Chapter 1

An Overview

1.1 Brief Review on Fourier Series and Fourier Trans-
form

1.1.1 Fourier series

Let L?(0,27) denote the collection of all measurable (complex-valued) functions f defined
on the interval (0, 27) with

L2W|f(x)|2dx< .

For the reader who is not familiar with the basic Lebesgue theory, the sacrifice is very
minimal by assuming that f is a piecewise continuous function. It will always be assumed
that functions in L?(0,27) are extended periodically to the real line R = (—o0, ), namely:
f(x) — f(z — 2m) for all z. Hence, the collection L?(0,27) is often called the space of 27-
periodic square-integrable functions. That L?(0,2n) is a vector space can be verified very
easily. Any f in L?(0,27) has a Fourier series representation:

0

f(z) = Z cne™ (1.1.1)

n=—ao

where the constants ¢, called the Fourier coefficients of f, are defined by

1 2m )
Cp = %Jo f(z)e " dx. (1.1.2)

The convergence of the series in (1.1.1) is in L?(0, 27), meaning that

N

f(x) — Z ¢, e

n=—M

2

dr =0.

21
lim
N,M—00 0

There are two distinct features in the Fourier series representation (1.1.1).

1. Any f € L?(0,27) is decomposed into a sum of infinitely many mutually orthogonal

components g, () = ¢,e™, where orthogonality means that
{Gn: Gmyr2(020) =0  forallm #n (1.1.3)

1



with the “inner product” in (1.1.3) being defined by

2
o gdizonn = 5= | au(@lgatode. (114)
That (1.1.3) holds is a consequence of the important, yet simple fact that
{en € L*(0,27) | en(x) = € ne Z} (1.1.5)
is an orthonormal (o.n.) “basis” of L*(0,27).

2. The orthonormal basis {e,}°_ used in the Fourier series representation (1.1.1) is

—00

generated by “dilation” of a single function
e(z) = e (1.1.6)

that is, e,(x) = e(nz) for all integers n. This will be called integral dilation. The
theory of the Fourier series shows that “every 2w-periodic square-integrable function

is generated by a “superposition” of integral dilations of the basic function €.

Definition 1.1. An orthonormal set {e,}*_; in a Hilbert space (H,{:,-)) is said to be

complete or is called an orthonormal basis if for every v € H, we have

0
v = Z<U7 en>€n7
n=1

where, with | - | denote the norm induced by the inner product, the equality above is

understood in the sense that

n—0o0

lim Hv - Z<v,ek>ekH = 0.
k=1
Theorem 1.2. Let (H,{:,-)) be a Hilbert space, and {e,}>_; be an orthonormal set in H.
The following three statements are equivalent:
L. {en}r | is complete;

2. (v,e,y =0 for all n € N implies that v = 0;

0
3. for everyve H, |[v||*> = (v,v) = > ‘<v,en>‘2.
n=1

0¢]
4. for every u,v e H, {u,v) = Z {u, eny{v,en).

n=1

From the o.n. property of {e,}~___ . the Fourier series representation (1.1.1) also satisfies

—00)

the so-called Parseval identity:

o ), [f@)dz =D fenl®. (1.1.7)



Let ¢? denote the space of all square-summable bi-infinite sequences; that is, {c,}*__ €

02 if and only if

o0

D el < 0.

n=—on
Hence, if the square-root of the quantity on the left of (1.1.7) is used as the “norm” for the
measurement of functions in L?(0, 27), and similarly, the square-root of the quantity on the
right of (1.1.7) is used as the norm for £2, then the function space L?(0,27) and the sequence
space (2 are “isometric” to each other. Returning to the above mentioned observation on the
Fourier series representation (1.1.1), we can also say that every 2w-periodic square-integrable
function is an ¢?-linear combination of integral dilations of the basic function e(x) = e'.

We emphasize again that the basic function
e(r) = €™ = cosx +isinw

which is a “sinusoidal wave”, is the only function required to generate all 2w-periodic square-
summable functions. For any integer n with large absolute value, the wave e, (x) = e(nx)
has high “frequency”, and for n with small absolute value, the wave e, has low frequency.

So, every function in L?(0,27) is composed of waves with various frequencies.

In general, we can consider L?(0, L), the collection of square-integrable (complex-valued)
functions defined on (0, L), and extend f € L*(0, L) periodically (with period L) to the real
line satisfying f(x) = f(z — L) for all x € R. In other words, L?(0, L) can be viewed as the

collection of all L-periodic complex-valued functions defined on R satsifying

L
L |f ()] do < 0.

The inner production of L?*(0, L) is given by

e = %L f(x)g(z)dx

with induced norm | - ||z2( 1) given by

1flz20,0) = <% LL }f(x)‘zdx);.

Any f e L*(0, L) has the Fourier series representation

fz) = i Che B (1.1.8)

n=-—0u

_ 27minx

L
where the Fourier coefficients {c,}°___ are given by ¢, = iJ f(z)e="z dz, and (1.1.8)
0

n=—auo

is understood in the sense
N

lim Hf— Z cphd L ey,

N,MHOO 27

=0 1.1.9
. (1.1.9)

where for a constant ¢ > 0, d, is the dilation operator given by

(def)(x) = f(z/c).



1.1.2 Fourier transform
Next we consider functions defined on R without periodicity.

Definition 1.3. The space LP(R), where 1 < p < o0, is a normed space that consists of all

complex-valued measurable functions satisfying
r®)={/:R-C]| f Fopdt < oo}
R

which is equipped with norm || - | z»(r) given by

Wl = ([ I a)”

and the space L*(R) consists of all complex-valued (essentially) bounded measurable func-

tions equipped with norm
| f]| 2o (my = esssup !f(x)|
TR
Note that (LP(R), | - |zr(r)) is @ Banach space; that is, a complete normed space.

~

Definition 1.4. For all f € L'(R), the Fourier transform of f, denoted by .Z f or f, is a
function defined by

(Zf)w) = flw) = fRf(t)e_“wdt YweR. (1.1.10)

Let %o(R) denote the space of all bounded/continuous functions on R which decay at
infinity; that is, f € %(R) if and only if f(t) — 0 as t — . %,(R) is a normed space
equipped the sup-norm defined by

|f] = sup[f(t)].
teR
Theorem 1.5. .Z : L'(R) — %,(R) is a bounded linear map.
Proof. To show this theorem, we need to establish the following properties:
1. % is linear;
2. there exists a constant C' such that |Z[f]|ro@ < C|f]r1(m);

3. Z|f] is continuous and Z|[f](w) — 0 as |w| — 0.

The linearity of .Z is trivial. Moreover, if f € L}(R),
Fll < | 1701t =l < 2

which shows that || #[f]|Lom®) < | f|r1®). To show that f is continuous, we in fact show
that f is uniformly continuous as follows. Let ¢ > 0 be given. Note that the Dominated
Convergence Theorem implies that

lim f |f(t)||e” "2 — 1]dt = 0;
R

Aw—0



thus there exists § > 0 such that

J |f(t)]|e " — 1|dt <e whenever [Aw|<d.
R
Therefore, if wy,ws € R satisfying |w; — we| < d, we have

Flwn) = Fen)| < [ 17@llee=) < 1]ae <

that shows that f is uniformly continuous on R. Finally, since e~ = —e=@(+5),

= JRf(t)e““’dt - —J]Rf(t)e“(t*l)dt = —fRf(t - g)giwtdt.

Therefore,
~ 1 iwt T iwt
|fw)|==|| flt)e ™" dt - f(t — ) whdt
2 Ur R
1 m —zwt ™
=3 R[f“)f(f;) dt' Hf £e= o)l
which converges to 0 as |w| — oo. o
Remark 1.6. The result that lim | f )| = 0 for f e L*(R) is often called the Riemann-

|w|—o00
Lebesgue Lemma.

Before proceeding, we define the following useful operators, called the translation, mod-

ulation and (scaled) dilation operators, respectively: for f € L'(R),

TN = fE=0), (MO =10, DO =—=f(2). (11

]
In particular, D_; is called the parity/reflection operator.
Theorem 1.7. Let f € L*(R). Then
1. (Shifting) Z[T.f](w) = e~ f(w).
2. (Scaling) Z[D,f)(w) = (D1 f)(w).
3. (Conjugation) .# D] (w) = F [D_if | (w) = [ ().

4. (Modulation) % [M.f|(w) = (T.f)(w).

Example 1.8. Let ¢ € LY(R), and t,,(t) = \/1‘7 (?) Using the translation and
a

dilation operators we have 1, 4(t) = (Tp,D,)(t); thus

Vap(w) = Z[T,Det))(w) = €™ F[Dyth)(w) = e~ ™ D1th(w) = +/Jale ™ (aw).



Definition 1.9. Let f, g be complex-valued function defined on R. The convolution of f
and g, denoted by f % g, is the function defined by

(7 9)(0) = | Fr)glt =)
whenever the integral makes sense.

Note that by the change of variable formula, f % ¢ = g % f whenever the convolution

makes sense.

Remark 1.10. The convolution f % g makes sense if f € LP(R), g € L4(R) with 11) + 611 > 1.

In fact, for f € LP(R) and g € LI(R), then f % g € L"(R) with E + L + L and one has
p q r
Young’s inequality

If * gllor@) < | flze@llg] o) -

Theorem 1.11. If f,g € L'(R), then Z[f * g](w) = f(w)g(w).

Theorem 1.12. Let g € LY(R) and define

If h e LY(R), then for all f € L'(R),

A~

(f % h)(t) = f 9(w) Flw)e dw.

Definition 1.13. A summability kernel on R is a family {K)} >0 of continuous functions

with the following properties:
i) J Ky(xz)dz =1 for all A > 0;
R

(ii) there exists M > 0 such that

f |[K\(z)|de <M YA>0;
R
(ili) lim | K\ (2)|dz = 0 for all 6 > 0.

A=® Jiz|>6

A simple construction of a summability on R is as follows. Suppose F' is a continuous

Lebesgue integrable function so that

fR F(z)dz = 1.

Then, we set
Ky(x) = A\F(\x) for all A > 0 and = € R. (1.1.12)



Evidently, it follows that

J}RKA(x)dx = J]R)\F()\x)dx :J F(z)dr =1,

R

JR|KA(x)‘dx - fRMF(Ax)ydx - JR F(@)|dz = | Pl

and for § > 0,
f ‘Kx(x)‘dx:‘[ )\‘F()\x)‘dx:f |F(z)|dz — 0 as A — .
|z|>d |z|>d |z|>Ad

Therefore, the family { K} -0 defined by (1.1.12) is a summability kernel on R.
Example 1.14. 1. The family {K,} o defined by K,(x) = AF(Ax), where

1 sin*(z/2)
F@) = o2

is called the Fejér kernel.

2. The family {K)} =0 defined by K,(z) = A\G(Az), where

G(x) = = exp(—a?)

T
is called the Gaussian kernel.

Both the Fejér kernel and the Guassian kernel are summability kernels.

Theorem 1.15. Let {Ky} >0 be a summability kernel on R. If f € LY(R), then
A—00
Moreover, if in addition that f is essentially bounded and is continuous at c, then

lim (f % K))(c) = f(c).
A—00
Proof. Let f € L'(R) be given, and M > 0 be such that
J Ko ()| dz < M.
R
Let € > 0 be given. By the definition of summability kernels and the convolution,

(f % K2)(z) — f(z) = f f(x — ) Ex(y)dy — f(z) f Ka(y)dy
_ j K@) [f(x —y) — £(@)] dy. (1.1.13)

1. Since lir% J |f(z) — f(z — y)|dz = 0, there exists § > 0 such that if |y| < 0,
Y=V IR

| 15@ = rte = wlar < 557



By the Tonelli Theorem,

f\faug (2)|de < ff\fg If (2 — ) — f(o)|dydz

:J J (KW f (@ = y) = f(x)|dady
fly|<6 L|>5 Ky |J‘f$_ ) — f(z)|dzdy

Ka()|dy + 2] f12 e J\wawy

e

2M

=

ly|<d

9
<S+2Wflow [ Iy

ly|=d

Therefore, by the properties of summability kernels,

limsupr‘(f% K)\)(z) = f(z)|de < < <e.

A—00

€
2
Since € > 0 is given arbitrarily, we conclude that

limsupr‘(f% Ky)(z) = f(z)|dz =0

A—00

which shows that /\lim If % K\ — flow = 0.
—00

2. Now suppose in addition that f is continuous at ¢. Then there exists § > 0 such that

€

\f(a—y)—f(a)‘<m-

Therefore, (1.1.13) implies that

‘(f*KA f‘KA Hf c—y —f(c)|dy
LM le |K\()||f(c—y) — F(0)|dy

<out | K@y + 2 e | Katwldy
2M jyl<s jyl>s
The same argument as in Part 1 shows that }im |(f % K))(c) — f(e)] = 0. o
—00

Let A be the function defined by

A(m):{ %(1_|$|) if |2 < 1

0 if |z| > 1.

Then
1 1

= — 1 — |x])e” "™ dx = J (1 —z)cos(zw)dx
2m T Jo

1 —cosw 1 Sin2(w/2)

(w/2)?

= F(w);

2|



thus the Fejér kernel is given by

K(z) = AF(A\z) = VAD1 A(z) = Z[VAD A (z).

X
By Theorem 1.12 (with h being the Fejér kernel), the fact that A is even implies that
N iwt 1 g |w| N iwt
(f % K = | VADA) @) F(w)e do = — (1 - T)f(w)e dw.
R -2

Using the above identity, Theorem 1.15 and the Dominated Convergence Theorem show

the following

Theorem 1.16 (Fourier Inversion Formula). Let f € L'(R). If f € L'(R), then

1 ~ ,
£(t) = —J Fw)e“dy  for aa. teR. (1.1.14)
2 Jp
In particular, the identity above holds for t at which f is continuous.

Remark 1.17. Note that in order to show (1.1.14) holds for continuities of f, the bound-
edness of f is required. Nevertheless, since f € L'(R), (1.1.14) shows that f is almost

everywhere equal to a continuous function that decays at infinity; thus f is essentially

bounded.

Remark 1.18. The integral operator

fro g | M@ f)de (or £0) = 3= | M) @)d).

where M, is the Modulation operator defined in (1.1.11), is called the inverse Fourier trans-

1

form and is usually denoted by .% ' or ~. In other words,

FUAO = FO) = 5 | 1Mo = o | Flw)eta,

Note that # 1 = %D,lgf = 2i #D_;. Similar to Theorem 1.5, Z ' : LY(R) — %,(R) is
7T

™

a bounded linear map and lim f(t) = 0.

[t|—>o0
Next we consider the Fourier transform of square-integrable functions. First we note that

there exists square-integrable function which is not integrable. For example, the function

3 i > 1,
f(z) = { 0  otherwise

belongs to L*(R) but not L'(R). It is not possible to find the Fourier transform for this f
using Definition 1.4 since the integral f f(t)e™ dt does not exist. In other words, when we
R

talk about Fourier transform of functions that are not integrable, we indeed try to extend

the domain of the original Fourier transform ..



Before proceeding, we introduce the inner product (., -), 2@ used in L?(R):

$y = | S S92 PR,

and the induced norm is indeed the L?-norm; that is, |f|r2@) = {f, f>§2(R>. The space
(L*(R), (, ~>L2(R)) is a Hilbert space.

Since L'(R) n L*(R) is dense in L*(R) (for example, if f € L*(R), then f, = f1lj_, . is
square-integrable and {f,}%_, converges to f in L*(R)), it is natural to define the Fourier
transform of a square-integrable function as the limit of the Fourier transform of a sequence
in L'(R) n L*(R) whose L*limit is that function (if it exists). To talk about whether the

limit of such a sequence exists, we need the following

Lemma 1.19. Suppose that f € L*(R) and f vanishes outside a bounded interval. Then
feL2R) and || f[Zam) = 27 f122)-

Proof. Note that since f € L*(R) and f vanishes outside a bounded interval, Cauchy-
Schwarz inequality shows that f € L'(R) so fes, (R) is well-defined.
Suppose f vanishes outside [—R, R] for some R > 0. Let ¢ = R/m and define

9(t) = (M_.D1 f)(t) = Vee ™ f(ct),

where = € R is arbitrarily given. Then ¢ vanishes outside [—m, 7] and Theorem 1.7 shows
that g(w) = (T_chf)(w) = (Dcf) (w+ ). On the other hand, the Parseval identity (1.1.7)
implies that

1 2 - 1 " fint 2 —int 2
sl = 33 |5z [ otoeal = 33 |5 [ e
1
- Aq?

Z 2—%2 (D) + 2)[*.

Integrating the identity above in x from 0 to 1, we obtain that

1 & n+1 N )
ol = o= f (ORI R Y W L T
n=—0o 0 In

= 5r | PP e = 51D = oM e

The lemma is then concluded since | f|r2®) = |9/ r2(r)- o

The collection of square-integrable functions vanishing outside a bounded interval is

denoted by L2(R); that is,

LXR)={f:R—C|feL*R) and f vanishes outside [~ R, R] for some R > 0}.



Since the support of a function f (€ L?(R)), denoted by supp(f), is defined as the closure

of the collection of points at which f does not vanish; that is,

supp(f) = cl({z € R| f(z) # 0}).
Functions in L?(IR) are also called square-integrable functions with compact support.

Lemma 1.20. Let f € L*(R). There exists a (unique) function F € L*(R) such that if
{fu}o, < LA(R) converges to f in L*(R), then {fn};‘f:l converges to F in L*(R).

Proof. Let f € L*(R), and {f,}?°, < L?(R) that converges to f in L*(R). Then Lemma
1.19 shows that

| fr — meLz(R) =27 f, — meLz(R) —0 as n,m — o0.

In other words, { fn}f:l is a Cauchy sequence in L?(R); thus the completeness of L*(R)
shows that { fn};‘f:l converges to some function F in L*(R).

Next we show that such a function F' is independent of the sequence { f,,}°_; that is used
to approach f. Suppose that there is another sequence {g,}*_, < L?(R) that also converges
to f in L?(R). Then the argument above shows that {g,}®_, converges to some function G
in L?(R). On the other hand, the sequence {h,}*_; defined by

hn:{ fn if nis odd,

gn if n is even

also converges to f in L?(R); thus {h }©_, converges to some function H € L?(R). Never-
theless, since the odd terms of {h 30

{hn}n:1 is a subsequence of {g,}>_,, we must have F = H = G. o

is a subsequence of { fn}n:1 and the even terms of

n=1

The lemma above induces the following

Definition 1.21. Let f € L?(R). The Fourier transform of f, still denoted by .#[F] and 7,
is the L2-limit of the Fourier transform of (any) sequences {f,}_, in L*(R) that converges
to f in L?(R). In other words,

Zlf]=f=lm f, whenever {f,}%_, < L'(R) n L*(R) and T}grolc fn=1,

n—0o0

where the two limits above are all in the L?-sense.

Theorem 1.22 (Plancherel’s identity).

Doy = 5P D) Vf.ge LX(R). (1.1.15)

L2(R)

Proof. First we note that

1.~
172w = %HfH%Q(R) v feL*R) (1.1.16)



since by choosing {f,}%_, € L3(R) with L?-limit f, by Lemma 1.19 we have
: N I
sy = i [l = 1im 1 Fo ey = ol Flge

where the last identity follows from the fact that {fn};‘f:l converges to f in L2 (R). Identity
(1.1.15) then follows from the polarization identity

1 : . . :
oDy = (1 + 0y — 1 — sy + 5 + ol — i1F — gl o
Theorem 1.23. Let f,g € L*(R).

