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Chapter 1

Linear Algebra

1.1 Vector Spaces
Definition 1.1 (Vector spaces). A vector space V over a scalar field F is a set of elements
called vectors, together with two operations + : V ˆ V Ñ V and ¨ : F ˆ V Ñ V , called the
vector addition and scalar multiplication respectively, such that

1. v + w = w + v for all v,w P V .

2. (u + v) + w = u + (v + w) for all u, v,w P V .

3. There is a zero vector 0 such that v + 0 = v for all v P V .

4. For every v in V , there is a vector w such that v + w = 0.

5. α ¨ (v + w) = α ¨ v + α ¨ w for all α P F and v,w P V .

6. α ¨ (β ¨ v) = (αβ) ¨ v for all α, β P F and v P V .

7. (α + β) ¨ v = α ¨ v + β ¨ v for all α, β P F and v P V .

8. 1 ¨ v = v for all v P V .

For notational convenience, we often drop the ¨ and write αv instead of α ¨ v.

Remark 1.2. In property 4 of the definition above, it is easy to see that for each v, there
is only one vector w such that v + w = 0. We often denote this w by ´v, and the vector
substraction ´ : V ˆ V Ñ V is then defined (or understood) as v ´ w = v + (´w).

1
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Example 1.3. Let F be a scalar field. The space Fn is the collection of n-tuple v =

(v1, v2, ¨ ¨ ¨ , vn) with vi P F with addition + and scalar multiplication ¨ defined by

(v1, ¨ ¨ ¨ , vn) + (w1, ¨ ¨ ¨ ,wn) ” (v1 + w1, ¨ ¨ ¨ , vn + wn) ,

α(v1, ¨ ¨ ¨ , vn) ” (αv1, ¨ ¨ ¨ , αvn) .

Then Fn is a vector space.

Example 1.4. Let F = R or C, and V be the collection of all R-valued continuous functions
on [0, 1]. The vector addition + and scalar multiplication ¨ is defined by

(f + g)(x) = f(x) + g(x) @ f, g P V ,

(α ¨ f)(x) = αf(x) @ f P V , α P F .

Then V is a vector space, and is denoted by C ([0, 1];F). When the scalar field under
consideration is clear, we simply use C ([0, 1]) to denote this vector space.

Definition 1.5 (Vector subspace). Let V be a vector space over scalar field F. A subset
W Ď V is called a vector subspace of V if itself is a vector space over F.

1.1.1 The linear independence of vectors

Definition 1.6. Let V be a vector space over a scalar field F. k vectors v1, v2, ¨ ¨ ¨ , vk in V
is said to be linearly dependent if there exists (α1, ¨ ¨ ¨ , αk) Ď Fk, (α1, ¨ ¨ ¨ , αk) ‰ 0 such
that α1v1 + α2v2 + ¨ ¨ ¨ + αkvk = 0. k vectors v1, v2, ¨ ¨ ¨ , vk in V is said to be linearly
independent if they are not linearly dependent. In other words, tv1, ¨ ¨ ¨ , vku are linearly
independent if

α1v1 + α2v2 + ¨ ¨ ¨ + αkvk = 0 ñ α1 = α2 = ¨ ¨ ¨ = αk = 0 .

Example 1.7. The k vectors t1, x, x2, ¨ ¨ ¨ , xk´1u are linearly independent in C ([0, 1]) for
all k P N.

1.1.2 The dimension of a vector space

Definition 1.8. The dimension of a vector space V is the number of maximum linearly
independent set in V , and in such case V is called an n-dimensional vector space, where
n the the dimension of V . If for every number n P N there exists n linearly independent
vectors in V , the vector space V is said to be infinitely dimensional.



§1.2 Inner Products and Inner Product Spaces 3

Example 1.9. The space Fn is n-dimensional, and C ([0, 1]) is infinitely dimensional (since
1, x, ¨ ¨ ¨ , xn´1 are n linearly independent vectors in C ([0, 1])).

1.1.3 Bases of a vector space

Definition 1.10 (Basis). Let V be a vector space over F. A set of vectors tviuiPI in V is
called a basis of V if for every v P V , there exists a unique tαiuiPI Ď F such that

v =
ÿ

αPI
αivi .

For a given basis B = tviuiPI , the coefficients tαiuiPI given in the above relation is denoted
by [v]B.

Example 1.11 (Standard Basis of Fn). Let ei = (0, , ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0), where 1 locates at
the i-th slot. Then the collection teiun

i=1 is a basis of the vector space Fn over F since

(α1, ¨ ¨ ¨ , αn) =
n
ÿ

i=1

αiei @αi P F.

The collection teiun
i=1 is called the standard basis of Fn.

Example 1.12. Even though
␣

1, x, ¨ ¨ ¨ , xk, ¨ ¨ ¨
(

is a set of linearly independent vectors, it
is not a basis of C ([0, 1]). However, let P([0, 1]) be the collection of polynomials defined on
[0, 1]. Then P([0, 1]) is still a vector space, and

␣

1, x, ¨ ¨ ¨ , xk, ¨ ¨ ¨
(

is a basis of P([0, 1]).

1.2 Inner Products and Inner Product Spaces
Definition 1.13 (Inner product space). Let F = R or C. A vector space V over a scalar
field F with a bilinear form (¨, ¨) : V ˆ V Ñ F is called an inner product space if the
bilinear form satisfies

1. (v, v) ě 0 for all v P V .

2. (v, v) = 0 if and only if v = 0.

3. (v,w) = (w, v) for all v, w P V , where the bar over the scalar (w, v) is the complex
conjugate.

4. (v + w,u) = (v,u) + (w,u) for all u, v,w P V .
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5. (αv,w) = α(v,w) for all α P F and v,w P V .

The bilinear form (¨, ¨) is called an inner product on V .

Example 1.14 (Standard Inner Product on Fn). Let F = R or C, and Fn be the vector
space defined in Example 1.3. A special inner product on the vector space Fn over F, called
the standard inner product on Fn, is defined by

(v,w) ”

n
ÿ

i=1

viwi ,

where vi and wi are the i-th component of v and w, respectively, and wi is the complex
conjugate of wi. We sometimes use v ¨ w to denote (v,w).

Example 1.15. Let V = C ([0, 1];R). Define

(f, g) =

ż 1

0

f(x)g(x)dx .

Then
(
C ([0, 1];R), (¨, ¨)

)
is an inner product space. The norm induced by this inner product

is given by

}f} =
[ ż 1

0

|f(x)|2dx
] 1

2
,

and is called the L2-norm.

Proposition 1.16. Let V be an inner product space with inner product (¨, ¨). The inner
product (¨, ¨) on V induces a norm defined by

}v} ”
a

(v, v)

satisfying

1. }v} ě 0 for all v P V.

2. }v} = 0 if and only if v = 0.

3. }αv} = |α|}v} for all α P F and v P V.

4. }v + w} ď }v} + }w} for all v,w P V.

5. |(v,w)| ď }v}}w} for all v,w P V.
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Proof. Properties 1 through 3 are obvious. We focus on proving property 5 first, and as we
will see, property 4 is a direct consequence of property 5.

Let α P F satisfy α(v,w) = |(v,w)|. Then |α| = 1. For all λ P R,

(λαv + w, λαv + w) = (λαv, λαv) + (λαv,w) + (w, λαv) + (w,w)

= λ2}v}2 + λα(v,w) + λα(v,w) + }w}2

= λ2}v}2 + 2λ|(v,w)| + }w}2 .

Since the left-hand side of the quantity above is always non-negative for all λ P R, we must
have

|(v,w)|2 ´ }v}2}w}2 ď 0

which implies property 5. To prove property 4, we note that

}v + w} ď }v} + }w} ô }v + w}2 ď (}v} + }w})2

ô (v + w, v + w) ď }v}2 + 2}v}}w} + }w}2

ô Re(v,w) ď }v}}w}

while the last inequality is valid because of property 5. ˝

Remark 1.17. The inequality in property 5 is called the Cauchy-Schwarz inequality.

Definition 1.18. Let
(
V , (¨, ¨)

)
be an inner product space. A basis B of V is called orthog-

onal if u ¨ v = 0 if u, v P B and u ‰ v, and is called orthonormal if it is an orthogonal
basis such that }v} = 1 for all v P B.

Definition 1.19 (Orthogoanl complement). Let
(
V , (¨, ¨)

)
be an inner product space over

scalar field F, and W Ď V be a vector subspace of V . The orthogonal complement of
W , denoted by WK, is the set

WK =
␣

v P V
ˇ

ˇ (v,w) = 0 for all w P W
(

.

Proposition 1.20. Let
(
V , (¨, ¨)

)
be an inner product space over scalar field F, and W be a

vector subspace of V. Then WK is a vector subspace of V.



6 CHAPTER 1. Linear Algebra

1.3 Normed Vector Spaces
The norm introduced in Proposition 1.16 is a good way of measure the magnitude of vectors.
In general if a real-valued function can be used as a measurement of the magnitude of vectors
if certain properties are satisfied.

Definition 1.21. Let V be a vector space over scalar field F. A real-valued function } ¨ } :

V Ñ R is said to be a norm of V if

1. }v} ě 0 for all v P V .

2. }v} = 0 if and only if v = 0.

3. }αv} = |α|}v} for all v P V and α P F.

4. }v + w} ď }v} + }w} for all v,w P V .

The pair (V , } ¨ }) is called a normed vector space.

Example 1.22. Let V = Fn, and } ¨ }p be defined by

}x}p =

$

’

&

’

%

[ n
ÿ

i=1

|xi|
p
] 1
p if 1 ď p ă 8 ,

max
1ďiďn

|xi| if p = 8 ,

where x = (x1, ¨ ¨ ¨ , xn). The function } ¨ }p is a norm of Fn, and is called the p-norm of Fn.

Theorem 1.23 (Hölder’s inequality). Let 1 ď p ď 8. Then
ˇ

ˇ(x,y)
ˇ

ˇ ď }x}p}y}p1 @ x,y P Fn , (1.1)

where (¨, ¨) is the standard inner product on Fn and p 1 is the conjugate of p satisfying
1

p
+

1

p 1
= 1.

Proof. Let x = (x1, ¨ ¨ ¨ , xn) and y = (y1, ¨ ¨ ¨ , yn) be given. Without loss of generality we
can assume that x ‰ 0 and y ‰ 0. Define rx = x/}x}p and ry = y/}y}p1 . Then }rx}p = 1 and
}ry}p1 = 1. By Young’s inequality

ab ď
1

p
ap +

1

p 1
bp

1

@ a, b ě 0 ,
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we find that for 1 ă p ă 8,

ˇ

ˇ(rx, ry)
ˇ

ˇ =
ˇ

ˇ

ˇ

n
ÿ

k=1

xk
}x}p

yk
}y}p1

ˇ

ˇ

ˇ
ď

n
ÿ

k=1

|xk|

}x}p

|yk|

}y}p1

ď

n
ÿ

k=1

(1
p

|xk|p

}x}
p
p
+

1

p 1

|yk|p
1

}y}
p1

p1

)
=

1

p}x}
p
p

n
ÿ

k=1

|xk|p +
1

p 1}y}
p1

p1

n
ÿ

k=1

|yk|p
1

=
}x}pp

p}x}
p
p
+

}y}p
1

p 1}y}
p1

p1

= 1

which conclude the case for 1 ă p ă 8. The proof for the case that p = 1 or p = 8 is
trivial, and is left to the reader. ˝

Corollary 1.24 (Minkowski inequality). Let 1 ď p ď 8. Then

}x + y}p ď }x}p + }y}p @ x,y P Fn .

Proof. We only prove the case that 1 ă p ă 8. First we note that

}x + y}pp =
n
ÿ

k=1

|xk + yk|p ď

n
ÿ

k=1

|xk + yk|p´1
(
|xk| + |yk|

)
=

n
ÿ

k=1

|xk + yk|p´1|xk| +
n
ÿ

k=1

|xk + yk|p´1|yk| .

Let u =
(
|x1|, |x2|, ¨ ¨ ¨ , |xn|

)
and v =

(
|x1+y1|p´1, |x2+y2|

p´1, ¨ ¨ ¨ , |xn+yn|p´1
)
. By Hölder’s

inequality,
n
ÿ

k=1

|xk + yk|p´1|xk| = (u, v) ď }u}p}v}p1 = }x}p

( n
ÿ

k=1

|xk + yk|(p´1)p1
) 1
p1

= }x}p

( n
ÿ

k=1

|xk + yk|p
) p´1

p
= }x}p}x + y}p´1

p .

Similarly, we have
n
ř

k=1

|xk + yk|p´1|yk| ď }y}p}x + y}p´1
p ; thus

}x + y}pp ď
(
}x}p + }y}p

)
}x + y}p´1

p

which concludes the Minkowski inequality. ˝

Theorem 1.25. Let 1 ď p ď 8, and p1 be the conjugate of p; that is, 1

p
+

1

p 1
= 1. Then

}x}p = sup
}y}p1=1

ˇ

ˇ(x,y)
ˇ

ˇ @ x P Fn .
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Proof. By Hölder’s inequality, it is clear that }x}p ě sup
}y}p1=1

ˇ

ˇ(x,y)
ˇ

ˇ for all x P Fn. On the

other hand, note that |xk|p = xk ¨xk|xk|p´2; thus letting yk =
xk|xk|p´2

}x}
p´1
p

we find that }y}p1 = 1

which implies that
ˇ

ˇ(x,y)
ˇ

ˇ =
1

}x}
p´1
p

n
ÿ

k=1

|xk|p = }x}p

which implies that sup
}y}p1=1

ˇ

ˇ(x,y)
ˇ

ˇ ě }x}p. ˝

Making use of Hölder’s inequality (1.1) and the Riemann sum approximation of the
Riemann integral, we can conclude the following

Theorem 1.26. Let 1 ď p ď 8. If p 1 is the conjugate of p; that is, 1

p
+

1

p 1
= 1, then

ˇ

ˇ

ˇ

ż 1

0

f(x)g(x) dx
ˇ

ˇ

ˇ
ď }f}p}g}p1 @ f, g P C ([0, 1];R) ,

where

}f}p =

$

’

’

&

’

’

%

( ż 1

0

|f(x)|pdx
) 1
p if 1 ď p ă 8 ,

max
xP[0,1]

|f(x)| if p = 8 .

Remark 1.27. The Minkowski inequality implies that

}f + g}p ď }f}p + }g}p @ f, g P C ([0, 1];R) .

In other words, the function } ¨ }p : C ([0, 1];R) Ñ R is a norm on C ([0, 1];R), and is called
the Lp-norm.

1.4 Matrices
Definition 1.28 (Matrix). Let F be a scalar field. The space M(m, n;F) is the collection
of elements, called an m-by-n matrix or m ˆ n matrix over F, of the form

A =


a11 a12 ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2n
... ... . . . ...
am1 am2 ¨ ¨ ¨ amn

 ,
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where aij P F is called the (i, j)-th entry of A, and is denoted by [A]ij. We write A =

[aij]1ďiďm;1ďjďn or simply A = [aij]mˆn to denote that A is an m ˆ n matrix whose (i, j)-th
entry is aij. A is called a square matrix if m = n. The 1 ˆ m matrix

ai˚ =
[
ai1 ai2 ¨ ¨ ¨ ain

]
is called the i-th row of A, and the m ˆ 1 matrix

a˚j =


a1j
a2j
...
amj


is called the j-th column of A.

Definition 1.29 (Matrix addition). Let A = [aij]mˆn and B = [bij]mˆn be two m ˆ n
matrices over a scalar field F. The sum of A and B, denoted by A + B, is another m ˆ n
matrix defined by A + B = [aij + bij]mˆn or more precisely,

A + B =


a11 + b11 a12 + b12 ¨ ¨ ¨ a1n + b1n

a21 + b21 a22 + b22 ¨ ¨ ¨ a2n + b2n
... ... . . . ...

am1 + bm1 am2 + bm2 ¨ ¨ ¨ amn + bmn

 .
Definition 1.30 (Scalar multiplication). Let A = [aij]mˆn be an m ˆ n matrix over a scalar
field F, and α P F. The scalar multiplication of α and A, denoted by αA, is an m ˆ n matrix
defined by αA = [αaij]mˆn or more precisely,

αA =


αa11 αa12 ¨ ¨ ¨ αa1n

αa21 αa22 ¨ ¨ ¨ αa2n
... ... . . . ...

αam1 αam2 ¨ ¨ ¨ αamn

 .
Proposition 1.31. The space M(m,n;F) is a vector space over F under the matrix addition
and scalar multiplication defined in previous two definitions.

Definition 1.32 (Matrix product). Let A P M(m,n;F) and B P M(n, ℓ;F) be two matrices
over a scalar field F. The matrix product of A and B, denoted by AB, is an m ˆ ℓ matrix
given by AB = [cij]mˆn with cij =

n
ř

k=1

aikbkj. In other words, the (i, j)-th entry of the

product AB is the inner product of the i-th row of A and the j-th column of B.
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Remark 1.33. The matrix product AB is only defined if the number of columns of A is
the same as the number of rows of B. Therefore, even if AB is defined, BA might not make
sense. When A and B are both nˆ n square matrix, AB and BA are both defined; however,
in general AB ‰ BA.

Remark 1.34. Let v P Fn be a vector such that the k-th component of v is the same as
the (i, k)-th entry of A P M(m,n;F), and w P Fn be a vector such that the k-th component
of w is the same as the (k, j)-th entry of B P M(n, ℓ;F). Then the (i, j)-th entry of AB is
simply the inner product of v and w in Fn.

Example 1.35. Let A =

[
1 0 2
0 ´1 1

]
and B =

 2 ´1 1
3 0 2

´1 1 0

. Then

AB =

[
0 1 1

´4 1 ´2

]
but BA is not defined.

Proposition 1.36. Let A P M(m, n;F), B P M(n, ℓ;F) and C P M(ℓ, k;F). Then

A(BC) = (AB)C .

Definition 1.37 (The range and the null space of matrices). Let A P M(m, n;F). The
range of A, denoted by R(A), is the subset of Fm given by

R(A) =
␣

Ax P Fm ˇ

ˇx P Fn( ,

and the null space of A, denoted by null(A), is the subset of Fn given by

null(A) =
␣

x P Fn ˇ
ˇAx = 0

(

.

Proposition 1.38. Let A P M(m, n;F). Then R(A) and null(A) are vector subspaces of Fn

and Fm, respectively.

Definition 1.39 (Kronecker’s delta). The Kronecker delta is a function, denoted by δ, of
two variables (usually positive integers) such that the function is 1 if the two variables are
equal, and 0 otherwise. When the two variables are i and j, the value δ(i, j) is usually
written as δij; that is,

δij =

"

0 if i ‰ j ,
1 if i = j .
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Definition 1.40 (Identity matrix). The identity matrix of size n, denoted by In, is the nˆn
square matrix with ones on the main diagonal and zeros elsewhere. In other words,

In = [δij]nˆn ,

where δij is the Kronecker delta.

When the size is clear from the context, In is sometimes denoted by I.

Definition 1.41 (Transpose). Let A = [aij]mˆn be a m ˆ n matrix over scalar field F. The
transpose of A, denoted by AT, is the n ˆ m matrix given by [AT]ij = aji.

By the definition of product of matrices, we can easily derive the following two proposi-
tions.

Proposition 1.42. Let A P M(m, n;F) and B P M(n, ℓ;F). Then (AB)T = BTAT.

Proposition 1.43. Let A = [aij]mˆn be a m ˆ n matrix over scalar field F, and (¨, ¨)Fn and
(¨, ¨)Fm be the standard inner products on Fn and Fm, respectively. Then

(Ax,y)Fm = (x,ATy)Fn @ x P Fn,y P Fm .

Definition 1.44 (Rank and nullity of matrices). The rank of a matrix A, denoted by
rank(A), is the dimension of the vector space generated (or spanned) by its columns. The
nullity of a matrix A, denoted by nullity(A), is the dimension of the null space of A.

Remark 1.45. The matrix AT is often called the conjugate transpose of the matrix A.

Remark 1.46. The rank defined above is also referred to the column rank, and the row
rank of a matrix is the dimension of the vector space spanned by its rows. One should
immediately notice that the column rank of A equals the dimension of R(A) and the row
rank of A equalis the dimension of R(AT).

Theorem 1.47. Let A P M(m, n;F). Then rank(A) + nullity(A) = n.

Proof. Without loss of generality, we assume that nulltiy(A) = k ă n, and
␣

v1, ¨ ¨ ¨ , vk
(

be
a basis of null(A). Then there exists n ´ k vectors

␣

vk+1, ¨ ¨ ¨ , vn
(

such that
␣

v1, ¨ ¨ ¨ , vn
(

is a basis of Fn. We conclude the theorem by showing that
␣

Avk+1, ¨ ¨ ¨ ,Avn
(

is a basis of
R(A).
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First, we claim that
␣

Avk+1, ¨ ¨ ¨ ,Avn
(

is a linearly independent set of vectors. To see
this, suppose that αk+1, ¨ ¨ ¨ , αn P F such that

αk+1Avk+1 + ¨ ¨ ¨ + αnAvn = 0 .

Then A(αk+1vk+1 + ¨ ¨ ¨ + αnvn) = 0 which implies that αk+1vk+1 + ¨ ¨ ¨ + αnvn P null(A).
Since

␣

v1, ¨ ¨ ¨ , vk
(

is a basis of null(A), there exist α1, ¨ ¨ ¨ , αk P F such that

α1v1 + αkvk = αk+1vk+1 + ¨ ¨ ¨ + αnvn .

By the linear independence of
␣

v1, ¨ ¨ ¨ , vn
(

, we must have α1 = ¨ ¨ ¨ = αn = 0 which shows
the linear independence of

␣

Avk+1, ¨ ¨ ¨ ,Avn
(

.
Let w P R(A). Then w = Av for some v P Fn. Since

␣

v1, ¨ ¨ ¨ , vn
(

is a basis of Fn, there
exist β1, ¨ ¨ ¨ , βn P F such that v = β1v1 + ¨ ¨ ¨ + βnvn. As a consequence, by the fact that
Avj = 0 for 1 ď j ď k,

w = Av = A(β1v1 + ¨ ¨ ¨ + βnvn) = β1Av1 + ¨ ¨ ¨ βnAvn = βk+1Avk+1 + ¨ ¨ ¨ + βnAvn ;

thus w can be written as a linear combination of
␣

Avk+1, ¨ ¨ ¨ ,Avn
(

. ˝

Theorem 1.48. The rank of a matrix is the same as the rank of its transpose. In other
words, for a given matrix the row rank equals the column rank.

Proof. Let A be a m ˆ n matrix, and (¨, ¨)Fn , (¨, ¨)Fm be the standard inner products on Fn,
Fm, respectively. Then Proposition 1.43 implies that

y P R(A)K ô (y,Ax)Fm = 0 for all x P Fn ô (ATy,x)Fn = 0 for all x P Fn

ô ATy = 0 ô y P null(AT) .

In other words, R(A)K = null(AT). Since the column rank of A is the dimension of R(A),
we must have

nullity(AT) = nullity(AT) = dim
(
R(A)K

)
= m ´ the column rank of A .

On the other hand, Theorem 1.47 implies that

rank(AT) + nullity(AT) = m ;

thus the column rank of A is the same as the row rank of A. ˝
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Definition 1.49. Let A P M(n, n;F) be a square matrix. A is said to be invertible if there
exists B P M(n, n;F) such that AB = In. The matrix B is called the inverse matrix of A,
and is usually denoted by A´1.

Proposition 1.50. Let A P M(n, n;F) be invertible. Then rank(A) = rank(A´1) = n.

Proof. Since A(A´1b) = (AA´1)b = b for all b P Fn, R(A) = Fn which implies that
rank(A) = n. We next show that R(A´1) = Fn. Denote A´1 by B, and let b P Fn.
Then BT(ATb) = (BTAT)b = b since BTAT = (AB)T = In. This observation implies that
R(BT) = Fn, and the theorem is then concluded by Theorem 1.48. ˝

Proposition 1.51. Let A P M(n, n;F) be invertible. Then A´1A = AA´1 = In.

Proof. We show that for all b P Fn, A´1Ab = b. Since A is invertible, rank(A´1) = n; thus
R(A´1) = Fn which implies that for each b P Fn, there exists x P F such that A´1x = b. As
a consequence,

(A´1A)b = (A´1A)(A´1x) = A´1(AA´1)x = A´1x = b . ˝

1.4.1 Elementary Row Operations and Elementary Matrices

Definition 1.52 (Elementary row operations). For an n ˆ m matrix A, three types of
elementary row operations can be performed on A:

1. The first type of row operation on A switches all matrix elements on the i-th row with
their counterparts on j-th row.

2. The second type of row operation on A multiplies all elements on the i-th row by a
non-zero scalar λ.

3. The third type of row operation on A adds j-th row multiplied by a scalar µ to the
i-th row.

The elementary row operation on an n ˆ m matrix A can be done by multiplying A by
an n ˆ n matrix, called an elementary matrix, on the left. The elementary matrices are
defined in the following

Definition 1.53 (Elementary matrices). An elementary matrix is a matrix which differs
from the identity matrix by one single elementary row operation.
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1. Switching the i0-th and j0-th rows of A, where i0 ‰ j0, is done by left multiplied A
by the matrix E = [eij]nˆn given by

eij =

"

1 if (i, j) = (i0, j0) or (i, j) = (j0, i0) or i = j = k0 for some k0 ‰ i0, j0,
0 otherwise,

or in the matrix form,

E =



1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

0
. . . 0

...
... . . . 1

. . . ...
... 0 0 0 1

...
... . . . 1

. . . ...
... 0

. . . 0
...

... . . . 1
. . . ...

... 1 0 0 0
...

0
. . . 1

. . . ...
0 0

. . . 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1



Ð the i0-th row

Ð the j0-th row

Ò Ò

the i0-th column the j0-th column

2. Multiplying the k0-th row of A by a non-zero scalar λ is done by left multiplied A by
the matrix E = [eij]nˆn given by

eij =

$

&

%

0 if i ‰ j,
λ if i = j = k0,
1 otherwise,

or in the matrix form,

E =



1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

0 1 0
...

... . . . . . . . . . ...

... 0 1 0
...

... 0 λ 0
...

... 0 1 0
...

... . . . . . . . . . ...

... 0 1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1



Ð the k0-th row
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3. Adding the j0-th row of A multiplied by a scalar µ to the i0-th row, where i0 ‰ j0, is
done by left multiplied A by the matrix E = [eij]nˆn given by

eij =

$

&

%

1 if i = j,
µ if (i, j) = (i0, j0),
0 otherwise,

or in the matrix form,

E =



1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 1 0 0
... . . . . . . . . . µ 0
... . . . . . . . . . 0
... 0 1 0

...
... . . . . . . . . . ...
... . . . . . . . . . ...
... 0 1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1



Ð the i0-th row

Ò

the j0-th column

Proposition 1.54. Every elementary matrix is invertible.

Theorem 1.55. Let A P M(n, n;F) be a square matrix. The following statements are
equivalent:

1. R(A) = Fn.

2. rank(A) = n.

3. Ax = b has a unique solution x for all b P Fn.

4. A is invertible.

5. A = EkEk´1 ¨ ¨ ¨ E2E1 for some elementary matrices E1, ¨ ¨ ¨ , Ek.

Proof. Note that by definition 1,2,3 are equivalent, and Proposition 1.50 shows that 4 ñ 2.
The implication from 3 to 4 is due to the fact that the map b ÞÑ x, where x is the unique
solution to Ax = b, is the inverse of A. Proposition 1.54 provides that 5 ñ 4. That 3 ñ 5

follows from that at most n(n + 1) elementary row operations has to be applied on A to
reach the identity matrix. ˝
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1.5 Determinants

In order to introduce the notion of the determinant of square matrices, we need to talk
about permutations first. Note that there are many other ways of defining determinants,
but it is quite elegant to use the notion of permutations, and we can derive a lot of useful
results via this definition.

Definition 1.56 (Permutations). A sequence (k1, k2, ¨ ¨ ¨ , kn) of positive integers not ex-
ceeding n, with the property that no two of the ki are equal, is called a permutation of
degree n. The collection of all permutations of degree n is denoted by P(n).

A sequence (k1, k2, ¨ ¨ ¨ , kn) can be obtained from the sequence (1, 2, ¨ ¨ ¨ , n) by a finite
number of interchanges of pairs of elements. For example, if k1 ‰ 1, we can transpose 1

and k1, obtaining (k1, ¨ ¨ ¨ , 1, ¨ ¨ ¨ ). Proceeding in this way we shall arrive at the sequence
(k1, k2, ¨ ¨ ¨ , kn) after n or less such interchanges of pairs.

In general, a permutation (k1, k2, ¨ ¨ ¨ , kn) can be expressed as

τ(iN ,jN ) ¨ ¨ ¨ τ(i2,j2)τ(i1,j1)(1, 2, ¨ ¨ ¨ , n) = (k1, k2, ¨ ¨ ¨ , kn),

where τ(i,j) is a “pair-interchange operator” which swaps the i-th and the j-th elements (of
the object fed into), and N is the number of pair interchanges. We call such pair-interchange
operators the permutation operator. Since τ(i,j) is the inverse operator of itself, we also have

τ(i1,j1)τ(i2,j2) ¨ ¨ ¨ τ(iN ,jN )(k1, k2, ¨ ¨ ¨ , kn) = (1, 2, ¨ ¨ ¨ , n).

We remark here that the number of pair interchanges (from (1, 2, ¨ ¨ ¨ , n) to (k1, k2, ¨ ¨ ¨ , kn))
is not unique; nevertheless, if two processes of pair interchanges lead to the same permuta-
tion, then the numbers of interchanges differ by an even number. This leads to the following

Definition 1.57 (Even and odd permutations). A permutation (k1, ¨ ¨ ¨ , kn) is called an
even (odd) permutation of degree n if the number required to interchange pairs of
(1, 2, ¨ ¨ ¨ , n) in order to obtain (k1, k2, ¨ ¨ ¨ , kn) is even (odd).

Example 1.58. If n = 3, the permutation (3, 1, 2) can be obtained by interchanging pairs
of (1, 2, 3) twice:

(1, 2, 3)
τ(1,3)
ÝÑ (3, 2, 1)

τ(2,3)
ÝÑ (3, 1, 2);
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thus (3, 1, 2) is an even permutation of (1, 2, 3). On the other hand, (1, 3, 2) is obtained by
interchanging pairs of (1, 2, 3) once:

(1, 2, 3)
τ(2,3)
ÝÑ (1, 3, 2);

thus (1, 3, 2) is an odd permutation of (1, 2, 3).

Odd permutationsEven permutations

1

2 3

1

2 3

Figure 1.1: Even and odd permutations of degree 3

For n = 3, the even and odd permutations can also be viewed as the orientation of the
permutation (k1, k2, k3). To be more precise, if (1, 2, 3) is arranged in a counter-clockwise
orientation (see Figure 1.1), then an even permutation of degree 3 is a permutation in the
counter-clockwise orientation, while an odd permutation of degree 3 is a permutation in the
clockwise orientation. From figure 1.1, it is easy to see that (3, 1, 2) is an even permutation
of degree 3 and (1, 3, 2) is an odd permutation of degree 3.

Definition 1.59 (The permutation symbol). The permutation symbol εk1k2¨¨¨kn is a function
of permutations of degree n defined by

εk1k2¨¨¨kn =

"

1 if (k1, k2, ¨ ¨ ¨ , kn) is an even permutation of degree n,
´1 if (k1, k2, ¨ ¨ ¨ , kn) is an odd permutation of degree n.

Remark 1.60. One can extend the domain the permutation symbol to all the sequence
(k1, k2, ¨ ¨ ¨ , kn) by defining that εk1k2¨¨¨kn = 0 if (k1, k2, ¨ ¨ ¨ , kn) is not a permutation of degree
n.

Definition 1.61 (Determinants). Given an n ˆ n matrix A = [aij], the determinants of A,
denoted by det(A), is defined by

det(A) =
ÿ

(k1,¨¨¨ ,kn)PP(n)
εk1k2¨¨¨kn

n
ź

ℓ=1

aℓkℓ .

We note that the product
n
ś

ℓ=1

aℓkℓ in the definition of the determinant is formed by
multiplying n-elements which appears exactly once in each row and column.
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Proposition 1.62. Let E be an elementary matrix. Then

1. det(E) ‰ 0.

2. det(E) = det(ET).

3. If A is an n ˆ n matrix, then det(EA) = det(E) det(A).

The proof of the proposition above is not difficult, and is left as an exercise.

Corollary 1.63. Let v1, ¨ ¨ ¨ , vn P Rn be (column) vectors, c P R, and

A =
[
v1

... ¨ ¨ ¨
... vn

]
,

B =
[
v1

... ¨ ¨ ¨
...vj´1

...λvj
...vj+1

... ¨ ¨ ¨
... vn

]
,

C =
[
v1

... ¨ ¨ ¨
...vj´1

... vj + µvi
...vj+1

... ¨ ¨ ¨
... vn

]
for some i ‰ j .

Then det(B) = λ det(A), and det(C) = det(A).

Proof. The corollary is easily concluded since B = E1A and C = E2A for some elementary
matrices E1 and E2 with det(E1) = c and det(E2) = 1. ˝

Corollary 1.64. Let A be an n ˆ n matrix. Then A is invertible if and only if det(A) ‰ 0.

Proof. (ñ) Since A is invertible, Theorem 1.55 implies that

A = EkEk´1 ¨ ¨ ¨ E2E1

for some elementary matrices E1, ¨ ¨ ¨ , Ek, and this corollary follows from Proposition
1.62.

(ð) Note that A is invertible if and only if rank(A) = rank(AT) = n. Therefore, if A is not
invertible, the row vectors of A are linearly dependent; thus there exists a non-zero
vectors (α1, ¨ ¨ ¨ , αn) P Fn such that

α1v1 + α2v2 + ¨ ¨ ¨αnvn = 0 ,

where AT =
[
v1

... ¨ ¨ ¨
... vn

]
. Suppose that αj ‰ 0. Then

vj = β1v1 + ¨ ¨ ¨ βj´1vj´1 + βj+1vj+1 + ¨ ¨ ¨ βnvn ;
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thus after applying (n ´ 1)-times elementary row operations of the third type (adding
some multiple of certain row to another row) on A we reach a matrix whose j-th row
is a zero (row) vector. Thereofre, for some elementary matrices E1, ¨ ¨ ¨ ,En´1 we have

det(En´1 ¨ ¨ ¨ E1A) = 0

which implies that det(A) = 0. ˝

Corollary 1.65. Let A be an nˆn matrix. Then the determinant of A and AT, the transpose
of A, are the same; that is,

det(A) = det(AT).

Proof. If A is not invertible, then AT is not invertible either because of Theorem 1.48.
Therefore, det(A) = 0 = det(AT).

Now suppose that A is invertible. Then Theorem 1.55 implies that

A = EkEk´1 ¨ ¨ ¨ E2E1

for some elementary matrices E1, ¨ ¨ ¨ , Ek. Since all ET
j ’s are also elementary matrices, by

Proposition 1.62 we conclude that

det(AT) = det(ET
1 ¨ ¨ ¨ ET

k ) = det(ET
1 ) ¨ ¨ ¨ det(ET

k )

= det(ET
k ) ¨ ¨ ¨ det(ET

1 )

= det(Ek) ¨ ¨ ¨ det(E1) = det(Ek ¨ ¨ ¨ E1) = det(A) . ˝

Corollary 1.66. Let A,B be n ˆ n matrices. Then det(AB) = det(A) det(B).

Proof. If A is not invertible, then AB is not invertible either; thus in this case det(A) det(B) =
0 = det(AB).

Now suppose that A is invertible. Then Theorem 1.55 implies that

A = EkEk´1 ¨ ¨ ¨ E2E1

for some elementary matrices E1, ¨ ¨ ¨ , Ek. As a consequence, Proposition 1.62 implies that

det(AB) = det(Ek ¨ ¨ ¨ E1B) = det(Ek) det(Ek´1 ¨ ¨ ¨ E1B)
= ¨ ¨ ¨ = det(Ek) ¨ ¨ ¨ det(E1) det(B)

= det(Ek ¨ ¨ ¨ E1) det(B) = det(A) det(B) . ˝
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Definition 1.67 (Minor, Cofactor, and Adjoint matrices). Let A be an n ˆ n matrix, and
A(̂i, ĵ) be the (n ´ 1)ˆ (n ´ 1) matrix obtained by eliminating the i-th row and j-th column
of A; that is,

A(̂i, ĵ) =



a11 a12 ¨ ¨ ¨ a1(j´1) a1(j+1) ¨ ¨ ¨ a1n
... . . . ... ... ...

a(i´1)1 a(i´1)2 ¨ ¨ ¨ a(i´1)(j´1) a(i´1)(j+1) ¨ ¨ ¨ a(i´1)n

a(i+1)1 a(i+1)2 ¨ ¨ ¨ a(i+1)(j´1) a(i+1)(j+1) ¨ ¨ ¨ a(i+1)n
... ... ... ... . . . ...
an1 an2 ¨ ¨ ¨ an(j´1) an(j+1) ¨ ¨ ¨ ann


.

The (i, j)-th minor of A is the determinant of A(̂i, ĵ), and the (i, j)-th cofactor, is the
(i, j)-th minor of A multiplied by (´1)i+j. The adjoint matrix of A, denoted by Adj(A),
is the transpose of the cofactor matrix; that is,[

Adj(A)
]
ij
= (´1)i+j det

(
A(ĵ, î)

)
.

Example 1.68. Let A =

 1 2 3
3 ´1 2
0 2 ´1

. Then the minor matrix of A is

´3 ´3 6
´8 ´1 2
7 ´7 ´7

,

the cofactor matrix of A is

´3 3 6
8 ´1 ´2
7 7 ´7

, and the adjoint matrix of A is

´3 8 7
3 ´1 7
6 ´2 ´7

.

The following lemma provides a way of computing the minors of a matrix.

Lemma 1.69. Let A be an n ˆ n matrix. Then

det
(
A(̂i, ĵ)

)
= (´1)i+j

ÿ

(k1,¨¨¨ ,kn)PP(n),ki=j
εk1k2¨¨¨kn

ź

1ďℓďn
ℓ‰i

aℓkℓ .

Proof. Fix (i, j) P t1, 2, ¨ ¨ ¨ , nuˆt1, 2, ¨ ¨ ¨ , nu. The matrix A(̂i, ĵ) is given by A(̂i, ĵ) = [bαβ],
where α, β = 1, 2, ¨ ¨ ¨ , n ´ 1, and

bαβ =

$

’

’

’

’

&

’

’

’

’

%

aαβ if α ă i and β ă j,
a(α+1)β if α ą i and β ă j,
aα(β+1) if α ă i and β ą j,

a(α+1)(β+1) if α ą i and β ą j.

Each permutation (σ1, σ2, ¨ ¨ ¨ , σn´1) of degree n ´ 1 corresponds a unique permutation
(k1, k2, ¨ ¨ ¨ , kn) of degree n such that
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1. ki = j;

2. for each τ P t1, ¨ ¨ ¨ , i ´ 1u and ι P ti, i+ 1, ¨ ¨ ¨ , n ´ 1u,

kτ =

"

στ if στ ă j ,
στ + 1 if στ ě j ,

and kι+1 =

"

σι if σι ă j ,
σι + 1 if σι ě j .

We now determine the sign of εσ1σ2¨¨¨σn´1 and εk1k2¨¨¨kn . Note that if a process of pair inter-
changes of the permutation (σ1, σ2, ¨ ¨ ¨ , σn´1) leads to (1, 2, ¨ ¨ ¨ , n ´ 1), then similar process
of pair interchanges of the permutation (k1, k2, ¨ ¨ ¨ , ki´1, j, ki+1, ¨ ¨ ¨ , kn), by leaving the i-th
slot fixed, leads to the permutation of degree n

$

’

&

’

%

(1, 2, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , i ´ 1, j, i, ¨ ¨ ¨ , n) if i ą j,
(1, 2, ¨ ¨ ¨ , i ´ 1, j, i, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , n) if i ă j,

(1, 2, ¨ ¨ ¨ , n) if j = i.

For the case that i ‰ j, another |i ´ j|-times of pair interchanges leads to (1, 2, ¨ ¨ ¨ , n). To
be more precise, suppose that i ą j. We first interchange the (i´ 2)-th and the (i´ 1)-th
components, and then interchange that (i´ 3)-th and the (i´ 2)-th components, and so on.
After (i´ j)-times of pair interchanges, we reach (1, 2, ¨ ¨ ¨ , n). Symbolically,

(1, 2, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , i´
ò

1, j , i, ¨ ¨ ¨ ,n)
Ó τ(i ´ 2, i ´ 1)

(1, 2, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , i´
ò

2, j , i´ 1, ¨ ¨ ¨ ,n)
Ó τ(i ´ 3, i ´ 2)

(1, 2, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , i´
ò

3, j , i´ 2 ¨ ¨ ¨ ,n)
Ó
...
Ó

(1, 2, ¨ ¨ ¨ , n).

Similar argument applies to the case i ă j; thus

εσ1σ2¨¨¨σn´1 = (´1)|i´j|εk1k2¨¨¨kn = (´1)i+jεk1k2¨¨¨kn .

As a consequence,

det
(
A(̂i, ĵ)

)
=

ÿ

(σ1,σ2,¨¨¨ ,σn´1)PP(n´1)

εσ1σ2¨¨¨σn´1

n´1
ź

τ=1

bτστ

= (´1)i+j
ÿ

(k1,¨¨¨ ,kn)PP(n),ki=j
εk1k2¨¨¨kn

ź

1ďℓďn
ℓ‰i

aℓkℓ . ˝
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Theorem 1.70. Let A be an n ˆ n matrix. Then

Adj(A)A = AAdj(A) = det(A)In.

Proof. Let A = [aij]. By definition of matrix multiplications,(
Adj(A)A

)
ij
=

n
ÿ

m=1

(
Adj(A)

)
im
amj =

n
ÿ

m=1

[
ÿ

(k1,¨¨¨ ,kn)PP(n),km=i

εk1k2¨¨¨kn

ź

1ďℓďn
ℓ‰m

aℓkℓ

]
amj

=

$

’

’

&

’

’

%

ÿ

(k1,¨¨¨ ,kn)PP(n)
εk1k2¨¨¨kn

n
ź

ℓ=1

aℓkℓ if i = j,

0 if i ‰ j.

The conclusion then follows from the definition of the determinant. ˝

Corollary 1.71. Let A = [aij] be an n ˆ n matrix, and C = [cij] be the adjoint matrix of
A. Then

det(A) =
n
ÿ

j=1

aijcji =
n
ÿ

j=1

ajicij @ 1 ď i ď n .

Corollary 1.72. Let A be an n ˆ n matrix and det(A) ‰ 0. Then the matrix Adj(A)

det(A)
is the

inverse matrix of A, or equivalently,

Adj(A) = det(A)A´1. (1.2)

1.5.1 Variations of determinants

Let δ be an operator satisfying the “product rule” δ(fg) = fδg+ (δf)g. Typically δ will be
differential operators. By the definition of the determinant,

δ det(A) =
ÿ

(k1,¨¨¨ ,kn)PP(n)
εk1k2¨¨¨knδ

n
ź

ℓ=1

aℓkℓ

=
n
ÿ

i=1

[
ÿ

(k1,¨¨¨ ,kn)PP(n)
εk1k2¨¨¨knδaiki

ź

1ďℓďn
ℓ‰i

aℓkℓ

]

=
n
ÿ

i,j=1

[
ÿ

(k1,¨¨¨ ,kn)PP(n),ki=j
εk1k2¨¨¨knδaiki

ź

1ďℓďn
ℓ‰i

aℓkℓ

]

=
n
ÿ

i,j=1

(´1)i+j det
(
A(̂i, ĵ)

)
δaij .

Therefore, we obtain the following
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Theorem 1.73. Let A be an nˆn matrix, and δ be an operator satisfying δ(fg) = fδg+(δf)g

whenever the product makes sense. Then

δ det(A) = tr
(
Adj(A)δA

)
, (1.3)

where δA ” [δaij]nˆn if A = [aij]nˆn. In particular, if A is invertible,

δ det(A) = det(A)tr(
(
A´1δA

)
.

