B MA-1015A

Ching-hsiao Arthur Cheng #15 4 A # S MA-1015A



Chapter 3. Relations and Partitions

Chapter 3. Relations and Partitions
§3.1 Relations
§3.2 Equivalence Relations
§3.3 Partitions
§3.4 Modular Arithmetic
§3.5 Ordering Relations

Ching-hsiao Arthur Cheng #:5 % A##E MA-1015A



Chapter 3. Relations and Partitions
§3.1 Relations

Definition
Let A and B be sets. R is a relation from A to B if R is a subset
of A x B. A relation from A to A is called a relation on A. If

(a, b) € R, we say a is R-related (or simply related) to b and write
aRb. If (a,b) ¢ R, we write aRb.

Let R be the relation "is older than” on the set of all people. If ais
32 yrs old, b is 25 yrs old, and c is 45 yrs old, then aRb, cRb, aRc.
Similarly, the "less than" relation on R is the set {(X, y) ‘X< y}.
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Remark:

Let A and B be sets. Every subset of Ax B'is a relations from A to B;
thus every collection of ordered pairs is a relation. In particular, the
empty set J and the set A x B are relations from Ato B (R=
is the relation that “nothing” is related, while R = A x B is the

relation that “everything” is related).
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For any set A, the identity relation on A is the (diagonal) set
Ia={(a,a)|ac A}.

Definition
Let A and B be sets, and R be a relation from A to B. The domain
of R is the set

Dom(R) = {xe A|(3ye B)(xRy)},

and the range of R is the set

Rng(R) = {y € B|(3xe A)(xRy)}.

V.

In other words, the domain of a relation R from A to B is the

collection of all first coordinate of ordered pairs in R, and the range
of R is the collection of all second coordinates.
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Definition

Let A and B be sets, and R be a relation from A to B. The inverse
of R, denoted by R™!, is the relation

R!= {(y,x) € Bx A|(xy) € R (or equivalently, xRy)} .

In other words, xRy if and only if yR~!x or equivalently, (x,y) € R
if and only if (y,x) € R~

\,

Let T = {(va) €R x R\y < 4x% — 7}. To find the inverse of T,
we note that
xeTle (hxeTeox<dy?—Tex+T7<4y’
< (xy)e{(xy) eRxR|x+7<0}u
{(xy) eRxR[0< X+7<y}
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Let A and B be sets, and R be a relation from A to B.
@ Dom(R™!) = Rng(R).
Q@ Rng(R!) = Dom(R).

\,

The theorem is concluded by

be Dom(R™!) < (Jac A)[(b,a)e R!] « (3ac A)[(a, b) € R]

< be Rng(R),
and
acRng(R )< 3be B)[(b,a) € R_l] < (3be B)[(a,b) € R
< ae Dom(R). o
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Definition
Let A, B, C be sets, and R be a relation from A to B, S be a relation
from B to C. The composite of R and S is a relation from A to C,

denoted by So R, given by
SoR= {(a, ) e Ax c‘ (3be B)[(aRb) A (bsc)}}.

V.

We note that Dom(S o R) € Dom(R) and it may happen that
Dom(So R) < Dom(R).
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Let A={1,2,3,4,5}, B={p,q,r,s,t} and C= {x,y,z,w}. Let R
be the relation from A to B:

R= {(LP),(1,Q),(2,Q),(3,r),(4,5)}
and S be the relation from B to C:

S= {(pv X)a (q’ X)? (q, Y)’ (57 Z)? (ta Z)} °
Then So R = {(1,X), (L,y),(2,x),(2,y), (4,2)}.

Let R={(x,y) e RxR|y=x+1}and S={(x,y) eRxR|y=

x*}. Then
RoS={(xy)eRxR|y=x>+1},

SoR={(xy) e RxR|y=(x+1)?}.
Therefore, So R # Ro S.

.
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Suppose that A, B, C, D are sets, R be a relation from A to B, S be

a relation from B to C, and T be a relation from C to D.

(a) (R =R

(b) To(SoR)=(ToS)o R (so composition is associative).
(C) /BOR RandRolA—R
)

(d) (SoR)' =R 1loS.

\,

Proof of (a).

