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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

Definition
Two sets A and B are equivalent if there exists a one-to-one func-
tion from A onto B. The sets are also said to be in one-to-one
correspondence, and we write A ~ B. In notation,

A~ B< (3f: A— B)(fis a bijection) .
If A and B are not equivalent, we write A % B.

.

The set of even integers is equivalent to the set of odd integers: the
function f(x) = x+ 1 does the job.

.

The set of even numbers is equivalent to the set of integers: the

function f(x) = g does the job.

.
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

The set of natural numbers is equivalent to the set of integers.

For a,b,c,d € R, with a < b and ¢ < d, the open intervals (a, b)
and (c, d) are equivalent. Therefore, any two open intervals are

equivalent, even when the intervals have different length.
4

Let F be the set of all binary sequences; that is, the set of all
functions from N — {0,1}. Then F ~ P(N), the power set of N.
To see this, we define ¢ : F — P(N) by ¢(x) = {ke N|x, = 1} for

all xe F. Then ¢ is well-defined and ¢ : F—P(N).
onto

.
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

Equivalence of sets is an equivalence relation on the class of all sets.

O Reflexivity: for all sets A, the identity map /4 is an one-to-one

correspondence on A.

@ Symmetry: Suppose that A ~ B, that is, there exists a one-to-
one correspondence ¢ from A to B. Then ¢ ' is an one-to-one
correspondence from B to A; thus B ~ A.

© Transitivity: Suppose that A ~ Band B ~ C. Then there exist

1-1 1-1
one-to-one correspondences ¢ : A—— B and v : B—— C.
onto onto

Then ¢ o ¢ : A — C is an one-to-one correspondence; thus
A~ C [m]
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

Suppose that A, B, C and D are sets with A~ C and B~ D.

@ I/f A and B are disjoint and C and D are disjoint, then AU B ~
Cu D.

Q@ Ax B~ CxD.

Suppose that ¢ : A%C and v : B1Lp.
onto

onto

@ Thenpup: AuB— Cu D is an one-to-one correspondence.
Q Let f: Ax B— C x D be given by

f(a, b) = (#(a), ¥ (b)) -

Then fis an one-to-one correspondence from A x Bto C x D.
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

Definition
For each natural number k, let Ny = {1,2,--- | k}. A set S'is finite
if S= @ or S~ Ny for some ke N. A set Sis infinite if S is not a
finite set.

For k,je N, N; ~ Ny if and only if k = j.

It suffices to prove the = direction. Suppose that ¢ : Ny — N; is a
one-to-one correspondence. W L O.G. we can assume that k < j. If
k < j, then ¢(Ny) = {&(1),¢(2), -+ ,d(k)} # N; since the number
of elements in ¢(Ny) and N are different. In other words, if k < j
¢ : Ny — Nj cannot be surjective. This implies that Ny ~ N; if and
only if k= j. o
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

Definition

Let S be a finite set. If S= ¢, then S has cardinal number 0 (or
cardinality 0), and we write #S = 0. If S ~ Ny for some natural
number k, then S has cardinal number k (or cardinality k), and
we write #5 = k.

Remark: The cardinality of a set S can also be denoted by n(S), ?

card(S) as well.

If A is finite and B ~ A, then B is finite.

If S is a finite set with cardinality k and x is any object not in S,
then S U {x} is finite and has cardinality k + 1.
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

For every k e N, every subset of Ny is finite.

Let S = {k eN } the statement “every subset of N is finite" holds}.

© There are only two subsets of N1, namely ¢ and N;. Since &
and Ny are both finite, we have 1 € S.

@ Suppose that k€ S. Then every subset of Ny is finite. Since
Nii1 = N u {k+ 1}, every subset of Ny is either a subset
of Ny, or the union of a subset of Ny and {k+ 1}. By the fact
that k € S, we conclude from the previous lemma that every
subset of Ny is finite.

Therefore, PMI implies that S = N. o
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

Every subset of a finite set is finite.

Let A< B and B is a finite set.

O If A= ¥, then A is a finite set (and #A = 0).

