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NAVIER-STOKES EQUATIONS INTERACTING WITH A
NONLINEAR ELASTIC BIOFLUID SHELL*
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Abstract. We study a moving boundary value problem consisting of a viscous incompressible
fluid moving and interacting with a nonlinear elastic fluid shell. The fluid motion is governed by the
Navier—Stokes equations, while the fluid shell is modeled by a bending energy which extremizes the
Willmore functional and a membrane energy with density given by a convex function of the local
area ratio. The fluid flow and shell deformation are coupled together by continuity of displacements
and tractions (stresses) along the moving surface defining the shell. We prove the existence and
uniqueness of solutions in Sobolev spaces for a short time.
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1. Introduction.

1.1. The problem statement and background. We are concerned with es-
tablishing the existence and uniqueness of solutions to the time-dependent incompress-
ible Navier—Stokes equations interacting with a nonlinear elastic fluid shell (biomem-
brane) for a short time. Recently, there have been many experimental and analytic
studies on the configurations and deformations of elastic biomembranes (see, for ex-
ample, [3], [11], [13], [16], [17], [18], [19], and [21]), but the basic analysis of the coupled
fluid-structure interaction remains open. The fundamental difficulties arise from the
degenerate elliptic operators that arise as the shell tractions. As we detail below, the
bending energy of the shell is the well-known Willmore function, the integral over the
moving surface of the square of the mean curvature. The degenerate elliptic operator
arising from the first variation of this functional is a fourth order nonlinear operator
that smoothes only in the direction which is normal to the moving domain. Our
analysis will provide a well-posedness theorem and explain the interesting interaction
between the shape of the shell and the flow of the fluid.

Fluid-structure interaction problems involving moving material interfaces have
been the focus of active research since the 1990s. The first problem solved in this
area was for the case of a rigid body moving in a viscous fluid (see [9], [14], and
the early works of [22] and [20] for a rigid body moving in a Stokes flow in the
full space). The case of an elastic body moving in a viscous fluid was considerably
more challenging because of some apparent regularity incompatibilities between the
parabolic fluid phase and the hyperbolic solid phase. The first existence results in
this area were for regularized elasticity laws, such as in [10] for a finite number of
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NAVIER-STOKES INTERACTING WITH A FLUID SHELL 743

elastic modes, or in [1], [4], and [2] for hyperviscous elasticity laws, or in [15] in which
a phase-field regularization “fattens” the sharp interface via a diffuse-interface model.

The treatment of classical elasticity laws for the solid phase, without any reg-
ularizing term, was considered only recently in [7] for the three-dimensional linear
St. Venant—Kirchhoff constitutive law and in [8] for quasi-linear elastodynamics cou-
pled to the Navier—Stokes equations. Some of the basic new ideas introduced in those
works concerned a functional framework that scales in a hyperbolic fashion (and is
therefore driven by the solid phase), the introduction of approximate problems either
penalized with respect to the divergence-free constraint in the moving fluid domain or
smoothed by an appropriate parabolic artificial viscosity in the solid phase (chosen in
an asymptotically convergent and consistent fashion), and the tracking of the motion
of the interface by difference quotient techniques.

In our companion paper [5], we study the interaction of the Navier—Stokes equa-
tions with an elastic solid shell. Herein, we treat the case of a fluid shell or bio-
membrane. This is a moving boundary problem that models the motion of a viscous
incompressible Newtonian fluid inside of a deformable elastic fluid structure.

Let © C R3 denote an open bounded domain with boundary I' := 9Q. For
each t € (0,T], we wish to find the domain Q(t), a divergence-free velocity field
u(t,+), a pressure function p(t,-) on €(t), and a volume-preserving transformation
n(t,-) : @ — R? such that

(1.1a) Q) =n(t,Q),

(1.1b) et @) = u(t, n(t, x)),

(1.1c) us + Vyu —vAu = =Vp+ f in Q(¢),
(1.1d) divu =0 in Q(t),
(1.1e) (vDefu — pld)n = tspen on I'(t),
(1.1f) u(0,2) = up(x) Ve,
(1.1g) n(0,2) =z Vo e,

where v is the kinematic viscosity, n(t, -) is the outward pointing unit normal to T'(t),
I'(t) := 09(t) denotes the boundary of Q(t), Defu is twice the rate of deformation
tensor of u, given in coordinates by uzj + ufi, and tgpey is the traction imparted onto
the fluid by the elastic shell, which we describe next.

We shall consider a thin elastic shell modeled by the nonlinear Saint Venant—
Kirchhoff constitutive law. With € denoting the thickness of the shell, the hyperelastic
stored energy function has the asymptotic expansion

Eshell = EEmem + 53Eben + 0(54)-
The membrane energy satisfies

(12) Emem = /I‘P(j)ds’7

where J is the local area ratio and P is a convex function attaining its minimum at
J =1, while the bending energy Ej., is given by

(13) Eben = / (O’H2 - OlK)dS,
I'(t)
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744 C. H. A. CHENG, D. COUTAND, AND S. SHKOLLER

where H and K denote the mean and Gauss curvatures on I'(¢), respectively, and
where o and o7 are positive constants. The traction vector

tonetl = etmem + gstben + 0(54)

is computed from the first variation of the energy function FEgp.y; the traction vector
associated with the membrane energy is

(1.4) tmem = | TP (T) + 2P ()| T 59°° 1.0 + [jP’(J) + P(j)} Hn,

while the traction associated with the bending energy has a simple intrinsic charac-
terization given by

(1.5) tpen = 0(AyH — 2HK + 2H?)n,

where A, denotes the Laplacian with respect to the induced metric g on I'(¢):

10 s Of
wmaxa@de“g)g )

In this paper, we ignore the inertia of the shell and focus our analysis on the difficulties
associated with the degenerate elliptic operators in tspey;.

Agf =

1.2. Outline of the paper. In section 2, in addition to the use of Lagrangian
variables, we introduce a new coordinate system near the boundary (shell) and three
new maps, ¥, n”, and h, which facilitate the computation of the membrane and
bending tractions tmem and then. A key observation is the symmetry relation (2.7)
which reduces the derivative count on the tangential reparameterization map n".

The space of solutions (to the problem t,,¢,, = 0) is introduced in section 3, and
the main theorem is stated in section 4. Section 5 defines our notation, and section 6
provides some useful lemmas.

In section 7, we introduce the linearized and regularized problems. The regular-
ization requires smoothing certain variables as well as the introduction of a certain
artificial viscosity term on the boundary of the fluid domain. Weak solutions of this
linear problem are established via a penalization scheme which approximates the in-
compressibility of the fluid.

In section 8, we establish a regularity theory for our weak solution using energy
estimates for the mollified problem with constants that depend on the mollification
parameters. In section 9, we improve these estimates so that the constants are in-
dependent of the artificial viscosity as well as other regularization parameters. This
requires an elliptic estimate, arising from the boundary condition (1.le), which pro-
vides additional regularity for the shape of the boundary.

