基礎數學 MA-1015A

Chapter 5. Cardinality

- §5.1 Equivalent Sets; Finite Sets
- §5.2 Infinite Sets
- §5.3 Countable Sets

Definition

Two sets A and B are **equivalent** if there exists a one-to-one function from A onto B. The sets are also said to be **in one-to-one correspondence**, and we write $A \approx B$. In notation,

$$A \approx B \Leftrightarrow (\exists f: A \to B)(f \text{ is a bijection}).$$

If A and B are not equivalent, we write $A \approx B$.

Example

The set of even integers is equivalent to the set of odd integers: the function f(x) = x + 1 does the job.

Example

The set of even numbers is equivalent to the set of integers: the function $f(x) = \frac{x}{2}$ does the job.

Example

The set of natural numbers is equivalent to the set of integers.

Example

For $a, b, c, d \in \mathbb{R}$, with a < b and c < d, the open intervals (a, b) and (c, d) are equivalent. Therefore, any two open intervals are equivalent, even when the intervals have different length.

Example

Let $\mathcal F$ be the set of all binary sequences; that is, the set of all functions from $\mathbb N \to \{0,1\}$. Then $\mathcal F \approx \mathcal P(\mathbb N)$, the power set of $\mathbb N$. To see this, we define $\phi: \mathcal F \to \mathcal P(\mathbb N)$ by $\phi(x) \equiv \left\{k \in \mathbb N \,\middle|\, x_k = 1\right\}$ for all $x \in \mathcal F$. Then ϕ is well-defined and $\phi: \mathcal F \xrightarrow[onto]{1-1} \mathcal P(\mathbb N)$.

Theorem

Equivalence of sets is an equivalence relation on the class of all sets.

Proof.

- **Q** Reflexivity: for all sets A, the identity map I_A is an one-to-one correspondence on A.
- **2 Symmetry**: Suppose that $A \approx B$; that is, there exists a one-to-one correspondence ϕ from A to B. Then ϕ^{-1} is an one-to-one correspondence from B to A; thus $B \approx A$.
- **3 Transitivity**: Suppose that $A \approx B$ and $B \approx C$. Then there exist one-to-one correspondences $\phi: A \xrightarrow{1-1} B$ and $\psi: B \xrightarrow{1-1} C$. Then $\psi \circ \phi: A \to C$ is an one-to-one correspondence; thus $A \approx C$.

Lemma

Suppose that A, B, C and D are sets with $A \approx C$ and $B \approx D$.

- If A and B are disjoint and C and D are disjoint, then $A \cup B \approx C \cup D$.

Proof.

Suppose that $\phi: A \xrightarrow{1-1} C$ and $\psi: B \xrightarrow{1-1} D$.

- **①** Then $\phi \cup \psi : A \cup B \rightarrow C \cup D$ is an one-to-one correspondence.
- 2 Let $f: A \times B \to C \times D$ be given by

$$f(a, b) = (\phi(a), \psi(b)).$$

Then f is an one-to-one correspondence from $A \times B$ to $C \times D$.

Definition

For each natural number k, let $\mathbb{N}_k = \{1, 2, \cdots, k\}$. A set S is **finite** if $S = \emptyset$ or $S \approx \mathbb{N}_k$ for some $k \in \mathbb{N}$. A set S is **infinite** if S is not a finite set.

Theorem

For $k, j \in \mathbb{N}$, $\mathbb{N}_j \approx \mathbb{N}_k$ if and only if k = j.

Proof.

It suffices to prove the \Rightarrow direction. Suppose that $\phi: \mathbb{N}_k \to \mathbb{N}_j$ is a one-to-one correspondence. W.L.O.G. we can assume that $k \leqslant j$. If k < j, then $\phi(\mathbb{N}_k) = \left\{\phi(1), \phi(2), \cdots, \phi(k)\right\} \neq \mathbb{N}_j$ since the number of elements in $\phi(\mathbb{N}_k)$ and \mathbb{N}_j are different. In other words, if k < j, $\phi: \mathbb{N}_k \to \mathbb{N}_j$ cannot be surjective. This implies that $\mathbb{N}_k \approx \mathbb{N}_j$ if and only if k = j.

Definition

Let S be a finite set. If $S = \emptyset$, then S has *cardinal number* 0 (or *cardinality* 0), and we write #S = 0. If $S \approx \mathbb{N}_k$ for some natural number k, then S has *cardinal number* k (or *cardinality* k), and we write #S = k.