L, =F)

L2®)

= = 1 <. . .
2. If g=f, then f = Q—g. In other words, the operator —" is the inverse of itself.
7T

V2T
Remark 1.24. The Plancherel identity often refers to the following identity
1 ~
||fH2L2(R) = %”f”%mg) v fe LX(R). (1.1.17)

In this lecture the Plancherel identity of the form (1.1.16) will be used extensively. Never-
theless, the Plancherel identity of the form (1.1.17) can be applied to show that

[ee} [oe}
ﬁ{ Z cnqﬁn} = Z Cn®n Y {Cntnez € 12 and {¢y }nez is orthonormal in L*(R). (1.1.18)

n=—00 n=—o0
In other words, under the conditions stated above the Fourier transform .% commutes with

infinite sums. To see why (1.1.18) is true, we first note that the Plancherel identity (1.1.15)

shows that { b } is an orthonormal set in L?(R). By setting
V21 ) nez k

the Plancherel identity (1.1.17) implies that

|5k — Sil72m) = 27lsk — se|Tom) = 27 Z len> =0 ask,f— co. (1.1.19)
min{k,¢}<|n|<max{k,(}

This shows that {S;}ren is a Cauchy sequence in L*(R); thus {S}ren converges in L*(R).

k —
Nevertheless, §, = Y. ¢,¢n,, so the fact that {c,}nez € £* and that { On } is an or-
n=—k \V 27 ) neZ
thonormal basis in L?*(R) implies that
o0
lim §, = 2 CnOn and the convergence is in L*(R).

k—o0
n=-—ao

On the other hand, part 1 of Theorem 1.23 for all functions ¢ € L*(R) we have

< Z Cn(bn, ¢> = klglolo<§;€’ ¢>L2(IR) = klglolo <3k7§3b>L < Z Cn¢na ¢>

n=—au0 L2(R) n=—a L2(R)

-(#[ 2o,

L2(R)

Since this identity holds for all ¢ € L*(R), we conclude (1.1.18).



Remark 1.25. There are ways to define the Fourier transform for more general “functions”
(termed tempered distributions). The key idea is to look at relationships between functions
and their Fourier transforms (such as the Parseval identity) and define the Fourier transform
in a way that preserves these relationships. For example, by Theorem 1.23, for all f, g €
L?*(R) we have

| t@ias = | Fotas (1.1.20)

Therefore, the Fourier transform of a general “function” f must satisfy (some variant of)
equation (1.1.20) whenever g is a function whose Fourier transform g is well-defined and the
left-hand side of (1.1.20) makes sense. For instance, the function f(z) = ¢ (with t € R) is

neither integrable nor square-integrable, but the integral on the left-hand side:

|t = [ gareds

is well-defined and equal (almost everywhere) to 2mg(t), provided that g € L'(R) and
g € L'(R). In this case, the Fourier transform f of f is defined as the “function” that

satisfies:

2mg(t) = f F@)g(a)dz

for any g satisfying certain conditions. However, it is important to note that no actual
function satisfies this identity in the traditional sense. Eventually, the right-hand side
integral must also be interpreted symbolically, no longer representing the usual Lebesgue

integral. In other words, to define the Fourier transform of more general “functions,” we:

1. Generalize the concept of the integral of the product of two functions by treating the

integral
JRfmg(a:)dx

as a bilinear form of the pair (f,¢). This bilinear form is identical to the integral of
fg whenever fge L'(R).

2. The Fourier transform of a general function f is defined as something that satisfies

equation (1.1.20) whenever that identity makes sense.

This is essentially what the theory of tempered distributions is about, though we will not
delve into it further here.

The bottom line is: everything we derived for the Fourier transform of f with f €
L'(R) u L*(R) is treated as identities that the Fourier transform of generalized functions

must satisfy.



1.2 Poisson Summation Formula

Theorem 1.26. If f € L'(R), then the series

i f(t + 2nm) (1.2.1)

n=—o
converges absolutely for almost all t in (0,27) and its sum belongs to L'(0,27) and is 27-

o . . . 12
periodic. If {a,}nez denotes the Fourier coefficient of the series, then a, = Q—f(n) for all
T

n € 7.

Proof. By the Monotone Convergence Theorem,

n+1)7r
J Z |f(t+ 2nm)|dt = ZJ (t+ 2nm)|dt = ZJ |£(t)|dt
2n

n=—a n=—au n=—aoo

= [ 1rlde = 17102 < oo

0 ¢] Q0
thus the series Y, |f(- + 2n7)| belongs to L'(0,27) which shows that > f(t + 2nm)

n=—o n=—oo
converges in L'(0,27) and also converges absolutely for a.a. t € (0, 27).

By the definition of the Fourier coefficients,

am f Z f(t+2nm)e ™ dt = ZJ f(t =+ 2nm)e™ ™ dt

n=—a n*OO

0 2(n+1)
:% Z L f( —zmtdt Jf —zmtdt 1f( )

n=-—oo v enm
which concludes the theorem. o

0 ¢]
For f € LY(R), define F(t) = >, f(t+ 2nm). Then Theorem 1.26 shows that F €

n=—00
LY(0,27) and is 27-periodic. If the Fourier series of F' converges pointwise to F, then

S ft+omm) = F) = Y = Fmemt. (1.2.2)

n=-—o0 m=—0o0

In particular, letting ¢ = 0 in (1.2.2) we obtain

> fenm = > fm)

n=—a n=—ao
This identity is called the Poisson summation formula. The following theorem provides a
condition that (1.2.2) holds (if f is continuous).

Theorem 1.27. If there exists 6 > 0 such that
f(@)| + |f(z)]| <C+]z))*°  VzeR,

then
a0 > 0
> Fla+ 2nm) Z e Yxelo, 2. (1.2.3)

n=—a

The proof of this theorem is left as an exercise.



1.3 Shannon Sampling Theorem

An analog signal is a piecewise continuous function of time defined on R, with the exception
of perhaps a countable number of jump discontinuities. Almost all analog signals of interest
in engineering have finite energy. By this we mean that the signal is square-integrable. The

norm of a signal f : R — R defined by

wwwﬁkmwwé (13.1)

represents the square root of the total energy content of the signal f. The spectrum of a
signal f is represented by its Fourier transform f, where the variable of f, usually denoted
by w, is called the frequency. The frequency is measured by v = Qi in terms of Hertz.

T

A signal f is called band-limited if its Fourier transform has a compact support; that is,
J?(w) =0 whenever  |w| > wy (1.3.2)

for some wy > 0. If wy > 0 is the smallest value for which (1.3.2) holds, then it is called
the bandwidth of the signal. Even if an analog signal f is not band-limited, we can reduce
it to a band-limited signal by what is called an ideal low-pass filtering. To reduce f to a

band-limited signal f,, with bandwidth less than or equal to wy, we consider

- Flw) if |w| < wp,
= 1.3.
fuo () { 0 if jw| > wo (1.33)
and we find the low-pass filter function f,, by the inverse Fourier transform
1 itw o I itw 7
fuo(t) = 7 Re fuoo(W)dw = o ﬂdoe f(w)dw.

Define the gate/window function

. . 1 if ’W| < wp,
Hwo(w) - l[fwo,wo] (w) - { 0 if |w| > w.
Then I, € L'(R) n L?*(R) whose inverse Fourier transform is given by

— 1

Hwo (t> = %

sin(wot)
wt

J I, (w)e™! dw =
R

Therefore, by Theorem 1.12 we obtain that

~—

Fnl®) = 5 | Tan()e™ flw)do = (% )0 = |

sin(wo (T — t))

p— f(r)dr.

This gives the sampling integral representation of a band-limited signal f,,,. Thus, f,, (¢) can
sinwo(t — -)
w(t—-)

In the field of digital signal processing, the sampling theorem is a fundamental bridge

be interpreted as the weighted average of f with the Fourier kernel as weight.

between continuous-time signals (often called “analog signals”) and discrete-time signals



(often called “digital signals”). It establishes a sufficient condition for a sample rate (B~
##E & ) that permits a discrete sequence of samples to capture all the information from a
continuous-time signal of finite bandwidth. To be more precise, Shannon’s version of the

theorem states that “if an analog signal contains no frequencies higher than B hertz, it is

completely determined by giving its ordinates at a series of points spaced 5B seconds apart.”

A~

Theorem 1.28. Let f : R — R be a continuous integrable function. If supp(f) S [—wo, wo),

0
then f is fully determined by the sequence {f(w—k)} , and
wo k=—00
Z f( )smc (wot — k) VteR, (1.3.4)
where the sinc function is given by
sinx
f x # 0,
sinc(z) = z e (1.3.5)
1 difz=0.

Proof. Let f € L*(R) n € (R;R) such that Supp(]?) < [-B, B]. Then fe L'(R) (since it
must be bounded by Theorem 1.5); thus the Fourier inversion formula implies that
1 ~ . (UNIPN .
= — J f(w)e™ dw = fw)e™ dw VteR.
27 R —wo

In particular,

ikTw
(2)=5 ) Fer
~ _ [}
Treating f as a function defined on [—wy, wo|, the identity above shows that {wl f (ﬂ> }
0 k=—00

Wo
is the Fourier coefficients of f.

Note that the boundedness of f implies that J? € L?(—wp,wp). Therefore, if g €
L?(—wy, wp), the Parseval identity, together with the polarization identity, implies that

1 o m, —kmy =
o wof( Do) o= 3, L I(7) 3 (1.3.6)
=—
1 wo ikmx
where g, = — g(t)e @ dzx.

2wo

For each t € ]R, the Fourier coefficients of the function g(w) = e~ is given by

~ 1 “o . ikTw 1 wo M
I =5 e e e dw = — e’ ¥ dw = sinc(wot + kT);
wo

—wo —wo

thus the Fourier inversion formula and (1.3.6) imply that if z € R,

wO

27r f f e dw 27T f( dx = Z f smc(wot + /m)

—wo

Z f " SlnC(wot*k‘ﬂ')

k=—0o0 0

e}
The identity above shows that f is fully determined by the sequence { f (?) }k . =
0/ ) k=—o0



Remark 1.29. Equation (1.3.4) is called the Whittaker-Shannon interpolation for-

mula.

Remark 1.30. The reconstruction formula (1.3.4) can be obtained formally as follows. In

the proof of the sampling theorem, since we have obtained that the Fourier coefficient of f

18{ f( lm)} , SO we have
wo wo k=—0
o0 e 6}
~ T —km\  iknw T km\ _ikrw
Fay=3 Zf(=0)es = 3 Zp()e s
oo Wo —, Wo  \Wo
Taking the inverse Fourier transform,

_ ikmw itw _ikmw itw
Z ) wo e"dw=— Z f “0 " dw;
— WO Wy 2&)0

thus if we can switch the order of the infinite sum and the integration, we then immediately

obtain the reconstruction formula

f(t) = 1 3 f(k—ﬂ> JR — ety = Z f smc(wot — k).

2&)0 [ wWo

In fact, this kind of “switch of order of the infinite sum and the integral” is usually valid
when the integral is due to the Fourier transform/inverse transform. In particular, later we
will take the Fourier transform of series of the form

0 0

Z cnp(x —n) = Z cn(Tho)(z)

n=—a n=—au

Q0
where ¢ € L*(R) and {c,}?°__, € (? that is, > |c,|> < 0, and directly switch the order
n=—oo
of summation and the Fourier transform as

o0 o0

3»*{ > cn(anb)] = > o Z[T¢].

n=-—0o n=—0o

A rigorous proof of the identity above will be ignored.

1.4 Time-Frequency Analysis

In signal processing, time-frequency analysis comprises those techniques that study a signal
in both the time and frequency domains simultaneously, using various time-frequency repre-
sentations. The mathematical motivation for this study is that functions and their transform
representation are tightly connected, and they can be understood better by studying them
jointly, as a two-dimensional object, rather than separately. A simple example is that the

4-fold periodicity of the Fourier transform - and the fact that two-fold Fourier transform



reverses direction - can be interpreted by considering the Fourier transform as a 90° rota-
tion in the associated time-frequency plane: 4 such rotations yield the identity, and 2 such
rotations simply reverse direction (reflection through the origin).

The practical motivation for time-frequency analysis is that classical Fourier analysis is
quite inadequate for most applications. In the first place, the Fourier analysis assumes that
signals are infinite in time or periodic, while many signals in practice are of short duration,
and change substantially over their duration. For example, traditional musical instruments
do not produce infinite duration sinusoids, but instead begin with an attack, then gradually
decay. Moreover, to extract the spectral information ]? (w) from the analog signal f, the
Fourier transform takes an infinite amount of time, using both past and future information

of the signal just to evaluate the spectrum at a single frequency w. Besides, the formula

(Zf)w) = flw) = JR f)e ™dt  YweR (1.1.10)

does not even reflect frequencies that evolve with time. What is really needed is for one to
be able to determine the time intervals that yield the spectral information on any desirable
range of frequencies (or frequency band). In addition, since the frequency of a signal is
directly proportional to the length of its cycle, it follows that for high-frequency spectral
information, the time-interval should be relatively small to give better accuracy, and for low-
frequency spectral information, the time-interval should be relatively wide to give complete
information. In other words, it is important to have a flexible time-frequency window that
automatically narrows at high “center-frequency” and widens at low “center-frequency”. All
these issues are poorly represented by traditional methods, which motivates time-frequency
analysis.

In this lecture, concerning the time-frequency analysis we are going to study the following

subjects:

1. The Gabor Transform/Short-Time Fourier Transform (STFT): For a given
f € L*(R), we consider the following integral

aUf)(t.) = | Firymatar,
R
where g;,, € Lz(R) is a time-localization window function taking the form

Grw(T) = O(7 — 1)e™™ = (M, T;9)(7) (1.4.1)

for some ¢ € L*(R) and is used for extracting local information from a Fourier trans-

form of a signal f.

We are going to study the basic properties of the Gabor transform and derive the

inversion formula

1) = 5= | | eglb ot~ vduds = | 71011100 Tio) )b,



2. The Wigner-Ville Distribution (WVD) and Transform (WVT): The cross
Wigner-Ville Distribution of f, g € L*(R) is the integral

Wig(t,w) = fR f(t + g>§<t - g>6_i“” dr. (1.4.2)

At the first glance it looks very similar to the STFT since with the substitution of

variable z =t —i—

Wy o(t,w) f f(x)g(x —2t)e ~2i(z—t)w QWJ f(z)g(x —2t)e 2™ dg

and the last integral is indeed a STFT of f with window function g (at the point
(2t,2w)). When the windows function is the signal itself, it is called the Wigner-Ville
Transform of the signal. In other words, the Wigner-Ville Transform of f € L*(R) is
Wy ¢ (which is also denoted by W/ in the textbook). We note that WVT is a nonlinear
map of the input f.

The WVD is a great method to perform time-frequency analysis; however, the study
of the Wigner-Ville transform is beyond the scope of this course, so we will only talk
about this breifly.

3. The Wavelet Transform: A given function ¢ € L*(R) satisfying the “admissibility”

condition R
2
w
Cy— f [P@IF 4 < o,
R |l
is called a basic wavelet. The “integral wavelet transform” relative to the “basic

wavelet” 1, denoted by W, (do not confuse with the Wigner-Ville transform), is an
integral operator on L?(R) defined by

Wylfl(a ff dtffzzmo

We are going to study the basic properties of the wavelet transform and derive the

inversion formula

dbda
R (1.4.3)

f@zékﬁmmmwmmww

1.5 The Wavelet Series and Frames

For the purpose of localization, the basis wavelet is usually chosen to have compact support
or decay very fast, similar to the case of Fourier transform v.s. Fourier series, we might be
able to reconstruct f using only values of the wavelet transform at discrete points. Through-
out the lecture, any function ¢ € L?(RR) is associated with a bi-infinite sequence of functions

{1 k}jrez defined by
Vinle) =292 — k) Vj kel (15.)



We note that the index j measures the width of the window /support, and the parameter k

is used to represent translation of the window to cover the whole time domain.

Definition 1.31. A function ¢ € L*(R) is called an orthogonal wavelet (or o.n. wavelet),
if the family {1 1}, ez, as defined in (1.5.1), is an orthonormal basis of L*(R); that is,

<wj,ka wg,m>L2(IR) = (Sjg(skm V], /{, g, meZ (1.5.2)

and every function f € L?(R) can be written as

0

fl@)y= > ciubin(z), (1.5.3)

j,szm
where ¢; ;. = {f,¥jk L2 and the convergence of the series in (1.5.3) is in L*(R); that is,
N M

f= Z Z Cjkik

j=—My k=—M,

=0.
L2(R)

lim
My ,N1,M3,Na—00

Any arbitrarily given ¢ € L*(R) is most likely not an o.n. wavelet. For a given function

¥ € L*(R), the first few questions we would like to answer are
1. Is the linear span of {1, x};rez dense in L*(R)?

2. If so, is there a effect way to express a function f € L?(R) in terms of “linear combi-

nations” of 1;;’s?
3. Is the expression of a function f € L?(R) as a “linear combinations” of ;s unique?

The abstraction of the aforementioned questions leads to the concept of frames and frame

operators defined below.

Definition 1.32 (Frame). A sequence {x,} in a separable Hilbert space (H,{-,-)) (not
necessarily a basis of H) is called a frame if there exist two numbers A and B with
0 < A < B < o such that

Alz]? < 7 [z, za)[* < Bla|?. (1.5.4)

The numbers A and B are called the frame bounds.

Definition 1.33 (Frame Operator). To each frame {z,} there corresponds an operator T’

called the frame operator, from H into itself defined by

Tx :Z<x,xn>xn VxeH. (1.5.5)

For a given frame {z,} of a Hilbert space, it can be shown that the frame operator is

bounded, and eventually answer (partially) the questions above by the following



Theorem 1.34. Suppose {x,}>_, is a frame on a separable Hilbert space with frame bounds

A and B, and T is the corresponding frame operator. Then,
(a) T is invertible and B~'1 < T~ < A7'L

(b) {T'z,}*_, is a frame, called the dual frame of {x,}>_,, with frame bounds B™' and

AL

(¢) Every x € H can be expressed in the form
o0 e¢]
r = Z@,T’lx@xn = 2<x,xn>T’1xn. (1.5.6)
n=1 n=1

Later we will prove the following theorem which provides a sufficient condition of a given

¥ to generate a frame {Wp, n}tm., in L2(R).

Theorem 1.35. Let ¢ € L*(R), and ag > 1. If

o0
(i) there exist A, B > 0 such that A < Z }(b(agnw)f < B foralll <w < ay, and

m=—a0

o0
(i) sup Z |$(a6”)H<$(aglw +2)| < C(1+|z])~ " for some constants C' and § > 0,

weR "~ 4

then there exists b > 0 such that the Jamily {pm.n}tmnez given by
G = ag " d(ag™x — nbo) = (Duyp Ty ) ()
forms a frame in L2(R) for any bo € (0,D).

Suppose that a function ¢ € L*(R) generates a frame ¥ = {1, ;};rez in L*(R). Even
though in theory we have a representation formula (1.5.6) using the frame operator T’
associated with W, it is still not practical enough since it requires to compute the dual
frame {T 'm0} mnez. We hope, just like how we obtain ¥, that the dual frame is a frame

simply generated by a function 1; € L*(R); that is,
T "mn = Upn  Vm,nel.
However, this requires a subtle design of the function .

Definition 1.36. A function ¢ € L*(R) is called an R-function if {1; 1}, ez, as defined in
(1.5.1), is a Riesz basis of L*(R), in the sense that the linear span of {1;x};xez is dense in
L?*(R) and that there exist positive constants A and B, with 0 < A < B < o0, such that

o0]
D1 cintin

J,k=—o00

< BH{Cj,k}j,kEZsz (1.5.7)

2
Alesabinenl < L*(®)



for all doubly bi-infinite square-summable sequences {¢;x};kez; that is,

9 0
Heiwbinezle = D, leul® < o0

j?k:_oo

An R-function ¢ € L*(R) is called an R-wavelet (or wavelet), if there exists a function
¥ € L2(R), such that {1 k}jkez and {@Zj7k}j7kez, as defined in (1.5.1), are dual bases of L*(R).

If ¢ is an R-wavelet, then J is called a dual wavelet corresponding to .