In section 10, the Tychonoff fixed-point theorem is used to prove the existence
of solutions to the original nonlinear problem (1.1). Uniqueness, following required
compatibility conditions, is established in sections 4 and 10.

In section 11, we consider the inclusion of the lower order membrane traction into
the problem formulation so that the full problem is solved.

The inclusion of the inertial term €17;; into the membrane traction tye, will be
studied in a future publication.

2. Lagrangian formulation.

2.1. A new coordinate system near the shell. Consider the isometric im-
mersion 1y : (I', go) — (R3,Id). Let B =T x (—e1,€1), where €1 is chosen sufficiently
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NAVIER-STOKES INTERACTING WITH A FLUID SHELL 745

small so that the map
B:B—R?: (y,2) — y+2zN(y)

is itself an immersion, defining a tubular neighborhood of T in R3. We can choose
a coordinate system %, a=1,2, and 8% on B, where -2- denotes the tangential

oy«
derivative and % denotes the normal derivative.
Let G = B*(Id) denote the induced metric on B from R3 so that

Gy,2) = G.(y) + dz @ dz,

where G is the metric on the surface I x {z}; note that Gy = go.

REMARK 1. By assumption, goag = % . %, where - denotes the usual Carte-
sian inner product on R™. Let Copg denote the covariant components of the second
fundamental form of the base manifold I' so that Cog = —N o %. Then G, is given

by
(Gz)aﬁ = (90)aﬁ - QZCaﬁ + ZzggéCmCM.

Let h : ' — (—€1,€1) be a smooth height function and consider the graph of h
in B, parameterized by ¢ : I' — B : y — (y,h(y)). The tangent space to graph(h),
considered as a submanifold of B, is spanned at a point ¢(x) by the vectors

& g\ 0909 0 n Oh 9
oy ) oyr  y>  Oy* 0z’
and the normal to graph(h) is given by

(2.1) n(y) —Jh*(y)( G

v Oh 00
—Get
hW) gy gys 9z )’

where Jj, = (1+ h7an(’;)h,5)1/2. The mean curvature H of graph(h) is defined to be

the trace of Vn, where
Vn)i; = G VB 0 fori,j=1,2,3
( n)w— %,’%W OIZ7]_ 9y &y Iy
o) o) )

where 575 = ay% fora =1,2and 575 = 77, and V5B denotes the covariant derivative.
Using (2.1),

0 0 0
— B —1 é -1
(Ve = G<Veﬁa {Jh Gl T a} aw)
= —~(@n)as | (" C3'h) o I (=GR h T +Thg)

9 91 0

_ B -1 6 -1

(Vn)ss = G(Vaaz [—Jh Gihags +; 82} 7 E)z)
= J, (=G hTs + T),

where Ffj denotes the Christoffel symbols with respect to the metric G. It follows
that the curvature of graph(h) (in the divergence form) is

(2.2) H=—(J,'G)’h,) s+ Jﬁl(_GzéhﬁF;é + F§3)7
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746 C. H. A. CHENG, D. COUTAND, AND S. SHKOLLER

n"(y,t

y n'(y.)

Fic. 1. The maps n™ and n".

or (in the quasi-linear form)
(2.3) H = ;7G50 850 = T %G gh s | e + G sy, 1, V),

where Fi,g denotes a smooth generic function of y, h, and Vh.
REMARK 2. Note that G}, denotes the metric G,_p(,) and not the metric on the
submanifold graph(h).
- REMARK 3. If the initial height function is zero, i.e., h(0) = 0, then H(0) =
I‘;B (0) which is the mean curvature of the base manifold T' as required.

2.2. Tangential reparameterization symmetry. Let A/ denote the normal
bundle to I' so that for each y € I' we have the Whitney sum R3 = T, & N,.

Given a signed height function h : T x [0,7) — R, for each ¢ € [0,T'), define the
normal map (see Figure 1)

n”:Tx[0,T) = D(t), (y,t) —y+h(y,t)N(y), N(y)eN,.

Then there exists a unique tangential map n™ : I' x [0,T) — T" (a diffeomorphism as
long as h remains a graph) such that the diffeomorphism 7(t) has the decomposition

7]('7 t) = 77”(% t) © WT('7 t)a n(ya t) = WT(% t) + h(nT(ya t)7 t)N(nT(yv t))
The tangent vector 7, to I'(t) can be decomposed with respect to the Whitney sum

as 1,a(y,t) = 1'% (v, t)a% +h (07 (y,t), t)r]’“a%7 and hence the induced metric g,5 =
N, - 1,3 May be expressed as

(2.4) JaB = [((Gh)mr + h,nh,a) o 777} Nanp = [g,m o 777—} UNUNCE
Note that G, is the induced metric with respect to the normal map n”. Furthermore,

we have the following useful relationship between the determinant of the two induced
metrics:

(2.5) det(g) = det(Von™)? [det(Gh)JfL] on” = det(Von)? [det(g)} on”,

where V denotes the surface gradient.
REMARK 4. The identity (2.4) can also be read as (n")*g = G.
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NAVIER-STOKES INTERACTING WITH A FLUID SHELL 747

Let y and § = ¢(y) denote two different coordinate systems on I' with associated
metrics
- (977i ani _ _ ani anz’
9o8 = Guagyp’ 9P e agp

It follows that ¢*g = g. Let H, ﬁ, K, K, n, and n denote the mean curvature, Gauss
curvature, and the unit normal vector computed with respect to y and ¢, respectively.
Since H, K, and n depend only on the shape of T'(¢), these geometric quantities are
invariant to tangential reparameterization; thus, we have the identity

(2.6) H=Hoyp, K=Kop, n=nogy.

Similarly, computing the first variation of fr(t) H?dS in our two coordinate sys-
tems yields

(8o + HEH? = K))n] ) = [(858 + HEH ~E))a| @) ¥ 5= p(y).

By (2.6), we have the following important identity:

(2.7) [8-5H () = [25(H o) 3) V5= olv),
and hence
(2.8) [Ag(Hon™")]on™ = AgH,

where by (2.3),
(29)  Hon ™" = —J; Gy 80y = J72G h b s | han + G5 Fuply, b, Vh).
2.3. Bounds on 1”7. Let u” denote the tangential velocity defined by n] =

u” on”. Time differentiating the relation n = n* o™ and using the definition of ",
we find that

0
2.10 T:v vy—1 thi_
(2.10) = (Vo) fwon = g
From the trace theorem, it follows that
(2.11) [u" |25 0y < CP(||All 1550y, 10l 15 (2)) [||UHH3(Q) + ||htHH2~5(F)}

for some polynomial P. Since " (y,t) =y + fot(uT on™)(y, s)ds, it follows that

t 4
||v0777'(y7 t)||H15(F) S C |:1 + / ||UTHH2-5(F) (1 —+ ||VO’I7T||H1-5(F)) d5:| s
0

and hence by Gronwall’s inequality,

t

(212 190 Ollsocey < €1+ [0y
0

for t € [0, 7] sufficiently small. Furthermore, we also have

4
(2.13) 77 (v, )l 250y < Cllu” || 25y {1 + ||V0777||H1~5(r)} -
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748 C. H. A. CHENG, D. COUTAND, AND S. SHKOLLER

2.4. An expression for tpe, in terms of h and n”. Now we can compute
then in terms of h and n™: the highest order term of A H is

6 9 af —2 ak B0 -
{W&y’Y [ﬁgv ( G h Gh Gh hy,ﬂh’g)ha[j) on'.