Example 1.74. Let A(x) =

[
f(x) g(x)
h(x) k(x)

]
and δ =

d

dx
. Then

δ det(A) = tr
([

k ´g
´h f

] [
f 1 g 1

h 1 k 1

])
= kf 1 + fk 1 ´ gk 1 ´ hg 1 .

1.6 Bounded Linear Maps
Definition 1.75 (Linear map). Let V and W be two vector spaces over a scalar field F. A
map L : V Ñ W is called a linear map from V into W if

L(αv + w) = αL(v) + L(w) @α P F and v,w P V .

For notational convenience, we often write Lv instead of L(v). When V and W are finite
dimensional, linear maps (from V into W) are sometimes called linear transformations
(from V into W).

Let L1, L2 : V Ñ W be two linear maps, and α P F be a scalar. It is easy to see that
αL1 + L2 : V Ñ W is also a linear map. This is equivalent to say that the collection of
linear maps is a vector space, and this induces the following

Definition 1.76. The vector space L (V ,W) is the collection of linear maps from V to W .

Definition 1.77 (Boundedness of linear maps). Let (V , }¨}V) and (W , }¨}W) be two normed
vector spaces over a scalar field F. A linear map L : V Ñ W is said to be bounded if the
number

}L}B(V,W) ” sup
}v}V=1

}Lv}W = sup
v‰0

}Lv}W

}v}V
(1.4)

is finite. The collection of all bounded linear map from V to W is denoted by B(V ,W),
and B(V ,V) is also denoted by B(V) for simplicity.
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Remark 1.78. When the domain V and the target W under consideration are clear, we
use } ¨ } instead of } ¨ }B(V,W) to simplify the notation of operator norm.

Remark 1.79. If V is finite dimensional, then L (V ,W) = B(V ,W).

Proposition 1.80. Let (V , } ¨ }V) and (W , } ¨ }W) be two normed vector spaces over a scalar
field F. Then

(
B(V ,W), } ¨}) with } ¨} defined by (1.4) is a normed vector space. (Therefore,

} ¨ } is also called an operator norm).

Definition 1.81 (Dual space). Let (V , } ¨ }) be a normed vector space over field F. An
element in B(V ,F) is called a bounded linear functional on V , and the space

(
B(V ,F), } ¨

}B(V,F)
)

is called the dual space of (V , } ¨ }), and is usually denoted by V 1.

Definition 1.82. Let (V , } ¨ }V) and (W , } ¨ }W) be two normed vector spaces over a scalar
field F, and L P B(V ,W). The collection of all elements v P V such that Lv = 0 is called
the kernel (or the null space) of L and is denoted by ker(L) or Null(L). In other words,

ker(L) =
␣

v P V
ˇ

ˇLv = 0
(

.

Theorem 1.83 (Riesz Representation Theorem). Let (V , (¨, ¨)V) be an inner product space,
and f : V Ñ R be a bounded linear map. Then there exists a unique w P V such that
f(v) = (v,w)V for all v P V.

Proof. The uniqueness for such a vector w is simply due to the fact that there is no non-
trivial vector which is orthogonal to itself.

Now we show the existence of w. If f(v) = 0 for all v P V , then w = 0 does the job.
Now suppose that ker(f) Ĺ V . Then there exists u P ker(f)K such that }u}V = 1.

For v P V , consider the vector y = f(v)u ´ f(u)v. Then y P ker(f); thus y ¨ u = 0.
Therefore,

0 = f(v)}u}2V ´ f(u)(v,u)V = f(v) ´ (v,Ęf(u)u)V

which implies that f(v) = (v,w)V with w = Ęf(u)u. ˝

By the Riesz representation theorem, we conclude the following

Theorem 1.84. Let (V , (¨, ¨)V) and (W , (¨, ¨)W) be two inner product spaces. Then for all
L P B(V ,W), there exists a unique L˚ P B(W ,V) such that

(Lv,w)W = (v, L˚w)V @ v P V ,w P W .
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Definition 1.85 (Dual operator). Let V and W be two inner product spaces, and L : V Ñ

W be a bounded linear map. The dual operator of L, denoted by L˚, is the unique linear
map from W into V satisfying

(Lv,w)W = (v, L˚w)V @ v P V ,w P W ,

where (¨, ¨)V and (¨, ¨)W are inner products on V and W , respectively.

Definition 1.86 (Symmetry of linear maps). An linear map L P B(H) is said to be
symmetric if L = L˚ .

The last part of this section contributes to the following theorem which states that every
bounded linear maps near by (measured by the operator norm) an invertible bounded linear
map is also invertible.

Theorem 1.87. Let GL(n) be the set of all invertible linear maps on (Rn, } ¨ }2); that is,

GL(n) =
␣

L P L (Rn,Rn)
ˇ

ˇL is one-to-one (and onto)
(

.

1. If L P GL(n) and K P B(Rn,Rn) satisfying }K ´ L}}L´1} ă 1 , then K P GL(n).

2. The mapping L ÞÑ L´1 is continuous on GL(n); that is,

@ ε ą 0 , D δ ą 0 Q }K´1 ´ L´1} ă ε whenever }K ´ L} ă δ .

Proof. 1. Let }L´1} =
1

α
and }K ´ L} = β. Then β ă α; thus for every x P Rn,

α}x}Rn = α}L´1Lx}Rn ď α}L´1}}Lx}Rn = }Lx}Rn ď }(L ´ K)x}Rn + }Kx}Rn

ď β}x}Rn + }Kx}Rn .

As a consequence, (α ´ β)}x}Rn ď }Kx}Rn and this implies that K : Rn Ñ Rn is
one-to-one hence invertible.

2. Let L P GL(n) and ε ą 0 be given. Choose δ = min
!

1

2}L´1}
,

ε

2}L´1}2

)

. If }K´L} ă δ,

then K P GL(n). Since L´1 ´ K´1 = K´1(K ´ L)L´1, we find that if }K ´ L} ă δ,

}K´1} ´ }L´1} ď }K´1 ´ L´1} ď }K´1}}K ´ L}}L´1} ă
1

2
}K´1}

which implies that }K´1} ă 2}L´1}. Therefore, if }K ´ L} ă δ,

}L´1 ´ K´1} ď }K´1}}K ´ L}}L´1} ă 2}L´1}2δ ă ε . ˝
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1.6.1 Matrix norms

Each m ˆ n matrix A P M(m, n;F) induces a linear map L : Fn Ñ Fm in a natural way: let
A = [aij]mˆn be a m ˆ n matrix, B = tejun

j=1 and rB = trekum
k=1 be the standard basis of Fn

and Fm, respectively. We define the linear map L : Fn Ñ Fm by

Lx =
m
ÿ

i=1

n
ÿ

j=1

aijxjrei P Fm, where x =
n
ÿ

j=1

xjej P Fn ,

or equivalently, [Lx]
rB = A[x]B. The linear map L is called the linear map induced by

the matrix A.
By matrix norms it means the operator norm of the induced linear map. However,

as introduced in Section 1.6, the operator norm of a linear map depends on the norms
equipped on the vector spaces. In particular, we have introduced p-norm on Fn, and we
have the following

Definition 1.88. Let A P M(m, n;F) with induced linear map L : Fn Ñ Fm. The p-norm
of A, denoted by }A}p, is the operator norm of L : (Fn, } ¨ }p) Ñ (Fm, } ¨ }p) given by

}A}p = sup
}x}p=1

}Lx}p = sup
x‰0

}Lx}p

}x}p
.

Remark 1.89. We can also choose different p in the domain and the co-domain. In other
words, the (p, q)-norm of A P M(m, n,F) is the operator norm of the induced linear map
L : (Fn, } ¨ }p) Ñ (Fm, } ¨ }q) given by

}A}(p,q) = sup
}x}p=1

}Lx}q = sup
x‰0

}Lx}q

}x}p
.

From now on, for notational simplicity we use Ax to denote [Lx]
rB if rB is the

standard basis of the co-domain.

Example 1.90. Consider the case p = 1 and p = 8, respectively.

1. p = 8: }A}8 = sup
}x}8=1

}Ax}8 = max
!

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|
)

.

Reason: Let x = (x1, x2, ¨ ¨ ¨ , xn)
T and A =

[
aij

]
nˆm. Then

Ax =


a11x1 + ¨ ¨ ¨ + a1mxm
a21x1 + ¨ ¨ ¨ + a2mxm

...
an1x1 + ¨ ¨ ¨ + anmxm


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Assume max
1ďiďn

m
ÿ

j=1

|aij| =
m
ÿ

j=1

|akj| for some 1 ď k ď n. Let

x = (sgn(ak1), sgn(ak2), ¨ ¨ ¨ , sgn(akn)) .

Then }x}8 = 1, and }Ax}8 =
m
ř

j=1

|akj|.

On the other hand, if }x}8 = 1, then

|ai1x1 + ai2x2 + ¨ ¨ ¨ aimxm| ď

m
ÿ

j=1

|aij| ď max
!

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|
)

;

thus }A}8 = max
!

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|
)

. In other words, }A}8 is the largest

sum of the absolute value of row entries.

2. p = 1: }A}1 = max
!

n
ÿ

i=1

|ai1|,
n
ÿ

i=1

|ai2|, ¨ ¨ ¨ ,
n
ÿ

i=1

|aim|

)

.

Reason: Let (¨, ¨) denote the inner product in Rm. Then for x P Rn with }x}1 = 1, by
Hölder’s inequality (1.1) and Theorem 1.25 we have

}Ax}1 = sup
}y}8=1

(Ax, y) = sup
}y}8=1

(x,ATy) ď sup
}y}8=1

}x}1}A
Ty}8

= sup
}y}8=1

}ATy}8 = }AT}8 ;

thus }A}1 = sup
}x}1=1

}Ax}1 ď }AT}8. Similarly, if y P Rm and }y}8 = 1, then

}ATy}8 = sup
}x}1=1

(x,ATy) = sup
}x}1=1

(Ax, y) ď sup
}x}1=1

}Ax}1}y}8

= sup
}x}1=1

}Ax}1 = }A}1

which implies that }AT}8 = sup
}y}8=1

}ATy}8 ď }A}1. As a consequence,

}A}1 = }AT}8 = max
!

n
ÿ

i=1

|ai1|,
n
ÿ

i=1

|ai2|, ¨ ¨ ¨ ,
n
ÿ

i=1

|aim|

)

.
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1.7 Representation of Linear Transformations
In Section 1.6.1, we see that any m ˆ n matrix is associated with a linear map. On the
other hand, suppose that V is a n-dimensional vector space with basis B = tvjun

j=1, and
W is a m-dimensional vector space with basis rB = twiu

m
i=1. Define V =

[
v1

... ¨ ¨ ¨
... vn

]
and

W =
[
w1

... ¨ ¨ ¨
... wm

]
, and let L P L (V ,W). Since Lvj P W , for each 1 ď j ď n we can write

Lvj =
m
ř

i=1

aijwi for some coefficients aij. Moreover, if u P V , then

u =
n
ÿ

j=1

cjvj or c = [u]B or u = Vc ,

and by the linearity of L,

Lu = L
( n
ÿ

j=1

cjvj
)
=

n
ÿ

j=1

cjLvj =
n
ÿ

j=1

m
ÿ

i=1

cjaijwi =
m
ÿ

i=1

( n
ÿ

j=1

aijcj

)
wi .

Let bi =
n
ř

j=1

aijcj, and b = [b1, ¨ ¨ ¨ , bm]
T. Then

[Lu]
rB = b = Ac = A[u]B .

The discussion above induces the following

Definition 1.91. Let V ,W be two vector spaces, dim(V) = n and dim(W) = m, and
B, rB are basis of V ,W , respectively. For L P L (V ,W), the matrix representation of L
relative to bases B and rB, denoted by [L]

rB,B, is the matrix satisfying

[Lu]
rB = [L]

rB,B[u]B @ u P V .

If L P L (V ,V), we simply use [L]B to denote [L]B,B.

1.8 Matrix Diagonalization
Definition 1.92 (Eigenvalues and Eigenvectors). Let V be a finite dimensional vector spaces
over a scalar field F, and L P B(V). A scalar λ P F is said to be an eigenvalue of L if
there is a non-zero vector v P V such that Lv = λv. The collection of all eigenvalues of L
is denoted by σ(L).

For an eigenvalue λ P F of L, a non-zero vector v P V satisfying Lv = λv is called an
eigenvector associated with the eigenvalue λ, and the collection of all v P V such that
Lv = λv is called the eigenspace associated with λ.
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Let dim(V) = n and B be a basis of V . Then if λ P F is an eigenvalue of L P B(V),
there exists non-zero vector v P V such that

[L]B[v]V = [Lv]B = λ[v]B ;

thus the matrix representation [L]B of L satisfies that [L]B ´λIn is singular (not invertible).
Therefore, det([L]B ´ λIn) = 0 which motivates the following

Definition 1.93. Let A P M(n, n;F) be a n ˆ n matrix over scalar field F. An eigenvalue
of A is a scalar λ P F such that det(A ´ λIn) = 0.

Theorem 1.94. Let L P B(Fn) be symmetric. Then σ(L) Ď R.

Proof. Let λ P σ(L), and v be an eigenvector associated with λ. Then

λ(v, v)Fn = (λv, v)Fn = (Lv, v)Fn = (v, L˚v)Fn = (v, Lv)Fn = (v, λv) = sλ(v, v)Fn

which implies that λ P R. ˝

Lemma 1.95. Let L P B(Fn) be symmetric, and (¨, ¨)Fn be the standard inner product on
Fn. Then the two numbers

m ” inf
}u}Fn=1

(Lu, u)Fn and M ” sup
}u}Fn=1

(Lu, u)Fn

belong to σ(L).

Proof. Suppose that M R σ(L). Let [u, v] = (Mu´ Lu, v)Fn . Then [¨, ¨] is an inner product
on Fn; thus the Cauchy-Schwarz inequality (Proposition 1.16) implies that

ˇ

ˇ[u, v]
ˇ

ˇ ď
ˇ

ˇ[u, u]
ˇ

ˇ

1/2ˇ
ˇ[v, v]

ˇ

ˇ

1/2
.

By Theorem 1.25, we find that

}Mu ´ Lu}Fn = sup
}v}Fn=1

ˇ

ˇ(Mu ´ Lu, v)Fn
ˇ

ˇ = sup
}v}Fn=1

ˇ

ˇ[u, v]
ˇ

ˇ ď sup
}v}Fn=1

ˇ

ˇ[u, u]
ˇ

ˇ

1/2ˇ
ˇ[v, v]

ˇ

ˇ

1/2

ď (M ´ m)1/2(Mu ´ Lu, u)
1/2
Fn @u P Fn , (1.5)

where we use the fact that sup
}v}Fn=1

ˇ

ˇ[v, v]
ˇ

ˇ

1/2
= (M ´ m)1/2 to conclude the last inequality.
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Let B be the standard basis of Fn, and tuku8
k=1 be a sequence of vectors in Fn such that

}uk}Fn = 1 , and lim
kÑ8

(Luk,uk)Fn = M . Then (1.5) implies }Muk ´ Luk}Fn Ñ 0 as k Ñ 8 .
Since M R σ(L) , MIn ´ [L]B is invertible; thus

[uk]B = (MIn ´ [L]B)
´1(M [uk]B ´ [L]B[uk]B) Ñ 0 in Fn

which contradicts to }uk}Fn = 1 for all k P N. Hence M P σ(L). Similarly, m P σ(L). ˝

Definition 1.96 (Diagonalizable linear maps). Let V be a finite dimensional vector spaces
over a scalar field F. A linear map L : V Ñ V is said to be diagonalizable if there is a
basis B of V such that each v P B is an eigenvector of L.

Theorem 1.97. Let L P B(Rn) be symmetric. Then there exists an orthonormal basis of
Rn consisting of eigenvectors of L.

Example 1.98 (The 2-norm of matrices). Let (¨, ¨)Rk denote the inner product in Euclidean
space Rk, and A P M(m, n;R). Since ATA is a symmetric n ˆ n matrix, it is diagonalizable
by an orthonormal matrix P ; that is, ATA = PΛPT for some orthonormal n ˆ n matrix P
and diagonal n ˆ n matrix Λ = [λiδij]. Therefore,

}Ax}22 = (Ax,Ax)Rm = (x,ATAx)Rn = (x, PΛPTx)Rn = (PTx,ΛPTx)Rn

which implies that

sup
}x}2=1

}Ax}22 = sup
}x}2=1

(PTx,ΛPTx)Rn = sup
}y}2=1

(y,Λy)Rn (Let y = PTx, then }y}2 = 1)

= sup
}y}2=1

(λ1y
2
1 + λ2y

2
2 + ¨ ¨ ¨ + λny

2
n)

= max
␣

λ1, ¨ ¨ ¨ , λn
(

= maximum eigenvalue of ATA .

As a consequence, }A}2 =
a

maximum eigenvalue of ATA.

1.9 The Einstein Summation Convention
In mathematics, especially in applications of linear algebra to physics, the Einstein sum-
mation convention is a notational convention that implies summation over a set of indexed
terms in a formula, thus achieving notational brevity. According to this convention, when
an index variable appears twice in a single term it implies summation of that term over all
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the values of the index. For example, with this convention, the inner product u ¨ v of two
vectors u, v P Rn, where u = (u1, ¨ ¨ ¨ , un) and v = (v1, ¨ ¨ ¨ , vn), can be expressed as uivi,
and the i-th component of the cross product u ˆv of two vectors u, v P R3 can be expressed
as εijkujvk.

In this book, we make a further convention that repeated Latin indices are summed
from 1 to n, and repeated Greek indices are summed from 1 to n ´ 1, where n is the space

dimension. In other words, we use the symbol figi to denote the sum
n
ř

i=1

figi, and the symbol

fαgα to denote the sum
n´1
ř

i=1

fαgα. Starting from the next Chapter, we use such summation

convention for notational simplicity.



Chapter 2

Differentiation of Functions of Several
Variables

2.1 Functions of Several Variables

Definition 2.1. Let V be a vector space (over a scalar field F). A V-valued function
f of n real variables is a rule that assigns a unique vector f(x1, ¨ ¨ ¨ , xn) P V to each point
(x1, ¨ ¨ ¨ , xn) in some subset A of Rn. The set A is called the domain of f , and usually is
denoted by Dom(f). The set of vectors f(x1, ¨ ¨ ¨ , xn) obtained from points in the domain
is called the range of f and is denoted by Ran(f). We write f : A Ñ V if f is a V-valued
function defined on A Ď Rn.

If V = R, we simply call f : Dom(f) Ñ R a real-valued function, while if V = Rm,
we simply call f : Dom(f) Ñ V as a vector-valued function.

A vector field is a vector-valued function f : Dom(f) Ñ V such that Dom(f) Ď V = Rn

for some n P N.

Definition 2.2. Let V be a vector space over R, A Ď Rn be a set, and f, g : A Ñ V be
V-valued functions, h : A Ñ R be a real-valued function. The functions f + g, f ´ g and
hf , mapping from A to V , are defined by

(f + g)(x) = f(x) + g(x) @x P A ,

(f ´ g)(x) = f(x) ´ g(x) @x P A ,

(hf)(x) = h(x)f(x) @x P A .

32



§2.1 Functions of Several Variables 33

The map f

h
: Aztx P A |h(x) = 0u Ñ V is defined by

(f
h

)
(x) =

f(x)

h(x)
@x P Aztx P A |h(x) = 0u .

Definition 2.3. A set U Ď Rn is said to be open in Rn if for each x P U , there exists r ą 0

such that B(x, r), the ball centered at x with radius r given by

B(x, r) =
␣

y P Rn ˇ
ˇ }x ´ y}Rn ă r

(

,

is contained in U . A set F Ď Rn is said to be closed in Rn if F A, the complement of F , is
open in Rn.

Let A Ď Rn be a set. A point x0 is said to be

1. an interior point of A if there exists r ą 0 such that B(x0, r) Ď A;

2. an isolated point of A if there exists r ą 0 such that B(x0, r) X A = tx0u;

3. an exterior point of A if there exists r ą 0 such that B(x0, r) Ď AA;

4. a boundary point of A if for each r ą 0, B(x0, r) X A ‰ H and B(x0, r) X AA ‰ H.

The collection of all interior points of A is called the interior of A and is denoted by Å.
The collection of all exterior points of A is called the exterior of A, and the collection of all
boundary point of A is called the boundary of A. The boundary of A is denoted by BA.
The closure of A is defined as A Y BA and is denoted by A. The derived set of A, denoted
by A 1, is the collection of all points in A that are not isolated points.

A is said to be bounded in Rn if there exists a constant M ą 0 such that

}x}Rn ă M @x P A
(

ô A Ď B(0,M)
)
.

A is said to be unbounded if A is not bounded.

The following theorem is a fundamental result in point-set topology. We omit the proof
since it is not the main concern in vector analysis; however, the result should look intuitive
and the proof of this theorem is not difficult. Interested readers can try to establish this
result by yourselves.

Theorem 2.4. Let A Ď Rn be a set. Then
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1. A is open if and only if A = Å;

2. A is closed if and only if A = A;

3. A is closed if and only if BA Ď A.

Definition 2.5 (Level Sets, and Graphs). Let A Ñ Rn be a set, and f : A Ñ R be a
real-valued function. The collection of points in A where f has a constant value is called a
level set of f . The collection of all points

(
x, f(x)

)
is called the graph of f .

Remark 2.6. A level surface is conventionally called a level curve when n = 2.

2.2 Limits and Continuity
Definition 2.7. Let A Ď Rn be a set, and f : A Ñ Rm be a vector-valued function. For a
given x0 P A 1, we say that b P Rm is the limit of f at x0, written

lim
xÑx0

f(x) = b or f(x) Ñ b as x Ñ x0 ,

if for each ε ą 0, there exists δ = δ(x0, ε) ą 0 such that

}f(x) ´ b}Rm ă ε whenever 0 ă }x ´ x0}Rn ă δ and x P A .

By the definition above, it is easy to see the following

Proposition 2.8. Let A Ď Rn be a set, and f, g : A Ñ Rm be a vector-valued functions.
Suppose that x0 P A 1, f(x) = g(x) for all x P Aztx0u, and lim

xÑx0
f(x) exists. Then lim

xÑx0
g(x)

exists and
lim
xÑx0

g(x) = lim
xÑx0

f(x) .

The following proposition is standard, and we omit the proof.

Proposition 2.9. Let A Ď Rn be a set, and f, g : A Ñ Rm be vector-valued functions,
h : A Ñ R be a real-valued function. Suppose that x0 P A1, and lim

xÑx0
f(x) = a, lim

xÑx0
g(x) = b,

lim
xÑx0

h(x) = c. Then

lim
xÑx0

(f + g)(x) = a+ b , lim
xÑx0

(f ´ g)(x) = a ´ b ,

lim
xÑx0

(hf)(x) = ca , lim
xÑx0

(f ¨ g)(x) = a ¨ b ,

lim
xÑx0

(f
h

)
=
a

c
if c ‰ 0 .



§2.2 Limits and Continuity 35

Example 2.10. By Proposition 2.9,

lim
(x,y)Ñ(0,1)

x´ xy + 3

x2y + 5xy ´ y3
=

0 ´ (0)(1) + 3

(0)2(1) + 5(0)(1) ´ (1)3
= ´3 .

Example 2.11. Let f : (0,8) ˆ (0,8) Ñ R be given by f(x, y) =
x2 ´ xy

?
x´

?
y

. We can-

not apply Proposition 2.9 to compute the limit lim
(x,y)Ñ(0,0)

f(x, y), if the limit exists, since

lim
(x,y)Ñ(0,0)

(
?
x ´

?
y) = 0. Nevertheless, if (x, y) ‰ (0, 0),

f(x, y) =
x2 ´ xy

?
x ´

?
y
=

x(x ´ y)(
?
x+

?
y)

(
?
x ´

?
y)(

?
x+

?
y)

= x(
?
x+

?
y) ;

thus Proposition 2.8 and 2.9 imply that

lim
(x,y)Ñ(0,0)

f(x, y) = lim
(x,y)Ñ(0,0)

x(
?
x+

?
y) = 0 .

Definition 2.12. Let A Ď Rn be a set, and f : A Ñ Rm be a vector-valued function. The
function f is said to be continuous at x0 P A X A 1 if lim

xÑx0
f(x) = f(x0). In other words, f

is continuous at x0 if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q }f(x) ´ f(x0)}Rm ă ε whenever }x ´ x0}Rn ă δ and x P A .

If f is continuous at each point of B Ď A X A 1, then f is said to be continuous on B.

Remark 2.13. 1. The notation δ = δ(x0, ε) means that the number δ could depend on x0

and ε.

2. Another way of interpreting the continuity of f at x0 is as follows: f : A Ñ Rm is
continuous at x0 P U if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q f
(
B(x0, δ) X A

)
Ď B(f(x0), ε) .

3. If A = U is an open set, we can assume that δ is chosen small enough so that
B(x0, δ) Ď U in both Definition 2.7 and 2.12. In other words, lim

xÑx0
f(x) = b if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q }f(x) ´ b}Rm ă ε whenever 0 ă }x ´ x0}Rn ă δ ,

and f : U Ñ Rm is continuous at x0 P U if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q }f(x) ´ f(x0)}Rm ă ε whenever }x ´ x0}Rn ă δ .
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4. If A Ď Rn is closed and bounded, and f : A Ñ Rm is continuous, then for each ε ą 0

we can choose δ depending only on ε such that

}f(x) ´ f(y)}Rm ă ε whenever }x ´ y}Rn ă δ and x, y P A .

The property (that δ can be chosen independent of the point x0) is called uniform
continuity.

Theorem 2.14. Let U Ď Rn be open, and f : U Ñ Rm be a vector-valued function. Then
the following assertions are equivalent:

1. f is continuous on U .

2. For each open set V Ď Rm, f´1(V) Ď U is open, where f´1(V) is the pre-image of V
under f defined by

f´1(V) ”
␣

x P U
ˇ

ˇ f(x) P V
(

.

Proof. Before proceeding, we recall that B Ď f´1(f(B)) for all B Ď U and f(f´1(B)) Ď B

for all B Ď Rm.

“1 ñ 2” Let a P f´1(V). Then f(a) P V . Since V is open in Rm, D εf(a) ą 0 such that
B(f(a), εf(a)) Ď V . By continuity of f (and Remark 2.13), there exists δa ą 0 such
that

f
(
B(a, δa)

)
Ď B

(
f(a), εf(a)

)
.

Therefore, for each a P f´1(V), D δa ą 0 such that

B(a, δa) Ď f´1
(
f
(
B(a, δa)

))
Ď f´1

(
B
(
f(a), εf(a)

))
Ď f´1(V) .

Therefore, f´1(V) is open.

“2 ñ 1” Let a P U and ε ą 0 be given. Define V = B(f(a), ε), then V is open. Since
a P f´1(V) and f´1(V) is open by assumption, there exists δ ą 0 such that B(a, δ) Ď

f´1(V). Therefore,

f
(
B(a, δ)

)
Ď f(f´1(V)) Ď V = B(f(a), ε)

which (with the help of Remark 2.13) implies that f is continuous at a. ˝
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2.3 Definition of Derivatives and the Matrix Represen-
tation of Derivatives

Definition 2.15. Let U Ď Rm be an open set. A function f : U Ñ Rm is said to be
differentiable at x0 P A if there is a linear transformation from Rn to Rm, denoted by
(Df)(x0) and called the derivative of f at x0, such that

lim
xÑx0

›

›f(x) ´ f(x0) ´ (Df)(x0)(x ´ x0)
›

›

Rm

}x ´ x0}Rn
= 0 ,

where (Df)(x0)(x´ x0) denotes the value of the linear transformation (Df)(x0) applied to
the vector x´ x0. In other words, f is differentiable at x0 P U if there exists L P B(Rn,Rm)

such that

@ ε ą 0, D δ ą 0 Q }f(x) ´ f(x0) ´ L(x ´ x0)}Rm ď ε}x ´ x0}Rn whenever }x ´ x0}Rn ă δ .

If f is differentiable at each point of U , we say that f is differentiable on U .

Example 2.16. Let L : Rn Ñ Rm be a linear transformation; that is, there is a matrix
[L]mˆn such that L(x) = [L]mˆn[x]n for all x P Rn. Then L is differentiable. In fact,
(DL)(x0) = L for all x0 P X since

lim
xÑx0

}Lx ´ Lx0 ´ L(x ´ x0)}Rm

}x ´ x0}Rn
= 0 .

Example 2.17. Let f : R2 Ñ R be given by f(x, y) = x2+2y. Define L(a,b)(x, y) = 2ax+2y.
Then L(a,b) is a linear transformation (from R2 to R) and

ˇ

ˇx2 + 2y ´ a2 ´ 2b ´ L(a,b)(x ´ a, y ´ b)
ˇ

ˇ

a

(x ´ a)2 + (y ´ b)2

=

ˇ

ˇx2 + 2y ´ a2 ´ 2b ´ 2a(x ´ a) ´ 2(y ´ b)
ˇ

ˇ

a

(x ´ a)2 + (y ´ b)2

=
(x ´ a)2

a

(x ´ a)2 + (y ´ b)2
ď |x ´ a| ;

thus
lim

(x,y)Ñ(a,b)

ˇ

ˇx2 + 2y ´ a2 ´ 2b ´ L(a,b)(x ´ a, y ´ b)
ˇ

ˇ

a

(x ´ a)2 + (y ´ b)2
= 0 .

Therefore, f is differentiable at (a, b) and (Df)(a, b) = L(a,b).
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Remark 2.18. Adopting the standard basis of Rn and Rm, a linear transformation L :

Rn Ñ Rm has a matrix representation [L]mˆn such that L(x) = [L]mˆn[x]n for all x P Rn. In
the following, we will always use the standard basis for Rn and Rm and use L and L(x) to
denote [L]mˆm and [L]mˆn[x]n, respectively, if L is a linear transformation from Rn to Rm

and x P Rn.

Proposition 2.19. Let U Ď Rn be an open set, and f : U Ñ Rm be differentiable at x0 P U .
Then (Df)(x0), the derivative of f at x0, is uniquely determined by f .

Proof. Suppose L1, L2 P B(Rn,Rm) are derivatives of f at x0. Let ε ą 0 be given and
e P Rn be a unit vector; that is, }e}Rn = 1. Since U is open, there exists r ą 0 such that
B(x0, r) Ď U . By Definition 2.15, there exists 0 ă δ ă r such that

}f(x) ´ f(x0) ´ L1(x´ x0)}Rm

}x´ x0}Rn
ă
ε

2
and }f(x) ´ f(x0) ´ L2(x´ x0)}Rm

}x´ x0}Rn
ă
ε

2

if 0 ă }x ´ x0}Rn ă δ. Letting x = x0 + λe with 0 ă |λ| ă δ, we have

}L1e ´ L2e}Rm =
1

|λ|
}L1(x ´ x0) ´ L2(x ´ x0)}Rm

ď
1

|λ|

(›
›f(x) ´ f(x0) ´ L1(x ´ x0)

›

›

Rm +
›

›f(x) ´ f(x0) ´ L2(x ´ x2)
›

›

Rm

)
=

›

›f(x) ´ f(x0) ´ L1(x ´ x0)
›

›

Rm

}x ´ x0}Rn
+

›

›f(x) ´ f(x0) ´ L2(x ´ x0)
›

›

Rm

}x ´ x0}Rn

ă
ε

2
+
ε

2
= ε .

Since ε ą 0 is arbitrary, we conclude that L1e = L2e for all unit vectors e P Rn which
guarantees that L1 = L2 (since if x ‰ 0, L1x = }x}RnL1

( x

}x}Rn

)
= }x}RnL2

( x

}x}Rn

)
= L2x). ˝

Example 2.20. (Df)(x0) may not be unique if the domain of f is not open. For example,
let A =

␣

(x, y)
ˇ

ˇ 0 ď x ď 1, y = 0
(

be a subset of R2, and f : A Ñ R be given by f(x, y) = 0.
Fix x0 = (a, 0) P A, then both of the linear maps

L1(x, y) = 0 and L2(x, y) = ay @ (x, y) P R2

satisfy Definition 2.15 since

lim
(x,0)Ñ(a,0)

ˇ

ˇf(x, 0) ´ f(a, 0) ´ L1(x´ a, 0)
ˇ

ˇ

›

›(x, 0) ´ (a, 0)
›

›

R2

= lim
(x,0)Ñ(a,0)

ˇ

ˇf(x, 0) ´ f(a, 0) ´ L2(x´ a, 0)
ˇ

ˇ

›

›(x, 0) ´ (a, 0)
›

›

R2

= 0 .



§2.3 Definition of Derivatives and the Matrix Representation of Derivatives 39

Definition 2.21. Let tekun
k=1 be the standard basis of Rn, U Ď Rn be an open set, a P U

and f : U Ñ R be a function. The partial derivative of f at a with respect to xj, denoted

by Bf

Bxj
(a), is the limit

lim
hÑ0

f(a+ hej) ´ f(a)

h

if it exists. In other words, if a = (a1, ¨ ¨ ¨ , an), then

Bf

Bxj
(a) = lim

hÑ0

f(a1, ¨ ¨ ¨ , aj´1, aj + h, aj+1, ¨ ¨ ¨ , an) ´ f(a1, ¨ ¨ ¨ , an)

h
.

Theorem 2.22. Suppose U Ď Rn is an open set and f : U Ñ Rm is differentiable at a P U .
Then the partial derivatives Bfi

Bxj
(a) exists for all i = 1, ¨ ¨ ¨m and j = 1, ¨ ¨ ¨n, and the matrix

representation of the linear transformation Df(a) (with respect to the standard basis of Rn

and Rm) is given by

[
Df(a)

]
=


Bf1
Bx1

(a) ¨ ¨ ¨
Bf1
Bxn

(a)

... . . . ...
Bfm
Bx1

(a) ¨ ¨ ¨
Bfm
Bxn

(a)

 or
[
Df(a)

]
ij
=

Bfi
Bxj

(a) .

Proof. Since U is open and a P U , there exists r ą 0 such that B(a, r) Ď U . By the
differentiability of f at a, there is L P B(Rn,Rm) such that for any given ε ą 0, there exists
0 ă δ ă r such that

}f(x) ´ f(a) ´ L(x ´ a)}Rm ď ε}x ´ a}Rn whenever x P B(a, δ) .

In particular, for each i = 1, ¨ ¨ ¨ ,m,
ˇ

ˇ

ˇ

fi(a+ hej) ´ fi(a)

h
´ (Lej)i

ˇ

ˇ

ˇ
ď

›

›

›

f(a+ hej) ´ f(a)

h
´ Lej

›

›

›

Rm
ď ε @ 0 ă |h| ă δ, h P R ,

where (Lej)i denotes the i-th component of Lej in the standard basis. As a consequence,
for each i = 1, ¨ ¨ ¨ ,m,

lim
hÑ0

fi(a+ hej) ´ fi(a)

h
= (Lej)i exists

and by definition, we must have (Lej)i =
Bfi
Bxj

(a). Therefore, Lij =
Bfi
Bxj

(a). ˝
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Definition 2.23. Let U Ď Rn be an open set, and f : U Ñ Rm. The matrix

(Jf)(x) ”


Bf1
Bx1

¨ ¨ ¨
Bf1
Bxn

... . . . ...
Bfm
Bx1

¨ ¨ ¨
Bfm
Bxn

 (x) ”


Bf1
Bx1

(x) ¨ ¨ ¨
Bf1
Bxn

(x)

... . . . ...
Bfm
Bx1

(x) ¨ ¨ ¨
Bfm
Bxn

(x)


is called the Jacobian matrix of f at x (if each entry exists).

Remark 2.24. A function f might not be differential even if the Jacobian matrix Jf exists;
however, if f is differentiable at x0, then (Df)(x) can be represented by (Jf)(x); that is,
[(Df)(x)] = (Jf)(x).

Example 2.25. Let f : R2 Ñ R3 be given by f(x1, x2) = (x21, x
3
1x2, x

4
1x

2
2). Suppose that f

is differentiable at x = (x1, x2), then

[
(Df)(x)

]
=

 2x1 0
3x21x2 x31
4x31x

2
2 2x41x2

 .
Remark 2.26. For each x P A, Df(x) is a linear transformation, but Df in general is not
linear in x.

Example 2.27. Let f : R2 Ñ R be given by

f(x, y) =

# xy

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then Bf

Bx
(0, 0) =

Bf

By
(0, 0) = 0; thus if f is differentiable at (0, 0), then (Df)(0, 0) =

[
0 0

]
.

However,
ˇ

ˇ

ˇ
f(x, y) ´ f(0, 0) ´

[
0 0

] [x
y

]
ˇ

ˇ

ˇ
=

|xy|

x2 + y2
=

|xy|

(x2 + y2)
3
2

a

x2 + y2 ;

thus f is not differentiable at (0, 0) since |xy|

(x2 + y2)
3
2

cannot be arbitrarily small even if x2+y2

is small.

Example 2.28. Let f : R2 Ñ R be given by

f(x, y) =

$

&

%

x if y = 0 ,
y if x = 0 ,
1 otherwise .
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Then Bf

Bx
(0, 0) = lim

hÑ0

f(h, 0) ´ f(0, 0)

h
= lim

hÑ0

h

h
= 1. Similarly, Bf

By
(0, 0) = 1; thus if f is

differentiable at (0, 0), then (Df)(0, 0) =
[
1 1

]
. However,

ˇ

ˇ

ˇ
f(x, y) ´ f(0, 0) ´

[
1 1

] [x
y

]
ˇ

ˇ

ˇ
=
ˇ

ˇf(x, y) ´ (x+ y)
ˇ

ˇ ;

thus if xy ‰ 0,
ˇ

ˇf(x, y) ´ (x+ y)
ˇ

ˇ = |1 ´ x ´ y| Û 0 as (x, y) Ñ (0, 0), xy ‰ 0.

Therefore, f is not differentiable at (0, 0).

2.4 Conditions for Differentiability
Proposition 2.29. Let U Ď Rn be open, a P U , and f = (f1, ¨ ¨ ¨ , fm) : U Ñ Rm. Then f is
differentiable at a if and only if fi is differentiable at a for all i = 1, ¨ ¨ ¨ ,m. In other words,
for vector-valued functions defined on an open subset of Rn,

Componentwise differentiable ô Differentiable.

Proof. “ñ” Let (Df)(a) be the Jacobian matrix of f at a. Then

@ ε ą 0, D δ ą 0 Q
›

›f(x)´f(a)´ (Df)(a)(x´a)
›

›

Rm ď ε}x´a}Rn if }x´a}Rn ă δ .

Let tejumj=1 be the standard basis of Rm, and Li P L (Rn,R) be given by Li(h) =

eT
i [(Df)(a)]h. Then Li P B(Rn,R) by Remark 1.79, and if }x ´ a}Rn ă δ,

ˇ

ˇfi(x) ´ fi(a) ´ Li(x ´ a)
ˇ

ˇ =
ˇ

ˇei ¨
(
f(x) ´ f(a) ´ (Df)(a)(x ´ a)

)ˇ
ˇ

ď
›

›f(x) ´ f(a) ´ (Df)(a)(x ´ a)
›

›

Rm ď ε}x ´ a}Rn ;

thus fi is differentiable at a with derivatives Li.

“ð” Suppose that fi : U Ñ R is differentiable at a for each i = 1, ¨ ¨ ¨ ,m. Then there exists
Li P B(Rn,R) such that

@ ε ą 0, D δi ą 0 Q
ˇ

ˇfi(x) ´ fi(a) ´ Li(x ´ a)
ˇ

ˇ ď
ε

m
}x ´ a}Rn if }x ´ a}Rn ă δi .

Let L P L (Rn,Rm) be given by Lx = (L1x, L2x, ¨ ¨ ¨ , Lmx) P Rm if x P Rn. Then
L P B(Rn,Rm) by Remark 1.79, and

›

›f(x) ´ f(a) ´ L(x ´ a)
›

›

Rm ď

m
ÿ

i=1

ˇ

ˇfi(x) ´ fi(a) ´ Li(x ´ a)
ˇ

ˇ ď ε}x ´ a}Rn

if }x ´ a}Rn ă δ = min
␣

δ1, ¨ ¨ ¨ , δm
(

. ˝
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Theorem 2.30. Let U Ď Rn be open, a P U , and f : U Ñ R. If

1. the Jacobian matrix of f exists in a neighborhood of a, and

2. at least (n ´ 1) entries of the Jacobian matrix of f are continuous at a,

then f is differentiable at a.

Proof. W.L.O.G. we can assume that Bf

Bx1
, Bf

Bx2
, ¨ ¨ ¨ , Bf

Bxn´1
are continuous at a. Let tejun

j=1

be the standard basis of Rn, and ε ą 0 be given. Since Bf

Bxi
is continuous at a for i =

1, ¨ ¨ ¨ , n ´ 1,

D δi ą 0 Q

ˇ

ˇ

ˇ

Bf

Bxi
(x) ´

Bf

Bxi
(a)

ˇ

ˇ

ˇ
ă

ε
?
n

whenever }x ´ a}Rn ă δi .

On the other hand, by the definition of the partial derivatives,

D δn ą 0 Q

ˇ

ˇ

ˇ

f(a+ hen) ´ f(a)

h
´

Bf

Bxn
(a)

ˇ

ˇ

ˇ
ă

ε
?
n

whenever 0 ă |h| ă δn .

Let k = x ´ a and δ = min
␣

δ1, ¨ ¨ ¨ , δn
(

. Then
ˇ

ˇ

ˇ
f(x) ´ f(a) ´

[
Bf

Bx1
(a)(x1 ´ a1) + ¨ ¨ ¨ +

Bf

Bxn
(a)(xn ´ an)

]ˇ
ˇ

ˇ

=
ˇ

ˇ

ˇ
f(a+ k) ´ f(a) ´

Bf

Bx1
(a)k1 ´ ¨ ¨ ¨ ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ
f(a1 + k1, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , an) ´

Bf

Bx1
(a)k1 ´ ¨ ¨ ¨ ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
f(a1 + k1, ¨ ¨ ¨ , an + kn) ´ f(a1, a2 + k2, ¨ ¨ ¨ , an + kn) ´

Bf

Bx1
(a)k1

ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ
f(a1, a2 + k2, ¨ ¨ ¨ , an + kn) ´ f(a1, a2, a3 + k3, ¨ ¨ ¨ , an + kn) ´

Bf

Bx2
(a)k2

ˇ

ˇ

ˇ

+ ¨ ¨ ¨ +
ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , an´1, an + kn) ´ f(a1, ¨ ¨ ¨ , an) ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ
.

By the mean value theorem,

f(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)

= kj
Bf

Bxj
(a1, ¨ ¨ ¨ , aj´1, aj + θjkj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)

for some 0 ă θj ă 1; thus for j = 1, ¨ ¨ ¨ , n ´ 1, if }x ´ a}Rn = }k}Rn ă δ,
ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn) ´

Bf

Bxj
(a)kj

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

Bf

Bxj
(a1, ¨ ¨ ¨ , aj´1, aj + θjkj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn) ´

Bf

Bxj
(a)

ˇ

ˇ

ˇ
|kj| ď

ε
?
n

|kj| .
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Moreover, if }x ´ a}Rn ă δ, then |kn| ď }k}Rn = }x ´ a}Rn ă δ ď δn; thus
ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , an´1, an + kn) ´ f(a1, ¨ ¨ ¨ , an) ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ
ď

ε
?
n

|kn| .

As a consequence, if }x ´ a}Rn ă δ, by Cauchy’s inequality,
ˇ

ˇ

ˇ
f(x) ´ f(a) ´

[
Bf

Bx1
(a)(x1 ´ a1) + ¨ ¨ ¨ +

Bf

Bxn
(a)(xn ´ an)

]ˇ
ˇ

ˇ

ď
ε

?
n

n
ÿ

j=1

|kj| ď ε}k}Rn = ε}x ´ a}Rn

which implies that f is differentiable at a. ˝

Remark 2.31. When two or more components of the Jacobian matrix
[

Bf

Bx1
¨ ¨ ¨

Bf

Bxn

]
of a

scalar function f are discontinuous at a point x0 P U , in general f is not differentiable at x0.
For example, both components of the Jacobian matrix of the functions given in Example
2.27, 2.28, 2.44 are discontinuous at (0, 0), and these functions are not differentiable at
(0, 0).