Remark 1.37. A collection of functions {¢,},ez in L*(R) is said to have Riesz bounds A
and B, where 0 < A < B < oo, if

0e]

> Cntn

n=—au

< Blfeatnezlpy  Vica}nen € & (1.5.8)

2
Alendnefin < .

An orthonormal system in L?(R) indeed has Riesz bounds 1 and 1. Similar to (1.1.18), the
argument used to establish (1.1.18) can be applied to show that

?{ Z cngbn} = 2 cngg; V{Cn}tnez € 02 and {¢, }nez satisfying (1.5.8). (1.5.9)

n=—0a n=—ao

The key difference in the argument is that one has to modify (1.1.19) using (1.5.8):

S — =§\6H%2(R) = 27|sp, — SZH%Q(R) < 27B Z lca|> >0 as k,f — 0.

min{k,¢}<|n|<max{k,(}

We also remark that using (1.5.9), if {¢,}nez S L*(R) has Riesz bounds A and B, then
{@}nez has Riesz bounds 27 A and 27 B because of the Plancherel identity.

Now, the question is how do we construct such kind of wavelet?

1.6 Multi-resolution Analysis and Construction of O.N.
Wavelets

A wavelet ¢ in L*(R) is called a semi-orthogonal wavelet (or wavelet) if the family {t; 1}, kez

it generates satisfies
<77Z}j,ka¢é,m>:0 lf] 7&67 j7 k:,é,meZ. (161)

Suppose that 1 is a semi-orthogonal wavelet and consider the family {t); s} rez it generates.

For each j € Z, let W, denote the closure of the linear span of {1); j}kez, namely:
W; = closurey., ({¢;x |k € Z}). (1.6.2)
Then it is clear that W; L Wy if j # £, meaning that

{g;rg0) =0 if j#4, g; € W, and g, € W,. (1.6.3)



Moreover, by the fact that the linear span of {1} ez is dense in L*(R), L*(R) can be

decomposed as a direct sum of the spaces W;:

JEZ
in the sense that every function f € L?(R) has a unique decomposition:

0

f@) = 3 @) =+ g 1(x) + go(x) + gr(x) + - (16.5)

j=—

0 ~
where g; = > {f, ;) € W, for all j € Z.

k=—0o0
For each j € Z, let us consider the closed subspaces

j-1
Vi= P We=-@W,_ s, ®@W,_, (1.6.6)

{=—00

of L?(R). These subspaces clearly have the following properties:

(1°) e Vae Ve Vi orV; &V forall jeZ;
(2°9) ClosureH.HQ( U V]> = L*(R);
JEZ

(3°) NV; = {0}

JEZ

(4°) Viy1 =V; @ W; for all j € Z; and

(5°) For all j € Z, f € V; if and only if dy o f € Vj;1, where for A > 0 the dilation operator
dy is given by (dyf)(z) = f(A\'x).

Hence, in contrast to the subspaces W; which satisfy
W; n W, = {0} itg#4¢,

the sequence of subspaces V; is nested, as described by (1°), and has the property that every
function f in L?*(R) can be approximated as closely as desirable by its projections P; f in V},
as described by (2°). But on the other hand, by decreasing j, the projections P; f could have
arbitrarily small energy, as guaranteed by (3°). What is not described by (1°)-(3°) is the
most important intrinsic property of these spaces which is that more and more “variations”
of P;f are removed as j — —oo. In fact, these variations are peeled off, level by level in
decreasing order of the “rate of variations” (better known as “frequency bands”) and stored
in the complementary subspaces W; as in (4°). This process can be made very efficient by
an application of the property (5°).
In fact, if the reference subspace Vg, say, is generated by a single function ¢ € L*(R) in
the sense that
Vo = closurey., ({¢07k ‘ ke Z}) , (1.6.7)



where
bu(x) = 2262 — ), (1.6.8)

then all the subspaces V; are also generated by the same ¢ (just as the subspaces W; are

generated by as 1 in (1.6.2)), namely:
V; = closurey., ({¢;x | k € Z}) VjeZ. (1.6.9)

Hence, the “peeling-oft” process from V; to W;_y, W;_o, ---, W;_y can be accomplished
efficiently.

Definition 1.38. An MRA consists of a sequence {V,,|m € Z} of embedded closed sub-
spaces of L?(R) that satisfy the following conditions:

i) ---cVaocVicWyecViclhhc -V, SV S

Q0 o0
(ii) |J Vi is dense in L*(R); that is, ClosureH.H2< U Vm> = L*(R).

m=—00

[00]
(iii) () Vi = {0}
m=00
(iv) feV, if and only if dy o f € V;qq for all me Z;

(v) there exists a function ¢ € Vj such that {gbom =T,0 ‘ ne Z} is an orthonormal basis
for Vj; that is,

1£ 1328 Z!<f¢n>\ VfeVp.

n=-—0u

The function ¢ is called the scaling function or father wavelet. If {V,,},ez is a multi-
resolution of L?(R) and if 1} is the closed subspace generated by the integer translates of a

single function ¢, then we say that ¢ generates the MRA.

Remark 1.39. To define scaling function, sometimes condition (v) is relaxed by assuming
that {Tngb ‘ ne Z} is a Riesz basis for V. Nevertheless, in most of the applications we look
for ¢ such that {T,,¢ |n € Z} is an orthonormal basis of Vj, so we simply use Definition 1.38

(which is the one used in the textbook) for the scaling functions.

Theorem 1.40 (Orthonormalization Process). If ¢ € L*(R) and if {T,,¢ |n € Z} is a Riesz
basis of Vi, then {Tn$| ne Z} is an orthonormal basis of Vi with

(1.6.10)



Theorem 1.41. If {V,},ez is an MRA with the scaling function ¢, then there is an orthog-

onal wavelet v given by

o]

bl) = Y (~1) T (Dya ) (). (16.11)

n=—au

where the coefficients ¢, are given by

en = b, 1) = fszgb(x)gb(% —n)dz. (1.6.12)

We will also give some examples of constructing orthogonal wavelet based on the theo-

rems above.



Chapter 6

The Wavelet Transforms and Their
Basic Properties

6.2 Continuous Wavelet Transforms and Examples

Definition 6.1 (Wavelet). A wavelet is a function ¢ € L*(R) which satisfies the admissibil-

ity condition

-~ 2
C, = JR ‘1/"(5')‘ dw < o, (6.2.1)

where 72 is the Fourier transform of .

If ¢ € L*(R), then v,; € L*(R) for all a and b since

Waslio = [ () @ = [ 1@ = Wit < =
The Fourier transform of 1), is given by
Vap(w) = (MD1) (@) = V/Jale™ ™) (aw). (6.2.2)

Definition 6.2 (Continuous Wavelet Transform). If ¢ € L*(R), and 1, is given by

Yap(t) = T%w (%) = (TyDa1b)(2), (6.2.3)

then the integral transformation Wy, defined on L?(R) by

Wy[f1(a, ) = {f ¥ap),ap = f Ft)ap(t)dt (6.2.4)
R
is called a continuous wavelet transform of f (relative to the wavelet ).

Using the Plancherel identity of the Fourier transform, it also follows from (6.2.4) that

1~ — =
qu [(ﬂ(a, b) - <f7 77/}a,b>L2(R> = %<fa ¢a,b>L2( R) f \/7]8 1/) wa dw

1

= 5 | (s ae.

26



This means that for a fixed a Wy[f](a,-) is the inverse Fourier transform of the function

fD 1 @Z so the Fourier inversion formula shows that

ZWolfl(e )] @) = | Wolfllatle ™t = (D, 0)(0) = VIalf@)d(a).  (625)

Example 6.3 (The Haar Wavelet). The Haar wavelet (Haar 1910) is one of the classic
examples. It is defined by
1 ifost< <,

() =4 -1 if% <t<l, (6.2.6)

0 otherwise.

N

The Haar wavelet has compact support. It is obvious that

JRw(t)dt =0, JR ()| dt = 1.

This wavelet is very well localized in the time domain, but it is not continuous. Its Fourier

transform IZ is calculated as follows: for w # 0 we have

R % A 1 ' e—iwt t:% e—th t=1 7 —iw .
Y(w) = f et dt — f e W dt = — - — =— <2eT —-1- e‘w)
0 1 —1W It=0 —w =1 W
—iw \ 2 —1 1w iw —iw N 2
= 1 —e 2 - ( ) e 4
- ( ez ) A (e e )
, iw\ sin?(w/4)
_ W 6.2.7
L exp ( 2 > w/4 (027

and for w = 0 we have 12(0) = 0; thus

~ 2
J de = 16J w| 3 sin® 2 dw < o0,
R W R 4

Both ¢ and @Z are plotted in Figure 6.1.

W(t) [th(w)|
1 1
1 t
0!5 —127—8m—4m 47 87 127
-1

Figure 6.1: The Haar wavelet and its Fourier transform

Theorem 6.4. Ifv is a wavelet and ¢ is a bounded integrable function, then the convolution

function 1 % ¢ is a wavelet.



Proof. By Young’s inequality,

|9 % B2y < 9l @)l¥] 2@ < 0
s0 1) % ¢ € L2(R). Moreover, by the fact that ¢ =@ < (E2 PRYESE
W’ * o(w f [ o)’ | \cb \
R |W|

Thus, the convolution function ¢ % ¢ is a Wavelet.

w < [¢]71 @) Co < 0.

[m}
Example 6.5. This example illustrates how to generate other wavelets by using Theorem
6.4. For example, if we take the Haar wavelet and convolute it with the following function

8(t) = Lo (t) = {“fo <1

0 0therw1se

we obtain a simple wavelet, as shown in Figure 6.2.

(¥ % o)(t)

D=

Figure 6.2: The wavelet ¢ % ¢

Example 6.6. The convolution of the Haar wavelet with ¢(t) = exp(—t?) generates a

smooth wavelet, as shown in Figure 6.3.
(¥ * ¢)(t)

v 0.2

0.1+

—-0.1+

—0.2+

Figure 6.3: The wavelet ¢ % ¢

Example 6.7 (The Mexican Hat Wavelet). The Mexican hat wavelet is defined by the
second derivative of a Gaussian function as

Y(t) = (1 —t*) exp <—§> = —5—:2 exp (— g) = 110(1),

2 (6.2.8)
@Z(W) = J;}(w) =271 w? exp (— %) .



The Mexican hat wavelet 1, o and its Fourier transform are shown in Figure 6.4(a)(b). This
wavelet has excellent localization in time and frequency domains and clearly satisfies the

admissibility condition.

(a) P(t) (b)

Figure 6.4: (a) The Mexican hat wavelet ¢ o and (b) its Fourier transform pm

Two other wavelets, w% o and w% 3 from the mother wavelet (6.2.8) can be obtained.
These three wavelets, 11, 1/1;7_2, and lﬁi,\/i, are shown in Figure 6.5(i), (ii), and (iii),

respectively.
Yap(t)

oL

1.5

1 (i) (i), | ()

0.5

0.5

) ! ! ! !

Figure 6.5: Three wavelets 1)y o, 1;‘;%772, wiv\/i
Remark 6.8. If in addition ¢ € L'(R) (which is usually the case if ¢ has rapid decay),

then its Fourier transform 1 is bounded continuous. Since 9 is continuous, Cy, can be finite

only if 12(0) = 0 or, equivalently, J Y(t)dt = 0. This means that ¢ must be an oscillatory
R

function with zero mean.

6.3 Basic Properties of Wavelet Transforms

The following theorem gives several properties of continuous wavelet transforms.
Theorem 6.9. If v and ¢ are wavelets and f, g are functions which belong to L*(R), then

(i) (Linearity) For any scalars o and 3,

Wylaf + Bgl = aWy[f] + BWy[g].



(ii) (Translation) With T, denoting the translation operator defined by (T.f)(t) = f(t—c),

WylTof](a,b) = Wy[fl(a;b—c)  and — Wry[fl(a,b) = Wy[f](a,b+ ca).
(iii) (Dilation) For ¢ > 0, with D. denoting the (scaled) dilation operator defined by

(D)) = = £(2).

WlDeflh) =< Woln)(52)  and - Wolflle.d) -

(iv) (Symmetry) For any a # 0,

Wolfa.b) = Wyl (1, -2).

a

\/LEWw [f](ac,b).

(v) (Parity) With P denoting the parity operator defined by (Pf)(t) = f(—t) (that is,
P = D—l);
Wey[P fl(a,b) = Wy[f](a, =b).

(vi) (Anti-linearity) For any scalars «, f3,

Watpolf] = aWylf] + BWo[g].

Proofs of the above properties are straightforward and are left as exercises.

Theorem 6.10 (Parseval’s Formula for Wavelet Transforms). If ¢ € L*(R) is a wavelet
and Wy[f] is the wavelet transform of f (relative to 1) defined by (6.2.4), then, for any
functions f, g € L*(R), we obtain

[ [ wotnia il 5" = s, (6.1)

where Cy, is defined by (6.2.1).

Proof from the textbook. By Parseval’s relation (3.4.37) for the Fourier transforms, we have

1  ~ —
WT/J [f](&, b) = <f7 ¢a b>L2(R) = _<f> ¢a,b>L2(R) = _<f Tb a¢>

L2(R)

— o Py, = o [ Flate i, (632

L2(R)

and substituting g for f in the identity above,
T — Lk —ibe
Wylgl(a,b) = %J g(o)lalze b Y(ao)do. (6.3.3)
R

Substituting (6.3.2) and (6.3.3) in the left-hand side of (6.3.1) gives
dbda
| f Wylfl(a OV 5], 5)

H
N

dbda

a?

\ =

)lal2 (aw)g(o)]a| 2™ (ac) doduw

zZ )g(o) (aa)eib(w*") dodwdbda . (6.3.4)

|
e

%%



Note that
f(t) = ﬁ_l[ﬂ (t) = % JR (JRf(s)e_isw> ™! dsdw = % JR ‘[R f(s)e“t=9) dsdw;

thus interchanging the order of integration from dwdb to dbdw in (6.3.4) we obtain that

| [ welni@ v <

“5e

A =~ /\—" B 1 =N A—|@Z(aw)|2
ijf |a| w)plaw)glw WWW)dMa—gLJf(m)g w) dwda.

A further interchanging the order of integration and putting aw = x show that

Jo L wetr “)deda:_ff (qu‘d)dw
g e[ ey e -,

and the Plancherel identity is used to conclude the theorem. =

Remark 6.11. The proof above is not rigorous since the first interchange of the order of
integration (from dwdb to dbdw) cannot be valid since the integrand is indeed not integrable.
The second interchange of the order of integration (from dwda to dadw) is true due to the

fact that f, ¢ and the admissibility condition.

Proof from another book. Define
F(w) = |a| 2 Z[Wy[fl(a, ))(w) and  G(w)=|a| 2 Z[Wylgl(a, )] (w).

Using (6.2.5),

~

F(w) = fw)d(aw),  Gw)=Gw)p(aw). (6.3.5)
Applying the Plancherel identity and using (6.2.2), we find that

JR (Wl fl(a, 0)Wyg](a, b)|db = (Wy[f(a, ), Wylgl(a,))

- %@[Wﬂﬂ(% ), F [Wylgl(a,-)) = |2%|<F, G).

Hence, by substituting (6.3.5) into the above expression, integrating with respect to da/a?

on R, and recalling the definition of C, from (6.2.1), we obtain

| [fR (W, [£)(a, )W [g](a b)]db]j‘;— NEREE
f T @)l dxda——JJf |)| dadx

a
L f ﬂw)a_w) ([ 080y o = 27,33, = €t 00,



Note that the switch of the order of the integration in the second line is due to the Fubini
Theorem which requires that the integrand is integrable; nevertheless, the integrability of
the integrand can be shown using the Tonelli Theorem as long as the admissibility condition

(6.2.1) is satisfied. This completes the proof of the theorem. o

Remark 6.12. There is still one particular problem in the proof above: In order to apply
the Plancherel identity it is required that Wy[f](a, ) and Wylg|(a, ) € L*(R) for a # 0.
However, if Wy[f](a,-) € L*(R), then .Z[Wy[f](a,-)] € L*(R) but if this might not be true
since f, §, ¥ € L2(R) only guarantees that FWylfl(a,-)], F[Wylgl(a,-)] € L}R).

Proof. We first prove that (6.3.1) holds for all f,g € L'(R)nL?(R). Let f,g € L'(R)n L*(R),
and as in the previous proof we define

F(w) = |a| 2 Z[Wy[fl(a, ))(w) and  G(w) = |a| 2. Z[Wylgl(a, )] (w).

Then for a # 0, F, G € L*(R); thus Wy[f](a, ), Wylgl(a,-) € L*(R). Therefore, the previous
proof goes through and we obtain that (6.3.1) holds for f,g € L'(R) n L*(R). In particular,

1
[ [ Farmetsita.n) dbaa = Cul e (6.3.6)
R Jr !a]

Now let f € L*(R). Choose {f,}*, < L'(R) n L*(R) such that {f,}*, converges to
fin L3*(R). Then {f,}*_, is a Cauchy sequence in L?*(R) and the identity above, together

n=1

with the linearity of the wavelet transform, shows that

1 1 2
| ], [arwetsdtat) = Waltul(@ b dbda = Cullt, = fultaey =0 as mm = oo
This shows that the sequence {h,}>_, defined by
1 1
hn(aa b) = mWw[anaa b) = m<fmwa,b>L2(R)

is a Cauchy sequence in L?(IR?); thus {h,}*°_, converges to some function in L*(R?). On the

other hand, the fact that f,, — f in L?(R) shows that {h,}*°_, converges a.e. to the function

h(a,b) = LW¢ [f](a,b). Therefore, {h,}*_; converges to ¢ in L*(R?) and this shows that

lal

1 2 : . 1 2
JJ‘—Ww[f](a,b) dbda = |h|72g) = lm [hn]72@ = lim f f ‘—Ww[fn](a,b) dbda
r Jr !a] n—w n—w Jp Jg la
=Cy 7}1_{%0 an”%?(R) = CMJHfH%Q(R)'

This establishes that (6.3.6) holds for all f € L*(R), and we completes the proof of the

theorem using the polarization identity. O

Theorem 6.13 (Inversion Formula). If f € L*(R), then f can be reconstructed by the

formula
)= g | [ Wt b S5 (637

where the equality holds almost everywhere.



Proof from the textbook. For any g € L*(R), we have, from Theorem 6.10, that
dbda

Colf Dy = || Wel a5

- J Wyl )(a,b)( f (t)mdf) o

a

= [ ([ [ moiniannstn 25t awar

Since g is an arbitrary element of L?(R), the inversion formula (6.3.7) follows. o

L

Remark 6.14. The problem in this proof again is that the interchange of the order of
integration cannot be guaranteed. Nevertheless, it is possible to show the validity of the
inversion formula for f € L'(R) ~ L%(R) with f € L}(R). However, even if this case is proved,
we cannot prove the general result by the density argument since the convergence

i [ [ Wlha s = [ | Walsla b5

n—o0 R

cannot be guaranteed.
Proof. For fixed positive constants ¢, A, B satisfying e < A, we define an operator S(e, A, B)
on L*(R) by

SeABn =g [ [ Wl ot

feIX(R).

Our goal is to show that S(e, A, B)f — f in L*(R) as € — 0" and A, B — o.

To see the L? convergence, we note that

HS(&?,A,B)f_fHLz(R) = sup )<S e, A,B)f — f, g>

2
H9”L2(R)*1 L2R)

For g € L*(R),

SeAnse, =a | || wien.0m T

dt. (6.3.8)

We first show that the integral above is absolutely convergent. By the Tonelli Theorem,

JJ f \Wﬂb[f](aab)HQﬁa,b(t)Hg(t)‘db(jadt
R Je<|a|<A J|b|<B

:£<|a<AL<B\ (a,b)| (J [ha(8)] |t ‘dt)dbda
- Ua<a|<A J|b|<B Wella.) <J]R Wa’b(t)m) dbda} 91z
(S awemefa) ([, [ s i

dbda\®
~Valfwwllee([ [ | paofas)
e<la|<A J|b|<B JR a




and further computation shows that

dbda
f J J ‘wab ‘ dt W’L?(R)J f —dbda < .
e<lal<A J|b|<B e<lal<A J|b|<B |al?