Q If A= &, then B # (F. Since Bis finite, there exists k € N such
that B ~ Nj; thus there exists a one-to-one correspondence
¢ : Ny — B. Therefore, ¢ ~*(A) is a non-empty subset of Ny,
and the previous lemma implies that ¢ ~'(A) is finite. Since
A~ ¢ '(A), we conclude that A is a finite set. o

v
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

© If A and B are disjoint finite sets, then A U B is finite, and
#(Au B)=#A+ #B.
@ If A and B are finite sets, then A U B is finite, and
#(AuB)=#A+#B—#(An B).

n
Q If A, Ay, -+, A, are finite sets, then | ] Ay is finite.
k=1

O W.L.O.G., we assume that A ~ N, and B ~ N; for some
k,¢ € N. Let H={k+ 1,k+2,--- k+¢}. Then Ny ~ H
since ¢(x) = k+ x is a one-to-one correspondence from Ny, —
{k+1,k+2,---,k+¢}. Therefore, Au B~ Nyu H=Nyy;
thus #(A U B) = #A+ #B. s
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

Proof of .
@ Note that A U B is the disjoint union of A and B — A, where
B — A is a subset of a finite set B which makes B — A a finite
set. Therefore, A U B is finite.

To see #(Au B) = #A+ #B— #(An B), using D it suffices
to show that #(B — A) = #B — #(A n B). Nevertheless, note
that B = (B— A) u (A n B) in which the union is in fact a
disjoint union; thus @ implies that

#B=#(B—A) + #(An B)
or equivalently,

#(B—A)=#B—-#(AnB). o
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

© Let A1, Ay, - - be finite sets, and

S= {neN‘ O Ay is finite}.
k=1

Then 1 € S by assumption. Suppose that ne S. Then n+1€ S
because of 2. PMI then implies that S = N. g

V.
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

Let k = 2 be a natural number. For x € Ny, N \{x} ~ Ny_;.

Theorem (Pigeonhole Principle - #§4 R 12)

Let n,re N and f: N, — N, be a function. If n > r, then f is not

injective.
o

If #A = n, #B = r and r < n, then there is no one-to-one function
from A to B.

v

If A is finite, then A is not equivalent to any of its proper subsets.
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Chapter 5. Cardinality
§5.2 Infinite Sets

Recall that a set A is infinite if A is not finite. By the last corollary in
the previous section, if a set is equivalent to one of its proper subset,
then that set cannot be finite. Therefore, N is not finite since there
is a one-to-one correspondence from N to the set of even numbers.

The set of natural numbers N is a set with infinite cardinality. The
standard symbol for the cardinality of N is X. There are two kinds
of infinite sets, denumerable ( #& £ ¥ #c ) sets and uncountable ( %

¥ #c) sets.

Definition

A set S is said to be denumerable if S ~ N. For a denumerable
set S, we say S has cardinal number X (or cardinality o) and write

#S5 =R
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Chapter 5. Cardinality
§5.2 Infinite Sets

The set of even numbers and the set of odd numbers are denumer-
able.

The set {p,q,r} u {ne N|n+# 5} is denumerable.
The set Z is denumerable.

Consider the function f: N — Z given by

X - 0
= if xis even,

%X if xis odd .
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Chapter 5. Cardinality

§5.2 Infinite Sets

@ The set N x N js denumerable.

@ I/f A and B are denumerable sets, then A x B is denumerable. |

@ Consider the function F: N x N — N defined by F(m,n) =
2m=1(2n —1). Then F: N x N — N is bijective.

@ If A and B are denumerable sets, then A ~ N and B~ N. Then
AXx B~ N x N; thus A x B~ N since ~ is an equivalence
relation.

Definition

A set S is said to be countable if S is finite or denumerable. We

say S is uncountable if S is not countable.
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Chapter 5. Cardinality
§5.2 Infinite Sets

The open interval (0,1) is uncountable.