(a) holds since
(a,b) e (R = (bja)e R = (a,b) € R. o

\
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Proof of (b)

Since So Ris a relation from Ato C, To (So R) is a relation from
A — D. Similarly, (To S) o R is also a relation from A to D. Let
(a,d) e Ax D. Then
(a,d)e To(SoR)
Jce C)[(a,c) e SoRA (c,d) e T|

< (
< (3ce O)3be B)[(a, b)ER/\(b,C)ES/\( d)eT|
< (3(b,c)e Bx C)[(a,b) e RA (b,c) e SA(c,d) e T|
< (3be B)(3ce C)[(a,b)e RA (b,c)e SA (c,d)e T|
< (3be B)|(a, b)eR/\(bd ToS]
o (a,d) € (ToS)o

Therefore, To (So ):(TOS)OR. o
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Proof of (c)

Let (a,b) € A x B be given. Then
(a,b)elgoR< (Ice B)[(a,c) e RA (c,b) € Ig] .
Note that (c, b) € Ig if and only if ¢ = b; thus
(Ice B)[(a,c) e RA (¢, b) € Ig] < (a,b) € R.

Therefore, (a,b) € Igo R< (a,b) € R. Similarly, (a,b) € Ro Iy <
(a,b) € R. o

v

Proof of (d)
Let (a,c) € Ax C. Then

(cca)e (SoR) ! = (a,c)eSoR
< (3be B)[(a,b) e RA (b,c) € S
< (3be B)[(c,b) e St A (ba) e R7!]
e (ca)eR1lost. o

= = =
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§3.2 Equivalence Relations
Let A be a set and R be a relation on A.

@ Ris reflexive on A if (V xe A)(xRx).

@ Ris symmetric on A if [V (x,y) € A x A](xRy < yRx).

© R is transitive on A if

[V (x,y,2) € Ax A x Al [(xRy) A (yRz)] = (xRz)] .

A relation R on A which is reflexive, symmetric and transitive is
called an equivalence relation on A.

v

An equivalence relation is often denoted by ~ (the same symbol as
negation but ~ as negation is always in front of a proposition while

~ as an equivalence relation is always between two elements in a
set).
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The relation “divides” on N is reflexive and transitive, but not sym-
metric. The relation “is greater than” on N is only transitive ( {45
=) but not reflexive and transitive. )
Let A be a set. The relation “is a subset of” on the power set P(A)
is reflexive, transitive but not symmetric.

The relation S = {(x, y) € R x ]R|x2 = y2} is reflexive, symmetric
and transitive on R. )
The relation R on Z defined by R = {(x, y)eEZ X Z ‘ x+yis even}
is reflexive, symmetric and transitive.
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§3.2 Equivalence Relations

Definition

Let A be a set and R be an equivalence relation on A. For x € A,
the equivalence class of x modulo R (or simply x mod R) is a

subset of A given by
Xx= {ye A|XRy}.

Each element of x is called a representative of this class. The

collection of all equivalence classes modulo R, called A modulo R,
is denoted by A/R (and is the set A/R= {X|x € A}).

The relation H = {(1,1),(2,2),(3,3),(1,2),(2,1)} is an equiva-
lence relation on the set A = {1,2,3}. Then

1=2={1,2} and 3={3}.
Therefore, A/H = {{1,2}, {3}}.
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Let A be a non-empty set and R be an equivalence relation on A.
For all x,y e A, we have

(a) xexand xc A. (b) xRy if and only if x =y.

(c) xRy if and only if xny = (.

It is clear that (a) holds. To see (b) and (c), it suffices to show that
“XRy=x=Yy"and “xRy=xny= "

Assume that xRy. Then if z € x, we have xRz. The symmetry and
transitivity of R then implies that yRz; thus z € y which implies that
x € y. Similarly, y € x; hence we conclude that “xRy = x=y".
Now assume that x Ny # . Then for for some z € A we have
z € XN Y. Therefore, xRz and yRz. Since R is symmetric and
transitive, then xRy which implies that "xRy = xny = J". o
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§3.2 Equivalence Relations

Definition

Let m be a fixed positive integer. For x, y € Z, we say x is congruent
toy modulom (1 m % “f #PF x 4 y) and write x = y (mod
m) if m divides (x — y). The number m is called the modulus of

the congruence.

Using 4 as the modulus, we have
3 =3 (mod 4) because 4 divides 3 -3 =0,

9 =5 (mod 4) because 4 divides 9 —5 =4,
—27 =1 (mod 4) because 4 divides —27 — 1 = —28,
20 = 8 (mod 4) because 4 divides 20 — 8 = 12,
100 = 0 (mod 4) because 4 divides 100 — 0 = 100.

.

Ching-hsiao Arthur Cheng #:5 % A##E MA-1015A



Chapter 3. Relations and Partitions

§3.2 Equivalence Relations

For every fixed positive integer m, the relation “congruence modulo

m" is an equivalence relation on 7.

v

o

2]

(Reflexivity) It is easy to see that x = x (mod m) for all x€ Z.
Therefore, congruence modulo m is reflexive on Z.