Therefore, the integral on the RHS of (6.3.8) is absolutely convergent, so the Fubini Theorem

implies that

1 ——dbda
S, A,B)f,g = — J Wyl fl(a, b)i,, dt
(S( ) >L2(R> Co Je)cron s w[F1(a, b) ()9 (1) =
1 dbda
= Wyl f](a,b) f Vap(t)g(t) dt—
Cd’ -Js<\a|<A |b|<B olt )
1 —dbda
= Wolfl(a,5)Wylgl(a, b) ==
P Je<lal<A J|b|<B
thus (6.3.1) implies that
(e, A, B)f = flay = swp [(S(e, A B)f = f.9)
”9HL2(1R):1 LE®)
1 d(a,b
= s || W, [f)(0, )W ], 8) 57
lgll L2 =1 | % J{(ab)le<|al<A,[b|<B}E a

“Wylf)(a.b)| da.b).

lal

<L 1
v Oy J(ap)|e<lal<A,b|<B)C

— |a1|W¢ [f](a,b) belongs to L*(R?) shows that

The fact that the function (a,b)

Lw [f](a,b)rd(a,b):().

lim
|a

e—0",4,B—0 »[[(a b)le<|a|<A,|b|<B}C

This shows that E*)O"']-,IXIBHOO HS(e, AB)f — fHLQ(R) = 0 and the proof is complete. O

Remark 6.15. The proof above indeed shows that the RHS integral of (6.3.7) is obtained

by
dbda
li Wyl fl(a, b)),
i f| LAl )

e—01t,B—>w

On the other hand, for f € L'(R) n L%(R) with f € L'(R), the RHS integral of (6.3.7) means

the usual Lebesgue integral.

6.4 The Discrete Wavelet Transforms

It has been stated in the last section that the continuous wavelet transform (6.2.4) is a two-
parameter representation of a function. In many applications, especially in signal processing,
data are represented by a finite number of values, so it is important and often useful to
consider discrete versions of the continuous wavelet transform (6.2.4). Our goal in this

section is to answer the fundamental question whether we can reconstruct f from discrete



values of its wavelet transform W, [f]. In particular, we would like to reconstruct f using

the discrete values of Wy [f] at a = af* and b = nbpa(’; that is,

Wols(af nboc§) = a® [ £(075(aq™t ~ nbo)at,
R
where ag # 0, by are some given and fixed constants, and m, n are integers. Define

Vmn(T) = aam/zl/)(%mw —nbg) = (Da}? b ) (), (6.4.1)

where we abuse the use of notation here and do not confuse with (6.2.3). Using (6.4.1), we

have
(Wl 1) (a5 o) = CF oy

The discrete wavelet transform represents a function by a countable set of wavelet coeffi-
cients, which correspond to points on a two dimensional grid or lattice of discrete points in
the scale-time domain indexed by m and n.

The answer to the fundamental question is positive if the wavelets form a complete

system in L?*(R). The problem is whether there exists another function g € L*(R) such that

<f7 ¢m,n>L2(R) = <g7 wm7n>L2(R)

for all m, n € Z implies f = ¢g. In practice, the evaluation/measurement of {f, ¢m7n>L2(]R)
might not be very accurate, so the best we can hope is that f and g are “close” if the two

sequences {(f, wm7n>L2(R)}m ., and {{g, wm7n>L2(R)}m oy are “close” This property can be
guaranteed if there exists an A > 0 independent of f, such that

e}
2
AHfH%Q(R) g Z ’<f7 wm,n>L2<R)‘
m,n=—0o0
since the inequality above implies that
< 2
AHf - gH%Q(R) < Z ‘<f> ¢m,n>L2<R) - <ga¢m,n>L2(R)|
m,n=—0u0

On the other hand, we also want two sequences {{f, wm’n>L2(R)}mn€Z to be “close” if f and

g are “close”. This will be guaranteed if there exists a B > 0 independent of f such that

[e0]

Y K mnda | < Blf 3o

m,n=—a0

since the inequality above implies that

o0

2
Z }<f7 wm,n>L2(R) - <ga ¢m,n>L2(R>’ < BHf - gH%Q(R) :

m,n=—00

These two requirements are best studied in terms of the so-called frames.



6.4.1 Frames and frame operators

In the following, when the inner product of a Hilbert space is specified, | - | is used to denote

the induced norm of the inner product.

Definition 6.16 (Frames). A collection of countably many vectors {x,} in a Hilbert space
(H,{-,-)) is called a frame if these exist constants A, B > 0 such that

Az < Koz’ < Blz|*  VaeH. (6.4.2)

n

The constants A and B are called frame bounds, and a frame satisfying (6.4.2) is called a
frame with frame bounds A and B. If A = B, then the frame is called tight. The frame is

called exact if no proper subset of {z,} is also a frame.
The following example shows that tightness and exactness are not related.
Example 6.17. If {¢,} is an orthonormal basis of H, then

(i) {e1,e1,e9,69,€3,€3, -} is a tight frame with frame bounds A = B = 2, but it is not

exact.

(ii) {v/2e1,e2,e3, -} is an exact frame but not tight since the frame bounds are easily
seen as A =1and B = 2.

(iii) {61, NN VN Y } is a tight frame with the frame bound A = B =1 but

not an orthonormal basis.

(iv) {61, %, %3, e } is a complete orthogonal sequence but is not a frame.

Theorem 6.18. Let {x,} be a collection of countably many vectors in a Hilbert space

(H,{-,-)). Then the following two statements are equivalent.

(a) The operator Tx = > {x,x,)x, is a bounded linear operator on H with Al <T < BI,

where 1 is the identi;y operator on H.
(b) {z,} is a frame with frame bounds A and B.

Proof. Before proceeding, we recall that the relation AI < T' < BI means
(Alz,x) < Tz, z) < (Blz,z) VxeH, (6.4.3)

and note that if the series > {x, x, )z, converges (if it is an infinite sum) for some particular

n

r € H, then

<Z (T, 7) Ty, y> = Z <<x, L) Ty, y> = Z (xy xp )X, y). (6.4.4)



“(a) = (b)” Suppose that (a) holds. Since T'is defined on H, the series > {x, x,,) x,, converges
to Tz for all x € H; thus (6.4.4) implies that

(Tx,x)= Z (x, o)X, x) = Z Kz, mn>‘2

n

Using (6.4.3), we conclude that {z,}, is a frame with frame bounds A and B. This
shows that (a) implies (b).

“(b) = (a)” We next prove that (b) implies (a). Suppose (b) holds. First we claim that
Tx = Y {x,x,)x, converges for all x € H. To see this, it suffices to show the case

that {z,} = {z,})°, is an infinite sequence. Recall that in any Hilbert space H the

norm of any element x € H is given by

|z = sup [z, y)|.
lyl=1
N
For a fixed « € H, we consider T, x = > {(z,z,)x,. For 0 < M < N, we have, by the
n=1
Cauchy-Schwarz inequality;,

2
Tz — TMJ;H2 = sup [(Tyz — Yij,y>|2 = sup
lyl=1 lyl=1

Y ey

M+1<n<N

2 2
<sw (Y Jewf)( Y Kewof)
=1 > pryt<n<N M+1<n<N

< sup < Z |<$7$n>‘2>BHyH2

ll=1 * pry1<ngN

:B( Z |<w,xn>‘2> -0 as M, N — .

M+1<n<N

Thus, {7, x}%_; is a Cauchy sequence in H and hence it is convergent as N — oo.
Therefore, Tx = > {x, x, )z, converges for all x € H, and (6.4.4) implies that

(Tx,y) = Z (@, T ){Tny Y-
Following the preceding argument we obtain that

2
|Tx]* = sup [(Tw,y)|" = sup
lvl=1 Jyl=1

PRCE DD

< B( Y G, e[*) < B?af?

which implies that |T'| < B. This shows the boundedness of 7. The relation Al <
T < Bl follows from that (Tz,z) = > [(x, :L‘n>‘2 and the frame {z,} has frame bounds
A and B. " o

Definition 6.19 (Frame Operator). To each frame {z,} in a Hilbert space there corresponds

an operator T, called the frame operator, from H into itself defined by

Tx = Z<x, Tp) Ty VeeH. (6.4.5)

n



We remark that the frame operator associated with a frame is self-adjoint because of
(6.4.4):

(Tx,y) = <Z<az, L) T, y> = Z <<x, Tp) Ty, y> = Z (@, 20 ) X0, Y)
= @y lEn,y) = Y Y wn)an, ) = Ty, wy = (2, Ty).

Theorem 6.20. Suppose {z,} is a frame on a Hilbert space (H,{-,-)) with frame bounds A

and B, and T is the corresponding frame operator. Then,

(a) T is invertible and B™'1 < T—' < A™'1. Furthermore, T is a positive operator and

hence it is self-adjoint.
(b) {T'x,} is a frame with frame bounds B~' and A"

(¢) Every x € H can be expressed in the form

x = Z<x, T 'z, x, = Z(x, )T w,. (6.4.6)

Proof. (a) Since the frame operator 7T satisfies the relation
Al < T < BI;

it follows that A
- B 'T<I-B Al = (1 _ E)I

and hence

A
=BT < (1- %) <1.
-5 < (- ) <
Thus, BT is invertible and consequently so is 7. In view of the fact that
(T2, 2y =T 2, TT  '2) > AT "2, T '2) = A|T'z|> # 0 whenever x # 0,

we conclude that 7! is a positive operator and hence it is self-adjoint. Finally, since
T is a bounded positive operator, it is possible to define T> (using the spectral de-
composition in functional analysis) and Tz is also positive definite (hence self-adjoint)
and invertible. Therefore, by Al < T < BI, the fact that

AMN—T = AT 2(T—ADT" 2 and T '—B '1=B'T :(Bl-T)I 2

shows that
B U<Tt'< A

(b) Since T is self-adjoint, we have

D, T )T ey = T (Z(T‘lx, xn>xn> =T YT(T2)) =T 2. (6.4.7)

n n



This gives
(T w2y = <Z (x, T e,y T 2y, a:> = Z (2, T ey {(T 2y, 7).

Hence,

(T 'z, x) = Z (x, T e Yo, T 1z, = Z Kz, T_lxn>‘2.
Using the result from (a); that is, B~'T1 < T < A7'I; it turns out that
B Iz, z) <{T 'z, x) < AW lx,z)
and hence
B7Ya|* < (T w,2) < A7 ||*.

By Theorem 6.18 this shows that {T'x,} is a frame with frame bounds B~ and A~

(c) We replace z by T~'z in (6.4.5) to derive

x = Z<T‘1x, Tp) Xy = Z(x, T 'z, x,.

Similarly, replacing = by Tx in (6.4.7) gives
r = 2 Tz, T '2,)T 'z, = Z<x, e T 12, .

This completes the proof. O

Definition 6.21. Let H be a separable Hilbert space, {z,} be a frame in H, and T be the

corresponding frame operator of frame {x,}. The frame {T'x,} is called the dual frame
of {x,}.

By writing T~ 'z, as T, according to formula (6.4.6), the reconstruction formula for

has the form

r = Z (2, Tpyxy = Z(x, T )Ty

n n

It is easy to verify that the dual frame of {Z,} is the original frame {x,}.

Theorem 6.22. Suppose {z,} is a frame in a separable Hilbert space H with frame bounds

A and B. If there exists a sequence of scalars {c,} such that x =) c,x,, then
Z ’Cn’2 = Z |an’2 + Z ’a'n - Cn|2a

where a, = {x, T z,) so that v = a,x,.
n



Proof. Note that (x,, T 'z) = (T"'z,,r) = a,. Substituting x = >} a,z, in the first term

in the inner product (x, T~'x) gives
@ T = (Y awen, T2 ) = 3 anen Ty = 3 o

Similarly, substituting z = >_ ¢, z,, into the first term in the inner product {(x, T 'z) yields

(o, T x) = <Z Cnn, T’1x> = Z cnlxy, T ) = Z Crn G -

Consequently,

Z lan)? = Z Cnly = Z@an. (6.4.8)

Finally, we obtain, by using (6.4.8),
S anl2 Y i = eaf> = a2+ 3 (00 — ann — et + enl?) = 3 fenl?.

This completes the proof. =

Theorem 6.23. Let {x,} be a frame in a Hilbert space (H,{-,-)). If {x,} is exact, then

{x,} and its dual frame {T'w,} is biorthonormal; that is,
(T, T 0> = Gpn Vm,neZ. (6.4.9)

Proof. Suppose that {z,} is a frame with frame bounds A and B. Let Z denote the index

set, and m € Z be a fixed index. Since {x,} is an exact frame,

A< [oa)*< B VaeH with |z =1

but the fact that {z,}ner (m) is not a frame implies that for each k € N, there exists y, € H
with |yg| = 1 such that

1>k Z Kyk,zvn}f.

n#m
Adding 5‘<yk, a:m>’2 on both sides of the inequality above, we find that

1+ e[y, 2| > (k=€) Y [y, )]+ [y 2|

n#m

> (k=) ) Kyp, )| + Ae. (6.4.10)

n#m
Letting e = 1/A in (6.4.10) and applying the Cauchy-Schwartz inequality we obtain that
2 2
(Ak = 1) > [y o] < [ )| < s
n#m

thus klim > <, xn>’2 = 0. On the other hand, (6.4.6) implies that
—00

n#m

W, Tm) = Z W, ) (T g, T



so that

(1 - <T_l$ma xm>)<yk> Tn) = Z Wi, $n><T_l:En, Tn)-

n#m

By Theorem 6.20 and the Cauchy-Schwartz inequality we have

}1 - <T*1xm,$m>“<yk7$m>‘ < < Z Kyk,xn}‘z)é( 2 ‘<T_1xn,xm>‘2>§

< %( 3 [ ) = 0 as koo,

n#m

Letting ¢ = k in (6.4.10) shows that |(y, xm>‘2 > A— %, so the inequality above shows that

(T 2, 2y = 1. (6.4.11)

The rest of (6.4.9); that is, (x,,, T x,) = 0 for n # m, follows from the identity

(T, T ) = 2 (o, T )@, T ) = [(Tm, Tﬁlxm>}2 + Z K, T’lxn>|2

n#m

and the identity (6.4.11). o

6.4.2 A sufficient condition for a function generating a frame

As pointed out above, we want the family of functions {¥, , }mnez to form a frame in L*(R).
Obviously, the double indexing of the functions is irrelevant. The following theorem gives

fairly general sufficient conditions for a sequence {1, » }m.nez to constitute a frame in L*(R).

Theorem 6.24. Let ¢ € L*(R), and ag > 1. If

a0
(i) there exist A, B > 0 such that A < Z }@Z(aglw)F < B forall1 < w < ag, and

m=—00

o0
(ii) sup Z |@E(a6”)||@$(a6”w +2)] < C(1+|z])" " for some constants C' and § > 0,

weR —— 00

then there exists b > 0 such that the family {Ymn}mnez given by
Yo = a1 (a5™x — nbo) = (D Ty ) ()
forms a frame in L2(R) for any by € (0, D).

Proof. Before proceeding, we remark that (i) is equivalent to that there exist A, B > 0 such
that

A< i [D(agw)|’ < B YweR\{0} (6.4.12)

m=—a0

due to the fact that ay > 1. Suppose f € L*(R). By the Plancherel identity (1.1.15),

o0 o0
Z ’<f7 wm,n>L2(R) ‘2 = Z ‘<f7 Dag‘ nbow>L2(R> |2
m,n=—00 m,n=—00

0 2 0 2

1),~ A~ 1
= Z %‘<f’ DaamM—nbO¢>L2(R) = 2_ Z

™
m,n=—a0 m,n=—0a0

f Flw)a et d (qme) du
R



Since, for any s > 0, the integral f g(t)dt can be written as

ZJ (t+ ¢s)d

f{=—00
provided that g € L'(R), by taking s = ;—ﬂm, we obtain
0Qq

o]

> Ymndya |

m,n=—0o0

1 e}
D A

2

Z J Flw+Ls)e 2’”"“/%(% (w+0s))dw

m,n=—ao0 l=—00
1 0 s - 2
=5 Z ag' f 2’””“/5( Z f w+ s)Y(af(w + ﬁs))) dw
& m,n=—0o0 0 l=—0
o0 o0 1 s 00 2
— Z af's® Z - J 27””“/5( Z (w + £8)(am (w + €3))) dw| , (6.4.13)
m=—00 ne——uwo 1% J0 —

where we have used (a version of) Theorem 1.26 to conclude that the series

= > flw+ ls)d(ag(w + €s))

{=—0

converges in L'(0, s) so we can switch the order of infinite sum and the integration. Next
we show that F,, € L*(0,s) by showing that the series

Gu(w)= Y |f(w+£3)|[ih(af(w + Ls))]

converges in L?(0, s). To see this, we apply the Monotone Convergence Theorem and find

Ls\Gm(w)Fdw—J ( DS w+€s)\|$(a?(w+€3))})Gm(w)dw

{=—00

_ 3 f Flw + 03)]| (0 @ + £5))[Gon

E*o;oo e )
= 3 [ gt - )
f=—o0 V*S

:LWMW%MWWWM

where the s-periodicity of G, is used to conclude the last equality. Summing over m € Z,

we obtain that

> [t - Yoy | Il allFe + ][ o + ).

m=—a0 {=—00 m=—00



By applying Cauchy-Schwarz inequality twice,

Z J J? “¢aow“fw+€s Hw ag'(w + 0s))|dw

mw w(“” )l blap W(amws»\dw)éx

X (f If(wHS)\ZW%%)HJ(%”(W+£s))\dw)2
( Z Jlf )| [ (e ’!@(a()"’(w—l—ﬁs))‘dw)%x

m=—a0

( 2 f ‘f (w+£s) ‘ ‘1/) H@Z(af)”(w+€S))‘dw>é

)
m=—00

and the Monotone Convergence Theorem again allow us to switch the order of infinite sum
and the integration so that

3 f\f [P ()| Flw + £5)] [P + £5))| dew

m=—0o0

< ([ 1heor > gl e o + ]

m=—00

x ( j fw)|’ i |@<a?w>\\&<amw—zs>>|dw) -

N

N[

m=—00

Define 5(¢) =sup 3, |$(agw)

weR m=—w0

H@ (afiw + & )| The inequality above leads to that

Z J ’f Hl/’ Hf(w-i—gs)H{/)\(agm(w—i—és))}dw

m=—a0

) (JR mmm(aws)dw)é (J |/ (w)\QB(—agws)\dw)é

< 1 aqey (Bl £)B(~a 05)]* = 1 e | 8 (2;”)5(—217—:6)}? (6.4.14)

0 1
Since condition (ii) implies that )| [ﬁ <2—7r€)ﬁ <—2—7r€>} * < o0, we find that
=t \bo bo

5 [leuls<istim 3 (GG <

bo
m=—a0
Therefore, G,, € L*(0, s) for all m € Z; thus F, € L?(0, s) for all m € Z as well.

