢} or {Us, ps} is a coordinate chart
at p.

A third kind of coordinate chart is given as follows. Let U = (0,27) x (0,7), and define

Y(0, ¢) = (sin ¢ cos B, sin ¢ sin 0, cos ¢).

Then ¢ : U — S*\{(x,0,2)|0 < z < 1,22 + 22 = 1} is a continuous bijection with a contin-
uous inverse. We note that for any U = (6, 0y + 27) x (¢, Po + 7), ¢ is a homeomorphism

between U and an open subset of S%.

Next, we would like to define the derivative of f when f : ¥ — R" is a vector-valued
function. We first talk about what the directional derivative is. Let ¥ < R3 be a regular
surface, p € ¥, and v e T,X. It is intuitive to define the directional derivative of f at p in

the direction v by
—| (fo=z)(t), (4.6)
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if the derivative exists, where x : (—§,0) — ¥ is a ¢'-parametrization of a curve on ¥ such
that (0) = p and «’(0) = v. The first question arising naturally is that if the derivative
in (4.6) depends on the choices of . Suppose that y: (—§,0) — ¥ is a €'-parametrization
of another curve on ¥ such that y(0) = p and y’(0) = v (note that the curve x((—4,0))
and y((—0,0)) in general are different). Let {V,1} be a parametrization of ¥ at p, and
g =1~ '(p). Then the chain rule (Theorem 2.49) implies that

v=a(0)= 2| @Wouvomn) = (DWW (g @ o))
and similarly, v = (Dv)(q) (i‘to(w o y)(t)). Thercfore,
(D)) (5] e a®) = D@ (] _ @ e w®)
The injectivity of (Dv)(¢~!(p)) then shows that
Gl weam = 4| wenw

Using the chain rule again,

Sl enm = 5| overonm =pirenw e, e 00)
= (o) ) (5] W ew®) = 5| (rew.

In other words, the derivative in (4.6) is independent of the choice of  as long as x(0) = p

and «’(0) = v. This observation implies the following

Theorem 4.39. Let X < R3 be a regular surface, {Vi,11} and {Va, b5} be two local €*-
parametrizations of ¥ at a pointp € 3, andU = 1p1(V1) npa(Va) < 3. Then for (i, j) = (1,2)
and (2,1), the transition function ¢j’1 o YT U) — w;l(u) is of class €*.

7

Proof. We first note that wj_l o ; is continuous on ;' (U). Moreover, by the chain rule we

ot i
find that W is the unique 2-vector satisfying
%ol = 120 0 01 o i (Do (-1 0w oW 0w,
S w,0)] = [ W 0w 0 ), 0)| = (D)5 0 ) (u,v)]| [ =L (s, 1)
ot oy
Similarly, W is the unique 2-vector satisfying

Wi )] = [ 500 0 ) (,)] = [0 @t 0 ) 0)] [2V2 )]
ov ov ov



§4.3 The Surface Integrals 113

Therefore, we obtain that

(lbj_loz/h)}[&(lb]_lo%)ﬂ '

(D] = (D) o (0t 0 0] [ [ - (47)

Since [ij] has full rank, [D%]T [ij] is an invertible 2 x 2 matrix (for if AT Az = 0 then
|Az|2. = 2T AT Az = 0 which implies z = 0 since A has full rank); thus (4.7) implies that

[P 20 PO ([, D) o (65 0u)) (D)o 050 )] D

thus the partial derivatives of 1/);1 o1); exist and are continuous. Theorem 2.30 then implies
that ¢ o ; is of class €. o

Similar to how the directional derivative is defined, we intend to define the differentia-
bility of f through the differentiability of the function f o1 : ¥V — R", where {V, ¢} is
a local parametrization of ¥ (at some point). Again, we need to talk about if this defini-
tion depends on the choice of local parametrizations. Nevertheless, if {V, 11} and {V,, ¢}
are two %'-local parametrization of ¥ at p, and f o ¢ is differentiable at 1;'(p), then
the chain rule and Theorem 4.39 imply that f o4, is also differentiable at 1, '(p) since
foty = (fou)o (1;" o1hs). This induces the following

Definition 4.40. Let ¥ < R? be a ¢'-regular surface. A scalar function f : ¥ — R is
said to be differentiable at p € ¥ if for every parametrization {V,v} of ¥ at p, the function
fow :V — R" is differentiable at ©/7'(p). The derivative of f at p, denoted by df,,, is a
linear map on 7}, ¥ satisfying

d

() (0) = 5]

fom)(t),

where = : (—6,0) — ¥ is a ¢'-parametrization of a curve on ¥ such that z(0) = p and
z'(0) = v. A scalar function f : ¥ — R is said to be of class €' if f o is of class € for

all local parametrization {V,}.

4.3.2 The metric tensor and the first fundamental form

Definition 4.41 (Metric). Let 3 < R? be a regular surface. The metric tensor associated

with the local parametrization {V, 1} (at p € ¥) is the matrix g = [gag|2x2 given by

30wt ort _—

aB — ya "Wy — 1n
Jap = Vsa s 213y 3y
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Proposition 4.42. Let 3 € R? be a regular surface, and g = [gaslax2 be the metric tensor
associated with the local parametrization {V,¢} (at p € X). Then the metric tensor g is
positive definite; that is,
2 oy
Zgagvv Vv:ZW—#O.
a,p=1 7=1

Proof. Since D1 has full rank on V), every tangent vector v can be expressed as the linear

combination of { 0y oY } Write v = Z v — A Then if v # 0,
oy’ Oys oy’
0< ol = Zi R W :
R3 — 4.4 8ya EIe = aﬁdgaﬁv 7.
Definition 4.43 (The first fundamental form). Let ¥ < R3 be a regular surface, and
g = [gaplax2 be the metric tensor associated with the local parametrization {V,¢} (at

p € ¥). The first fundamental form associated with the local parametrization {V,} (at
p € X) is the scalar function g = det(g).

Theorem 4.44. Let ¥ € R? be a regular surface, and {V,} be a local parametrization at
pe . Then

V8= [t x¥s2 re - (4.8)

Proof. Using the permutation symbol and Kronecker’s delta, we have

3
H¢71 X¢72 HI%&?’ = Z szﬂcw ’177/1 ) ( Z 5irs¢ra1 ¢572)

=1 k=1 r,s=1

3

k
Z Egljkgzrs 7119 12 wral 1/}872]
k,r,s= =1
3
k,r,

’_|

5ks 5kr)¢j71 ¢k,2 77Z)r’1 77Z)572 )

where we use the identity
3
Zgijkgirs = 0jr0ks — 0jsOkr (4.9)

to conclude the last equality. Therefore,
3

Hwﬂ Xwﬂ H]%{3 = Z (wjyl wkﬂ wjﬂ wkﬂ _’(/}jal wkﬂ ¢j72 ’l/}kﬂ )

k=1
= g11922 — G12921 = det(g) = g.

Finally, (4.8) is concluded from the fact that g is positive definite. o
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Remark 4.45. Let L € (R?%* T,X) be given by
L<ael + bQQ) = a’lvbal ‘Hﬂ/),z )

where By = {e;, ey} is the standard basis of R%. Let B’ = {ej, s} be an orthonormal basis
of T,%, and B; = {e1, ez, e3} be the standard basis of R*. Then

o= [ 2y G20 |- | b | [patestvals)

[62]83

By the fact that {e;,es} is an orthonormal basis,

ol = | W | [iesasess)] [ [”] ] (6 Jayilira e
: [%1];3 : : _ 11 912
= _ [%2];3 _ [[¢71]33-[¢,2]33] = [ gm 522 } ;

where [gap]ax2 is the metric tensor associated with the parametrization {V,}. Therefore,
det([L]s,5) = /8 as long as B’ is an orthonormal basis of T,X.

Since a natural way to write Lv, where v = ae; + bey € R?, is

Lo = |[¥a]i2]] M = [ve] M !

sometimes we also use Vi) to denote L, and then write /g as det(V1)) (even though [V1]
is a 3 x 2 matrix) and call /g the Jacobian of the map .

Example 4.46. Let X be the sphere centered at the origin with radius R. Consider the local
parametrization ¥ (6, ¢) = (Rcosfsin ¢, Rsinfsin ¢, Rcos¢) with (0,¢) € V = (0,27) x
(0,7). Then

¢71< v¢) ¢(

= 1y(0,¢) = (—Rsinfsin ¢, R cos O sin ¢, 0),
%2( 7¢):w¢ 6

(0,0) = (Rcosfcos ¢, Rsinf cos ¢, —Rsin @) ;
thus the metric tensor and the first fundamental form associated with the parametrization
{V,1} are

0(0.9) = (Do [Do)0.0) = |0 B

and g = det(g) = R*sin? ¢.
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What does the first fundamental form do for us?

Let p = 9(up,v9) be a point in ¥. Then the surface area of the region w([uo,uo + h| x
[vo, vo + k;]), where h, k are very small, can be approximated by the sum of the area of two
triangles, one with vertices 1(ug, vo), ¥(ug+ h, vo), ¥(ug, vo+ k) and the other with vertices
W(ug + h,vy), Y(ug,vo + k), Y(ug + h,vo + k).

Y(uo + h,vo)

Here we remark that the approximation of the surface area of a regular ¢ *-surface obeys

i the surface area of Q/J([UO, up + h] x [vg, vo + k])
im
(h,k)—(0,0) the sum of area of the two triangles given in the context

—1. (4.10)
The area of the triangle with vertices ¥ (ug, vo), ¥ (ug + h, vo), ¥ (ug,vo + k) is

= —H( ug + h,vp) ¢(U07U0)) x (¢(U0>Uo + k) — WUO,UO))HE@ .

By the mean value theorem, for each component j € {1,2, 3}, we have

¢J(u0 + h7 UO) - wj(u()u U()) - wﬂ (UO + Q{hv UO)h7
wj(u(h Vo + k) - 77Z}j(u0a UO) = ¢72 (U’O7 Vo + Q%k)k
for some 6 € (0,1); thus if ¢ is of class €,

Y(ug + h,vo) — P (uo, vo) = 1,1 (g, vo)h + Ey(uo, vo; h)h,
Y(ug, vo + k) — ¥ (ug, vo) = 1,2 (uo, vo)k + Eo(ug, vo; k)k

where E; and FE, are bounded vector-valued functions satisfying that }llir% E:(ug,vo;h) =0
and ]lgirr(lJ E5(ug, vo; k) = 0. Therefore,

(1 (uo+h, vo) — ¥ (uo, v0)) x (1 (uo, vo+ k) — 1 (uo, vo))

*h kl)lir%O 0 Wk _¢71 (u()av(]) X¢72(UU7UO) =0.
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Since /g = 1,1 X1,2 ||rs, we have

1
A = 5V g(ug, vo)hk + fi(uo, vo; b, k)hk

for some function f; which converges to 0 as (h,k) — (0,0) and is bounded since Vi
is bounded. Similarly, the area of the triangle with vertices ¢ (ug + h,vg), ¥ (ug,vo + k),
”Lﬁ(U() + h,UQ + /{Z) is

1
Ay = 5\/%%: + fo(uo, vo; h, k)hk .

Taking (4.10) into account, we find that
the surface area of ¢ ([ug, ug + k] x [vo, vo + k]) = \/g(uo, vo)hk + f(ug, vo; h, k)hk (4.11)

for some bounded function f(-,-;-,-) which converges to 0 as the last two variables h, k
approach 0.

