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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Recall that a sequence is a function with domain N. For n € N, the
image of n is called the n-th term of the sequence and is written as
Xp- In the following discussion, we only consider real sequences.

Definition

Let {xn};2; < R be a sequence. {x,};2, is said to be convergent
if there exists L € R such that for every e >0,

#{neN|x, ¢ (L—e,L+e)} <.
Such an L is called a limit of the sequence. In notation,
{xn}r1 < R is convergent
< (ALeR)(Ve>0)(#{neN|x, ¢ (L—¢e,L+e)} < o).
If Lis a limit of {x,}?
xp — Lasn— oo. If {x,}72, is not convergent, we say that {x,};~;

™ 1, we say {xn}72, converges to L and write

diverges or is divergent.
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

1)"

Let x, = (n_?

. We show that {x,};2, converges to 0. By defini-

tion, we need to show for every € > 0 the set
A. ={neN|x, ¢ (—¢,¢)}
is finite. Note that A. = {ne N||x,| > £}; thus
Agz{neN’ﬁ25}:{neN‘n<1—1}.

€

Therefore, #A. = [i] 1 < oo which implies that {x,}%_; converges
to 0.
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

The sequence {y,}7, given by y, = w diverges. To see
this, we have to show that any real number L cannot be the limit of
{yn}ner-

Let L € R be given and ¢ = % Then (L—¢, L+¢) at most contains
one integer. Since y, only takes value 1 or 2 and #{n eNly, =
1} =#{neN|y, =2} = 0, we find that

#{neN|y, ¢ (L—e,L+e)} =00

which implies {y,}2; cannot converges to L.
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Recall that a permutation of a non-empty set A is a one-to-one
correspondence from A onto A. Let 7 : N — N be a permutation of
N, and {x,}}°; be a convergent sequence. Then {xﬂ(n)}:}:l is also
convergent since if L is the limit of {x,}72; and € > 0,
#{neN|x;n ¢ (x—e,x+¢)}
=#{neN|x, ¢ (x—¢e,x+¢)} <.

v
Let {xp};>; < R be a sequence and L be a real number. Then
{xn}>2, converges to L if and only if for every ¢ > 0, there exists

N € N such that |x, — L| < &€ whenever n = N. In notation,

(Ve>0)INeN)(n=N=|x,— L| <e).

\,
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

=" Let £ > 0 be given, and Ac = {ne N|x, ¢ (L—¢,L+¢)}.
Since {xp}>, converges to L, k = #A. < . Suppose that
n < ng < --- < ng belongs to Ac. Let N = n,+ 1. Then
N e N and if n > N, n ¢ Ac which implies that if n > N,
xp € (L—¢,L+ €) or equivalently,
|xp — L| <€ whenever n>= N.

“<" Let € > 0 be given. Then for some N € N, if n > N, we have
|xn — L| < € or equivalently, if n > N, x, € (L—e,L+¢). This
implies that

#{neN|xn¢(L—s,L—|—e)}<N<oo. -
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

If {x,}°°, < R is a sequence such that x, — x and x, — y as
n — o, then x = y. (The uniqueness of the limit).

Assume the contrary that x # y. W.L.O.G. we may assume that

x <y, and IetE:ng
#{neN|x, ¢ (x—e,x+¢)} <0, (%)
and
#{neN|x,¢ (y—e,y+e)} <.

Note that the latter implies that #{n eN | xp € (y—e,y+ 5)} 0
which contradicts to (*) since

(X—8,X+€)ﬁ(y—€,y—|—€):@. O
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Alternative proof using e-N definition.

Assume the contrary that x # y. W.L.O.G. we may assume that
x <y and let ¢ = %( >0 (x+e=y—e¢). Since x, — x and

Xp — y as n — oo,

AN, eN)(n= Ny =[x, — x| <e),
and

AN2eN)(n=No =[x, —y| <e).
Define N = max{N;, No}. Then N € N. Moreover, if n > N,
we have both |x, — x| < e and |x, —y| <eforall n> N. As a
consequence, X, < x+¢ and x, > y—e for all n = N, a contradiction.

SOX:y. O

v
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Notation: Since the limit of a convergent sequence {x,}7; is

unique, we use lim x, to denote the limit of {x,}7>°; when {x,}

n—ao0
IS convergent.