We next repeat the steps above (but use the Domninated Convergence Theorem instead

of the Monotone Convergence Theorem) to show that {1, ,, }m.nez is a frame. By the Parseval

identity,
1 Js ’Fm(w)|2dw
S Jo

0

2

n=—a0

1

° = 2
EL 27rznw/8( 2 f (w+ £s) w(agn(eres))) dw! =

{=—00




s0 (6.4.13) and the Dominated Convergence Theorem implies that

ag SJS ‘Fm(w)fdw = blomi_oc f: ’Fm(w)Fdw

ffwws&( "+ £8)) Fon(@) dw

0

1
Z ’<f7 wm,n>L2<R) 2 = % Z

m,n=—00

2
5

(£+1)3A .
:l ZL 7D (@) Pl — B3] doo.

b() m=—oo VS

Since F, is s-periodic, the identity above implies that

0

> K mndye |

m,n=—00

o (£+1)s/\ =N — 0 N =R _
5 X [ o - 3 [ bR

Om

—~

>

—n 2| P fe )i e )

:b_lo Z fR‘f } W ‘ dw+— Z Jf Y (alw) f(w+ £s)d(al (w + £s)) dw

m,LEL
£#0

—f |f(w) Z [ (agw)|’ dw+— > ff Vo (alw) Flw -+ £8) (af (w + €5)) duw

m=—0o0 m,LEL
E;éO

Therefore, using (6.4.14) we obtain that

Z Kf wmn>L2(]R) J|f Z ‘Qz;(aglw)}zdw

m,n—foo m=—0o0

< X [ IRl i + )1 + sl

m,leL
Z#O

<l 3 () (5] - e 33 (B (50)]
Define
Afb) = bl(\g} i [lagw)f” —22[/3( 9a(- %)}é),
B - b—o(wsﬂgfzo}mzw e AT
Then

0

A fl32my < X [ Ymndyae | < Bl f132)

m,n=—00



so using (6.4.12) the theorem is concluded provided we show that

iim 3 [5(25)5(- 2] —o. (6.4.15

bp—0
om0 = 17\, bo

Nevertheless, condition (ii) implies that 3(¢) < C(1 + [£])~17?; thus

S o (2 e [ (2 e

=1 0

thus (6.4.15) is established. This completes the proof. o

Remark 6.25. Having established Theorem 6.24, we choose by in the form ay” for some
N € N such that by € (0,b). Let ¢ = Uy, OF O(x) = ag N/2¢(a0 x). Then for this choice of

by, we have

_m _m—=N _ N
(Do Trpe ) () = ag 29 (ag™x —nag™) =ay ? ag 2p(ag™ (ag™ o —n))

= q 2 ¢(aam+N,CE — n) = ¢m—N,n($)a

where ¢,,(2) = a, m/zgzﬁ(ao_mx —n). By the fact that {DgnTp,0} s a frame, there
exist A, B > 0 such that

Al flFe@ < D) Kfs dme Nn>L2(]R)‘ < B fli2-

m,nez
2 .
Since Y, Kf, Om— Nn>L2(R>‘ = >, Kf, ¢m,n>L2(R)} , we conclude that {¢n, n}mnez is also a
m,nez m,nez
frame.

6.4.3 Riesz basis

A frame might have redundant vectors which makes the expression of a vector as the linear
combination of vectors in a frame not unique. What we really want is a basis. The last part

of this sub-section contributes to the Riesz basis.

Definition 6.26. Let H be a Hilbert space. A collection of vectors {z,},cz is called a Riesz
basis of H if there exist a bounded linear bijection T': H — H and an orthonormal basis

{en}ner of H such that Te, = x,, for every n e Z.

Theorem 6.27. Let {x,} be a collection of countably many vectors in a separable Hilbert

space (H,{-,-)). The following two statements are equivalent:

1. {z,} is a Riesz basis of H.
2. The linear span of {x,} is dense in H, and there exist A, B > 0 such that

AZ\cn\Q <
n

T

2
< BE lca|? whenever Z cen]? < 0. (6.4.16)

n



Proof. W.L.O.G. we assume that H is infinite dimensional, and we write {z,} as {z,},;.

[44 2
=

Since {z,}r_, is a Riesz basis of H, there exist a bounded invertible linear map T
and an orthonormal basis {e,}> , of H satisfying Te, = x, for all n € N. By the
boundedness and invertibility of T', there exist A, B > 0 such that

mlz| <[Tx| < Mlz|  VzeH.

e¢]
Note that the lower bound is due to the open mapping theorem. Since z = > {z,e,)e,,
n=1

the Parseval identity implies that

00 00 2 0
m? ) ea|” < T( > cnen> <MY eal” Ve e
n=1 n=1 n=1

0

By the boundedness of T" and the convergence of > ¢,e, in H for any given {c,}_; €
n=1
??, we conclude that

HT(Ecnen)

Therefore, (6.4.16) holds for A =m? and B = M?.

n

T( Z ckek>

k=1

= lim
n—0o0

n 0
' = lim ‘ Z CLT Z Cnn
n—0o0
k=1 n=1

For the denseness of the linear span of {x,}, we note that for each v € H, T"'x € H

can be expressed as -
~1 ~1 )
T x:Z<T :U,en>en,

n=1

thus the boundedness of T' shows that

o0 0 [ee}
T = T( Z <T’1x, en>en> = Z <T’1x, en>Ten = 2 <T’1x, en>xn.
n=1 n=1 n=1

This shows that the linear span of {z,} is dense in H.

Suppose that there exist A, B > 0 such that (6.4.16) holds. Let {e,}°, be an
orthonormal basis of H, and define T on (a subset of) H by

0

Tr = Z (x,en) Ty whenever the RHS makes sense.

n=1
0
Using (6.4.16), we find that )] {(z,e,)x, converges for all x € H so that T': H - H
n=1

is well-defined and by (6.4.16) again we have

2

A Z ‘<x,en>}2 <

0
PR
n=1

0
<BZ‘<x,en>‘2 Ve H.
n=1

By the Parseval identity, the inequality above is equivalent to that

Alz|? < |Tx|> < Bl|z|* VxeH. (6.4.17)



Therefore, T" is bounded and injective. Next we show that T is surjective by showing

that the image of T is dense in H since the image of 7" must be closed due to (6.4.17).

Suppose that the image of 7" is not dense in H. Then there exists non-zero z € H
such that (z,Tz) =0 for all x € H. In particular,

(zyxny =(z,Te,) =0 VneN.

However, since the linear span of {z,} is dense in H, the statement above implies that
z = 0 which is a contradiction. Therefore, we establish the existence of a bounded

surjective linear map T : H — H with the property that Te, = x,, for all n € N; thus

w : :
{z,}> | is a Riesz basis of H. o

Theorem 6.28. Let {x,} be a collection of countably many vectors in a Hilbert space

(H,{-,-)). Then {x,} is an exact frame in H if and only if {x,} be a Riesz basis of H.
Proof. Let {x,} be a collection of countably many vectors.

“=” Suppose that {x,} is an exact frame with frame bounds A and B, and T is the
corresponding frame operator. Note that by Theorem 6.23 {z,} and {T'z,} are

bi-orthonormal; that is, (z,,, T '2,) = d,n.
We first show that for every x € H there exists a unique {c,} such that z = > c,z,.

The existence of {¢,} is clear since {x,} is a frame so that Theorem 6.20 shows that

sz<x,T‘1xn>xn VeeH.

For the uniqueness, we have to show that c,, has to agree with (x,T 1x,,) for all

m € N. To see this, we note that
<$, Tﬁlxm> = <2 CpnTnp, Tﬁlxm> = Z Cn<xn7 Tﬁlxm> = Z Cn(snm =Cm-

Therefore, {x,} is a basis.

Next we show that
A2
T 2ulal <

Nevertheless, the fact that {x,} is a frame with frame bounds A and B as well as that

PICE

n

2 B2
< Mleal*  V{c}el®. (6.4.18)

T is invertible implies that
AT < Y (T e, e[ < BIT 2> VaeH. (6.4.19)

Since B < T! < A7'T and T7! is self-adjoint,

1 1 1
mallel® < 5@, T7%) < ST 2e < (T3, 77T 2a) = [T 'a?



\z||2. Therefore, (6.4.19) shows that

and similarly |7 'z[? < %\

A B
§||$H2 < Z ’<x,T_1xn>|2 < EHCCHQ Voe H,
or equivalently,
2 2
%Z (z, T71$n>‘2 < z)? < BZZ }<1’,T’1xn>‘2 VreH.

Inequality (6.4.18) then follows from the fact that z = > ¢,z, if and only if ¢, =
{w, T 'x,) for all n e N.

“«<” Suppose that {x,} is a Riesz basis of H. Then, there exists an orthonormal basis {e,, }
and a bounded linear bijection T': H — H such that Te,, = x,, for all n. For x € H,

we have

M|z = [ Te [ = [Tz 60| = T2,

n n n

where T* is the adjoint of 7. On the other hand, the fact that 7" is a bounded linear

bijection shows that (7T%)~! exists and is bounded. Moreover, we have
11
[T el < 1772 < 172

thus the collection {z,} is a frame (with frame bounds H(T*)_1H_2 and ||T*|?). The
collection {z,} is obviously an exact frame because it ceases to be a basis whenever

any element is deleted from the collection.

This completes the proof. =

6.5 Orthonormal Wavelets

Since the discovery of wavelets, orthonormal wavelets with good time-frequency localization
are found to play an important role in wavelet theory and have a great variety of applications.
In general, the theory of wavelets begins with a single function ¥ € L?(R), and a family of
functions {¢n}mnez is generated from this single function ¢ by the operation of binary
dilations (that is, dilation by 2™) and dyadic translation of n2~™ so that

m m L m m
Yy () = 2720 (2 (- 2—m)> = 9m/2) (97 — ), (6.5.1)
where the factor 2™/? is introduced to ensure orthonormality so that [V, ] z2®) = [¥]r2x)

for all m,n € Z.
A situation of interest in applications is to deal with an orthonormal family {¢, » }m.nez;
that is,

Wi 03 = | o OO = G, (6.52)

where m, n, k, { € Z.

To show how the inner products behave in this formalism, we prove the following lemma.



Lemma 6.29. If ¢ and ¢ € L*(R), then

<¢m7k7 ¢m’e>L2(R) = <1/)n,lm ¢n,€>L2(R) (653)
forallm, n, k, L € Z.

Proof. By the substitution of variable x = 2"7t, we have

Yk, ¢m7£>L2(]R) = fR 2M) (2" — k)p(2mr — £)dx = f 2Mp(2"t — k)y(2nt — £)dt

R
= WUnkes Unit)y 25 - .
Definition 6.30 (Orthonormal Wavelet). A wavelet ¢ € L*(R) is called orthonormal if the

family of functions {¥, n}mnez defined by (6.5.1) is an orthonormal basis in L*(R).

As in the classical Fourier series, the wavelet series for a function f € L?*(R) based on a

given orthonormal wavelet ) is given by
oe}

f(l’) = Z Cm,nl/}m,n(x)a (654)

m,n=—00

where the wavelet coefficients ¢, ,, are given by

=i ¥mn)a (6.5.5)

and the double wavelet series (6.5.4) converges to the function f in the L?*-norm.

Example 6.31 (Discrete Haar Wavelet). The simplest example of an orthonormal wavelet
is the classic Haar wavelet (6.2.6). To prove this fact, we first show that {1, }mnez is an
orthonormal set. With ¢ defined by (6.2.6) and 1), ,, defined by (6.5.1), we have

o Oty = | 200270 =) - 2P 5(20 o
(Bra_n=t) oh/29-m/2 JR BOYEE(t +n) — 0)dt (6.5.6)
1. For m = k, this result gives
W Vht) 2 ) = JR Y(E)Y(t+n —L)dt = dotn—e) = One,

where (1) #0in0<t<land ¢(t—({—n)) #0inl{—n <t <14 —n, and these

intervals are disjoint from each other unless n = /.

2. We now consider the case m # k. In view of symmetry, it suffices to consider the case
m < k. Putting r = k—m > 0 in (6.5.6), we can complete the proof by showing that,
for k # m,

s Vht) 2y = f V() (27t + s)dt,

where s = 2"n — ¢ € Z. In view of the definition of the Haar wavelet 1), we must prove
that

i 1
f w(2’”t+8)dt—f (2t 4 s)dt = 0.
0 :



Invoking a simple change of variables 27t +s = z, witha = s+ 2" and b = s + 2"
we find that

f (2"t + s)dt — ﬁ (2t + s)dt = f P(z)de — fw(:c)dx —

where we have used the fact that |a — s| = |b—a| = 2"7! > 1 and the integral of ¢ on

an interval with length not less than 1 is zero to conclude the last equality.

This completes the proof that the Haar wavelet 1 is an orthonormal set.
Next we show that {1, ,}mnez is indeed a basis in L?(R). Using (6.5.1) the discrete
Haar wavelet is defined by

gm/2gp gy < L2
om om
Vmn(t) = 2m/2¢(2mt —n)= _ogm/2 4 T "2_771/2 <t < 712‘;1’

0 otherwise.

Since {tmn}mnez is an orthonormal set, any function f € L*(R) can be expanded in the

wavelet series in the form

0
F=2 {tmn)amn: (6.5.7)
m,n=—0o0
as long as we can show that
< 2
”fH%Q(R) = Z ‘<f> ¢m,n>L2(R)| 4 f € LQ(R) . (658)
m,n=—a0

To prove this, it suffices to show that (6.5.7)/(6.5.8) holds for the function
1 ifo<t<l,

0 otherwise.

F(t) = 1o (1) = {

since this will show that (6.5.7)/(6.5.8) also holds for a collection of characteristic functions

{1 ety } oy, Whose linear span is dense in L*(R). Evidently,

<f’ wm’n>L2(R) 0 form=0orn#0 and <fa wm,0>L2(R) =927 if m<0.
Consequently,
a0 ) -1 .
Z ‘<f’ wmrn>L2(R)| = Z ‘<f7 ¢m,0>L2(]R Z 27Mm =1 = ‘fHLz
=T m=-=00 m=1

This verifies (6.5.8).

Example 6.32 (The Discrete Shannon Wavelet). The Shannon function ¢ whose Fourier

transform satisfies
Y(w) = 17(w), (6.5.9)



where [ = [-2m, —7) U [, 27) is called the Shannon wavelet. This wavelet ¢ can directly

be obtained from the inverse Fourier transform of @Z so that

1 iwt 7 o ]' o w o w
w(t):%fRe z/z(w)dw—%{f%e dw+J e dw}

- ™

1 in(7t/2 3t
= —(sin 2wt —sinmt) = sin(mt/2) cos o~ (6.5.10)
it mt/2 2

Both ¢ and @E are shown in Figure 6.6.

o(t) (w)

A\ , .

/\
—3/-2 —v \/ﬂ 2 \5 —2r -7 ™ 2w

Figure 6.6: The Shannon wavelet and its Fourier transform

We define ¢y, ,(t) = 27™/2(27™t — n) = (DanTy1b)(t) whose Fourier transform is given
by
2% exp(—iwn2™) if 2mwe I,

_ (6.5.11)
0 otherwise.

Ton(9) = (Dyen M) () = {

Evidently, supp(%\,n) N supp(@) = ¢ for m # k. Hence, by the Plancherel identity
(1.1.15), it turns out that, for m # k,

1 ——
<wm,n7 wk,Z>L2<R) = %<wm,n7 wk,€>L2(R) = 0. (6512)

For m = k, again by the Plancherel identity (1.1.15) we have

1 _ 1 —_— —
<¢m,n7 wk,€>L2(R) = %<¢m,n7 wm,€>L2(R) = % fR 77Z}m,n (W)¢m,€ (w) dw

:2i (Do M) () (Do M_g) (w) dow

™ Jr

— % . 2mJRexp (— iw2™™(n — ﬁ)) |{b\(2’mw)‘2dw
1

exp (—i(n — {)o) ‘{D\(O')‘Qdd

=5 ]
— % ( J_z; — J_:) exp (— i(n — ﬁ)a) dw = Ope. (6.5.13)

This shows that {¢y,,}mnez is an orthonormal set in L*(R).
Next we show that {¥,, 4 }m.nez is an orthonormal basis in L?(R). Let I,,, = {w } 2Mw € ]}.
Note that for a fixed m € Z, {@}%Z is an orthogonal basis of L(I,,). To see this, we first

note that L2(—27"m, 27™n) has a Fourier basis {dy-me, } _ , where e, (z) = €™ as defined in

nez’



Section 1.1. Since every f € L?(I,,) corresponds to a unique function g € L?(—2"™m 27™r)

satisfying
flx+2"r) if0<z <2 ™,
g(x) = Sy i _o-m
flx—=2""7) if 277 <z <0,
a0
and g = Y, {g,dr-mey,) . dy-me, in L*(—27"x,27™7), the fact that
n=—oo Le(—2—Mx 2M7)

dyg-men(x £ 27"m) = (—1)"dg-me, ()

o0
shows that f = )] <f, d27m€n> do-me, in L*(I,,), where
)

n=-—o0 L2 (Im
1 I ERY 2m—1 —in2Myx
(f,dy-men) = — (x)dy-mep(x)dr = f(x)e dx.
LQ(I’VVL) ‘Im‘ Im ™ Im

Since dy-me, = 27™/ le for all m,n € Z, we conclude that {M}nez is an orthogonal
basis of L*(I,,) and we have

—

f=2" Z <f7m>ﬂ([m>m —om Z {f, m>ﬂ<zm>¢m’” VfelL*(,).

n=—ao n=-—ao

Now, every f € L?(R) can be expressed as

0

=)= Y A= N e 3 Pt )

m=—o0 m=—00 n=—ao

ﬁ—l[ YOy %@@zz(k)@] :gz—l{ D) <f7wm,n>L2(R)@7m\m}

m=—00 Nn=—00 m=—00 Nn=—00

= 3 Y )y

m=—00 n=—00

This shows that the linear span of {¥y,n}mnez is dense in L?(R); thus {mn}maez is an

orthonormal basis in L*(R).



Chapter 7

Multi-resolution Analysis and
Construction of Wavelets

Throughout the chapter, for simplicity we use (-, -) instead of (-, ->L2(R).
7.2 Definition of MRA and Examples

Definition 7.1. An MRA consists of a sequence {V,,, | m € Z} of embedded closed subspaces
of L*(R) that satisfy the following conditions:

(i) ---cVaocViclVycVic Vo that is, V,, € V4 for all m € Z;
a0

0
(i) |J Vi is dense in L*(R); that is, closureH.H2< U Vm> = L*(R).

(iif) méoo V,, = {0},

(iv) f eV, if and only if dy/of € Vipqq for all me Z;

(v) there exists a function ¢ € V; such that {¢o, = T,¢|n € Z} is an orthonormal basis
for Vy; that is, .
2
1 f 12w = Z s dn)l VieW.
n=—o0

The function ¢ is called the scaling function or father wavelet. If {V,},.ez is a multi-
resolution of L?(R) and if Vj is the closed subspace generated by the integer translates of a

single function ¢, then we say that ¢ generates the MRA.

Sometimes, condition (v) is relaxed by assuming that {T n® ‘ n e Z} is a Riesz basis for
Vo; that is, for every f € Vj, there exists a unique sequence {c,}*__ € ¢* such that

0 0

flx)= Y, ealTud)(@) = Y, cad(a —n).

n=—oo n=—o0
with convergence in L?(R) and there exist two positive constants A and B independent of
f € Vi such that

0 0
A Y el <Iflfe@ < B ) lel,

n=-—o0 n=—aoo
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where 0 < A < B < o. In this case, we have an MRA with a Riesz basis.

Note that condition (v) implies that {Tn¢ | n e Z} is a Riesz basis for V with frame
bounds A = B = 1.

Since ¢g,, = Tn¢ € V for all n € Z. Further, if n € Z, it follows from (iv) that

Gmn() = (Da-mTpp) () = 27 2™z — n), meZ (7.2.1)

is an orthonormal basis for V,,.

Consequences of Definition 7.1.

1. A repeated application of condition (iv) implies that f € V,, if and only if dy—x € V1
for all m, k € Z. In other words, f € V,,, if and only if dom f € Vj for all m € Z.

This shows that functions in V, are obtained from those in V through a scaling 27™.
If the scale m = 0 is associated with V[, then the scale 27™ is associated with V,.
Thus, subspaces V,, are just scaled versions of the central space V which is invariant

under translation by integers; that is, T,,Vo = Vj for all n € Z.

2. Tt follows from Definition 7.1 that an MRA is completely determined by the scaling

function ¢, but not conversely. For a given ¢ € V{, we first define

o0 0

‘/0: {f: Z Cn¢0,n: 2 CnTnQb

n=—oo n=—auo0

(el £},

Condition (v) implies that Vj has an orthonormal basis {¢¢ , }nez. Then, V{ consists of
o0 o]

all functions f = > ¢,T,¢ with finite energy Hf”%mg) = > |ea)? < 0. Similarly,

n—=—o n=—0o

the space V,, has the orthonormal basis {¢y, » }nez given by (7.2.1) so that f,, is given
by
oo
fu(@) = > Combmn(z) (7.2.2)
n=-—00
with the finite energy
oo
Hme%Q(R) = Z |Cmn|2 < 0.
n=—0

Thus, f,, represents a typical function in the space V,,,. It builds in self-invariance and

scale invariance through the basis {¢n, n }nez-

3. Conditions (ii) and (iii) can be expressed in terms of the orthogonal projections P,,
onto V,,; that is, for all f € L*(R),

lim P, f=0 and lim P,,f=f. (7.2.3)
m—00

m——00

The projection P,,f can be considered as an approximation of f at the scale 27.