Assume the contrary that there exists a bijection f: N — (0,1).
Write f(k) in decimal expansion (- i& =& B ); that is,

f(1) = 0.dy1do1d3y - - -
f(2) = 0.d12daad35 - - -

f(k) = 0.dyxdoxdsk - - -

Here we note that repeated 9's are chosen by preference over ter-

minating decimals; that is, for example, we write i = 0.249999 - - -

instead of i — 0.250000- - - . o
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Proof. (Cont'd).

Chapter 5. Cardinality
§5.2 Infinite Sets

Let xe (0,1) be such that x=0.d1dz- - -, where
5 if die #5,
di = :
3 if dy=25.
(- B x i 2] BT 5§ k g F(K) 0] BBT B k ok

7 48 % ) . Then x # f(k) for all ke N, a contradiction; thus (0,1)
is uncountable.

(]

V,

Definition

A set S has cardinal number ¢ (or cardinality ¢) if S is equivalent to
(0,1). We write #S = ¢, which stands for continuum.
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Chapter 5. Cardinality
§5.2 Infinite Sets

@ Even open interval (a, b) is uncountable and has cardinality c.

@Q The set R of all real numbers is uncountable and has cardinality
c.

@ The function f(x) = a+ (b— a)x maps from (0, 1) to (a, b) and
is a one-to-one correspondence.
@ Using @, (0,1) ~ (—Z,Z). Moreover, the function f(x) =

R
tan x maps from (—g, g) to R and is a one-to-one correspon-
dence; thus (—g, %) ~ R. Since ~ is an equivalence relation,
(0,1) ~ R. o
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Chapter 5. Cardinality
§5.2 Infinite Sets
The circle with the north pole removed is equivalent to the real line.

The set A = (0,2) U [5,6) has cardinality ¢ since the function f:
(0,1) — A given by

4x if0<x<%,
f(x) = 1
2x+ 4 If§<X<1

is a one-to-one correspondence from (0,1) to A.
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Chapter 5. Cardinality
§5.3 Countable Sets

Let S be a non-empty set. The following statements are equivalent:

@ S is countable;
@ there exists a surjection f: N — S;

© there exists an injection f: S — N.

A\

“@=@" First suppose that S = {x1,---,x,} is finite. Define

fN— S by -
. Xk | <n,
f(k){x,, if k=n.
Then f: N — S is a surjection. Now suppose that S is
denumerable. Then by definition of countability, there exists

f: N==Ls.

a
onto v
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Chapter 5. Cardinality
§5.3 Countable Sets

@ S is countable;
@ there exists a surjection f: N — §;

Proof. (Cont'd).

“O<=@" W.L.O.G. we assume that S is an infinite set. Let k; = 1.
Since #(S) = w0, §1 = S—{f(k1)} # J; thus Ny = F'(S51) isa
non-empty subset of N. By the well-ordered principle (WOP) of
N, N; has a smallest element denoted by ky. Since #(S) = 0,
Sy = S—{f(k1), f(ke)} # &; thus No = f~'(Sy) is a non-empty
subset of N and possesses a smallest element denoted by k3.
We continue this process and obtain a set {kj, ka,---} € N,
where ki < kg < ---, and k; is the smallest element of N;_; =

S — {f(kn), Flka), -, F(ki1)}): -
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Chapter 5. Cardinality
§5.3 Countable Sets

Proof. (Cont'd).

Claim: f: {kj, ka,---} — S is one-to-one and onto.

Proof of claim: The injectivity of f is easy to see since
f(kj) ¢ {f(ki),f(ks), -, f(ki-1)} for all j > 2. For sur-
jectivity, assume the contrary that there is s € S such that
s¢ f({ki, ko, ---}). Since f: N — S is onto, f~*({s}) is a non-
empty subset of N; thus possesses a smallest element k. Since
s¢ f({ki, ko, ---}), there exists £ € N such that k; < k < ky1.
Therefore, k € Ny and k < kg1 which contradicts to the fact

that kg1 is the smallest element of N,. o
Let g: N — {ki, kg, -} be defined by g(j) = k. Then gis

1-1
one-to-one and onto; thus h = go f: N——S.
onto =
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Chapter 5. Cardinality
§5.3 Countable Sets

@ S is countable;
© there exists an injection 7: S — N.