(Symmetry) Assume that x = y (mod m). Then m divides
x — y, that is, x— y = mk for some k € Z. Therefore, y — x =
m(—k) which implies that m divides y — x; thus y = x (mod
m).

(Transitivity) Assume that x = y (mod m) and y = z (mod
m). Then x—y = mk and y — z = m{ for some k, ¢ € Z.
Therefore, x—z = m(k+ {¢) which implies that m divides x— z;

thus x = z (mod m). o

T = = =
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§3.2 Equivalence Relations

Definition

The set of equivalence classes for the relation congruence modulo
m is denoted by Z,.

Remark: The elements of Z,, are sometimes called the residue (or
remainder) classes modulo m.

For congruence modulo 4, there are four equivalence classes:
0={-,-16,—-12,-8,-4,0,4,8,12,16,--- } = {4k| ke Z},
1={--,-15-11,-7,-3,1,5,9,13,17,--- } = {4k + 1 |ke Z},
2={-,-14,-10,—6,-2,2,6,10,14,18, - - - } = {4k + 2| ke Z},
3={--,-13,-9,-5,-1,3,7,11,15,19, - - } = {4k + 3 |ke Z} . )
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In general, we will prove that the equivalence relation “congruence
modulo m" produces m equivalence classes

j={mk+j|keZ}, j=0,1,--- ,m—1.

The collection of these equivalence classes, by definition Z/(mod m),
is usually denoted by Z,.

Let m be a fixed positive integer. Then

© Forintegers x and y, x =y (mod m) if and only if the remainder
when x is divided by m equals the remainder when y divided by
m.

@ Z,, consists of m distinct equivalence classes:

Zm= {01, ,m—1}.
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O For a given x € Z, let (g(x),r(x)) denote the unique pair in

Z x 7 obtained by the division algorithm satisfying

x=mq(x)+r(x) and 0<r(x) <m.
Then
x =y (mod m) < m divides x — y
< m divides m(q(x) — q(y)) + r(x) — r(y)
< m divides r(x) — r(y)
< r(x)—r(y)=0.
where the last equivalence following from the fact that 0 <
r(x), r(y) < m. o
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Proof. (Cont'd).

@ Using (D, x and y are in the same equivalence classes (produced

by the equivalence relation “congruence modulo m") if and only
if x and y has the same remainder when they are divided by m.
Therefore, we find that
Rz{mk+r(x)|k€Z}er><) VxeZ.
Since r(x) has values from {0, 1, -- , m—1}, we find that Z,,, =
{0,1,--- ,m—1}. The proof is completed if we show that
knj= @ if k+# jand kje {0,1,---,m— 1}. However, if
x € kn j, then
x=mq; + k=mqy +j

which is impossible since k # j and k,j € {0,1,--- , m— 1}.

Therefore, there are exactly m equivalence classes. 5
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Let A be a non-empty set. P is a partition of A if P is a collection
of subsets of A such that

Q if Xe P, then X # .
Q@ if Xe Pand YeP, then X=Yor Xn Y=¢.

Q0 U X=A
XeP
In other words, a partition of a set A is a pairwise disjoint collection

of non-empty subsets of A whose union is A.
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The family G = {[n,n+ 1)| n€ Z} is a partition of R.

.

Each of the following is a partition of Z:

Q@ P = {E, D}, where E is the collection of even integers and D is
the collection of odd integers.

Q@ X = {N,{0},Z}, where Z~ is the collection of negative inte-
gers.

O H = {A| ke Z}, where A, = {3k, 3k+ 1,3k + 2}.

Ching-hsiao Arthur Cheng #:5 % A##E MA-1015A



Chapter 3. Relations and Partitions
§3.3 Partitions

If R is an equivalent relation on a non-empty set A, then A/R is a

partition of A.

First of all, each equivalence class x € A/R must be non-empty

since it contains x. Let x and y be two equivalence classes in A/R.
If XNy # ¢, then there exists z€ X y which implies that xRz and
yRz. By the symmetry and the transitivity of R we have xRy which
implies that x =y.

Finally, it is clear that | J X < A since each X < A. On the other

xeA/R
hand, since each y € A belongs to the equivalence class y, we must
have Ac |J x. Therefore, A= [J X o
x€A/R x€A/R

v
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Let P be a partition of a non-empty set A. For x,y € A, define xQy
if and only if there exists C € P such that x,y € C. Then

@ Q is an equivalence relation on A.

Q@ A/Q=".