Remark: A sequence {x,};~; < R diverges if (and only if)
(VLeR)(Te > 0)(#{neN|x,¢ (L—¢,L+¢e)} =)
which is equivalent to that

(VLeR)Fe>0)(VNeN)(In= N)(|x, — L| =¢).
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Let x, = (n_j)l. We show that {x,}?°; converges to 0 using &-N

argument.

Let ¢ > 0 be given. Define N = [é] + 1. Then N e N. Since

[1]>1—1,ifn>Nwemusthaven>l;thusifnZN,
& & &

1 < 1 < e. Therefore,
n+1 n

|xp —0] <& whenever n> N

which implies that {x,};; converges to 0.
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

In this example we use e-N argument to show that the sequence
34+ (=1)"
2

{yn};, given by y, = diverges. We need to show that

(VLeR)Fe>0)(VNeN)3Bn= N)(|lyn—L| =¢).
Let L € R be given. ChooseE:%. For N € N, define
_ N+1 iflyv—L|l<e,
) N2 if lyww—1L|>e¢

Then n > N. Moreover, if |yy — L| < ¢, then |y, — L| > \y,,—yN] -
lyn —L| > 1—¢e =g, while if |[yy — L| = ¢ then clearly |y, — L| >

Therefore,

(VLeR)Fe>0)(VNeN)Tn= N)(ly,— L| =€).
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Let 7 : N — N be a permutation of N, and {x,}/2; be a conver-

gent sequence. We show that {x )}ne1 converges using the e-N
argument.

Suppose that {x,}7°; is a convergent sequence with limit L, and
e > 0 be given. Then by the convergence of {x,};>; to L, there
exists N; € N such that if n > N1, we have |x, — L| < . Define
N = max {7 ~*(1),7(2),--- ,7# (M) }. Thenif n> N, (n) =
Ny which implies that

|X7T(n) — L| < e whenever n>= N.

Therefore, {x:(n)}7; converges to L.
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Theorem (Squeeze/Sandwich)

Suppose that {an}? i, {bn}i2, and {cn};, are sequences of real
numbers such that a, < b, < ¢, for all n € N. If lim a, =

n—o0
lim ¢, = L, then lim b, = L.
n—o0 n—o0

Let ¢ > 0 be given. Since lim a, = L and lim b, = L, by definition
n—o0 n—0o0

AMeN)(n=N=L—-e<a,<L+e),
and

AN eN)(n=No=L—e<b,<L+e¢).
Let N = max{N;,No}. Then Ne Nandif n> N, L —¢ < a, <
ch < b, < L+ ¢; thus hngoc,,:L. o
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

. sin n . sinn
Let {x,}7, be a sequence given by x, = — Then I}Lngo — = 0.

Let {x,}?2; < R be a sequence.

O {x,},~, is said to be bounded ( 7 7 ) if there exists M > 0
such that |x,| < M for all ne N.

Q {xn};2, is said to be bounded from above (7 }+ % ) if there
exists M € R, called an upper bound of the sequence, such
that x, < M for all ne N.

Q {xn}y~, is said to be bounded from below (5 ™ % ) if there

exists m € R, called a lower bound of the sequence, such that
m < x, for all ne N.

.
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

A convergent sequence is bounded (#cZ|fxacs 5 &) .

Let {xn};°; be a convergent sequence with limit x. Then there
exists N > 0 such that

|xn —x| <1 whenever n>= N
or equivalently,
Xp € (x—1,x+1) whenever n>= N.

Let M = max {|x1|, [xa|, -+ , |xn—1], |X| + 1}. Then |x,| < M for all
ne N. O

v
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Suppose that x, — x and y, — y as n — o. Then

Q@ x,ty,— xtyasn— .
Q X, yp— X-yasn— .

Q Ify,y#0, then 2 — %X as n — w0,
Yn y

.

Q Let € > 0 be given. Since x, — x and y, — y as n — 0, there
exist N1, Ny € N such that |x, — x| < g for all n > N; and
lyn — x| < g for all n > Ny. Define N = max{Ny, No}. Then
NeNandif n> N,

[ £ yn) = (X £ Y)| < [xa = x|+ [yn —y| <e;

thus x, £ y, — xt yas n — o0. 5
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Proof (Cont'd).