Now consider the surface area of ¢([a,a + L] x [b,b0+ W]). Let € > 0 be given. Choose
N > 0 such that

€ L w
| f(u, v; b, k) <Sow V0<h<ﬁ,0<k<ﬁand (u,v) € [a,a+ L] x [b,b+ W],
and

‘ZZ\/ )%% \/édA‘<% if n,m=>=N.

7j=1:=1 [a,a+L]x [b,b+W]

Then for n,m > N, with (h, k) denoting (— %) (4.11) implies that

‘the surface area of ¢([a,a + L] x [b,b+ W]) — f
[a,a+L]x[b,b+W]
P

- \/gdA‘

[a,a+L]x[b,b+W]

\/gdA‘

the surface area of ¥([a + (i — 1)h,a +ih] x [b+ (j — )k, b+ jk])

||M:

[a,a+L]x [b,b+W]

<)le\/g(ﬁ(i-1>h,b+(j—1)k)hk—J Ve dA
J=11

+(ii Fla+ z—1hb—|—(g—1)khkhk‘

szzzhk_g

j=1i=1

w\m

The discussion above verifies the following
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Theorem 4.47. Let ¥ € R3 be a reqular €*-surface, {V, 1} be a local €*-parametrization
of ¥ at p, and g be the first fundamental form associated with {V,1}. Then

the surface area of (V) = J Ve dA .
%

Example 4.48. Recall from Example 4.46 that the first fundamental form g of the parametriza-
tion {V,1} of the 2-sphere centered at the origin with radius R, where

¥(0, ¢) = (RcosBsin ¢, Rsinfsin ¢, R cos @)
and V = (0,27) x (0,7), is given by g(f, ¢) = R*sin® ¢. Therefore,

the surface area of ¢((0,27) x (0,7)) = f R?sin ¢ d(0, ¢)
(0,27) x (0,7)

27 pm
= R2f f sin ¢ dpdf = 4T R? .
0 0

Since the difference of the 2-sphere and w((O, 27) x (0, 7r)) has zero area, we find that the

surface area of the 2-sphere with radius R is 47 R2.

4.3.3 The surface element and the surface integral

Let ¥ < R? be a regular surface, and {), 1} be a parametrization of ¥ such that (V) = X.

If f:¥ — R is a bounded continuous function, the surface integral of f over ¥, denoted by

f £dS. is defined by

>
fde:J(foqp)\/gdA. (4.12)
b)) %

In particular, if f = 1, the number f ds = f 1dS is the surface area of X.
2 2

Since the surface integrals defined by (4.12) seems to depend on a given parametrization,
before proceeding we show that the surface integral is indeed independent of the choice of
the parametrizations. Suppose that {V, 41} and {V,, 15} are two local ¢'-parametrizations
of a regular surface X at p, g1, g2 denote the metric tensors associated with the parametriza-
tions {Vi, 1}, {Va, 0}, respectively, and g; = det(g1), go = det(g2) are corresponding first
fundamental forms. Let ¥ = ¢, 0 4;. Then the change of variables formula (Theorem
3.31) implies that

L2<f TONIS |

V1

(fowzowx@ow)wm:f (f o 1) (vEz 0 )| Ju| dA .

V1
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where Jy is the Jacobian of the map . Using (4.7), we find that
(DY [(Dys) o W] [(Dvs) o 9] [D¥] = (D" [Dus):
thus by the fact that g, = det ([D¢y]" [Dy1]) and gy = det ([Dib]" [Debs]), we obtain that
det ([DU])*(g20 W) = g5 .

Since Jy = det ([DW¥]), the identity above implies that |.Jy|(,/g20¥) = /81, so we conclude
that

f (f ov1)\/grdA = f (f otbo)y/g2 dA . (4.13)
V1 Vs

Therefore, the surface integral of f over ¥ is independent of the choice of parametrizations
of Y. In particular, the surface area of a regular ¢ *-surface which can be parameterized by

a global parametrization is also independent of the choice of parametrizations.

Example 4.49. Let ¥ < R? be the upper half sphere; that is, © = {(z,y, 2) € R® | 2? + y* +
z* = R?,z > 0}, and {V, ¢} be a global parametrization of ¥ given by

Y(u,v) = (u, v, VR?> —u? —v?), (u,v) eV = {(u,v) GR2|u2+v2 <R2}.

To find the surface area using this parametrization, we first compute {1 ,1,5 } as follows:

—Uu
R2 — 2 — 2

) and o (u,0) = (0,1, ).

R2 — 2 — 2

¢71 (U, U) = (1a 07

thus the first fundamental form associated with the parametrization {V,} is

2
u v
g(u7 U) = H¢71 (u,v) x ¢72 (u,’U)”]%s - ‘(\/RQ ) —U2’ \/R2 22 —’U27 1)
R2
R2 — 2 — 92"

RB

Therefore, the surface area of X is

vVRZ—u2 R
f s — J _dA = J f _ dvdu
v/ R2 — u2 VRT /R2
R SO L A du = 21 R?
= J_R arcsin \/ﬁ e JRT—2 u = J_R T au = 4T .

Note the the computation above also shows that the surface area of the sphere in R? with

radius R is 47 R? which is the same as what we have conclude in Example 4.48.
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Remark 4.50. The example above provides one specific way of evaluating the surface
integrals: if the surface ¥ is in fact a subset of the graph of a function ¢ : D € R? — R;
that is, ¥ < {L v, o(x,y)) ‘ (x,y) € D}, then Y has a global parametrization

O(z,y) = (z.y,0(x,y),  (z.y) eV,

where V is the projection of ¥ onto the xy-plane along the z-direction. Then the first

fundamental form associated to this parametrization is

8(e,y) = [ (2,9) X b (2,9 = 14+ |2 @)* 4 |52 )

thus the surface integral of f over X is

Lde = Lf(x,y,so(ﬂf,y))\/l + \%(I,y)f + I%(x,y)lzd(%y)-

Example 4.51. Let C' be a smooth curve parameterized by

o T T
r(t) = (costsint,sintsint, cost), te [—5, 5] .

The clearly C'is on the unit sphere S? since |r(t)|gs = 1 for all ¢ € [—g, g} Since C' is a

closed curve, C' divides S? into two parts. Let ¥ denote the part with smaller area (see the

following figure), and we are interested in finding the surface area of .

y

To compute the surface area of 32, we need to find a way to parameterize 3. Naturally we
try to parameterize ¥ using the spherical coordinate. In other words, let R = (0, 27) x (0, 7)
and 7 : R — R? be defined by

(0, ¢) = (cosfsin ¢, sin O sin ¢, cos @) ,
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and we would like to find a region D < R such that ¢(D) = X.

Suppose that y(t) = (0(t), p(1)), t € [—g, g]7 is a curve in R such that (¢ ov)(t) = 7(t).
Then for t € [O, g], the identity cost = cos ¢(t) implies that ¢(¢) = t; thus the identities
costsint = cos0(t) cos (t) and sintsint = sin 6(t) cos ¢(t) further imply that 0(t) = ¢.

On the other hand, for t € [ - g, O], the identity cost = cos ¢(t), where ¢(t) € (0, ),
implies that ¢(t) = —t; thus the identities costsint = cos(t)sin¢(t) and sintsint =
sin 0(t) sin ¢(t) further imply that 6(¢t) = 7 + t.

Since the first fundamental form associate with {R,} is the first fundamental form
associated with {R, ¢} is

2
g(u7 U) = H<¢9 X %)(U, v)HRs
= H (—sin @ sin ¢, cos O sin ¢, 0) x (cos O cos ¢, sin 0 cos ¢, — sin @) H;B
= H (— cos @ sin® ¢, — sin fsin? ¢, —(sin® 6 + cos? ) sin ¢ cos @) Hig,

= (cos? § + sin? ) sin* ¢ + sin” ¢ cos® ¢ = sin® ¢,

the area of the desired surface can be computed by

JE s = L}_m VEdA = JO LM sin ¢ dfd¢ = fog(” — 2¢)sin ¢ d

=T
-2

= (—wcos¢+2¢cos¢—281ngb)‘¢ =7r—-2.

Another way to parameterize X is to view X as the graph of function z = /1 — 22 — 92
over D, where D is the projection of ¥ along z-axis onto xy-plane. We note that the

boundary of D can be parameterized by

~ . o T
7(t) = (costsint,sintsint), te [—— —} :
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Let (z,y) € dD. Then 2 +y* = y; thus X can also be parameterized by ¢ : D — R? where
77Z)(‘T’y):(x7yu ]-_:BQ_yQ) and DZ{(x,y)|x2+y2<y}

Therefore, with f denoting the function f(z,y) = 1/1 — 22 — y2, Remark 4.50 implies that

the surface area of ¥ can be computed by

1 ra/y—y? 1
./1+f§+fzcm:fj 1 gy
JD ! 0 Joyfy—y? V1 —a? =y
1 T _ y,yQ

S 1
= f arcsin ——— dy = QJ arcsin VY dy ;
0 1 — y2la=—y/y—y? 0

thus making a change of variable y = tan? 6 we conclude that

us

ang d(tan®6) = 2J4 0 d( tan9)
0

4
the surface area of ¥ = ZJ arcsin
0

- 6=1 1
—9 9tan29) f tan2 ede}
i 0=0 Jo

™

ZQ:E—LZ(seczﬁ—l)dﬁ} :2[4
7T

R R

As noticed in Remark 4.45, the first fundamental form ,/g associated with the parametriza-

(tan @ — 9)‘61]

0=0

tion {V, 1} can be viewed as the Jacobian of the map 1. Therefore, we arrive at the con-
clusion that dS* =",/gdA. dS is called the surface element. Morecover, similar to the
reason provided in Remark 4.22, the surface integral of a positive continuous function f

over X, where f is considered as the mass density of the surface given by

the mass of ¥(A)

im
daiam(a)-0 the surface area of ¥(A)
v—1(z)eA

fz) =

is the total mass of the surface.