Example 2.32. Let U = R2z
␣

(x, 0) P R2
ˇ

ˇx ě 0
(

, and f : U Ñ R be given by

f(x, y) = arg(x+ iy) =

$

’

’

’

’

&

’

’

’

’

%

cos´1 x
a

x2 + y2
if y ą 0 ,

π if y = 0 ,

2π ´ cos´1 x
a

x2 + y2
if y ă 0 .

Then

Bf

Bx
(x, y) =

$

&

%

´
y

x2 + y2
if y ‰ 0 ,

0 if y = 0 ,
and Bf

By
(x, y) =

$

’

&

’

%

x

x2 + y2
if y ‰ 0 ,

1

x
if y = 0 .

Since Bf

Bx
and Bf

By
are both continuous on U , f is differentiable on U .

Definition 2.33. Let U Ď Rn be open, and f : U Ñ Rm be differentiable on U . f is
said to be continuously differentiable on U if the partial derivatives Bfi

Bxj
exist and

are continuous on U for i = 1, ¨ ¨ ¨ ,m and j = 1, ¨ ¨ ¨ , n. The collection of all continuously
differentiable functions from U to Rm is denoted by C 1(U ;Rm). The collection of all bounded
differentiable functions from U to Rm whose partial derivatives are continuous and bounded
is denoted by C 1

b (U ;Rm).
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Example 2.34. If f : R Ñ R is differentiable at x0, must f 1 be continuous at x0? In other
words, is it always true that lim

xÑx0
f 1(x) = f 1(x0)?

Answer: No! For example, take

f(x) =

$

&

%

x2 sin 1

x
if x ‰ 0,

0 if x = 0.

1˝ Show f(x) is differentiable at x = 0:

f 1(0) = lim
hÑ0

f(0 + h) ´ f(0)

h
= lim

hÑ0

h2 sin 1
h

h
= lim

hÑ0
h sin 1

h
= 0 .

2˝ We compute the derivative of f and find that

f 1(x) =

$

&

%

2x sin 1

x
´ cos 1

x
if x ‰ 0,

0 if x = 0.

However, lim
xÑ0

f 1(x) does not exist.

Definition 2.35. Let U Ď Rn be open, and f : U Ñ R be a function. If the partial
derivative Bf

Bxj
exists in U and has partial derivatives (at every point in U) with respect to

xi, then the second-order partial derivatives B

Bxi

(
Bf

Bxj

)
is denoted by B 2f

BxiBxj
.

In general, if the k-th order partial derivatives B kf

BxikBxik´1
¨ ¨ ¨ Bxi1

exists in U and has

partial derivatives (at every point in U) with respect to xik+1
, then the (k + 1)-th order

partial derivatives B

Bxik+1

(
B kf

BxikBxik´1
¨ ¨ ¨ Bxi1

)
is denoted by B k+1f

Bxik+1
Bxik ¨ ¨ ¨ Bxi1

; that is,

B k+1f

Bxik+1
Bxik ¨ ¨ ¨ Bxi1

=
B

Bxik+1

(
B kf

BxikBxik´1
¨ ¨ ¨ Bxi1

)
.

Theorem 2.36. Let U Ď Rn be open, a P U , and f : U Ñ R be a real-valued function.

Suppose that for some 1 ď i, j ď n, Bf

Bxi
, Bf

Bxj
, B 2f

BxjBxi
and B 2f

BxiBxj
exist in a neighborhood

of a and are continuous at a. Then

B 2f

BxiBxj
(a) =

B 2f

BxjBxi
(a) .
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Proof. W.L.O.G., we assume that f is a function of two variables; that is, n = 2. For fixed
h, k P R, define φ(x, y) = f(x, y + k) ´ f(x, y) and ψ(x, y) = f(x+ h, y) ´ f(x, y). Then

φ(a+ h, b) ´ φ(a, b) = f(a+ h, b+ k) ´ f(a+ h, b) ´ f(a, b+ k) + f(a, b)

= ψ(a, b+ k) ´ ψ(a, b) .

By the mean value theorem (Theorem A.9), for h, k ‰ 0 and sufficiently small,

φ(a+ h, b) ´ φ(a, b) = φx(a+ θ1h, b)h =
[
fx(a+ θ1h, b+ k) ´ fx(a+ θ1h, b)

]
h

= (fx)y(a+ θ1h, b+ θ2k)hk

for some θ1, θ2 P (0, 1), and similarly, for some θ3, θ4 P (0, 1),

ψ(a, b+ k) ´ ψ(a, b) = (fy)x(a+ θ3h, b+ θ4k)hk .

Therefore, for h, k ‰ 0 and sufficiently small, there exist θ1, θ2, θ3, θ4 P (0, 1) such that

(fx)y(a+ θ1h, b+ θ2k) = (fy)x(a+ θ3h, b+ θ4k) . (2.1)

Let ε ą 0 be given. Since (fx)y and (fy)x are continuous at (a, b), there exist δ1, δ2 ą 0

such that

ˇ

ˇ(fx)y(x, y) ´ (fx)y(a, b)
ˇ

ˇ ă
ε

2
if

a

(x ´ a)2 + (y ´ b)2 ă δ1 ,
ˇ

ˇ(fx)y(x, y) ´ (fx)y(a, b)
ˇ

ˇ ă
ε

2
if

a

(x ´ a)2 + (y ´ b)2 ă δ2 .

In particular, if δ = mintδ1, δ2u and h, k ‰ 0 satisfying
?
h2 + k2 ă δ,

ˇ

ˇ(fx)y(a+ θ1h, b+ θ2k) ´ (fx)y(a, b)
ˇ

ˇ+
ˇ

ˇ(fx)y(a+ θ3h, b+ θ4k) ´ (fx)y(a, b)
ˇ

ˇ ă ε ,

where θ1, θ2, θ3, θ4 P (0, 1) are chosen to validate (2.1). As a consequence,

ˇ

ˇ(fx)y(a, b) ´ (fy)x(a, b)
ˇ

ˇ

=
ˇ

ˇ(fx)y(a, b) ´ (fx)y(a+ θ1h, b+ θ2k) + (fx)y(a+ θ3h, b+ θ4k) ´ (fx)y(a, b)
ˇ

ˇ

ď
ˇ

ˇ(fx)y(a+ θ1h, b+ θ2k) ´ (fx)y(a, b)
ˇ

ˇ+
ˇ

ˇ(fx)y(a+ θ3h, b+ θ4k) ´ (fx)y(a, b)
ˇ

ˇ ă ε

which concludes the theorem (since ε ą 0 is given arbitrarily). ˝
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Example 2.37. Let f : R2 Ñ R be defined by

f(x, y) =

$

&

%

xy(x2 ´ y2)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then

fx(x, y) =

$

&

%

x4y + 4x2y3 ´ y5

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and

fy(x, y) =

$

&

%

x5 ´ 4x3y2 ´ xy4

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

It is clear that fx and fy are continuous on R2; thus f is differentiable on R2. However,

fxy(0, 0) = lim
kÑ0

fx(0, k) ´ fx(0, 0)

k
= ´1 ,

while
fyx(0, 0) = lim

hÑ0

fy(h, 0) ´ fy(0, 0)

h
= 1 ;

thus the Hessian matrix of f at the origin is not symmetric.

Definition 2.38. Let U Ď Rn be open, and f : U Ñ Rm be a vector-valued function. The
function f is said to be of class C 2 if f P C 1(U ;Rm) and the second partial derivatives

B 2fi
BxjBxk

exists and is continuous in U for all 1 ď i ď m and 1 ď j, k ď n. The collection of

all C 2-functions f : U Ñ Rm is denoted by C 2(U ;Rm).
In general, the function f is said to be of class C k if f P C k´1(U ;Rm) and the k-th order

partial derivatives B kf

BxikBxik´1
¨ ¨ ¨ Bxi1

exists and is continuous in U for all 1 ď i ď m and

1 ď i1, ¨ ¨ ¨ , ik ď n. The collection of all C k-functions f : U Ñ Rm is denoted by C k(U ;Rm).
A function is said to be smooth or of class C 8 if it is of class C k for all positive

integer k.

Corollary 2.39. Let U Ď Rn be open, and f P C 2(U ;R). Then

B 2f

BxiBxj
(a) =

B 2f

BxjBxi
(a) @ a P U and 1 ď i, j ď n .
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2.5 Properties of Differentiable Functions
2.5.1 Continuity of Differentiable Functions

Theorem 2.40. Let U Ď Rn be open, and f : U Ñ Rm be differentiable at x0 P U . Then f

is continuous at x0.

Proof. Since f is differentiable at x0, there exists L P B(Rn,Rm) such that

D δ1 ą 0 Q
›

›f(x) ´ f(x0) ´ L(x ´ x0)
›

›

Rm ď }x ´ x0}Rn @x P B(x0, δ1) .

As a consequence,
›

›f(x) ´ f(x0)
›

›

Rm ď
(
}L} + 1

)
}x ´ x0}Rn @x P B(x0, δ1) . (2.2)

For a given ε ą 0, let δ = min
!

δ1,
ε

2(}L} + 1)

)

. Then δ ą 0, and if x P B(x0, δ),

›

›f(x) ´ f(x0)
›

›

Rm ď
ε

2
ă ε . ˝

Remark 2.41. In fact, if f is differentiable at x0, then f satisfies the “local Lipschitz
property”; that is,

DM =M(x0) ą 0 and δ = δ(x0) ą 0 Q if }x´x0}X ă δ, then }f(x)´f(x0)}Y ď M}x´x0}X

since we can choose M = }L} + 1 and δ = δ1 (see (2.2)).

Example 2.42. Let f : R2 Ñ R be given in Example 2.27. We have shown that f is not
differentiable at (0, 0). In fact, f is not even continuous at (0, 0) since when approaching
the origin along the straight line x2 = mx1,

lim
(x1,mx1)Ñ(0,0)

f(x1,mx1) = lim
x1Ñ0

mx21
(m2 + 1)x21

=
m2

m2 + 1
‰ f(0, 0) if m ‰ 0 .

Example 2.43. Let f : R2 Ñ R be given in Example 2.28. Then f is not continuous at
(0, 0); thus not differentiable at (0, 0).

Example 2.44. Let f : R2 Ñ R be given by

f(x, y) =

$

&

%

x3

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .
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Then fx(0, 0) = 1 and fy(0, 0) = 0. However,
ˇ

ˇ

ˇ
f(x, y) ´ f(0, 0) ´

[
1 0

] [x
y

]
ˇ

ˇ

ˇ

a

x2 + y2
=

|x|y2

(x2 + y2)
3
2

Û 0 as (x, y) Ñ (0, 0).

Therefore, f is not differentiable at (0, 0). On the other hand, f is continuous at (0, 0) since
ˇ

ˇf(x, y) ´ f(0, 0)
ˇ

ˇ =
ˇ

ˇf(x, y)
ˇ

ˇ ď |x| Ñ 0 as (x, y) Ñ (0, 0).

2.5.2 The Product Rules

Proposition 2.45. Let U Ď Rn be an open set, and f : U Ñ Rm and g : U Ñ R be
differentiable at x0 P A. Then gf : A Ñ Rm is differentiable at x0, and

D(gf)(x0)(v) = g(x0)(Df)(x0)(v) + (Dg)(x0)(v)f(x0) . (2.3)

Moreover, if g(x0) ‰ 0, then f

g
: A Ñ Rm is also differentiable at x0, and D(

f

g
)(x0) : Rn Ñ

Rm is given by

D
(f
g

)
(x0)(v) =

g(x0)
(
(Df)(x0)(v)

)
´ (Dg)(x0)(v)f(x0)

g2(x0)
. (2.4)

Proof. We only prove (2.3), and (2.4) is left as an exercise.
Let A be the Jacobian matrix of gf at x0; that is, the (i, j)-th entry of A is

B (gfi)

Bxj
(x0) = g(x0)

Bfi
Bxj

(x0) +
Bg

Bxj
(x0)fi(x0) .

Then Av = g(x0)(Df)(x0)(v) + (Dg)(x0)(v)f(x0); thus

(gf)(x) ´ (gf)(x0) ´ A(x ´ x0) = g(x0)
(
f(x) ´ f(x0) ´ (Df)(x0)(x ´ x0)

)
+
(
g(x) ´ g(x0) ´ (Dg)(x0)(x ´ x0)

)
f(x)

+
(
(Dg)(x0)(x ´ x0)

)(
f(x) ´ f(x0)

)
.

Since (Dg)(x0) P B(Rn,R), }(Dg)(x0)}B(Rn,R) ă 8; thus using the inequality
ˇ

ˇ(Dg)(x0)(x ´ x0)
ˇ

ˇ ď
›

›(Dg)(x0)
›

›

B(Rn,R)}x ´ x0}Rn

and the continuity of f at x0 (due to Theorem 2.40), we find that

lim
xÑx0

ˇ

ˇ

ˇ

ˇ

ˇ(Dg)(x0)(x´ x0)
ˇ

ˇ

}x´ x0}Rn

›

›f(x) ´ f(x0)
›

›

Rm

ˇ

ˇ

ˇ
ď lim

xÑx0

›

›(Dg)(x0)
›

›

B(Rn,R)

›

›f(x) ´ f(x0)
›

›

Rm = 0 .
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As a consequence,

lim
xÑx0

›

›(gf)(x) ´ (gf)(x0) ´A(x´ x0)
›

›

Rm

}x´ x0}Rn

ď
ˇ

ˇg(x0)
ˇ

ˇ lim
xÑx0

›

›f(x) ´ f(x0) ´ (Df)(x0)(x´ x0)
›

›

Rm

}x´ x0}Rn

+ lim
xÑx0

[ ˇ
ˇg(x) ´ g(x0) ´ (Dg)(x0)(x´ x0)

ˇ

ˇ

}x´ x0}Rn
}f(x)}Rm

]
+ lim

xÑx0

[ ˇ
ˇ(Dg)(x0)(x´ x0)

ˇ

ˇ

}x´ x0}Rn

›

›f(x) ´ f(x0)
›

›

Rm

]
= 0

which implies that gf is differentiable at x0 with derivative D(gf)(x0) given by (2.3). ˝

‚ The differentiation of the Jacobian

Before going into the next section, we study the differentiation of a special determinant, the
Jacobian.

Example 2.46. Suppose that ψ : Ω Ď Rn Ñ ψ(Ω) Ď Rn is a given diffeomorphism
(thus det(∇ψ) ‰ 0). Let M = ∇ψ, and J = det(M). By Corollary 1.72, the adjoint
matrix of M is JM´1. Letting δ be a (first order) partial differential operator which satisfies
δ(fg) = fδg + (δf)g, by Theorem 1.73 we find that

δJ = tr(JM´1δM) =
n
ÿ

i,j=1

JAj
iδψ

i
,j

Einstein’s summation
convention

” JAj
iδψ

i
,j , (2.5)

where Aj
i = aji with M´1 = [aji]nˆn, and f,j ”

Bf

Bxj
.

Remark 2.47. From now on we sometimes write the row index of a matrix as a super-script
for the following reason: if ψ : Ω Ď Rn Ñ Rm is a differentiable vector-valued function, then
∇ψ is usually expressed by

∇ψ =



Bψ1

Bx1

Bψ1

Bx2
¨ ¨ ¨

Bψ1

Bxn
Bψ2

Bx1

Bψ2

Bx2
¨ ¨ ¨

Bψ2

Bxn
...

... . . . ...
Bψm
Bx1

Bψm
Bx2

¨ ¨ ¨
Bψm
Bxn


;

thus the (i, j) element of ∇ψ is Bψi
Bxj

, and the row index i appears “above” the column index
j.
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Theorem 2.48 (Piola’s identity). Let ψ : Ω Ď Rn Ñ ψ(Ω) Ď Rn be a C 2-diffeomorphism,
and [aij]nˆn be the adjoint matrix of ∇ψ. Then

aji,j

Einstein’s summation
convention

”

n
ÿ

j=1

B

Bxj
aji = 0. (2.6)

In other words, each column of the adjoint matrix of the Jacobian matrix of ψ is divergence-
free (see Definition 4.74).

Proof. Let J = det(∇ψ) and A = (∇ψ)´1. Then aji = JAj
i . Moreover, since A∇ψ = In,

n
ř

r=1

Aj
rψ

r
,s = δjs; thus

0 =
[ n
ÿ

r=1

Aj
rψ

r
,s

]
,k=

n
ÿ

r=1

[
Aj
r,kψ

r
,s + Aj

rψ
r
,sk

]
which, after multiplying the equality above by As

i and then summing over s, implies that

Aj
i,k = ´

n
ÿ

r,s=1

Aj
rψ

r
,skAs

i . (2.7)

As a consequence, by Theorem 2.36 we conclude that
n
ÿ

j=1

B

Bxj
(JAj

i ) =
n
ÿ

j=1

n
ÿ

r,s=1

[
JAr

sψ
s
,rjA

j
i ´ JAj

rψ
r
,sjAs

i

]
= 0 . ˝

2.5.3 The Chain Rule

Theorem 2.49. Let U Ď Rn and V Ď Rm be open sets, f : U Ñ Rm and g : V Ñ Rℓ be
vector-valued functions, and f(U) Ď V. If f is differentiable at x0 P U and g is differentiable
at f(x0), then the map F = g ˝ f defined by

F (x) = g
(
f(x)

)
@x P U

is differentiable at x0, and

(DF )(x0)(h) = (Dg)
(
f(x0)

)(
(Df)(x0)(h)

)
or in component, [

(DF )(x0)
]
ij
=

m
ÿ

k=1

Bgi
Byk

(
f(x0)

)Bfk
Bxj

(x0) .
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Proof. To simplify the notation, let y0 = f(x0), A = (Df)(x0) P B(Rn,Rm), and B =

(Dg)(y0) P B(Rm,Rℓ). Let ε ą 0 be given. By the differentiability of f and g at x0 and y0,
there exists δ1, δ2 ą 0 such that if }x ´ x0}Rn ă δ1 and }y ´ y0}Rm ă δ2, we have

}f(x) ´ f(x0) ´ A(x ´ x0)}Rm ď min
␣

1,
ε

2(}B} + 1)

(

}x ´ x0}Rn ,

}g(y) ´ g(y0) ´ B(y ´ y0)}Rℓ ď
ε

2(}A} + 1)
}y ´ y0}Rm .

Define

u(h) = f(x0 + h) ´ f(x0) ´ Ah @ }h}Rn ă δ1 ,

v(k) = g(y0 + k) ´ g(y0) ´ Bk @ }k}Rm ă δ2 .

Then if }h}Rn ă δ1 and }k}Rm ă δ2,

}u(h)}Rm ď }h}Rn , }u(h)}Rm ď
ε

2(}B} + 1)
}h}Rn and }v(k)}Rℓ ď

ε

2(}A} + 1)
}k}Rm .

Let k = f(x0 + h) ´ f(x0) = Ah+ u(h). Then lim
hÑ0

k = 0; thus there exists δ3 ą 0 such that

}k}Rm ă δ2 whenever }h}Rn ă δ3 .

Since

F (x0 + h) ´ F (x0) = g(y0 + k) ´ g(y0) = Bk + v(k) = B
(
Ah+ u(h)

)
+ v(k)

= BAh+Bu(h) + v(k) ,

we conclude that if }h}Rn ă δ = mintδ1, δ3u,

}F (x0 + h) ´ F (x0) ´ BAh}Rℓ ď }Bu(h)}Rℓ + }v(k)}Rℓ ď }B}}u(h)}Rm +
ε

2(}A} + 1)
}k}Rm

ď
ε

2
}h}Rn +

ε

2(}A} + 1)

(
}A}}h}Rn + }u(h)}Rm

)
ď
ε

2
}h}Rn +

ε

2
}h}Rn = ε}h}Rn

which implies that F is differentiable at x0 and
[
(DF )(x0)

]
= BA. ˝

Example 2.50. Consider the polar coordinate x = r cos θ, y = r sin θ. Then every function
f : R2 Ñ R is associated with a function F : [0,8) ˆ [0, 2π) Ñ R satisfying

F (r, θ) = f(r cos θ, r sin θ) .
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Suppose that f is differentiable. Then F is differentiable, and the chain rule implies that

[
BF

Br

BF

Bθ

]
=

[
Bf

Bx

Bf

By

]Bx

Br

Bx

Bθ
By

Br

By

Bθ

 =

[
Bf

Bx

Bf

By

][cos θ ´r sin θ
sin θ r cos θ

]
.

Therefore, we arrive at the following form of chain rule
B

Br
=

Bx

Br

B

Bx
+

By

Br

B

By
and B

Bθ
=

Bx

Bθ

B

Bx
+

By

Bθ

B

By

which is commonly seen in Calculus textbook.

Example 2.51. Let f : R Ñ R and F : R2 Ñ R be differentiable, and F
(
x, f(x)

)
= 0 and

BF

By
‰ 0. Then f 1(x) = ´

Fx
(
x, f(x)

)
Fy

(
x, f(x)

) , where Fx =
BF

Bx
and Fy =

BF

By
.

Example 2.52. Let γ : (0, 1) Ñ Rn and f : Rn Ñ R be differentiable. Let F (t) = f
(
γ(t)

)
.

Then F 1(t) = (Df)
(
γ(t)

)
γ 1(t).

Example 2.53. Let f(u, v, w) = u2v + wv2 and g(x, y) = (xy, sinx, ex). Let h = f ˝ g :

R2 Ñ R. Find Bh

Bx
.

Way I: Compute Bh

Bx
directly: Since

h(x, y) = f(g(x, y)) = f(xy, sinx, ex) = x2y2 sinx+ ex sin2 x ,

we have
Bh

Bx
= 2xy2 sinx+ x2y2 cosx+ ex sin2 x+ 2ex sinx cosx .

Way II: Use the chain rule:
Bh

Bx
=

Bf

Bu

Bg1
Bx

+
Bf

Bv

Bg2
Bx

+
Bf

Bw

Bg3
Bx

= 2uv ¨ y + (u2 + 2wv) ¨ cosx+ v2 ¨ ex

= 2xy2 sinx+ (x2y2 + 2ex sinx) cosx+ ex sin2 x.

Example 2.54. Let F (x, y) = f(x2+y2), f : R Ñ R, F : R2 Ñ R. Show that xBF

By
= y

BF

Bx
.

Proof: Let g(x, y) = x2 + y2, g : R2 Ñ R, then F (x, y) = (f ˝ g)(x, y). By the chain rule,[
BF

Bx

BF

By

]
= f 1(g(x, y)) ¨

[
Bg

Bx

Bg

By

]
= f 1(g(x, y))

[
2x 2y

]
which implies that

BF

Bx
= 2xf 1(g(x, y)),

BF

By
= 2yf 1(g(x, y)) .

So y BF

Bx
= f 1(g(x, y))2xy = x

BF

By
.
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2.5.4 The Mean Value Theorem

Theorem 2.55. Let U Ď Rn be open, and f : U Ñ Rm with f = (f1, ¨ ¨ ¨ , fm). Suppose that
f is differentiable on U and the line segment joining x and y lies in U . Then there exist
points c1, ¨ ¨ ¨ , cm on that segment such that

fi(y) ´ fi(x) = (Dfi)(ci)(y ´ x) @ i = 1, ¨ ¨ ¨ ,m.

Moreover, if U is convex and sup
xPU

}(Df)(x)}B(Rn,Rm) ď M , then

}f(x) ´ f(y)}Rm ď M}x ´ y}Rn @x, y P U .

Proof. Let γ : [0, 1] Ñ Rn be given by γ(t) = (1´ t)x+ ty. Then by Theorem 2.49, for each
i = 1, ¨ ¨ ¨ ,m, (fi ˝ γ) : [0, 1] Ñ R is differentiable on (0, 1); thus the mean value theorem
(Theorem A.9) implies that there exists ti P (0, 1) such that

fi(y) ´ fi(x) = (fi ˝ γ)(1) ´ (fi ˝ γ)(0) = (fi ˝ γ)1(ti) = (Dfi)(ci)
(
γ 1(ti)

)
,

where ci = γ(ti). On the other hand, γ 1(ti) = y ´ x.
Let g(t) = (f ˝ γ)(t). Then the chain rule implies that g 1(t) = (Df)(γ(t))(y ´ x); thus

}g 1(t)}Rm ď }(Df)(γ(t))}B(Rn,Rm)}y ´ x}Rm ď M}x ´ y}Rn .

Define h(t) =
(
g(1) ´ g(0)

)
¨ g(t). Then h : [0, 1] Ñ R is differentiable; thus by the mean

value theorem (Theorem A.9) we find that there exists ξ P (0, 1) such that

h(1) ´ h(0) = h 1(ξ) =
(
g(1) ´ g(0)

)
¨ g 1(ξ) ;

thus by the fact that g(0) = f(x) and g(1) = f(y),

}f(x) ´ f(y)}2Rm = h(1) ´ h(0) ď }g(1) ´ g(0)}Rm}g 1(ξ)}Rm

ď M}f(x) ´ f(y)}Rm}x ´ y}Rn

which concludes the theorem. ˝

Example 2.56. Let f : [0, 1] Ñ R2 be given by f(t) = (t2, t3). Then there is no s P (0, 1)

such that
(1, 1) = f(1) ´ f(0) = f 1(s)(1 ´ 0) = f 1(s)

since f 1(s) = (2s, 3s2) ‰ (1, 1) for all s P (0, 1).
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Example 2.57. Let f : R Ñ R2 be given by f(x) = (cosx, sinx). Then f(2π) ´ f(0) =

(0, 0); however, f 1(x) = (´ sinx, cosx) which cannot be a zero vector.

Example 2.58. Let f be given in Example 2.32, and U be a small neighborhood of the
curve

C =
␣

(x, y)
ˇ

ˇx2 + y2 = 1, x ď 0
(

Y
␣

(x,˘1) | 0 ď x ď 1
(

.

Then
f(1,´1) ´ f(1, 1) =

3π

2
.

On the other hand,

(Df)(x, y)(0,´2) =
[

´y

x2 + y2
x

x2 + y2

] [ 0
´2

]
= ´

2x

x2 + y2

which can never be 3π

2
since

ˇ

ˇ

2x

x2 + y2

ˇ

ˇ ď 3 if (x, y) P U while 3π

2
ą 3. Therefore, no point

(x, y) in U validates

(Df)(x, y)
(
(1,´1) ´ (1, 1)

)
= f(1,´1) ´ f(1, 1) .

Example 2.59. Suppose that U Ď Rn is an open convex set, and f : U Ñ Rm is differen-
tiable and Df(x) = 0 for all x P U . Then f is a constant; that is, for some α P Rm we have
f(x) = α for all x P U .
Reason: Since U is convex, then the Mean Value Theorem can be applied to any x, y P U
such that fi(x)´fi(y) = Dfi(ci)(x´y) = 0 (7 Dfi = 0) for i = 1, 2, ¨ ¨ ¨ ,m; thus f(x) = f(y)

for any x, y P U . Let α = f(x) P Rm, then we reach the conclusion.

2.6 The Inverse Function Theorem（反函數定理）
反函數定理是用來探討一個函數的反函數是否存在的問題。只要一個函數不是一對一的，

一般來說都不能定義其反函數，例如三角函數中，正弦、餘弦及正切函數都是周期函

數，所以全域的反函數不存在。但是我們也知道有所謂的反三角函數 sin´1 （或 arcsin）,
cos´1 （或 arctan）及 tan´1（或 arctan），這是因為我們限制了原三角函數的定義域使其
在新的定義域上是一對一的（因此反函數存在）。因此，要討論一個定在某一個（大範圍

的）定義域的函數的反函數，常常我們最多只能說反函數只在某一小塊區域上存在。

如何知道一個函數在一小塊區域上的反函數存在，我們首先該問的是在定義域是一維

（或是指單變數函數）的情況下發生什麼事？由一維的反函數定理 (Theorem A.10) 我們知
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道首先應該要保留的條件是類似於微分不為零的這個條件。但是在多變數函數之下，微

分不為零的條件該怎麼呈現，這是第一個問題。而當我們觀察 (A.1)，應該可以猜出在多
變數版本裡面所該對應到的條件，即是 (Df)(x) 這個 bounded linear map 的可逆性。
另外，假設 f P C 1，那麼由 Theorem 1.87 我們知道在一個點 x0 如果 (Df)(x0) 可逆

的話，那麼在一個鄰域裡 (Df)(x) 都可逆。所以下面這個反函數定理的條件中只有 (Df)

在一個點可逆這個條件，因為我們暫時也只能討論在小區域的反函數存不存在。

Before proceeding, we first prove the following important proposition which is used
crucially in the proof of the inverse function theorem.

Proposition 2.60 (Contraction Mapping Principle). Let F Ď Rn be a closed subset (on
which every Cauchy sequence converges), and Φ : F Ñ F be a contraction mapping; that
is, there is a constant θ P [0, 1) such that

›

›Φ(x) ´ Φ(y)
›

›

Rn ď θ}x ´ y}Rn .

Then there exists a unique point x P F , called the fixed-point of Φ, such that Φ(x) = x.

Proof. Let x0 P F , and define xk+1 = Φ(xk) for all k P N Y t0u. Then

}xk+1 ´ xk}Rn =
›

›Φ(xk) ´ Φ(xk´1)
›

›

Rn ď θ}xk ´ xk´1}Rn ď ¨ ¨ ¨ ď θk}x1 ´ x0}Rn ;

thus if ℓ ą k,

}xℓ ´ xk}Rn ď }xk ´ xk+1}Rn + }xk+1 ´ xk+2}Rn + ¨ ¨ ¨ + }xℓ´1 ´ xℓ}Rn

ď (θk + θk+1 + ¨ ¨ ¨ + θℓ´1)}x1 ´ x0}Rn

ď θk(1 + θ + θ2 + ¨ ¨ ¨ )}x1 ´ x0}Rn =
θk

1 ´ θ
}x1 ´ x0}Rn . (2.8)

Since θ P [0, 1), lim
kÑ8

θk

1 ´ θ
}x1 ´ x0}Rn = 0; thus

@ ε ą 0, DN ą 0 Q }xk ´ xℓ}Rn ă ε @ k, ℓ ě N .

In other words, txku8
k=1 is a Cauchy sequence in F . By assumption, xk Ñ x as k Ñ 8 for

some x P F . Finally, since Φ(xk) = xk+1 for all k P N, by the continuity of Φ we obtain that

Φ(x) = lim
kÑ8

Φ(xk) = lim
kÑ8

xk+1 = x

which guarantees the existence of a fixed-point.
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Suppose that for some x, y P M , Φ(x) = x and Φ(y) = y. Then

}x ´ y}Rn =
›

›Φ(x) ´ Φ(y)
›

›

Rn ď θ}x ´ y}Rn

which suggests that }x ´ y}Rn = 0 or x = y. Therefore, the fixed-point of Φ is unique. ˝

Now we state and prove the inverse function theorem.

Theorem 2.61 (Inverse Function Theorem). Let D Ď Rn be open, x0 P D, f : D Ñ Rn be
of class C 1, and (Df)(x0) be invertible. Then there exist an open neighborhood U of x0 and
an open neighborhood V of f(x0) such that

1. f : U Ñ V is one-to-one and onto;

2. The inverse function f´1 : V Ñ U is of class C 1;

3. If x = f´1(y), then (Df´1)(y) =
(
(Df)(x)

)´1;

4. If f is of class C r for some r ą 1, so is f´1.

Proof. We will omit the proof of 4 since it requires more knowledge about differentiation.
Assume that A = (Df)(x0). Then }A´1}B(Rn,Rn) ‰ 0. Choose λ ą 0 such that

2λ}A´1}B(Rn,Rn) = 1. Since f P C 1, there exists δ ą 0 such that
›

›(Df)(x) ´ A
›

›

B(Rn,Rn)
=
›

›(Df)(x) ´ (Df)(x0)
›

›

B(Rn,Rn)
ă λ whenever x P B(x0, δ) X D .

By choosing δ even smaller if necessary, we can assume that B(x0, δ) Ď D. Let U = B(x0, δ).
Claim: f : U Ñ Rn is one-to-one (hence f : U Ñ f(U) is one-to-one and onto).
Proof of claim: For each y P Rn, define φy(x) = x+A´1

(
y ´ f(x)

)
(and we note that every

fixed-point of φy corresponds to a solution to f(x) = y). Then

(Dφy)(x) = Id ´ A´1(Df)(x) = A´1
(
A ´ (Df)(x)

)
,

where Id is the identity map on Rn. Therefore,
›

›(Dφy)(x)
›

›

B(Rn,Rn)
ď }A´1}B(Rn,Rn)

›

›A ´ (Df)(x)
›

›

B(Rn,Rn)
ă

1

2
@x P B(x0, δ) .

By the mean value theorem (Theorem 2.55),
›

›φy(x1) ´ φy(x2)
›

›

Rn ď
1

2
}x1 ´ x2}Rn @x1, x2 P B(x0, δ), x1 ‰ x2 ; (2.9)
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thus at most one x satisfies φy(x) = x; that is, φy has at most one fixed-point. As a
consequence, f : B(x0, δ) Ñ Rn is one-to-one.
Claim: The set V = f(U) is open.
Proof of claim: Let b P V . Then there is a P V with f(a) = b. Choose r ą 0 such that
B(a, r) Ď U . We observe that if y P B(b, λr), then

}φy(a) ´ a}Rn ď }A´1
(
y ´ f(a)

)
}Rn ď }A´1}B(Rn,Rn)}y ´ b}Rn ă λ}A´1}B(Rn,Rn)r =

r

2
;

thus if y P B(b, λr) and x P B(a, r),

}φy(x) ´ a}Rn ď
›

›φy(x) ´ φy(a)
›

›

Rn + }φy(a) ´ a}Rn ă
1

2
}x ´ a}Rn +

r

2
ă r .

Therefore, if y P B(b, λr), then φy : B(a, r) Ñ B(a, r). By the continuity of φy,

φy : B(a, r) Ñ B(a, r) .

On the other hand, (2.9) implies that φy is a contraction mapping if y P B(b, λr); thus by the
contraction mapping principle (Proposition 2.60) φy has a unique fixed-point x P B(a, r).
As a result, every y P B(b, λr) corresponds to a unique x P B(a, r) such that φy(x) = x or
equivalently, f(x) = y. Therefore,

B(b, λr) Ď f
(
B(a, r)

)
Ď f(U) = V .

Next we show that f´1 : V Ñ U is differentiable. We note that if x P B(x0, δ),

}(Df)(x0) ´ (Df)(x)}B(Rn,Rn)}A
´1}B(Rn,Rn) ă λ}A´1}B(Rn,Rn) =

1

2
;

thus Theorem 1.87 implies that (Df)(x) is invertible if x P B(x0, δ).
Let b P V and k P Rn such that b + k P V . Then there exists a unique a P U and

h = h(k) P Rn such that a + h P U , b = f(a) and b + k = f(a + h). By the mean value
theorem and (2.9),

›

›φy(a+ h) ´ φy(a)
›

›

Rn ă
1

2
}h}Rn ;

thus the fact that f(a+ h) ´ f(a) = k implies that

}h ´ A´1k}Rn ă
1

2
}h}Rn

which further suggests that
1

2
}h}Rn ď }A´1k}Rn ď }A´1}B(Rn,Rn)}k}Rn ď

1

2λ
}k}Rn . (2.10)
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As a consequence, if k is such that b+ k P V ,
›

›f´1(b+ k) ´ f´1(b) ´
(
(Df)(a)

)´1
k
›

›

Rn

}k}Rn
=

›

›a+ h ´ a ´
(
(Df)(a)

)´1
k
›

›

Rn

}k}Rn

ď
›

›

(
(Df)(a)

)´1›
›

B(Rn,Rn)

›

›k ´ (Df)(a)(h)
›

›

Rn

}k}Rn

ď
›

›

(
(Df)(a)

)´1›
›

B(Rn,Rn)

›

›f(a+ h) ´ f(a) ´ (Df)(a)(h)
›

›

Rn

}h}Rn

}h}Rn

}k}Rn

ď

›

›

(
(Df)(a)

)´1›
›

B(Rn,Rn)

λ

›

›f(a+ h) ´ f(a) ´ (Df)(a)(h)
›

›

Rn

}h}Rn
.

Using (2.10), h Ñ 0 as k Ñ 0; thus passing k Ñ 0 on the left-hand side of the inequality
above, by the differentiability of f we conclude that

lim
kÑ0

›

›f´1(b+ k) ´ f´1(b) ´
(
(Df)(a)

)´1
k
›

›

Rn

}k}Rn
= 0 .

This proves 3. ˝

Remark 2.62. Since f´1 : V Ñ U is continuous, for any open subset W of U f(W) =

(f´1)´1(W) is open relative to V , or f(W) = O X V for some open set O Ď Rn. In other
words, if U is an open neighborhood of x0 given by the inverse function theorem, then
f(W) is also open for all open subsets W of U . We call this property as f is a local open
mapping at x0.

Remark 2.63. Since (Df)(x0) P B(Rn,Rn), the condition that (Df)(x0) is invertible can
be replaced by that the determinant of the Jacobian matrix of f at x0 is not zero; that is,

det
([
(Df)(x0)

])
‰ 0 .

The determinant of the Jacobian matrix of f at x0 is called the Jacobian of f at x0. The
Jacobian of f at x sometimes is denoted by Jf (x) or B (f1, ¨ ¨ ¨ , fn)

B (x1, ¨ ¨ ¨ , xn)
.

Example 2.64. Let f : R Ñ R be given by

f(x) =

#

x+ 2x2 sin 1

x
if x ‰ 0 ,

0 if x = 0 .

Let 0 P (a, b) for some (small) open interval (a, b). Since f 1(x) = 1 ´ 2 cos 1

x
+ 4x sin 1

x
for

x ‰ 0, f has infinitely many critical points in (a, b), and (for whatever reasons) these critical
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points are local maximum points or local minimum points of f which implies that f is not
locally invertible even though we have f 1(0) = 1 ‰ 0. One cannot apply the inverse function
theorem in this case since f is not C 1.

Corollary 2.65. Let U Ď Rn be open, f : U Ñ Rn be of class C 1, and (Df)(x) be invertible
for all x P U . Then f(W) is open for every open set W Ď U .

在證明了小區域的（local）反函數定理 (Theorem 2.61) 之後，我們接下來要問的是全
域的（global）反函數在什麼條件之下會存在。如果照一維的反函數定理，我們會猜測是
不是只要 (Df)(x) 在整個區域都可逆就能得到在全域的反函數都存在。以下給個反例說

單單在這個條件之下，函數不一定會有一對一的性質。

Example 2.66. Let f : R2 Ñ R2 be given by

f(x, y) = (ex cos y, ex sin y) .

Then [
(Df)(x, y)

]
=

[
ex cos y ´ex sin y
ex sin y ex cos y

]
.

It is easy to see that the Jacobian of f at any point is not zero (thus (Df)(x) is invertible for
all x P R2), and f is not globally one-to-one (thus the inverse of f does not exist globally)
since for example, f(x, y) = f(x, y + 2π).

要再加什麼條件進來才能得到反函數在全域都存在是個不容易的問題。在一維的情

況下，導數是 sign definite 就表示函數在全域是嚴格單調的。在高維度的情況，即使是
(Df)(x) 到處都可逆，仍然有很多情況可能發生（如上例）。下面這個定理（全域的反函

數存在定理），從某種角度來說並沒有真的加了什麼條件以確保全域的反函數存在，只是

多要求了在所考慮的區域邊界上函數是一對一的。這個條件在一維的情況之下是自動成

立的：因為如果一單變數函數的導數是 sign definite，那麼函數在邊界上必定是一對一的
（因為嚴格單調的關係）。

Theorem 2.67 (Global Existence of Inverse Function). Let D Ď Rn be open, f : D Ñ Rn

be of class C 1, and (Df)(x) be invertible for all x P K. Suppose that K is a connected（連
通，即只有一塊）, closed and bounded subset of D, and f : BK Ñ Rn is one-to-one. Then
f : K Ñ Rn is one-to-one.

全域的反函數定理的證明需要更多關於點拓的知識，所以不在這門課中證明。
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2.7 The Implicit Function Theorem（隱函數定理）
Theorem 2.68 (Implicit Function Theorem). Let D Ď Rn ˆ Rm be open, and F : D Ñ Rm

be a function of class C 1. Suppose that for some (x0, y0) P D, where x0 P Rn and y0 P Rm,
F (x0, y0) = 0 and

[
(DyF )(x0, y0)

]
=


BF1

By1
¨ ¨ ¨

BF1

Bym
... . . . ...

BFm
By1

¨ ¨ ¨
BFm
Bym

 (x0, y0)

is invertible. Then there exists an open neighborhood U Ď Rn of x0, an open neighborhood
V Ď Rm of y0, and f : U Ñ V such that

1. F
(
x, f(x)

)
= 0 for all x P U ;

2. y0 = f(x0);

3. (Df)(x) = ´
(
(DyF )(x, f(x))

)´1
(DxF )

(
x, f(x)

)
for all x P U ;

4. f is of class C 1;

5. If F is of class C r for some r ą 1, so is f .

Proof. Let z = (x, y) and w = (u, v), where x, u P Rn and y, v P Rm. Define w = G(z),
where G is given by G(x, y) =

(
x, F (x, y)

)
. Then G : D Ñ Rn+m, and

[
(DG)(x, y)

]
=

[
In 0

(DxF )(x, y) (DyF )(x, y)

]
,

where In is the nˆ n identity matrix and (DxF )(x, y) P B(Rn,Rm) whose matrix represen-
tation is given by

[
(DxF )(x, y)

]
=


BF1

Bx1
¨ ¨ ¨

BF1

Bxn
... . . . ...

BFm
Bx1

¨ ¨ ¨
BFm
Bxn

 (x, y) .

We note that the Jacobian of G at (x0, y0) is det
(
[(DyF )(x0, y0)]

)
which does not vanish

since (DyF )(x0, y0) is invertible, so the inverse function theorem implies that there exists
open neighborhoods O of (x0, y0) and W of

(
x0, F (x0, y0)

)
= (x0, 0) such that
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(a) G : O Ñ W is one-to-one and onto;

(b) the inverse function G´1 : W Ñ O is of class C r;

(c) (DG´1)
(
x, F (x, y)

)
=

(
(DG)(x, y)

)´1.

By Remark 2.62, W.L.O.G. we can assume that O = U ˆ V , where U Ď Rn and V Ď Rm

are open, and x0 P U , y0 P V .
Write G´1(u, v) =

(
φ(u, v), ψ(u, v)

)
, where φ : W Ñ U and ψ : W Ñ V . Then

(u, v) = G
(
φ(u, v), ψ(u, v)

)
=

(
φ(u, v), F (u, ψ(u, v))

)
which implies that φ(u, v) = u and v = F (u, ψ(u, v)). Let f(x) = ψ(x, 0). Then

(
u, f(u)

)
P

U ˆ V is the unique point satisfying F
(
u, f(u)

)
= 0 if u P U . Therefore, f : U Ñ V , and

F
(
x, f(x)

)
= 0 @x P U .

Since G(x0, y0) = (x0, 0) = G
(
x0, f(x0)

)
, (x0, y0),

(
x0, f(x0)

)
P O, and G : O Ñ W is

one-to-one, we must have y0 = f(x0).
By (b) and (c), we have G´1 is of class C 1, and

(DG´1)(u, v) =
(
(DG)(x, y)

)´1
.

As a consequence, ψ P C 1, and[
(Duφ)(u, v) (Dvφ)(u, v)

(Duψ)(u, v) (Dvψ)(u, v)

]
=

[
In 0

(DxF )(x, y) (DyF )(x, y)

]´1

=

[
In 0

´
(
(DyF )(x, y)

)´1
(DxF )(x, y)

(
(DyF )(x, y)

)´1

]
.

Evaluating the equation above at v = 0, we conclude that

(Df)(u) = (Duψ)(u, 0) = ´
(
(DyF )(u, f(u))

)´1
(DxF )

(
u, f(u)

)
which implies 3. We also note that 4 follows from (b) and 5 follows from 3. ˝

Example 2.69. Let F (x, y) = x2 + y2 ´ 1.

1. If (x0, y0) = (1, 0), then Fx(x0, y0) = 2 ‰ 0; thus the implicit function theorem implies
that locally x can be expressed as a function of y.
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2. If (x0, y0) = (0,´1), then Fy(x0, y0) = ´2 ‰ 0; thus the implicit function theorem
implies that locally y can be expressed as a function of x.

3. If (x0, y0) =
(

´
1

2
,

?
3

2

)
, then Fx(x0, y0) = ´1 ‰ 0 and Fy(x0, y0) =

?
3 ‰ 0; thus the

implicit function theorem implies that locally x can be expressed as a function of y
and locally y can be expressed as a function of x.