Since Gag = (Gh)ag + h.oh g, the inverse of G5 is

! (Gra2+h%  —(Gr)iz—hihs
det(G) | —(Gn)12 —h1h2 (Gp)11 + h,21 )

which can also be written as

G = I G = (<1)"*7 det(G) T (1 = Bar) (1 = 850) b |

Therefore, the highest order term of AyH can be written as

V/det(go)A*P°h , T
%detgo{ et(go) ﬁ] 5077

where

(2.14) A®BY5 — J=3 {GZ” — (=1)"* det(Gh) (1 = ) (1 — 570)h,5h,a]
X (G — J72GRRGYh kh o)

is a fourth-rank tensor.

2.5. Lagrangian formulation of the problem. Let n(t,z) = = + fot u(s, x)ds
denote the Lagrangian particle placement field, a volume-preserving embedding of {2
onto Q(t) C R3, and denote the cofactor matrix of Vn(z,t) by

(2.15) a(z,t) = [Vi(z, )]~

Let v = w o n denote the Lagrangian or material velocity field, ¢ = p o n the
Lagrangian pressure function, and F' = f o the forcing function in the material
frame. In the following discussion, we also set ¢ = 1. Then the system (1.1) can be
reformulated as

(2.16a) N =0 in (0,7) x Q,
(2.16b) vl — v(al Dy (v)}) j = —(aFq) y + F! in (0,T) x Q,
(2.16¢) afvh =0 in (0,T) x Q,
(2.16d)  (vD,(v)i — q8i)alN,; = 6O L(h)B*(—Gzﬁh’ml)} on™ on (0,T) x T,
( ) hy = B*((_Gzﬁh,ou 1)) : (U o 77_T) on (07T) x T,
(2.16f) v =g on {t =0} x Q,
( ) h=0 on {t =0} xT,
(2.16h) n=1Id on {t =0} x Q,

where D, (v)§ := (azv + akv k) N denotes the outward-pointing unit normal to T',
O is deﬁned in Remark 5, and B, is the pushforward of B defined as

B.(7/(0)) = (Bo#v)'(0) Vy(t)CT,
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L(h) is the representation of tsney - n using the height function h. It is defined as
follows:

L(h Vdet(go) A*Pn, + L (y, h, Dh, D*h)h 4
( ) \/w{ gO ﬁ:| 1 (y ) ,a By

+ LQ(ya h7Dha D2h’)a

where Ly and Lo are polynomials of their variables with L;(y,0) = 0, and go is the
metric tensor on I'. Note that t,,.,, is included in Lo, since it is a second order
operator of h.
REMARK 5. For a point n(y,t) € T'(t), there are two ways of defining the unit
normal n to T'(t):
1. Letn = \/gjflaTN, where N is the unit normal to I'.

2. Letn = [J; (=G has2s + )] o (denoted by [J, ' (=Voh, 1)] on").
The function © is defined by

O(-Vohon™,1) =a”N.
Equating the modulus of both sides, by (2.5) we must have
det(g = det(Von")/det(Gp) o
REMARK 6. An equivalent form of (2.16e) is given by
hi=—=ho(won o+ (von™T),.

This equation states that the shape of the boundary moves with the normal velocity of
the fluid.

REMARK 7. For many of the nonlinear estimates that appear later, it is important
that L(h) is linear in the third derivative h og-.

REMARK 8. Without using the symmetry (2.8), we can still compute AgH in
terms of h and 0™ by using (2.4) and (2.5); however, Ly would then depend on V3n
and thus lose one derivative of reqularity, preventing the closure of our energy esti-
mate.

3. Notation and conventions. For T" > 0, we set
Vl(T) {veL2 (0,75 H'(Q)) ‘v e L2(0,T; Hl(Q))},
{v€L2 (0, T; H2(Q)) ’vteLQ (0, T; LQ(Q))}
={UEL20THk jvteL2 (0,T; H*~ 2(9))} for k > 3;
- {h e L2(0,T; H>*(T)) ‘ he € L2(0,T; H3(T)), hy, € L2(0, T H0-5(r))}
with norms

H’U”%l(T) = ||U||2L2(0,T;H1(Q)) + ||Ut||2L2(o,T;H1(Q)/)§
H’UH%Z(T) = ||U||2L2(0,T;H2(Q)) + ||Ut||2L2(O,T;L2(Q));
W0lok ¢y = 101120 om ey + 10l T2 0 im0y For k> 3;

HhH?{(T) = ||hH%2(O,T;H5-5(F)) + Hht||%2(0,T;H2»5(1")) + ||htt||%2(O,T;H0'5(1"))'
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750 C. H. A. CHENG, D. COUTAND, AND S. SHKOLLER

We then introduce the space (of “divergence-free” vector fields)
V, = {w c HY(Q) ’ Aty =0vte [o,T]}
and
Vo(T) = {w e L2(0,T; H(9)) ] (', =0Vt e [o,T]},
where the cofactor matrix a is defined by (2.15). We use X1 to denote the space
V3(T) x H(T) with norm
1w, W, = 10l sy + IR l3gr
and use Y7, a subspace of X, to denote the space
Yo = {(v,h) e V3(T) x H(T) | hy € LM(O,T;HQ(F))}
with norm
H(U’h)HffT = ||(th)||.2xT + ”UH%C’O(O,T;HQ(Q)) + ||h||2L°°(O,T;H4(F))
+ ||ht||2Loo(o,T;H2(r))-
We will solve (2.16) by a fixed-point method in an appropriate subset of Y.

4. The main theorem. Before stating the main theorem, we define the follow-
ing quantities. Let gy be defined by

(4.1a) Ago = —Vug : (Vug)T + vlal Dy (u0)i) 1:(0) + div F(0) in Q,

(4.1b) qo = v(Defug - N)- N —oL(0) on I
and
(4.2) uy = vAug — Vo + F(0).

We also define the projection operator P;;(z) : R® — Ty@nT'(t) by

ak Ny () aﬁNe(x)

Pij(@) = [6:5 — (J, 2 o7 )ayal N () No(z)] = |65 — |a¥ Ni(2)] a5 N ()] |

J

THEOREM 4.1. Let v > 0, 0 > 0 be given, and
F e L*(0,T; H*(Q)), F, € L*(0,T;L*)), F(0)e H(Q).
Suppose that the shell traction satisfies the compatibility condition
(4.3) [Def ug + N]tan = 0.