Next, we study the surface area of general regular surfaces that cannot be parameterized
using a single pair {V,v}. Let ¥ € R? be a regular surface, and {V;,1);}:cr be a collection
of local parametrizations satisfying that for each p € ¥ there exists i € Z such that {V;, 1;}
is a local parametrization of > at p. If there exists a countable collection of non-negative
functions {(;},es defined on X such that
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1. For each j € J, spt((;) = the closure of {x ex ‘ G(z) # O} c V, for some i € Z;
2. YjesGila)=1forallze X,

then intuitively we can compute the surface area by

J dS=>| ¢ds, (4.14)
> pr >

where the surface integral of (; over ¥ is defined by (4.12) since spt(¢;) < ¢(V;) and (; =0
outside spt(¢;). In other words, each term on the right-hand side of (4.14) can be evaluated
by

L G dS = Li(Cj © thi)y/gi dS

if spt(¢;) < ¢i(V;). Similarly, for a bounded continuous function f defined on X, the surface
integral of f over ¥ can be defined by

[fis=%[@nas=% ¥ | @hevEds. @
= jegvE jeJ choose one i such that ¥ Vi

spt(¢;) € i (Vi)
Remark 4.52. Defining the surface integrals of a function as above, a question arises natu-
rally: is the surface integral given by (4.15) independent of the choice of the parametrization
and the partition-of-unity? In other words, if a regular €*-surface X admits two collections
of local parametrization {U;, p; }icr and {V;,1;}je7, and {(;}icr and {)\;},c7 are €*-partition-
of-unity subordinate to {U;}icz and {V;};es, respectively. Is it true that

> > L,(Qf) JUNCLEEDY > Jv‘(Ajf) 0 1j/g;dS

1€ choose one i such that ]ej choose one j such that
spt(¢5) S v (Uy) spt(Ag) S ¥ (Vj)

where g; and g; are the first fundamental form associated with the parametrization {U;, ¢;}
and {V;,;}, respectively.

The answer to the question above is affirmative, and the surface integral given by (4.15)
is indeed independent of the choice of parametrization of the surface and the partition-of-

unity; however, we will not prove this and only treat this as a known fact.
Now we focus on the existence of a collection of functions {(;};es discussed above.

Definition 4.53. A collection of subsets of R" is said to be locally finite if for every point
x € R there exists r > 0 such that B(z,r), the ball centered at z with radius r, intersects

at most finitely many sets in this collection.
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Definition 4.54 (Partition of Unity). Let A < R® be a subset. A collection of functions
{(;}jes is said to be a partition-of-unity of A if

I.O< (¢ <1lforall je J.

2. The collection of sets {spt(Cj)} <7 is locally finite.

J
3. X ¢i(z)=1forall z e A.
JjeJ
Let {U;}jes be an open cover of A; that is, U; is open for all j € J and A = (., U;.
A partition-of-unity {(;};es of A is said to be subordinate to {U;};cs (or {U;}jcs has a
subordinate partition-of-unity of A) if spt(¢;) < U; for all j € J.

We note the if {(;};c 7 is a partition-of-unity of A, then the property of local finiteness of
{spt({;)}jes ensures that for each point z € A has a neighborhood on which all but finitely

many \;’s are zero.

Lemma 4.55. Let A < R" be a subset, {U;}iez be an open cover of A, and {V;}es be a
collection of open sets such that each V; is a subset of some U;; that is, for each j € J,
V; € U; for some i € I. If {V;}jes has a subordinate €"-partition-of-unity of A, so has
{ui}ieI-

Proof. Let {(;}jes be a partition-of-unity of A subordinate to {V;}jes, and f : J — Z
be a map such that V; < Uy;) (we note that such f in general is not unique). Define
Xi : R* — [0, 1] by

Xi(m) = > (). (4.16)

Jef=—1@)

Then clearly spt(y;) € U; and >, x;(x) = 1 for all x € A. Moreover, since the sum (4.16)
is a finite sum, y; is of class Cgkz for all i € T since (; if of class €* for all j € J. Now
we show that {spt(xi)}iez is locally finite. Let z € R™ be given. By the local finiteness of
{spt(Cj)}jEJ there exists r > 0 such that #{j € J | B(z,r) nspt((;) # &} < 0. By the
fact that f~1(iy) n f~1(i2) = & if iy # i (that is, each j € J belongs to f~!(i) for exactly
one i € 7) and that

ye B(x,r) nspt(x;) < ye B(x,r)nspt(¢) for some je f1(3),
we must have

#{ieZ|B(z,r) nspt(xi) # T} < #{je T|Blz,r) nspt((;) # B} < 0. o
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Theorem 4.56. Let ¥ € R? be a reqular €*-surface. Then every open cover of ¥ has a
subordinate €*-partition-of-unity of X.
Proof. Let {O;}icr be a given open cover of 3. Let {U;, ¢;};c7 be a collection of €*-charts
of 3 such that {U;};cs is a locally finite open cover of ¥ and for each j € J, U; < O; for
some i € Z. By Lemma 4.55, it suffices to find a €¢*-partition-of-unity of ¥ subordinate to
{Uj}jeq-

W.L.O.G., we can assume that U; and V; = ¢(U;) is bounded for all j € J. Define
(S goj’l. Then {V;,1;},es is a collection of local parametrization of ¥. Choose a collection
of open sets {W,},c7 such that W; € V; for all j € J and {wj(Wj)}jej is still an open cover

N _ N;j .

of ¥. For each j € J, let {B,gj)}ivil be a collection of open balls satisfying W, < [ J B,(f)
. k=1

and cl(BY) =V, for all ke {1,--- ,N,}. For je J and k € {1,--- , N;}, with ¢;;, and r;,

denoting the center and the radius of B,gj ), respectively, let

exp( 12 5 > ifxeB,(cj),
1 () = 7= il =5 .
0 if z ¢ BY

Ny _
and then define x; : R* — R by x;(z) = > px(x). Then x; > 0in Wj, and x; = 0
k=1
Nj .
outside |J B,ij). Further define
k=1

owi)(x) ifxel;,
/\j(x):{(X] v;)(x) J

0 ifre Z/{]C .
Then A; > 0 on ;(W;) which implies that > A\; > 0. Finally, we define (; = Aj .
jeJ Zjej >‘j
Then {(;}je7 is a €*-partition-of-unity subordinate to the open cover {U;};c7. o

Definition 4.57 (Piecewise Regular Surface). A surface ¥ = R? is said to be piecewise
k

regular if there are finite many curves C, - - -, C such that X\ | C; is a disjoint union of
i=1

regular surfaces.

Definition 4.58. Let ¥ < R3 be a piecewise regular surface such that ¥ is the disjoint

union of regular surfaces >;, where i € Z for some finite index set Z. For a continuous

function f : ¥ — R, the surface integral of f over X, still denoted by f fdS, is defined by
b

Lde:;Lifds.
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Definition 4.59. Let %s be the collection of piecewise regular surfaces in R3. The surface

element is a set function . : Zs, — R that satisfies the following properties:
1. Z(X) >0 for all ¥ € Zx.

2. If ¥ is the union of finitely many regular surfaces >q,--- , % that do not overlap

except at their boundaries, then

F(E) =L (1) + -+ L (k) .

3. The value of .¥ agrees with the area on planar surfaces; that is,

S (P) = A(P) for all planar surfaces P.

4.4 Oriented Surfaces

In the study of surfaces, orientability is a property that measures whether it is possible to
make a consistent choice of surface normal vector at every point. A choice of surface normal
allows one to use the right-hand rule to define a “counter-clockwise” direction of loops in
the surface that is required in the presentation of the Stokes theorem (Theorem 4.86), a

main result in vector calculus which will be introduced later in Section 4.7.2.

Definition 4.60. A regular surface ¥ < R? is said to be oriented if there exists a contin-
uous vector-valued function N : 3 — R3 such that |N|gs =1 and for all pe X, N-v =0

for all ve T,X. Such a vector-field N is called a unit normal of X.

Suppose that X < R? is a connected regular surface. Since at each p € Y the tangent
plane T,X of ¥ at p has two normal directions, ¥ has at most two continuous unit normal
vector fields. If in addition that ¥ is oriented, there are exactly two continuous unit normal
vector fields of X, and one is the opposite of the other. The two unit normal vector fields
define two sides of the surface.

Suppose further that this oriented surface ¥ is the boundary of an open set Q) < R?
(for example, a sphere is the boundary of a ball), then one of the unit normal vector fields
N : 0Q — R? has the property that p + tN(p) ¢ Q for all small but positive . Such
a normal is called the outward-pointing unit normal of 02, and the opposite of the

outward-pointing unit normal of 02 is called the inward-pointing unit normal of 0.
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Example 4.61. Consider the unit sphere S* = {(z,y,2) € R*|z* + y> + 2* = 1}. Then
N : $* — R? defined by N(p) = p, where the right-hand side is treated as the vector
p — 0, is a continuous unit normal vector field on ¥; thus S? is an oriented surface. Let
B(0,1) = {(z,y,2) € R*|2? + y*> + 22 < 1} be the unit ball in R®. Then N is the outward-
pointing unit normal of 0B(0, 1).

Let ¥ < R? be a regular surface, p € ¥, and {V, %} be a local parametrization of 3 at p.
Since 1,7 and 1,5 are linearly independent, 1,1 X1, # 0; thus the vector n given by

n — w’l Xw72 o ¢—1

|1 1,2 ||rs
is a unit normal vector field on ¥()). As a consequence, a regular ¢'-surface that can be
parameterized by one single parametrization {V,v}; that is, ¥ = ¢(V), is always oriented.
Such a normal vector fields is said to be compatible with the parametrization {V,¢}. To be

more precise, we have the following

Definition 4.62. Let ¥ < R? be an oriented ¢'-surface, and N : ¥ — R? be a continuous
unit normal vector field of 3. For each p € V, N is said to be compatible with a local
parametrization {V, ¢} of & at p if det ([¢, 11,5 I N o¢]) > 0.

The following example provides a famous regular surface which is not oriented.

Example 4.63. A Mdbius strip/band is a surface obtained, conceptually, by half-twisting a
paper strip and then joining the ends of the strip together to form a loop (see the following
figure for the idea).

Figure 4.1: Normal vector fields on a Mobius strip

As one can see from Figure 4.1, a Mobius strip is not oriented. To see this mathemati-

cally, consider the following Mobius strip

M = {(— (2+vcosg)sinu, (2+vcosg)cosu,vsing) ‘ (u,v) € [0, 2m] x (_1,1)}
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and choose a local parametrization 1) : V — R3 given by
Y(u,v) = (= (2+vceos g) sinu, (2 + v cos g) oS u, v sin g) :

where (u,v) € V = (0,27) x (—1,1).