Proof. (Cont'd).

‘O=0@" If S= {x1, -+, xn} is finite, we simply let f: S — N be
f(xn) = n. Then fis clearly an injection. If S is denumerable,
by definition there exists g : N%S which implies that f =

onto

g~ ' :S— Nis an injection. 5
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Chapter 5. Cardinality
§5.3 Countable Sets

@ S is countable;
© there exists an injection 7: S — N.

Proof. (Cont'd).
“<=@®" Let f: S— N be an injection. If fis also surjective, then

e SL_}N which implies that S is denumerable. Now suppose
onto

that f(S) < N. Since S is non-empty, there exists s € S. Let
g: N — S be defined by
f~Y(n) if ne f(S),
gy | ) e A(S)
s if n¢ f(S).
Then clearly g : N — S is surjective; thus the equivalence

between (D and (2) implies that S is countable. o

v
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Chapter 5. Cardinality
§5.3 Countable Sets

We have seen that the set N x N is countable. Now consider the

map f: N x N — N defined by f(m, n) = 2™3". This map is not a

bijection; however, it is an injection; thus the theorem above implies
that N x N is countable.

.
The set QT of positive rational numbers is denumerable. Since QT

is infinite, it suffice to check the countability of Q. Consider the
map f: N2 — Q% defined by f(m, n) = % Then fis onto Q; thus

the theorem above implies that Q™ is countable.

v
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Chapter 5. Cardinality
§5.3 Countable Sets
Any non-empty subset of a countable set is countable.

Let S be a countable set, and A be a non-empty subset of S. Since
S is countable, by the previous theorem there exists a surjection
f: N — 5. On the other hand, since A is a non-empty subset of S,
there exists a € A. Define

(x) = x ifxeA,
EXVTN 4 ifx¢ A,
Then g: S — A is a surjection; thus h = gof: N — A is also a
surjection. The previous theorem shows that A is countable. o

v

A set A is countable if and only if A~ S for some S € N.
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Chapter 5. Cardinality
§5.3 Countable Sets

The union of denumerable denumerable sets is denumerable. In
other words, if F is a denumerable collection of denumerable sets,

then |J A is denumerable.
AeF

.

Let § = {Aj|i € N, A;is denumerable} be an indexed family of
denumerable sets, and define A = GA;. Since A; is denumerable,

i=1
we write A; = {X,'l,X,'Q,X,'g,"-}. Then A = {XU| i,j € N} Let
f: N x N — A be defined by f(i,j) = xjj. Then f: NxN — Ais
a surjection. Moreover, since N x N ~ N, there exists a bijection
g: N —> NxN; thus h = fog: N — A s a surjection which
implies that A is countable. Since A; € A, A is infinite; thus A is
denumerable. o
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Chapter 5. Cardinality
§5.3 Countable Sets

The union of countable countable sets is countable ( ¥ # ¥ #ic &

gl f 8 feeh)

By adding empty sets into the family or adding N into a finite set

if necessary, we find that the union of countable countable sets is
a subset of the union of denumerable denumerable sets. Since a

(non-empty) subset of a countable set is countable, we find that the

union of countable countable sets is countable. o)
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Chapter 5. Cardinality
§5.3 Countable Sets
The set of rational numbers Q is countable.

Let Q" and Q denote the collection of positive and negative ra-
tional numbers, respectively. We have shown that the set QT is
countable. Since QT ~ Q~ (between them there exists a one-to-
one correspondence f(x) = —x), Q™ is also countable. Therefore,
the previous theorem Q = Q* U Q™ U {0} is countable. o

v
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Chapter 5. Cardinality
§5.3 Countable Sets

@ IfF is a finite pairwise disjoint family of denumerable sets, then

| A is countable.
AeF

@ If A and B are countable sets, then A U B is countable.

© IfF is a finite collection of countable sets, then | ) A is count-
AeF
able.

Q If F is a denumerable family of countable sets, then | ) A is
AeF

countable.

v
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