@ Since x, — x and y, — y as n — o0, by the boundedness of
convergent sequences, there exists M > 0 such that |x,| < M
and |y,| < M. Let € > 0 be given. Then

(3N1€N)(I72N1:>|Xn—x|<%/,)7

and

(EINQGN)(nZN2=>|y,,—y|<ﬁ).

Define N = max{Nj, No}. Then Ne N and if n > N,
‘Xn')/n_x'ﬂ:‘Xn'Yn_Xn'Y“‘Xn‘y_X'Y‘
< X (Yn =Y + 1y (xa — %)
SM-lyp—y|l+ M- |xp — x|
€ e

N
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Proof (Cont'd).

© It suffices to show that nh_)r{.lo}% = }1/ if yn,y # 0 (because of ).
Since ,}L%y” =y, there exists N; € N such that |y, — y| < M
whenever n = Nj. Therefore, |y| — |yn| < % for all n > N1
which further implies that |y,| > M for all n > Nj.
Let € > 0 be given. Since 1im Yn = ¥, there exists Ny € N
such that |y, — y| < M e whenever n > Ny. Define N =

max{Ny, No}. Then N¢€ N and if n > N,

i_,‘:m—yl M. 12
Yo Y BZI% 2 ¥l 1

€
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

Definition

A sequence {y;}:°, is called a subsequence of a sequence {x,};.;
if there exists an increasing function f: N — N such that y; = x¢(;).

In this case, we often write f(j) = nj and y; = xp,.

In other words, a subsequence of a sequence is derived by deleting
some elements without changing the order of remaining elements.

Let {xn};>, be a sequence. Then {x2,}7°; is a subsequence of
{xn}>2 ;. It is obtained by deleting all the odd terms of {x,}7 .

On the other hand, the sequence {x2,_1}/2 is a subsequence of
{xn};2; and is obtained by deleting all the even terms of {x,}/ ;.
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Chapter 7. Concepts of Analysis
§7.1 Convergent Sequences

A sequence {x,}>_; < R converges if and only if every subsequence

n=1<
of {xn};2, converges (to the same limit).

it suffices to show

Since {x,}7°_; itself is a subsequence of {x,}
the impIicat|on from LHS to RHS.

n=11

Suppose that lim x, = L. We claim that every subsequence of
n—oo

{xn}>2, also converges to L.

Let € > 0 be given. Since lim Xp = L, there exists N € N such that

|xn — L| < € whenever n > N Choose J > 0 such that ny > N (this
is possible since nj — 00 as j —» o). Thenif j=> J, nj>n; > N, we

must have ’xnj — L’ < e. o
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

Definition
Let / € R be an interval, a € I, and f be a real-valued function
defined on [ — {a}. We say that the limit of f as x approaches a
exists if for every sequence {a,}°; < [ satisfying

Q@ a,#aforall neN,

Q lim a, = a,
n—0o0

the sequence {b,}°, given by b, = f(a,) converges.
(- St a ' Tis dod To73 & /9P BoE 3 8 a fejeacd)
a fhifer | B & e ld 4727 = dhifer | 3R et )

Using the logic notation, the limit of f at a exists if

(V{an}pz, = 1 {a}>(nhji ap=a= nllj}i f(an) exists) .
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

Let | € R be an interval, a € |, and f be a real-valued function
defined on | — {a}. If the limit of f as x approaches a exists, then
the limit is unique; that is, there exists a unique L € R such that
lim f(a,) = L for every sequence {a,}2_; < I—{a} which converges

n—0o0

to a. 4

00]

Suppose that contrary that there exist two sequences {a,}i’,

n}r 1 € I—{a} and two numbers Ly, Ly such that a, — a, b, — a
bn}®, < | d bers Ly, Ly such th b
as n — oo and

lim f(a,) =Ly and lim f(b,) = Ly.

n—o0 n—o0 a

\,
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

Proof (Cont'd).

ant1 if nis odd,
2

Define a sequence {cp}>2; by ¢, = { that is,

bg if nis even;

{cn}oy = {a1, b1, a2, b2, a3,b3,---}. Then ¢, — a as n — o0; thus

by the definition of the limit of functions, there exists L such that
lim f(c,) = L.