Y

Figure 4.2: The Mobius strip/band ([0, 2] x [—1, 1])

Then the unit normal vector field on (V) compatible with the parametrization {V, ¢} is

wal X¢72 2
No = -
(N ) v) = o T Vo + (A + 20cos(w/2))

X (Ucosu+ (2 + vsin =) sin = sin u
2 2 2 ’

— sinu+ (2 + vcos E)sinycosu —(2—|—UCOSE)COSE>
2 2 2 ’ 2 2/

but N does not have a continuous extension on M since if N is a continuous extension of
N; that is, N is a unit normal vector field on M and N = N on (), then

(0,0,1) = lim (N0 #)(u,0) = N(2,0,0) = lim (N o ¢)(u,0) = (0,0,1)
which is a contradiction.

Another way of seeing that M is not oriented is the following. Let r(t) = G(¢,0) =
(2cost,2sint,0), and C = r([0,27]) € M be a closed curve on M. If there is a continuous
unit normal vector field N on M, then N is also continuous on C. However, N is never
continuous on C' since by moving IN continuously along C, starting from r(0) and moving
along C' in the direction 7’ and back to r(0) = r(27), we obtain a different vector which

implies that N o7 is not continuous at (0) = r(2r) = (2,0,0).

Definition 4.64. An open set Q < R? is said to be of class €* if the boundary 0Q is a

regular ¢*-surface.

Theorem 4.65. Let Q € R? be a bounded open set of class €. Then 02 is oriented.
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4.5 Manifolds, Charts, Atlas and Differentiable Struc-
ture

In the following, we introduce a more abstract concept, the so-called manifolds, which is a

generalization of regular surfaces.

Definition 4.66. A topological space M is called an n-dimensional manifold if it is
locally homeomorphic to R"; that is, there is an open cover Z = {U;};czr of M such that
for each i € Z there is a map ¢; : U; — R™ which maps U; homeomorphically onto an open
subset of R*. The pair {U;, ;} is called a chart (or coordinate system) with domain ;, and
{goi U), o; 1} is called a local parametrization of M. The collection of charts ® = {U;, p;}ier
is called an atlas.

Two charts {U;, p;} and {U;, p;} are said to be €"-compatible or have € -overlap if
the coordinate change

piopi iUl nUs) — iU N U)

is of class €. An atlas ® on M is called € if every pair of its charts is ¢"-compatible.
A maximal €"-atlas o on M is called a differentiable structure, and the pair {M, «} is
called a manifold of class €.

A function f : M — R is said to be of class €7 if f o ;' : U; — R is of class €™ for all
charts {U;, ¢;}.

In particular, a regular €*-curve C < R3 is a one-dimensional 6’*-manifold, and a regular

&1-surface ¥ < R3 is a two-dimensional € '-manifold.

Definition 4.67 (Metric). Let ¥ < R" be a (n—1)-dimensional manifold. The metric tensor
associated with the local parametrization {V,} (at p € ¥) is the matrix g = [gag)n-1)x(n-1)
given by

B gt dep

in V.
i—1 0Ya ayﬂ

Gap = Vsa V5=

Proposition 4.68. Let ¥ < R" be a (n — 1)-dimensional manifold, and g = [gag)n—1)x(n-1)
be the metric tensor associated with the local parametrization {V,v} (at p € X). Then the

metric tensor g is positive definite; that is,

n-1 n—1 aw
Zgaﬁvavﬁ>0 Vo= Zzﬂi;&o'

a,f=1 v=1
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Definition 4.69 (The first fundamental form). Let ¥ < R be a (n — 1)-dimensional mani-
fold, and g = [gag](n_l)x(n_l) be the metric tensor associated with the local parametrization
{V,¢} (at p € £). The first fundamental form associated with the local parametrization
{V,¢¥} (at p € X) is the scalar function g = det(g).

Definition 4.70 (Surface integrals). Let M be an (n—1)-dimensional ¢*-manifold, {{/; };er
be a collection of charts of M and {(;}cz is a partition-of-unity of M subordinate to {U;};cz.

The “surface integral” (or simply integral) of a scalar function f : M — R over M, denoted

by f £dS, is defined by
M
| ras=%[ l@nee)ves.
M iel JoiUi)
where g; is the first fundamental form associated with the parametrization {¢;(U;), ¢}

Remark 4.71. Let C' < R3 be a regular ¢*-curve. The line integral of a scalar function
f:C — Rover C is the “surface integral” of f over C' defined in (4.70). In other words,

dS = ds in the case that M is a one-dimensional manifold.

4.5.1 Some useful identities

Let ¥ < R" be the boundary of an open set  (thus an oriented surface), {V, 1} be a local
parametrization of 2, and N : ¥ — R" be the normal vector on ¥ which is compatible with

the parametrization ¢; that is,

det([’l/},l w,g Ew,n,1 NO’I/J]) > 0.

Define ¥(y’,y,) = ¥(y') + yn(N 0 ¢)(y’). Then ¥ : V x (—e,e) — T for some tubular
neighborhood 7T of X.

2(0) Y=p!

v = W1, Yn-1) € ﬂlén_l

1 1
. p W “ ¢(y’) c 00 II

~ . _ \
el ¢ =y! . /
4

~-— - N

Figure 4.3: The map ¥ constructed from the local parametrization {V, 1}
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Since (V)| (4am0} = [ it 1,1 iNoy], Corollary 1.65 and 1.66 implies that
det(VW)?|, _ . = [det (V¥)T) det(VY)] = det ((V¥)'V V)
{yn_ } {ynzo} {ynzo}

J11 g12 G- 0

921 g2 Gm-12 O
—det (| o ) =e

9m-1)1 Ju-1)2 ° Gm-1)m-1) 0

|0 0o .- 0 1|

Defining J as the Jacobian of the map U; that is, J = det(VV), then the identity above
implies that

J=4/g on {y,=0}.

Moreover, letting A denote the inverse of the Jacobian matrix of ¥; that is, A = (V)™

and letting [gaﬁ} 1) be the inverse matrix of [gag} (n1)x(n_1)? W€ find that

(n=1)x(

T
n—1 n—1
A‘{ynzo} — Z_:lgmq/,’a L : Z_‘Jlg(n—l)ad),a ‘N o
As a consequence,
<JATen>’{yn:o} =veg(Nov). (4.17)

4.6 The Divergence Theorem

Two differential operators play important roles in vector calculus. The first one is called
the divergence operator which measures the flux of a vector field, and the second one is
called the curl operator which measures the circulation (the speed of rotation) of a vector

field. We will study this two operators in the following two sections.

4.6.1 Flux integrals

Let ¥ < R? be an oriented surface with a fixed unit normal vector field N : ¥ — R?, and
u : Y — R3 be a vector-valued function. The flux integral of w over ¥ with given orientation

N is the surface integral of u - N over X.
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Physical interpretation

Let € < R? be an open set which stands for a fluid container and fully contains some liquid
such as water, and u : 2 — R3 be a vector-field which stands for the fluid velocity; that is,
u(x) is the fluid velocity at point x € Q. Furthermore, let 3 < Q be a surface immersed in
the fluid with given orientation N, and ¢ : 2 — R be the concentration of certain material
dissolving in the liquid. Then the amount of the material carried across the surface in the

direction N by the fluid in a time period of At is
At - J cu-NdS.
b

Therefore, J cu-N dS is the instantaneous amount of the material carried across the surface
b

in the direction N by the fluid.

Example 4.72. Find the flux integral of the vector field F(x,y,z) = (x,y? z) upward
through the first octant part ¥ of the cylindrical surface 22 + 2% = a2, 0 < y < b.

z

a

P~/ |
a// \\\\ |b
&AK“NNT*%

Figure 4.4: The surface X

Fist, we parameterize Y by

U(u,v) = (u,v,vVa? —u?), (u,v) eV =(0,a)x (0,b).

a2

02711,2’

Since the first fundamental form g associated with {V, ¢} is g = 1,1 x¢2 |25 =

and the upward-pointing unit normal is N(z,y, z) = (f, 0, E), we have
a a

1 a 1
F.-NdS=| =(*+d® — ) ——d(u,v :a2j—du,v
| | & S ) = ¢t | d(wo)
u=a 2
duah):a2ba1rcsinE - b

ZGQJTZ;
0 Jo vVa* —u? a

u=0 2
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4.6.2 Measurements of the flux - the divergence operator

Let © < R3 be an open set, and u : Q — R3 be a € vector field. Suppose that O is a
bounded open set of class €' such that O < Q with outward-point unit normal vector field
N. Then the flux integral of u over dO in the direction N is

J u-NdS.
20
Consider a special case that O = B(a,r) for some ball in R* centered at a with radius r.
We first compute u?N3 dS. Consider
0B(a,r)
¢+(1‘1,$2) = (1’17$27a3 + \/7“2 - (1‘1 - a)2 - ($2 - a2)2) ) (I1,$2) € D(a,r) )
¢—($2,I2) = ($1,$2,a3 - \/7“2 - (901 - a)2 - (2702 - CL2)2) ) ($1,$2) € D(a,r) )

where D(a,r) is the disk in R? given by {(z1,22) € R?| (z1 — a1)? + (22 — a2)? < r?}. Since
0B(a,r)\(¢1(D(a,7)) U _(D(a,r)) is the equator of the sphere 0 B(a,r) which has zero

area, we must have

f u’N; dS = f u’N; dS + J w’N; dS .
B(a,r) ¥4 (D(a,r)) Y- (D(a;r))

Note that (N oy )(zq,22) = ! (Y1 (21, 22) — a). In view of Example 4.49, we have

-
J ’U,3N3 dS
P+ (D(ar))

B f (a;r) U3<@/}+(901,$2))\/T2 —@ ) o () L dA
D(a,r

" \/7“2 — (21— a1)* = (22 — a2)?

[ o)) da.
D(a,r)
and similarly,

f ’U,3N3 dS = —J U3(¢_($1,$2>)dA.
¥+(D(a,r))

D(a,r)
Therefore,
-
[ wmgas = [ [uos o) - w - (on,m)] dn
0B(a,r) D(a,r)
~ az++/r2—(z1—a1)?—(r2—a2)? 3
= J f al(llfl,ﬂ?mx?)) d333>dA

D(ar) N Jaz—y/r?—(z1—a1)?—(v2—a2)? 0xs

r 3

B(a,r) 03
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Similarly,

thus we conclude that

3 i
J u-NdS:J ZZU dx .
0B(a,r) B(a,r) i=1 i

The computation above motivates the following

Definition 4.73 (The divergence operator). Let uw : Q@ € R* — R" be a vector field. The

divergence of u is a scalar function defined by

_ Dol
divu = Z FPuE
i1 YTi

Definition 4.74. A vector field v : QQ € R* — R" is called solenoidal or divergence-free if
dive = 0 in €.