Example 2.70. Suppose that (x, y, u, v) satisfies the equation
"

xu+ yv2 = 0

xv3 + y2u6 = 0

and (x0, y0, u0, v0) = (1,´1, 1,´1). Let F (x, y, u, v) = (xu + yv2, xv3 + y2u6). Then
F (x0, y0, u0, v0) = 0.

1. Since (Dx,yF )(x0, y0, u0, v0) =


BF1

Bx

BF1

By
BF2

Bx

BF2

By

 (x0, y0, u0, v0) =

[
1 1

´1 ´2

]
is invertible,

locally (x, y) can be expressed in terms of u, v; that is, locally x = x(u, v) and y =

y(u, v).

2. Since (Dy,uF )(x0, y0, u0, v0) =


BF1

By

BF1

Bu
BF2

By

BF2

Bu

 (x0, y0, u0, v0) =

[
1 1

´2 6

]
is invertible,

locally (y, u) can be expressed in terms of x, v.

Example 2.71. Let f : R3 Ñ R2 be given by

f(x, y, z) = (xey + yez, xez + zey) .

Then f is of class C 1, f(´1, 1, 1) = (0, 0) and

[
(Df)(x, y, z)

]
=

[
ey xey + ez yez

ez zey xez + ey

]
.

Since (Dy,zf)(´1, 1, 1) =

[
0 e
e 0

]
is invertible, the implicit function theorem implies that the

system
"

xey + yez = 0
xez + zey = 0
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can be solved for y and z as continuously differentiable function of x for x near ´1 and (y, z)

near (1, 1). Furthermore, if we write (y, z) = g(x) for x near ´1, then

g1(x) =

[
xey + ez yez yez

zey xez + ey

]´1 [
ey

ez

]
.

2.8 Directional Derivatives and Gradient Vectors

Definition 2.72 (Directional Derivatives). Let f be real-valued and defined on a neighbor-
hood of x0 P Rn, and let v P Rn be a unit vector. Then

(Dvf)(x0) ”
d

dt

ˇ

ˇ

ˇ

t=0
f(x0 + tv) = lim

tÑ0

f(x0 + tv) ´ f(x0)

t

is called the directional derivative（方向導數）of f at x0 in the direction v.

Remark 2.73. Let tejun
j=1 be the standard basis of Rn. Then the partial derivative Bf

Bxj
(x0)

(if it exists) is the directional derivative of f at x0 in the direction ej.

Remark 2.74. Let f be a real-valued differentiable function defined on a neighborhood
of x0 P Rn, and let v P Rn be a unit vector. For a curve γ : (´δ, δ) Ñ Rn satisfying that
γ(0) = x0 and γ 1(0) = v, the chain rule shows that

d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ γ)(t) = (Df)(x0)(v) = (Dvf)(x0) .

In other words, for a differentiable function f in a neighborhood of x0, the derivative
d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ γ) is independent of γ as long as γ(0) = x0 and γ 1(0) = v. Therefore, direc-

tional derivative of a differential function f at x0 in the direction v can also be defined by
the value d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ γ)(t), where γ : (´δ, δ) Ñ Rn is any curve satisfying γ(0) = x0 and

γ 1(0) = v.

Theorem 2.75. Let U Ď Rn be open, and f : U Ñ R be differentiable at x0. Then the
directional derivative of f at x0 in the direction v is (Df)(x0)(v).

Proof. Since f is differentiable at x0, @ ε ą 0, Q δ ą 0 such that

ˇ

ˇf(x) ´ f(x0) ´ (Df)(x0)(x ´ x0)
ˇ

ˇ ď
ε

2
}x ´ x0}Rn whenever }x ´ x0}Rn ă δ .
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In particular, if x = x0 + tv with v being a unit vector in Rn and 0 ă |t| ă δ, then
ˇ

ˇ

ˇ

f(x0 + tv) ´ f(x0)

t
´ (Df)(x0)(v)

ˇ

ˇ

ˇ
=

ˇ

ˇf(x0 + tv) ´ f(x0) ´ (Df)(x0)(tv)
ˇ

ˇ

|t|

=

ˇ

ˇf(x) ´ f(x0) ´ (Df)(x0)(x ´ x0)
ˇ

ˇ

|t|
ď
ε

2
ă ε ;

thus (Dvf)(x0) = (Df)(x0)(v). ˝

Remark 2.76. When v P Rn but 0 ă }v}Rn ‰ 1, we let v =
v

}v}Rn
. Then the direction

derivatives of a function f : U Ď Rn Ñ R at a P U in the direction v is

(Dvf)(a) = lim
tÑ0

f(a+ tv) ´ f(a)

t
.

Making a change of variable s = t

}v}Rn
. Then

(Df)(x0)(v) = }v}Rn(Df)(x0)(v) = }v}Rn lim
tÑ0

f(a+ tv) ´ f(a)

t
= lim

sÑ0

f(a+ sv) ´ f(a)

s
.

We sometimes also call the value (Df)(x0)(v) the “directional derivative” of f in the “direc-
tion” v.

Example 2.77. The existence of directional derivatives of a function f at x0 in all directions
does not guarantee the differentiability of f at x0. For example, let f : R2 Ñ R be given as
in Example 2.44, and v = (v1, v2) P R2 be a unit vector. Then

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= v3

1 .

However, f is not differentiable at (0, 0). We also note that in this example, (Dvf)(0) ‰

(Jf)(0)v, where (Jf)(0) =

[
Bf

Bx
(0, 0)

Bf

By
(0, 0)

]
is the Jacobian matrix of f at (0, 0).

Example 2.78. The existence of directional derivatives of a function f at x0 in all directions
does not even guarantee the continuity of f at x0. For example, let f : R2 Ñ R be given by

f(x, y) =

$

&

%

xy2

x2 + y4
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and v = (v1, v2) P R2 be a unit vector. Then if v1 ‰ 0,

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= lim

tÑ0

t3v1v2
2

t(t2v2
1 + t4v4

2)
=

v2
2

v1
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while if v1 = 0,

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= 0 .

However, f is not continuous at (0, 0) since if (x, y) approaches (0, 0) along the curve x = my2

with m ‰ 0, we have

lim
yÑ0

f(my2, y) = lim
yÑ0

my4

m2y4 + y4
=

m

m2 + 1

which depends on m. Therefore, f is not continuous at (0, 0).

Example 2.79. Here comes another example showing that a function having directional
derivative in all directions might not be continuous. Let f : R2 Ñ R be given by

f(x, y) =

# xy

x+ y2
if x+ y2 ‰ 0 ,

0 if x+ y2 = 0 ,

and v = (v1, v2) P R2 be a unit vector. Then if v1 ‰ 0,

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= lim

tÑ0

t2v1v2

t(tv1 + t2v2
2)

= v2

while if v1 = 0,

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= 0 .

However, f is not continuous at (0, 0) since if (x, y) approaches (0, 0) along the polar curve

θ(r) =
π

2
+ sin´1(r ´ mr2) 0 ă r ! 1 ,

we have

lim
(x,y)Ñ(0,0)

x=r cos θ(r),y=r sin θ(r)

f(x, y) = lim
rÑ0+

r2 cos θ(r) sin θ(r)
r2 sin2 θ(r) + r cos θ(r)

= lim
rÑ0+

r(´r +mr2) sin θ(r)
r sin2 θ(r) ´ r +mr2

= lim
rÑ0+

(´r +mr2) sin θ(r)
sin2 θ(r) ´ 1 +mr

=
´1

m

which depends on m. Therefore, f is not continuous at (0, 0).

Definition 2.80. Let U Ď Rn be an open set. The derivative of a scalar function f : U Ñ R
is called the gradient of f and is denoted by gradf or ∇f .
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Let U Ď Rn be an open set, a P U and f : U Ñ R be a real-valued function. Suppose
that f P C 1(U ;R) and (∇f)(a) ‰ 0. Then Bf

Bxk
(a) ‰ 0 for some 1 ď k ď n. W.L.O.G.,

we can assume that Bf

Bxn
(a) ‰ 0. By the implicit function theorem, there exists an open

neighborhood V Ď Rn´1 of (a1, ¨ ¨ ¨ , an´1) and an open neighborhood W Ď R of an, as well as
a C 1-function φ : V Ñ R such that in a neighborhood of a the level set

␣

x P U
ˇ

ˇ f(x) = f(a)
(

can be represented by xn = φ(x1, ¨ ¨ ¨ , xn´1); that is,

f
(
x1, ¨ ¨ ¨ , xn´1, φ(x1, ¨ ¨ ¨ , xn´1)

)
= f(a) @ (x1, ¨ ¨ ¨ , xn´1) P V .

Moreover,

φxj(x1, ¨ ¨ ¨ , xn´1) = ´
fxj

(
x1, ¨ ¨ ¨ , xn´1, φ(x1, ¨ ¨ ¨ , xn´1)

)
fxn

(
x1, ¨ ¨ ¨ , xn´1, φ(x1, ¨ ¨ ¨ , xn´1)

) @ (x1, ¨ ¨ ¨ , xn´1) P V .

Consider the collection of vectors tvju
n´1
j=1 given by

vj =
B

Bxj

ˇ

ˇ

ˇ

x=a

(
x1, ¨ ¨ ¨ , xn´1, φ(x1, ¨ ¨ ¨ , xn´1)

)
(x1, ¨ ¨ ¨ , xn´1) P V .

Then v1
js are tangent vectors of the level surface. If tejun

j=1 is the standard basis of Rn, then

vj = ej +
(
0, ¨ ¨ ¨ , 0, φxj(a1, ¨ ¨ ¨ , an´1)

)
= ej ´

(
0, ¨ ¨ ¨ , 0,

fxj (a)

fxn(a)

)
.

Therefore, the gradient vector (∇f)(a) is perpendicular to vj for all 1 ď j ď n ´ 1 which
conclude the following

Proposition 2.81. Let U Ď Rn be open and f P C 1(U ;R); that is, f : U Ñ R is contin-

uously differentiable. Then if (∇f)(x0) ‰ 0, the vector (∇f)(x0)
}(∇f)(x0)}Rn

is the unit normal to

the level set
␣

x P U
ˇ

ˇ f(x) = f(x0)
(

at x0.

Example 2.82. Find the normal to S =
␣

(x, y, z)
ˇ

ˇx2 + y2 + z2 = 3
(

at (1, 1, 1) P S.
Solution: Take f(x, y, z) = x2 + y2 + z2 ´ 3. Then (∇f)(x, y, z) = (2x, 2y, 2z); thus
(∇f)(1, 1, 1) = (2, 2, 2) is normal to S at (1, 1, 1).

Example 2.83. Consider the surface

S =
␣

(x, y, z) P R3
ˇ

ˇx2 ´ y2 + xyz = 1
(

.

Find the tangent plane of S at (1, 0, 1).
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Solution: Let f(x, y, z) = x2 ´ y2 + xyz. Then

S =
␣

(x, y, z) P R3 | f(x, y, z) = f(1, 0, 1)
(

;

that is, S is a level set of f . Since (∇f)(1, 0, 1) = (2, 1, 0) ‰ (0, 0, 0), (2, 1, 0) is normal to
S at (1, 0, 1); thus the tangent plane of S at (1, 0, 1) is 2(x ´ 1) + y = 0. ˝

Proposition 2.84. Let f : Rn Ñ R be differentiable. If (∇f)(x0) ‰ 0, then ˘
(∇f)(x0)

}(∇f)(x0)}Rn

is the direction in which the function f increases/decreases most rapidly（最速上升／下降
方向）at x0.

Proof. Let x0 P Rn be given. Suppose that f increases most rapidly in the direction v,
then (Dvf)(x0) = sup

}w}Rn=1

(Dwf)(x0). Since f is differentiable, (Dwf)(x0) = (Df)(x0)(w) =

(∇f)(x0) ¨ w which is maximized in the direction (∇f)(x0)
}(∇f)(x0)}Rn

. ˝

Example 2.85. Let f : R3 Ñ R be given by f(x, y, z) = x2y sin z. Find the direction of
the greatest rate of change at (3, 2, 0).
Solution: We compute the gradient of f at (3, 2, 0) as follows:

(∇f)(3, 2, 0) =
(Bf

Bx
(3, 2, 0),

Bf

By
(3, 2, 0),

Bf

Bz
(3, 2, 0)

)
= (2xy sin z, x2 sin z, x2y cos z)

ˇ

ˇ

(x,y,z)=(3,,2,0)
= (0, 0, 18).

Therefore, the direction of the greatest rate of change of f at (3, 2, 0) is (0, 0, 1).



Chapter 3

Multiple Integrals

3.1 Integrable Functions
Let us start our discussion on the integrability of functions of two variables.

Definition 3.1. Let A Ď R2 be a bounded set. Define

a1 = inf
␣

x P R
ˇ

ˇ (x, y) P A for some y P R
(

,

b1 = sup
␣

x P R
ˇ

ˇ (x, y) P A for some y P R
(

,

a2 = inf
␣

y P R
ˇ

ˇ (x, y) P A for some x P R
(

,

b2 = sup
␣

y P R
ˇ

ˇ (x, y) P A for some x P R
(

.

A collection of rectangles P is called a partition of A if there exists a partition Px of [a1, b1]
and a partition Py of [a2, b2],

Px =
␣

a1 = x0 ă x1 ă ¨ ¨ ¨ ă xn = b1
(

and Py =
␣

a2 = y0 ă y1 ă ¨ ¨ ¨ ă ym = b2
(

,

such that

P =
␣

∆ij

ˇ

ˇ∆ij = [xi, xi+1] ˆ [yj, yj+1] for i = 0, 1, ¨ ¨ ¨ , n ´ 1 and j = 0, 1, ¨ ¨ ¨ ,m ´ 1
(

.

The mesh size of the partition P , denoted by }P} and also called the norm of P , is defined
by

}P} = max
!
b

(xi+1 ´ xi)2 + (yj+1 ´ yj)2
ˇ

ˇ

ˇ
i = 0, 1, ¨ ¨ ¨ , n ´ 1, j = 0, 1, ¨ ¨ ¨ ,m ´ 1

)

.

The number
a

(xi+1 ´ xi)2 + (yj+1 ´ yj)2 is often denoted by diam(∆ij), and is called the
diameter of ∆ij.

68
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Definition 3.2. Let A Ď R2 be a bounded set, and f : A Ñ R be a bounded function. For
any partition P =

␣

∆ij

ˇ

ˇ∆ij = (xi, xi+1)ˆ (yj, yj+1), i = 0, ¨ ¨ ¨ , n´ 1, j = 0, ¨ ¨ ¨ ,m´ 1
(

, the
upper sum and the lower sum of f with respect to the partition P , denoted by U(f,P)

and L(f,P) respectively, are numbers defined by

U(f,P) =
ÿ

0ďiďn´1
0ďjďm´1

sup
(x,y)P∆ij

f
A

(x, y)A(∆ij) ,

L(f,P) =
ÿ

0ďiďn´1
0ďjďm´1

inf
(x,y)P∆ij

f
A

(x, y)A(∆ij) ,

where A(∆ij) = (xi+1 ´xi)(yj+1 ´yj) is the area of the rectangle ∆ij, and fA is an extension
of f , called the extension of f by zero outside A, given by

f
A

(x) =

"

f(x) x P A ,

0 x R A .

The two numbers
ż

A

f(x, y) dA ” inf
␣

U(f,P)
ˇ

ˇP is a partition of A
(

and
ż

A

f(x, y) dA ” sup
␣

L(f,P)
ˇ

ˇP is a partition of A
(

are called the upper integral and lower integral of f over A, respectively. The function

f is said to be Riemann (Darboux) integrable (over A) if
ż

A
f(x, y)dA =

ż

A
f(x, y)dA,

and in this case, we express the upper and lower integral as
ż

A
f(x, y)dA, called the double

integral of f over A.

Similar to the case of double integrals, we can consider the integrability of a bounded
function f defined on a bounded set A Ď Rn as follows

Definition 3.3. Let A Ď Rn be a bounded set. Define the numbers a1, a2, ¨ ¨ ¨ , an and
b1, b2, ¨ ¨ ¨ , bn by

ak = inf
␣

xk P R
ˇ

ˇx = (x1, ¨ ¨ ¨ , xn) P A for some x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xn P R
(

,

bk = sup
␣

xk P R
ˇ

ˇx = (x1, ¨ ¨ ¨ , xn) P A for some x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xn P R
(

.
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A collection of rectangles P is called a partition of A if there exists partitions P(k) of
[ak, bk], k = 1, ¨ ¨ ¨ , n, P(k) =

␣

ak = x
(k)
0 ă x

(k)
1 ă ¨ ¨ ¨ ă x

(k)
Nk

= bk
(

, such that

P =
!

∆i1i2¨¨¨in

ˇ

ˇ

ˇ
∆i1i2¨¨¨in =

[
x
(1)
i1
, x

(1)
i1+1

]
ˆ
[
x
(2)
i2
, x

(2)
i2+1

]
ˆ ¨ ¨ ¨ ˆ

[
x
(n)
in
, x

(n+1)
in+1

]
,

ik = 0, 1, ¨ ¨ ¨ , Nk ´ 1, k = 1, ¨ ¨ ¨ , n
)

.

The mesh size of the partition P , denoted by }P}, is defined by

}P} = max
!

g

f

f

e

n
ÿ

k=1

(x
(k)
ik+1 ´ x

(k)
ik

)2
ˇ

ˇ

ˇ
ik = 0, 1, ¨ ¨ ¨ , Nk ´ 1, k = 1, ¨ ¨ ¨ , n

)

.

The number
d

n
ř

k=1

(x
(k)
ik+1 ´ x

(k)
ik
)2 is often denoted by diam(∆i1i2¨¨¨in), and is called the di-

ameter of the rectangle ∆i1i2¨¨¨in .

Definition 3.4. Let A Ď Rn be a bounded set, and f : A Ñ R be a bounded function. For
any partition

P =
!

∆i1i2¨¨¨in

ˇ

ˇ

ˇ
∆i1i2¨¨¨in =

[
x
(1)
i1
, x

(1)
i1+1

]
ˆ
[
x
(2)
i2
, x

(2)
i2+1

]
ˆ ¨ ¨ ¨ ˆ

[
x
(n)
in
, x

(n+1)
in+1

]
,

ik = 0, 1, ¨ ¨ ¨ , Nk ´ 1, k = 1, ¨ ¨ ¨ , n
)

,

the upper sum and the lower sum of f with respect to the partition P , denoted by
U(f,P) and L(f,P) respectively, are numbers defined by

U(f,P) =
ÿ

∆PP
sup
xP∆

f
A

(x)νn(∆) ,

L(f,P) =
ÿ

∆PP
inf
xP∆

f
A

(x)νn(∆) ,

where νn(∆) is the n-dimensional volume of the rectangle ∆ given by

νn(∆) = (x
(1)
i1+1 ´ x

(1)
i1
)(x

(2)
i2+1 ´ x

(2)
i2
) ¨ ¨ ¨ (x

(n)
in+1 ´ x

(n)
in
)

if ∆ =
[
x
(1)
i1

´ x
(1)
i1+1

]
ˆ
[
x
(2)
i2

´ x
(2)
i2+1

]
ˆ ¨ ¨ ¨ ˆ

[
x
(n)
in

´ x
(n)
in+1

]
, and f

A is the extension of f by
zero outside A given by

f
A

(x) =

"

f(x) x P A ,

0 x R A .
(3.1)
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The two numbers
ż

A

f(x)dx ” inf
␣

U(f,P)
ˇ

ˇP is a partition of A
(

,

and
ż

A

f(x)dx ” sup
␣

L(f,P)
ˇ

ˇP is a partition of A
(

are called the upper integral and lower integral of f over A, respective. The function

f is said to be Riemann (Darboux) integrable (over A) if
ż

A
f(x)dx =

ż

A
f(x)dx,

and in this case, we express the upper and lower integral as
ż

A
f(x)dx, called the n-tuple

integral of f over A.

Definition 3.5. A partition P 1 of a bounded set A Ď Rn is said to be a refinement of
another partition P of A if for any ∆1 P P 1, there is ∆ P P such that ∆1 Ď ∆. A partition
P of a bounded set A Ď Rn is said to be the common refinement of another partitions
P1,P2, ¨ ¨ ¨ ,Pk of A if

1. P is a refinement of Pj for all 1 ď j ď k.

2. If P 1 is a refinement of Pj for all 1 ď j ď k, then P 1 is also a refinement of P .

In other words, P is a common refinement of P1,P2, ¨ ¨ ¨ ,Pk if it is the coarsest refinement.

“+” “=”

Figure 3.1: The common refinement of two partitions

Qualitatively speaking, P is a common refinement of P1,P2, ¨ ¨ ¨ ,Pk if for each j =

1, ¨ ¨ ¨n, the j-th component cj of the vertex (c1, ¨ ¨ ¨ , cn) of each rectangle ∆ P P belongs to
P(j)
i for some i = 1, ¨ ¨ ¨ , k.

Proposition 3.6. Let A Ď Rn be a bounded subset, and f : A Ñ R be a bounded function.
If P and P 1 are partitions of A and P 1 is a refinement of P, then

L(f,P) ď L(f,P 1) ď U(f,P 1) ď U(f,P) .



72 CHAPTER 3. Multiple Integrals

Corollary 3.7. Let A Ď Rn be a bounded subset, and f : A Ñ R be a bounded function. If
P1 and P2 are partitions of A, then

L(f,P1) ď U(f,P2) .

Proof. Let P be the common refinement of P1 and P2. Then Proposition 3.6 implies that

L(f,P1) ď L(f,P) ď U(f,P) ď U(f,P2) . ˝

Corollary 3.8. Let A Ď Rn be a bounded subset, and f : A Ñ R be a bounded function.
Then

ż

A

f(x)dx ď

ż

A

f(x)dx .

Proof. Noting that for each given partition P of A, L(f,P) is a lower bounded for all
possible upper sum; thus

L(f,P) ď

ż

A

f(x)dx for all partitions P of A

which further implies that
ż

A
f(x)dx ď

ż

A
f(x)dx . ˝

Proposition 3.9 (Riemann’s condition). Let A Ď Rn be a bounded set, and f : A Ñ R be
a bounded function. Then f is Riemann integrable over A if and only if

@ ε ą 0, D a partition P of A Q U(f,P) ´ L(f,P) ă ε .

Proof. “ñ” Let ε ą 0 be given. By the definition of infimum and supremum, there exist
partition P1 and P2 of A such that

ż

A

f(x) dx ´
ε

2
ă L(f,P2) and

ż

A

f(x) dx+
ε

2
ą U(f,P1) .

Let P be a common refinement of P1 and P2. Since f is Riemann integrable over A,
ż

A
f(x)dx =

ż

A
f(x)dx; thus Proposition 3.6 implies that

U(f,P) ´ L(f,P) ď U(f,P1) ´ L(f,P2)

ă

ż

A

f(x) dx+
ε

2
´

( ż
A

f(x) dx ´
ε

2

)
= ε .
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“ð” Let ε ą 0 be given. By assumption there exists a partition P of A such that U(f,P)´

L(f,P) ă ε. Then

0 ď

ż

A

f(x) dx ´

ż

A

f(x) dx ď U(f,P) ´ L(f,P) ă ε .

Since ε ą 0 is given arbitrary, we must have
ż

A
f(x)dx =

ż

A
f(x)dx; thus f is Riemann

integrable over A. ˝

Definition 3.10. Let P = t∆1,∆2, ¨ ¨ ¨ ,∆Nu be a partition of a bounded set A Ď Rn. A
collection of N points tξ1, ¨ ¨ ¨ , ξNu is called a sample set for the partition P if ξk P ∆k for
all k = 1, ¨ ¨ ¨ , N . Points in a sample set are called sample points for the partition P .

Let A Ď Rn be a bounded set, and f : A Ñ R be a bounded function. A Riemann
sum of f for the the partition P = t∆1,∆2, ¨ ¨ ¨ ,∆Nu of A is a sum which takes the form

N
ÿ

k=1

f
A

(ξi)νn(∆k) ,

where the set Ξ = tξ1, ξ2, ¨ ¨ ¨ , ξNu is a sample set for the partition P .

Theorem 3.11 (Darboux). Let A Ď Rn be a bounded set, and f : A Ñ R be a bounded
function with extension f

A given by (3.1). Then f is Riemann integrable over A if and only
if there exists I P R such that for every given ε ą 0, there exists δ ą 0 such that if P is a
partition of A satisfying }P} ă δ, then any Riemann sums for the partition P belongs to the
interval (I ´ ε, I + ε). In other words, f is Riemann integrable over A if and only if there
exists I P R such that for every given ε ą 0, there exists δ ą 0 such that

ˇ

ˇ

ˇ

N
ÿ

k=1

f
A

(ξk)ν(∆k) ´ I
ˇ

ˇ

ˇ
ă ε (3.2)

whenever P = t∆1, ¨ ¨ ¨ ,∆N

(

is a partition of A satisfying }P} ă δ and tξ1, ξ2, ¨ ¨ ¨ , ξNu is a
sample set for P.

Proof. The boundedness of A guarantees that A Ď
[

´
r

2
,
r

2

]n for some r ą 0. Let R =[
´
r

2
,
r

2

]n.

“ð” Suppose the right-hand side statement is true. Let ε ą 0 be given. Then there exists
δ ą 0 such that if P = t∆1, ¨ ¨ ¨ ,∆N

(

is a partition of A satisfying }P} ă δ, then for
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all sets of sample points tξ1, ¨ ¨ ¨ , ξNu for P , we must have
ˇ

ˇ

ˇ

N
ÿ

k=1

f
A

(ξk)ν(∆k) ´ I
ˇ

ˇ

ˇ
ă
ε

4
.

Let P = t∆1, ¨ ¨ ¨ ,∆N

(

be a partition of A with }P} ă δ. Choose two sample sets
tξ1, ¨ ¨ ¨ , ξNu and tη1, ¨ ¨ ¨ , ηNu for P such that

(a) sup
xP∆k

f
A

(x) ´
ε

4ν(R)
ă f

A

(ξk) ď sup
xP∆k

f
A

(x);

(b) inf
xP∆k

f
A

(x) +
ε

4ν(R)
ą f

A

(ηk) ě inf
xP∆k

f
A

(x).

Then

U(f,P) =
N
ÿ

k=1

sup
xP∆k

f
A

(x)ν(∆k) ă

N
ÿ

k=1

[
f
A

(ξk) +
ε

4ν(R)

]
ν(∆k)

=
N
ÿ

k=1

f
A

(ξk)ν(∆k) +
ε

4ν(R)

N
ÿ

k=1

ν(∆k) ă I + ε

4
+
ε

4
= I + ε

2

and

L(f,P) =
N
ÿ

k=1

inf
xP∆k

f
A

(x)ν(∆k) ą

N
ÿ

k=1

[
f
A

(ηk) ´
ε

4ν(R)

]
ν(∆k)

=
N
ÿ

k=1

f
A

(ηk)ν(∆k) ´
ε

4ν(R)

N
ÿ

k=1

ν(∆k) ą I ´
ε

4
´
ε

4
= I ´

ε

2
.

As a consequence, I ´
ε

2
ă L(f,P) ď U(f,P) ă I + ε

2
; thus U(f,P) ´ L(f,P) ă ε.

“ñ” Let I =
ż

A
f(x)dx, and ε ą 0 be given. Since f is Riemann integrable over A, there

exists a partition P1 of A such that U(f,P1) ´ L(f,P1) ă
ε

2
. Suppose that P(i)

1 =
␣

y
(i)
0 , y

(i)
1 , ¨ ¨ ¨ , y

(i)
mi

(

for 1 ď i ď n. With M denoting the number m1 +m2 + ¨ ¨ ¨ +mn,
we define

δ =
ε

4rn´1(M + n)
(

sup fA(R) ´ inf fA(R) + 1
) .

Then δ ą 0. Our goal is to show that if P is a partition of A with }P} ă δ and
tξ1, ¨ ¨ ¨ , ξNu is a set of sample points for P , then (3.2) holds.

Assume that P = t∆1,∆2, ¨ ¨ ¨ ,∆Nu is a given partition of A with }P} ă δ.
Let P 1 be the common refinement of P and P1. Write P 1 = t∆1

1,∆
1
2, ¨ ¨ ¨ ,∆1

N 1u and
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∆k = ∆
(1)
k ˆ ∆

(2)
k ˆ ¨ ¨ ¨ ˆ ∆

(n)
k as well as ∆1

k = ∆
1(1)
k ˆ ∆

1(2)
k ˆ ¨ ¨ ¨ ˆ ∆

1(n)
k . By the

definition of the upper sum,

U(f,P) =
N
ÿ

k=1

sup
xP∆k

f
A

(x)ν(∆k)

=
ÿ

1ďkďN with
y
(i)
j

R∆
(i)
k

for all i, j

sup
xP∆k

f
A

(x)ν(∆k) +
ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

for some i, j

sup
xP∆k

f
A

(x)ν(∆k)

and similarly,

U(f,P 1) =
ÿ

1ďkďN 1 with
y
(i)
j

R∆
1(i)
k

for all i, j

sup
xP∆1

k

f
A

(x)ν(∆1
k) +

ÿ

1ďkďN 1 with
y
(i)
j

P∆
1(i)
k

for some i, j

sup
xP∆1

k

f
A

(x)ν(∆1
k) .

By the fact that ∆k P P 1 if y(i)j R ∆
1(i)
k for all i, j, we must have

ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

for some i, j

ν(∆k) =
ÿ

1ďkďN 1 with
y
(i)
j

P∆
1(i)
k

for some i, j

ν(∆1
k) .

The equality above further implies that

U(f,P)´U(f,P 1) =
ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

for some i, j

sup
xP∆k

f
A

(x)ν(∆k)´
ÿ

1ďkďN 1 with
y
(i)
j

P∆
1(i)
k

for some i, j

sup
xP∆1

k

f
A

(x)ν(∆1
k)

ď
(

sup fA(R) ´ inf fA(R)
) ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

for some i, j

ν(∆k) .

Moreover, for each fixed i, j,

ď

1ďkďN

y
(i)
j

P∆
(i)
k

∆k Ď
[
´
r

2
,
r

2

]i´1
ˆ
[
y
(i)
j ´ δ, y

(i)
j + δ

]
ˆ
[
´
r

2
,
r

2

]n´i
;

thus
ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

ν(∆k) ď 2δrn´1 @ 1 ď i ď n, 1 ď j ď mi .
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Therefore,

U(f,P) ´ U(f,P 1)

ď
(

sup fA(R) ´ inf fA(R)
) n
ÿ

i=1

mi
ÿ

j=0

ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

ν(∆k)

ď
(

sup fA(R) ´ inf fA(R)
) n
ÿ

i=1

mi
ÿ

j=0

2δrn´1

ď 2δrn´1(m1 +m2 + ¨ ¨ ¨ +mn + n)
(

sup fA(R) ´ inf fR(A)
)

ă
ε

2
,

and the fact that U(f,P1) ´ L(f,P1) ă
ε

2
shows that

U(f,P) ´ I ď U(f,P) ´ I + U(f,P1) ´ U(f,P1)

ď U(f,P) ´ L(f,P1) + U(f,P1) ´ U(f,P 1) ă ε .

Therefore, for any sample set tξ1, ¨ ¨ ¨ , ξNu for P ,
N
ÿ

k=1

f
A

(ξk)ν(∆k) ď U(f,P) ă I + ε .

Similar argument can be used to show that
N
ÿ

k=1

f
A

(ξk)ν(∆k) ě L(f,P) ą I ´ ε

which concludes the Theorem. ˝

Definition 3.12. A bounded set A Ď Rn is said to have volume if the characteristic
function of A, denoted by 1A and given by

1A(x) =
"

1 if x P A ,

0 otherwise ,

is Riemann integrable over A, and the number
ż

A
1A(x) dx is called the volume of A and

is denoted by ν(A). If ν(A) = 0, then A is said to have volume zero.

Remark 3.13. Having defined the indicator function, then for a bounded function f : A Ñ

R with bounded domain A, any given partition P of A we have fA = f1A; thus

U(f,P) =
ÿ

∆PP
sup
xP∆

(f1A)(x)ν(∆) and L(f,P) =
ÿ

∆PP
inf
xP∆

(f1A)(x)ν(∆) .
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3.2 Properties of the Integrals
Proposition 3.14. Let A Ď Rn be bounded, and f, g : A Ñ R be bounded. Then

(a) If B Ď A, then
ż

A
(f1B)(x) dx =

ż

B
f(x) dx and

ż

A
(f1B)(x) dx =

ż

B
f(x) dx.

(b)
ż

A
f(x) dx+

ż

A
g(x) dx ď

ż

A
(f+g)(x) dx ď

ż

A
(f+g)(x) dx ď

ż

A
f(x) dx+

ż

A
g(x) dx.

(c) If c ě 0, then
ż

A
(cf)(x) dx = c

ż

A
f(x) dx and

ż

A
(cf)(x) dx = c

ż

A
f(x) dx. If c ă 0,

then
ż

A
(cf)(x) dx = c

ż

A
f(x) dx and

ż

A
(cf)(x) dx = c

ż

A
f(x) dx.

(d) If f ď g on A, then
ż

A
f(x) dx ď

ż

A
g(x) dx and

ż

A
f(x) dx ď

ż

A
g(x) dx.

(e) If A has volume zero, then f is Riemann integrable over A, and
ż

A
f(x) dx = 0.

Proof. We only prove (a), (b), (c) and (e) since (d) are trivial.

(a) Let ε ą 0 be given. By the definition of the lower integral, there exist partition PA of
A and PB of B such that

ż

A

(f1B)(x) dx ´ ε ă L(f1B,PA) =
ÿ

∆PPA

inf
xP∆

f1B
A

(x)ν(∆)

and
ż

B

f(x) dx ´
ε

2
ă L(f,PB) =

ÿ

∆PPB

inf
xP∆

f
B

(x)ν(∆) .

Let P 1
A be a refinement of PA such that some collection of rectangles in P 1

A forms a
partition of B. Denote this partition of B by P 1

B. Since inf
xP∆

f
B

(x) ď 0 if ∆ P P 1
AzP 1

B,
Proposition 3.6 implies that

ż

A

(f1B)(x) dx ´ ε ă L(f1B,PA) ď L(f1B,P 1
A) =

ÿ

∆PP 1
A

inf
xP∆

f1B
A

(x)ν(∆)

=
(

ÿ

∆PP 1
AzP 1

B

+
ÿ

∆PP 1
B

)
inf
xP∆

f
B

(x)ν(∆)

ď
ÿ

∆PP 1
B

inf
xP∆

f
B

(x)ν(∆) = L(f,P 1
B) ď

ż

B

f(x) dx .



78 CHAPTER 3. Multiple Integrals

On the other hand, let rPA be a partition of A such that PB Ď rPA and
ÿ

∆P rPAzPB ,∆XB‰H

ν(∆) ď
ε

2(M + 1)
,

where M ą 0 is an upper bound of |f |. Then
ÿ

∆P rPAzPB ,∆XB‰H

inf
xP∆

f
B

(x)ν(∆) ě ´M
ÿ

∆P rPAzPB ,∆XB‰H

ν(∆) ě ´
ε

2

which further implies that
ż

A

(f1B)(x) dx ě L(f1B, rPA) =
ÿ

∆P rPA

inf
xP∆

f1B
A

(x)ν(∆)

=
(

ÿ

∆PPB

+
ÿ

∆P rPAzPB ,∆XB‰H

+
ÿ

∆P rPAzPB ,∆XB=H

)
inf
xP∆

f
B

(x)ν(∆)

= L(f,PB) +
ÿ

∆P rPAzPB ,∆XB‰H

inf
xP∆

f
B

(x)ν(∆) ą

ż

B

f(x) dx ´ ε .

Therefore, we establish that
ż

B

f(x) dx ´ ε ă

ż

A

(f1B)(x) dx ă

ż

B

f(x) dx+ ε .

Since ε ą 0 is given arbitrarily, we conclude that
ż

A
(f1B)(x) dx =

ż

B
f(x) dx. Similar

argument can be applied to conclude that
ż

A
(f1B)(x) dx =

ż

B
f(x) dx.

(b) Let ε ą 0 be given. By the definition of the lower integral, there exist partitions P1

and P2 of A such that
ż

A

f(x) dx ´
ε

2
ă L(f,P1) and

ż

A

g(x) dx ´
ε

2
ă L(g,P2) .

Let P be a common refinement of P1 and P2. Then
ż

A

f(x) dx +

ż

A

g(x) dx ´ ε ă L(f,P1) + L(f,P2) ď L(f,P) + L(g,P)

=
ÿ

∆PP
inf
xP∆

f(x)ν(∆) +
ÿ

∆PP
inf
xP∆

g(x)ν(∆)

ď
ÿ

∆PP
inf
xP∆

(f + g)(x)ν(∆) = L(f + g,P) ď

ż

A

(f + g)(x) dx .
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Since ε ą 0 is given arbitrarily, we conclude that
ż

A

f(x) dx+

ż

A

g(x) dx ď

ż

A

(f + g)(x) dx .

Similarly, we have
ż

A
(f + g)(x) dx ď

ż

A
f(x) dx +

ż

A
g(x) dx; thus (b) is established.

(c) It suffices to show the case c = ´1. Let ε ą 0 be given. Then there exist partitions
P1 and P2 of A such that

ż

A

´f(x) dx ´ ε ă L(´f,P1) and U(f,P2) ă

ż

A

f(x) dx+ ε .

Let P be the common refinement of P1 and P2. Then
ż

A

´f(x) dx ´ ε ă L(´f,P1) ď L(´f,P) ď

ż

A

´f(x) dx

and
ż

A

f(x) dx ď U(f,P) ď U(f,P2) ă

ż

A

f(x) dx+ ε .

By the fact that

L(´f,P) =
ÿ

∆PP
inf
xP∆

(´f)
A

(x)ν(∆) = ´
ÿ

∆PP
sup
xP∆

f
A

(x)ν(∆) = ´U(f,P) ,

we find that
ż

A

´f(x) dx ´ ε ă L(´f,P) = ´U(f,P) ď ´

ż

A

f(x) dx

and
ż

A

´f(x) dx ě L(´f,P) = ´U(f,P) ą ´

ż

A

f(x) dx ´ ε .

Therefore,
ż

A

´f(x) dx ´ ε ă ´

ż

A

f(x) dx ă

ż

A

´f(x) dx+ ε .

Since ε ą 0 is given arbitrarily, we conclude (c).

(e) Since f is bounded on A, there exist M ą 0 such that ´M ď f(x) ď M for all x P A.

Therefore, ´1A ď
f

M
ď 1A on A; thus (c) and (d) imply that

0 =

ż

A

1A(x) dx =

ż

A

1A(x) dx ě

ż

A

f(x)

M
dx =

1

M

ż

A

f(x) dx
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which implies that
ż

A
f(x) dx ď 0. Similarly,

ż

A
´f(x) dx ď 0 which further implies

that
ż

A
f(x) dx ě 0. Therefore, by Corollary 3.8 we conclude that

0 ď

ż

A

f(x) dx ď

ż

A

f(x) dx ď 0

which implies that f is Riemann integrable over A and
ż

A
f(x) dx = 0. ˝

Remark 3.15. Let A Ď Rn be bounded and f, g : A Ñ R be bounded. Then (b) of
Proposition 3.14 also implies that
ż

A

(f ´ g)(x) dx ď

ż

A

f(x) dx ´

ż

A

g(x) dx and
ż

A

f(x) dx ´

ż

A

g(x) dx ď

ż

A

(f ´ g)(x) dx .

Corollary 3.16. Let A,B Ď Rn be bounded such that A X B has volume zero, and f :

A Y B Ñ R be bounded. Then
ż

A

f(x) dx+

ż

B

f(x) dx ď

ż

AYB

f(x) dx ď

ż

AYB

f(x) dx ď

ż

A

f(x) dx+

ż

B

f(x) dx .

Proof. Note that f1A+f1B = f1AYB+f1AXB on AYB. Therefore, (a), (b) of Proposition
3.14 and Remark 3.15 implies that
ż

A

f(x) dx+

ż

B

f(x) dx =

ż

AYB

(f1A)(x) dx+
ż

AYB

(f1B)(x) dxď

ż

AYB

(f1A+f1B)(x) dx

=

ż

AYB

(
f1AYB ´ (´f1AXB)

)
(x) dx

ď

ż

AYB

f1AYB(x) dx ´

ż

AYB

(´f1AXB)(x) dx

=

ż

AYB

f(x) dx ´

ż

AXB

(´f)(x) dx

which, with the help of Proposition 3.14 (e), further implies that
ż

A

f(x) dx+

ż

B

f(x) dx ď

ż

AYB

f(x) dx .

The case of the upper integral can be proved in a similar fashion. ˝

Having established Proposition 3.14, it is easy to see the following theorem (except (c)).
The proof is left as an exercise.
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Theorem 3.17. Let A Ď Rn be bounded, c P R, and f, g : A Ñ R be Riemann integrable.
Then

(a) f ˘ g is Riemann integrable, and
ż

A
(f ˘ g)(x) dx =

ż

A
f(x) dx ˘

ż

A
g(x) dx.

(b) cf is Riemann integrable, and
ż

A
(cf)(x) dx = c

ż

A
f(x) dx.

(c) |f | is Riemann integrable, and
ˇ

ˇ

ˇ

ż

A
f(x) dx

ˇ

ˇ

ˇ
ď

ż

A
|f(x)|dx.

(d) If f ď g, then
ż

A
f(x) dx ď

ż

A
g(x) dx.

(e) If A has volume and |f | ď M , then
ˇ

ˇ

ˇ

ż

A
f(x) dx

ˇ

ˇ

ˇ
ď Mν(A).

Definition 3.18. Let A Ď Rn be a set and f : A Ñ R be a function. For B Ď A, the
restriction of f to B is the function f

ˇ

ˇ

B
: A Ñ R given by f |B = f1B. In other words,

f
ˇ

ˇ

B
(x) =

"

f(x) if x P B ,

0 if x P AzB .

The following two theorems are direct consequences of (a) of Proposition 3.14 and Corol-
lary 3.16.

Theorem 3.19. Let A,B Ď Rn be bounded, B Ď A, and f : A Ñ R be a bounded function.
Then f is Riemann integrable over B if and only if f |B is Riemann integrable over A. In
either cases,

ż

A

f
ˇ

ˇ

B
(x) dx =

ż

B

f(x) dx .

Theorem 3.20. Let A,B be bounded subsets of Rn be such that AXB has volume zero, and
f : A Y B Ñ R be bounded such that f

ˇ

ˇ

A
and f

ˇ

ˇ

B
are all Riemann integrable over A Y B.

Then f is Riemann integrable over A Y B, and
ż

AYB

f(x) dx =

ż

A

f(x) dx+

ż

B

f(x) dx .

3.3 Integrability for Almost Continuous Functions
Lemma 3.21. Let A Ď Rn be a bounded set of volume zero. If B Ď A, then B has volume
zero.
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Proof. By (a), (d) and (e) of Proposition 3.14,

0 =

ż

A

1B(x) dx =

ż

A

1B(x) dx =

ż

B

1B(x) dx

and
0 =

ż

A

1B(x) dx =

ż

A

1B(x) dx =

ż

B

1B(x) dx .

Therefore,
ż

B
1B(x) dx = 0 which implies that B has volume zero. ˝

Lemma 3.22. Let A1, ¨ ¨ ¨ , Ak Ď Rn be bounded sets of volume zero. Then
k
Ť

j=1

Aj has volume
zero.

Proof. It suffices to prove the case for k = 2. Suppose that A1 and A2 are bounded sets
of volume zero, and A = A1 Y A2. By Lemma 3.21, A1 X A2 has volume zero; thus (e) of
Proposition 3.14 and Corollary 3.16 imply that

ż

A

1A(x) dx =

ż

A1YA2

1A(x) dx ě

ż

A1

1A(x) dx+
ż

A2

1A(x) dx = 0

and
ż

A

1A(x) dx =

ż

A1YA2

1A(x) dx ď

ż

A1

1A(x) dx+
ż

A2

1A(x) dx = 0 .

Therefore,
ż

A
1A(x) dx = 0 which implies that A has volume zero. ˝

Theorem 3.23. Let A Ď Rn be a bounded set such that BA has volume zero, and f : A Ñ R
be a bounded function. If f is continuous except perhaps on a set of volume zero, then f is
Riemann integrable over A.