There exists T > 0 depending on ug and F' such that there exists a solution (v, h) € Yp
of problem (2.16). Moreover, if ug € H>3(Q) N H"-5(T") and the associated uy,qo also
satisfy the compatibility condition

CP 1= g§u o NiNe + g o Ny N | [v(Def uo)! — aod] | N;
; J
(44) + V((Sig - NiNg) {(Def ’U,l)z - ((VUOVUO) + (VUOVUO)T> ] Nj

— (8i¢ — N;Ny) [V(Def uo)f - qoéﬂ ulg’ij =0,

then the solution (v,h) € Yp is unique.
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5. A bounded convex closed set of Y.
DEFINITION 5.1. Given M > 0, let C7(M) denote the subset of Yr consisting of
elements of (v, h) in Yr such that

(5.1) (v, )3, < M

and such that v(0) = ug, h(0) =0, and h(0) = (Bo)«((0,1)) - ug.
REMARK 9. For (v,h) € Cp(M), define u™ by (2.10) and let n™ be the associated
flow map. Also define v™ as u™ on™. By (2.12) and (2.13), we have

(5.2) S0 (90 (a0 + 17 050 < C)
€|0,

for some constant C'(M).

We will make use of the following lemmas (proved in [7]).

LEMMA 5.2. There exists Ty € (0,T") such that for all T € (0,Ty) and for all
v € Cr(M), the matriz a is well defined (by (2.15)) with the estimate (independent
of veCr(M))

llall Lo 0, 7512(02)) + llaell oo 0,751 (0)) + llaell 20,7312 (0)
(5.3) + llase |l Lo 0,722 () + llastll £2 (0,751 () < C(M).
LEMMA 5.3. There exist Th € (0,T) and a constant C' (independent of M) such
that for all T € (0,Ty) and v € Cp(M), for all g € HY(Q) and t € [0,T)

(5.4) Cllole < | [IoF +1Dy0)F]ds
where

| Dy(v)[* 1= Dy(0)5Dy(v)} = (a5vly + ajvly)(avly + ajvly).

In the remainder of the paper, we will assume that
0 < T < min{Tp, T1, T}
for some fixed T where the forcing F is defined on the time interval [0, 7.
6. Preliminary results.
6.1. Pressure as a Lagrange multiplier. In the following discussion, we use

HY2(Q;T) to denote the space H!(Q) N H*(T') with norm

HUH%ﬂ-ﬁ(Q;r) = ||UH?11(Q) + ||U||%12(r)

and Vy (V5(T)) to denote the space

{vEV;,

ve HQ(F)}<{U € Vo(T) ‘ ve L0, T; HZ(F))}).

LEMMA 6.1. For all p € L*(2), t € [0,T), there exist a constant C > 0 and
¢ € HY (1) such that a](t)¢"; = p and

(6.1) 9l 712 (r) < Cllpllz2(o)-
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752 C. H. A. CHENG, D. COUTAND, AND S. SHKOLLER

Proof. We solve the following problem on the time-dependent domain Q(¢):
div(gon(t)™ ) =pon®t)™ inn(t,Q):= Q).

The solution to this problem can be written as the sum of the solutions to the following
two problems:

(6.2) div(gon(t)™) =pon(®)~' —p(t)  in n(tQ),
(6.3) div(gon(t)™") = p(t) in 7(t,9Q),
where p(t) = ﬁ Jo p(t, x)dz. The existence of the solution to problem (6.2) with zero
boundary condition is standard (see, for example, [12, Chapter 3]), and the solution
to problem (6.3) can be chosen as a linear function (linear in x), for example, p(t)z.
The estimate (6.1) follows from the estimates of the solutions to (6.2). 0

Define the linear functional on H'2(;T) by (p,a](t)¢’;)r2(), where ¢ €
HY2(Q;T). By the Riesz representation theorem, there is a bounded linear opera-
tor Q(t) : L?(Q) — HY2(;T) such that for all o € H%2(;T),

(ps ag(t)Qij)B(Q) = (Q)p, ) ur2(ar) == (Q#)p, ¥) 1 () + (QE)D, ©) 2 (1)
Letting ¢ = Q(¢)p shows that

1Q()pll gr2(:r) < Cllpllz2(o)

for some constant C' > 0. By Lemma 6.1,
11720y < QWP H12 @)@l a2 @r) < ClRMPI a2 @) Pl L2(2):

which shows that R(Q(t)) is closed in H'2(;T). Since V,(t) C R(Q(t))* and
R(Q(t))* C V,(t), it follows that

(6.4) H'2(;T)(t) = R(Q(1)) ® v (i Volt)-
We can now introduce our Lagrange multiplier. -
LEMMA 6.2. Let £(t) € H¥2(;T) be such that L(t)o = 0 for any ¢ € V,(t).
Then there exists a unique q(t) € L*(Q), which is termed the pressure function, sat-
isfying
Ve HPQD),  LIO)(e) = (a(t), al (t)p]) 1)

Moreover, there is a C > 0 (which does not depend on t € [0,T] and €¢; and on the
choice of v € Cp(M)) such that

la@®llz2) < CILD 12 @iry -

Proof. By the decomposition (6.4), for given a, let ¢ = v1 + vo, where vy € V,(t)
and vy € R(Q(t). It follows that

L(t)(p) = L(t)(v2) = (¥(1),v2) mzar) = (Y1), ) 21

for a unique ¥(t) € R(Q(t)).
From the definition of Q(t) we then get the existence of a unique ¢(t) € L*()
such that

Y e HY2(Q;T), L(t)(p) = (q(t), af(t)s&fj)Lz(m

The estimate stated in the lemma is then a simple consequence of (6.1). a
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6.2. Estimates for a and h. We make use of near-identity transformations.
The following lemmas can be found in [7].

LEMMA 6.3. There exist K > 0 and Ty > 0 such that if 0 <t < To, then, for
any (0,h) € Cr, (M),

(6.5a) @" = Id|| o (0,70 (c50)) < KV
(6.5b) 6 — 1d|| L~ 0,7;12(0) < KV,
(6.5¢) llae = ae(0) [l Los (0,131 (02)) < C(M),
(6.5d) @l Lo 0,11 (@) < K-

We also need the following lemma.
LEMMA 6.4. For any (0,h) € Cg, (M),

(6.6) 1| a5 ry < CMEH4

Jor all 0 <t <Tp. R R ~
Proof. For (v,h) € Cr(M), ||h|‘§14(1“) + ||ht||§12(1“) < M. By h(0) =0,

t
IOy < [ Vhelscds < Vo
0
Finally, the interpolation inequality

(6.7) IV3F @) sy < CIVEAIT (e V3£ Fatry

implies

7 713/4 7nl/4
[Bllrs5(0y < ClRIG o 1Bl sy < CMEYE 0

COROLLARY 6.5. [|Ly1(t)||g15r) and [|La(t)||g1.5r) converge to zero as t — 0,
uniformly in (v,h) € Cr,(M). Furthermore, fort <1,

Ly ()l vy + | La(®ll sy < CODE,

By the fact that |[hy[|32 ) < M and (|30 105y < M if (8,h) € Cp(M),
similar computations lead to the following lemma.
LEMMA 6.6. For all (0,h) € Cp(M),

(6.8) 1B (t) || sy < OMEY®
forall0 <t <T.