4.6.3 The divergence theorem

Theorem 4.75 (The divergence theorem). Let @ € R™ be a bounded Lipschitz domain, and

ve €1 Q) N E(Q). Then
Jdivvd:czj v-NdS,
Q o0

where N is the outward-pointing unit normal of 2.

Proof. To embrace the beauty of geometry (and the context that we have introduced), we
prove the case that €2 is a bounded open set of class €.

Let {U,,}5_, be an open cover of 0§ such that for each m € {1,---, K} there exists a
¢3-parametrization v, : V,, € R*! — U, which is compatible with the orientation N;
that is,

det ([wm,l R 1 N fNowm]) >0 on V.

Define 9., (v, yn) = Ym(¥) + yu(N 0 1,,,)(y) as in Section 4.5.1. Then there exists &, > 0
such that 9, : Vi, X (—&m, em) = Wy, is a ¢?-diffeomorphism for some open set in R® such
that Uy, : Vi X (—€m,0) = Q A W, while ¥,,, : V,,, x (0,,,) — int(Q%) n W,,.



§4.6 The Divergence Theorem 135

o K
Choose an open set Wy < R" such that Wy, € Q and 2 < | J W,,, and define J; as the

m=0

identity map. Let 0 < (,,, < 1 in €*(U,,) denote a partition-of-unity of 2 subordinate to
the open covering {W,,}X_; that is,

K
Eszl and  spt((n) S Uy, Ym.

Let J,, = det(VY,,), A, = (VU,,)71, and g, denote the first fundamental form associated
with {V,,, ¥ }. Using (4.17), \/gm(N o ¥,,) = Ju(Ay) e, on V,, x {0} for me {1,--- , K}.
Therefore, making change of variable z = 9,,(y) in each W,, we find that

K
f v-NdS = ZJ (m(v-N)dS
oN 02 W,

K n p

=22 (G © 0) (¥ 0 0 )(NT 0 01) iy’

m=1i=1 v Vm x{yn=0}
r

(Cm © ﬁm)(vi 0 V) I (Arn); dy’

(2
Vrn X {yn :0}
r

-

(&

iD= TP
- 1

,_.
-
Il
—
&

a ng,i
3 [(Cm O Uy )i (A3 (0 0 ﬁm)] dy .
Vi x (—em,0) ¢¥Yn

On the other hand, for a € {1,--- ,n—1} and i e {1,--- ,n},

J (~em0) aza [(Gin © Vi) T (A5 (v 0 9) ] dy = 0

thus the Piola identity (2.6) implies that

L v NdS = 2 3 ;[(gmoﬁm)Jm(Am)g(vz‘oﬁm)} dy

m= 11] 1 YVmx(—em,0)

J )(<m019 )-('vioﬁm)dy
mlzj 1YVmx(=em,0

EX S Gt o0 .
'm X (—&m,,0)

m=11,j=1

Making change of variable y = ¢,.!(x) in each V,,, x (—&,,,0) again, by the fact that

n

> (AW (W 06,), = (dive) of,,  and fdiv(gomdx:o,
Wo

ij=1
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we conclude that

f v-NdS:J div(¢ov) dz + ZJ V- V)i dr + Z Cmdivode
o0

W

= f V- V)i dr + 2 Cmdivode

Wm
:J(v-Vx)ld:)ﬁLJ divvd$:J divodx . o
Q Q Q
Letting v = (0,---,0, f,0,---,0) = fe;, we obtain the following
Corollary 4.76. Let Q € R" be a bounded Lipschitz domain, and f € €*(Q) n€ (). Then

(9371 00

where N; is the i-th component of the outward-pointing unit normal N of Q).

Letting v be the product of a scalar function and a vector-valued function in Theorem

4.75, we conclude the following

Corollary 4.77. Let Q € R® be a bounded Lipschitz domain, and v € €*(Q; R?) n €' (; R?)

be a vector-valued function and ¢ € €1 (Q) N € (Q) be a scalar function. Then

J godivvd:czf (v-N)gpdS—f v-Vodr, (4.18)
Q o0 Q
where N is the outward-pointing unit normal on 0f).

Example 4.78. Let 2 be the the first octant part bounded by the cylindrical surface
22 4 22 = a? and the plane y = b, and F : Q — R3 be a vector-valued function defined by

F(xJ y? Z) - (x7 y27 Z)‘

Figure 4.5: The domain €2 and its five pieces of boundaries
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With N denoting the outward-pointing unit normal of 0¢2,

a rb pva2—z? a ~/a?—z2
J divFd(x,y,2) = J f J (2 + 2y) dzdydz = (b* + 2b)J f dzdx
Q 0 Jo Jo

0o Jo
_ wa*(b® + 2b)
4
On the other hand, we note that the boundary of €2 has five parts: X as given in Example
4.72, two rectangles Ry = {x = 0} x [0,b] x [0,a], Ry = [0,a] x [0,b] x {z = 0}, and two
quarter disc Dy = {(2,0,2) e R* |2+ 22 < a®,2,2 > 0} and Dy = {(2,b,2) e R*|2? + 2% <

a?,z,z = 0}. Therefore,

ra rb
F - NdS = J(O,yQ,z)-(—l,O,O)dydz:O,
R1 JO JO
ra rb
F.NdS = J(w,yz,O)-(O,O,—l)dyd:U:O,
Ro JO JO
ra (vaZ—a?
F-NdS = J (2,0,2)-(0,—1,0)dzdz =0,
Dy Jo Jo
and
a m a m 7TCL2b2
f F-NdS:J f (:c,bQ,z)-(O,l,O)dzdx:bQJ J dzdx = :
Dy 0o Jo o Jo 4

Together with the result in Example 4.72; we find that

22 ra?h ma?(b? + 2b
F-NdSz(JJrJ +J +J +J )F~Nd5:7m L Toth _ mat(b® +3b)
o P Ry Ra D1 Do 4 2 4

= J divFd(z,y, z) .
Q

4.6.4 The divergence theorem on surfaces with boundary

This section is devoted to the divergence theorem on surfaces in R? instead of domains of
R*. To do so, we need to define what the divergence operator on a surface is, and this

requires that we first define the vector fields on which the surface divergence operator acts.

Definition 4.79. Let ¥ < R3 be an open ¢ *-surface; that is, ¥ is of class € and X n oY =
&5. A vector field u defined on ¥ is called a tangent vector field on X, denoted by uw € TY,

if w-N =0 on X, where N : ¥ — S? is a unit normal vector field on .
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Having established (4.18), we find that the divergence operator div is the formal adjoint

of the operator —V. The following definition is motivated by this observation.

Definition 4.80 (The surface gradient and the surface divergence). Let ¥ < R" be a
regular ¢'-surface. The surface gradient of a function f : ¥ — R, denoted by V4 f, is a

vector-valued function from ¥ to T,X given, in a local parametrization {V, v}, by

O(f o) 6w
o = Z o
a,f=1 y ayﬁ

where [g?F] is the inverse matrix of the metric tensor [gas] associated with {V, 1}, and

P2
{ } are tangent vectors to 2.
0ys ) p=1

The surface divergence operator div;, is defined as the formal adjoint of —V%,; that is, if
u € T, then

—f u-vzfdszf fdivwudS  Vfe€'(I:R).
by b

In a local parametrization (V, ),

—

n—

7

} 2 Vg ((wov)- )} ,

(divgu) o

where g = det(g) is the first fundamental form associated with {V,}.

Remark 4.81. Suppose that f : O € R® — R for some open set containing ¥. Then the
surface gradient of f at p € X is the projection of the gradient vector (V f)(p) onto the
tangent plane 7,%. In other words, let N : ¥ — R? be a continuous unit normal vector field
on Y, then

(Vef)p) = (V) = [(V)(p) N(p)|[N(p) (or simply %f =Vf— (Vf N)N).

Definition 4.82 (Surfaces with Boundary). An oriented ¢*-surface ¥ < R? is said to have

% *-boundary 0¥ if there exists a collection of pairs {V,,, ¥ }X_,, called a collection of local

m=1>

parametrization of ¥, if

1. V,, € R? is open and v, : V,, — R? is one-to-one map of class €% for all m e
{1’ . 7K}7

2. YY) n S # G forallme {1,--- K} and ¥ Uizlwm(Vm);
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3. Ym : Vi = (Vi) is a €*-diffeomorphism if ¢,,(V,,) S ¥;

4. Yy : VE=V0 0 {ya > 0} = (Vi) N 3 is a €F-diffeomorphism if U, N 0% # ;
5. Um : Vi 0 {y2 = 0} = U, 00X is of class €* if Uy, n 0¥ # .

Now we are in the position of stating the divergence theorem on surfaces with boundary.

Theorem 4.83. Let ¥ € R3 be an oriented 6*-surface with €*-boundary 02, N : ¥ — S?
be a continuous unit normal vector field on X, and T : 0¥ — S? be tangent vector on 0%

such that T is compatible with N (which means T x N points away from ). Then

fu-(TxN)ds:fdivzudS Vue TS n€HE;R?) n G (5 R?),
oY P

where divy, is the surface divergence operator.

Proof. Let {V,,, ¥ }E_, denote a collection of local parametrization of X such that 1, (V,n) N
0¥ =g for 1 <m < J, and ¢,,(V,n) N 0% is non-empty and connected for J+1 <m < K.
W.L.O.G., we can assume that V,, = B,,, = B(0,r,,) for some r,, > 0. Write Uy, = ¥, (Vin),
and let {g,,}X_, be the associated metric tensor, as well as the associated first fundamental
form g,, = det(g,). Let {(,}X_, be a partition-of-unity of ¥ subordinate to {U,}X_,.
Then

K
J divz'u,dS = f Cmdin’U,dS
> m=1YUn "X
J 2
= o) [ B (0 i) - Lm
_T;la;ljm(gm Um) - [@gm ((wothm) 6yﬁ)]dy
K 2
o) [ B (w0 i) - L
+m§+la;1f3;‘;(€m ¢m)&ya [@m(<u ¢m) 6y5 )]dy

Let m denote the outward-pointing unit normal on either 0B,, for 1 < m < J or 0B, for
J+1<m< K. Since ¢, c ¥, = 0 on dB(0,7,) for 1 < m < J, and (,, 0, = 0 on
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{y2 > 0} " 0B(0,ry,) for J+1 < m < K, the divergence theorem (on R?) implies that

f divyudS = Z Z f \/gimg?f((uodfm) ) a;z:)]a(gm 0 ) dy

m=1qa,3=1 ' UmnD)

m O Vm (e mgf OVm) = d
+mZJHa;Jmm{y2 O}C ) [\/?g ((wo ) ayﬁ)} Ui

K

-3, L g (8 S ) 2 U dy

F 3 [ Gemmenn | 3 mvmi e i

m=J+1 Y Bmn{y2=0} a,B=1

Since

K K K
Z J L (u'ngm)o¢m@dy:Z (U'VECm)dS:J (’u-VZCm)dS:O,
m=1Y¢m UnnX) m— by me1

—1 JUmNE

we conclude that

LdivzudS: i JB (G © V) (1w 0 Ur) [ Z Mo /B %}

m=J+1 mm{y2:0} a,f=1
On the other hand,

K

J u- (T x N)ds = (nu- (T x N)ds
ox.