Remark: The cardinality of a set S can also be denoted by n(S), $\overline{\overline{S}}$, card(S) as well.

Theorem

If A is finite and $B \approx A$, then B is finite.

Lemma

If S is a finite set with cardinality k and x is any object not in S, then $S \cup \{x\}$ is finite and has cardinality k + 1.

Lemma

For every $k \in \mathbb{N}$, every subset of \mathbb{N}_k is finite.

Proof.

Let $S = \{k \in \mathbb{N} \mid \text{the statement "every subset of } \mathbb{N}_k \text{ is finite" holds} \}$.

- There are only two subsets of \mathbb{N}_1 , namely \emptyset and \mathbb{N}_1 . Since \emptyset and \mathbb{N}_1 are both finite, we have $1 \in S$.
- ② Suppose that $k \in S$. Then every subset of \mathbb{N}_k is finite. Since $\mathbb{N}_{k+1} = \mathbb{N}_k \cup \{k+1\}$, every subset of \mathbb{N}_{k+1} is either a subset of \mathbb{N}_k , or the union of a subset of \mathbb{N}_k and $\{k+1\}$. By the fact that $k \in S$, we conclude from the previous lemma that every subset of \mathbb{N}_{k+1} is finite.

Therefore, **PMI** implies that $S = \mathbb{N}$.

Theorem

Every subset of a finite set is finite.

Proof.

Let $A \subseteq B$ and B is a finite set.

- If $A = \emptyset$, then A is a finite set (and #A = 0).
- ② If $A \neq \emptyset$, then $B \neq \emptyset$. Since B is finite, there exists $k \in \mathbb{N}$ such that $B \approx N_k$; thus there exists a one-to-one correspondence $\phi : \mathbb{N}_k \to B$. Therefore, $\phi^{-1}(A)$ is a non-empty subset of \mathbb{N}_k , and the previous lemma implies that $\phi^{-1}(A)$ is finite. Since $A \approx \phi^{-1}(A)$, we conclude that A is a finite set.

Theorem

- If A and B are disjoint finite sets, then $A \cup B$ is finite, and $\#(A \cup B) = \#A + \#B$.
- ② If A and B are finite sets, then $A \cup B$ is finite, and $\#(A \cup B) = \#A + \#B \#(A \cap B)$.
- **3** If A_1, A_2, \dots, A_n are finite sets, then $\bigcup_{k=1}^n A_k$ is finite.

Proof.

• W.L.O.G., we assume that $A \approx \mathbb{N}_k$ and $B \approx \mathbb{N}_\ell$ for some $k, \ell \in \mathbb{N}$. Let $H = \{k+1, k+2, \cdots, k+\ell\}$. Then $\mathbb{N}_\ell \approx H$ since $\phi(x) = k+x$ is a one-to-one correspondence from $\mathbb{N}_\ell \to \{k+1, k+2, \cdots, k+\ell\}$. Therefore, $A \cup B \approx \mathbb{N}_k \cup H = \mathbb{N}_{k+\ell}$; thus $\#(A \cup B) = \#A + \#B$.

Proof of $\#(A \cup B) = \#A + \#B - \#(A \cap B)$.

② Note that $A \cup B$ is the disjoint union of A and B - A, where B - A is a subset of a finite set B which makes B - A a finite set. Therefore, $A \cup B$ is finite.

To see $\#(A \cup B) = \#A + \#B - \#(A \cap B)$, using ① it suffices to show that $\#(B - A) = \#B - \#(A \cap B)$. Nevertheless, note that $B = (B - A) \cup (A \cap B)$ in which the union is in fact a disjoint union; thus ① implies that

$$\#B = \#(B - A) + \#(A \cap B)$$

or equivalently,

$$\#(B-A) = \#B - \#(A \cap B)$$
.

Proof.

3 Let A_1, A_2, \cdots be finite sets, and

$$S = \left\{ n \in \mathbb{N} \,\middle|\, \bigcup_{k=1}^n A_k \text{ is finite} \right\}.$$

Then $1 \in S$ by assumption. Suppose that $n \in S$. Then $n+1 \in S$ because of (2). **PMI** then implies that $S = \mathbb{N}$.

Lemma

Let $k \ge 2$ be a natural number. For $x \in \mathbb{N}_k$, $\mathbb{N}_k \setminus \{x\} \approx \mathbb{N}_{k-1}$.