Proof. Let R be a closed cube such that A Ď R and BAXBR = H. We show that fA = f1A
is Riemann integrable over R and by (a) of Proposition 3.14, we then obtain that

ż

A

f(x) dx =

ż

R

(f1A)(x) dx =

ż

R

(f1A)(x) dx =

ż

R

(f1A)(x) dx =

ż

A

f(x) dx

which implies that f is Riemann integrable over A.
Let ε ą 0 be given. Suppose that the collection of discontinuities of f is D, and

B = BA Y D. Since BA and D has volume zero, Lemma 3.22 implies that B has volume
zero; thus (a) of Proposition 3.14 then implies (with B Ď R in mind) that

ż

R

1B(x) dx =

ż

B

1B(x) dx = 0 and
ż

R

1B(x) dx =

ż

B

1B(x) dx = 0 .



§3.4 The Fubini theorem 83

Therefore,
ż

R
1B(x) dx = 0, so there exists a partition P1 of R such that

ÿ

∆PP1,∆XB‰H

ν(∆) = U(1B,P1) ă
ε

2
[

sup fA(R) ´ inf fA(R) + 1
] .

Let U ” int
(

ď

∆PP1,∆XB‰H

∆
)
. Then B Ď U . Since the discontinuity of fA is a subset of

B, fA : R X U A Ñ R is continuous. Since R X U A is closed and bounded, fA is uniformly
continuous; thus there exists δ ą 0 such that

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ ă
ε

2ν(R)
if x1, x2 P R X U A and }x1 ´ x2} ă δ .

Let P be a refinement of P1 such that }P} ă δ, and define two classes C1, C2 of
rectangles in P by C1 =

␣

∆1 P P
ˇ

ˇ∆1 Ę ∆ for all ∆ P P1 satisfying ∆ X B ‰ H
(

and C2 =
␣

∆1 P P
ˇ

ˇ∆1 R C1

(

. Then if ∆1 P C1, then ∆1 Ď RzU A; thus

U(f
A

,P) ´ L(f
A

,P) =
ÿ

∆1PP

[
sup
xP∆1

(f
A1R)(x) ´ inf

xP∆1
(f

A1R)(x)
]
ν(∆1)

=
(

ÿ

∆1PC1

+
ÿ

∆1PC2

)[
sup
xP∆1

f
A

(x) ´ inf
xP∆1

f
A

(x)
]
ν(∆1)

ď
ε

2ν(R)

ÿ

∆1PC1

ν(∆1) +
[

sup fA(R) ´ inf fA(R)
]

ÿ

∆1PC2

ν(∆1)

=
ε

2ν(R)
ν(R) +

[
sup fA(R) ´ inf fA(R)

]
ÿ

∆PP1 ,∆XB‰H

ν(∆)

ă
ε

2
+

[
sup fA(R) ´ inf fA(R)

]
ε

2
[

sup fA(R) ´ inf fA(R) + 1
] ă ε ,

and we conclude that f is Riemann integrable over A by Riemann’s condition. ˝

3.4 The Fubini theorem
If f : [a, b] Ñ R is continuous, the fundamental theorem of Calculus can be applied to
computed the integral of f over [a, b]. In the following two sections, we focus on how the
integral of f over A Ď Rn, where n ě 2, can be computed if the integral exists.

Definition 3.24. Let A Ď Rn and B Ď Rm be bounded sets, S = AˆB be a product set in
Rn+m, and f : S Ñ R be bounded. For each fixed x P A, the lower integral of the function
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f(x, ¨) : B Ñ R is denoted by
ż

B
f(x, y) dy, and the upper integral of f(x, ¨) : B Ñ R is

denoted by
ż

B
f(x, y) dy. If for each x P A the upper integral and the lower integral of

f(x, ¨) : B Ñ R are the same, we simply write
ż

B
f(x, y) dy for the integrals of f(x, ¨) over

B. The integrals
ż

A
f(x, y) dx,

ż

A
f(x, y) dx and

ż

A
f(x, y) dx are defined in a similar way.

Theorem 3.25 (Fubini’s Theorem). Let A Ď Rn and B Ď Rm be bounded sets, and f :

A ˆ B Ñ R be bounded. For x P Rn and y P Rm, write z = (x, y). Then
ż

AˆB

f(z) dz ď

ż

A

( ż
B

f(x, y)dy
)
dx ď

ż

A

( ż
B

f(x, y)dy
)
dx ď

ż

AˆB

f(z) dz (3.3)

and
ż

AˆB

f(z) dz ď

ż

B

( ż
A

f(x, y)dx
)
dy ď

ż

B

( ż
A

f(x, y)dx
)
dy ď

ż

AˆB

f(z) dz . (3.4)

In particular, if f : A ˆ B Ñ R is Riemann integrable, then
ż

AˆB

f(z) dz =

ż

A

( ż
B

f(x, y)dy
)
dx =

ż

A

( ż
B

f(x, y)dy
)
dx

=

ż

B

( ż
A

f(x, y)dx
)
dy =

ż

B

( ż
A

f(x, y)dx
)
dy .

Proof. It suffices to prove (3.3). Let ε ą 0 be given. Choose a partition P of A ˆ B such
that L(f,P) ą

ż

AˆB
f(z) dz ´ ε. Since P is a partition of A ˆ B, there exist partition Px

of A and partition Py of B such that P =
␣

∆ = R ˆ S
ˇ

ˇR P Px, S P Py
(

. By Proposition
3.14 and Corollary 3.16, we find that

ż

A

( ż
B

f(x, y) dy
)
dx =

ż

Ť

RPPxR

1A(x)
( ż

Ť

SPPyS

f(x, y)1B(y) dy
)
dx

ě
ÿ

R PPx

ż

R

(
ÿ

S PPy

ż

S

f
AˆB

(x, y) dy
)
dx

ě
ÿ

R PPx

ÿ

S PPy

ż

R

( ż
S

f
AˆB

(x, y) dy
)
dx

ě
ÿ

R PPx,S PPy

inf
(x,y)PRˆS

f
AˆB

(x, y)νm(S)νn(R)

=
ÿ

∆PP
inf

(x,y)P∆
f
AˆB

(x, y)νn+m(∆) = L(f,P) ą

ż

AˆB

f(z)dz ´ ε .
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Since ε ą 0 is given arbitrarily, we conclude that
ż

AˆB

f(z) dz ď

ż

B

( ż
A

f(x, y)dx
)
dy .

Similarly,
ż

A

( ż

B
f(x, y)dy

)
dx ď

ż

AˆB
f(z) dz; thus (3.3) is concluded. ˝

Corollary 3.26. Let S Ď Rn be a closed and bounded set such that BS has volume zero,
φ1, φ2 : S Ñ R be continuous maps such that φ1(x) ď φ2(x) for all x P S, A =

␣

(x, y) P

Rn ˆ R
ˇ

ˇx P S, φ1(x) ď y ď φ2(x)
(

, and f : A Ñ R be continuous. Then f is Riemann
integrable over A, and

ż

A

f(x, y) d(x, y) =

ż

S

( ż φ2(x)

φ1(x)

f(x, y) dy
)
dx . (3.5)

Proof. To establish that f is Riemann integrable over A, by Theorem 3.23 it suffices to show
that BA has volume zero. Let m = min

xPS
φ1(x) and M = max

xPS
φ2(x). Since

BA Ď
␣

(x, φ1(x))
ˇ

ˇx P S
(

Y
␣

(x, φ2(x))
ˇ

ˇx P S
(

Y
(
BS ˆ [m,M ]) ,

to see BA has volume zero it suffices to show that BS ˆ [m,M ],
␣

(x, φ1(x))
ˇ

ˇx P S
(

and
␣

(x, φ2(x))
ˇ

ˇx P S
(

have volume zero because of Lemma 3.21 and 3.22. Note that Theorem
3.23 implies that φ1 is Riemann integrable over S; thus for a given ε ą 0 there exists
partition P of S such that

U(φ1,P) ´ L(φ1,P) ă ε .

Let B =
Ť

∆PP,∆XS‰H

∆ ˆ
[

infxP∆ φ1
S(x), supxP∆ φ1

S(x)
]
. Then C ”

␣

(x, φ1(x))
ˇ

ˇx P S
(

Ď B

and

0 ď

ż

C

1C(z) dz ď

ż

B

1B(z) dz ď
ÿ

∆PP,∆XS‰H

(
sup
xP∆

φ1
S(x) ´ inf

xP∆
φ1

S(x)
)

ˆ νn(∆)

ď U(φ1,P) ´ L(φ1,P) ă ε .

Therefore, C =
␣

(x, φ1(x))
ˇ

ˇx P S
(

has volume zero and similarly,
␣

(x, φ2(x))
ˇ

ˇx P S
(

has
volume zero.

Now we show that BS ˆ [m,M ] has volume zero. Since BS has volume zero in Rn, for a
given ε ą 0 there exists a partition P of BS such that

U(1S,P) ă
ε

M ´ m+ 1
.
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Then BS ˆ [m,M ] Ď
Ť

∆PP,∆XBS‰H

∆ ˆ [m,M ], and as above

ż

BSˆ[m,M ]

1BSˆ[m,M ](z) dz ď
ÿ

∆PP,∆XBS‰H

νn(∆) ˆ (M ´ m) ď (M ´ m)U(1S,P) ă ε .

Therefore, BS ˆ [m,M ] has volume zero; thus we establish that f is Riemann integrable
over A.

Next we prove (3.5). Note that A Ď S ˆ [m,M ]; thus Theorem 3.20 and the Fubini
Theorem imply that

ż

A

f(x, y) d(x, y) =

ż

Sˆ[m,M ]

f
A

(x, y) d(x, y) =

ż

S

( ż M

m

f
A

(x, y) dy
)
dx

=

ż

S

( ż M

m

f
A

(x, y) dy
)
dx .

Noting that [m,M ] has a boundary of volume zero in R, and for each x P S, fA(x, ¨) is
continuous except perhaps at y = φ1(x) and y = φ2(x), Theorem 3.23 implies that fA(x, ¨)

is Riemann integrable over [m,M ] for each x P S; thus
ż M

m
f
A

(x, y) dy =
ż M

m
f
A

(x, y) dy

which further implies that
ż

A

f(x, y) d(x, y) =

ż

S

( ż M

m

f
A

(x, y) dy
)
dx . (3.6)

For each fixed x P S, let Ax =
␣

y P R
ˇ

ˇφ1(x) ď y ď φ2(x)
(

. Then f
A

(x, y) = f(x, y)1Ax(y)
for all (x, y) P Sˆ [m,M ] or equivalently, fA(x, ¨) = f(x, ¨)|Ax for all x P S; thus Proposition
3.14 (a) implies that

ż M

m

f
A

(x, y) dy =

ż

Ax

f(x, y) dy =

ż φ2(x)

φ1(x)

f(x, y) dy @x P S . (3.7)

Combining (3.6) and (3.7), we conclude (3.5). ˝

Example 3.27. Let A =
␣

(x, y) P R2
ˇ

ˇ 0 ď x ď 1, x ď y ď 1
(

, and f : A Ñ R be given by
f(x, y) = xy. Then Corollary 3.26 implies that

ż

A

f(x, y) dA =

ż 1

0

( ż 1

x

xy dy
)
dx =

ż 1

0

xy2

2

ˇ

ˇ

ˇ

y=1

y=x
dx =

ż 1

0

(x
2

´
x3

2

)
dx =

1

4
´

1

8
=

1

8
.

On the other hand, since A =
␣

(x, y) P R2
ˇ

ˇ 0 ď y ď 1, 0 ď x ď y
(

, we can also evaluate the
integral of f over A by

ż

A

xy dA =

ż 1

0

( ż y

0

xy dx
)
dy =

ż 1

0

x2y

2

ˇ

ˇ

ˇ

x=y

x=0
dy =

ż 1

0

y3

2
dy =

1

8
.
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Example 3.28. Let A =
␣

(x, y) P R2
ˇ

ˇ 0 ď x ď 1,
?
x ď y ď 1

(

, and f : A Ñ R be given by
f(x, y) = ey

3 . Then Corollary 3.26 implies that
ż

A

f(x, y) dA =

ż 1

0

( ż 1

?
x

ey
3

dy
)
dx .

Since we do not know how to compute the inner integral, we look for another way of finding
the integral. Observing that A =

␣

(x, y) P R2
ˇ

ˇ 0 ď y ď 1, 0 ď x ď y2
(

, we have
ż

A

f(x, y) dA =

ż 1

0

( ż y2

0

ey
3

dx
)
dy =

ż 1

0

y2ey
3

dy =
1

3
ey

3
ˇ

ˇ

ˇ

y=1

y=0
=
e ´ 1

3
.

Example 3.29. Let A Ď R3 be the set
␣

(x1, x2, x3) P R3
ˇ

ˇx1 ě 0, x2 ě 0, x3 ě 0, and x1 +

x2 + x3 ď 1
(

, and f : A Ñ R be given by f(x1, x2, x3) = (x1 + x2 + x3)
2. Let S =

[0, 1] ˆ [0, 1] ˆ [0, 1], and f : R3 Ñ R be the extension of f by zero outside A. Then
Theorem 3.23 implies that f is Riemann integrable. Write px1 = (x2, x3), px2 = (x1, x3) and
px3 = (x1, x2). Theorem 3.20 implies that

ż

A

f(x)dx =

ż

S

f(x)dx ,

and Theorem 3.25 implies that
ż

S

f(x)dx =

ż

[0,1]

( ż
[0,1]ˆ[0,1]

f(px3, x3)dpx3

)
dx3 .

Let Ax3 =
␣

(x1, x2) P R2
ˇ

ˇx1 ě 0, x2 ě 0, x1 + x2 ď 1 ´ x3
(

. Then for each x3 P [0, 1],
ż

[0,1]ˆ[0,1]

f(px3, x3)dpx3 =

ż

Ax3

f(px3, x3)dpx3 =

ż 1´x3

0

( ż 1´x3´x2

0

f(x1, x2, x3)dx1

)
dx2 .

Computing the iterated integral, we find that
ż

A

f(x)dx =

ż 1

0

[ ż 1´x3

0

( ż 1´x3´x2

0

(x1 + x2 + x3)
2dx1

)
dx2

]
dx3

=

ż 1

0

[ ż 1´x3

0

(x1 + x2 + x3)
3

3

ˇ

ˇ

ˇ

x1=1´x3´x2

x1=0
dx2

]
dx3

=

ż 1

0

[ ż 1´x3

0

(1
3

´
(x2 + x3)

3

3

)
dx2

]
dx3

=

ż 1

0

(1
4

´
x3
3

+
x43
12

)
dx3 =

1

4
´

1

6
+

1

60
=

15 ´ 10 + 1

60
=

1

10
.
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Example 3.30. In this example we compute the volume ωn of the n-dimensional unit ball.
By the Fubini theorem,

ωn =

ż 1

´1

ż

?
1´x21

´
?

1´x21

¨ ¨ ¨

ż

?
1´x21´¨¨¨´x2n´1

´
?

1´x21´¨¨¨´x2n´1

dxn ¨ ¨ ¨ dx1 .

Note that the integral
ż

?
1´x21

´
?

1´x21

¨ ¨ ¨

ż

?
1´x21´¨¨¨´x2n´1

´
?

1´x21´¨¨¨´x2n´1

dxn ¨ ¨ ¨ dx2 is in fact ωn´1(1 ´ x21)
n´1
2 , the

volume of (n ´ 1)-dimensional ball of radius
a

1 ´ x21; thus

ωn =

ż 1

´1

ωn´1(1 ´ x2)
n´1
2 dx = 2ωn´1

ż π
2

0

cosn θ dθ . (3.8)

Integrating by parts,
ż π

2

0

cosn θ dθ =

ż π
2

0

cosn´1 θ d(sin θ) = cosn´1 θ sin θ
ˇ

ˇ

ˇ

θ=π
2

θ=0
+ (n ´ 1)

ż π
2

0

cosn´2 θ sin2 θ dθ

= (n ´ 1)

ż π
2

0

cosn´2 θ(1 ´ cos2 θ) dθ

which implies that
ż π

2

0

cosn θ dθ =
n ´ 1

n

ż π
2

0

cosn´2 θ dθ .

As a consequence,

ż π
2

0

cosn θ dθ =

$

’

’

&

’

’

%

(n ´ 1)(n ´ 3) ¨ ¨ ¨ 2

n(n ´ 2) ¨ ¨ ¨ 3

ż π
2

0
cos θ dθ if n is odd ,

(n ´ 1)(n ´ 3) ¨ ¨ ¨ 1

n(n ´ 2) ¨ ¨ ¨ 2

ż π
2

0
dθ if n is even ,

and the recursive formula (3.8) implies that ωn =
2ωn´2

n
π . Further computations shows

that

ωn =

$

’

’

’

&

’

’

’

%

(2π)
n´1
2

n(n ´ 2) ¨ ¨ ¨ 3
ω1 if n is odd ,

(2π)
n´2
2

n(n ´ 2) ¨ ¨ ¨ 4
ω2 if n is even .

Let Γ be the Gamma function defined by Γ(t) =
ż 8

0
xt´1e´x dx for t ą 0. Then Γ(x+ 1) =

xΓ(x) for all x ą 0, Γ(1) = 1 and Γ
(1
2

)
=

?
π. By the fact that ω1 = 2 and ω2 = π, we can

express ωn as

ωn =
π

n
2

Γ
(n+2

2

) .
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3.5 The Change of Variables Formula

Fubini theorem can be used to find the integral of a (Riemann integrable) function over a
rectangular domain if the iterated integrals can be evaluated. However, like the integral of
a function of one variable, in many cases we need to make use of several change of variables
in order to transform the integral to another integral that is easier to be evaluated. In this
section, we establish the change of variables formula for the integral of functions of several
variables.

Theorem 3.31 (Change of Variables Formula). Let U Ď Rn be an open set with volume,
and ψ : U Ñ Rn be an one-to-one C 1-mapping with C 1-inverse; that is, ψ´1 : ψ(U) Ñ U
is also continuously differentiable. Assume that the Jacobian of ψ, J = det([Dψ]), does not
vanish in U . If f : ψ(U) Ñ R is Riemann integrable, then (f ˝ ψ)J is Riemann integrable
over U , and

ż

ψ(U)

f(y) dy =

ż

U
(f ˝ ψ)(x)

ˇ

ˇJ(x)
ˇ

ˇ dx =

ż

U
(f ˝ ψ)(x)

ˇ

ˇ

ˇ

B (ψ1, ¨ ¨ ¨ , ψn)

B (x1, ¨ ¨ ¨ , xn)

ˇ

ˇ

ˇ
dx .

The proof of Theorem 3.31 is very lengthy and requires a bit more knowledge about the
integration, so we only present the proof of a much simpler case.

Theorem 3.32. Let D Ď Rn be an open rectangle, and ψ : Rn Ñ Rn be an one-to-one C 2

mapping such that ψ = Id outside B(0, r) for some r ą 0; that is, ψ(x) = x if |x| ě r.
Assume that the Jacobian of ψ, J = det(∇ψ), does not vanish in Rn. If f : D Ñ R is of
class C 1 and is compactly supported in D; that is, cl

(␣
x P D

ˇ

ˇ f(x) ‰ 0
()

Ď D , then

ż

D
f(y) dy =

ż

ψ´1(D)

(f ˝ ψ)(x)J(x) dx .

Proof. W.L.O.G. we can assume that D = [´R,R]n is a cube and B(0, r)ĂĂD (or equiva-
lently, 0 ă r ă R). Then ψ´1(D) = D since ψ = Id outside B(0, R). Define

g(y1, ¨ ¨ ¨ , yn) =

ż y1

´R

f(z, y2, ¨ ¨ ¨ , yn) dz ,
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and M =


[D(g ˝ ψ)]
[Dψ2]
[Dψ3]

...
[Dψn]

. By the property of determinants and the chain rule, we find that

det(M) = det
(


n
ř

j=1

( Bg

Byj
˝ ψ

)Bψj
Bx1

n
ř

j=1

( Bg

Byj
˝ ψ

)Bψj
Bx2

¨ ¨ ¨
n
ř

j=1

( Bg

Byj
˝ ψ

)Bψj
Bxn

Bψ2

Bx1

Bψ2

Bx2
¨ ¨ ¨

Bψ2

Bxn
... ... . . . ...

Bψn
Bx1

Bψn
Bx2

¨ ¨ ¨
Bψn
Bxn


)

= det
(


( Bg

By1
˝ ψ

)Bψ1

Bx1

( Bg

By1
˝ ψ

)Bψ1

Bx2
¨ ¨ ¨

( Bg

By1
˝ ψ

)Bψ1

Bxn
Bψ2

Bx1

Bψ2

Bx2
¨ ¨ ¨

Bψ2

Bxn
... ... . . . ...

Bψn
Bx1

Bψn
Bx2

¨ ¨ ¨
Bψn
Bxn


)

=
( Bg

By1
˝ ψ

)
det

(


Bψ1

Bx1

Bψ1

Bx2
¨ ¨ ¨

Bψ1

Bxn
... ... . . . ...

Bψn
Bx1

Bψn
Bx2

¨ ¨ ¨
Bψn
Bxn


)
= (f ˝ ψ)J .

On the other hand, letting A = (Dψ)´1, then

Adj(M)j1 = (´1)1+j det
(
M(p1,pj)

)
= Adj([Dψ])j1 = JAj

1 .

Computing the determinant by expanding along the first row, we obtain that

det(M) =
n
ÿ

j=1

M1jAdj(M)j1 =
n
ÿ

j=1

B (g ˝ ψ)

Bxj
JAj

1 ;

thus we conclude the identity

(f ˝ ψ)J =
n
ÿ

j=1

B (g ˝ ψ)

Bxj
JAj

1 .
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Therefore, with xdxj denoting dx1 ¨ ¨ ¨ dxj´1dxj+1 ¨ ¨ ¨ dxn, the Fubini theorem and the Piola
identity imply that

ż

D

[
(f ˝ ψ)J

]
(x) dx =

n
ÿ

j=1

ż R

´R

ż R

´R

¨ ¨ ¨

ż R

´R

B (g ˝ ψ)

Bxj
JAj

1 dxj
xdxj

=
n
ÿ

j=1

ż R

´R

ż R

´R

¨ ¨ ¨

ż R

´R

[
(g ˝ ψ)JAj

1

]ˇ
ˇ

ˇ

xj=R

xj=´R

xdxj .

Since ψ = Id outside B(0, r), we find that J = 1 and Aj
1 = δ1j on BD; thus by the definition

of g,
ż

D

[
(f ˝ ψ)J

]
(x) dx =

ż R

´R

ż R

´R

¨ ¨ ¨

ż R

´R

g(R, x2, ¨ ¨ ¨ , xn)ydx1 =

ż

D
f(x) dx . ˝

Example 3.33. Suppose that f : [0, 1] Ñ R is Riemann integrable and
ż 1

0
(1´x)f(x) dx =

5. We would like to evaluate the iterated integral
ż 1

0

ż x

0
f(x ´ y) dydx.

It is nature to consider the change of variables (u, v) = (x ´ y, x) or (u, v) = (x ´ y, y).
Suppose the later case. Then (x, y) = g(u, v) = (u+ v, v); thus

Jg(u, v) =
ˇ

ˇ

ˇ

ˇ

1 1
0 1

ˇ

ˇ

ˇ

ˇ

= 1 .

Moreover, the region of integration is the triangle A with vertices (0, 0), (1, 0), (1, 1), and
three sides y = 0, x = 1, x = y correspond to u = 0, u + v = 1 and v = 0. Therefore, if
E denotes the triangle enclosed by u = 0, v = 0 and u + v = 1 on the (u, v)-plane, then
g(E) = A, and

ż 1

0

ż x

0

f(x ´ y) dydx =

ż

A

f(x ´ y) d(x, y) =

ż

g(E)

f(x ´ y) d(x, y)

=

ż

E

f
(
g1(u, v) ´ g2(u, v)

)
|Jg(u, v)| d(u, v) =

ż 1

0

ż 1´u

0

f(u) dvdu

=

ż 1

0

(1 ´ u)f(u) du = 5 .

Example 3.34. Let A be the triangular region with vertices (0, 0), (4, 0), (4, 2), and f :

A Ñ R be given by
f(x, y) = y

a

x ´ 2y .
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Let (u, v) = (x, x ´ 2y). Then (x, y) = g(u, v) =
(
u,
u´ v

2

)
; thus

Jg(u, v) =
ˇ

ˇ

ˇ

ˇ

ˇ

1 0
1

2
´
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

= ´
1

2
.

Define E as the triangle with vertices (0, 0), (4, 0), (4, 4). Then A = g(E).

E

u

v

g

A
x

y

Figure 3.2: The image of E under g

Therefore,
ż

A

f(x, y) d(x, y) =

ż

g(E)

f(x, y) d(x, y) =
1

2

ż

E

f
(
g(u, v)

)
d(u, v)

=
1

4

ż 4

0

ż u

0

(u ´ v)
?
v dvdu =

1

4

ż 4

0

[2
3
uv

3
2 ´

2

5
v

5
2

]ˇ
ˇ

ˇ

v=u

v=0
du

=
1

4

ż 4

0

(2
3

´
2

5

)
u

5
2 du =

1

15
ˆ

2

7
u

7
2

ˇ

ˇ

ˇ

u=4

u=0
=

256

105
.

Example 3.35. Let A be the region in the first quadrant of the plane bounded by the
curves xy ´ x+ y = 0 and x ´ y = 1, and f : A Ñ R be given by

f(x, y) = x2y2(x+ y)e´(x´y)2 .

We would like to evaluate the integral
ż

A
f(x, y) d(x, y).

Let (u, v) = (xy ´ x + y, x ´ y). Unlike the previous two examples we do not want
to solve for (x, y) in terms of (u, v) but still assume that (x, y) = g(u, v). By the inverse
function theorem,

Jg(u, v)
ˇ

ˇ

ˇ

(u,v)=g´1(x,y)
=
ˇ

ˇ

ˇ

B (u, v)

B (x, y)

ˇ

ˇ

ˇ

´1

=

ˇ

ˇ

ˇ

ˇ

y ´ 1 x+ 1
1 ´1

ˇ

ˇ

ˇ

ˇ

´1

=
1

´y + 1 ´ x ´ 1
= ´

1

x+ y
.
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Moreover, the curve xy ´ x + y = 0 corresponds to u = 0, while the lines x ´ y = 1 and
y = 0 correspond to v = 1 and u + v = 0, respectively; thus if E is the region enclosed by
u = 0, v = 1 and u+ v = 0, then A = g(E).

E

u

v

g

A
x

y

Figure 3.3: The image of E under g

Therefore,
ż

A

f(x, y)d(x, y) =

ż

g(E)

f(x, y) d(x, y) =

ż

E

(f ˝ g)(u, v)|Jg(u, v)| d(u, v)

=

ż 1

0

ż 0

´v

(u+ v)2e´v2 dudv =
1

3

ż 1

0

v3e´v2 dv

=
1

6

ż 1

0

we´w dw = ´
1

6
(w + 1)e´w

ˇ

ˇ

ˇ

w=1

w=0
= ´

1

6

(2
e

´ 1
)
.

Example 3.36 (Polar coordinates). In R2, when the domain over which the integral is taken
is a disk D, a particular type of change of variables is sometimes very useful for the purpose
of evaluating the integral. Let (x, y) = (x0 + r cos θ, y0 + r sin θ) ” ψ(r, θ), where (x0, y0) is
the center of D under consideration. If the radius of D is R, then D, up to removing a line
segment with length R, is the image of (0, R) ˆ (0, 2π) under ψ. Note that the Jacobian of
ψ is

Jψ(r, θ) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bψ1

Br

Bψ1

Bθ
Bψ2

Br

Bψ2

Bθ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ ´r sin θ
sin θ r cos θ

ˇ

ˇ

ˇ

ˇ

ˇ

= r .

Therefore, if f : D Ñ R is Riemann integrable, then
ż

D
f(x, y) d(x, y) =

ż

ψ((0,R)ˆ(0,2π))

f(x, y) d(x, y) =

ż

(0,R)ˆ(0,2π)

(f ˝ ψ)(r, θ)
ˇ

ˇJψ(r, θ)
ˇ

ˇ d(r, θ)

=

ż

(0,R)ˆ(0,2π)

f(x0 + r cos θ, y0 + r sin θ) r d(r, θ) .
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Example 3.37 (Cylindrical coordinates). In R3, when the domain over which the integral
is taken is a cylinder C; that is, C = D ˆ [a, b] for some disk D and ´8 ă a ă b ă R, then
the change of variables

ψ(r, θ, z) = (x0 + r cos θ, y0 + r sin θ, z) 0 ă r ă R , 0 ă θ ă 2π , a ď z ď b ,

where (x0, y0) is the center of D and R is the radisu of D, is sometimes very useful for
evaluating the integral. Since the Jacobian of ψ is

Jψ(r, θ, z) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bψ1

Br

Bψ1

Bθ

Bψ1

Bz
Bψ2

Br

Bψ2

Bθ

Bψ2

Bz
Bψ3

Br

Bψ3

Bθ

Bψ3

Bz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ ´r sin θ 0

sin θ r cos θ 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= r ,

we must have
ż

C
f(x, y, z) d(x, y, z) =

ż

ψ((0,R)ˆ(0,2π)ˆ[a,b])

f(x, y, z) d(x, y, z)

=

ż

(0,R)ˆ(0,2π)ˆ[a,b]

(f ˝ ψ)(r, θ, z)
ˇ

ˇJψ(r, θ, z)
ˇ

ˇ d(r, θ, z)

=

ż

(0,R)ˆ(0,2π)ˆ[a,b]

f(x0 + r cos θ, y0 + r sin θ, z) r d(r, θ, z) .

Example 3.38 (Spherical coordinates). In R3, when the domain over which the integral is
taken is a ball B, the change of variables

ψ(ρ, θ, ϕ) = (x0+ρ cos θ sinϕ, y0+ρ sin θ sinϕ, z0+ρ cosϕ) 0 ă ρăR, 0 ă θ ă 2π, 0 ă ϕă π,

where (x0, y0, z0) is the center of B and R is the radius of B, is often used to evaluate the
integral a function over B. Since the Jacobian of ψ is

Jψ(ρ, θ, ϕ) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bψ1

Bρ

Bψ1

Bθ

Bψ1

Bϕ

Bψ2

Bρ

Bψ2

Bθ

Bψ2

Bϕ

Bψ3

Bρ

Bψ3

Bθ

Bψ3

Bϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ sinϕ ´ρ sin θ sinϕ ρ cos θ cosϕ
sin θ sinϕ ρ cos θ sinϕ ρ sin θ cosϕ

cosϕ 0 ´ρ sinϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´ρ2 cos2 θ sin3 ϕ ´ ρ2 sin2 θ sinϕ cos2 ϕ ´ ρ2 cos2 θ sinϕ cos2 ϕ ´ ρ2 sin2 θ sin3 ϕ

= ´ρ2 sin3 ϕ ´ ρ2 sinϕ cos2 ϕ = ´ρ2 sinϕ ,
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if the radius of B is R, we must have
ż

B
f(x, y, z) d(x, y, z) =

ż

ψ((0,R)ˆ(0,2π)ˆ(0,π))

f(x, y, z) d(x, y, z)

=

ż

(0,R)ˆ(0,2π)ˆ(0,π)

(f ˝ ψ)(ρ, θ, ϕ)
ˇ

ˇJψ(ρ, θ, ϕ)
ˇ

ˇ d(ρ, θ, ϕ)

=

ż

(0,R)ˆ(0,2π)ˆ(0,π)

f(x0 + ρ cos θ sinϕ, y0 + ρ sin θ sinϕ, z0 + ρ cosϕ) ρ2 sinϕ d(r, θ, z) .



Chapter 4

Vector Calculus

4.1 The Line Integrals
4.1.1 Curves

Definition 4.1. A subset C Ď Rn is called a curve if C is the image of an interval I Ď R
under the continuous map γ : I Ñ Rn (that is, C = γ(I)). The continuous map γ : I Ñ Rn

is called a parametrization of the curve. A curve C is called simple if it has an injective
parametrization; that is, there exists γ : I Ñ Rn such that γ(I) = C and γ(x) = γ(y)

implies that x = y. A curve C with parametrization γ : I Ñ Rn is called closed if I = [a, b]

for some closed interval [a, b] Ď R and γ(a) = γ(b). A simple closed curve C is a closed
curve with parametrization γ : [a, b] Ñ Rn such that γ is one-to-one on (a, b).

Example 4.2. A line segment joining two points P0, P1 P Rn is a curve. It can be parame-
terized by γ : [0, 1] Ñ Rn defined by γ(t) = tP1 + (1 ´ t)P0.

Example 4.3. A circle on the plane is a simple closed curve. In fact, a circle centered at
the (x0, y0) with radius r has the following parametrization: γ : [0, 2π] Ñ R2 defined by
γ(θ) = (x0 + r cos θ, y0 + r sin θ).

Example 4.4. Figure eight is the zero level set of F (x, y) = x4 ´a2(x2 ´y2) for some a ‰ 0.

It can also be parameterized by γ : [0, 4π] Ñ R2 defined by γ(θ) =
(
a cos θ

2
,
a

2
sin θ

)
.

Definition 4.5 (Length of Curves). The length of curve C Ď Rn parameterized by γ :

[a, b] Ñ Rn is defined as the number

ℓ(C) ” sup
!

k
ÿ

i=1

›

›γ(ti) ´ γ(ti´1)
›

›

Rn

ˇ

ˇ

ˇ
k P N and a = t0 ă t1 ă ¨ ¨ ¨ ă tk = b

)

.

96
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Definition 4.6 (Rectifiable curves). A curve C Ď Rn with parametrization γ : I Ñ Rn is
called rectifiable if there is an homeomorphism φ : rI Ñ I, where rI is again an interval,
such that the map γ ˝ φ : rI Ñ Rn is Lipschitz.

Remark 4.7. 1. By an homeomorphism it means a continuous bijection whose inverse is
also continuous.

2. We can think of a curve as an equivalence class of continuous maps γ : I Ñ Rn, where
two parametrization γ : I Ñ Rn and rγ : rI Ñ Rn are equivalent if and only if there is
an homeomorphism φ : rI Ñ I such that rγ = γ ˝ φ. Each element of the equivalence
class is a parametrization of the curve and thus a rectifiable curve is a curve which
has a Lipschitz continuous parametrization.

3. The length of a rectifiable curve parameterized by γ : [a, b] Ñ Rn is finite since by
choosing a Lipschitz parametrization rγ : [c, d] Ñ Rn, the number

!

k
ÿ

i=1

›

›

rγ(ti) ´ rγ(ti´1)
›

›

Rn

ˇ

ˇ

ˇ
k P N and c = t0 ă t1 ă ¨ ¨ ¨ ă tk = d

)

is bounded from above by M(d ´ c), where M is the Lipschitz constant of rγ.

Example 4.8 (Non-rectifiable curves). Let C Ď R2 be a curve parameterized by

γ(t) =

# (
t, t sin π

t

)
if t P (0, 1] ,

(0, 0) if t = 0 .

Since

ℓ
(
γ([

1

n+ 1
,
1

n
])
)

ě
›

›γ(
1

n+ 1
) ´ γ(

1

n+ 1/2
)
›

›

R2 +
›

›γ(
1

n+ 1/2
) ´ γ(

1

n
)
›

›

R2 ě
2

n+ 1/2

and
8
ř

n=1

2

n+ 1/2
= 8, by the remark above we conclude that γ([0, 1]) is not a rectifiable

curve.

Definition 4.9. A curve C Ď Rn is said to be of class C k or a C k-curve if there exists
a parametrization γ : I Ñ Rn such that γ is k-times continuously differentiable. Such a
parametrization is called a C k-parametrization of the curve. If there exists a parametrization
γ : I Ñ R which is of class C k for all k P N, then the curve is said to be smooth. A curve
C Ď Rn is said to be regular if there exists a C 1-parametrization γ : I Ñ Rn such that
γ 1(t) ‰ 0 for all t P I.
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Theorem 4.10. Let C Ď Rn be a curve with C 1-parametrization γ : [a, b] Ñ Rn. Then

ℓ(C) =

ż b

a

}γ 1(t)}Rn dt .

Proof. Let ε ą 0 be given. Since γ : [a, b] Ñ Rn is C 1, there exists δ ą 0 such that

}γ 1(t) ´ γ 1(s)
›

›

Rn ă
ε

4
?

n(b ´ a)
whenever s, t P [a, b], |s ´ t| ă δ .

By the definition of the length of curves, there exists a partition P = ta = t0 ă t1 ă ¨ ¨ ¨ ă

tk = bu of [a, b] such that

ℓ(C) ´
ε

4
ă

k
ÿ

i=1

›

›γ(ti) ´ γ(ti´1)
›

›

Rn ď ℓ(C) .

W.L.O.G., we can assume that }P} ă δ. For each component γj of γ, the mean value
theorem implies that for some ξi P [ti´1, ti],

γj(ti) ´ γj(ti´1) = γ 1
j(ξi)(ti ´ ti´1) ;

thus for each i P t1, ¨ ¨ ¨ , ku and si P [ti´1, ti],
ˇ

ˇγj(ti) ´ γj(ti´1) ´ γ 1
j(si)(ti ´ ti´1)

ˇ

ˇ ď
ˇ

ˇγ 1
j(ξi) ´ γ 1

j(si)
ˇ

ˇ|ti ´ ti´1| ă
ε

4
?

n(b ´ a)
|ti ´ ti´1| .

As a consequence, for each i P t1, ¨ ¨ ¨ , ku and si P [ti´1, ti],
ˇ

ˇ

ˇ

›

›γ(ti) ´ γ(ti´1)
›

›

Rn ´
›

›γ 1(si)
›

›

Rn |ti ´ ti´1|

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ

›

›γ(ti) ´ γ(ti´1)
›

›

Rn ´
›

›γ 1(si)(ti ´ ti´1)
›

›

Rn

ˇ

ˇ

ˇ

ď
›

›γ(ti) ´ γ(ti´1) ´ γ 1(si)(ti ´ ti´1)
›

›

Rn ď

[ n
ÿ

j=1

( ε

4
?

n(b ´ a)
|ti ´ ti´1|

)2] 1
2

ă
ε

4(b ´ a)
|ti ´ ti´1|

which further implies that
ˇ

ˇ

ˇ

k
ÿ

i=1

›

›γ(ti) ´ γ(ti´1)
›

›

Rn ´

k
ÿ

i=1

›

›γ 1(si)
›

›

Rn |ti ´ ti´1|

ˇ

ˇ

ˇ
ă
ε

4
.

Therefore, for a = t0 ď s0 ď t1 ď s1 ¨ ¨ ¨ ď sk ď tk = b,

ℓ(C) ´
ε

2
ă

k
ÿ

i=1

›

›γ 1(si)
›

›

Rn |ti ´ ti´1| ă ℓ(C) +
ε

2
.

Since }γ 1} is Riemann integrable over [a, b], we must have

ℓ(C) ´ ε ă L(}γ 1}Rn ,P) ď

ż b

a

›

›γ 1(t)
›

›

Rndt ď U(}γ 1}Rn ,P) ă ℓ(C) + ε ,

and the theorem is concluded because ε ą 0 is given arbitrarily. ˝
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Example 4.11. The length of the elliptic helix C parameterized by

γ(t) = (a cos t, b sin t, ct) t P
[
0,
π

2

]
can be computed by

ℓ(C) =

ż π
2

0

}γ 1(t)}R3dt =

ż π
2

0

a

a2 sin2 t+ b2 cos2 t+ c2 dt .

1. When a ă b, letting k =

c

b2 ´ a2

b2 + c2
, then

ℓ(C) =
?
b2 + c2

ż π
2

0

a

1 ´ k2 sin2 t dt .

2. When a ą b, letting k =

c

a2 ´ b2

a2 + c2
, then

ℓ(C) =
?
a2 + c2

ż π
2

0

?
1 ´ k2 cos2 t dt =

?
a2 + c2

ż π
2

0

a

1 ´ k2 sin2 t dt .

The integral E(k, ϕ) ”

ż ϕ

0

?
1 ´ k2 sin2 t dt, where 0 ă k2 ă 1, is called the elliptic integral

function of the second kind, and E(k) ” E
(
k,
π

2

)
is called the complete elliptic

integral of the second kind.

Definition 4.12. Let C Ď Rn be a curve with finite length. An arc-length parametriza-
tion of C is an injective parametrization γ : [a, b] Ñ Rn such that the length of the curve
γ([a, s]) is exactly s ´ a; that is,

ℓ
(
γ([a, s])

)
= s ´ a @ s P [a, b] .

Example 4.13. Let C be the circle centered at the origin with radius R. Then the
parametrization

γ(s) =
(
R cos s

R
, R sin s

R

)
s P [0, 2πR] ,

is an arc-length parametrization of C. To see this, we note that

ℓ
(
γ([0, s])

)
=

ż s

0

›

›γ 1(t)
›

›

R2 dt =

ż s

0

›

›

(
´sin s

R
, cos s

R

)›
›

R2 dt =

ż s

0

dt = s @ s P [0, 2πR] .
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In general, the arc-length parametrization of a rectifiable curve exists, and we have the
following

Theorem 4.14. Let C Ď Rn be a rectifiable simple curve. Then there exists a arc-length
parametrization of C.

Proof. We only prove the case that C has a regular C 1-parametrization γ : [a, b] Ñ Rn.

Let s(t) =
ż t

a
}γ 1(t1)}Rn dt1. Note that the s : [a, b] Ñ R is strictly increasing since the

fundamental theorem of Calculus implies that s 1(t) = }γ 1(t)}Rn ą 0 for all t P [a, b]. The
Inverse Function Theorem (Theorem A.10) then guarantees the existence of a C 1-inverse
u : [0, ℓ(C)] Ñ [a, b] and we have u 1(t) =

1

s 1(u(t))
. Define rγ = γ ˝ u. Then the chain rule

implies that rγ : [0, ℓ(C)] Ñ Rn is a C 1-parametrization of C, and Theorem 4.10 implies that

ℓ
(
rγ([0, s])

)
=

ż s

0

}rγ 1(t)}Rn dt =

ż s

0

}γ 1(u(t))u 1(t)}Rn dt =

ż s

0

}γ 1(u(t))}Rn
ˇ

ˇu 1(t)
ˇ

ˇ dt

=

ż s

0

s 1(u(t))
1

ˇ

ˇs 1(u(t))
ˇ

ˇ

dt =

ż s

0

dt = s

which implies that rγ : [0, ℓ(C)] is an arc-length parametrization of C. ˝

Theorem 4.15. Let C Ď Rn be a C 1-curve with an arc-length parametrization γ : I Ñ Rn.
Then }γ 1(s)}Rn = 1 for all s P I.

Proof. Suppose that I = [a, b]. Since γ : I Ñ Rn is an arc-length parametrization of C, we
must have

s ´ a =

ż s

a

}γ 1(t)}Rn dt @ t P I .

Differentiating both sides of the equality above in t, the fundamental theorem of Calculus
implies that 1 = }γ 1(s)}Rn for all s P I. ˝

4.1.2 The line element and line integrals
Line elements

Definition 4.16. A curve C Ď Rn is said to be piecewise C k (smooth, regular) if there exists
a parametrization γ : [a, b] Ñ Rn and a finite set of points ta = t0 ă t1 ă ¨ ¨ ¨ ă tN = bu

such that γ : [ti, ti+1] Ñ Rn is C k (smooth, regular) for all i P t0, 1, ¨ ¨ ¨ , N ´ 1u.
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Definition 4.17. Let RC be the collection of all piecewise regular curves. The line element
is a set function s : RC Ñ R that satisfies the following properties:

1. s(C) ą 0 for all C P RC.

2. If C P RC is the union of finitely many regular curves C1, ¨ ¨ ¨ , Ck that do not overlap
except at their end-points, then

s(C) = s(C1) + ¨ ¨ ¨ + s(Ck) .

3. The value of s agrees with the length on straight line segments; that is,

s(L) = ℓ(L) for all line segaments L .