:ZJ

m=J+1 mﬁ{yZ 0}

(G 2 ) (0 ) - [(T % N) 0 0| 52 | g

Therefore, the theorem can be concluded as long as we can show that

& Ot 0t
D mayEn g G = (TxN)ovn[S2] on Buofm=0). (@19
a,B=1

2
Let 7, = D nm/gmgaﬂ ¢ on B,, n{ys = 0}. Since n, = —da,, we find that Tm'% =

a,B=1 Y
0 on By, N {y2 = 0}; thus

Tm - (Toy,)=0 on B, n{ys=0}.
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OUm
Yp

Moreover, noting that 7, is a linear combination of tangent vectors , we must have

Tm - (Noty,)=0 on B, n{y,=0}.

As a consequence,

Tm [/ (T x N) o), on B, n{ys=0}.

Since (T x N) points away from X, while 861/;1 o)1 ; points toward Y, by the fact that
2 b
m _ 50%m  OYm 2
Tm * - na\/myan_'_:_\/mm<07
Yo 2 Emd Yz  0ye smd

017521

we must have 7, - (T x N) o, >0 on B, n{y2 = 0}. In other words,
Tm = |Tw|(T x N) 01y, on B, n{y.=0}.

Finally, since

2
a 5¢m 0 m 5¢m 2
Tm Tm = Z Zm Na n'y gmﬁg:né 0 : aw = gmggf = 0gm11 = 0 )
o B =1 s o n
0Ym . .
we conclude that 7, ‘(T x N) o ), on {yo = 0}; thus (4.19) is established. o

= ayl

Remark 4.84. On 0%, the vector T x N is “tangent” to ¥ and points away from X. In
other words, T x N can be treated as the “outward-pointing” unit “normal” of 0% which

makes the divergence theorem on surfaces more intuitive.

4.7 The Stokes Theorem

4.7.1 Measurements of the circulation - the curl operator

We consider the circulation or the speed of rotation of a vector field v about an axis in the
direction N. Let P be a plane passing thorough a point a and having normal N, and C.. be
a circle on the plane P centered at a with radius r. Pick the orientation of the unit tangent

vector T which is compatible with the unit normal N (see Figure 4.6 for reference).
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Figure 4.6: the circulation about an axis in direction N

Since the instantaneous angular velocity of a vector field u along the circle C,. is measured

by u , it is quite reasonable to measure the circulation of u along C, by averaging the
angular velocity; that is, we consider the quantity
1 -T
R e (4.20)
2rrJe,. T

as a (constant multiple of) measurement of the speed of rotation. The limit of the quantity
above, as 7 — 0, is then a good measurement of the rotation speed of u at the point a about
the axis in the direction IN.

Since we expect that this measurement does not depend on the choice of coordinate
systems, we start from letting P be the z;z5-plane, and N = (0,0,1), T = (—sin6, cos 6, 0).
By the change of variable ds = rdf and the L’Hospital rule,

lim ng u.TdS: i 27 u?(a+ (rcos6,rsind,0)) cosd — u' (a+ (rcos,rsind,0)) Sin9d9
r—021rJo. T r—0 Jg 27r
1 2
. [u21 (a) cos? O+ u%(a) cos O sin 6 — u'; (a) cos O sin 6 — uly (a) sin? 0} de
T Jo : : : ’

1 < :

=5 [ui(0)—ub(a)] =5 > esijwi(a). (4.21)
Now suppose the general case that N # e3. There is an orthonormal matrix O = [e;[ez]€3]
so that Oes = N. As a consequence, e = N, ¢; = Oe; for j = 1,2, T = Or with
T = (—sinf,cosf,0), and the limit of the quantity in (4.20) is given by

1 27
lim — f u(a 4 rcosfe; + rsinfesy) - (O1) db
r—0 277 Jo
1

27
= lim — f (Ov)(a + rcosfe; +rsinbey) - (OT) do
r—0 277 Jo

1 2m
= lim — J v(a + 7 cosfe; +rsinfey) - (—sinb, cosb,0)db,
r—0 277 Jo
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where v = OTu, and the identity that (Ov)-(O7) = v- 7 is used to deduce the last equality.
By the L’Hospital rule again,

In fact, we expect this to hold since if using ' = OTz as the new coordinate, by (4.21) and

the chain rule we obtain that

1 u-T lrov? oot 1g oot ;
i LI LS 2 e
ro 27?1”£;T r ds 2lox]  ox} 2 Z 0x] - Ox;j (a) €
Finally, we note that v’ Z uiep 6 = Z uf €} for £ =1,2,3; thus
k=
1 1, 1 g N
lli%%ffc 252"2@{""%252“ &8 —er]
J=1 Jk=1
;3
=3 D (0jp0ks — 0j0kr) w7 S5
j,k,r,s=1
where 0..’s are the Kronecker deltas. Due to the following useful identity
3
Z €ijkEirs = 5jr§k:s - 5js(5kr ) (422)

we conclude that

3 3

1 u-T 1 1 .

: k ~r~s k ~ INRY

lim _ff ds = 5 E EijkEirsUj €] €5 = 3 E sijkuvj(el X €)
Ch

2,9k, r,s=1 i,5,k=1
1 3 3
== gipul el = = giint;IN
— 9 ijk @ ©3 ijk @ jiNq
i,7,k=1 i,5,k=1

This motivates the following

Definition 4.85 (The curl operator). Let w: Q € R* - R* n =2 or n = 3, be a vector
field.

1. For n = 2, the curl of u is a scalar function defined by

2
curlu = Z 3 U,

4,j=1
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2. For n = 3, the curl of u is a vector-valued function defined by

3
(curlu)’ = Z 8Z-jkuf“j.
k=1
The function curlw is also called the vorticity of u, and is usually denoted by one single
Greek letter w.

Having the curl operator defined, for the three-dimensional case the circulation of a
curlu - N

vector field w on the plane with normal N is given by 5

4.7.2 The Stokes theorem

The path we choose to circle around the point a does not have to be a circle. However, in
such a case the average of the angular velocity no longer makes sense (since u - T might not
contribute to the motion in the angular direction), and we instead consider the limit of the

following quantity

1
lim — ¢ w-Tds,
A—0 C

where A is the area enclosed by C. This limit is always curlu - N because of the famous

Stokes’ theorem.

Theorem 4.86 (The Stokes theorem). Let u: 2 € R3 — R3 be a smooth vector field, and
Y be a €'-surface with €*-boundary 0% in Q. Then

J u~Td3:J curlu - N dS,
ox b

where N and T are compatible normal and tangent vector fields.
To prove the Stokes theorem, we first establish the following

Lemma 4.87. Let Q < R? be a bounded Lipschitz domain, and w : Q — R be a mooth

vector-valued function. If X < Q is an oriented €1 -surface with normal N, then
curlw - N = divg(w x N) on X. (4.23)

Proof. Let O < Q be a €'-domain such that ¥ € 0O and N is the outward-pointing unit

normal on dO. In other words, ¥ is part of the boundary of O. Since

oo .
(Vo) = aTg\OINZ + (Vaoyp)"' on 00,
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by the divergence theorem we conclude that for all ¢ € €1 (0),

J (curlw - N)pdS = J curlw- Vo dr = J (N x w) - Vo dS
00 0

00
- J (N x w) - ViopdS = | divao(w x N)pdS.
00 00
Identity (4.23) is concluded since ¢ can be chosen arbitrarily on X. O

Proof of the Stokes theorem. Using (4.23) and then applying the divergence theorem on
surfaces with boundary (Theorem 4.83), we find that

f curlu - NdS = f divg(u x N)dS = f
2 b

(uxN)-(TxN)ds:f (u-T)ds
0%

ox.
in which the identity (w x N) - (T x N) = w - T is used. o

Example 4.88. Let ¥ be the surface given in Example 4.51, and F : R® — R3 be a vector-
valued function given by F(z,y,z) = (y, —x,0). Then by the definition of line integral,

3
jg F - dr :J (sin®t, — costsint, 0) - (cos2t—sith,2sintcost,—sint)dt
c

[NIE]

3
= J ( sin®t cos? t — sin*t — 2sin? t cos? t) dt

_T
2

= — ? Sin2tdt:_ B ﬂdt:_<£_81n2t>‘g :_E
_ _n 2 2 4 -z 2

us
2 2 2

while by the fact that curlF = (0,0, —2), the Stokes theorem implies that

3 (¢
jQCF ~dr = L(O, 0,-2)-NdS = Ll(z) —2cospsingd(0, ¢) = —2f0 L sin ¢ cos ¢ dfd¢

us

= — JQ (m — 2¢) sin2¢p dp = (g cos2¢ — ¢ cos2¢ + %sianb) ‘d):g
_ _EO_ T,r_ 7T "
2 2 2 2
Example 4.89. Let C' be a smooth curve parameterized by
r(t) = (cos(sint) sint, sin(sin¢) sin ¢, cos t) , t €10,2n].

Then the curve C is a closed curve on S?, and divide S? into two parts. Let ¥ denote the

part with smaller area.
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As in Example 4.51 and Example 4.88, we would like to find the area of 3, and verify
the Stokes theorem for the special case that F : R3 — R3 given by

F(z,y,2) = (y,—x,0).

To find the surface area of 3, we need to parameterize ¥. As in Example 4.51, we look
for v(t) = (6(t),#(t)), t € [0,27], such that ¢ (y(t)) = r(t), where ¢ : R = (0,27) x (0, 7) is
given by (0, ¢) = (cos  sin ¢, sin 0 sin ¢, cos ¢) .

For t € (0, ), since cost = cos ¢(t) and ¢(t) € (0,7), we must have ¢(t) = ¢; thus the
two identities cos(sint)sint = cosf(t)sin ¢(t) and sin(sint)sint = sin6(t) sin ¢(¢) further
imply that 6(t) = sint. Therefore, the curve 7((0,7)) corresponds to § = sin¢, ¢ € (0, ),
on R.