It is clear that Q is reflexive and symmetric on A, so it suffices to
show the transitivity of @ to complete (I). Suppose that xQy and
yQz. By the definition of the relation Q there exists C; and G in
P such that x,y € C; and y,z € Cy; hence C; n Gy # &. Then
C, = G, by the fact that P is a partition and C;, Co € P. Therefore,
x, z€ C; which implies that xQz. o
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Proof. (Cont'd).
Next, we claim that if C e P, then xe Cif and only if x= C. It

suffices to show the direction “=" since x € x.

Suppose that Ce P and xe C.
@ "Cc x": Let ye C be given. By the fact that xe C we must
have y@x. Therefore, y € x which shows C € X.
@ "“Xx< C": Let y € x be given. Then there exists C e P such
that x, y € C. By the fact that x € C, we find that Cn C+ .
Since P is a partition of A and C, Ce P, we must have C = E;

thus y € C. Therefore, x< C. -

v
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Proof. (Cont'd).

Now we show that A/Q = P. If Ce P, then C # (J; thus there
exists x € C for some x € A. Then the claim above shows that
C=xe A/Q. Therefore, P < A/Q. On the other hand, if xe A/Q,
by the fact that P is a partition of A, there exists C € P such
that x € C. Then the claim above shows that X = C. Therefore,
A/Qc P. o

V

Remark: The relation @ defined in the theorem proved above is
called the equivalence relation associated with the partition P.
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Let A = {1,2,3,4}, and let P = {{1},{2,3},{4}} be a partition
of A with three sets. The equivalence relation @ associated with P
is {(1,1),(2,2),(3,3),(4,4),(2,3),(3,2)}. The three equivalence
classes for Q are 1 = {1}, 2 = 3 = {2,3} and 4 = {4}. The
collection of all equivalence classes A/Q is precisely P.

The collect P = {Ao, A1, A2, A3}, where
A= {4k + j| ke Z} for j= {0,1,2,3},

is a partition of Z because of the division algorithm. The equivalence

relation associated with the partition P is the relation of congruence
modulo 4, and each A; is the residue class of j modulo 4 for j =
0,1,2,3.
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§3.4 Modular Arithmetic

Let m be a positive integer and a, b, c and d be integers. If a = ¢
(mod m) and b = d (mod m), then a+ b = c+ d (mod m) and
a-b=c-d(mod m).

V.

Since a = ¢ (mod m) and b = d (mod m), we have a — ¢ = mk;
and b — d = mky for some ki, kg € Z. Then

a+b=c+ mk +d+ mke = c+d+ m(k; + ko)
and
a-b=(c+mky) - (d+mky) =c-d+ m(c-ks+d-ky + ki - ko).
Therefore, a+ b= c+ d (mod m) and a- b= c-d (mod m). o

v
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For each natural number m,

@ the sum of the classes x and y in Z,,, denoted by X+ v, is
defined to be the class containing the integer x+ y;

@ the product of the classes x and y in Z,,, denoted by x-, is
defined to be the class containing the integer x - y.

In symbols, x4+ y=x+yand x- y=Xx-y.

.
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Find 363 in Z7. Since
$i-3, 2-2, $-5, 5
6

we have 363 = 360 .33 — )

For every integer k, 6 divides k> + 5k. In fact, by the division
algorithm, for each k € Z there exists a unique pair (g, r) such that

W~
w
ot
Uﬂ
w
(<)
»—\\

k= 6q+ r for some 0 < r < 5. Therefore, in Zg we have
k3 +5k=(6g+r3+56gq+n=r+5-r
=B+ (-1)-r=”r—r.
It is clear that then k3 + 5k = 0 since
03—-0=13-1=23-2=33-3=43-4=53-5.

\,
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Let m be a positive composite integer. Then there exists non-zero

equivalence classes x and y in Z, such that x-y = 0. )

Since m is a positive composite integer, m = x- y for some x, y € N,
1 <xy<m Sincel <x,y<m,Xxy# 0. Therefore, in Zp,
= m = X - y which concludes the theorem. =

@]

v

Let p be a prime. If x-y =0 in Zp, then either x=0 ory = 0.

Let X,y € Z, and x-y = 0. Then x-y =0 (mod p). Therefore, p
divides x - y. Since p is prime, p|x or p|y which implies that x = 0
or )_/: 6 [m]
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Let p be a prime. If xy = xz (mod p) and x # 0 (mod p), then
y =z (mod p).

If xy = xz (mod p), then x(y —z) = 0 (mod p). By the previous

theorem x = 0 or y— z = 0. Since x # 0 (mod p), we must have
y = z; thus y = z (mod p). o

Corollary (Cancellation Law for Zp)

Let p be a prime, and X,y,z€ Zp. If x-y = x-Z then X # 0 or

y=2z
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