Theorem (Pigeonhole Principle - 鴿籠原理)

Let $n, r \in \mathbb{N}$ and $f : \mathbb{N}_n \to \mathbb{N}_r$ be a function. If n > r, then f is not injective.

Corollary

If #A = n, #B = r and r < n, then there is no one-to-one function from A to B.

Corollary

If A is finite, then A is not equivalent to any of its proper subsets.

Recall that a set A is infinite if A is not finite. By the last corollary in the previous section, if a set is equivalent to one of its proper subset, then that set cannot be finite. Therefore, $\mathbb N$ is not finite since there is a one-to-one correspondence from $\mathbb N$ to the set of even numbers.

The set of natural numbers $\mathbb N$ is a set with infinite cardinality. The standard symbol for the cardinality of $\mathbb N$ is \aleph . There are two kinds of infinite sets, denumerable (無窮可數) sets and uncountable (不可數) sets.

Definition

A set S is said to be **denumerable** if $S \approx \mathbb{N}$. For a denumerable set S, we say S has cardinal number \aleph_0 (or cardinality \aleph_0) and write $\#S = \aleph_0$.

Example

The set of even numbers and the set of odd numbers are denumerable.

Example

The set $\{p, q, r\} \cup \{n \in \mathbb{N} \mid n \neq 5\}$ is denumerable.

Theorem

The set \mathbb{Z} is denumerable.

Proof.

Consider the function $f: \mathbb{N} \to \mathbb{Z}$ given by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even }, \\ \frac{1-x}{2} & \text{if } x \text{ is odd }. \end{cases}$$

Theorem

- **1** The set $\mathbb{N} \times \mathbb{N}$ is denumerable.
- **2** If A and B are denumerable sets, then $A \times B$ is denumerable.

Proof.

- Consider the function $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $F(m,n) = 2^{m-1}(2n-1)$. Then $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is bijective.
- ② If A and B are denumerable sets, then $A \approx \mathbb{N}$ and $B \approx \mathbb{N}$. Then $A \times B \approx \mathbb{N} \times \mathbb{N}$; thus $A \times B \approx \mathbb{N}$ since \approx is an equivalence relation.

Definition

A set S is said to be **countable** if S is finite or denumerable. We say S is **uncountable** if S is not countable.

Theorem

The open interval (0,1) is uncountable.

Proof.

Assume the contrary that there exists a bijection $f: \mathbb{N} \to (0,1)$. Write f(k) in decimal expansion (十進位展開); that is,

Here we note that repeated 9's are chosen by preference over terminating decimals; that is, for example, we write $\frac{1}{4}=0.249999\cdots$ instead of $\frac{1}{4}=0.250000\cdots$.

Proof. (Cont'd).

Let $x \in (0,1)$ be such that $x = 0.d_1d_2\cdots$, where

$$d_k = \begin{cases} 5 & \text{if} \quad d_{kk} \neq 5, \\ 3 & \text{if} \quad d_{kk} = 5. \end{cases}$$

(建構一個 x 使其小數點下第 k 位數與 f(k) 的小數點下第 k 位數不相等). Then $x \neq f(k)$ for all $k \in \mathbb{N}$, a contradiction; thus (0,1) is uncountable.

Definition

A set S has cardinal number \mathbf{c} (or cardinality \mathbf{c}) if S is equivalent to (0,1). We write $\#S = \mathbf{c}$, which stands for **continuum**.

Theorem

- **1** Even open interval (a, b) is uncountable and has cardinality c.
- 2 The set \mathbb{R} of all real numbers is uncountable and has cardinality \mathbf{c} .

Proof.

- The function f(x) = a + (b-a)x maps from (0,1) to (a,b) and is a one-to-one correspondence.
- ② Using ①, $(0,1) \approx \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Moreover, the function $f(x) = \tan x$ maps from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to $\mathbb R$ and is a one-to-one correspondence; thus $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \approx \mathbb R$. Since \approx is an equivalence relation, $(0,1) \approx \mathbb R$.

Example

The circle with the north pole removed is equivalent to the real line.

Example

The set $A=(0,2)\cup[5,6)$ has cardinality ${\bf c}$ since the function $f:(0,1)\to A$ given by

$$f(x) = \begin{cases} 4x & \text{if } 0 < x < \frac{1}{2}, \\ 2x + 4 & \text{if } \frac{1}{2} \le x < 1 \end{cases}$$

is a one-to-one correspondence from (0,1) to A.