n—0o0

Since {f(an)}>2, and {f(bp)}?2, are subsequences of {f(cn)}%,,

Ly = lim f(ap) = lim f(c,) = lim f(bn) = Lo,

a contradiction. o |

e Notation: Since the limit of a convergent sequence is unique, for
a convergent sequence {a,}>»_;, we use lim f(x) to denote the limit.
X—a
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

Consider the function f: [0, 1] — R defined by
Flx) = sin)}( if x#0,
0 ifx=0.
Then fis not continuous at 0 since letting x, = ﬁ and y, =
1 p—
Py we have x, — 0 and y, — 0 as n — o0 but f(x,) =0

while f(y,) =1 for all ne N.
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

Suppose that | € R is an interval, a € I, and f, g are two functions

defined on |, except possibly at a, such that f(x) = g(x) for all

x e |—{a}. If lim f(x) exists, then lim g(x) exists, and lim f(x) =
X—a X—a X—a

lim g(x).

X—a

Since lim f(x) exists, every sequence {a,}2; < | — {a} converging
X—a

to Let {a,}?2, < I — {a} be a sequence converging to a. Since

lim f(x) exists, lirrgo f(an) = L for some L € R. By the fact that
X—a n—

f(x) = g(x) for xe I — {a}, nli_’rglog(a,,) =L o
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

Let | € R be an interval, a € |, and f be a real-valued function
defined on | — {a}. Then lim f(x) = L if and only if
X—a

(Ve>0)36>0)[(0<|x—a| <d) A (xel)=|f(x)—L| <e].

“=" Assume the contrary that there exists € > 0 such that for all
d > 0, there exists x5 € | — {a} with
0<|xs—al<d and |f(x;5)—b|>¢.
In particular, we can find {x(}}°, = /— {a} such that
0<|w—al<, and [f(x)—L>e.

Then xx — a as k — o0 but f(xx) - L as k — o0, a contradic-
tion. =

Ching-hsiao Arthur Cheng #:5 % A##E MA-1015A



Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions
Goal: )1(1_% f(x) = L if and only if
(Ve>0)(36>0)[(0<|x—a| <8) A (xel)=|f(x) —L| <¢]

‘<" Let {xk}3; < I — {a} be such that x, — a as k — 0, and

€ > 0 be given. By assumption,

(30>0)[(0<|x—al <) A (xel)=|f(x)—L|<¢e].
Since xx — a as k — o0, there exists N > 0 such that |[xx—a| <
0 whenever k > N. Therefore,

[f(x) —L| <e Vk=N

which shows that lim f(xx) = L.
k—00 [m]
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

Definition

Let / < R be an interval, and a € [. A function f: [ — R is said to

be continuous at a if lim f(x) = f(a). In other words, f: | — R is
X—a

continuous at a if
(Ve>0)36>0)[(|x—al <d) A (xel)=|f(x) — f(a)|] <e].

A function f: /| — R is said to be continuous on [/ if fis continuous

at every point of /. )

Remark: Almost identical proof of showing the previous theorem
implies that “fis continuous at a if and only if for every sequence
{xn}>2; < I converging to a, one has lim f(xn) = f(a)" (- ¥

oo Fac%k Torg AP dead a mﬁvl S Fe (B 975 2 e
#r|3feacy] f(a) )
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

Let I, J < R be intervals, and f: | - R, g: J— R be functions. If
f(l) < J, lim f(x) = be J, and g is continuous at b, then
X—a

lim(g o )(x) = &(b)

Let {xn}/2; < [—{a} such that x, — a as n — o0. By the fact that

)1(1_12 f(x) = b, we have nh_)rglo f(xn) = b. Since f(I) = J, {f(xn)},_,

is a sequence in J and converges to b; thus by the continuity of g

at b and the previous remark, lingo g(f(xn)) = g(b). Therefore, for
n—
every sequence {x,}"°; < | — {a} such that x, — a as n — o0, one

has nli_)rrolo(go f)(xn) = g(b). o
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

f(lI)< J A lim f(x) = b A gis continuous at b = lim(g o f)(x) =
X—a X—a
g(b).

Alternative proof.