Therefore, the successive approximations of a given function f are defined as the



orthogonal projections P,, onto the space V,,:

0

Prf = D {fs bmn) b, (7.2.4)

n=—a0

where ¢, , given by (7.2.1) is an orthonormal basis for V,,.

4. Since Vy € Vi, the scaling function ¢ that leads to a basis for 1} also belongs to V;.

Since ¢ € Vi and {¢1,}nez is an orthonormal basis for V}, ¢ can be expressed in the

form . .
o(x) = Z Cnd1n(T) = V2 Z (22 —n), (7.2.5)
where .
Cn = <¢a ¢17n> and Z |Cn|2 =1.

Equation (7.2.5) is called the dilation equation. It involves both x and 2z and is often
referred to as the two-scale equation or refinement equation because it displays ¢ in
the refined space V;. The space V; has the finer scale 27! and it contains ¢ which has

scale 1.
From the preceding facts MRA is described so that we can specify
(a) the subspaces V,,,
(b) the scaling function ¢,

(c) the coefficient {c,}__., in the dilation equation (7.2.5).

n=—au

The real importance of an MRA lies in the simple fact that it enables us to construct an
orthonormal wavelet for L?(R). In order to prove this statement, we first assume that
{Vin}® is an MRA. Since V;,, € V11, we define W,,, as the orthogonal complement of

m=—0o0

Vi in Vi, for every m € Z, so that we have

Vm+1:Vm®Wm: (vmflg_)wmfl)@Wm::‘/()@W(]@ng—)@wm
~vo® (W) (7.2.6)
k=0

and V,, L W,, for n <m.

o0
Since | J Vj, is dense in L*(R), we may take the limit as m — o0 to obtain
m=—0a0

e}
%@ (@D Wn) = I*(R).
m=0
Similarly, we may go in the other direction to write

Vo=VaeW,=VeeoW)eW ==V, eW_,® - ®W_,.



0
We may again take the limit as m — c0. Since (] V, = {0}, it follows that lim V_,, =

m=—00 m—

{0}. Consequently, it turns out that
0
P W, =L*R). (7.2.7)
m=—o0

Finally, the difference between the two successive approximations P,,f and P,,.1f is
given by the orthogonal projection Q,,f of f onto the orthogonal complement W,, of V,,, in
Vina1 so that

me = Pm+1f - me

It follows from conditions (i)-(v) in Definition 7.1 that the spaces WW,,, are also scaled versions

of Wy and, for f € L*(R),

feW,, ifandonlyif domfe W, VmeZ (7.2.8)

since
fE Wm S fE Vm+1 and fJ_ Vm S defE ‘/1 and def J_ ‘/0 S d2mfe WO.
Moreover, W,,,’s are mutually orthogonal spaces generating all L?(R); that is,

Wy LWiifm#k and P W, =L*R), (7.2.9)

meZ

and are translation-invariant for the discrete translations n € Z; that is,
feWy ifandonlyif T,fe W,

where the translation-invariant is due to the following equivalence:

o0

feWy< fel; ande_VO@fL:2 Z i1y for some {c 12 e *and f LV}
k=—00
2« © 2
< Tof = ). choanérp for some {cp}f € > and T, f LV
k=—0

T, feViand T, f L Vo< T,f € W.

Moreover, it can be shown that there exists a function ¢ € Wy such that vy, = T,

constitutes an orthonormal basis for W,. It follows from (7.2.8) that
V() = 27222 —n)  forneZ (7.2.10)

constitute an orthonormal basis for W,,. Thus, the family {t, ,}mnez represents an or-

thonormal basis of wavelets for L*(R).

Example 7.2 (Characteristic Function and Piecewise Constant Function). We assume that

¢ = 1j91) is the characteristic function of the interval [0, 1]. Define spaces V, by

vm :{ Z Ck¢m,k

k=—00

(e f?},



where
Gmn(x) = 2m/2qz5(2mx —n).

The spaces V,, satisfy all the conditions of Definition 7.1, and so, {V,,}mez is an MRA.
n+1

ol

where n € Z. Obviously, V,, € V,,+1 because any function that is constant on intervals of

The space V;,, consists of functions in L?(R) which are constant on intervals [2%,

length 27™ is automatically constant on intervals of half that length. The space Vj contains

all functions f in L?*(R) that are constant on n < x < n + 1. The function d;,»f in V; is

1 .
then constant on g < . Intervals of length 27 are usually referred to as dyadic

intervals. A sample function in spaces V,, is shown in Figure 7.1.

A b
feV, feY
1 1 1 1 1 1 - "‘ 'S L e L 1 X

0 1 2 3 4 5 6 0 1 2 3 1 5

A

fEW
. > X
0 1

1
2

Figure 7.1: Piecewise constant functions in V_y; V4 and V}

As we shall see later, this MRA is related to the classic Haar wavelet.

7.3 Properties of Scaling Functions and Orthonormal
Wavelet Bases

Lemma 7.3. Let f,g € L*(R). Then the function

0 0

Z [Torer (F )] Z -+ 2km)g (- + 2kT)

k=—00 =

belongs to L'(0,27), and for alln € Z,

(f. Tog) = 21 fﬂ { Z flw + 2km)g(w + 2k7) | dw (7.3.1)

o0 AN—
In other words, {<f, T_ng>}neZ is the Fourier coefficient of >, [Torr(f 9)]

k=—0o0



Proof. Let f,g € L*(R) and n € Z be given. Then fge L*(R) so that foe L'(R); thus
CD AN e
Theorem 1.26 shows that the series Y, [Torr(fg)] converges in L'(0,27). Therefore, the

k=—0o0

fact that T,,g € L>(R) and the Plancherel identity (1.1.15) show that

" - _ ©  2kt)r
)= 5. 0T = 5 | Foeiet =g 3 T e

2 kn

0 27
= — Z J flw+ 2km)g(w + 2km)e™ dw
fe— o JO

1o C- =
= [ Z (w+ 2km)g(w + 2k7r)] dw . o
Corollary 7.4. Let f,¢ € L*(R), and {gbom = Tn¢|n € Z} be an orthonormal sysmtem.
Then {f,pon) =0 for all m € Z (this can be expressed as [ L Vi, where Vy is the closure of
the linear span of the orthonormal system) if and only if

0

Z flw+ 2km Z(w +2km) =0 fora.a weR. (7.3.2)

Proof. Let ¢ be the role of g in Lemma 7.3. Since ¢g,, = T,,¢, (7.3.1) shows that

1 2w O — )

Sty == [ { S Flw + 2hm)d(w + 26m) | e do.
0 k=—00

Consequently, it follows from the completeness of {ei”‘“ } ne Z} (which holds for functions in

L0, 27) as well since the Cesaro mean of the Fourier series of f converges to f in L'(0,2m)

if fe LY(0,2n)) that {f, o,y =0 for all n € Z if and only if (7.3.2) holds. o

Theorem 7.5. For any function ¢ € L*(R), the following conditions are equivalent.

(a) The system {¢o, = Tno |n € Z} is orthonormal.

(b) i |$(w + 2k7r)‘2 =1 for a.a. weR.
k=—0

Proof. Letting f = g = ¢ in Lemma 7.3, we find that

1 2T 0 -
{Po.n Po,m) = {D0,0, Pom—n) = o L eltm=m Z ‘gb(w + %”)Fdw-

k=—0o0

1 2
By the fact that 2J em=9 diy = 6, the identity above implies that
T Jo

2 ©
[ e ] 3 fae o+ 2k = 1| = uony =G Fmme .

0 k=—00

Thus, {¢0.n, Po.m) = Onm if and only if Z | (w + 2km) } = 1 almost everywhere. O



Theorem 7.6. For any two functions ¢, € L*(R), the sets of functions {¢07n =T,0 ‘ ne
Z} and {@Z)O,m =T, ‘ m € Z} are bi-orthogonal; that is,

(Gon: Yomy =0 Vn,meZ

if and only if

0

Z (w+ 2km E(w +2km) =0 for a.a. w e R.

Proof. Letting f = ¢ and g = ¢ in Lemma 7.3, we find that

27 —
(Do, Yo,m) = (D, Yom—n) = %L glm=mjw [ Z gb w + 2k (w + 2k7) | dw.

k=—0o0

Thus, the same reason for proving Theorem 7.5, we conclude that

{Bon, Yom) =0 Vn,meZ

if and only if
0 —
Z gg(w + 2km)p(w + 2km) =0 for a.a. we R. o

k=—o0

A somewhat weaker property than the property of orthonormality in the previous theo-

rem is the “Riesz (or unconditional) condition”, which we study in the following.

Theorem 7.7. For any function ¢ € L*(R) and constants 0 < A < B < oo, the following

two statements are equivalent:

{quﬁ o( }k , satisfies the Riesz condition with Riesz bounds A and B; that is,
© 2
AH{Ck}kEZH?2 < Z Ck¢( — /{) < BH{Ck}keZHzZ Y {Ck}keZ € 52. (733)
k=—00 L2(R)

(ii) The Fourier transform $ of ¢ satisfies

0
A< Z ‘qg(x + 2k:7r)‘2 <B for a.a. xeR. (7.3.4)

k=—00

Proof. Let ¢ € L*(R) and 0 < A < B < o be given. For each n € Z, let e, () = e~"*. Since
each sequence in ¢? corresponds to a unique function in L*(0,27) and vice versa, (7.3.3) is
equivalent to that

AlC00m < Z (Cie T¢

k=—00

< BHCH%Q(O,QW) VC € L2(0, 27T), (735)
L2(R)

21

here we recall that (f,g) 20am = f(x)g(z)dz. Moreover, for every function C' €



L*(0,27), C(w) = Z (C, ek>L2(02 : ~ihe for almost all w € R; thus the fact that quzﬁ( ) =

k=—00

e~ ¢ (w) shows that

0

C’(w)gg(w) = Z (C, ek>L2<o,2w>m(w) for a.a. we R

k=—0o0

so that the monotone convergence theorem further implies that

& — 2 k+1)7r )
JR k:Z_OO<Cv €k>L2(0’27r)Tk¢(w) dw = f ‘O( ‘ dw = k_Zoof w)‘ dw
= t + 2/{: dt
k—Z—oof " ‘
=J Z |6t + 2km)|"dt. (7.3.6)
0

k=—00

“(i) = (ii)” Let C' € L*(0,27) be given. Note that (7.3.5) implies that Z (Ciep), L 20.2m LRO

k=—00

converges in L?(R). By the Plancherel identity (1.1.16),

Z <C €k>L2(o2 )Tk(b - 7}1—r>n Z <C €k>L2 0,27 )Tk(b
k=—o0 L2(R) k=—o0 L?(R)
- 7}1_1;1;) % Z <C ek>L2(02 ) k(b = Z <C ek>L2(02 )Tk(b ; (7'3'7)
k=—n L2(R) k=—00 L2(R)
and (7.3.6) further shows that
© 2 1 o ) o )
D (Crer)yny Tt = > et + 2km)|"dt.
k=—o0 L2(R) 0 k=—0o0

Therefore, condition (7.3.5) and the Parseval identity show that

1 21 9 0 - 9
A[C)Z202m) < %L CO D] |6t +2km)| dt < B|C|7202s ¥ C e L*(0,27).

k=—00

Let {gn}>_, be an approximation of the identity. Replacmg |C |> by T,g, in the

inequality above and passing to the limit as n — o0, we conclude (7.3.4).

“(ii) = (i)” Let C' € L*(0,2m). Then (7.3.4) and (7.3.6) imply that

2

Z (C, €k>L2<O Qﬂ)Tk¢( w)| dw < BHCH%%O,%)-

k=—0o0

AW Boam) < 37 |

0 —
This shows the series > (C,ey),, (0.2m Lk converges in L*(R). The desired inequality

k=—0

(7.3.5) then follows from (7.3.7). o



We next proceed to the construction of a mother wavelet by introducing a generating

function in L?(0,27). Before proceeding, we first establish the following

Lemma 7.8. For every f € V4, there exists my € L*(0,27) such that

flw) = mf(g)g% (g) . (7.3.8)

Indeed, my is given by

iy (w) = —

Yl braye ™. (7.3.9)

€

2

Proof. Let ¢, = (f, ¢1,). Since f € Vi,

o0 o0

flx) = Z CnP1n () = Z tn(D1y2Tng) (),
n=—0o n=—oo
0¢]
where Y] |c,|* = HfH%Z(R) < 0. Using (1.1.18), the Fourier transform of the identity above
n=—0o

gives

~ - ~ R inw ~ (W

flw) = Z cn(DQM,n(b)(w) = 7§ Z cpe” 2 ¢(§> o

n=-—o0 n=-—a

The mother wavelet ¢ can be generated by the generating function m € L*(0,27) in the

following lemma.

Lemma 7.9. The Fourier transform of the scaling function ¢ satisfies the following condi-

tions: .
Z ‘q/g(w + Qkﬁ)‘Q =1 for a.a. we R (7.3.10)
k=—o0
H(w) = m(%)@(%) (7.3.11)
where B
(w) = g (w) = \/% n;w@, brnye (7.3.12)

is a 2m-periodic function and satisfies the so-called the orthogonality condition
@)+ |w+m)| =1 foraa weR, (7.3.13)

Remark 7.10. The Fourier transform ngS of the scaling function ¢ satisfies the functional
equation (7.3.11). The function m is called the generating function of the MRA. This
function is often called the discrete Fourier transform of the sequence {c,} = {{¢, ¢1.,)}. In
signal processing, m is called the transfer function of a discrete filter with impulse response

{cn} or the low-pass filter associated with the scaling function ¢.

Proof. Condition (7.3.10) follows from Theorem 7.5, and (7.3.11) follows from Lemma 7.8

(with f being the scaling function ¢ in the lemma).



To verify the orthogonality condition (7.3.13), we substitute (7.3.11) in (7.3.10) so that
condition (7.3.10) becomes

1= Z ]gzﬁw—i—Z/m Z ‘m(g+kﬁ>‘2‘$(g+kw>‘2 for a.a. w e R.

k=—00

This is true for almost all w € R and hence, replacing w by 2w gives

1= Z | (w + kﬂ)mqg(w + k:7r)|2 for a.a. weR.

k=—0o0

We now split the above infinite sum over k into even and odd integers and use the 2m-periodic

property of the function m to obtain that for almost all w € R,

1= Z I (w + 2km)|’|o(w + 2km)|* + Z |(w + (2k + D))’ 6w + (2k + 1)m)|”

k=—0 k=—0

= Y | ]olw +26m)) + Y |lw + m)[[éw + (2k + 1))

k=—00 k=—0

=A@ Y |bw+ 2k +|iw + ) Y [olw + 7+ 2km)[. (7.3.14)

k=—00 k=—00

Using (7.3.10),

Z ’gbw—i—?lmr Z ‘¢w+7r+2k7r)‘ =1 for a.a. we R;
k=—0 k=—0o0
thus (7.3.14) leads to the desired condition (7.3.13). o

The following lemma is useful for reducing the computation in the follow up theorems.

Lemma 7.11. Let {V,,}mez be an MRA with the scaling function ¢. Then for all f, g€ Vi,

Z ]?(w + 2km)g(w + 2km) = (M) (%) + (M) (g + 7T) for a.a. we R, (7.3.15)

k=—0o0

where my and m, are functions satisfying

~ ~ W\ ~/ W ~ ~ W\ ~/ W
for=m(5)0(3) 9@ =m(3)e(3)
Proof. Using (7.3.8) and (7.3.11) (as well as the case with g replacing f),

0

Z (w + 2km)g(w + 2k)




Splitting the sum into even and odd integers k, by the 27-periodicity of m and m we obtain

the for almost all w € R,

i (w+ 2km m
- 3 ol vaun)n(F 2in) o5+ o)

+ _i ﬁ@f(%} + (2k + 1)7)7’7\19(% + (2k + 1)7r> ‘$(§ + (2k + 1)7?)‘2

~ [(W\ ~ (W ~fW 2
=y (5)s(3) 2 05 +2)|
k=—0
L (W (W 2
+mf<§+7r>m (5+7) Z (5 + e+ )|
The desired identity (7.3.15) then follows from Theorem 7.5. o

We next prove the following major technical lemma.

Lemma 7.12. Let {V, }nez be an MRA with the scaling function ¢, and m be the associated
generating function given by (7.3.12). Then the Fourier transform of any function f € Wy

can be expressed in the form

Flw) = P(w)ds [Ml(ng_,ﬁ)] (w) = D(w) exp (’;)E( + ) A(”j) , (7.3.16)

where U is a 2m-periodic function satisfying

1 21

~ 2
or ), PN dw =1 flzem). (7.3.17)

and the factor ds [Ml (@T_Wﬁ)} is independent of f.

Proof. Since f e Wy, it follows from V; = V@ W, that f € V; and is orthogonal to V. By
Lemma 7.8,

~ W\ W
flw) = mf<—>¢<—) . (7.3.18)
2 2
where, with ¢, denoting {f, ¢1,), the function m; is given by
Z c e —inw.
n_fOO

Evidently, m; is a 27-periodic function which belongs to L*(0, 27). Moreover, since f L V4,
by Corollary 7.4 and Lemma 7.11, we have

ni(3)a(y) w (G rm)a(g rm) =0 foran ek
mf2m2 mf2 7rm2 T = or a.a. w .



Replacing w by 2w in the identity above gives

A~

0 = M p(w)Mm(w) + Mp(w + m)m(w + ) for a.a. we R,
or, equivalently,

mf(w) %(QH—W) =0 for a.a. weR

~

—mplw+7m)  mw)
This can be interpreted as the linear dependence of two vectors

(ﬁlf(w), —my(w+ 7T)) and (%(w + W),%(w))

~

for almost all w € R. Since (7.3.13) implies that the vector (Mm(w + ), M (w)) is not a zero

vector for all w € R, there exists a function 3\, depending on f, such that
(W), —mp(w + 7)) = Aw) (M(w + 1), M(w))  for aa. weR, (7.3.19)

Using (7.3.19), the 2m-periodicity of m and my implies that ) is also 2m-periodic. Further-
more,
Aw) + Aw+7) =0 for a.a. weR.

Thus, the function M_;\ (or the function y = e‘i“X(w)) is m-periodic, so there exists a

27-periodic function 7 defined by
Aw) = e“D(2w). (7.3.20)

A simple combination of (7.3.18), (7.3.19), and (7.3.20) gives the desired representation
(7.3.16).
Finally, by (7.3.13) the m-periodicity of m implies that

f:ﬂ |ﬁ(w)‘2 dw = 2‘[% ‘X(w)f dw = QJ% ‘X(w)|2<‘ﬁb(w)}2 + ‘ﬁ’z(w + W)‘2> dw

™ T

:4£ﬁﬂw+ﬂﬁmw+wﬁd¢+f”xwﬁﬁw+ﬂwm%

27
:2J‘Mmﬁm@+wwmm
0
Using (7.3.19) and the Parseval identity,

2T 2T o0
J 9(w)|” dw = 2[ [p()|* dw =21 D7 Jeal? = 27 f22m) < .