Theorem

Let S be a non-empty set. The following statements are equivalent:

S is countable;

onto

- 2 there exists a surjection $f: \mathbb{N} \to S$;
- **3** there exists an injection $f: S \to \mathbb{N}$.

Proof.

"① \Rightarrow ②" First suppose that $S = \{x_1, \dots, x_n\}$ is finite. Define $f \colon \mathbb{N} \to S$ by

$$f(k) = \begin{cases} x_k & \text{if } k < n, \\ x_n & \text{if } k \ge n. \end{cases}$$

Then $f: \mathbb{N} \to S$ is a surjection. Now suppose that S is denumerable. Then by definition of countability, there exists $f: \mathbb{N} \xrightarrow{1-1} S$

(D) (전) (본) (본) 본 (

- 2 there exists a surjection $f: \mathbb{N} \to S$;

Proof. (Cont'd).

"(1) \Leftarrow (2)" W.L.O.G. we assume that S is an infinite set. Let $k_1 = 1$. Since $\#(S) = \infty$, $S_1 \equiv S - \{f(k_1)\} \neq \emptyset$; thus $N_1 \equiv f^{-1}(S_1)$ is a non-empty subset of \mathbb{N} . By the well-ordered principle (WOP) of \mathbb{N} , N_1 has a smallest element denoted by k_2 . Since $\#(S) = \infty$, $S_2 = S - \{f(k_1), f(k_2)\} \neq \emptyset$; thus $N_2 \equiv f^{-1}(S_2)$ is a non-empty subset of \mathbb{N} and possesses a smallest element denoted by k_3 . We continue this process and obtain a set $\{k_1, k_2, \dots\} \subseteq \mathbb{N}$, where $k_1 < k_2 < \cdots$, and k_i is the smallest element of $N_{i-1} \equiv$ $f^{-1}(S - \{f(k_1), f(k_2), \cdots, f(k_{i-1})\}).$

Proof. (Cont'd).

Claim: $f: \{k_1, k_2, \dots\} \to S$ is one-to-one and onto.

Proof of claim: The injectivity of f is easy to see since $f(k_j) \notin \{f(k_1), f(k_2), \cdots, f(k_{j-1})\}$ for all $j \geq 2$. For surjectivity, assume the contrary that there is $s \in S$ such that $s \notin f(\{k_1, k_2, \cdots\})$. Since $f : \mathbb{N} \to \mathbb{S}$ is onto, $f^{-1}(\{s\})$ is a nonempty subset of \mathbb{N} ; thus possesses a smallest element k. Since $s \notin f(\{k_1, k_2, \cdots\})$, there exists $\ell \in \mathbb{N}$ such that $k_{\ell} < k < k_{\ell+1}$. Therefore, $k \in N_{\ell}$ and $k < k_{\ell+1}$ which contradicts to the fact that $k_{\ell+1}$ is the smallest element of N_{ℓ} .

Let $g: \mathbb{N} \to \{k_1, k_2, \cdots\}$ be defined by $g(j) = k_j$. Then g is one-to-one and onto; thus $h = g \circ f: \mathbb{N} \xrightarrow{\text{ento}} S$.

- **3** there exists an injection $f: S \to \mathbb{N}$.

Proof. (Cont'd).

"① \Rightarrow ③" If $S = \{x_1, \dots, x_n\}$ is finite, we simply let $f : S \to \mathbb{N}$ be $f(x_n) = n$. Then f is clearly an injection. If S is denumerable, by definition there exists $g : \mathbb{N} \xrightarrow[onto]{1-1} S$ which implies that $f = g^{-1} : S \to \mathbb{N}$ is an injection.

- **3** there exists an injection $f: S \to \mathbb{N}$.

Proof. (Cont'd).

"① \Leftarrow ③" Let $f: S \to \mathbb{N}$ be an injection. If f is also surjective, then $f: S \xrightarrow[onto]{1-1} \mathbb{N}$ which implies that S is denumerable. Now suppose that $f(S) \subsetneq \mathbb{N}$. Since S is non-empty, there exists $s \in S$. Let $g: \mathbb{N} \to S$ be defined by

$$g(n) = \begin{cases} f^{-1}(n) & \text{if } n \in f(S), \\ s & \text{if } n \notin f(S). \end{cases}$$

Then clearly $g:\mathbb{N}\to S$ is surjective; thus the equivalence between ① and ② implies that S is countable.