Let £ > 0 be given. Since g is continuous at b, there exists o > 0

such that
lg(y) — g(b)| <& whenever |y—b| <o andyeJ.
For such § > 0, there exists 6 > 0 such that
|f(x) —b| <& whenever 0 < |x—a| <dandxe /.
Therefore, if 0 < |x— a] < § and x€ |,
(g0 F)() — g(b)| = [e(F(x)) — g(b)| <=

since we also have |f(x) — b| < o and f(x) € J. o
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions
What will happen if f(/) < J, lim f(x) = b but we only have
)1<ii1}jg(x) = ¢ but not continuity gf_); at b? Can we still conclude
that )l(iix‘l;(go f)(x) = cin this case?

Let f(x) = b be a constant function, and g: R — R be defined by

(x) = c if x# b,

9= c+1 ifx=b.

Then lim f(x) = b and lintg(x) = c. By the fact that (go f)(x) =
X—a X—

c+1 for all xe R,

lim(gof)(x) =c+1#c.

X—a

Therefore, lim f(x) = b A lim g(x) = ¢ lim(go f)(x) = ¢

X—a x—b X—a
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions

Let I, J < R be intervals, and f: | - R, g: J— R be functions. If
f(I) < J, fis continuous at a € I, f(a) € J and g is continuous at
f(a), then go fis continuous at a. In particular, if f is continuous

on | and g is continuous on J, then (go f) is continuous on |.
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Chapter 7. Concepts of Analysis
§7.3 The Completeness Property

Definition

A set F is said to be a field (%%) if there are two operations + and
- such that
QO x+yeF, x-yeFifx,ye F. (3F )
Q@ x+y=y+xforall x,ye F. (commutativity, 4r ;% e 3 %)
Q@ (x+y)+z=x+(y+2z) forall x,y,ze F. (associativity, *r
ik & 1)
Q There exists 0 € F, called 4c;* ¥ i+ L% such that x+ 0 = x
for all xe F. (the existence of zero)
@ For every xe F, there exists y € F (usually y is denoted by —x
and is called x é4cj% & = %) such that x+ y = 0. One writes

x—y=x+(-).
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Definition (Cont'd)
QO x-y=y-xforall x,ye F. (kiz ch2 &)
Q@ (x-y) z=x-(y -z forall x,y,ze F. (k2 enig &)
@ There exists 1 € F, called 3% iz ¥ =~ % such that x-1 = x

for all xe F. (the existence of unity)

Chapter 7. Concepts of Analysis
§7.3 The Completeness Property

© For every xe F, x # 0, there exists y € F (usually y is denoted
by x~! and is called x 3k j# ¥ =~ %) such that x-y = 1. One
writes x- y=x-x 1 = 1.

@ x-(y+2) =x-y+x-zforall x,y,ze F. (distributive law, 4
)

@ 0#1.
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Chapter 7. Concepts of Analysis
§7.3 The Completeness Property

Definition
A partial order over a set P is a binary relation < which is reflexive,

anti-symmetric and transitive, in the sense that
Q x < xfor all xe P (reflexivity).
Q@ x<yand y < x= x=y (anti-symmetry).
O x<yand y < z= x< z (transitivity).

A set with a partial order is called a partially ordered set.

(Q, =) and (2[%1, <) are partially ordered sets.

Definition
Let (P, <) be a partially ordered set. Two elements x, y € P are said

to be comparable if either x < y or y X
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Chapter 7. Concepts of Analysis
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Definition

A partial order under which every pair of elements is comparable is
called a total order or linear order.

The relation > is a total order in Q.

Definition

An ordered field is a totally ordered field (F, +, -, <) satisfying that
Q If x< y, then x4+ z < y+ z for all ze F (compatibility of <
and +).
Q If 0 < xand 0 <y, then 0 < x- y (compatibility of < and -).

Remark: (2) in the definition above implies that 0 < 1. In other
words, we exclude that possibility that the relation > is used as the
total order in the ordered field (Q,+,-) or (R, +,).
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(Q,+,+,<) and (R, +, -, <) are ordered fields.

Let (F,+,-, <) be an ordered field.

© The relation > is defined by “x > y < y < x".

@ The relation < is defined by “x <y < x<yAx#y".
© The relation > is defined by “x > y < y < x".

A\

If a < b in an ordered field (F,
that a < c < b.