Line integrals of scalar functions

Definition 4.18. Let C Ď Rn be a simple rectifiable curve with an injective Lipschitz
parametrization γ : [a, b] Ñ Rn, and f : C Ñ R be a real-valued function. The line
integral of f along C, denoted by

ż

C
f ds, is the number

sup
!

k
ÿ

i=1

(
inf

ξPγ([ti´1,ti])
f(ξ)

)
ℓ
(
γ([ti´1, ti])

) ˇ
ˇ

ˇ
k P N, a = t0 ă t1 ă ¨ ¨ ¨ ă tk = b

)

provided that it is identical to

inf
!

k
ÿ

i=1

(
sup

ξPγ([ti´1,ti])

f(ξ)
)
ℓ
(
γ([ti´1, ti])

) ˇ
ˇ

ˇ
k P N, a = t0 ă t1 ă ¨ ¨ ¨ ă tk = b

)

.

When C is a closed curve, we also use
¿

C
f ds to denote the line integral of f along C to

emphasize that the curve C is a closed loop.

Remark 4.19. Since the parametrization γ is required to be injective, the line integral of
f along C is independent of the choice of the parametrization.

Remark 4.20. In particular, if f ” 1, then ℓ(C) =
ż

C
1 ds ”

ż

C
ds.

Remark 4.21. If the curve C is a line segment
␣

(x, 0)
ˇ

ˇ a ď x ď b
(

, then the line integral
of f along C is simply the Riemann integral of f over [a, b] (by treating f as a function of
x).
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Remark 4.22 (The interpretation of the line integrals). Let C be a piecewise smooth curve,
and f(x) denote the density of the curve C at position x. Suppose that f is continuous on
C and x = γ(t). Then f(x) is computed by

f(x) = f(γ(t)) = lim
∆tÑ0

m(γ([t, t+∆t]))

ℓ(γ([t, t+∆t]))
,

where m(¨) denotes the mass. Let ε ą 0 be given. Then by the continuity of f ˝ γ and the
definition of limit, there exists δ ą 0 such that

ˇ

ˇ(f ˝ γ)(t) ´ (f ˝ γ)(s)
ˇ

ˇ ă
ε

4ℓ(C)
if t, s P [a, b], |t ´ s| ă δ

and
ˇ

ˇf(γ(t))ℓ(γ([t, t+∆t])) ´ m(γ([t, t+∆t]))
ˇ

ˇ ď ℓ(γ([t, t+∆t]))
ε

4ℓ(C)
if |∆t| ă δ ;

thus if P = ta = t0 ă t1 ă ¨ ¨ ¨ ă tk = bu is a partition of [a, b] with }P} ă δ, the total mass

of the curve m(C), given by m(C) =
k
ř

i=1

m(γ([ti´1, ti])), validates the following estimate:

ˇ

ˇ

ˇ
m(C) ´

k
ÿ

i=1

f(γ(si´1))ℓ(γ([ti´1, ti]))
ˇ

ˇ

ˇ
ď
ε

2
.

As a consequence,

m(C) ´ ε ă

k
ÿ

i=1

inf
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti])) ď

k
ÿ

i=1

sup
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti])) ă m(C) + ε

which implies that the line integral of f along C is exactly the mass of the curve.

Theorem 4.23. Let C Ď Rn be a simple curve with C 1-parametrization γ : [a, b] Ñ Rn,
and f : C Ñ R be a real-valued continuous function. Then

ż

C

f ds =

ż b

a

f
(
γ(t)

)
}γ 1(t)}Rn dt . (4.1)

Proof. Let ε ą 0 be given. Since f ˝ γ and γ 1 are continuous on [a, b], |f ˝ γ| + }γ 1}Rn ď M

on [a, b] for some M ą 0, and there exists δ ą 0 such that
ˇ

ˇ(f ˝ γ)(s) ´ (f ˝ γ)(t)
ˇ

ˇ ă
ε

8(M + 1)(b ´ a)
whenever s, t P [a, b], |s ´ t| ă δ
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and
›

›γ 1(s) ´ γ 1(t)
›

›

Rn ă
ε

8(M + 1)(b ´ a)
whenever s, t P [a, b], |s ´ t| ă δ .

Moreover, since f ˝γ and γ 1 are both continuous on [a, b], the integral
ż b

a
f
(
γ(t)

)
}γ 1(t)}Rn dt

exists; thus there exists a partition P = ta = t0 ă t1 ă ¨ ¨ ¨ ă tk = bu of [a, b] with }P} ă δ

such that
k
ÿ

i=1

(
sup

sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

)
´ inf

sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

))
|ti ´ ti´1| ă

ε

2
. (4.2)

Let si, ri P [ti´1, ti] be such that

sup
tP[ti´1,ti]

(
f(γ(t))}γ 1(t)}Rn

)
= f(γ(si))

›

›γ 1(si)
›

›

Rn and sup
ξPγ([ti´1,ti])

f(ξ) = f(γ(ri)) .

Moreover, by Theorem 4.10 and the mean value theorem for integrals, there exists qi P

[ti´1, ti] such that

ℓ(γ([ti´1, ti])) =

ż ti

ti´1

›

›γ 1(s)
›

›

Rn ds =
›

›γ 1(qi)
›

›

Rn |ti ´ ti´1| ;

thus
ˇ

ˇ

ˇ
ℓ(γ([ti´1, ti])) ´

›

›γ 1(si)
›

›

Rn |ti ´ ti´1|

ˇ

ˇ

ˇ
ď

ε

8(M + 1)(b ´ a)
|ti ´ ti´1| .

Therefore, by the fact that si, ri, qi P [ti´1, ti] and |ti ´ ti´1| ă δ,
ˇ

ˇ

ˇ
sup

sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

)
|ti ´ ti´1| ´ sup

ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti]))
ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ
f(γ(si))

›

›γ 1(si)
›

›

Rn ´ f(γ(ri))}γ
1(qi)

›

›

Rn

ˇ

ˇ

ˇ
|ti ´ ti´1|

ď
ˇ

ˇf(γ(si)) ´ f(γ(ri)
ˇ

ˇ

›

›γ 1(si)
›

›

Rn |ti ´ ti´1| +
ˇ

ˇf(γ(ri))
ˇ

ˇ}γ 1(si) ´ γ 1(qi)
›

›

Rn |ti ´ ti´1|

ă
ε

4(b ´ a)
|ti ´ ti´1| ,

and summing the inequality above over i we obtain that
ˇ

ˇ

ˇ

k
ÿ

i=1

sup
sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

)
|ti ´ ti´1| ´

k
ÿ

i=1

sup
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti]))
ˇ

ˇ

ˇ
ă
ε

4
.

Similarly,
ˇ

ˇ

ˇ

k
ÿ

i=1

inf
sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

)
|ti ´ ti´1| ´

k
ÿ

i=1

inf
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti]))
ˇ

ˇ

ˇ
ă
ε

4
;
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thus using (4.2) we find that
ż b

a

(f ˝ γ)(t)}γ 1(t)}Rn dt ´ ε ă L
(
(f ˝ γ)}γ 1}Rn ,P) ´

ε

4

ď

k
ÿ

i=1

inf
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti])) ď

k
ÿ

i=1

sup
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti]))

ď U
(
(f ˝ γ)}γ 1}Rn ,P) +

ε

4
ă

ż b

a

(f ˝ γ)(t)}γ 1(t)}Rn dt+ ε .

Since ε ą 0 is chosen arbitrary, we conclude (4.1). ˝

Example 4.24. Let C be the upper half part of the circle centered at the origin with radius
R ą 0 in the xy-plane. Evaluate the line integral

ż

C
y ds.

First, we parameterize C by

γ(t) = (R cos t, R sin t) t P [0, π] .

Then
ż

C

y ds =

ż π

0

R sin t
›

›(´R sin t, R cos t)
›

›

R2dt =

ż π

0

R2 sin t dt = 2R2 .

Example 4.25. Find the mass of a wire lying along the first octant part of the curve of
intersection of the elliptic paraboloid z = 2 ´ x2 ´ 2y2 and the parabolic cylinder z = x2

between (0, 1, 0) and (1, 0, 1) if the density of the wire at position (x, y, z) is ϱ(x, y, z) = xy.
Note that we can parameterize the curve C by

γ(t) = (t,
?
1 ´ t2, t2) t P [0, 1] .

Therefore, the mass of the curve can be computed by
ż

C

ϱ ds =

ż 1

0

t
?
1 ´ t2

›

›(1,
´t

?
1 ´ t2

, 2t)
›

›

R3dt =

ż 1

0

t
?
1 ´ t2

a

1 ´ t2 + t2 + 4t2(1 ´ t2)
?
1 ´ t2

dt

=

ż 1

0

t
a

2 ´ (1 ´ 2t2)2 dt =
1

4

ż 1

´1

?
2 ´ u2du =

1

2

ż π
4

´π
4

2 cos2 θ dθ = π

8
(π + 2) .

Line integrals of vector fields

We recall that a vector field is a vector-valued function whose domain and co-domain are
subsets of identical Euclidean space Rn.
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Let C be a simple regular curve parameterized by γ : I Ñ Rn, and F : C Ñ Rn be a
vector field. The line integral of F along C in the direction of γ (or the oriented
line integral of F along C) is defined as the line integral of the scalar function F ¨ T
along C, where T is the unit tangent of C given by

T =
γ 1

}γ 1}Rn
˝ γ´1 on C . (4.3)

Given another parametrization ϕ : rI Ñ Rn of C such that (ϕ 1 ˝ϕ´1) ¨ (γ 1 ˝ γ´1) ą 0 (that is,
the orientation of C given by ϕ and γ are the same), using the chain rule we obtain that

γ 1 =
d

dt
(ϕ ˝ ϕ´1 ˝ γ)(t) = (ϕ 1 ˝ ϕ´1 ˝ γ)(t)(ϕ´1 ˝ γ) 1(t) . (4.4)

Since ϕ´1 ˝ γ : I Ñ rI, (ϕ´1 ˝ γ) 1 is a scalar function; thus (4.4) and the fact that (ϕ 1 ˝ ϕ´1) ¨

(γ 1 ˝γ´1) ą 0 implies that γ 1 ˝γ´1 = c(ϕ 1 ˝ϕ´1) for some positive scalar function c : C Ñ R.
Therefore,

ϕ 1

}ϕ 1}Rn
˝ ϕ´1 =

γ 1

}γ 1}Rn
˝ γ´1 on C . (4.5)

In other words, the tangent vector T is well-defined on C; thus the line integral of F along
C in the direction of the parametrization γ is a well-defined quantity.

Suppose that I = [a, b]. Using (4.1), we find that
ż

C

F ¨ T ds =

ż b

a

(F ˝ γ)(t) ¨
γ 1(t)

}γ 1(t)}Rn
}γ 1(t)}Rn dt =

ż b

a

(F ˝ γ)(t) ¨ γ 1(t) dt .

Let r : rI Ñ Rn be an arc-length parametrization of C such that (r 1 ˝ r´1) ¨ (γ 1 ˝ γ´1) ą 0

on C. Then (4.5) implies that T =
dr
ds

. In terms of notation, we also write T ds as dr; thus
ż

C

F ¨ dr =

ż

C

F ¨ T ds =

ż b

a

(F ˝ γ)(t) ¨ γ 1(t) dt .

Remark 4.26 (The interpretation of line integrals of vector fields). Consider the work done
by moving an object along a smooth curve C parameterized by γ : I Ñ Rn with a continuous
variable force F : C Ñ Rn from γ(a) to γ(b) (that is, in the direction of the parametrization
of γ). Since the work done by a constant force is the inner product of the displacement and
the force, we find the the work done by the force F along the small portion γ([ti, ti+1]), from
γ(ti) to γ(ti+1), of the curve, where |ti ´ ti+1| ! 1, is approximately

(F ¨ T)(γ(ti))ℓ
(
γ([ti, ti+1])

)
” F(γ(ti)) ¨ T(γ(ti))ℓ

(
γ([ti, ti+1])

)
.
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Summing over all the portions, we conclude that the work done by the force F along the
curve C, in the direction of the parametrization γ, is approximately

k´1
ÿ

i=0

(F ¨ T)(γ(ti))ℓ
(
γ([ti, ti+1])

)
which converges to the line integral

ż

C
(F ¨T) ds. Therefore, the line integral of vector fields

F along C in the direction of the parametrization γ is simply the work done by the force F
in moving an object along the curve C from the starting point to the end point.

Example 4.27. Let F(x, y) = (y2, 2xy). Evaluate the line integral
ż

C
F ¨ dr from (0, 0) to

(1, 1) along

1. the straight line y = x,

2. the curve y = x2, and

3. the piecewise smooth path consisting of the straight line segments from (0, 0) to (0, 1)

and from (0, 1) to (1, 1).

For the straight line case, we parameterize the path by γ(t) = (t, t) for t P [0, 1]. Then
ż

C

F ¨ dr =

ż 1

0

(t2, 2t2) ¨ (1, 1)dt =

ż 1

0

3t2dt = 1 .

For the case of parabola, we parameterize the path by γ(t) = (t, t2) for t P [0, 1]. Then
ż

C

F ¨ dr =

ż 1

0

(t4, 2t3) ¨ (1, 2t)dt =

ż 1

0

5t4dt = 1 .

For the piecewise linear case, we let C1 denote the line segment joining (0, 0) and (0, 1),
and let C2 denote the line segment joining (0, 1) and (1, 1). Note that we can parameterize
C1 and C2 by

γ1(t) = (0, t) t P [0, 1] and γ2(t) = (t, 1) t P [0, 1] ,

respectively. Therefore,
ż

C

F ¨ dr =

ż

C1

F ¨ dr +

ż

C2

F ¨ dr =

ż 1

0

(t2, 0) ¨ (0, 1) dt+

ż 1

0

(1, 2t) ¨ (1, 0) dt = 1 .

We note that in this example the line integrals of F over three different paths joining (0, 0)

and (1, 1) are identical.
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Example 4.28. Let F(x, y) = (y,´x). Evaluate the line integral
ż

C
F ¨ dr from (1, 0) to

(0,´1) along

1. the straight line segment joining these points, and

2. three-quarters of the circle of unit radius centered at the origin and traversed counter-
clockwise.

For the first case, we parameterize the path by γ(t) = (1 ´ t,´t) for t P [0, 1]. Then
ż

C

F ¨ dr =

ż 1

0

(´t, t ´ 1) ¨ (´1,´1) dt =

ż 1

0

1 dt = 1 .

For the second case, we parameterize the path by γ(t) = (cos t, sin t) for t P
[
0,

3π

2

]
.

Then
ż

C

F ¨ dr =

ż 3π
2

0

(sin t,´ cos t) ¨ (´ sin t, cos t) dt =
ż 3π

2

0

(´1) dt = ´
3π

2
.

We note that in this example the line integrals of F over different paths joining (1, 0) and
(0,´1) might be different.

4.2 Conservative Vector Fields
In the previous section, we define the line integral of a force along a curve in a given
orientation. In Example 4.27, we see that the line integrals along three different paths
connecting two given points are the same, while in Example 4.28 the line integrals along
two different paths (connecting two given points) are different. In this section, we are
interested in the rule of judging whether the line integral is path independent or not.

Definition 4.29 (Conservative Fields). A vector field F : D Ď Rn Ñ Rn is said to be
conservative if F = ∇ϕ for some scalar function φ : D Ñ R. Such a ϕ is called a (scalar)
potential for F on D.

Theorem 4.30. Let D be an open, connected domain in Rn, and let F be a smooth vector
field defined on D. Then the following three statements are equivalent:

(1) F is conservative in D.

(2)
¿

C
F ¨ dr = 0 for every piecewise smooth, closed curve C in D.
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(3) Given and two point P0, P1 P D,
ż

C
F ¨ dr has the same value for all piecewise smooth

curves in D starting at P0 and ending at P1.

Proof. (1) ñ (2): Suppose that F = ∇ϕ in D for some scalar function ϕ : D Ñ R. Let
C Ď Rn be a piecewise smooth closed curve parameterized by γ : [a, b] Ñ Rn such
that γ : [ti´1, ti] Ñ Rn is smooth for all 1 ď i ď N , where a = t0 ă t1 ă ¨ ¨ ¨ ă tN = b.
Let Ci = γ([ti´1, ti]). Then the chain rule implies that
¿

C

F ¨ dr =
N
ÿ

i=1

ż

Ci

∇ϕ ¨ dr =
N
ÿ

i=1

ż ti

ti´1

(∇ϕ ˝ γ)(t) ¨ γ 1(t) dt

=
N
ÿ

i=1

ż ti

ti´1

d

dt
(ϕ ˝ γ)(t) dt =

N
ÿ

i=1

(ϕ ˝ γ)(t)
ˇ

ˇ

ˇ

t=ti

t=ti´1

= ϕ(γ(b)) ´ ϕ(γ(a)) = 0 .

(2) ñ (3): Let C1 and C2 be two piecewise smooth curves in D starting at P0 and ending
at P1 parameterized by γ1 : [a, b] Ñ Rn and γ2 : [c, d] Ñ Rn, respectively. Define
γ : [a, b+ d ´ c] Ñ Rn by

γ(t) =

"

γ1(t) if t P [a, b] ,

γ2(b+ d ´ t) if t P [b, b+ d ´ c] .

Then C = γ([a, b+ d ´ c]) is a piecewise smooth closed curve; thus

0 =

¿

C

F ¨ dr =

ż b

a

(F ˝ γ1)(t) ¨ γ 1
1(t) dt ´

ż b+d´c

b

(F ˝ γ2)(b+ d ´ t)γ 1
2(b+ d ´ t) dt

=

ż

C1

F ¨ dr ´

ż d

c

(F ˝ γ2)(t)γ
1
2(t)dt =

ż

C1

F ¨ dr ´

ż

C2

F ¨ dr .

(3) ñ (1): Let P0 P D. For x P D, define ϕ(x) =
ż

C
F ¨ dr, where C is any piecewise

smooth curve starting at P0 and ending at x. Note that by assumption, ϕ : D Ñ R is
well-defined.

Choose δ ą 0 such that B(x, δ) Ď D. Let C be a piecewise smooth curve joining
P0, and L be the line segment joining x and x + hej, where 0 ă h ă δ and ej =

(0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0) is the unit vector whose j-th component is 1. Then with the
parametrization of L: γ(t) = x+ tej for t P [0, h], we have

ϕ(x+ hej) ´ ϕ(x)

h
=

1

h

ż

L

F ¨ dr =
1

h

ż h

0

F(x+ tej) ¨ ej dt ;
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thus passing to the limit as h Ñ 0, we find that

Bϕ

Bxj
(x) = F(x) ¨ ej .

As a consequence, F(x) = (∇ϕ)(x) which implies that F is conservative. ˝

Let D Ď R2, and F = (M,N) : D Ñ R2. If F is conservative, then M = ϕx and N = ϕy

for some scalar function ϕ : D Ñ R; thus if ϕ is of class C 2, we must have My = Nx. In
other words, if F : D Ñ R2 is a smooth vector field, then it is necessary that My = Nx. The
converse statement is not true in general, and we have the following counter-example.

Example 4.31. Let D Ď R2 be the annular region D =
␣

(x, y)
ˇ

ˇ 1 ă x2 + y2 ă 4
(

, and
consider the vector field F(x, y) =

( y

x2 + y2
,

´x

x2 + y2

)
. Then

B

By

y

x2 + y2
=

x2 ´ y2

(x2 + y2)2
=

B

Bx

´x

x2 + y2
;

however, if F = ∇ϕ for some differentiable scalar function ϕ : D Ñ R, we must have

ϕx(x, y) =
y

x2 + y2

which further implies that
ϕ(x, y) = arctan x

y
+ f(y) .

Using that ϕy(x, y) =
y

x2 + y2
, we conclude that f is a constant function; thus

ϕ(x, y) = arctan x
y
+ C .

Since ϕ is not differentiable on the positive x-axis, F ‰ ∇ϕ.

Definition 4.32. A connected domain D is said to be simply connected if every simple
closed curve can be continuously shrunk to a point in D without any part ever passing out
of D.

Theorem 4.33. Let D Ď R2 be simply connected, and F = (M,N) : D Ñ R2 be of class
C 1. If My = Nx, then F is conservative.

The theorem above can be proved using Theorem 4.30 and Green’s theorem (Theorem
4.90), and is left till Section 4.8 (where Green’s theorem is introduced).
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4.3 The Surface Integrals
4.3.1 Surfaces

Definition 4.34. A subset Σ Ď R3 is called a surface if for each p P Σ, there exist an open
neighborhood U Ď Σ of p, an open set V Ď R2, and a continuous map φ : U Ñ V such
that φ : U Ñ V is one-to-one, onto, and its inverse ψ = φ´1 is also continuous. Such a
pair tU , φu is called a coordinate chart (or simply chart) at p, and tV , ψu is called a (local)
parametrization at p.

Remark 4.35. In some literatures the surface is defined in the following equivalent but
reversed way: A subset Σ Ď R3 is a surface if for each p P Σ, there exists a neighborhood
U Ď R3 of p and a map ψ : V Ñ U XΣ of an open set V Ď R2 onto U XΣ Ď R3 such that ψ is
a homeomorphism; that is, ψ has an inverse φ = ψ´1 : U XΣ Ñ V which is continuous. The
mapping ψ is called a parametrization or a system of (local) coordinates in (a neighborhood
of) p.

Definition 4.36 (Regular surfaces). A surface Σ Ď R3 is said to be regular if for each
p P Σ, there exists a differentiable local parametrization tV , ψu of Σ at p such that Dψ(q),
the derivative of ψ at q, has full rank for all q P V ; that is, Dψ(q) : R2 Ñ R3 is one-to-one
for all q P V . The range of the map Dψ

(
ψ´1(p)

)
is called the tangent plane of Σ at p,

and is denoted by TpΣ.

In the following, we always assume that Dψ(q) has full rank for all q P V if tV , ψu

is a local parametrization of a regular surface Σ Ď R3.

Remark 4.37. Write ψ : V Ñ Σ as

ψ(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
.

Then if q = (u0, v0),

[
(Dψ)(q)

]
=

 xu(u0, v0) xv(u0, v0)
yu(u0, v0) yv(u0, v0)
zu(u0, v0) zv(u0, v0)

 =
[
[ψ,1 ]

...[ψ,2 ]
]
.

The injectivity of Dψ(q) is then translated to that the two vectors

ψ,1 (u0, v0) ” ψu(u0, v0) =
(
xu(u0, v0), yu(u0, v0), zu(u0, v0)

)
ψ,2 (u0, v0) ” ψv(u0, v0) =

(
xv(u0, v0), yv(u0, v0), zv(u0, v0)

)
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are linearly independent. Therefore, the range of Dψ(q) is the span of the two vectors ψ,1 (q)
and ψ,2 (q) and is indeed a plane for all q P V .

Let p P Σ and q = ψ´1(p). Since Dψ(q) is injective, each v P TpΣ corresponds a
unique vector (a, b) P R2 such that v = aψ,1 (q) + bψ,2 (q). This vector (a, b) P R2 satisfies
[v] =

[
Dψ(q)

]
[a, b]T, and can be computed by[

a
b

]
=

([
Dψ(q)

]T[
Dψ(q)

])´1[
Dψ(q)

]T
[v] .

Example 4.38. Let S2 =
␣

(x, y, z) P R3
ˇ

ˇx2 + y2 + z2 = 1
(

be the unit sphere in R3. If
p = (x0, y0, z0) P S2, then either x0, y0 or z0 is non-zero. Suppose that z0 ‰ 0. Choose r ą 0

such that (x ´ x0)
2 + (y ´ y0)

2 ă 1. Define

ψ(x, y) =

#

(x, y,
a

1 ´ x2 ´ y2) if z0 ą 0 ,

(x, y,´
a

1 ´ x2 ´ y2) if z0 ă 0 ,

V = B
(
(x0, y0), r

)
, and U = ψ(V). Then ψ : V Ñ U is a bijection. Let φ = ψ´1. Then

tU , φu is a coordinate chart at p; thus S2 is a surface.
There exists another coordinate chart. Let U1 = S2z(0, 0,´1) and U2 = S2z(0, 0, 1).

Define the map φ1 : U1 Ñ R2 by that φ1(p) is the unique point on R2 such that (0, 0,´1),
φ1(p) and (x, y, 0) are on the same straight line. Similarly, define φ2 : U2 Ñ R2 by that φ2(p)

is the unique point on R2 such that (0, 0, 1), φ2(p) and (x, y, 0) are on the same straight
line. It is easy to check that if p P S2, then either tU1, φ1u or tU2, φ2u is a coordinate chart
at p.

A third kind of coordinate chart is given as follows. Let U = (0, 2π) ˆ (0, π), and define

ψ(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ).

Then ψ : U Ñ S2zt(x, 0, z) | 0 ď x ď 1, x2 + z2 = 1u is a continuous bijection with a contin-
uous inverse. We note that for any U = (θ0, θ0 + 2π) ˆ (ϕ0, ϕ0 + π), ψ is a homeomorphism
between U and an open subset of S2.

Next, we would like to define the derivative of f when f : Σ Ñ Rn is a vector-valued
function. We first talk about what the directional derivative is. Let Σ Ď R3 be a regular
surface, p P Σ, and v P TpΣ. It is intuitive to define the directional derivative of f at p in
the direction v by

d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ x)(t) , (4.6)



112 CHAPTER 4. Vector Calculus

if the derivative exists, where x : (´δ, δ) Ñ Σ is a C 1-parametrization of a curve on Σ such
that x(0) = p and x 1(0) = v. The first question arising naturally is that if the derivative
in (4.6) depends on the choices of x. Suppose that y : (´δ, δ) Ñ Σ is a C 1-parametrization
of another curve on Σ such that y(0) = p and y 1(0) = v (note that the curve x((´δ, δ))
and y((´δ, δ)) in general are different). Let tV , ψu be a parametrization of Σ at p, and
q = ψ´1(p). Then the chain rule (Theorem 2.49) implies that

v = x 1(0) =
d

dt

ˇ

ˇ

ˇ

t=0
(ψ ˝ ψ´1 ˝ x)(t) = (Dψ)(q)

( d
dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ x)(t)

)
and similarly, v = (Dψ)(q)

(
d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ y)(t)

)
. Therefore,

(Dψ)(q)
(
d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ x)(t)

)
= (Dψ)(q)

(
d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ y)(t)

)
.

The injectivity of (Dψ)(ψ´1(p)) then shows that
d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ x)(t) = d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ y)(t) .

Using the chain rule again,
d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ x)(t) = d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ ψ ˝ ψ´1 ˝ x)(t) = D(f ˝ ψ)(ψ´1(p))

( d
dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ x)(t)

)
= D(f ˝ ψ)(ψ´1(p))

( d
dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ y)(t)

)
=

d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ y)(t) .

In other words, the derivative in (4.6) is independent of the choice of x as long as x(0) = p

and x 1(0) = v. This observation implies the following

Theorem 4.39. Let Σ Ď R3 be a regular surface, tV1, ψ1u and tV2, ψ2u be two local C 1-
parametrizations of Σ at a point p P Σ, and U = ψ1(V1)Xψ2(V2) Ď Σ. Then for (i, j) = (1, 2)

and (2, 1), the transition function ψ´1
j ˝ ψi : ψ

´1
i (U) Ñ ψ´1

j (U) is of class C 1.

Proof. We first note that ψ´1
j ˝ψi is continuous on ψ´1

i (U). Moreover, by the chain rule we

find that
B (ψ´1

j ˝ ψi)

Bu
is the unique 2-vector satisfying[

Bψi
Bu

(u, v)
]
=

[
B

Bu
(ψj ˝ ψ´1

j ˝ ψi)(u, v)
]
=

[
(Dψj)(ψ

´1
j ˝ ψi)(u, v)

][B (ψ´1
j ˝ ψi)

Bu
(ui, vi)

]
.

Similarly,
B (ψ´1

j ˝ ψi)

Bv
is the unique 2-vector satisfying

[
Bψi
Bv

(u, v)
]
=

[
B

Bv
(ψj ˝ ψ´1

j ˝ ψi)(u, v)
]
=

[
(Dψj)(ψ

´1
j ˝ ψi)(u, v)

][B (ψ´1
j ˝ ψi)

Bv
(ui, vi)

]
.



§4.3 The Surface Integrals 113

Therefore, we obtain that[
Dψi

]
=

[
(Dψj) ˝ (ψ´1

j ˝ ψi)
][[B (ψ´1

j ˝ ψi)

Bu

]...[B (ψ´1
j ˝ ψi)

Bv

]]
. (4.7)

Since
[
Dψj

]
has full rank,

[
Dψj

]T[
Dψj

]
is an invertible 2ˆ 2 matrix (for if ATAx = 0 then

}Ax}2Rn = xTATAx = 0 which implies x = 0 since A has full rank); thus (4.7) implies that[[B (ψ´1
j ˝ψi)

Bu

]...[B (ψ´1
j ˝ψi)

Bv

]]
=
(([

Dψj
]T[
Dψj]

)
˝ (ψ´1

j ˝ψi)
)́ 1[

(Dψj)˝ (ψ´1
j ˝ψi)

]T[
Dψi] ;

thus the partial derivatives of ψ´1
j ˝ψi exist and are continuous. Theorem 2.30 then implies

that ψ´1
j ˝ ψi is of class C 1. ˝

Similar to how the directional derivative is defined, we intend to define the differentia-
bility of f through the differentiability of the function f ˝ ψ : V Ñ Rn, where tV , ψu is
a local parametrization of Σ (at some point). Again, we need to talk about if this defini-
tion depends on the choice of local parametrizations. Nevertheless, if tV1, ψ1u and tV2, ψ2u

are two C 1-local parametrization of Σ at p, and f ˝ ψ1 is differentiable at ψ´1
1 (p), then

the chain rule and Theorem 4.39 imply that f ˝ ψ2 is also differentiable at ψ´1
2 (p) since

f ˝ ψ2 = (f ˝ ψ1) ˝ (ψ´1
1 ˝ ψ2). This induces the following

Definition 4.40. Let Σ Ď R3 be a C 1-regular surface. A scalar function f : Σ Ñ R is
said to be differentiable at p P Σ if for every parametrization tV , ψu of Σ at p, the function
f ˝ ψ : V Ñ Rn is differentiable at ψ´1(p). The derivative of f at p, denoted by dfp, is a
linear map on TpΣ satisfying

(dfp)(v) =
d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ x)(t) ,

where x : (´δ, δ) Ñ Σ is a C 1-parametrization of a curve on Σ such that x(0) = p and
x 1(0) = v. A scalar function f : Σ Ñ R is said to be of class C 1 if f ˝ ψ is of class C 1 for
all local parametrization tV , ψu.

4.3.2 The metric tensor and the first fundamental form

Definition 4.41 (Metric). Let Σ Ď R3 be a regular surface. The metric tensor associated
with the local parametrization tV , ψu (at p P Σ) is the matrix g = [gαβ]2ˆ2 given by

gαβ = ψ,α ¨ψ,β =
3
ÿ

i=1

Bψi

Byα

Bψi

Byβ
in V .
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Proposition 4.42. Let Σ Ď R3 be a regular surface, and g = [gαβ]2ˆ2 be the metric tensor
associated with the local parametrization tV , ψu (at p P Σ). Then the metric tensor g is
positive definite; that is,

2
ÿ

α,β=1

gαβv
αvβ ą 0 @ v =

2
ÿ

γ=1

vγ
Bψ

Byγ
‰ 0 .

Proof. Since Dψ has full rank on V , every tangent vector v can be expressed as the linear

combination of
!

Bψ

By1
,

Bψ

By2

)

. Write v =
2
ř

γ=1

vγ
Bψ

Byγ
. Then if v ‰ 0,

0 ă }v}2R3 =
3
ÿ

i=1

2
ÿ

α,β=1

vα
Bψi

Byα
vβ

Bψi

Bψβ
=

2
ÿ

α,β=1

gαβv
αvβ . ˝

Definition 4.43 (The first fundamental form). Let Σ Ď R3 be a regular surface, and
g = [gαβ]2ˆ2 be the metric tensor associated with the local parametrization tV , ψu (at
p P Σ). The first fundamental form associated with the local parametrization tV , ψu (at
p P Σ) is the scalar function g = det(g).

Theorem 4.44. Let Σ Ď R3 be a regular surface, and tV , ψu be a local parametrization at
p P Σ. Then

?g = }ψ,1 ˆψ,2 }R3 . (4.8)

Proof. Using the permutation symbol and Kronecker’s delta, we have

}ψ,1 ˆψ,2 }2R3 =
3
ÿ

i=1

( 3
ÿ

j,k=1

εijkψ
j,1 ψ

k,2
)( 3

ÿ

r,s=1

εirsψ
r,1 ψ

s,2
)

=
3
ÿ

j,k,r,s=1

[( 3
ÿ

i=1

εijkεirs
)
ψj,1 ψ

k,2 ψ
r,1 ψ

s,2

]
=

3
ÿ

j,k,r,s=1

(
δjrδks ´ δjsδkr

)
ψj,1 ψ

k,2 ψ
r,1 ψ

s,2 ,

where we use the identity
3
ÿ

i=1

εijkεirs = δjrδks ´ δjsδkr (4.9)

to conclude the last equality. Therefore,

}ψ,1 ˆψ,2 }2R3 =
3
ÿ

j,k=1

(
ψj,1 ψ

k,2 ψ
j,1 ψ

k,2 ´ψj,1 ψ
k,2 ψ

j,2 ψ
k,1

)
= g11g22 ´ g12g21 = det(g) = g .

Finally, (4.8) is concluded from the fact that g is positive definite. ˝
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Remark 4.45. Let L P B(R2;TpΣ) be given by

L(ae1 + be2) = aψ,1+bψ,2 ,

where B2 = te1, e2u is the standard basis of R2. Let B1 = te1, e2u be an orthonormal basis
of TpΣ, and B3 = te1, e2, e3u be the standard basis of R3. Then

[L]B2,B1 =

[
ψ,1 ¨e1 ψ,2 ¨e1
ψ,1 ¨e2 ψ,2 ¨e2

]
=

[
[e1]TB3

[e2]TB3

] [
[ψ,1 ]B3

...[ψ,2 ]B3

]
.

By the fact that te1, e2u is an orthonormal basis,

[L]TB2,B1 [L]B2,B1 =

[
[ψ,1 ]TB3

[ψ,2 ]TB3

] [
[e1]B3

...[e2]B3

] [ [e1]TB3

[e,2 ]TB3

] [
[ψ,1 ]B3

...[ψ,2 ]B3

]
=

[
[ψ,1 ]TB3

[ψ,2 ]TB3

] [
[ψ,1 ]B3

...[ψ,2 ]B3

]
=

[
g11 g12
g21 g22

]
,

where [gαβ]2ˆ2 is the metric tensor associated with the parametrization tV , ψu. Therefore,
det([L]B2,B1) =

?g as long as B1 is an orthonormal basis of TpΣ.
Since a natural way to write Lv, where v = ae1 + be2 P R2, is

Lv =
[
[ψ,1

]...[ψ,2 ]] [ a
b

]
=

[
∇ψ

] [ a
b

]
,

sometimes we also use ∇ψ to denote L, and then write ?g as det(∇ψ) (even though [∇ψ]
is a 3 ˆ 2 matrix) and call ?g the Jacobian of the map ψ.

Example 4.46. Let Σ be the sphere centered at the origin with radius R. Consider the local
parametrization ψ(θ, ϕ) = (R cos θ sinϕ,R sin θ sinϕ,R cosϕ) with (θ, ϕ) P V ” (0, 2π) ˆ

(0, π). Then

ψ,1 (θ, ϕ) = ψθ(θ, ϕ) = (´R sin θ sinϕ,R cos θ sinϕ, 0) ,
ψ,2 (θ, ϕ) = ψϕ(θ, ϕ) = (R cos θ cosϕ,R sin θ cosϕ,´R sinϕ) ;

thus the metric tensor and the first fundamental form associated with the parametrization
tV , ψu are

g(θ, ϕ) =
[
Dψ

]T[
Dψ

]
(θ, ϕ) =

[
R2 sin2 ϕ 0

0 R2

]
and g = det(g) = R4 sin2 ϕ.
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What does the first fundamental form do for us?

Let p = ψ(u0, v0) be a point in Σ. Then the surface area of the region ψ
(
[u0, u0 + h] ˆ

[v0, v0 + k]
)
, where h, k are very small, can be approximated by the sum of the area of two

triangles, one with vertices ψ(u0, v0), ψ(u0+h, v0), ψ(u0, v0+k) and the other with vertices
ψ(u0 + h, v0), ψ(u0, v0 + k), ψ(u0 + h, v0 + k).

ψ(u0, v0)

ψ(u0, v0 + k)

ψ(u0 + h, v0)

ψ(u0 + h, v0 + k)

Here we remark that the approximation of the surface area of a regular C 1-surface obeys

lim
(h,k)Ñ(0,0)

the surface area of ψ
(
[u0, u0 + h] ˆ [v0, v0 + k]

)
the sum of area of the two triangles given in the context = 1 . (4.10)

The area of the triangle with vertices ψ(u0, v0), ψ(u0 + h, v0), ψ(u0, v0 + k) is

A1 =
1

2

›

›

(
ψ(u0 + h, v0) ´ ψ(u0, v0)

)
ˆ
(
ψ(u0, v0 + k) ´ ψ(u0, v0)

)›
›

R3 .

By the mean value theorem, for each component j P t1, 2, 3u, we have

ψj(u0 + h, v0) ´ ψj(u0, v0) = ψ,1 (u0 + θj1h, v0)h ,

ψj(u0, v0 + k) ´ ψj(u0, v0) = ψ,2 (u0, v0 + θj2k)k

for some θji P (0, 1); thus if ψ is of class C 1,

ψ(u0 + h, v0) ´ ψ(u0, v0) = ψ,1 (u0, v0)h+ E1(u0, v0;h)h ,

ψ(u0, v0 + k) ´ ψ(u0, v0) = ψ,2 (u0, v0)k + E2(u0, v0; k)k ,

where E1 and E2 are bounded vector-valued functions satisfying that lim
hÑ0

E1(u0, v0;h) = 0

and lim
kÑ0

E2(u0, v0; k) = 0. Therefore,

lim
(h,k)Ñ(0,0)

(
ψ(u0+h, v0)´ψ(u0, v0)

)
ˆ
(
ψ(u0, v0+k)´ψ(u0, v0)

)
hk

´ψ,1 (u0, v0)ˆψ,2 (u0, v0) = 0 .
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Since ?g = }ψ,1 ˆψ,2 }R3 , we have

A1 =
1

2

a

g(u0, v0)hk + f1(u0, v0;h, k)hk

for some function f1 which converges to 0 as (h, k) Ñ (0, 0) and is bounded since ∇ψ
is bounded. Similarly, the area of the triangle with vertices ψ(u0 + h, v0), ψ(u0, v0 + k),
ψ(u0 + h, v0 + k) is

A2 =
1

2

a

g(u0, v0)hk + f2(u0, v0;h, k)hk .

Taking (4.10) into account, we find that

the surface area of ψ
(
[u0, u0 + h] ˆ [v0, v0 + k]

)
=
a

g(u0, v0)hk + f(u0, v0;h, k)hk (4.11)

for some bounded function f(¨, ¨; ¨, ¨) which converges to 0 as the last two variables h, k
approach 0.

Now consider the surface area of ψ([a, a+ L] ˆ [b, b+W ]). Let ε ą 0 be given. Choose
N ą 0 such that

ˇ

ˇf(u, v;h, k)
ˇ

ˇ ă
ε

2LW
@ 0 ă h ă

L

N
, 0 ă k ă

W

N
and (u, v) P [a, a+ L] ˆ [b, b+W ] ,

and
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

c

g
(
a+

i´ 1

n
L, b+

j ´ 1

m
M

)L
n

W

m
´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ
ă
ε

2
if n,m ě N .

Then for n,m ě N , with (h, k) denoting
(L
n
,
W

m

)
(4.11) implies that

ˇ

ˇ

ˇ
the surface area of ψ([a, a+ L] ˆ [b, b+W ]) ´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

the surface area of ψ([a+ (i´ 1)h, a+ ih] ˆ [b+ (j ´ 1)k, b+ jk])

´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

b

g
(
a+ (i´ 1)h, b+ (j ´ 1)k

)
hk ´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

f(a+ (i´ 1)h, b+ (j ´ 1)k;h, k)hk
ˇ

ˇ

ˇ

ă
ε

2
+

ε

2LW

m
ÿ

j=1

n
ÿ

i=1

hk = ε .

The discussion above verifies the following
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Theorem 4.47. Let Σ Ď R3 be a regular C 1-surface, tV , ψu be a local C 1-parametrization
of Σ at p, and g be the first fundamental form associated with tV , ψu. Then

the surface area of ψ(V) =
ż

V

?g dA .

Example 4.48. Recall from Example 4.46 that the first fundamental form g of the parametriza-
tion tV , ψu of the 2-sphere centered at the origin with radius R, where

ψ(θ, ϕ) = (R cos θ sinϕ,R sin θ sinϕ,R cosϕ)

and V = (0, 2π) ˆ (0, π), is given by g(θ, ϕ) = R4 sin2 ϕ. Therefore,

the surface area of ψ
(
(0, 2π) ˆ (0, π)

)
=

ż

(0,2π)ˆ(0,π)

R2 sinϕ d(θ, ϕ)

= R2

ż 2π

0

ż π

0

sinϕ dϕdθ = 4πR2 .

Since the difference of the 2-sphere and ψ
(
(0, 2π) ˆ (0, π)

)
has zero area, we find that the

surface area of the 2-sphere with radius R is 4πR2.

4.3.3 The surface element and the surface integral

Let Σ Ď R3 be a regular surface, and tV , ψu be a parametrization of Σ such that ψ(V) = Σ.
If f : Σ Ñ R is a bounded continuous function, the surface integral of f over Σ, denoted by
ż

Σ
f dS, is defined by

ż

Σ

f dS =

ż

V
(f ˝ ψ)

?g dA . (4.12)

In particular, if f ” 1, the number
ż

Σ
dS ”

ż

Σ
1 dS is the surface area of Σ.

Since the surface integrals defined by (4.12) seems to depend on a given parametrization,
before proceeding we show that the surface integral is indeed independent of the choice of
the parametrizations. Suppose that tV1, ψ1u and tV2, ψ2u are two local C 1-parametrizations
of a regular surface Σ at p, g1, g2 denote the metric tensors associated with the parametriza-
tions tV1, ψ1u, tV2, ψ2u, respectively, and g1 = det(g1), g2 = det(g2) are corresponding first
fundamental forms. Let Ψ = ψ´1

2 ˝ ψ1. Then the change of variables formula (Theorem
3.31) implies that

ż

V2

(f ˝ ψ2)
?g2 dA =

ż

V1

(f ˝ ψ2 ˝ Ψ)
(?g2 ˝ Ψ

)
|JΨ| dA =

ż

V1

(f ˝ ψ1)
(?g2 ˝ Ψ

)
|JΨ| dA ,
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where JΨ is the Jacobian of the map Ψ. Using (4.7), we find that[
DΨ

]T[
(Dψ2) ˝ Ψ

]T[
(Dψ2) ˝ Ψ

][
DΨ

]
=

[
Dψ1

]T[
Dψ1

]
;

thus by the fact that g1 = det
([
Dψ1

]T[
Dψ1

])
and g2 = det

([
Dψ2

]T[
Dψ2

])
, we obtain that

det
([
DΨ

])2
(g2 ˝ Ψ) = g1 .

Since JΨ = det
([
DΨ

])
, the identity above implies that |JΨ|(

?g2˝Ψ) =
?g1, so we conclude

that
ż

V1

(f ˝ ψ1)
?g1 dA =

ż

V2

(f ˝ ψ2)
?g2 dA . (4.13)

Therefore, the surface integral of f over Σ is independent of the choice of parametrizations
of Σ. In particular, the surface area of a regular C 1-surface which can be parameterized by
a global parametrization is also independent of the choice of parametrizations.

Example 4.49. Let Σ Ď R3 be the upper half sphere; that is, Σ =
␣

(x, y, z) P R3
ˇ

ˇx2+ y2+

z2 = R2, z ą 0
(

, and tV , ψu be a global parametrization of Σ given by

ψ(u, v) = (u, v,
?
R2 ´ u2 ´ v2) , (u, v) P V =

␣

(u, v) P R2
ˇ

ˇu2 + v2 ď R2
(

.