0 0 n=-—00
This completes the proof of Lemma 7.12. =
Now, we return to the main problem of constructing a mother wavelet 1(z). Suppose

that there is a function ¢ such that {¢)g,}nez is a basis for the space W,. Then, every

function f € Wy has a series representation

f@)= > hathon(z) = > huto(z —n), (7.3.21)

n=—oo n=—0oo



where h,, = {f, 1o, satisfies

o0
[fl7e@ = >, [hal® < 0.

n=-—0o

Using (1.1.18), the application of the Fourier transform to (7.3.21) gives
flw) = ( 3 hne—mw)zZ(@ = h(w)p(w), (7.3.22)

where the function £ is .
iAz(w) = Z hne™ ™
n=—00
and it is a square integrable and 27-periodic function in [0, 27|, and the Parseval identity

implies that

Y

0 1 2 N )
Il = 2 1l =5 0 h(w)|” dw (7.3.23)

n=—aw

When (7.3.22) and (7.3.23) are compared with (7.3.16) and (7.3.17), by picking up the terms

independent of f we see that one possible choice of 22 should be
~ W\ = (W AW\ L W\ W
dw) =ex (F)(5 +7)8(3) =74 (35)5(3). (7.324)

where the function m,, is given by

A~

Aip(w) = Falw + T)e = Figlw + e,

In other words, we choose 1 so that for every f € W, we have h = 9. The function My is
called the filter conjugate to m and hence, m and m,, are called conjugate quadratic filters
in signal processing.

In the following, we show that the function 1) whose Fourier transform is given by (7.3.24)

is indeed an orthonormal wavelet. We start with the following

Lemma 7.13. Let {V,,}mez be an MRA with the scaling function ¢ and its associated

generating function
1 0
m(w) = — cpe Cn =L, O10)-
() ﬁ;@ (&, d1,)

Then the Fourier transform of a function v is given by

(w) = exp (%)ﬁ(% + W)@(%) (7.3.25)

if and only if ¢ € Vi takes the form

Y(a)= Y (-1 eSS (). (7.3.26)



Proof. By the fact that {c,}.ez € ¢, (1.1.18) implies that

0 o0

F| Y )T = Y ()T T e

n=—o0 n=—oo

Therefore, by the injectivity of the Fourier transform and the fact that {¢1,}nez is an

orthonormal basis for Vi, it suffices to show that

0e]

> (1) " T dra(w) = exp (%)ﬁ(g + ﬂ)@(%) .

n=—o0
Nevertheless, the fact that ¢, = D;,T,¢ implies that

0 ¢] e 0]

> ()T G W) = Y e (1) T (DM d)(w)
n=—aoo n=—oo
Z e —i(n+1)w fm ¢< ) i i aemﬂ'+z (n+1) gg(ﬂ)
= o (%) 25 3 e 5 3(5) = o (X)) (5 1) d(5)
SP\R ) A 2) ~ PP\ 2 2)
so the lemma is concluded. o

Lemma 7.14. Let {V,,}mez be an MRA with the scaling function ¢ and its associated

generating function m, and v be the function whose Fourier transform is given by
~ W\ = (W ~fW
= — )m| = —). 3.2
V(W) eXp(2>m<2+W>¢<2> (7.3.25)
Then the system {1[107” | ne Z} is an orthonormal system in Wy.

Proof. By Lemma 7.13, ¢ € Vi, so it suffices to show that {1, }nez is an orthonormal
system and v L V{. Since gE is given by (7.3.25), by setting
My (w) = Mm(w + 7)™

w

we have 12 W) =my| = ngS “). Letting f = g =1 in (7.3.15), we obtain
“\2/7\2

kzzoow(w+2k7r)|2:‘ﬁw(g>‘2+’fh¢(g+ﬁ)’2:’ﬁl(w>‘ +‘m< —|—7r>

and the orthogonality condition (7.3.13) further shows that

2

)

Z W(w + 2]{7?)‘2 =1 for a.a. we R.

By Theorem 7.5, {1)o.n}nez is an orthonormal system. Moreover, letting f = ¢ and g = ¢
n (7.3.15), we obtain

0

> d(w + 2kn) Ow + 2kr) = (Pyin) (%’) 1 (i) (g N W)

¢
k=—0
= (g +m)e B(G) +A(G +2m)eE (G 7).

N\E



and the 27-periodicity of m shows that

N N EOL VR

k=—0o0
By Corollary 7.4, ¢» L V; for all n € Z. The translation invariant property then shows that

{Y0.n}nez L Vo; thus {¢g ., }nez is an orthonormal system in W, =

Lemma 7.15. Let ¥ € L*(R) be such that {Ug,}nez is an orthonormal system in L*(R). If
feL*R) and f = D0 for some 2m-periodic function D € L2(0,2), then

[ € closurey. . (Span({ﬁom }neZ)) ;

0
that is, there exists {h,}*__, € * such that f = >, h,o,.
n=—oo
In particular, if ¢ is the function given in Lemma 7.14, then {1, }nez is an orthonormal

basis of Wy.

Proof. Suppose that f € L?(R) satisfies f: 74 for some 2r-periodic function 7 € L*(0, 27).
Since v € L*(0,27), there exists {h, } ez € £* such that

o0
v(w) = 2 hne” ™
n=—ao
and the convergence is in L?(0,27). Therefore,

Fw)= D1 e ™0(w) = Y h(Mod)(w) = > hTud(w) = Y. halpn(w).

n=—au n=—a n=—au n=—a

Using (1.1.18) (with .# ! and ~ replacing .# and ~, respectively), the fact that { Yo }
Vi; nez

is an orthonormal system (which is a direct consequence of the Plancherel identity (1.1.15))
and {h, }nez € €2 imply that
w
f=> hdon.
n=—uw

This shows that f € closurey , (span({Don}nez))-

Next we establish that {t¢,}nez is an orthonormal basis of W,. By Lemma 7.14, it
suffices to show that Wy < closurey , (span({do,}nez)). Nevertheless, by Lemma 7.12
every f € Wy corresponds to a 27-periodic function 7 € L?(0,27) such that f = D4; thus

the argument above then shows that Wy < closurey , (span({¥o.n}nez))- o

Remark 7.16. The key element to establish Lemma 7.15 is (1.1.18). Due to its similar
version (1.5.9), one can relaxed the condition that “{Jy,}nez is an orthonormal system in
L*(R)” to that “{J,,}nez has Riesz bounds A and B for some positive A and B”.

The combination of Lemma 7.13, 7.14 and 7.15 leads to the main theorem of this section.



Theorem 7.17. If {V,,}nez is an MRA with the scaling function ¢, then there is a mother
wavelet Y given by

P(x) =2 _Z ()" emd2r —n) = ) (—1) eSS (@),

n=—oo
where the coefficients ¢, are given by

(7.3.26)

Cn =L, P1n) = \@f o(z)p(2x — n)dz.
R
That is, the system {wmn ! ne Z} is an orthonormal basis for W,,.

Example 7.18 (The Shannon Wavelet). We consider the Fourier transform $ of a scaling
function ¢ defined by ¢(w) = 1 A(w) so that

1 T sin rx 20
o(x) = o f e dw = sinc(mz) = T )
T™J_n

1

if x =0.
This is also known as the Shannon sampling function. Clearly, the Shannon scaling function

does not have finite support. However, its Fourier transform has a finite support (band-

limited) in the frequency domain and has good frequency localization. Evidently, the system
dox(x) = ¢(x — k) = sinc(n(z — k))

is orthonormal because

keZ

1 T

2(R)
= — e 0w gy = Ore -

2m ),

In general, we define, for m = 0,

(Boes #0,0),25) = (P~ 90,0), 25 = {Thmt®, D)2, = %@m, $>L

Vo = { i cpsine(m(z — k) i lex? < oo}

k=—o0

k=—o0

and, for other m # 0, m € Z,

k=—00

Vin = { Z cx2™ ?sine(m(2™z — k)) Z len]? < oo}.

k=—0

It is easy to check that all conditions of Definition 7.1 are satisfied. We next find out the
coefficients ¢, defined by

= (6.0180,1, = (6, DyTi6) = =-(6.D}Tit)
o f (DaM 1) () deo =

NI

L2(R)
1 4 ikw ™~/ W 1 4 ikw
) —)dw = —— T2
[ e
1 .
\}5 if k=0, 7 if k=0,
— = 0 if £ is even and k # 0,
@ sinkj if k#0 V2 k
km 2 ' E(_l) > if k is odd.



Consequently, we can use the formula (7.3.26) to find the Shannon mother wavelet

=2 Z )" 10(22 —n)

1 1
= \/5[7§¢(2x +0+ Y ()" e aad(2r - n)}

nezZ,n#—1

— 2 L/%gb(zr +1) + eﬁ:@(—l)%_lc_%_lqﬁ@x — 25)}

= sinc(7(2z + 1)) — % i (22(£_+1)1£) sinc(27(z — /).
{=—00

By Theorem 7.17, the system {t,,, , | m,n € Z} is an orthonormal basis in L*(R). It is known

as the Shannon system.

Theorem 7.19. Let ¢ be a scaling function for an MRA, and v be the mother wavelet given
by Theorem 7.17. Then a function ¥ € Wy is an orthonormal wavelet for L*(R) if and only
if

D(w) = D(w)th(w) (7.3.27)
for some 2m-periodic function U such that |D(w)| = 1.

Proof. First we recall Lemma 7.13 that the mother wavelet 1) satisfies

)(w) = exp (Z;) (2 + w)aAS(;) . (7.3.25)

Suppose that g € W satisfying g = 1?12 for some 2m-periodic © € L?(0, 2). By setting
ig(w) = D(2w)m(w + m)e™,

we have g(w) = m, <%>$(g> By Lemma 7.11, the 2m-periodicity of m and 7 implies that

for almost all w € R,
N (W w 2
)+ i) (5 ) = (5[ [in(5 +7)
v
2

2 . 2| /W 2
+7r>‘ + |P(w + 2)| ‘m<§+27r>‘

and the orthogonality condition

-~ (5 +n) [+ (3
(

7.3.13) further implies that

3 fgw+2kn)" = [p(w)]”  foraa. weR. (7.3.28)

k=—0
“=" Suppose that ¢ € Wy is an orthonormal wavelet. By Lemma 7.12, there must be a
27-periodic function v € L?(0, 27) such that (7.3.27) holds. Letting g = o in (7.3.28),
Theorem 7.5 implies that

1= HNw + 2km)|? = [D(w)]? for a.a. weR.
PR ) = p(w)|

k=—0



<" Suppose that for some U satisfying ‘1?‘ = 1 a.e. the function ¥ satisfies (7.3.27). Lemma
7.15 shows that ¥ € Wy < Vi; thus letting g = ¢ in (7.3.28) shows that

o0
Z 9 (w + 2]€7T)|2 = ‘ﬁ(w)f =1 for a.a. weR.
k=—00
Theorem 7.5 then implies that {¥,}nez is an orthonormal system in Wj.

Next we show that {¥g,}nez is indeed an orthonormal basis of Wy. Let f e Wy be

given. By Lemma 7.12 there exists a 2m-periodic function ji € L*(0, 27) satisfying

Flw) = iw)dw) = X950,

DI

Since % is 27 periodic and belongs to L?(0,27), Lemma 7.15 implies that

f € closurey , (span({Uon}nez));

thus W' < closurey , (span({Jo,n}nez))- o

If the scaling function ¢ of an MRA is not an orthonormal basis of V but rather is a
Riesz basis, we can use the following orthonormalization process to generate an orthonormal

basis.

Theorem 7.20 (Orthonormalization Process). Let ¢ € L*(R) be such that {¢on}tnez is a
Riesz basis of Vy; that is, the linear span of {¢on}nez is dense in Vi and (by Theorem 7.7)
there exists two constants A, B > 0 such that

0<A< Y |d(w+2kn)| < B <o0. (7.3.29)

k=—00

Then {aovn}nel is an orthonormal basis of Vi with

(7.3.30)

Proof. Tt follows from (7.3.30) that

2 ‘(Zw—l—Zkﬂ ‘ =1.
k=—0
Thus, the function ¢ satisfies condition (b) of Theorem 7.5, and this shows that {50771}”62 is
an orthonormal set in L%(R).

Next we show that {go,n}nez < Vh. We consider a 2m-periodic function 7 defined by




Using (7.3.29), v € L?(0,27). Since ¢ = Do, Lemma 7.15 and Remark 7.16 together imply
that

XS closureH.”LQ(R) (span({%m}nez)) .
The fact that {¢g,}nez is a Riesz basis of V[ shows that 5 € Vp; thus {507n}nez c V.

On the other hand, we also have ngS = i% Since i is 2m-periodic and belongs to L?(0, 27)
v 14
(due to (7.3.29)), Lemma 7.15 shows that

XS closureH.”Lz(R) (span({%om}nez)) .
This further implies that
{Gontnez < closurey , - (span({@on}nez)) - (7.3.31)
Since {¢o.n}nez is a Riesz basis, we have
L*(R) = closureH.”LQ(R) (span({¢07n}nez)) :
thus (7.3.31) shows that L*(R) = closurey. , (Span({gzom}nez)). o
Finally, we provide a sufficient condition for a function being a qualified scaling function.

Theorem 7.21. Let ¢ be a bounded function with compact support, gg(O) =1, and {¢o.n}nez
is an orthonormal system in L*(R). If it holds the two-scale equation

[o0]

$(x) = . (. b1 P1al), (7.2.5)

n=—aw

then Vi, defined V,, = closurey, , (span({@mn}nez)) forms an MRA {Vy,}mez.

Proof. W.L.O.G, we assume that supp(¢) < [0, L] for some L € N. First we note that
¢ € L*(R) since it is continuous with compact support. Due to the two-scale equation

(7.2.5), we have
Vm - Verl YmeZ and f € Vm <= d1/2f € Vm+1 .

Therefore, it suffices to show (iii) and (iv) in the Definition of MRA; that is,

0 0
Closure.L2<R)< U Vm) = L*(R) and ﬂ Vi = {0}.
m=—0o0 m=—o0
0
We first focus on showing that closurey , ( U Vm> = L*(R). Let P,, : L*(R) — V,
m=—0
be the orthogonal projection defined by
e¢]
me = Z <f7 ¢m,€>¢m,€~
{=—0

By the nature of the orthogonality,

| V2@ = If = Prf 22 + P |72 -



The identity above implies that to show that lim ”Pm f—f H 2@ = 0, we only need to that
m—>00
T [Py fll 2@y = [ ]2y

Clalm For all finite sequence {h;}}_; € Cand —00 < a; <by <ay <by <--- <ag < by <

" o0
2 hkl[ak,bk) € CIOSUI"GH.HLQ(]R) ( U Vm) )
k=1 m==90

Proof of Claim: We first prove the case that n =1 and h; = 1. Let a = a; and b = b;. For

each m € Z,
Pml[a,b) < J ¢m Z dl’) ¢m £

l=—00

< a, <b, <o,

Therefore, the orthonormality of {¢m,g}gez shows that for m » 1,

fsbmz aa| =2 S fm”qb(x)dx

f——o0 2mag—/¢

[2m [2™a) [2mb]—L [2mb)
:zm(2+ Soe Y 3o+ %)

(=—0  (=[2ma]-L+1 f=[2Ma]+]1 L=]27b|—L+1  L=[2mb]+

HPml[ayb) Hi?(R)

1. For ¢ < [2™a] — L or ¢ = [2"b] 4 1, we have

[27a—€,2"b— (] N[0, L] = &.

Therefore,
[2™a]— oamp—g 2
( IS W[ st o
(=—c0  (=[2mb]+1 2ma—t
2mb—¢
2. Since J d(x)dz| < ||@] 11 (w), we have
2ma—/f
[2d] [2mb] 2mp—g 2
( b3 ) [ stwde] <2mioft
(=[2ma]—L+1  (=[2mb]—L+1 2ma—t
thus

2

2mp—¢
J ¢(x)dz| =0.

2ma—/f

[2ma]— [27m]
(3 3 )
L+1

=[2ma]-L  (=[2mb]—

3. For [2™a] +1 < ¢ < [2™b] — L, we have
O — (< 2Ma—[2Ma] —1<0  and  2"b— 0> 2"b—[2"b] + L > L;

thus the fact that supp(¢) < [0, L] implies that

[me]—L omp_g 2 [2 b] L 2 [2 b] N )
| ot f o(r)de| = 3 |30)
(=[2mq]+1 ! Y2 a—L (=[2ma] t=[2ma)

= [2mb] — ~ L.



Therefore,

[2mb]—L | omp—y 2
lim 27" J ¢(x)dr| = lim 27" ([2"b] — [2™a] — L)
m—ao0 m m—0o0
t=[2ma) | V2t
— lim 2™ [me _ 9™ 4 (]2 — 27b) + (2a — [2™a]) — L} —b—a.
m—00
The discussion above shows that lim HP L TP HL2 =b—a=|1y ||%2(R).

m—00

Now if s = Z Pilia, by, Where {h})_; € Cand —o0 <a; <by <ap <by<---<a, <
k=1
b, < o, the linearity of P,, implies that

Z hu, (Pml[ak,bk) - l[ambk)) < Z |h
k=1 k=1

which converges to 0 as m — oo (because it is a finite sum). This concludes the claim.

HPmS - SHL2(R) - k| Pml[ak)bk) - l[akvbk)

L2(R) L2(R)

Let f € L*(R) be given, and € > 0 be given. There exists finite sequence {h;}7_, < C

and 2n real numbers satlsfymg —w<a; <b <ay<by<---<a, <b, <o such that the
step function s = Z hiljq, b, satisfies
k=—0

3

If = slr2m) < 3

The orthogonality of P,, further shows that
€
Hpmf - Pms”L?(R) <|f- SHLQ(R) < 3"

By Claim 1, there exists N > 0 such that

whenever m > N.

€
|Prms — 3”1:2(11@) <3

Therefore, if m > N,
[f = Puf 2@ < If = slz@ + [Pms = 5] oy + [P = Pons]| oy < &

a0
and this shows that f € closurey, ( U Vm) :
m=—o0

e @]
Next we show that () V,, = {0} or equivalently,

m=—00

lim |Poflre@ =0 ¥feL*(R).

Let f e L*(R) and € > 0 be given. Choose g € 6.(R) be such that | f —g[ 12r) < % Suppose
that supp(g) < [~ R, R] and N € N satisfies 2V > R. Then the fact that supp(¢m.) <
[27"n,27"(n + L)] implies that if m < —N,

(g, Pmn) = f T) () dr =0 whenever n< —L—1orn>1.



The discussion above shows that if m < —N,

0 0
ng = Z <gv ¢m,n>¢m,n = Z <g7¢m,n>¢m,n'

n=—o0 n=—L

Therefore, using the estimate

a:6m0] = | [ 90275~ ) do| < 2% ole o e
R

we have for m < —N,
2 2
IPmglZem = Z <9, Gmn)|” < 2™(L + )]0 70 ) 191 my -
n=—1L

Therefore, by choosing N even larger, we have for m < —N,

1P f L2y < HPm<f — Dlez® + [Pmglzw) < |f — gllzw) + |Pmglrem < e

which concludes that limO [Pof 2Ry = 0 for all fe L*(R). o

7.4 Construction of Orthonormal Wavelets

We now use the properties of scaling functions and filters for constructing orthonormal

wavelets.

Example 7.22 (The Haar Wavelet). Example 7.2 shows that spaces of piecewise constant
functions constitute an MRA with the scaling function ¢ = 1} 1). Moreover, ¢ satisfies the

dilation equation

o(x) = /2 Z cnd(22 —n), (7.4.1)

n=—a

where the coefficients ¢, are given by

= (601,50, = V2 | $(o)0(20 — ) da. (742

Evaluating this integral with ¢ = 1} 1) gives ¢, as follows:

1
Cho=¢C = — and ¢, =0 forn#0, 1.

V2
Consequently, the dilation equation becomes
o(x) = o(2z) + p(22 — 1). (7.4.3)

This means that ¢ is a linear combination of the even and odd translates of d;/ ¢ and

satisfies a very simple two-scale relation (7.4.3), as shown in Figure 7.2.



1 o) 1o(2x) 0(2x-1)
| p—— 1 1 —
| | L
I - | T I I
| | I
L [
0 T 0 s " ™

Figure 7.2: Two-scale relation of ¢(z) = ¢(2x) + ¢(22 — 1)

Thus, the Haar mother wavelet is obtained from (7.3.26) as a simple two-scale relation
(@) = ¢11(x) = ¢1,-2(2) = 622 + 1) — G2z + 2) = 1_1 oy(x) — 1y _1(7)

1 ifxe [—%,0),

=93 -1 ifxe[—l,—%), (7.4.4)

0 otherwise.