+, -, <), then there exists c € F such

v
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Definition
Let (F,+,-,<) be an ordered field, and &f # A < F. A number
M e F is called an upper bound (+ %) for Aif x < Mfor all xe A,

and a number m € F is called a lower bound (™ % ) for Aif x> m
for all xe A. If there is an upper bound for A, then A is said to be

bounded from above, while if there is a lower bound for A, then
A is said to be bounded from below. A number b € F is called a
least upper bound (-] + %) if

@ b is an upper bound for A, and

@ if M is an upper bound for A, then M > b.
A number ais called a greatest lower bound (# ~ * %) if

@ ais a lower bound for A, and

@ if mis a lower bound for A, then m < a.
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Definition (Cont'd)

If Ais not bounded above, the least upper bound of A is set to be
00, while if A is not bounded below, the greatest lower bound of
A is set to be —c0. The least upper bound of A is also called the
supremum of A and is usually denoted by lubA or sup A, and “the”
greatest lower bound of A is also called the infimum of A, and is
usually denoted by glbA or infA. If A = &, then supA = —o0,
inf A = 0.

v

Remark: Let (F,+,-,<) be an ordered field.
Q If by, by € F are least upper bounds for a set A < F, then

by = by. Therefore, sup A is a well-defined concept. Similarly,

inf A is a well-defined concept.
@ Since the sentence “xe @ = x < M" is true for all M e F, we

conclude that sup @ = —oo. Similarly, inf & = 0.
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Consider the ordered field (Q,+,-,<) and A = {x € (@|x2 < 2}.

Then 2 is an upper bound for A; however, there is no least upper
bound for A in Q.

Reason: If M e Q is an upper bound for A, then M > /2. By the
property of R there exists a rational number g € (1/2, M). Such q

is also an upper bound for A. In other words, for any given rational

upper bound for A in QQ there exists a smaller upper bound for A in

Q; thus there is no least upper bound for A in Q.
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Let (F,+,-, <) be an ordered field, and A be a subset of F. Then
s=supA if and only if
(i)(Ve>0)(Vxe A)(x<s+e). (i) (Ve >0)(Txe A)(x>s—e).

Definition (Completeness)

Let (F,+,-, <) be an ordered field. F is said to be complete ( =
# ) if every non-empty subset of F that has an upper bound in F

has a supremum that is an element of F. (22 5 * % ek £ % 3

B R)

The field (R, +, -, <) is a complete ordered field.
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Theorem (Archimedean Principle for R)

For every real number x, there is a natural number n such that n > x.

Let xe R. If x < 1, then the choice n = 1 validates n > x. Suppose
x> 1. Define A= {neN|n<x}. Then 1€ A and x is an upper
bound for A. By the completeness of R, s = sup A € R exists. Since

s is the least upper bound for A, s— 1 is not an upper bound for A;
thus there exists m € A such that m > s—1ors< m+ 1. Then
m+ 1 ¢ A which implies that m+ 1 < x. The choice n = m+ 1

satisfies n > x. o
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Definition

Let a and ¢ be real numbers with § > 0. The d-neighborhood of a
is the set V'(a,8) = {xe R||x— a| < 6}.

Properties:
@ A sequence {x,}2, converges to x if for every ¢ > 0, there
are only finite number of n € N such that x, lies outside the
e-neighborhood of x.

Q If 0 < 41 < 49, then N(a, 51) - N(a,52).

Definition

For a set A € R, a point x is said to be an interior point of A if
there exists 0 > 0 such that N'(a,d) < A.
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A set A € R is said to be open if every point of A is an interior

point of A. In other words, A < R is open if
(Vxe A)(3é > 0)(N(x,6) = A).
o
The empty set J is open since the conditional statement

(xe &) = (36> 0)(N(x,6) = &)

is always true. |
The universe R is open since the conditional statement
(xeR) = (36 > 0)(N(x,0) = R)

is always true.
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Every interval (a,b) € R, where —o0 < a < b < o0, is an open set.

Let x € (a,b). W.L.O.G., we can assume that at least one a and b
is finite. Define § = min{x—a, b—x}. Then 0 < § < co. Moreover,
if ye N(x,0), we must have |y — x| < §; thus if ye N(x,9),

y—a=y—x+x—a>-0+x—a=0

and
b—y=b—x+x—y>b—x—0=>0

which implies that N'(x, d) < (a, b). o
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Let F be a non-empty collection of open subsets of R. Then

@ (J A s an open set.
AeF

@ If F has finitely many open sets, then (| A is an open set.
AeT

.