On the other hand, for t € (7, 27), the identity cos ¢(t) = cost implies that ¢(t) = 27 —
t. The two identities cos(sint)sint = cos6(t) sin ¢(t) and sin(sint)sint = sin 0(t) sin ¢(t)
further imply that

cos(sint) = —cosf(t) and sin(sint) = —sin0(t) te (m2m).

Therefore, 6(t) = m + sint which implies that the curve r((7r727r)) corresponds to 6 =
m—sing, ¢ € (0,7), on R.

¢
F\ 777777777777 , oS- -------0-0T 1
AN - .
I \ 4 I
I N / I
! V0 =/T—sing |
! |

0= siyy ¢ | 1
| ’ |
i) |
| |



§4.8 Green’s Theorem 147

Therefore, the surface area of X is

$=0

Lﬂ L;;iwsimbdedqs = Lﬂ(w — 25in ¢) sin ¢ dep = —(77 cosd + ¢ — w) ‘“ _

Next, we compute the line integral fﬁ F - dr. First, we note that
c
r'(t) = (—sin(sint) sint cost + cos(sin t) cos t, cos(sint) sint cost + sin(sint) cost, —sint) ;
thus

(For)(t) r'(t) = —sin®(sint) sin®t cos t + sin(sin t) cos(sin t) sin  cos ¢
— cos®(sint)sin®t cost — sin(sint) cos(sin t) sint cost

= —sin’tcost.

As a consequence,
27 9 1 t=2m
§F'dr:f sin?tcostdt = ——sin’t =0.
C 0 3 t=0

On the other hand,

T pT—sin ¢
J curlF'- N dS = J f (0,0, —2) - (cos 8 sin ¢, sin 0 sin ¢, cos ¢) sin ¢ dfd¢p
b)) 0 Jsing

=2 Jﬂ sin ¢ cos ¢(m — 2sin ¢) do
0

p=m

4
:<gCOSQ¢+§SiD3¢>‘ =0.

¢=0
4.8 Green’s Theorem

In most of materials Green’s theorem is introduced prior to the divergence theorem and the
Stokes theorem; however, we treat Green’s theorem as a corollary of the divergence theorem
(Theorem 4.75), the Stokes theorem (Theorem 4.86) and Theorem 4.83.

Theorem 4.90 (Green’s theorem). Let D be a bounded domain whose boundary 0D is
piecewise smooth, and M, N : D — R be of class €*. Then
3@ (M,N) -dr = J (N, — M,) dA,
oD D
where the line integral (on the left-hand side of the identity above) is taken so that the curve

1s counter-clockwise oriented.
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Proof 1. Let u(z,y) = (N(a:,y), —M(x,y)) be a vector-valued function defined on the 2-
dimensional domain D. Suppose that 0D is parameterized by r(t) = (z(t), y(t)) for t € [a, b],
where 7’ points in the counter-clockwise direction. Then with N denoting the outward-

pointing unit normal of 0D, the divergence theorem implies that

f]g (M,N)-dr:§ u-Nds:JdivudA:J(Nw—My)dA. o
oD oD D D

Proof 2. Let F(z,y,z) = (M(z,y), N(z,y),0) be a vector-valued function defined in a
subset of R3. Then
curlF = (0,0, N, — M,) ;

thus the Stokes theorem implies that

\dﬁ (M, N) - dr = F-Tds:J curlF-NdS:J (0,0, N, — M,) - (0,0, 1) dA
oD oD D D
:J(Nx*My)dA. =
D

Proof 3. Let ¥ = D x {z = 0}. Then ¥ is a surface with boundary and the upward-
pointing unit normal N = (0,0,1). Let F : ¥ — R?® and w : D — R? be vector-valued
functions defined by F(z,y,2) = (N(z,y), —M(z,y),0) and u(z,y) = (N(z,y), —M(z,y)),
respectively. We note that if 0D is parameterized by r(t) = (x(t),y(t),0), then

1
|7 () s

(@'(t),y'(),0) x (0,0,1) = ;(y/(t), —2'(),0);

T x N =
|7 () |Re

thus by the fact that the surface divergence operator divy, is the same as the 2-d divergence
operator (since X is flat), Theorem 4.83 implies that

3@ (M, N) - dr = F-(TxN)ds:fdivEFdS:f
oD 3

divudA:f(Nx—My)dA. -
0D D

D

Corollary 4.91. Let R < R? be a domain enclosed by a simple closed curve C' which is
parameterized by v(t) = (z(t),y(t)) fort € [a,b]. Suppose v’ points in the counter-clockwise

direction. Then

b
the area of R = %f (z(t)y'(t) — y(t)z'(t))dt .

Proof. The corollary is concluded by applying Green’s theorem to the special case: M (z,y) =
—y and N(z,y) = x. o
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Example 4.92. Compute the area enclosed by the Cardioid which has a polar representa-
tion r = (1 — sin ) with 6 € [0, 27].

y
A NN

Figure 4.7: The Cardioid

Given the polar representation r = (1 — sin ), a parametrization of the Cardioid is
r(t) = (z(t),y(t)) = ((1 —sint) cost, (1 —sint)sint) t € 0,27 .

Then Corollary 4.91 implies that the area enclosed by the Cardioid is

1 27
§f [(1 —sint)cost(— costsint + (1 — sint) cost)
0

— (1 —sint)sint(— cos®t — (1 — sint)sint)]dt

1 2m
:§f (1 —sint)[cos®t — 2sint cos’ ¢ + sint cos®t + sin® ¢t — sin® ¢] dt
0
1 27 1 27 3
:—J (l—sint)(l—sintcoth—sing’t)dt:—J (l—sint)zdt:—ﬁ.
2, 2 J, 2

Before finishing this chapter, we would like to establish an unproven theorem: Theorem
4.33. We recall Theorem 4.33 as follows.

Theorem 4.33. Let D < R? be simply connected, and F = (M, N) : D — R? be of class
¢'. If M, = N,, then F is conservative.
Proof of Theorem 4.33. By Theorem 4.30, it suffices to show that jg F - dr = 0 for all
piecewise smooth closed curve C' € D. Nevertheless, if C' is a piecewiseo closed curve and R
is the region enclosed by C, by the fact that D is simply connected, we must have 0R = C.
Therefore, Green’s theorem implies that

§C(M, N)-dr = JR(NI — M,)dA = 0. .



Chapter 5

Additional Topics

5.1 Reynolds’ Transport Theorem

Let €2, and €2y be two Lipschitz domains of R" with outward-pointing unit normal N and

Ql - QQ
n, respectively, and the map ¢ : 0 —  0€y  be a diffeomorphism; that is, v is
y —x=1y(y)

one-to-one and onto, and has smooth inverse. Let f € €1(%) n €(Qy), and F = f o
which in turns belongs to () n € (Q1). By the divergence theorem,

LQ s:f (w) du = L%(fni)(x) ds, .

On the other hand, by the chain rule we have that
0F _0(fov) an [5f ]GW
- — — — 0 w - -

Y Yi o Jw; oy;
thus if A = (Vy)~!
of JOF
1
oY= Z Y (5.1)

Letting J = det(V1)) be the Jacobian of ¢, by the change of variable y = 1(y) and the Piola
identity,

(JAIF) dy.

J o= [, svmaswn-3[

0x;
2 ? =1

The divergence theorem again implies that

iFN,
N 6% gf JAJFN;dS,

150
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which further implies that

JATN
- F——|JATN . 2

Let 1*(dS,) denote the pull-back of the surface element dS, having the property that for
any function A defined on 0y = 1(2€2),

f h(x) dS, = f (h o) ()" (dS.) ;
P(00)

0

in other words, ¥*(dS,) = \/g(y) dS, for some “Jacobian” ,/g of the map 1) : €2y — 0.
Therefore, (5.2) suggests that

. JATN
[ rmas= [ [moulwur@s) = [ (0u) T imelIATNS,.
099 o o “]A N’
Since f can be chosen arbitrarily, the equality above suggests that
JATN ATN
noy = JATN] ~ [ATN| (5.3)
and
Y*(dS,) = |[JATNIdS, . (5.4)

We finish this section by the following

Theorem 5.1 (Reynolds’ transport theorem). Let Q@ < R™ be a smooth domain, ¥ : € x
[0,7] — R™ be a diffeomorphism, Q(t) = ¥(2,t) and f(x,t) be a function defined on §(t).
Then

d
T L@) fx,t)de = o fi(z,t) de + L (of)(z,t)dS,, (5.5)

Q1)

where o is the speed of the boundary in the direction of outward pointing normal of 0€(t);

that is, with n denoting the outward-pointing unit normal of (1),

o= oy ") n.

Proof. By the change of variable formula,

St = f F(6(y. 1), 1) det (V) (y, 1) dy.

Qt
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Let f(¥(y,t),t) = F(y,t), A = (V)™ and J = det(Ve). By (1.3) and (5.1), we find that

d
E fQ(t) f(x,t) dr = JQ [ft(w(y,t),t) + ’tbt(y,t> . (me)(w(y,t),t)}gl(y,t)dy

£ 3 | POOAT 0 dy

ij=1

= [ A, dy+ D) [ AR+ FIAL0nt) dy

3,j=1

= | (Frownan+ 3

| i), an
i,j=14
where the Piola identity (2.6) is used to conclude the last equality. The divergence theorem

then implies that

d ] .
Gl o= | (rowpray+ 3 | aaiNuiras,.

Q(t i,j=1

As a consequence, changing back to the variable x on the right-hand side, by (5.3) and (5.4)
we conclude that

d n
EL(t)f(x,t) dx = L(t) fi(z,t) de + 2 Lg(t)(af)(x7t) s, . ]

5.2 Eulerian and Lagrangian Coordinates

We have seen that the diffeomorphism ¢ : Q — Q(t) plays an important role in the Reynolds
transport theorem Theorem 5.1. In fluid dynamics, if the fluid domain is carried by the fluid
velocity; that is, the boundary of the fluid domain moves along with the fluid velocity, then
there is a natural map with domain € and range Q(t), and we focus a little bit on this map
in this sub-section.

Let ©2(t) < R" be a (time dependent) domain, and u(-,t) : (¢) — R be a smooth vector
field. We say that 0Q(f) moves along with u if any smooth curve {z(t) € R*|¢ € [0,T]}
satisfying x(t) € 0€)(t) also satisfies that

a'(t) - n(z(t), t) = u(xz(t),t) - n(z(t),t), (5.6)

where n again denotes the outward-pointing unit normal of Q(¢). We remark that using the

notation Q(t), we include the possibility that the fluid domain may vary in time, while in a
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lot of applications, Q = Q(0) = Q(t) for all ¢. Now suppose that d€2(t) moves along with w.
Let n: 2 — R" be the unique solution to the ODE

n(a,t) = u(n(a, t),t) VaeQ,te(0,7), (5.7a)
n(a,0) = « Vae, (5.7b)

here we assume that the solution exists up to time 7. The value of z = n(«, t) is the location
of the fluid particle at time ¢ which is initially positioned at « € Q. By (5.6), we must have
(2, t) = Q(t).