To find the surface area using this parametrization, we first compute tψ,1 , ψ,2 u as follows:

ψ,1 (u, v) =
(
1, 0,

´u
?
R2 ´ u2 ´ v2

)
and ψ,2 (u, v) =

(
0, 1,

´v
?
R2 ´ u2 ´ v2

)
,

thus the first fundamental form associated with the parametrization tV , ψu is

g(u, v) = }ψ,1 (u, v) ˆ ψ,2 (u, v)}
2
R3 =

›

›

›

( u
?
R2 ´ u2 ´ v2

,
v

?
R2 ´ u2 ´ v2

, 1
)›
›

›

2

R3

=
R2

R2 ´ u2 ´ v2
.

Therefore, the surface area of Σ is
ż

Σ

dS =

ż

V

R
?
R2 ´ u2 ´ v2

dA =

ż R

´R

ż

?
R2´u2

´
?
R2´u2

R
?
R2 ´ u2 ´ v2

dvdu

= R

ż R

´R

arcsin v
?
R2 ´ u2

ˇ

ˇ

ˇ

v=
?
R2´u2

v=´
?
R2´u2

du = R

ż R

´R

π du = 2πR2 .

Note the the computation above also shows that the surface area of the sphere in R3 with
radius R is 4πR2 which is the same as what we have conclude in Example 4.48.
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Remark 4.50. The example above provides one specific way of evaluating the surface
integrals: if the surface Σ is in fact a subset of the graph of a function φ : D Ď R2 Ñ R;
that is, Σ Ď

␣

x, y, φ(x, y))
ˇ

ˇ (x, y) P D
(

, then Σ has a global parametrization

ψ(x, y) =
(
x, y, φ(x, y)

)
, (x, y) P V ,

where V is the projection of Σ onto the xy-plane along the z-direction. Then the first
fundamental form associated to this parametrization is

g(x, y) = }ψ,1 (x, y) ˆ ψ,2 (x, y)}
2
R3 = 1 +

ˇ

ˇ

Bφ

Bx
(x, y)

ˇ

ˇ

2
+
ˇ

ˇ

Bφ

By
(x, y)

ˇ

ˇ

2
;

thus the surface integral of f over Σ is
ż

Σ

f dS =

ż

V
f
(
x, y, φ(x, y)

)c
1 +

ˇ

ˇ

Bφ

Bx
(x, y)

ˇ

ˇ

2
+
ˇ

ˇ

Bφ

By
(x, y)

ˇ

ˇ

2
d(x, y) .

Example 4.51. Let C be a smooth curve parameterized by

r(t) = (cos t sin t, sin t sin t, cos t) , t P

[
´
π

2
,
π

2

]
.

The clearly C is on the unit sphere S2 since }r(t)}R3 = 1 for all t P

[
´
π

2
,
π

2

]
. Since C is a

closed curve, C divides S2 into two parts. Let Σ denote the part with smaller area (see the
following figure), and we are interested in finding the surface area of Σ.

Solution:

(a) Let
⇀

F (x, y, z) = (0, f(x, y, z), 0). By the divergence theorem,

∫∫

Σ

f(x, y, z)n2(x, y, z)dS =

∫∫

Σ

⇀

F (x, y, z)· ⇀
n (x, y, z)dS =

∫∫∫

D

div
⇀

F (x, y, z)dV

=

∫∫∫

D

∂f

∂y
(x, y, z)dV .

(b) On the sphere x2 + y2 + z2 = 9, the outward point normal vector
⇀
n (x, y, z) = 1

3
(x, y, z).

Therefore, by (0.1) (with f(x, y, z) = 3yez in mind),

∫∫

Σ

y2ezdS =

∫∫

Σ

3yez
y

3
dS =

∫∫∫

D

∂

∂y
(3yez)dV =

∫

3

0

∫

2π

0

∫ π

0

3eρ cosφρ2 sinφdφdθdρ

= 3

∫ 3

0

∫ 2π

0

−ρeρ cosφ
∣

∣

∣

φ=π

φ=0

dθdρ

= 6π

∫ 3

0

(ρeρ − ρe−ρ)dρ

= 6π(ρ− 1)eρ
∣

∣

∣

ρ=3

ρ=0

− 6π(−ρ− 1)e−ρ
∣

∣

∣

ρ=3

ρ=0

= 12π(e3 + 2e−3) .

Problem 5. Let C be a smooth curve parametrized by

⇀
r (t) = (cos t sin t, sin t sin t, cos t) , −π

2
≤ t ≤ π

2
.

x
y

z

1. (10%) Show that the corresponding curve of
⇀
r (t) on θφ-plane consists of two line segments L1

and L2 given by

L1 =
{

(θ, φ)
∣

∣

∣
θ = φ , 0 ≤ φ ≤ π

2

}

, L2 =
{

(θ, φ)
∣

∣

∣
θ = π − φ , 0 ≤ φ ≤ π

2

}

.

2. (10%) Plot L1 and L2 on the θφ-plane. The curve C divides the unit sphere into two parts,

and let Σ be the part with smaller area. Identify the corresponding region of Σ on θφ-plane.

3. (15%) Find the surface area of Σ.

To compute the surface area of Σ, we need to find a way to parameterize Σ. Naturally we
try to parameterize Σ using the spherical coordinate. In other words, let R = (0, 2π)ˆ (0, π)

and ψ : R Ñ R3 be defined by

ψ(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ) ,
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and we would like to find a region D Ď R such that ψ(D) = Σ.
Suppose that γ(t) =

(
θ(t), φ(t)

)
, t P

[
´
π

2
,
π

2

]
, is a curve in R such that (ψ ˝γ)(t) = r(t).

Then for t P
[
0,
π

2

]
, the identity cos t = cosϕ(t) implies that ϕ(t) = t; thus the identities

cos t sin t = cos θ(t) cosϕ(t) and sin t sin t = sin θ(t) cosϕ(t) further imply that θ(t) = t.
On the other hand, for t P

[
´

π

2
, 0
]
, the identity cos t = cosϕ(t), where ϕ(t) P (0, π),

implies that ϕ(t) = ´t; thus the identities cos t sin t = cos θ(t) sinϕ(t) and sin t sin t =

sin θ(t) sinϕ(t) further imply that θ(t) = π + t.

θ

ϕ

R

D = ψ´1(Σ)
θ = ϕ

θ + ϕ = π

Since the first fundamental form associate with tR, ψu is the first fundamental form
associated with tR, ψu is

g(u, v) =
›

›(ψθ ˆ ψϕ)(u, v)
›

›

2

R3

=
›

›(´ sin θ sinϕ, cos θ sinϕ, 0) ˆ (cos θ cosϕ, sin θ cosϕ,´ sinϕ)
›

›

2

R3

=
›

›(´ cos θ sin2 ϕ,´ sin θ sin2 ϕ,´(sin2 θ + cos2 θ) sinϕ cosϕ)
›

›

2

R3

= (cos2 θ + sin2 θ) sin4 ϕ+ sin2 ϕ cos2 ϕ = sin2 ϕ ,

the area of the desired surface can be computed by
ż

Σ

dS =

ż

ψ´1(Σ)

?g dA =

ż π
2

0

ż π´ϕ

ϕ

sinϕ dθdϕ =

ż π
2

0

(π ´ 2ϕ) sinϕ dϕ

=
(

´ π cosϕ+ 2ϕ cosϕ ´ 2 sinϕ)
ˇ

ˇ

ˇ

ϕ=π
2

ϕ=0
= π ´ 2 .

Another way to parameterize Σ is to view Σ as the graph of function z =
a

1 ´ x2 ´ y2

over D, where D is the projection of Σ along z-axis onto xy-plane. We note that the
boundary of D can be parameterized by

rr(t) = (cos t sin t, sin t sin t) , t P

[
´
π

2
,
π

2

]
.
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Let (x, y) P BD. Then x2+ y2 = y; thus Σ can also be parameterized by ψ : D Ñ R3, where

ψ(x, y) =
(
x, y,

a

1 ´ x2 ´ y2
)

and D =
␣

(x, y)
ˇ

ˇx2 + y2 ď y
(

.

Therefore, with f denoting the function f(x, y) =
a

1 ´ x2 ´ y2, Remark 4.50 implies that
the surface area of Σ can be computed by

ż

D

b

1 + f 2
x + f 2

y dA =

ż 1

0

ż

?
y´y2

´
?
y´y2

1
a

1 ´ x2 ´ y2
dxdy

=

ż 1

0

arcsin x
a

1 ´ y2

ˇ

ˇ

ˇ

x=
?
y´y2

x=´
?
y´y2

dy = 2

ż 1

0

arcsin
?
y

?
1 + y

dy ;

thus making a change of variable y = tan2 θ we conclude that

the surface area of Σ = 2

ż π
4

0

arcsin tan θ
sec θ d(tan2 θ) = 2

ż π
4

0

θ d
(

tan2 θ)

= 2
[
θ tan2 θ

ˇ

ˇ

ˇ

θ=π
4

θ=0
´

ż π
4

0

tan2 θdθ
]

= 2
[π
4

´

ż π
4

0

(sec2 θ ´ 1) dθ
]
= 2

[π
4

´ (tan θ ´ θ)
ˇ

ˇ

ˇ

θ=π
4

θ=0

]
= 2

[π
4

´

(
1 ´

π

4

)]
= π ´ 2 .

As noticed in Remark 4.45, the first fundamental form ?g associated with the parametriza-
tion tV , ψu can be viewed as the Jacobian of the map ψ. Therefore, we arrive at the con-
clusion that dS ‘‘= ”?g dA. dS is called the surface element. Moreover, similar to the
reason provided in Remark 4.22, the surface integral of a positive continuous function f

over Σ, where f is considered as the mass density of the surface given by

f(x) = lim
diam(∆)Ñ0

ψ´1(x)P∆

the mass of ψ(∆)

the surface area of ψ(∆)

is the total mass of the surface.
Next, we study the surface area of general regular surfaces that cannot be parameterized

using a single pair tV , ψu. Let Σ Ď R3 be a regular surface, and tVi, ψiuiPI be a collection
of local parametrizations satisfying that for each p P Σ there exists i P I such that tVi, ψiu
is a local parametrization of Σ at p. If there exists a countable collection of non-negative
functions tζjujPJ defined on Σ such that
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1. For each j P J , spt(ζj) ” the closure of
␣

x P Σ
ˇ

ˇ ζj(x) ‰ 0
(

Ď Vi for some i P I;

2.
ř

jPJ ζj(x) = 1 for all x P Σ,

then intuitively we can compute the surface area by
ż

Σ

dS =
ÿ

jPJ

ż

Σ

ζj dS , (4.14)

where the surface integral of ζj over Σ is defined by (4.12) since spt(ζj) Ď ψ(Vi) and ζj = 0

outside spt(ζj). In other words, each term on the right-hand side of (4.14) can be evaluated
by

ż

Σ

ζj dS =

ż

Vi
(ζj ˝ ψi)

?gi dS .

if spt(ζj) Ď ψi(Vi). Similarly, for a bounded continuous function f defined on Σ, the surface
integral of f over Σ can be defined by

ż

Σ

f dS =
ÿ

jPJ

ż

Σ

(ζjf) dS =
ÿ

jPJ

ÿ

choose one i such that
spt(ζj) Ď ψi(Vi)

ż

Vi
(ζjf) ˝ ψi

?gi dS . (4.15)

Remark 4.52. Defining the surface integrals of a function as above, a question arises natu-
rally: is the surface integral given by (4.15) independent of the choice of the parametrization
and the partition-of-unity? In other words, if a regular C k-surface Σ admits two collections
of local parametrization tUi, φiuiPI and tVj, ψjujPJ , and tζiuiPI and tλjujPJ are C k-partition-
of-unity subordinate to tUiuiPI and tVjujPJ , respectively. Is it true that

ÿ

iPI

ÿ

choose one i such that
spt(ζj) Ď φi(Ui)

ż

Ui
(ζif) ˝ φi

?gi dS =
ÿ

jPJ

ÿ

choose one j such that
spt(λk) Ď ψj(Vj)

ż

Vj
(λjf) ˝ ψj

?
gj dS ,

where gi and gj are the first fundamental form associated with the parametrization tUi, φiu
and tVj, ψju, respectively.

The answer to the question above is affirmative, and the surface integral given by (4.15)
is indeed independent of the choice of parametrization of the surface and the partition-of-
unity; however, we will not prove this and only treat this as a known fact.

Now we focus on the existence of a collection of functions tζjujPJ discussed above.

Definition 4.53. A collection of subsets of Rn is said to be locally finite if for every point
x P Rn there exists r ą 0 such that B(x, r), the ball centered at x with radius r, intersects
at most finitely many sets in this collection.
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Definition 4.54 (Partition of Unity). Let A Ď Rn be a subset. A collection of functions
tζjujPJ is said to be a partition-of-unity of A if

1. 0 ď ζj ď 1 for all j P J .

2. The collection of sets
␣

spt(ζj)
(

jPJ is locally finite.

3.
ř

jPJ
ζj(x) = 1 for all x P A.

Let tUjujPJ be an open cover of A; that is, Uj is open for all j P J and A Ď
Ť

jPJ Uj.
A partition-of-unity tζjujPJ of A is said to be subordinate to tUjujPJ (or tUjujPJ has a
subordinate partition-of-unity of A) if spt(ζj) Ď Uj for all j P J .

We note the if tζjujPJ is a partition-of-unity of A, then the property of local finiteness of
tspt(ζj)ujPJ ensures that for each point x P A has a neighborhood on which all but finitely
many λj’s are zero.

Lemma 4.55. Let A Ď Rn be a subset, tUiuiPI be an open cover of A, and tVjujPJ be a
collection of open sets such that each Vj is a subset of some Ui; that is, for each j P J ,
Vj Ď Ui for some i P I. If tVjujPJ has a subordinate C k-partition-of-unity of A, so has
tUiuiPI.

Proof. Let tζjujPJ be a partition-of-unity of A subordinate to tVjujPJ , and f : J Ñ I
be a map such that Vj Ď Uf(j) (we note that such f in general is not unique). Define
χi : Rn Ñ [0, 1] by

χi(x) =
ÿ

jPf´1(i)

ζj(x) . (4.16)

Then clearly spt(χi) Ď Ui and
ř

iPI
χi(x) = 1 for all x P A. Moreover, since the sum (4.16)

is a finite sum, χi is of class C k for all i P I since ζj if of class C k for all j P J . Now
we show that

␣

spt(χi)
(

iPI is locally finite. Let x P Rn be given. By the local finiteness of
␣

spt(ζj)
(

jPJ there exists r ą 0 such that #
␣

j P J
ˇ

ˇB(x, r) X spt(ζj) ‰ H
(

ă 8. By the
fact that f´1(i1) X f´1(i2) = H if i1 ‰ i2 (that is, each j P J belongs to f´1(i) for exactly
one i P I) and that

y P B(x, r) X spt(χi) ô y P B(x, r) X spt(ζj) for some j P f´1(i) ,

we must have

#
␣

i P I
ˇ

ˇB(x, r) X spt(χi) ‰ H
(

ď #
␣

j P J
ˇ

ˇB(x, r) X spt(ζj) ‰ H
(

ă 8 . ˝
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Theorem 4.56. Let Σ Ď R3 be a regular C k-surface. Then every open cover of Σ has a
subordinate C k-partition-of-unity of Σ.

Proof. Let tOiuiPI be a given open cover of Σ. Let tUj, φjujPJ be a collection of C k-charts
of Σ such that tUjujPJ is a locally finite open cover of Σ and for each j P J , U j Ď Oi for
some i P I. By Lemma 4.55, it suffices to find a C k-partition-of-unity of Σ subordinate to
tUjujPJ .

W.L.O.G., we can assume that Uj and Vj ” φ(Uj) is bounded for all j P J . Define
ψj = φ´1

j . Then tVj, ψjujPJ is a collection of local parametrization of Σ. Choose a collection
of open sets tWjujPJ such that Wj Ď Vj for all j P J and

␣

ψj(Wj)
(

jPJ is still an open cover

of Σ. For each j P J , let
␣

B
(j)
k

(Nj

k=1
be a collection of open balls satisfying Wj Ď

Nj
Ť

k=1

B
(j)
k

and cl(B(j)
k ) Ď Vj for all k P t1, ¨ ¨ ¨ , Nju. For j P J and k P t1, ¨ ¨ ¨ , Nju, with cj,k and rj,k

denoting the center and the radius of B(j)
k , respectively, let

µ(j,k)(x) =

$

&

%

exp
(

1

}x´ cj,k}2R2 ´ r2j,k

)
if x P B

(j)
k ,

0 if x R B
(j)
k ,

and then define χj : R2 Ñ R by χj(x) =
Nj
ř

k=1

µ(j,k)(x). Then χj ą 0 in Wj, and χj = 0

outside
Nj
Ť

k=1

B
(j)
k . Further define

λj(x) =

#

(χj ˝ φj)(x) if x P Uj ,
0 if x P U A

j .

Then λj ą 0 on ψj(Wj) which implies that
ř

jPJ
λj ą 0. Finally, we define ζj =

λj
ř

jPJ λj
.

Then tζjujPJ is a C k-partition-of-unity subordinate to the open cover tUjujPJ . ˝

Definition 4.57 (Piecewise Regular Surface). A surface Σ Ď R3 is said to be piecewise

regular if there are finite many curves C1, ¨ ¨ ¨ , Ck such that Σz
k
Ť

i=1

Ci is a disjoint union of
regular surfaces.

Definition 4.58. Let Σ Ď R3 be a piecewise regular surface such that Σ is the disjoint
union of regular surfaces Σi, where i P I for some finite index set I. For a continuous
function f : Σ Ñ R, the surface integral of f over Σ, still denoted by

ż

Σ
f dS, is defined by

ż

Σ

f dS =
ÿ

iPI

ż

Σi

f dS .
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Definition 4.59. Let RΣ be the collection of piecewise regular surfaces in R3. The surface
element is a set function S : RΣ Ñ R that satisfies the following properties:

1. S (Σ) ą 0 for all Σ P RΣ.

2. If Σ is the union of finitely many regular surfaces Σ1, ¨ ¨ ¨ ,Σk that do not overlap
except at their boundaries, then

S (Σ) = S (Σ1) + ¨ ¨ ¨ + S (Σk) .

3. The value of S agrees with the area on planar surfaces; that is,

S (P) = A(P) for all planar surfaces P .

4.4 Oriented Surfaces
In the study of surfaces, orientability is a property that measures whether it is possible to
make a consistent choice of surface normal vector at every point. A choice of surface normal
allows one to use the right-hand rule to define a “counter-clockwise” direction of loops in
the surface that is required in the presentation of the Stokes theorem (Theorem 4.86), a
main result in vector calculus which will be introduced later in Section 4.7.2.

Definition 4.60. A regular surface Σ Ď R3 is said to be oriented if there exists a contin-
uous vector-valued function N : Σ Ñ R3 such that }N}R3 = 1 and for all p P Σ, N ¨ v = 0

for all v P TpΣ. Such a vector-field N is called a unit normal of Σ.

Suppose that Σ Ď R3 is a connected regular surface. Since at each p P Σ the tangent
plane TpΣ of Σ at p has two normal directions, Σ has at most two continuous unit normal
vector fields. If in addition that Σ is oriented, there are exactly two continuous unit normal
vector fields of Σ, and one is the opposite of the other. The two unit normal vector fields
define two sides of the surface.

Suppose further that this oriented surface Σ is the boundary of an open set Ω Ď R3

(for example, a sphere is the boundary of a ball), then one of the unit normal vector fields
N : BΩ Ñ R3 has the property that p + tN(p) R Ω for all small but positive t. Such
a normal is called the outward-pointing unit normal of BΩ, and the opposite of the
outward-pointing unit normal of BΩ is called the inward-pointing unit normal of BΩ.
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Example 4.61. Consider the unit sphere S2 =
␣

(x, y, z) P R3
ˇ

ˇx2 + y2 + z2 = 1
(

. Then
N : S2 Ñ R3 defined by N(p) = p, where the right-hand side is treated as the vector
p ´ 0, is a continuous unit normal vector field on Σ; thus S2 is an oriented surface. Let
B(0, 1) =

␣

(x, y, z) P R3
ˇ

ˇx2 + y2 + z2 ă 1
(

be the unit ball in R3. Then N is the outward-
pointing unit normal of BB(0, 1).

Let Σ Ď R3 be a regular surface, p P Σ, and tV , ψu be a local parametrization of Σ at p.
Since ψ,1 and ψ,2 are linearly independent, ψ,1 ˆψ,2 ‰ 0; thus the vector n given by

n =
ψ,1 ˆψ,2

}ψ,1 ˆψ,2 }R3

˝ ψ´1

is a unit normal vector field on ψ(V). As a consequence, a regular C 1-surface that can be
parameterized by one single parametrization tV , ψu; that is, Σ = ψ(V), is always oriented.
Such a normal vector fields is said to be compatible with the parametrization tV , ψu. To be
more precise, we have the following

Definition 4.62. Let Σ Ď R3 be an oriented C 1-surface, and N : Σ Ñ R3 be a continuous
unit normal vector field of Σ. For each p P V , N is said to be compatible with a local
parametrization tV , ψu of Σ at p if det

(
[ψ, 1

...ψ,2
... N ˝ ψ]

)
ą 0.

The following example provides a famous regular surface which is not oriented.

Example 4.63. A Möbius strip/band is a surface obtained, conceptually, by half-twisting a
paper strip and then joining the ends of the strip together to form a loop (see the following
figure for the idea).

Figure 4.1: Normal vector fields on a Möbius strip

As one can see from Figure 4.1, a Möbius strip is not oriented. To see this mathemati-
cally, consider the following Möbius strip

M =
!(

´ (2 + v cos u
2
) sinu, (2 + v cos u

2
) cosu, v sin u

2

) ˇ
ˇ

ˇ
(u, v) P [0, 2π] ˆ (´1, 1)

)
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and choose a local parametrization ψ : V Ñ R3 given by

ψ(u, v) =
(

´ (2 + v cos u
2
) sinu, (2 + v cos u

2
) cosu, v sin u

2

)
,

where (u, v) P V ” (0, 2π) ˆ (´1, 1).

x y

z

Figure 4.2: The Möbius strip/band ψ([0, 2π] ˆ [´1, 1])

Then the unit normal vector field on ψ(V) compatible with the parametrization tV , ψu is

(N ˝ ψ)(u, v) =
ψ,1 ˆψ,2

}ψ,1 ˆψ,2 }R3

=
2

a

v2 + (4 + 2v cos(u/2))2
ˆ

ˆ

(
v

2
cosu+ (2 + v sin u

2
) sin u

2
sinu,

´
v

2
sinu+ (2 + v cos u

2
) sin u

2
cosu,´(2 + v cos u

2
) cos u

2

)
,

but N does not have a continuous extension on M since if rN is a continuous extension of
N; that is, rN is a unit normal vector field on M and N = rN on ψ(V), then

(0, 0,´1) = lim
uÑ0+

(N ˝ ψ)(u, 0) = rN(2, 0, 0) = lim
uÑ2π´

(N ˝ ψ)(u, 0) = (0, 0, 1)

which is a contradiction.
Another way of seeing that M is not oriented is the following. Let r(t) = G(t, 0) =

(2 cos t, 2 sin t, 0), and C = r([0, 2π]) Ď M be a closed curve on M. If there is a continuous
unit normal vector field rN on M, then rN is also continuous on C. However, rN is never
continuous on C since by moving N continuously along C, starting from r(0) and moving
along C in the direction r 1 and back to r(0) = r(2π), we obtain a different vector which
implies that rN ˝ r is not continuous at r(0) = r(2π) = (2, 0, 0).

Definition 4.64. An open set Ω Ď R3 is said to be of class C k if the boundary BΩ is a
regular C k-surface.

Theorem 4.65. Let Ω Ď R3 be a bounded open set of class C 1. Then BΩ is oriented.
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4.5 Manifolds, Charts, Atlas and Differentiable Struc-
ture

In the following, we introduce a more abstract concept, the so-called manifolds, which is a
generalization of regular surfaces.

Definition 4.66. A topological space M is called an n-dimensional manifold if it is
locally homeomorphic to Rn; that is, there is an open cover U = tUiuiPI of M such that
for each i P I there is a map φi : Ui Ñ Rn which maps Ui homeomorphically onto an open
subset of Rn. The pair tUi, φiu is called a chart (or coordinate system) with domain Ui, and
␣

φi(Ui), φ´1
i

(

is called a local parametrization of M. The collection of charts Φ = tUi, φiuiPI
is called an atlas.

Two charts tUi, φiu and tUj, φju are said to be C r-compatible or have C r-overlap if
the coordinate change

φj ˝ φ´1
i : φi(Ui X Uj) Ñ φj(Ui X Uj)

is of class C r. An atlas Φ on M is called C r if every pair of its charts is C r-compatible.
A maximal C r-atlas α on M is called a differentiable structure, and the pair tM,αu is
called a manifold of class C r.

A function f : M Ñ R is said to be of class C r if f ˝ φ´1
i : Ui Ñ R is of class C r for all

charts tUi, φiu.

In particular, a regular C 1-curve C Ď R3 is a one-dimensional C 1-manifold, and a regular
C 1-surface Σ Ď R3 is a two-dimensional C 1-manifold.

Definition 4.67 (Metric). Let Σ Ď Rn be a (n´1)-dimensional manifold. The metric tensor
associated with the local parametrization tV , ψu (at p P Σ) is the matrix g = [gαβ](n´1)ˆ(n´1)

given by

gαβ = ψ,α ¨ψ,β =
n
ÿ

i=1

Bψi

Byα

Bψi

Byβ
in V .

Proposition 4.68. Let Σ Ď Rn be a (n´ 1)-dimensional manifold, and g = [gαβ](n´1)ˆ(n´1)

be the metric tensor associated with the local parametrization tV , ψu (at p P Σ). Then the
metric tensor g is positive definite; that is,

n´1
ÿ

α,β=1

gαβv
αvβ ą 0 @ v =

n´1
ÿ

γ=1

vγ
Bψ

Byγ
‰ 0 .
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Definition 4.69 (The first fundamental form). Let Σ Ď Rn be a (n´ 1)-dimensional mani-
fold, and g = [gαβ](n´1)ˆ(n´1) be the metric tensor associated with the local parametrization
tV , ψu (at p P Σ). The first fundamental form associated with the local parametrization
tV , ψu (at p P Σ) is the scalar function g = det(g).

Definition 4.70 (Surface integrals). Let M be an (n´1)-dimensional C 1-manifold, tUiuiPI
be a collection of charts of M and tζiuiPI is a partition-of-unity of M subordinate to tUiuiPI .
The “surface integral” (or simply integral) of a scalar function f : M Ñ R over M, denoted
by

ż

M
f dS, is defined by

ż

M
f dS =

ÿ

iPI

ż

φi(Ui)

[
(ζif) ˝ φ´1

]?gi dx ,

where gi is the first fundamental form associated with the parametrization
␣

φi(Ui), φ´1
(

.

Remark 4.71. Let C Ď R3 be a regular C 1-curve. The line integral of a scalar function
f : C Ñ R over C is the “surface integral” of f over C defined in (4.70). In other words,
dS = ds in the case that M is a one-dimensional manifold.

4.5.1 Some useful identities

Let Σ Ď Rn be the boundary of an open set Ω (thus an oriented surface), tV , ψu be a local
parametrization of Σ, and N : Σ Ñ Rn be the normal vector on Σ which is compatible with
the parametrization ψ; that is,

det
([
ψ,1

...ψ,2
... ¨ ¨ ¨

...ψ,n´1
... N ˝ ψ

])
ą 0 .

Define Ψ(y 1, yn) = ψ(y 1) + yn(N ˝ ψ)(y 1). Then Ψ : V ˆ (´ε, ε) Ñ T for some tubular
neighborhood T of Σ.

Ψ

ψ = φ´1

φ

Φ = Ψ´1

y1 = (y1, ¨ ¨ ¨ , yn´1) P Rn´1

Ω

BΩO+

ψ(y1) P BΩ

Φ(O+)

Figure 4.3: The map Ψ constructed from the local parametrization tV , ψu
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Since (∇Ψ)
ˇ

ˇ

tyn=0u
=

[
ψ,1

...ψ,2
... ¨ ¨ ¨

...ψ,n´1
... N˝ψ

]
, Corollary 1.65 and 1.66 implies that

det(∇Ψ)2
ˇ

ˇ

tyn=0u
=

[
det

(
(∇Ψ)T) det(∇Ψ)

]ˇ
ˇ

ˇ

tyn=0u
= det

(
(∇Ψ)T∇Ψ

)ˇ
ˇ

ˇ

tyn=0u

= det
(


g11 g12 ¨ ¨ ¨ g(n´1)1 0
g21 g22 ¨ ¨ ¨ g(n´1)2 0
... ... . . . ... ...

g(n´1)1 g(n´1)2 ¨ ¨ ¨ g(n´1)(n´1) 0
0 0 ¨ ¨ ¨ 0 1


)
= g .

Defining J as the Jacobian of the map Ψ; that is, J = det(∇Ψ), then the identity above
implies that

J =
?g on tyn = 0u .

Moreover, letting A denote the inverse of the Jacobian matrix of Ψ; that is, A = (∇Ψ)´1,
and letting

[
gαβ

]
(n´1)ˆ(n´1)

be the inverse matrix of
[
gαβ

]
(n´1)ˆ(n´1)

, we find that

A
ˇ

ˇ

tyn=0u
=

[
n´1
ÿ

α=1

g1αψ,α
... ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

...
n´1
ÿ

α=1

g(n´1)αψ,α
... N ˝ ψ

]T

.

As a consequence,
(JATen)

ˇ

ˇ

tyn=0u
=

?g (N ˝ ψ) . (4.17)

4.6 The Divergence Theorem

Two differential operators play important roles in vector calculus. The first one is called
the divergence operator which measures the flux of a vector field, and the second one is
called the curl operator which measures the circulation (the speed of rotation) of a vector
field. We will study this two operators in the following two sections.

4.6.1 Flux integrals

Let Σ Ď R3 be an oriented surface with a fixed unit normal vector field N : Σ Ñ R3, and
u : Σ Ñ R3 be a vector-valued function. The flux integral of u over Σ with given orientation
N is the surface integral of u ¨ N over Σ.
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Physical interpretation

Let Ω Ď R3 be an open set which stands for a fluid container and fully contains some liquid
such as water, and u : Ω Ñ R3 be a vector-field which stands for the fluid velocity; that is,
u(x) is the fluid velocity at point x P Ω. Furthermore, let Σ Ď Ω be a surface immersed in
the fluid with given orientation N, and c : Ω Ñ R be the concentration of certain material
dissolving in the liquid. Then the amount of the material carried across the surface in the
direction N by the fluid in a time period of ∆t is

∆t ¨

ż

Σ

cu ¨ N dS .

Therefore,
ż

Σ
cu ¨N dS is the instantaneous amount of the material carried across the surface

in the direction N by the fluid.

Example 4.72. Find the flux integral of the vector field F(x, y, z) = (x, y2, z) upward
through the first octant part Σ of the cylindrical surface x2 + z2 = a2, 0 ă y ă b.

x y

z

a

a

b

Figure 4.4: The surface Σ

Fist, we parameterize Σ by

ψ(u, v) = (u, v,
?
a2 ´ u2), (u, v) P V = (0, a) ˆ (0, b) .

Since the first fundamental form g associated with tV , ψu is g = }ψ,1 ˆψ,2 }2R3 =
a2

a2 ´ u2
,

and the upward-pointing unit normal is N(x, y, z) = (
x

a
, 0,

z

a
), we have

ż

Σ

F ¨ N dS =

ż

V

1

a
(u2 + a2 ´ u2)

a
?
a2 ´ u2

d(u, v) = a2
ż

V

1
?
a2 ´ u2

d(u, v)

= a2
ż b

0

ż a

0

1
?
a2 ´ u2

dudv = a2b arcsin u
a

ˇ

ˇ

ˇ

u=a

u=0
=
πa2b

2
.
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4.6.2 Measurements of the flux - the divergence operator

Let Ω Ď R3 be an open set, and u : Ω Ñ R3 be a C 1 vector field. Suppose that O is a
bounded open set of class C 1 such that O Ď Ω with outward-point unit normal vector field
N. Then the flux integral of u over BO in the direction N is

ż

BO
u ¨ N dS .

Consider a special case that O = B(a, r) for some ball in R3 centered at a with radius r.
We first compute

ż

BB(a,r)
u3N3 dS. Consider

ψ+(x1, x2) =
(
x1, x2, a3 +

a

r2 ´ (x1 ´ a)2 ´ (x2 ´ a2)2
)
, (x1, x2) P D(a, r) ,

ψ´(x2, x2) =
(
x1, x2, a3 ´

a

r2 ´ (x1 ´ a)2 ´ (x2 ´ a2)2
)
, (x1, x2) P D(a, r) ,

where D(a, r) is the disk in R2 given by
␣

(x1, x2) P R2
ˇ

ˇ (x1 ´ a1)
2 + (x2 ´ a2)

2 ď r2
(

. Since
BB(a, r)z

(
ψ+(D(a, r)) Y ψ´(D(a, r)) is the equator of the sphere BB(a, r) which has zero

area, we must have
ż

BB(a,r)

u3N3 dS =

ż

ψ+(D(a,r))

u3N3 dS +

ż

ψ´(D(a,r))

u3N3 dS .

Note that (N ˝ ψ˘)(x1, x2) =
1

r

(
ψ˘(x1, x2) ´ a

)
. In view of Example 4.49, we have

ż

ψ+(D(a,r))

u3N3 dS

=

ż

D(a,r)

u3(ψ+(x1, x2))

a

r2 ´ (x1 ´ a1)2 ´ (x2 ´ a2)2

r

r
a

r2 ´ (x1 ´ a1)2 ´ (x2 ´ a2)2
dA

=

ż

D(a,r)

u3(ψ+(x1, x2)) dA .

and similarly,
ż

ψ+(D(a,r))

u3N3 dS = ´

ż

D(a,r)

u3(ψ´(x1, x2)) dA .

Therefore,
ż

BB(a,r)

u3N3 dS =

ż

D(a,r)

[
u3(ψ+(x1, x2)) ´ u3(ψ´(x1, x2))

]
dA

=

ż

D(a,r)

( ż a3+
?
r2´(x1´a1)2´(x2´a2)2

a3´
?
r2´(x1´a1)2´(x2´a2)2

Bu3

Bx3
(x1, x2, x3) dx3

)
dA

=

ż

B(a,r)

Bu3

Bx3
dx .
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Similarly,
ż

BB(a,r)

u1N1 dS =

ż

B(a,r)

Bu1

Bx1
dx and

ż

BB(a,r)

u2N2 dS =

ż

B(a,r)

Bu2

Bx2
dx ;

thus we conclude that
ż

BB(a,r)

u ¨ N dS =

ż

B(a,r)

3
ÿ

i=1

Bui
Bxi

dx .

The computation above motivates the following

Definition 4.73 (The divergence operator). Let u : Ω Ď Rn Ñ Rn be a vector field. The
divergence of u is a scalar function defined by

divu =
n
ÿ

i=1

Bui

Bxi
.

Definition 4.74. A vector field u : Ω Ď Rn Ñ Rn is called solenoidal or divergence-free if
divu = 0 in Ω.

4.6.3 The divergence theorem

Theorem 4.75 (The divergence theorem). Let Ω Ď Rn be a bounded Lipschitz domain, and
v P C 1(Ω) X C (Ω). Then

ż

Ω

divv dx =

ż

BΩ

v ¨ N dS ,

where N is the outward-pointing unit normal of Ω.

Proof. To embrace the beauty of geometry (and the context that we have introduced), we
prove the case that Ω is a bounded open set of class C 3.

Let tUmuKm=1 be an open cover of BΩ such that for each m P t1, ¨ ¨ ¨ , Ku there exists a
C 3-parametrization ψm : Vm Ď Rn´1 Ñ Um which is compatible with the orientation N;
that is,

det
(
[ψm,1

... ¨ ¨ ¨
...ψm,n´1

... N ˝ ψm]
)

ą 0 on Vm .

Define ϑm(y1, yn) = ψm(y
1) + yn(N ˝ ψm)(y

1) as in Section 4.5.1. Then there exists εm ą 0

such that ϑm : Vm ˆ (´εm, εm) Ñ Wm is a C 2-diffeomorphism for some open set in Rn such
that ϑm : Vm ˆ (´εm, 0) Ñ Ω X Wm while ϑm : Vm ˆ (0, εm) Ñ int(ΩA) X Wm.
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Choose an open set W0 Ď Rn such that W0 Ď Ω and Ω Ď
K
Ť

m=0

Wm, and define ϑ0 as the

identity map. Let 0 ď ζm ď 1 in C 8
c (Um) denote a partition-of-unity of Ω subordinate to

the open covering tWmuKm=0; that is,

K
ÿ

m=0

ζm = 1 and spt(ζm) Ď Um @m.

Let Jm = det(∇ϑm), Am = (∇ϑm)´1, and gm denote the first fundamental form associated
with tVm, ψmu. Using (4.17), ?gm(N ˝ ϑm) = Jm(Am)

Ten on Vm ˆ t0u for m P t1, ¨ ¨ ¨ , Ku.
Therefore, making change of variable x = ϑm(y) in each Wm we find that

ż

BΩ

v ¨ N dS =
K
ÿ

m=1

ż

BΩXWm

ζm(v ¨ N) dS

=
K
ÿ

m=1

n
ÿ

i=1

ż

Vmˆtyn=0u

(ζm ˝ ϑm)(vi ˝ ϑm)(Ni ˝ ϑm)
?gm dy 1

=
K
ÿ

m=1

n
ÿ

i=1

ż

Vmˆtyn=0u

(ζm ˝ ϑm)(vi ˝ ϑm)Jm(Am)
n
i dy

1

=
K
ÿ

m=1

n
ÿ

i=1

ż

Vmˆ(´εm,0)

B

Byn

[
(ζm ˝ ϑm)Jm(Am)

n
i (vi ˝ ϑm)

]
dy .

On the other hand, for α P t1, ¨ ¨ ¨ , n ´ 1u and i P t1, ¨ ¨ ¨ , nu,
ż

Vmˆ(´εm,0)

B

Byα

[
(ζm ˝ ϑm)Jm(Am)

α
i (vi ˝ ϑm)

]
dy = 0 ;

thus the Piola identity (2.6) implies that
ż

BΩ

v ¨ N dS =
K
ÿ

m=1

n
ÿ

i,j=1

ż

Vmˆ(´εm,0)

B

Byj

[
(ζm ˝ ϑm)Jm(Am)

j
i (vi ˝ ϑm)

]
dy

=
K
ÿ

m=1

n
ÿ

i,j=1

ż

Vmˆ(´εm,0)

Jm(Am)
j
i (ζm ˝ ϑm),j (vi ˝ ϑm) dy

+
K
ÿ

m=1

n
ÿ

i,j=1

ż

Vmˆ(´εm,0)

(ζm ˝ ϑm)Jm(Am)
j
i (vi ˝ ϑm),j dy .

Making change of variable y = ϑ´1
m (x) in each Vm ˆ (´εm, 0) again, by the fact that

n
ÿ

i,j=1

(Am)
j
i (vi ˝ θm),j = (divv) ˝ θm and

ż

W0

div
(
ζ0v) dx = 0 ,



136 CHAPTER 4. Vector Calculus

we conclude that
ż

BΩ

v ¨ N dS =

ż

W0

div
(
ζ0v) dx+

K
ÿ

m=1

ż

Wm

(v ¨ ∇x)ζm dx+
K
ÿ

m=1

ż

Wm

ζmdivv dx

=
K
ÿ

m=0

ż

Wm

(v ¨ ∇x)ζm dx+
K
ÿ

m=0

ż

Wm

ζmdivv dx

=

ż

Ω

(v ¨ ∇x)1 dx+

ż

Ω

divv dx =

ż

Ω

divv dx . ˝

Letting v = (0, ¨ ¨ ¨ , 0, f, 0, ¨ ¨ ¨ , 0) = fei, we obtain the following

Corollary 4.76. Let Ω Ď Rn be a bounded Lipschitz domain, and f P C 1(Ω)X C (Ω). Then
ż

Ω

Bf

Bxi
dx =

ż

BΩ

f Ni dS ,

where Ni is the i-th component of the outward-pointing unit normal N of Ω.

Letting v be the product of a scalar function and a vector-valued function in Theorem
4.75, we conclude the following

Corollary 4.77. Let Ω Ď Rn be a bounded Lipschitz domain, and v P C 1(Ω;Rn)XC (Ω;Rn)

be a vector-valued function and φ P C 1(Ω) X C (Ω) be a scalar function. Then
ż

Ω

φ divv dx =

ż

BΩ

(v ¨ N)φdS ´

ż

Ω

v ¨ ∇φdx , (4.18)

where N is the outward-pointing unit normal on BΩ.

Example 4.78. Let Ω be the the first octant part bounded by the cylindrical surface
x2 + z2 = a2 and the plane y = b, and F : Ω Ñ R3 be a vector-valued function defined by
F(x, y, z) = (x, y2, z).

x y

z

a

a

b

Figure 4.5: The domain Ω and its five pieces of boundaries
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With N denoting the outward-pointing unit normal of BΩ,
ż

Ω

divF d(x, y, z) =

ż a

0

ż b

0

ż

?
a2´x2

0

(2 + 2y) dzdydx = (b2 + 2b)

ż a

0

ż

?
a2´x2

0

dzdx

=
πa2(b2 + 2b)

4
.

On the other hand, we note that the boundary of Ω has five parts: Σ as given in Example
4.72, two rectangles R1 = tx = 0u ˆ [0, b] ˆ [0, a], R2 = [0, a] ˆ [0, b] ˆ tz = 0u, and two
quarter disc D1 =

␣

(x, 0, z) P R3
ˇ

ˇx2 + z2 ď a2, x, z ě 0
(

and D2 =
␣

(x, b, z) P R3
ˇ

ˇx2 + z2 ď

a2, x, z ě 0
(

. Therefore,
ż

R1

F ¨ N dS =

ż a

0

ż b

0

(0, y2, z) ¨ (´1, 0, 0) dydz = 0 ,

ż

R2

F ¨ N dS =

ż a

0

ż b

0

(x, y2, 0) ¨ (0, 0,´1) dydx = 0 ,

ż

D1

F ¨ N dS =

ż a

0

ż

?
a2´x2

0

(x, 0, z) ¨ (0,´1, 0) dzdx = 0 ,

and
ż

D1

F ¨ N dS =

ż a

0

ż

?
a2´x2

0

(x, b2, z) ¨ (0, 1, 0) dzdx = b2
ż a

0

ż

?
a2´x2

0

dzdx =
πa2b2

4
.

Together with the result in Example 4.72, we find that
ż

BΩ

F ¨ N dS =
( ż

Σ

+

ż

R1

+

ż

R2

+

ż

D1

+

ż

D2

)
F ¨ N dS =

πa2b2

4
+
πa2b

2
=
πa2(b2 + 2b)

4

=

ż

Ω

divF d(x, y, z) .

4.6.4 The divergence theorem on surfaces with boundary

This section is devoted to the divergence theorem on surfaces in R3 instead of domains of
Rn. To do so, we need to define what the divergence operator on a surface is, and this
requires that we first define the vector fields on which the surface divergence operator acts.

Definition 4.79. Let Σ Ď R3 be an open C 1-surface; that is, Σ is of class C 1 and ΣXBΣ =

H. A vector field u defined on Σ is called a tangent vector field on Σ, denoted by u P TΣ,
if u ¨ N = 0 on Σ, where N : Σ Ñ S2 is a unit normal vector field on Σ.
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Having established (4.18), we find that the divergence operator div is the formal adjoint
of the operator ´∇. The following definition is motivated by this observation.

Definition 4.80 (The surface gradient and the surface divergence). Let Σ Ď Rn be a
regular C 1-surface. The surface gradient of a function f : Σ Ñ R, denoted by ∇Σf , is a
vector-valued function from Σ to TpΣ given, in a local parametrization tV , ψu, by

(∇Σf) ˝ ψ =
n´1
ÿ

α,β=1

gαβ
B (f ˝ ψ)

Byα

Bψ

Byβ
,

where [gαβ] is the inverse matrix of the metric tensor [gαβ] associated with tV , ψu, and
!

Bψ

Byβ

)2

β=1
are tangent vectors to Σ.