This two-scale relation (7.4.4) of 1) is represented in Figure 7.3.

\ A
tyx) 1o(2x)
L e 1
| |
! = [ *
| |
5 I_ IF)r_r 0 ]_ P x 0 : :=l-.r
2 : y. I |
|
-1 - ik gl

-¢(2x-1)
Figure 7.3: Two-scale relation of ¢(z) = ¢(2z) + ¢(2z — 1)

Alternatively, the Haar wavelet can be obtained from the Fourier transform of the scaling

function ¢ = 1j01) so that

~ —_—

P(w) = 1p,1)(w) = exp (‘?)Sjn0<§>

=exp (=) cos () e (7 Jne()

W\ ~ /W
=m(—= - 7.4.5
m( 2 > ¢< 2 ) ’ (7.4.5)
where the associated filter m and its complex conjugate are given by
w w 1 ’
m = —— —)==(1+e" 4.
m(w) exp( 2>cos<2) 2( + e, (7.4.6a)
— ' 1 4
m(w) = exp (%) cos (g) = 5(1 +e*). (7.4.6b)

Thus, the Haar wavelet can be obtained form (7.3.24) or (7.3.27) and is given by

st ()53 )
:ﬁ(w)-exp<%> (1—62) qg( )



where U(w) = —exp(—iw) is chosen to find the exact result (7.4.4) since using this v, we

obtain

. ~ -
=% [(D29)(w) — (M_1D2¢)(w)] =

so that the inverse Fourier transform gives the exact result (7.4.4) as

1
¥(z) = 5 [(Dye)(x) - (T,D}0)(@)] = o(20) — o(2x ~ 1).

On the other hand, using (7.3.24) also gives the Haar wavelet as

0o ()7 (3 4 2)3(2) = () 3051 o0 (- 2)e(2)
= exp (%) : %(e_iw — eifw) : sinc(%) = —exp (%) : sin% : sinc(%)

- {Z ex (- %u) Smif%] (—exp(iw)). (7.4.7)

This corresponds to the same Fourier transform (6.2.7) of the Haar wavelet (7.4.4) except for
the factor — exp(iw). This means that this factor induces a translation of the Haar wavelet
to the left by one unit. Thus, we have chosen U(w) = —exp(—iw) in (7.3.27) to find the

same value (7.4.4) for the classic Haar wavelet.

Example 7.23 (Cardinal B-splines and Spline Wavelets). When we talk about “cardinal
splines”, we mean “polynomial spline functions with equally spaced simple knots”. We first
consider the set Z of all integers as the “knot sequence”. Let 7, denotes the collection of all
algebraic polynomials of degree at most n, and €™ (R) denote the collection of all functions
f such that f, f/, ---, £ are continuous everywhere, with the understanding that ¢ ~!(R)
is the space of piecewise continuous functions.

For each positive integer m, the space S,, of cardinal splines of order m and with knot
sequence 7Z is the collection of all functions f € €™ %(R) such that the restrictions of f to

any interval [k, k + 1), k € Z, are in 7,,_1; that is,

S e e+1)€ Tt keZ.

The space S; of piecewise constant functions is easy to understand. The most convenient
basis to use is {31 (x — k) ! ke Z}, where By = 1y is the scaling function given in the
previous example. To give a basis of S,,, m > 2, let us first consider the space S,
consisting of the restrictions of functions f € S, to the interval [N, N|, where N is a
positive integer. In other words, we may consider S,, x as the subspace of functions f € S,

such that the restrictions

I (—oo,—N41) and  fln_1,0)



of f are polynomials in 7,,_1. This subspace is easy to characterize. Indeed, for an arbitrary
function f in Sy, n, by setting pp,; = fl}j+1)€ Tm-1, J = —N, .-+, N — 1, we have, in view
of the fact that f e €™ 2,

(piﬁ)] pfﬁ)] 1)(j):O7 (=0,1,---,m—2; mz=2.

That is, by considering the “jumps” of (1 at the knot sequence Z, namely:

& =Py () = 1 (7) = lim plT () = Tim, py (o)
— i [/ 0G4 ) - fm G- ], (7.45)

e—0t
the adjacent polynomial pieces of f are related by the identity

C:

P (T) = Pmj—1(z) + (m——jl)'(x — )™t (7.4.9)

Hence, by introducing the notation

T4+ = maxil,

o { ) b (7.4.10)
2 = ()™, m =2,
it follows from (7.4.9), that for all x € [-N, N],
N-1 ..
f(@) = fll-n-ns1) (T) + Z —L—(x— )" L (7.4.11)
- (m—1)!
j=—N+1

This holds for every f € Sy, y, with the constants ¢; given by (7.4.8). Consequently, the

collection
(L™ @ N oD - N1 (7412

of m + 2N — 1 functions is a basis of S,, . This collection consists of both monomials
and “truncated powers”. Since we restrict our attention to the interval [—N, N], it is also

possible to replace the monomials 1, ---, 2™ 1 in (7.4.12) by the truncated powers:
(z+N+m-17" - (z+ NP (7.4.13)

That is, the following set of truncated powers, which are generated by using integer translates

of a single function x’f‘l, is also a basis of S, n:
{( k)" [k=-N-m+1,--- N—1}. (7.4.14)

This basis is more attractive than the basis in (7.4.12) for the following reasons. Firstly,
each function (x — )" vanishes to the left of j; secondly all the basis functions in (7.4.14)

are generated by a single function x’}'~ ! which is independent of N. Moreover, since

Q0
= U Sm,Na
N=1



it follows that the basis in (7.4.14) can also be extended to be a “basis” T of the infinite

dimensional space S,,, simply by taking the union of the bases in (7.4.14); that is, we have
T={(z—k)7} " keZ}. (7.4.15)

Since we are mainly concerned with the Hilbert space L*(R), we are especially interested
in cardinal splines that are in L?(R). Unfortunately, there is not a single function in 7~
that qualifies to be a function in L?(R), and in fact, each (z — k)" grows to infinity fairly
rapdily as x — +oo. To create L?(R) functions from 7y, we must tame the polynomial
growth of (x — k)T_l.Deﬁne the difference operator A recursively by

{ (Af)(@) = f(z) = flz 1), (7.4.16)

(A"f)(@) = (AAD) (@), n=23,-

Observe that just like the m'™ order differential operator, the m' order difference of any

polynomial of degree m — 1 or less is identically zero, that is,
A"f =0, femm1. (7.4.17)

This motivates the definition of the sequence {M,,};_,: the function M; = 1), and

1 _
M, (z) = mAmxT L ovym=2. (7.4.18)

<
<
<

Figure 7.4: The graph of functions M,,, m = 1,2, 3, from left to right.

It is clear from the definition that M, is a linear combination of the basis functions in
(7.4.15). In fact, it is easy to verify by induction that if ¢ € N, then for all m € N,

At = D1y () - )

J=0

so we indeed have

M, (z) = ﬁ ;:;)(—1)'“(7;) (@ — k)7L, (7.4.19)

From (7.4.17), it follows that M,,(x) = 0 for all z > m. Since M,,(x) clearly vanishes

for x < 0, we have supp M,, < [0, m]. By working a little harder, we can even conclude that

supp(M,,) = [0,m]. (7.4.20)



So, M, is certainly in L*(R). However, is the collection
B={T;Mn,},_, (7.4.21)

of integer-translates of M,, a “basis” of S,,7 Let us again return to S,, y which, according
to (7.4.12) or (7.4.14), has dimension m + 2N — 1. Now, by using the support property

(7.4.20), each function in the collection

(TuM ), (7.4.22)

=—N-m+1

is non-trivial (at least one function in this collection is non-zero) on the interval [—N, N]
and M,,(x — k) vanishes identically on [-N, N| for k < —N —m+1 or k > N — 1. Since it
can be shown that (7.4.22) is a linearly independent set, we have obtained another basis of
Sm.N- S0, analogous to (7.4.15), if we take the union of the bases in (7.4.22), N =1, 2, -- -,
we arrive at B in (7.4.21). One advantage of B over T in (7.4.15) is that we can now talk

about a spline series
e}

fl@)= > cxMy(z —k) (7.4.23)

k=—00
without worrying too much about convergence. Indeed, for each fixed = € R, since M,, has
compact support, all except for a finite number of terms in the infinite series (7.4.23) are
zZero.

As mentioned earlier, we are mainly interested in those cardinal splines that belong to
L*(R), namely: S,, n L*(R). Let VJ" denote its L?(R)-closure. That is, V7" is the smallest
closed subspace of L?(R) that contains S,, n L?(R). Since M,, has compact support, we see
that B < V. We can even show that B is a Riesz basis of V", so a scaling function ¢ for
Vg™ can be constructed using the orthonormalization process described by Theorem .

So far, we have only considered cardinal splines with knot sequence Z. More generally,
we will also consider the spaces S?, of cardinal splines with knot sequences 277Z, j € Z. Since
a spline function with knot sequence 27717 is also a spline function with knot sequence 27727

whenever j; < ja, we have a (doubly-infinite) nested sequence
eS8 tes sl

of cardinal spline spaces, with S°, = S,,,. Analogous to the definition of Vj™, we will let v

denote the L?*(R)-closure of S4 n L*(R). Hence, we have a nested sequence
oV cltevite (7.4.24)

of closed cardinal spline subspaces of L?*(R). It will be clear that this nested sequence of
subspaces satisfies:
closurey.|, ( U ij> = L*(R),
Iez (7.4.25)
(v =10},

JEZ



Furthermore, it is clear that once we have shown that B is a Riesz basis of V{J", then for any
j € Z, the collection
{272 M,, (22 — k)| k e Z} (7.4.26)

is also a Riesz basis of V™ with the same Riesz bounds as those of B.

The cardinal B-splines (basis splines) consist of functions in €™ }(R) with equally
spaced integer knots that coincide with polynomials of degree n on the intervals [2*"%, 27 (k+
1)] These B-splines of order n with compact support generate a linear space V; in L*(R).
This leads to an MRA {V}, |m € Z} by defining f € V,, if and only if dy/2f € Vipi1.

The cardinal B-splines B,, of order m are defined by the following convolution product

Bl = 1[071] and Bm = ?1 * Bl EORRRE S B; = Bl * Bm—l n = 2, (7427)

~
there are m Bi’s

where m factors are involved in the convolution product. Obviously,

aww:LaHu—n&@ﬁ:Jﬂ%q@—wﬁ:fvawﬁmt (7.4.28)

0 z—1
Using the formula (7.4.28), we can obtain the explicit representation of splines By, B3, and

B, as follows:

BMﬁJx&@ﬁ:flmww

z—1 z—1

Evidently, it turns out that

By(z) =0 ifr<Oorz=>=2

Vv

Bg(x):f dt =x if 0 <z <1,

1
Bg(m)—f dt =2—x ifl<z<2.

Or, equivalently,
By(x) = xlpq1y(z) + (2 — 2)1lp (). (7.4.29)
Similarly, using

Bs(x) = J‘” B(t) dt,

z—1

we find the explicit expression of Bs:

WV
w

ifz<0orzx

Bolt :ftdt v ifo<z<1,

0

—0
f 2
1 1
(f +J ) Bt f tdt+J (2 1) dt ifl<z<2
1
1
ﬂ

1 2
(x—l)]+2g:—2—§(g; —1)= 2(6:76—293 —3)

2 -1 1
Bt yae= | @-tit= -1 =3G-af iHz<oss

x—1




Or, equivalently,

1‘2

1 1

Finally, By(z) = J Bs(t) dt we have
z—1

By(xz) =0 ifr<Oorxz=>4,
[+ 1

By(z) = | Bs(t)dt = =a° if0<r<l,
Jo 6
[* 1

By(r) = Bs(t) dt = 6(—3:;;3 +120% — 122 +4)  ifl1<2<2,
Jr—1
[ 1

By(z) = Bs(t) dt = 6(3933 — 242% + 607 — 44) if 2 <r <3,
Jr—1
3 1

By(x) :f Bs(t)dt = 6(4—x)3 if3 <z <4
z—1

Or, equivalently,

1 1
By(z) = 61:31[0’1)(96) + 6(—3:1:3 + 1227 — 122 + 4)1}1 9 ()
L ) ] ; (7.4.31)
+ 6(3:1: — 242" 4+ 60z — 44)1 . 3)(z) + 6(4 —2)"134(x).

In general, we have the following
Theorem 7.24. The m™ order cardinal B-spline B,, satisfies the following properties:

(i) For every f e € (R),
1 1
J f(z)By(x)de = J . J flxr + 2o+ + ) dey - day,. (7.4.32)
R 0 0
(ii) For every g € €™(R),

JR 0 (@) B () dr = 3 (1) (7)tk). (7.4.33)

k=0

(ili) Bp(x) = My (x) for all x € R; that is,

(iv) supp(B,,) = [0,m].
(V) Bpn(x) >0 for all x € (0,m).

(vi) S Bo(r—k) =1 forall z € R,

k=—00



(vii) B),(x) = (ABp-1)(x) = Bp—1(x) — Bp—1(x — 1) for all x e R.

(viii) The cardinal B-splines By, and By, are related by the identity:

T m—x

1Bm_1(x -1) VzeR. (7.4.34)

m—1 m —

(ix) By, is symmetric with respect to the center of its support, namely:

Bm<% —|—x) - Bm(% —x) VzeR.

Proof. (i) Assertion (7.4.32) certainly holds for m = 1. Suppose it also holds for m — 1 (for
some m > 2), then by the definition of B,, in (7.4.28) and this induction hypothesis,
we have

fR FO Bt = | 1) f Byyoi(t — ) damdt = f f F(O)Buor (t — @) dtda,

(;

J f(t + 2) By (t) dtd,,
R

I
[ S
lo

1 1

J (f J flozr+ - zpmoy + x) day - --da:'m,l)d:cm.
o “Jo 0

It follows from induction that (7.4.32) holds for all m.

(ii) Assertion (7.4.33) holds for m = 1. Suppose that it also holds for m — 1 (for some
m = 2). Then by part (i) we obtain that

1 1
Jg(m)(t)Bm(t)dtIJ f 0 (@1 + -t 1) d -
R

gm b (:1:1—1— Ty + 1) day, g - day
(m—1)
J g $1+"‘+5Em—1)d$m—1"'d$1

:J =D (¢t 4 1) By (t)dt — J g™ V() B,,_1(t) dt

:7:01 ymi- k( > (k+1) —T:Z_:(—l)m_l_k<mk1) (k)

Since



we find that

p e S I R M G I
i (o - m:<—1>m“f(m - otk
~atm) + 3 0 (ot + (0a0)+ S (7
st + (-17a(0)+ 30 (1) + (7)ot
gt + (-1)7(0) + 3073t = (o
It follows from induction that (7.4.33) holds for all m € N.
(iii) Clearly Bi(z) = Mi(x) = 1j1)(x) for all x € R. Assume that B,,_q(x) = M,
all x € R (for some m > 2). Then
B.(z) = Ll Bp_1(x —t)dt = Jol M, —1(x —t)dt
_ ﬁ 121(—1%(7”; 1> Ll(x —t— k)"t
Since
1 Jol(x—t—k)m_ldt ifo—Fk=>1,
L(“"_t_k>T_ldt: r_k(x—t—k:)mldt t0<o—k<l,
’ 0 ifx —k <0,
we have .
L (x—t— k)t = %[(m—k)f— (x—k—1)7].
Therefore,
Bate) = oy S V() [l
- (mi 1)! 7:2_:( 1)k<mk_l>;[( — k) —(r—k-1) ]
e UV S B

By induction, B,,(z) = M,,(z) for all x € R and m € N.

1(z) for



(vii) Using (7.4.28) again, the Fundamental Theorem of Calculus shows that

d T

B! (z) = @J B (t)dt = —=Bp—1(x — 1) 4+ Bi—1(z) = (ABy—1)(2).
z—1

(viii) To verify the identity in (viii), we use the definition of M,, in (7.4.18) instead. Of

course, we have already shown in (iii) that B,, = M,,. The idea is to represent as the

product of a monomial and a truncated power, namely:

e =2l 2
and then apply the following “Leibniz Rule” for differences:

n

2"(f9) @) = 3, (1) (A @A™ g)x — k). (7.435)

k=0

This identity for differences can be easily established by induction. It is almost exactly

the same as the Leibniz Rule for derivatives. Now, if we set f(z) = z and g(x) = 272

in (7.4.35) and recall that A¥f = 0 for k > 2 from (7.4.17), we then have

_ _ 1 m, m—1 __ 1 m,.m—2 m—1 _1\ym—2
Bn(x) = M,(x) = ] 1)!A o' = ] [xA "+ mA" T (x — 1) ]
1
= ) [m(Am_le_2 — A" Nz =177 + mA™ (- 1)?‘2}
= m:”_ By (x) + %Bm_l(x ~1)

Assertions (iv), (v), (vi) and (ix) can also be easily derived by induction, using the
definition of B,, in (7.4.28). This completes the proof of Theorem 7.24. o

In order to obtain the two-scale relation for the B-splines of order n, we apply the Fourier
transform of (7.4.27) so that

= wy . (W
Bi(w) = exp (—?>smc<§> . (7.4.36)
Using (7.4.5) and (7.4.6a) we can also express (7.4.36) in terms of z = exp (—%) as
—~ 1 —~ /W
Bi(w) = 5(1+2)Bi (5) . (7.4.37)

Application of the convolution theorem of the Fourier transform to (7.4.27) gives
= = no S, 5 IT+2\"[— /w\1" 1+2\"=~/w
Buw) = [Biw))" = Biw)Bae) = () [Bi(3)] = (57) B:(3)
2 2 2 2
R()RE)
2 2
where the associated filter ]\/4\” is given by
—~ (W 1+2\» 1 _iwvn 1 A /n tkw
W.(3) = ( ) e =g X (e ()

Z nkeXp( ka), (7.4.38)




where the coefficients ¢, j, are given by
\/§ n
Cnk = 27 \ k
0 otherwise.

if 0 <k <
) iro " (7.4.39)

Therefore, the spline function in the time domain is

Bu(z) = v2 i eopBu(2r —F) = 3 2 (Z) By (22 — k). (7.4.40)

k=—0
This may be referred to as the two-scale relation for the B-splines of order n.

We next show that the cardinal B-spline basis
B ={T,Bn |kecZ} (7.4.41)

is a Riesz (or unconditional) basis of V™ in the sense of Definition 6.26 (or Theorem 6.27).

By Theorem 7.7, this is equivalent to investigating the existence of lower and upper bounds
A, B in (7.3.4). From (7.4.27), we see that so that B, =B, so that

—iw |2m . 2m
~ 2 |l—e™ sin(w/2)
Bm = =
[Bm(w) ‘ iw w/2
Hence, replacing w by 2w, we have
0 0 . 9 0
~ 2 sin“™(w + km) ., 1
B,,(2 2k = _— = m —_—. 7.4.42
k;@' (2w + 7)‘ k;@ (w + r)2m SI wk;oo (w + r)2m ( )
By the residue theorem, for w # kn for all k € Z,
t = 1 d t
lim TOOTE) (m2) dz = 27r2{ Z — t+ “ (WZ)} 5
N—owx J o (w4 2m)? o (wtkm)? dele=—rw T

where Cy is the square contour with four corners (i(N +0.5), (N + 0.5)). The choice of

Cy leads to that
_ 7 cot(mz)
lim —_—
N-x [ o (w4 27)?

dz =0,

so we conclude that

cot(mz)

= cscw whenever w ¢ {knr ‘ ke Z}.

$ 1
(Wt k) o dzlim—mje W

Taking another 2m — 2 derivative w.r.t. w yields that

o 1 1 d%n—Z )
— ) 7.4.43
Z (w+km)2™  (2m — 1) da?m—2 e w ( )

k=—00

Therefore, substituting (7.4.43) into (7.4.42), we obtain

B (2 4 2km)f = S PR 7.4.44
Z | B (2w + 2km)|” = (2m_1)!d$2m_2csc w. (7.4.44)

k=—
This shows that the first order B-spline B; defined by (7.4.27) is a scaling function that

generates the classic Haar wavelet.
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