Example

We have seen that the set $\mathbb{N} \times \mathbb{N}$ is countable. Now consider the map $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(m,n) = 2^m 3^n$. This map is not a bijection; however, it is an injection; thus the theorem above implies that $\mathbb{N} \times \mathbb{N}$ is countable.

Example

The set \mathbb{Q}^+ of positive rational numbers is denumerable. Since \mathbb{Q}^+ is infinite, it suffice to check the countability of \mathbb{Q}^+ . Consider the map $f\colon \mathbb{N}^2 \to \mathbb{Q}^+$ defined by $f(m,n) = \frac{m}{n}$. Then f is onto \mathbb{Q}^+ ; thus the theorem above implies that \mathbb{Q}^+ is countable.

Theorem

Any non-empty subset of a countable set is countable.

Proof.

Let S be a countable set, and A be a non-empty subset of S. Since S is countable, by the previous theorem there exists a surjection $f: \mathbb{N} \to S$. On the other hand, since A is a non-empty subset of S, there exists $a \in A$. Define

$$g(x) = \begin{cases} x & \text{if } x \in A, \\ a & \text{if } x \notin A. \end{cases}$$

Then $g:S\to A$ is a surjection; thus $h=g\circ f:\mathbb{N}\to A$ is also a surjection. The previous theorem shows that A is countable.

Corollary

A set A is countable if and only if $A \approx S$ for some $S \subseteq \mathbb{N}$.

Theorem

The union of denumerable denumerable sets is denumerable. In other words, if $\mathfrak F$ is a denumerable collection of denumerable sets, then $\bigcup_{A\in\mathfrak F}A$ is denumerable.

Proof.

Let $\mathcal{F}=\left\{A_i\,\middle|\, i\in\mathbb{N},A_i\text{ is denumerable}\right\}$ be an indexed family of denumerable sets, and define $A=\bigcup\limits_{i=1}^{\infty}A_i$. Since A_i is denumerable, we write $A_i=\{x_{i1},x_{i2},x_{i3},\cdots\}$. Then $A=\{x_{ij}\,\middle|\, i,j\in\mathbb{N}\}$. Let $f\colon\mathbb{N}\times\mathbb{N}\to A$ be defined by $f(i,j)=x_{ij}$. Then $f\colon\mathbb{N}\times\mathbb{N}\to A$ is a surjection. Moreover, since $\mathbb{N}\times\mathbb{N}\approx\mathbb{N}$, there exists a bijection $g\colon\mathbb{N}\to\mathbb{N}\times\mathbb{N}$; thus $h=f\circ g\colon\mathbb{N}\to A$ is a surjection which implies that A is countable. Since $A_1\subseteq A$, A is infinite; thus A is denumerable.

Corollary

The union of countable countable sets is countable (可數個可數集的聯集是可數的).

Proof.

By adding empty sets into the family or adding $\mathbb N$ into a finite set if necessary, we find that the union of countable countable sets is a subset of the union of denumerable denumerable sets. Since a (non-empty) subset of a countable set is countable, we find that the union of countable countable sets is countable.

Corollary

The set of rational numbers \mathbb{Q} is countable.

Proof.

Let \mathbb{Q}^+ and \mathbb{Q}^- denote the collection of positive and negative rational numbers, respectively. We have shown that the set \mathbb{Q}^+ is countable. Since $\mathbb{Q}^+ \approx \mathbb{Q}^-$ (between them there exists a one-to-one correspondence f(x) = -x), \mathbb{Q}^- is also countable. Therefore, the previous theorem $\mathbb{Q} = \mathbb{Q}^+ \cup \mathbb{Q}^- \cup \{0\}$ is countable.

Corollary

- If $\mathfrak F$ is a finite pairwise disjoint family of denumerable sets, then $\bigcup_{A\in \mathfrak F} A$ is countable.
- ② If A and B are countable sets, then $A \cup B$ is countable.
- **1** If \mathcal{F} is a finite collection of countable sets, then $\bigcup_{A \in \mathcal{F}} A$ is countable.
- **①** If $\mathfrak F$ is a denumerable family of countable sets, then $\bigcup_{A\in \mathfrak F} A$ is countable.