The surface divergence operator divΣ is defined as the formal adjoint of ´∇Σ; that is, if
u P TΣ, then

´

ż

Σ

u ¨ ∇Σf dS =

ż

Σ

f divΣu dS @ f P C 1
c (Σ;R) .

In a local parametrization (V , ψ),

(divΣu) ˝ ψ =
1

?g

n´1
ÿ

α,β=1

B

Byα

[?ggαβ
(
(u ˝ ψ) ¨

Bψ

Byβ

)]
,

where g = det(g) is the first fundamental form associated with tV , ψu.

Remark 4.81. Suppose that f : O Ď R3 Ñ R for some open set containing Σ. Then the
surface gradient of f at p P Σ is the projection of the gradient vector (∇f)(p) onto the
tangent plane TpΣ. In other words, let N : Σ Ñ R3 be a continuous unit normal vector field
on Σ, then

(∇Σf)(p) = (∇f)(p) ´
[
(∇f)(p) ¨ N(p)

]
N(p) (or simply ∇Σf = ∇f ´ (∇f ¨ N)N) .

Definition 4.82 (Surfaces with Boundary). An oriented C k-surface Σ Ď R3 is said to have
C ℓ-boundary BΣ if there exists a collection of pairs tVm, ψmuKm=1, called a collection of local
parametrization of Σ, if

1. Vm Ď R2 is open and ψm : Vm Ñ R3 is one-to-one map of class C k for all m P

t1, ¨ ¨ ¨ , Ku;

2. ψm(Vm) X Σ ‰ H for all m P t1, ¨ ¨ ¨ , Ku and Σ Ď
ŤK
m=1 ψm(Vm);
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3. ψm : Vm Ñ ψm(Vm) is a C k-diffeomorphism if ψm(Vm) Ď Σ;

4. ψm : V+
m ” Vm X ty2 ą 0u Ñ ψm(Vm) X Σ is a C k-diffeomorphism if Um X BΣ ‰ H;

5. ψm : Vm X ty2 = 0u Ñ Um X BΣ is of class C ℓ if Um X BΣ ‰ H.

Now we are in the position of stating the divergence theorem on surfaces with boundary.

Theorem 4.83. Let Σ Ď R3 be an oriented C 1-surface with C 1-boundary BΣ, N : Σ Ñ S2

be a continuous unit normal vector field on Σ, and T : BΣ Ñ S2 be tangent vector on BΣ

such that T is compatible with N (which means T ˆ N points away from Σ). Then

ż

BΣ

u ¨ (T ˆ N) ds =

ż

Σ

divΣu dS @ u P TΣ X C 1(Σ;R3) X C (Σ;R3) ,

where divΣ is the surface divergence operator.

Proof. Let tVm, ψmuKm=1 denote a collection of local parametrization of Σ such that ψm(Vm)X
BΣ = H for 1 ď m ď J , and ψm(Vm)X BΣ is non-empty and connected for J +1 ď m ď K.
W.L.O.G., we can assume that Vm = Bm ” B(0, rm) for some rm ą 0. Write Um = ψm(Vm),
and let tgmuKm=1 be the associated metric tensor, as well as the associated first fundamental
form gm = det(gm). Let tζmuKm=1 be a partition-of-unity of Σ subordinate to tUmuKm=1.
Then

ż

Σ

divΣu dS =
K
ÿ

m=1

ż

UmXΣ

ζmdivΣu dS

=
J
ÿ

m=1

2
ÿ

α,β=1

ż

Bm

(ζm ˝ ψm)
B

Byα

[?gmgαβm
(
(u ˝ ψm) ¨

Bψm
Byβ

)]
dy

+
K
ÿ

m=J+1

2
ÿ

α,β=1

ż

B+
m

(ζm ˝ ψm)
B

Byα

[?gmgαβm
(
(u ˝ ψm) ¨

Bψm
Byβ

)]
dy .

Let n denote the outward-pointing unit normal on either BBm for 1 ď m ď J or BB+
m for

J + 1 ď m ď K. Since ζm ˝ ϑm = 0 on BB(0, rm) for 1 ď m ď J , and ζm ˝ ϑm = 0 on
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ty2 ą 0u X BB(0, rm) for J + 1 ď m ď K, the divergence theorem (on R2) implies that

ż

Σ

divΣu dS = ´

K
ÿ

m=1

2
ÿ

α,β=1

ż

ψ´1
m (UmXΣ)

[?gmgαβm
(
(u ˝ ψm) ¨

Bψm
Byβ

)] B

Byα
(ζm ˝ ψm) dy

+
K
ÿ

m=J+1

2
ÿ

α,β=1

ż

BmXty2=0u

(ζm ˝ ψm)nα

[?gmgαβm
(
(u ˝ ψm) ¨

Bψm
Byβ

)]
dy1

= ´

K
ÿ

m=1

ż

ψ´1
m (UmXΣ)

(u ¨ ∇Σζm) ˝ ψm
?gm dy

+
K
ÿ

m=J+1

ż

BmXty2=0u

(ζm ˝ ψm)(u ˝ ψm) ¨

[ 2
ÿ

α,β=1

nα

?gmgαβm
Bψm
Byβ

]
dy1 .

Since
K
ÿ

m=1

ż

ψ´1
m (UmXΣ)

(u ¨∇Σζm) ˝ ψm
?gm dy =

K
ÿ

m=1

ż

UmXΣ

(u ¨∇Σζm) dS =

ż

Σ

(u ¨∇
K
ÿ

m=1

ζm) dS = 0 ,

we conclude that
ż

Σ

divΣu dS =
K
ÿ

m=J+1

ż

BmXty2=0u

(ζm ˝ ψm)(u ˝ ψm) ¨

[ 2
ÿ

α,β=1

nα

?gmgαβm
Bψm
Byβ

]
dy1 .

On the other hand,
ż

BΣ

u ¨ (T ˆ N) ds =
K
ÿ

m=J+1

ż

BΣXUm
ζmu ¨ (T ˆ N) ds

=
K
ÿ

m=J+1

ż

BmXty2=0u

(ζm ˝ ψm)(u ˝ ψm) ¨

[
(T ˆ N) ˝ ψm

ˇ

ˇ

ˇ

Bψm
By1

ˇ

ˇ

ˇ

]
dy1 .

Therefore, the theorem can be concluded as long as we can show that

2
ÿ

α,β=1

nα

?gm gαβm
Bψm
Byβ

= (T ˆ N) ˝ ψm

ˇ

ˇ

ˇ

Bψm
By1

ˇ

ˇ

ˇ
on Bm X ty2 = 0u . (4.19)

Let τm =
2
ř

α,β=1

nα
?gmgαβm

Bψm
Byβ

on BmXty2 = 0u. Since nα = ´δ2α, we find that τm ¨
Bψm
By1

=

0 on Bm X ty2 = 0u; thus

τm ¨ (T ˝ ψm) = 0 on Bm X ty2 = 0u .
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Moreover, noting that τm is a linear combination of tangent vectors Bψm
Byβ

, we must have

τm ¨ (N ˝ ψm) = 0 on Bm X ty2 = 0u .

As a consequence,
τm � (T ˆ N) ˝ ψm on Bm X ty2 = 0u .

Since (T ˆ N) points away from Σ, while Bψm
By2

˝ ψ´1
m

ˇ

ˇ

ˇ

BΣ
points toward Σ, by the fact that

τm ¨
Bψm
By2

=
2
ÿ

α,β=1

nα

?gmgαβm
Bψm
Byβ

¨
Bψm
By2

= ´
?gmg22m ă 0 ,

we must have τm ¨ (T ˆ N) ˝ ψm ą 0 on Bm X ty2 = 0u. In other words,

τm = |τm|(T ˆ N) ˝ ψm on Bm X ty2 = 0u .

Finally, since

τm ¨ τm =
2
ÿ

α,β,γ,δ=1

gm nα nγ g
αβ
m gγδm

Bψm
Byβ

¨
Bψm
Byδ

= gmg22m = gm11 =
ˇ

ˇ

ˇ

Bψm
By1

ˇ

ˇ

ˇ

2

,

we conclude that τm =
ˇ

ˇ

ˇ

Bψm
By1

ˇ

ˇ

ˇ
(T ˆ N) ˝ ψm on ty2 = 0u; thus (4.19) is established. ˝

Remark 4.84. On BΣ, the vector T ˆ N is “tangent” to Σ and points away from Σ. In
other words, T ˆ N can be treated as the “outward-pointing” unit “normal” of BΣ which
makes the divergence theorem on surfaces more intuitive.

4.7 The Stokes Theorem

4.7.1 Measurements of the circulation - the curl operator

We consider the circulation or the speed of rotation of a vector field u about an axis in the
direction N. Let P be a plane passing thorough a point a and having normal N, and Cr be
a circle on the plane P centered at a with radius r. Pick the orientation of the unit tangent
vector T which is compatible with the unit normal N (see Figure 4.6 for reference).
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T

P

T

r

T

N

T
a

Figure 4.6: the circulation about an axis in direction N

Since the instantaneous angular velocity of a vector field u along the circle Cr is measured
by u ¨ T

r
, it is quite reasonable to measure the circulation of u along Cr by averaging the

angular velocity; that is, we consider the quantity

1

2πr

¿

Cr

u ¨ T
r

ds (4.20)

as a (constant multiple of) measurement of the speed of rotation. The limit of the quantity
above, as r Ñ 0, is then a good measurement of the rotation speed of u at the point a about
the axis in the direction N.

Since we expect that this measurement does not depend on the choice of coordinate
systems, we start from letting P be the x1x2-plane, and N = (0, 0, 1), T = (´ sin θ, cos θ, 0).
By the change of variable ds = rdθ and the L’Hôspital rule,

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds = lim
rÑ0

ż 2π

0

u2
(
a+(r cos θ, r sin θ, 0)

)
cos θ ´ u1

(
a+(r cos θ, r sin θ, 0)

)
sin θ

2πr
dθ

=
1

2π

ż 2π

0

[
u2
,1(a) cos2 θ+u2

,2(a) cos θ sin θ´u1
,1(a) cos θ sin θ´u1

,2(a) sin2 θ
]
dθ

=
1

2

[
u2
,1(a)´u1

,2(a)
]
=

1

2

2
ÿ

i,j=1

ε3ijuj,i(a). (4.21)

Now suppose the general case that N ‰ e3. There is an orthonormal matrix O = [pe1|pe2|pe3]
so that Oe3 = N. As a consequence, pe3 = N, pej = Oej for j = 1, 2, T = Oτ with
τ = (´ sin θ, cos θ, 0), and the limit of the quantity in (4.20) is given by

lim
rÑ0

1

2πr

ż 2π

0
u(a+ r cos θpe1 + r sin θpe2) ¨ (Oτ ) dθ

= lim
rÑ0

1

2πr

ż 2π

0
(Ov)(a+ r cos θpe1+r sin θpe2) ¨ (Oτ ) dθ

= lim
rÑ0

1

2πr

ż 2π

0
v(a+ r cos θpe1+r sin θpe2) ¨ (´ sin θ, cos θ, 0) dθ,
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where v = OTu, and the identity that (Ov) ¨ (Oτ ) = v ¨τ is used to deduce the last equality.
By the L’Hôspital rule again,

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

3
ÿ

j=1

[
v2
,j(a)pe

j
1 ´ v1

,j(a)pe
j
2

]
.

In fact, we expect this to hold since if using x 1 = OTx as the new coordinate, by (4.21) and
the chain rule we obtain that

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

[
Bv2

Bx 1
1

´
Bv1

Bx 1
2

]
(a 1) =

1

2

3
ÿ

j=1

[
Bv2

Bxj
(a)pej1 ´

Bv1

Bxj
(a)pej2

]
.

Finally, we note that vℓ,j =
3
ř

k=1

uk
,j ek ¨peℓ =

3
ř

k=1

uk
,j pekℓ for ℓ = 1, 2, 3; thus

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

3
ÿ

j=1

[
v2
,j pe

j
1 ´ v1

,j pe
j
2

]
=

1

2

3
ÿ

j,k=1

uk
,j

[
pek2 pe

j
1 ´pek1 pe

j
2

]
=

1

2

3
ÿ

j,k,r,s=1

(δjrδks ´ δjsδkr)uk
,j per1 pes2 ,

where δ¨¨’s are the Kronecker deltas. Due to the following useful identity
3
ÿ

i=1

εijkεirs = δjrδks ´ δjsδkr , (4.22)

we conclude that

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

3
ÿ

i,j,k,r,s=1

εijkεirsuk
,j per1 pes2 =

1

2

3
ÿ

i,j,k=1

εijkuk
,j(pe1 ˆpe2)i

=
1

2

3
ÿ

i,j,k=1

εijkuk
,j pe i3 =

1

2

3
ÿ

i,j,k=1

εijkuk
,jNi.

This motivates the following

Definition 4.85 (The curl operator). Let u : Ω Ď Rn Ñ Rn, n = 2 or n = 3, be a vector
field.

1. For n = 2, the curl of u is a scalar function defined by

curlu =
2
ÿ

i,j=1

ε3ijuj
,i .
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2. For n = 3, the curl of u is a vector-valued function defined by

(curlu)i =
3
ÿ

j,k=1

εijkuk
,j .

The function curlu is also called the vorticity of u, and is usually denoted by one single
Greek letter ω.

Having the curl operator defined, for the three-dimensional case the circulation of a
vector field u on the plane with normal N is given by curlu ¨ N

2
.

4.7.2 The Stokes theorem

The path we choose to circle around the point a does not have to be a circle. However, in
such a case the average of the angular velocity no longer makes sense (since u ¨ T might not
contribute to the motion in the angular direction), and we instead consider the limit of the
following quantity

lim
AÑ0

1

A

¿

C
u ¨ T ds,

where A is the area enclosed by C. This limit is always curlu ¨ N because of the famous
Stokes’ theorem.

Theorem 4.86 (The Stokes theorem). Let u : Ω Ď R3 Ñ R3 be a smooth vector field, and
Σ be a C 1-surface with C 1-boundary BΣ in Ω. Then

ż

BΣ

u ¨ T ds =

ż

Σ

curlu ¨ N dS ,

where N and T are compatible normal and tangent vector fields.

To prove the Stokes theorem, we first establish the following

Lemma 4.87. Let Ω Ď R3 be a bounded Lipschitz domain, and w : Ω Ñ Rn be a mooth
vector-valued function. If Σ Ď Ω is an oriented C 1-surface with normal N, then

curlw ¨ N = divΣ(w ˆ N) on Σ . (4.23)

Proof. Let O Ď Ω be a C 1-domain such that Σ Ď BO and N is the outward-pointing unit
normal on BO. In other words, Σ is part of the boundary of O. Since

(∇φ)i = Bφ

BNNi + (∇BOφ)
i on BO ,
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by the divergence theorem we conclude that for all φ P C 1(O),
ż

BO
(curlw ¨ N)φdS =

ż

O
curlw ¨ ∇φdx =

ż

BO
(N ˆ w) ¨ ∇φdS

=

ż

BO
(N ˆ w) ¨ ∇BOφdS =

ż

BO
divBO(w ˆ N)φdS .

Identity (4.23) is concluded since φ can be chosen arbitrarily on Σ. ˝

Proof of the Stokes theorem. Using (4.23) and then applying the divergence theorem on
surfaces with boundary (Theorem 4.83), we find that

ż

Σ

curlu ¨ N dS =

ż

Σ

divΣ(u ˆ N) dS =

ż

BΣ

(u ˆ N) ¨ (T ˆ N) ds =

ż

BΣ

(u ¨ T) ds

in which the identity (u ˆ N) ¨ (T ˆ N) = u ¨ T is used. ˝

Example 4.88. Let Σ be the surface given in Example 4.51, and F : R3 Ñ R3 be a vector-
valued function given by F(x, y, z) = (y,´x, 0). Then by the definition of line integral,

¿

C

F ¨ dr =

ż π
2

´π
2

(sin2 t,´ cos t sin t, 0) ¨
(

cos2 t ´ sin2 t, 2 sin t cos t,´ sin t
)
dt

=

ż π
2

´π
2

(
sin2 t cos2 t ´ sin4 t ´ 2 sin2 t cos2 t

)
dt

= ´

ż π
2

´π
2

sin2 tdt = ´

ż π
2

´π
2

1 ´ cos 2t
2

dt = ´

( t
2

´
sin 2t

4

)ˇ
ˇ

ˇ

π
2

´π
2

= ´
π

2
.

while by the fact that curlF = (0, 0,´2), the Stokes theorem implies that
¿

C

F ¨ dr =

ż

Σ

(0, 0,´2) ¨ N dS =

ż

ψ´1(Σ)

´2 cosϕ sinϕ d(θ, ϕ) = ´2

ż π
2

0

ż π´ϕ

ϕ

sinϕ cosϕ dθdϕ

= ´

ż π
2

0

(π ´ 2ϕ) sin 2ϕ dϕ =
(π
2

cos 2ϕ ´ ϕ cos 2ϕ+
1

2
sin 2ϕ

)ˇ
ˇ

ˇ

ϕ=π
2

ϕ=0

= ´
π

2
´
π

2
+
π

2
= ´

π

2
.

Example 4.89. Let C be a smooth curve parameterized by

r(t) =
(

cos(sin t) sin t, sin(sin t) sin t, cos t
)
, t P [0, 2π] .

Then the curve C is a closed curve on S2, and divide S2 into two parts. Let Σ denote the
part with smaller area.
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x y

z

2. Plot C1 and C2 on the θφ-plane. The curve C divides the unit sphere into two parts, and let Σ

be the part containing the point (0, 1, 0). Identify the corresponding region of Σ on θφ-plane.

3. Find the surface area of Σ.

4. Let
⇀

F (x, y, z) = (y,−x, 0) be a vector field in the space. Compute the line integral

∮

C

⇀

F ·
⇀

T ds

by the definition of the line integral.

5. Use Stokes’s Theorem to find the line integral

∮

C

⇀

F ·
⇀

T ds.

As in Example 4.51 and Example 4.88, we would like to find the area of Σ, and verify
the Stokes theorem for the special case that F : R3 Ñ R3 given by

F(x, y, z) = (y,´x, 0) .

To find the surface area of Σ, we need to parameterize Σ. As in Example 4.51, we look
for γ(t) =

(
θ(t), ϕ(t)

)
, t P [0, 2π], such that ψ

(
γ(t)

)
= r(t), where ψ : R ” (0, 2π)ˆ (0, π) is

given by ψ(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ) .
For t P (0, π), since cos t = cosϕ(t) and ϕ(t) P (0, π), we must have ϕ(t) = t; thus the

two identities cos(sin t) sin t = cos θ(t) sinϕ(t) and sin(sin t) sin t = sin θ(t) sinϕ(t) further
imply that θ(t) = sin t. Therefore, the curve r

(
(0, π)

)
corresponds to θ = sinϕ, ϕ P (0, π),

on R.
On the other hand, for t P (π, 2π), the identity cosϕ(t) = cos t implies that ϕ(t) = 2π ´

t. The two identities cos(sin t) sin t = cos θ(t) sinϕ(t) and sin(sin t) sin t = sin θ(t) sinϕ(t)
further imply that

cos(sin t) = ´ cos θ(t) and sin(sin t) = ´ sin θ(t) t P (π, 2π) .

Therefore, θ(t) = π + sin t which implies that the curve r
(
(π, 2π)

)
corresponds to θ =

π ´ sinϕ, ϕ P (0, π), on R.

R

θ

ϕ

ψ´1(Σ)

θ = sinϕ
θ = π ´ sinϕ
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Therefore, the surface area of Σ is
ż π

0

ż π´sinϕ

sinϕ
sinϕ dθdϕ =

ż π

0

(π ´ 2 sinϕ) sinϕ dϕ = ´

(
π cosϕ+ ϕ ´

sin(2ϕ)
2

)ˇ
ˇ

ˇ

ϕ=π

ϕ=0
= π .

Next, we compute the line integral
¿

C
F ¨ dr. First, we note that

r 1(t) = (´ sin(sin t) sin t cos t+ cos(sin t) cos t, cos(sin t) sin t cos t+ sin(sin t) cos t,´ sin t) ;

thus

(F ˝ r)(t) ¨ r 1(t) = ´ sin2(sin t) sin2 t cos t+ sin(sin t) cos(sin t) sin t cos t
´ cos2(sin t) sin2 t cos t ´ sin(sin t) cos(sin t) sin t cos t

= ´ sin2 t cos t .

As a consequence,
¿

C

F ¨ dr = ´

ż 2π

0

sin2 t cos t dt = ´
1

3
sin3 t

ˇ

ˇ

ˇ

t=2π

t=0
= 0 .

On the other hand,
ż

Σ

curlF ¨ N dS =

ż π

0

ż π´sinϕ

sinϕ
(0, 0,´2) ¨ (cos θ sinϕ, sin θ sinϕ, cosϕ) sinϕ dθdϕ

= ´2

ż π

0

sinϕ cosϕ(π ´ 2 sinϕ) dϕ

=
(π
2

cos 2ϕ+
4

3
sin3 ϕ

)ˇ
ˇ

ˇ

ϕ=π

ϕ=0
= 0 .

4.8 Green’s Theorem
In most of materials Green’s theorem is introduced prior to the divergence theorem and the
Stokes theorem; however, we treat Green’s theorem as a corollary of the divergence theorem
(Theorem 4.75), the Stokes theorem (Theorem 4.86) and Theorem 4.83.

Theorem 4.90 (Green’s theorem). Let D be a bounded domain whose boundary BD is
piecewise smooth, and M,N : D Ñ R be of class C 1. Then

¿

BD
(M,N) ¨ dr =

ż

D
(Nx ´ My) dA ,

where the line integral (on the left-hand side of the identity above) is taken so that the curve
is counter-clockwise oriented.
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Proof 1. Let u(x, y) =
(
N(x, y),´M(x, y)

)
be a vector-valued function defined on the 2-

dimensional domain D. Suppose that BD is parameterized by r(t) =
(
x(t), y(t)

)
for t P [a, b],

where r 1 points in the counter-clockwise direction. Then with N denoting the outward-
pointing unit normal of BD, the divergence theorem implies that

¿

BD
(M,N) ¨ dr =

¿

BD
u ¨ N ds =

ż

D
divu dA =

ż

D
(Nx ´ My) dA . ˝

Proof 2. Let F(x, y, z) =
(
M(x, y), N(x, y), 0

)
be a vector-valued function defined in a

subset of R3. Then
curlF = (0, 0, Nx ´ My) ;

thus the Stokes theorem implies that
¿

BD
(M,N) ¨ dr =

ż

BD
F ¨ T ds =

ż

D
curlF ¨ N dS =

ż

D
(0, 0, Nx ´ My) ¨ (0, 0, 1) dA

=

ż

D
(Nx ´ My) dA . ˝

Proof 3. Let Σ = D ˆ tz = 0u. Then Σ is a surface with boundary and the upward-
pointing unit normal N = (0, 0, 1). Let F : Σ Ñ R3 and u : D Ñ R2 be vector-valued
functions defined by F(x, y, z) =

(
N(x, y),´M(x, y), 0) and u(x, y) =

(
N(x, y),´M(x, y)

)
,

respectively. We note that if BD is parameterized by r(t) = (x(t), y(t), 0), then

T ˆ N =
1

}r 1(t)}R3

(
x 1(t), y 1(t), 0

)
ˆ (0, 0, 1) =

1

}r 1(t)}R3

(
y 1(t),´x 1(t), 0

)
;

thus by the fact that the surface divergence operator divΣ is the same as the 2-d divergence
operator (since Σ is flat), Theorem 4.83 implies that

¿

BD
(M,N) ¨ dr =

¿

BD
F ¨ (T ˆ N) ds =

ż

Σ

divΣF dS =

ż

D
divu dA =

ż

D
(Nx ´ My) dA . ˝

Corollary 4.91. Let R Ď R2 be a domain enclosed by a simple closed curve C which is
parameterized by r(t) =

(
x(t), y(t)

)
for t P [a, b]. Suppose r 1 points in the counter-clockwise

direction. Then
the area of R =

1

2

ż b

a

(
x(t)y 1(t) ´ y(t)x 1(t)

)
dt .

Proof. The corollary is concluded by applying Green’s theorem to the special case: M(x, y) =

´y and N(x, y) = x. ˝
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Example 4.92. Compute the area enclosed by the Cardioid which has a polar representa-
tion r = (1 ´ sin θ) with θ P [0, 2π].

x

y

Figure 4.7: The Cardioid

Given the polar representation r = (1 ´ sin θ), a parametrization of the Cardioid is

r(t) =
(
x(t), y(t)

)
=

(
(1 ´ sin t) cos t, (1 ´ sin t) sin t

)
t P [0, 2π] .

Then Corollary 4.91 implies that the area enclosed by the Cardioid is

1

2

ż 2π

0

[
(1 ´ sin t) cos t

(
´ cos t sin t+ (1 ´ sin t) cos t

)
´ (1 ´ sin t) sin t

(
´ cos2 t ´ (1 ´ sin t) sin t

)]
dt

=
1

2

ż 2π

0

(1 ´ sin t)
[

cos2 t ´ 2 sin t cos2 t+ sin t cos2 t+ sin2 t ´ sin3 t
]
dt

=
1

2

ż 2π

0

(1 ´ sin t)(1 ´ sin t cos2 t ´ sin3 t)dt =
1

2

ż 2π

0

(1 ´ sin t)2dt = 3π

2
.

Before finishing this chapter, we would like to establish an unproven theorem: Theorem
4.33. We recall Theorem 4.33 as follows.

Theorem 4.33. Let D Ď R2 be simply connected, and F = (M,N) : D Ñ R2 be of class
C 1. If My = Nx, then F is conservative.

Proof of Theorem 4.33. By Theorem 4.30, it suffices to show that
¿

C
F ¨ dr = 0 for all

piecewise smooth closed curve C P D. Nevertheless, if C is a piecewise closed curve and R
is the region enclosed by C, by the fact that D is simply connected, we must have BR = C.
Therefore, Green’s theorem implies that

¿

C

(M,N) ¨ dr =

ż

R
(Nx ´ My) dA = 0 . ˝



Chapter 5

Additional Topics

5.1 Reynolds’ Transport Theorem
Let Ω1 and Ω2 be two Lipschitz domains of Rn with outward-pointing unit normal N and

n, respectively, and the map ψ :

$

’

&

’

%

Ω1 Ñ Ω2

BΩ1 Ñ BΩ2

y ÞÑ x = ψ(y)

be a diffeomorphism; that is, ψ is

one-to-one and onto, and has smooth inverse. Let f P C 1(Ω2) X C (Ω2), and F = f ˝ ψ

which in turns belongs to C 1(Ω1) X C (Ω1). By the divergence theorem,
ż

Ω2

Bf

Bxi
(x) dx =

ż

BΩ2

(fni)(x) dSx .

On the other hand, by the chain rule we have that
BF

Byi
=

B (f ˝ ψ)

Byi
=

n
ÿ

j=1

[ Bf

Bxj
˝ ψ

]Bψj

Byi
;

thus if A = (∇ψ)´1,
Bf

Bxi
˝ ψ =

n
ÿ

j=1

Aj
i

BF

Byj
. (5.1)

Letting J = det(∇ψ) be the Jacobian of ψ, by the change of variable y = ψ(y) and the Piola
identity,

ż

Ω2

Bf

Bxi
(x) dx =

ż

Ω1

Bf

Bxi

(
ψ(y)

)
det(∇ψ)(y)dy =

n
ÿ

j=1

ż

Ω1

B

Byj
(JAj

iF ) dy.

The divergence theorem again implies that
ż

Ω2

Bf

Bxi
(x) dx =

n
ÿ

j=1

ż

Ω1

JAj
iFNjdSy

150
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which further implies that
ż

BΩ2

(fn)(x) dSx =
ż

BΩ1

F
JATN

|JATN|
|JATN|dSy . (5.2)

Let ψ˚(dSx) denote the pull-back of the surface element dSx having the property that for
any function h defined on BΩ2 = ψ(BΩ1),

ż

ψ(BΩ1)

h(x) dSx =

ż

BΩ1

(h ˝ ψ)(y)ψ˚(dSx) ;

in other words, ψ˚(dSx) =
a

g(y) dSy for some “Jacobian” ?g of the map ψ : BΩ1 Ñ BΩ2.
Therefore, (5.2) suggests that

ż

BΩ2

fndS =

ż

BΩ1

[
(fn) ˝ ψ

]
(y)ψ˚(dSx) =

ż

BΩ1

(f ˝ ψ)
JATN

|JATN|
|JATN|dSy .

Since f can be chosen arbitrarily, the equality above suggests that

n ˝ ψ =
JATN

|JATN|
=

ATN
|ATN|

(5.3)

and
ψ˚(dSx) = |JATN|dSy . (5.4)

We finish this section by the following

Theorem 5.1 (Reynolds’ transport theorem). Let Ω Ď Rn be a smooth domain, ψ : Ω ˆ

[0, T ] Ñ Rn be a diffeomorphism, Ω(t) = ψ(Ω, t) and f(x, t) be a function defined on Ω(t).
Then

d

dt

ż

Ω(t)

f(x, t) dx =

ż

Ω(t)

ft(x, t) dx+

ż

BΩ(t)

(σf)(x, t) dSx , (5.5)

where σ is the speed of the boundary in the direction of outward pointing normal of BΩ(t);
that is, with n denoting the outward-pointing unit normal of Ω(t),

σ = (ψt ˝ ψ´1) ¨ n .

Proof. By the change of variable formula,
ż

Ω(t)

f(x, t) dx =

ż

Ω

f(ψ(y, t), t) det(∇ψ)(y, t) dy.
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Let f(ψ(y, t), t) = F (y, t), A = (∇ψ)´1, and J = det(∇ψ). By (1.3) and (5.1), we find that

d

dt

ż

Ω(t)

f(x, t) dx =

ż

Ω

[
ft(ψ(y, t), t) + ψt(y, t) ¨ (∇xf)(ψ(y, t), t)

]
J(y, t)dy

+
n
ÿ

i,j=1

ż

Ω

F (y, t)(JAj
iψ

i
t,j)(y, t) dy

=

ż

Ω

ft(ψ(y, t), t)dy +
n
ÿ

i,j=1

ż

Ω

[
ψitA

j
iF,j J + FJAj

iψ
i
t,j

]
(y, t) dy

=

ż

Ω

(ft ˝ ψ)Jdy +
n
ÿ

i,j=1

ż

Ω

(
JAj

iψ
i
tF

)
,j dy,

where the Piola identity (2.6) is used to conclude the last equality. The divergence theorem
then implies that

d

dt

ż

Ω(t)

f(x, t) dx =

ż

Ω

(ft ˝ ψ)J dy +
n
ÿ

i,j=1

ż

BΩ

JAj
iNjψ

i
tFdSy .

As a consequence, changing back to the variable x on the right-hand side, by (5.3) and (5.4)
we conclude that

d

dt

ż

Ω(t)

f(x, t) dx =

ż

Ω(t)

ft(x, t) dx+
n
ÿ

i,j=1

ż

BΩ(t)

(σf)(x, t) dSx . ˝

5.2 Eulerian and Lagrangian Coordinates
We have seen that the diffeomorphism ψ : Ω Ñ Ω(t) plays an important role in the Reynolds
transport theorem Theorem 5.1. In fluid dynamics, if the fluid domain is carried by the fluid
velocity; that is, the boundary of the fluid domain moves along with the fluid velocity, then
there is a natural map with domain Ω and range Ω(t), and we focus a little bit on this map
in this sub-section.

Let Ω(t) Ď Rn be a (time dependent) domain, and u(¨, t) : Ω(t) Ñ Rn be a smooth vector
field. We say that BΩ(t) moves along with u if any smooth curve

␣

x(t) P Rn
ˇ

ˇ t P [0, T ]
(

satisfying x(t) P BΩ(t) also satisfies that

x 1(t) ¨ n
(
x(t), t

)
= u

(
x(t), t

)
¨ n

(
x(t), t

)
, (5.6)

where n again denotes the outward-pointing unit normal of Ω(t). We remark that using the
notation Ω(t), we include the possibility that the fluid domain may vary in time, while in a
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lot of applications, Ω ” Ω(0) = Ω(t) for all t. Now suppose that BΩ(t) moves along with u.
Let η : Ω Ñ Rn be the unique solution to the ODE

ηt(α, t) = u
(
η(α, t), t

)
@α P Ω , t P (0, T ) , (5.7a)

η(α, 0) = α @α P Ω, (5.7b)

here we assume that the solution exists up to time T . The value of x = η(α, t) is the location
of the fluid particle at time t which is initially positioned at α P Ω. By (5.6), we must have
η(Ω, t) = Ω(t).

A time independent coordinate system used in the co-domain of η is called the Eulerian
coordinate. We note that since in general Ω(t) varies continuously in time, the Eulerian
coordinate is usually defined on a subset of Rn larger than Ω(t). In fact, the Cartesian
coordinate is one of the most important Eulerian coordinate system since Ω(t) Ď Rn for all
t ą 0. On the contrary, the coordinate used in the domain of η is called the Lagrangian
coordinate. Since the Lagrangian coordinate is used to identify the initial position of fluid
particles, it is often called the material coordinate as well. In short, the Eulerian coordinate
is used to describe the (larger) background space (so each x corresponds to a point in space
which might not a point in the fluid), while the Lagrangian coordinate is used to describe
the particle in the fluid (so each α corresponds to a particle in the fluid).

Let us explain what these two coordinate systems are doing. Suppose that a kind of
censor (whose volume and mass are both zero in the mathematical setting so that it does
not affect any physics) is designed to measure certain physical quantity. The censor can be
fixed at a point x in space so that the readings indicate the value of that physical quantity
at x for various time. On the other hand, we may set the censor to flow with the fluid
(the fluid will carry the censor). If the censor initially is position at a given point α, then
the readings of the censor indicate the value of the quantity at the particle which initially
locates at position α. In other words, a function with variables in Lagrangian coordinate is
a function defined on material particles inside the fluids, while a function with variables in
Eulerian coordinate is a function defined on space.

Theorem 5.2. Let u : Ω(t)ˆ (0, T ) Ñ Rn be a smooth vector field, and the flow map η(¨, t) :
"

Ω Ñ Ω(t)

α ÞÑ η(α, t)
be defined by (5.7). Then u is divergence-free if and only if det(∇η) ” 1 for

all t ą 0.
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Proof. Let J = det(∇η), and A = (∇η)´1. By (1.2) and (1.3),

Jt =
n
ÿ

i,j=1

JAj
i

Bηit
Bαj

=
n
ÿ

i,j=1

JAj
i

B (ui ˝ η)

Bαj
=

n
ÿ

i,j,k=1

JAj
i

( Bui

Bxk
˝ η

)Bηk

Bαj
.

Since A = (∇η)´1,
n
ř

j=1

Aj
iη
k
,j = δik; thus

Jt = J(divu) ˝ η. (5.8)

The theorem is then concluded by the fact that J|t=0 = 1 since η is the identity map at
t = 0. ˝

Corollary 5.3. Let u(¨, t) : Ω(t) Ñ Rn be a smooth divergence-free vector field, and η be the
corresponding flow map (which is assumed to exist up to time T as well). If U Ď Ω ” Ω(0)

is a smooth domain and

U(t) =
!

x P Rn
ˇ

ˇ

ˇ
x = η(α, t) for some α P U

)

;

that is, U(t) is the image of U under the map η at time t, then

the volume of U = the volume of U(t) @ t P (0, T ) .

Proof. Let |O| denote the Lebesgue measure of set O. Then

|U(t)| =
ż

U(t)

dx =

ż

U
det(∇η)(α)dα =

ż

U
dα = |U |. ˝

Remark 5.4. If the fluid velocity is divergence-free, then the corollary above says that the
volume of a region carried by the fluid is constant in time. For this reason we sometimes
also called solenoidal vector fields incompressible.

5.2.1 The material derivative

In continuum mechanics, the material derivative describes the time rate of change of some
physical quantity (like heat or momentum) for a material element subjected to a space-and-
time-dependent velocity field. To be more precise, the material derivative, sometimes called
the substantial derivative, denoted by D

Dt
, is defined by

DF

Dt
=

BF

B t
+

n
ÿ

i=1

ui
BF

Bxi
= Ft + (u ¨ ∇)F, (5.9)
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where F is a physical quantity in Eulerian variable, and u is the fluid velocity field. Let η
be the flow map associated to u, and define f = F ˝ η ; that is, f(α, t) = F

(
η(α, t), t

)
, then

B

B t
f(α, t) =

[
Ft + (u ¨ ∇)F

]
˝ η =

DF

Dt
˝ η .

Therefore, the composition of the material derivative of a function and the flow map is the
time rate of change of the composition of that function and the flow map.’

5.3 The particle trajectory and streamlines
Not yet completed!!!

5.4 Exercises
In this set of exercise, the Einstein summation convention is used.

Problem 1. Complete the following.

1. Let δ¨¨’s denote the Kronecker deltas. Prove (4.9); that is, show that

εijkεirs = δjrδks ´ δjsδkr . (4.9)

2. Let O Ď R3 be an open domain, and u : O Ñ R3 be a smooth vector field. Denote
twice the anti-symmetric part of ∇u as Ω; that is, Ωij = ui,j ´uj,i. Show that

Ωkj = εijkω
i , (5.10)

where ω = curlu is the vorticity of u.

3. Use (4.9) to show the following identities:

(a) u ˆ (v ˆ w) = (u ¨ w)v ´ (u ¨ v)w if u, v,w are three 3-vectors.

(b) curlcurlu = ´∆u +∇divu if u : O Ñ R3 is smooth.

(c) u ˆ curlu =
1

2
∇(|u|2) ´ (u ¨ ∇)u if u : O Ñ R3 is smooth.

4. Use (5.10) to show that

curl
[
(u ¨ ∇)u

]
= (u ¨ ∇)ω ´ (ω ¨ ∇)u + (divu)ω

if u : O Ñ R3 is smooth.
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Problem 2. Let ψ(¨, t) : Ω Ñ Ω(t) be a diffeomorphism as defined in Theorem 5.1, and
J = det(∇ψ) and A = (∇ψ)´1. Complete the proof of the Piola identity, identities (2.7),
(5.3) and (5.4) by the following argument:

1. Let u(¨, t) : Ω(t) Ñ Rn be a smooth vector field. Show that
ż

Ω(t)

divu dx =

ż

Ω

JAj
i (u ˝ ψ)i,j dy ;

thus by the divergence theorem,
ż

BΩ(t)

u ¨ n dSx =
ż

BΩ

JAj
i (u ˝ ψ)iNj dSy ´

ż

Ω

(JAj
i ),j (u ˝ ψ)i dy . (5.11)

2. Using (5.11),
ż

Ω

(JAj
i ),j (u ˝ ψ)i dy = 0 @ u(¨, t) : Ω(t) Ñ Rn vanishing on BΩ(t).

As a consequence, the Piola identity is valid.

3. By the Piola identity, (5.11) implies that
ż

BΩ(t)

u ¨ n dSx =
ż

BΩ

JAj
i (u ˝ ψ)iNj dSy @ u(¨, t) : Ω(t) Ñ Rn smooth.

Therefore, identities (5.3) and (5.4) are also valid.

4. Using identity (2.7) (which is obtained independent of the Piola identity) to show that

J,k= JAj
iψ

i
,jk .



Appendix A

Appendix

A.1 Properties of Real Numbers
Definition A.1. Let H ‰ S Ď R. A number M P R is called an upper bound (上界) for
S if x ď M for all x P S, and a number m P R is called a lower bound (下界) for S if
x ě m for all x P S. If there is an upper bound for S, then S is said to be bounded from
above, while if there is a lower bound for S, then S is said to be bounded from below.
A number b P R is called a least upper bound (最小上界) if

1. b is an upper bound for S, and

2. if M is an upper bound for S, then M ě b.

A number a is called a greatest lower bound (最大下界) if

1. a is a lower bound for S, and

2. if m is a lower bound for S, then m ď a.

( )
S

• •
m M

an lower bound for S an upper bound for S

If S is not bounded above, the least upper bound of S is set to be 8, while if S is not
bounded below, the greatest lower bound of S is set to be ´8. The least upper bound of
S is also called the supremum of S and is usually denoted by lubS or supS, and “the”
greatest lower bound of S is also called the infimum of S, and is usually denoted by glbS
or infS. If S = H, then supS = ´8, infS = 8.
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Remark A.2. The least upper bound and the greatest lower bound of S need not be a
member of S.

Remark A.3. The reason for defining sup H = ´8 and inf H = 8 is as follows: if
H ‰ A Ď B, then supA ď supB and infA ě infB.

( )( )
A B

infB supBinfA supA

Since H is a subset of any other sets, we shall have sup H is smaller then any real number,
and inf H is greater than any real number. However, this “definition” would destroy the
property that infA ď supA.

The “definition” of sup H and inf H is purely artificial. One can also define sup H = 8

and inf H = ´8.

Definition A.4. An open interval in R is of the form (a, b) which consists of all x P R Q

a ă x ă b. A closed interval in R is of the form [a, b] which consists of all x P R Q a ď

x ď b.

Proposition A.5. Let S Ď R be non-empty. Then

1. b = supS P R if and only if

(a) b is an upper bound of S.

(b) @ ε ą 0, Dx P S Q x ą b ´ ε.

2. a = infS P R if and only if

(a) a is a lower bound of S.

(b) @ ε ą 0, Dx P S Q x ă a+ ε.

Proof. “ñ” (a) is part of the definition of being a least upper bound.

(b) If M is an upper bound of S, then we must have M ě b; thus b´ε is not an upper
bound of S. Therefore, Dx P S Q x ą b ´ ε.

“ð” We only need to show that if M is an upper bound of S, then M ě b. Assume the
contrary. Then DM such that M is an upper bound of S but M ă b. Let ε = b´M ,
then there is no x P S Q x ą b ´ ε. ÑÐ ˝
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The Completeness Axiom（實數完備性公設）

Every subset of R which is bounded from above has a least upper bound.

Definition A.6 (Cauchy sequence). A sequence txku8
k=1 in R is said to be Cauchy if for

every ε ą 0, there exists N ą 0 such that |xk ´ xℓ| ă ε whenever k, ℓ ě N .

Theorem A.7. Every Cauchy sequence in R converges.

A.2 Properties of Continuous Functions
Theorem A.8 (Uniform Continuity).

Theorem A.9 (Mean Value Theorem).

Theorem A.10 (Inverse Function Theorem). Let f : (a, b) Ñ R be differentiable, and f 1

is sign-definite; that is, f 1(x) ą 0 for all x P (a, b) or f 1(x) ă 0 for all x P (a, b). Then
f : (a, b) Ñ f((a, b)) is a bijection, and f´1, the inverse function of f , is differentiable on
f((a, b)), and

(f´1)1(f(x)) =
1

f 1(x)
@x P (a, b) . (A.1)

Proof. W.L.O.G. we assume that f 1(x) ą 0 for all x P (a, b). Then f is strictly increasing;
thus f´1 exists.
Claim: f´1 : f((a, b)) Ñ (a, b) is continuous.
Proof of claim: Let y0 = f(x0) P f((a, b)), and ε ą 0 be given. Then f((x0 ´ ε, x0 + ε)) =(
f(x0 ´ ε), f(x0 + ε)

)
since f is continuous on (a, b) and (x0 ´ ε, x0 + ε) is connected. Let

δ = mintf(x0) ´ f(x0 ´ ε), f(x0 + ε) ´ f(x0)
(

. Then δ ą 0, and

(y0 ´ δ, y0 + δ) =
(
f(x0) ´ δ, f(x0) + δ

)
Ď f((x0 ´ ε, x0 + ε)) ;

thus by the injectivity of f ,

f´1((y0 ´ δ, y0+ δ)) Ď f´1(f((x0 ´ε, x0+ε))) = (x0 ´ε, x0+ε) = (f´1(y0)´ε, f´1(y0)+ε) .

The inclusion above implies that f´1 is continuous at y0.
Writing y = f(x) and x = f´1(y). Then if y0 = f(x0) P f((a, b)),

f´1(y) ´ f´1(y0)

y ´ y0
=

x ´ x0
f(x) ´ f(x0)

.
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Since f´1 is continuous on f((a, b)), x Ñ x0 as y Ñ y0; thus

lim
yÑy0

f´1(y) ´ f´1(y0)

y ´ y0
= lim

xÑx0

x ´ x0
f(x) ´ f(x0)

=
1

f 1(x0)

which implies that f´1 is differentiable at y0. ˝
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