A time independent coordinate system used in the co-domain of 7 is called the Eulerian
coordinate. We note that since in general {(¢) varies continuously in time, the Eulerian
coordinate is usually defined on a subset of R* larger than €(¢). In fact, the Cartesian
coordinate is one of the most important Eulerian coordinate system since Q(¢t) < R* for all
t > 0. On the contrary, the coordinate used in the domain of 7 is called the Lagrangian
coordinate. Since the Lagrangian coordinate is used to identify the initial position of fluid
particles, it is often called the material coordinate as well. In short, the Eulerian coordinate
is used to describe the (larger) background space (so each x corresponds to a point in space
which might not a point in the fluid), while the Lagrangian coordinate is used to describe
the particle in the fluid (so each a corresponds to a particle in the fluid).

Let us explain what these two coordinate systems are doing. Suppose that a kind of
censor (whose volume and mass are both zero in the mathematical setting so that it does
not affect any physics) is designed to measure certain physical quantity. The censor can be
fixed at a point x in space so that the readings indicate the value of that physical quantity
at x for various time. On the other hand, we may set the censor to flow with the fluid
(the fluid will carry the censor). If the censor initially is position at a given point «, then
the readings of the censor indicate the value of the quantity at the particle which initially
locates at position a. In other words, a function with variables in Lagrangian coordinate is
a function defined on material particles inside the fluids, while a function with variables in

Eulerian coordinate is a function defined on space.

Theorem 5.2. Let u: Q(t) x (0,T) — R™ be a smooth vector field, and the flow map n(-,t) :
Q- Qt)
a — n(a,t)

allt > 0.

be defined by (5.7). Then u is divergence-free if and only if det(Vn) = 1 for
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Proof. Let J = det(Vn), and A = (Vn)~!. By (1.2) and (1.3),

=) JA{%z s ftren zk] and (2 o) o

1,j=1 1,j=1

)

Since A = (Vn)~%, 3 Alnf = 6y; thus
j=1

Jiy = J(divu) on. (5.8)

The theorem is then concluded by the fact that J|;—¢ = 1 since 7 is the identity map at
t=0. o

Corollary 5.3. Let u(-,t) : Q(t) — R™ be a smooth divergence-free vector field, and n be the
corresponding flow map (which is assumed to exist up to time T as well). IfU < Q = Q(0)

1s a smooth domain and

Ult) = {xeR“

x =n(a,t) for some a € U} ;
that is, U(t) is the image of U under the map n at time t, then

the volume of U = the volume of U(t) Vte (0,7).
Proof. Let |O| denote the Lebesgue measure of set O. Then

U(t)| :L@ dx:Ldet(Vn)(a)da:Lda: 7 .

Remark 5.4. If the fluid velocity is divergence-free, then the corollary above says that the
volume of a region carried by the fluid is constant in time. For this reason we sometimes

also called solenoidal vector fields incompressible.

5.2.1 The material derivative

In continuum mechanics, the material derivative describes the time rate of change of some
physical quantity (like heat or momentum) for a material element subjected to a space-and-
time-dependent velocity field. To be more precise, the material derivative, sometimes called

D
the substantial derivative, denoted by i’ is defined by

DF OF = OF
- - ¢ = F . F .
D 3 +;u&xi i+ (u-V)F, (5.9)
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where F is a physical quantity in Eulerian variable, and w is the fluid velocity field. Let n

be the flow map associated to u, and define f = F'on; that is, f(«a,t) = F(n(a, t), t), then
0 DF
J— — O
0 Dt

Therefore, the composition of the material derivative of a function and the flow map is the

(a,t) = [Fy+ (u-V)F]on= n.

time rate of change of the composition of that function and the flow map’

5.3 The particle trajectory and streamlines

Not yet completed!!!

5.4 Exercises

In this set of exercise, the Einstein summation convention is used.
Problem 1. Complete the following.

1. Let d.’s denote the Kronecker deltas. Prove (4.9); that is, show that

€ijkEirs = 5jr(5ks - 6j35k:7' . (49)

2. Let O < R? be an open domain, and u : O — R? be a smooth vector field. Denote

twice the anti-symmetric part of Vu as Q; that is, Q;; = u’,; —u/,;. Show that
Qpj = 5Z-jkwi, (5.10)
where w = curlu is the vorticity of wu.
3. Use (4.9) to show the following identities:

(a) ux (vxw)=(u wv—(u-v)wif u, v, w are three 3-vectors.
(b) curleurly = —Awu + Vdivu if u : O — R? is smooth.
(c) u x curlu = %V(|u|2) —(u-V)uif u: O — R? is smooth.

4. Use (5.10) to show that
curl[(w- V)u] = (v V)w — (w- V)u + (dive)w

if u: O — R3 is smooth.
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Problem 2. Let (-, t) : & — €(t) be a diffeomorphism as defined in Theorem 5.1, and
J = det(Vy) and A = (Ve)~!. Complete the proof of the Piola identity, identities (2.7),
(5.3) and (5.4) by the following argument:

1.

Let u(-,t) : Q(t) — R" be a smooth vector field. Show that
f divu dz :f JA (wo ) dy;
Q) Q

thus by the divergence theorem,

f u-nde:J JAz(uozﬁ)ideSy—J (JAY),; (wo )i dy. (5.11)
29Q(1) o0 Q

Using (5.11),
L(JA{),j (wo)'dy=0  Yu(,t): Q) — R" vanishing on dQ(t).
As a consequence, the Piola identity is valid.
By the Piola identity, (5.11) implies that
J w-ndS,= | JA(uov)'N,dS, V(1) : Q(t) - R" smooth.
29(t) o0

Therefore, identities (5.3) and (5.4) are also valid.

Using identity (2.7) (which is obtained independent of the Piola identity) to show that

J=JAI, .
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Appendix

A.1 Properties of Real Numbers

Definition A.1. Let J # S < R. A number M € R is called an upper bound (*+ %) for
S if x < M for all z € S, and a number m € R is called a lower bound (T %) for S if
x = m for all x € S. If there is an upper bound for S, then S is said to be bounded from
above, while if there is a lower bound for S, then S is said to be bounded from below.
A number b € R is called a least upper bound (-] + %) if

1. bis an upper bound for S, and
2. if M is an upper bound for .S, then M > b.
A number a is called a greatest lower bound (&~ = ) if

1. a is a lower bound for S, and

2. if m is a lower bound for S, then m < a.

—{ e
m S M

an lower bound for S an upper bound for S

>
>

If S is not bounded above, the least upper bound of S is set to be oo, while if S is not
bounded below, the greatest lower bound of S is set to be —oo. The least upper bound of
S is also called the supremum of S and is usually denoted by lubS or sup .S, and “the”
greatest lower bound of S is also called the infimum of S, and is usually denoted by glbS
or infS. If S = ¢, then sup S = —o0, infS = o0.
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Remark A.2. The least upper bound and the greatest lower bound of S need not be a

member of S.

Remark A.3. The reason for defining sup @ = —oo and inf(J = o is as follows: if
& # A< B, then sup A < sup B and inf A > inf B.

//A\B\

N / /
infp infA  swpA qppB

Since ¢ is a subset of any other sets, we shall have sup ¢ is smaller then any real number,
and inf ¢ is greater than any real number. However, this “definition” would destroy the
property that inf A < sup A.

The “definition” of sup ¢ and inf ¢J is purely artificial. One can also define sup & = o
and inf @ = —o0.

Definition A.4. An open interval in R is of the form (a,b) which consists of all z € R 3
a <z <b. A closed interval in R is of the form [a,b] which consists of all z € R 3 a <

x < b.
Proposition A.5. Let S < R be non-empty. Then
1. b=supS € R if and only if
(a) b is an upper bound of S.
(b) Ve>0,dzxeSsx>b—c.
2. a=1infS € R if and only if
(a) a is a lower bound of S.

(b) Ve>0,dxeSar<a+e.

Proof. “=" (a) is part of the definition of being a least upper bound.

(b) If M is an upper bound of S, then we must have M > b; thus b— ¢ is not an upper
bound of S. Therefore, 3z e Sz >b—¢c.

“<” We only need to show that if M is an upper bound of S, then M > b. Assume the
contrary. Then 4 M such that M is an upper bound of S but M <b. Let e =b— M,

then thereisnozxz e Sasx >b—¢. —<« o
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The Completeness Axiom (F #x # (£ 2% )
Every subset of R which is bounded from above has a least upper bound.

Definition A.6 (Cauchy sequence). A sequence {z}y~; in R is said to be Cauchy if for

every € > 0, there exists N > 0 such that |z — 24| < € whenever k,¢ > N.

Theorem A.7. Fvery Cauchy sequence in R converges.

A.2 Properties of Continuous Functions

Theorem A.8 (Uniform Continuity).
Theorem A.9 (Mean Value Theorem).

Theorem A.10 (Inverse Function Theorem). Let f : (a,b) — R be differentiable, and f’
is sign-definite; that is, f'(z) > 0 for all x € (a,b) or f'(x) < 0 for all x € (a,b). Then
f:(a,b) — f((a,b)) is a bijection, and f~1, the inverse function of f, is differentiable on
f((a,b)), and X
=N

IYUE) = 5
Proof. W.L.O.G. we assume that f'(x) > 0 for all x € (a,b). Then f is strictly increasing;
thus ! exists.

Claim: f~': f((a,b)) — (a,b) is continuous.

Proof of claim: Let yo = f(x¢) € f((a,b)), and € > 0 be given. Then f((xg —¢,z0+¢)) =
(f(zo — €), f(zo +¢€)) since f is continuous on (a,b) and (o — €,z + €) is connected. Let
6 = min{f(zo) — f(zo —€), f(zo + ) — f(x)}. Then § > 0, and

Vze(a,b). (A.1)

(yo = 6,90 +0) = (f(x0) — 0, f(x0) +6) S (w0 — &, 20 +€));

thus by the injectivity of f,

F (o —0,90+0) < f7H(f((zo—e,m0+¢))) = (wo—e,x0+e) = (f " (yo) —&. /(o) +2).-
The inclusion above implies that f~! is continuous at 7.
Writing y = f(z) and x = f~'(y). Then if yo = f(x0) € f((a,b)),

) =) @~
Y=Y f(x) = fzo)
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Since f~! is continuous on f((a,b)), * — o as y — yo; thus

Yy = )
T T AR T S )

which implies that f~! is differentiable at yj. =

T — X 1
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