7. The linearized problem. Suppose that (7, h) € Cp(M) is given. Let 7j(t) =
Id + fot 9(s)ds and @ = (V7})~L. We are concerned with the following time-dependent
linear problem, whose fixed point v = ¥ provides a solution to (2.16):

(7.1a) vi — u[d’;Dﬁ(v)é],k = —(&fq)’k + F? in (0,7) x 9,
(7.1b) alv’, =0 in (0,T) x €,

(7.1c) [vD;(v)] — qéf]dﬁNz =00 {E;L(h)(—vofz, 1)} of’” on (0,7)xT,

+ 00 [M(R)(~Voh, 1)] o 7]

(7.1d) hiofm =[haon Vg — v, on (0,7)xT,
(7.1e) v =ug on {t=0}xQ,
(7.1f) h=0 on {t=0}xT,
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i

where Dj(v)! = szvfk + aku, © = det(Vo7"), and

(h) = —— [ /det(gg) A

Y6

with

A0 = 13, [det(G) [va — (1) det(G; )" (1 = ) (1 — 57,,);3,&@(,]
x (G20 — J2GGE R b )

and
M(R) = (/det(G;) o if [L‘f‘“ (y, b, Dh, D*R)h. oy + Lo(y, b, Dh, DZE)} :

Here the thickness €; is assumed to be 1.

We will also use Lj (h) to denote Lj (k) + M(h).

REMARK 10. Lj is a coercive fourth order operator for small h < 6. Actually,
it is easy to see that L; is coercive at time t = 0, and the coercivity of L, fort > 0
(but sufficiently small) follows from the continuity of h in time into the space H2(T).
Moreover, by Lemma 6.4, we have the following corollary.

COROLLARY 7.1. There exist v1 > 0 and 0 < T < Ty such that for all 0 <t < T,

VRO < / AP £ o(t) s (£)dS

Jor all 0 <t <T. Later we will denote the right-hand side quantity of this inequality
by E;(f), where the subscript h indicates that A is a function of h.
REMARK 11. Given (9,h) € V3(T) x H(T), for the corresponding 7", we have

||777H%°°(0,T;H2-5(Q)) + ||77175—H%2(0,T;H2-5(F)) <CWM),

where (2.13) and (2.12) are used to obtain this estimate.
The solution of (7.1) is found as a weak limit of a sequence of regularized problems.
DEFINITION 7.2 (mollifiers on I'). For e > 0, let

P = (1= e180)78 « HY(I) — H**(T)

denote the usual self-adjoint Friedrich mollifier on the compact manifold T, where Ay
is the surface Laplacian defined on T.
By the Sobolev extension theorem, there exist bounded extension operators

E;: H(Q) — H*(R"), s> 1.

For fixed (but small) €; and €11 > 0, let p,, be a (positive) smooth mollifier on R™. Set
U= pe, * B1(D), F = pe, % By(F), lig = pe, * Es(ug), where * denotes the convolution
in space, and h = KZ’;(B) for large enough m. Define 77 and a in the same fashion as
7 and a. Note that 7 — & € V(T), F — F in V2(T), iy — uo in H*5(Q), and b — h
in H(T') as e — 0.

The regularized problem takes the form
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(7.2a) v} —vlafDy(v)jl e = —(@rq) . + F' in (0,T) x Q,
(7.2b) alv’ =0 in (0,7) x Q,

[vD;(v)] — ¢67]a Ne = 0L (h?)(=Vohoq,1)
(7.2c) + oM5? (=Vohoi™,1) + kA2v on (0,T) x T,
(7.2d) hion” = [(ha) o0 Ve — v, on (0,7)xT,
(7.2¢) v = Ug on {t=0}xQ,
(7.2f) h=0 on {t=0}xT,
where

Le(f) = Vaet(gn) A fo5) 7 o,

W)= \/m K (90) 1, 5) J "

2 O DR i+ Lt ) <0

Note that £2(f) + M2 = O[L;(f)]* o 7"

7.1. Weak solutions.
DEFINITION 7.3. A wvector v € Vy(T) with v, € Vy(T)" for almost all (a.a.)
€ (0,T) is a weak solution of (7.2), provided that

: v Ao €2 7 o 5T
(3) ) tne)+y [ Dy Dypdo o [ A0 [ o)

‘ 6dS + /i/ A()U . A(](,Ods = <F,90> — 0<M%2,Q0>F7
vy I

)

+ (%0 77‘7)}
(7.3b) (ii) (0, ) = o

for a.a. t € [0,T], where (-,-) denotes the duality product between V,(t) and its dual
Vo (t)', and h is given by the evolution equation (7.2d) and the initial condition (7.2f):

T8 bt = [ [0 609,09 + 0% (09,09 ds.

7.2. Penalized problems. Letting § > 0 denote the penalized parameter, we
define wy (also with €; and €;; dependence in mind) to be the “unique” solution of
the problem (whose existence can be obtained via a modified Galerkin method which
will be presented in the following sections):

: v Ao € 7 o =T
1) (weor, p) + 5/ Dywy Dﬁ¢d$+0/ AR {_h,o(‘p o )
= 1
(7.5a) + (p®o ﬁ_T)] ds + /{/ Agv - AgpdS + (ajvlj, ayp 4)
)Y LZ(Q)

= <F7 @) - U<Mﬁ2(_v0h © 77 ) 1)) §0>F7
(7.5b) (i) v(0,-) = qy,

where (-,-) denotes the pairing between H!(2) and its dual, and h in (7.5a) satisfies
(7.4) with v replaced by wg.
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7.3. Weak solutions for the penalized problem. The goal of this section is
to establish the existence of v to the problem (7.2) (or the weak formulation (7.3)), as
well as the energy inequality satisfied by v and v;. Before proceeding, we introduce
variables ¢p and w; as follows: let ¢y be the solution of the Laplace equation

(7.6a) Ado = Vg : (Viig)t — div F(0) in Q,
(7.6b) Go = v(Def @ig)! NiN; — o M2(0) + kA2Gg- N on T
and w; be defined by
(7.7) Wy = vAig — Vi + F(0).
By elliptic regularity,
ldoll 10y < C[Ilﬁollizm) HIEO) 17200 + MG (0) 177051y + I\Aﬁﬁolléo.sm}
< C(M) [Ilﬂollipm) + [0l Fas 0y + 1 E(0)][ 720 + 1},
and hence
11132y < COM) [Io0l32(0) + Nolasqry + IOz + 1]

REMARK 12. By (6.6), the constant C(M) in the estimates above can also be
refined as a constant independent of M if T is chosen small enough.