Q Let xe [J A. Then x € A for some A € JF. Since A is open,

AeT
x is an interior point of A; thus there exists § > 0 such that

N(x,8) = A. Then N(x,6) = |J A and we establish that

. AeF
| Ais open.
AeF

€

Ching-hsiao Arthur Cheng #:5 % A##E MA-1015A



Chapter 7. Concepts of Analysis
§7.4 The Heine-Borel Theorem

@ If F has finitely many open sets, then (] A is an open set.
AeF

Proof (Cont'd).

@ Suppose that F = {Al,Ag, - ,A,,} and Aj's are open for 1 <

j< k. Let xe () A Then xe Ajfor all 1 <j< k. Since each
AeF
Aj is open, there exists ¢; > 0 such that N(x, d;) < A;. Define

d = min{dy,--- ,0,}. Thend > 0 and N(x 8) € N(x,0)) < A;

for all 1 < j < k. Therefore, N'(x,d) ﬂ A=A
AeF O

.

Definition

A set A is said to be closed if its complement A® = R\A is open.
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The set [a, b] is closed. To see this, we have to show that [a, b] is

open. Note that

x€[a b e {xeR|a<xnx<b};
thus
X€ [a,b]c®{xeR| ~(a<x)v~(x<b)}
or equivalently,
X€E [a,b]c<:>{xeR|(a>x) v (x> b)}.

Therefore, [a, b]® = (=00, a)u(b, ) which, by the fact that (—o0, a)

and (b, 0) are open, implies that [a, b is open.
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A subset A € R is closed if and only if every convergent sequence
in A converges to a limit in A. In logic notation,

Ais closed < (V{xp}pe; S A)(I}eroloxn =Xx= XE€ A) :

(=) Assume the contrary that {x,}/2; € A, lirglo Xn = x but x ¢ A.
n—
Then x e AC. By the closedness of A, there exists § > 0 such
that NV'(x,0) < A", Since {x,}%, € A, |x, — x| = 4, thus
111{}0 Xn # X, a contradiction.

(<) Suppose the contrary that A is not closed. Then there exists
x € A such that for all § > 0, N'(x, ) & A%; thus for all 6 > 0,
N(x,6) n A # . Choose § = 1/n and x, € N(x,1/n) n A.
Then (H {xn}, S A) (nlg& Xn=XA~(x€ A))

(]
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A subset A € R is closed if and only if every convergent sequence
in A converges to a limit in A. In logic notation,

Ais closed < (V{xp}pe; S A)(I}eroloxn =Xx= XE€ A) :

(=) Assume the contrary that {x,}/2; € A, lirglo Xn = x but x ¢ A.
n—
Then x e AC. By the closedness of A, there exists § > 0 such
that NV'(x,0) < A", Since {x,}%, € A, |x, — x| = 4, thus
111{}0 Xn # X, a contradiction.

(<) Suppose the contrary that A is not closed. Then there exists
x € A such that for all § > 0, N'(x, ) & A%; thus for all 6 > 0,
N(x,6) n A # . Choose § = 1/n and x, € N(x,1/n) n A.

~ 0 P 1T p—
Then (V{X,, n=lgA)(,}B}%X” X = XE A).

(]
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Let A< R be closed and xe R. If An N(x,8) # & for all § > 0,
then x € A.

If & # A < R is closed and bounded, then sup A € A and inf A € A.

We only prove the case that sup A € A since the proof of the coun-
terpart is similar.

Let x = supA. Then x € R, and for all n € N, x—1/nis no an
upper bound for A which implies that there exists x, € A such that
X — 1 < Xp £ X;

n
thus we construct a sequence {x,}>°; < A and x, — x (by the
squeeze theorem). The previous theorem then shows that xe A. ©
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Definition

Let A< R. A collection F of open subsets of R is called an open

cover for Aif A< |J U. If B < Fis a sub-collection of F and B
UeF
is also an open cover for A, B is called an subcover of F for A. B

is called a finite subcover if there is only finitely many elements in

B, )

For n € N, let U, denote the open set (n — %,n + %) and JF be

the indexed family ¥ = {U, | n € N}. Then F is an open cover of N

with no subcovers other than F itself. )
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Since U R, the family & = { —00, n |neN} is an open

cover for R. There are many subcover of & for R, such as
{(=0,2n)|[neN} or {(—o,2n+1)|neN}.