By introducing a (smooth) basis (e/)§2, of H'2(%;T), taking the approximation
at rank m > 2 under the form wy(t,z) = Zi:l di(t)er(z) with

t
18)  hlt) = [ [l )0 (777 (09,0, + i (177 (1,9).0,9)]ds,
0
and satisfying on [0, 7],
(7.9a)
(1) (wae, 9)r2(0) + V(@ wer ;. aF o 1) 120 + V(@A) we, o.1) r2(@)

+ 1// [didfw}t,j + (aﬁ@f)twii,j}gpfkdx + n/ Agwey - AopdS — ((d{qe)t,cpfj)p(m
Q T

to / AP (wf o T) +wi o |2 [~ho(9” 0T +¢F 0 T|%,dS
to / (APV8) 2 =P (97 0 7) + 0% 0 7] %sdS
I

o / AOPVRE by (97 0 T) + hgt (97, 0 T) + 55 (¢ 07 T)]2,dS
~ _ €2 _ €a
= (Fr, ) — 0/ [L87 Ry + L2 [hole” 0 ™) =% 07| "ds
I

o T €21 o ——T PR o ——T —K z =—T €2
— O'/F [Llﬂwh,aﬁ'y + L2:| [ht,a((p on ) - h,O'U (QO,K, on ) -V (QO,K on )i| dS
V ¢ € span(eq, ..., ep),
(7.9b)

(ii) we(0) = (w1)e, we(0) = (up)e in Q,
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where ¢ = §o — édgw}ﬁ’j, and (iig)e denotes the respective H'2(Q;T) projections of
ug on span(ey, €, ...,ep).
REMARK 13. The existence of wy follows from the solution of

A (t) + d(t) Age(t) + do(t) Bre(t) + /O do(s)Cre(s, t)ds = F(t)

for functions A, B, C, and F; however, the existence of the solution dy does not
immediately follow from the fundamental theorem of ODE due to the presence of
the time integral. A straightforward fixed-point argument can be implemented, whose
details we leave to the interested reader.

The use of the test function ¢ = wy; in this system of ODE gives us, in turn, the
energy law

1d v od .
th”wét”m §\|Dﬁ(wét)\\%2(g) 9 thh(hzi a,@) +‘9HQZ75||L2
+v((@laf)ewej, wen k) L2 (o) + V/Q (@ay)ow) jwiy pda + £l dower|| 72

+ (Qetaagth,j)ﬂ(@) - (QZ,agt’w%t,j)m(Q) - */ (Aam&) hzi athE wdS

2
(7.10) -0 / (A7), 1 ﬁ[hett—khw(w[t rff)} s + o / Acidpe
T 776 IN ’
_ €2
x [ (wf 0 7) R0 (0 07 T) B (w0 7] dS

= (Fivwn) - "/ (L8 R oy + Lo)(=Voh, 1)] - (wee 077 7)dS
T
_ O’/F (LS R0y + L2)T" {—BJ(w}’t% 0 T) + (w0 ﬁfT)} Js.

For the tenth term (the integral with § as its coefficient), we have

/F(A“W) het aghiimsdsl < COM) el 250y | V3 hee |72 r)

By es-regularization and the identity

[ Az b, g = / detlgo) (A°7°),| | iz, ohids
1a6v6 €2 €2
/\/m \/W(A K )t} hiapsherdS

afvyé €2 €2
/F(A o ) hé aﬂvéhéttd‘g?

we find that

Az |

< C(e2) |1+ Whell sy | IV 8hellaqry lwel o) + lwerlls o |
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Similarly, the second part of the eleventh term and the last term of the left-hand side
can be bounded by

Cle2)l|hell 250y Vo hell L2y llwee L 1.2y

where we also use the es-regularization to control V%wgt. It also follows that the last
two terms on the right-hand side can be bounded by

CM) [1+ el e -

With positive 6, the fourth term of the left-hand side involving the square of gz
acts as a viscous energy term. Integrating (7.10) in time from 0 to ¢, we then get

(7.11)
t
||w€t||2L2(Q) + ||Vgh€tH%2(r) + /o {HVWtHZL%Q) + “llwétlliﬂ(r) + 9||Q£t||2L2(Q) ds
< C(M) [[lwer(0) 1320 + e (O) s gy + 1e(0) o5 ey

t
+Clea) [ [0 Do) o V300 9) e

t t
+C(0) / 19 2 / (1w (5)1132 ) + llaee() 30y | st

where C(e2), C(0) — o0 as €3,0 — 0, and we use

t t
If@)lx < [1F(0)][x +/0 1fe(s)llxds < [ F(0)]Ix + \/5/0 1fe ()% ds
for f = wy, f = he, and f = gy to obtain (7.11). '
REMARK 14. The 0-dependence follows from estimating the terms (qer, &thzj)Lz(Q) :
_j i 0 L i
(Qenagth,j)L?(Q)’ < 5”%“%?(9) + %HagtH%M(Q)”wl,j”%%Q)

6 C(M t
< Glanlai + S5 V0Ol +1 [ 1wl (515

By the Gronwall inequality, for 0 < ¢ < T,
[wer (#) 117262 + Vet (8)|72(r)
t
(7.12) +/O [”VWtH%?(Q) + 'fHWtH%I?(r) + GHQHH%Z(Q)}CZS < Cle2,0)No(uo, F),

where

No(uo, F) = HuOHJQLI"’-f’(Q) + ||U0||%{4-5(r) + HFtH%Q(O,T;Hl(Q)’) + HF(O)H%{O-E’(Q) + 1.

We can then infer that wy is defined on [0,77], and that there is a subsequence, still
denoted with the subscript ¢, satisfying

(7.13a) wy — we in L2(0,T; H'2(Q;T)),
(7.13b) Wer — Wet in L2(0,T; H%(; 1)),
(7.13c) V2hy — Vihg in L*(0,T; L*(T)),
(7.13d) Vahe — Vahg: in L*(0,T; L*(T)),
(7.13¢) Qer — ot in L?(0,T; L*(2)),
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where
- 1,
99 = qo — ) a; Wy
From the standard procedure for weak solutions, we can now infer from these weak
convergences and the definition of w, that wey; € L2(0,T; HY(Q)). In turn, we €

Co([0,T); HY(Q)), we € CO([0, T); L2(R2)) with wg(0) = ug, we:(0) = w;.
Moreover, (7.13) implies that wy satisfies

T
) / {(U}%ta@) r2(Q) + v(@lwer,j,ak o, k)2 +v((a] G we, ¢, k)LQ(Q)}dt

T T
1// [/ drd gt]go kd$+y/ (al J f)tw;jg)fkdz] dt+0/ /Aaﬁw
0 Q o Jr

[~ho(wg o T)+wj o T|Zs[—ho(p”0f )+ @ 0 T|2sdSdt

+

/ Aaﬁ’y& hez [7}_170(%00 o 7—’77) + 4,02 o ﬁiT]?&det

T

[ AP0 (7 07T) 4 Rt (5, 0 (5 077 2
T

/

T . .
Aqwe; - A0<Pde75*/ ((@lqo)e, @) L2 (o dt
0

(=)

’ aByy 2l o =T PR L
=/ (Fy ) — U/[Ll h,aﬁerz} [h,a(w o ") —¢p*on } ds
0 r t
— €2 1_ —
— o [ (B Ry + L] [l 0mT) Rt o)
T

— (g, on—T)r?dS}dt

(7.14b)
(ii) wee(0) = by, we(0) = do in

for all € L?(0,T; H?(Q;T)). Choosing ¢ to be independent of time, we find that
for all t € [0,T7,

(wor, @) 2(0) + / Dy (we) p)dr + H/ Agwy - AgpdS
U/Ff‘_laméh(?ag[—ﬁ,a(wa 0f T) + 97 0] T|25dS — (@la0, ') 120
= (F,¢) + a/r [L?576B7ag7 + L2:| b {—Eg(p" ol T4+ ¢*o 77_7} “ s + c(p)
for all p € HY2(;T'), where c(p) € R is given by

1
c(p) = (W1, ¢)2() + E/ Def(ag) : Def dx — ( Go — = div ag, div <p>
2 Jo 0 L2(2)

— (F(0), ) L2(02) — (MG (0)(0,1), ) L2(r) + #(Dotio, Aow) L2 (r)-
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By compatibility conditions (7.6) and (7.7), ¢(¢) = 0. Therefore, the weak limit
(wg, hg) satisfies, for all ¢ € [0,T7],

(wot, @) w)rz) + /D wy) : dw—i—m/Aowg AgpdS
(7.15) = (a]go. ') 12 + 0 /F AR [—ho (97 0T + @7 0 T]2,dS

~ _ €2 _ €
=(F.¢)~0 / L8 hagy + La| [~hog” 0" + % 0i 7| dS
r
for all ¢ € HY2(Q;T).

Since wy € L2(0,T; HY2(Q;T)), we can use it as a test function in (7.15) and
obtain (after time integration)

1 o . bry
lheolEa + S0 + [ S0l o) + Kl AvwolEa
t t
~ o A € €
(116)  +Olanle]ds =0 [ (a5 [ [ (A0, oniz s
0 0 JI

L. b € o =T
= 2ol +/O (F. o)+ (M2 (~Voh o7, 1), g)rdt.

Consequently,

t t
[”wﬁ’(t)H%?(Q) + Hv(Q)hgz(t)”QL?(F)} +/0 va0|\%2(9)d3+’f/0 [wel[Fr2 ) ds

t
w / o220y s

< COD [0l22(0) + 000y + 1 1Bys oy + IV (~Foh o 77, 1) e
/ Vol 930G 2y s

< o) [Nl(uO,FH / Vol 0y | V3087 2 s
where

Ni(uo, F) = [luol[Fr2(qy + [1wollzrasry + 1F 20700 @)y + 1Fel T2 0,780 (01
+IF )71 o) + 1.
By the Gronwall inequality,

T
(717) sup [lwg(t)|[Zaqe) + IVER W52 | + [ [IVwoliao) + OllaolFaqey ] ds
0<t< 0

SC( )Nl(uo,F).

7.4. Improved pressure estimates. By es-regularization, we can rewrite (7.15)
as, for a.a. t € [0, 77,

12
(wae, @) L2(0) + 3 /Q Dy (wg) : Dy(p)dx + k(Aows, Do) r2ry — (@ae, ') r2(0)

o [ £ 0) [ho 0" + 9745 = (P + oA (Voo 7 1)
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Therefore, by the Lagrange multiplier lemma, we conclude that

a0l 220y < C(M) [Ilwetuzl(m, +IVwa 320 + 1F 30 @y + sl Adwll3 2 r
+[I£52 (hg*) + M) (=Voh o 17, 1) [y |
and hence

||qe||2L2(Q) < C(M) {Hwat”QL?(Q) + ||vw9||2L?(Q) + “Hwe\\%{?(r) + ||V(2)h9||%2(r)

(7.18) + I F N2y + 1]

7.5. Weak limits as § — 0. Since wg; € L%(0,T; H52({;T)), we can use it as
a test function in (7.14). Similar to the way we obtain (7.11), we find that

t t
glunlia + 5 [ 1Dg0nEayds + GG+ [ [A3w0rlaqr ds
t t . ) t . )

+9/0 ||(J9t||%2(9)ds+/0 (qgt,@ﬁtwé,j)w(n)ds—/o (g0, @} wey ;)ds
t t’

< CONNo(uo, F) + COD) [ 1) sy [ IFwin(5) oy
. ) 0 0
+Ctea) [ [t Wialoacay | IV30GE 0y

By (7.18),

t ) ) t t
/0 (g0, @y ;)ds| < C(M,5) / o2 0 ds + 6 / w2 s

t
< C(M) [Nl(uovF) +/0 <||w0t||2L2(Q) + KllwollFr2 ry + ||V(2Jh9||%2(1“)>d8:|
t
0

where (7.17) is used to bound [|Vws |72 1,120y
Integrating by parts,

t
/O (got, ajywp ;)2 (0)ds = (g0, ajywy ;) L2(0) (t) + (Gos @) ;1o ;) L2 ()

t t
—/O (Qeﬁfttwé,j)p(mds—/o (g0, @lywy, ;)2 (0)ds.

By €;-regularization, the last two terms can be bounded by

t
C(M)/ g6l L2(0) {C(El)vaeHLzm) + [[Vworl| 2 () | ds,
0

and hence

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



762 C. H. A. CHENG, D. COUTAND, AND S. SHKOLLER

t t
‘/O (g0, @} wh ;) L2 (Q)ds| + ‘/0 (g0, @}, wyy ;)12 (Q)ds

<cors) [ o oy + Cler) / w2y + 5 / Tl 2 s
< O )N, )+ L) [ ooy + Clea) [ I93halryds
(7.20) +6/Ot [Vwor |72 0 ds-
For (gg, d{tw§7j)L2(Q)(t), it is easy to see that

| (a0, 10 ) 20 ()] < 1wl ey + Cler, 8) IVl 3 0

< Cler, 81)lIVwol|72(0) + 61C(€2) V5ol L2 ry + 61 |llwoel 720y + [ Fll L2 () + l],

while for ((jo,ﬂ%’iﬂéyj)L2(Q)7 it is bounded by C(M)N;(ug, F). Combining (7.19),
(7.20), and the estimates above, by choosing § > 0 and ¢; > 0 small enough,

t
||w9t||%2(9) + ||V(2Jh0t||2L2(r) +/0 [vaétHQy(Q) + “Hw@t”%p(r) + 9”‘1015”%?(9)}035
t
< C(ez, 1) [N2(U07F) +/o <||w0t||%2(sz) + (1 + [[Bell 250 IVERoc N 72 )
el [ IVl )ds| + Crlen, )l Vunl o
where No(ug, F) = Ni(ug, F) + HF||%OC(0 7:12(0))- BY the Gronwall inequality,
2 2 2 i 2 2
lwoellz2(0) + [IVohetllz2(r +/0 |:va9t||L2(Q) + ’i||w0t||H2(r)}d3
(721) § 0(62, el)NQ(UQ, F) + 01(62, el)||Vw9||2L2(Q)
By using wg(t) = to + fg wgrds, we see that
t
w320y + 1V 3hoe 32 (ry + / (11 ew0u220) + Kllwarllfz ry | ds
t
< C(ez, €1)Na(ug, F) + C’1(62,61)t/ ||Vw0t\|%2(sz)d3~
0