However, there is no finite subcover of & for R

Definition

A subset K < R is said to be compact if for every open cover F
for K, there is a finite subcover of F for K. In logic notation, K is
compact if

(Y F open cover for K)(3B < 9)(#3 <oorKe | U) .

UeB
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Theset A= {1} U {"+1 ‘neN} is compact.

Let F = {Ua ’a € I} be an open cover of A. Then 1 € U,, for

some ag € I Since Uy, is open there exists § > 0 such that

N(1,8) € Uy, Since hm T = 1, there exists N > 0 such that
"1 e N(1,6) for all n> N. Therefore,

{1}U{n+1

Let Uy;, where 1 < j < N—1, be open sets in J such that 1—51 € Uy,

(n>/\/}gu%.

We note that such «; exists since J is an open cover for A. Then
N—1

Ac Uy

=0
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A compact set must be closed.

Let K be a compact set. Suppose the contrary that there exists a

convergent sequence {xp}; < K with limit x¢ K. For each y € K,

the @—neighborhood of y is open and non-empty; thus
_ Ix— ¥l
J= {N(y’ 2 ) ‘ye K}
is an open cover of K. Since K is compact, there is a finite subcover
of F for K. =
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Proof (Cont'd).

Let 6 = min{'X;m, |X;y2‘,-" . lX;yN"}. Then |x — yj| = 26 for

1<j< Mandd > 0. Since x, = x as n — o0, there exists N > 0
such that |x, — x| < d whenever n = N. Then for 1 < j < M and

n=N,
yi— X yj— X
5= 0l = Ly = A = =l >y = = 2 = DA
Therefore, if n > N, x, ¢ N (yj, @) which implies that x, ¢
(J U, a contradiction (since x, € K). o

UeB
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A compact set must be bounded.

Let K < R be a compact set. Define F = {(—n,n)|n e N}. Then
clearly ¥ is an open cover of K since F also covers R. Since K is

compact, there is a finite subcover
B = {(—nk,nk)’1 <k Mn,--- ,nMeN}
of F for K. Let L = max{ny,---,ng}. Then

M

K [J(=nm) = (—L L)

k=1
which implies that |x| < L for all xe K. Therefore, K is bounded. o
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Theorem (Heine-Borel Theorem)

A subset K < R is compact if and only if K is closed and bounded.

It suffices to shows that if K is closed and bounded, then K is

compact. Let F = {Ua{a € I} be an open cover for K. For each
x € R, define K, = {a € K| a< x}. Define

D= {xe ]R‘ K is included in a union of finitely many
open sets from 3’"} .
We claim that D is non-empty and D has no upper bound.

@ Since K is bounded, inf K € R exists. Let z < inf K. Then K,
is empty which implies that ze€ D. 5

v
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Proof (Cont'd).

@ Suppose the contrary that D is bounded from above. Then
xo = sup D exists in R. If there is 6 > 0 such that K n
N(xp,8) = &, then xg + § € D which contradicts to that
xo = sup D. Therefore, K n N (xp,0) # & for all 6 > 0. By
the closedness of K, xp € K.

Since JF is an open cover, xp € Uy, for some U,, € F. Since
Ua, is open, there exists § > 0 such that A/ (xp, ) S Uy, . Since
xo = sup D, there exists x; € (xo — 0, xp] N D. Since x1 € D

there exist Uy, , Uny, -+, Ua, € T such that K, < U Uq;

X9 = Xp + g Then xa € U,,; thus K, < U Uy, WhICh implies

=
that xy € D which contradicts to that xp = sup D.

a
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We have established that the set D given by
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D= {xe ]R‘ K is included in a union of finitely many
open sets from 3’"}
has no upper bound. Now, since K is bounded, sup K € R. Since
D has no upper bound, there exists d € D such that d > sup K.
Therefore, Ky = K which implies that K is included in a union of

finitely many open sets from &F; thus K is compact. =

v
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