Therefore, for any 0 <t <t = min{T, ﬁ} we have

1 t
ol + V3ol + 5 | [V sy + wlhworlBrsry | s

< C(eg, €1)Na(ug, F).
By wg(t1) = @ + fotl werds, we also have

(722) ||Vw9(t1)||%2(9) < C(eg,el)Ng(uo,F).
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For t > t1, since wy(t) = we(t1) + fttl wgeds, we have from (7.21) and (7.22) that
t
lwoe 320 + 1V3hoe 32 (ry + / (11 e0e32 0 + lworl 3 oy ds
t
< Clez, €1)Na(uo, F) + Ci(e2, €1) [||we(t1)||2L2(Q) +(t— tl)/ ||V0wot||2L2(Q)d5]
t1

¢
< C(e2, €1)Na(uo, F) + Cr(e2, €1)(t — tl)/ ||V0w0t||%2(9)d5-
ty

Therefore, for any t; <t < 2t1, we also have

t
||w9t||%2(9) + ||V(2Jh0t||2L2(r) + %/o {vaWH%?(Q) + ’i”w@tH%{z(r) ds
< C(eg, €1)Na(uo, F),
which with we(2t1) = o + [ we.ds gives
[Vwe(2t1)[|72() < Clez, e1) Na(ug, F).
By induction, for any ¢ € [0, T,

1 t
||w0t||%2(9)+||Vgh9t||2L2(r)+§/O {vaet”%Z(Q)+’f||w9t||§12(r) ds

(7.23) < Ofez,e1)Nao(ug, F).

We also get a §-independent bound for ||q9||%2(0’T;L2(Q)) by (7.18):

(7.24) lg0l172(0,7:22(2y) < Clea,€1)Na(uo, F).
Let 6 = L. Energy inequalities (7.17), (7.23), and (7.24) show that there exists

a subsequence w . such that

(7.25a) wi — v in  L*(0,T; H" (1)),

(7.25b) w0 in  L2(0,T; H¥(Q;T)),

(7.25¢) vghmﬁ — V2h in  L2(0,T; L*(Q)),

(7.25d) Vghmﬁt —Vah, in L*(0,T;L*(Q)),

(7.25¢) gL —q in  L2(0,T;L*(Q)).

Moreover, (7.17) also shows that ||dgw%7j||L2(07T;L2(Q)) — 0 as m — oo. Therefore,

the weak limit v satisfies the “divergence-free” condition (7.2b), i.e.,
(7.26) v e Vs(T).

Since (7.17) is independent of 6 and €3, by the property of lower semicontinuity of
norms,

OiltlET[HU(t)H%z(Q) HIVEOO T2y | + 1Vl Z20,7;22(0)) + K02

(7.27) < C(M)N(uo, F).
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By (7.25) and es-regularization, the weak limit (b, h,q) satisfies, for all ¢ €
L2(0,T; H%2(Q; 1)),

/(Uf, JL2@dt + 5 //D : Dy ( )diﬂdtJrli/ /Aon AgpdSdt
0

— / (a q, )LZ(Q dt + O'/ / Aaﬁ"{ébm [—7 (QOU (o) ’F]_T) —|— QOZ (o) ﬁ_T]fiédet

0
T

I aByor 2 7 o =—T PR

:/ {(F,@ - 0/ [Ll B +L2} [—hw o T+ 9P od } dS}dt.
0 r
By the density argument, we find that for a.a. t € [0,7T], o € H¥2(;T),
(01, 0)12(0) + 5 /D d$+f€/AoU NopdS — (alg, ¢';) 2o

(128 o [ AT oo o) 7 0 ]S

€2

—(F,p) 0 /F [L57Ragy + L] [ho® 0 + 97 07| s,
or after a change of variable ' = 777 (y, t),
(7.29) (01, 90)r2(0) + g(DﬁUa Do) r20) + &/FAOU - DowpdS — (ald,¢';) 2o
U/FC%"’({))(—VOB 0", 1) - pdS = (F,p) — U/FM%Q(—VOB o, 1) pdS.
Furthermore, if ¢ € Vy, then
(00 9) 1240 + 5 (Do, D)oy + [ Baw- Ao

U/FE;LZ(h)(—VOEOﬁT,l) 0dS = (F, ) —O'/M ~Vohon™,1) - p2dS

for a.a. t € [0, T]. In other words, (v, b,q) is a weak solution of (7.2).
8. Estimates independent of €.

8.1. Partition of unity. Since ) is compact, by partition of unity, we can
choose two nonnegative smooth functions {y and ¢; so that

Go+¢ =1 inQ,
supp(¢o) CC £,
supp(¢1) CC T x (—e€1,€1) := Q.

We will assume that ¢; = 1 inside the region Q) C Q; and {; = 1 inside the region
Q' c Q. Note that then ¢; = 1, while ( =0on I.

8.2. Higher regularity.
8.2.1. ez-independent bounds for q. Similar to (7.18), we have

lall72i) < C(M) [||Ut||2L2(Q) + Vol 20 + EllolEzmy + V3272

(8.1) + I F )22 + 1]
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8.2.2. Interior regularity. Converting the fluid equation (7.2) into Eulerian
variables by composing with 77!, we obtain a Stokes problem in the domain 7(£2):

(8.2a) —vAu+Vp=Foij ' —v0i '+ mi{;d o tuy — paij o !,
(8.2b) divu =0,

1

where u =t on ! and p = qo 7!, By the regularity results for the Stokes problem,

”u”%IZ(ﬁ(Q)) + ||P|\12ql(ﬁ(sz))
< C{HF o1 T2y + 10e 0 T M T2 ey + VU2 ey + P12
+ ulosqr)
or
loli3r2(ay + Nl oy < CIF 1320 + lloel3zay + lo1msr]
+C) V0l 0 + lallE (o]
for some constant C' independent of M and ¢;. By (8.1),
HUH%W(Q) + HqH%{l(Q) < C(M) {”UtH%z(Q) + ”qu%Z(Q) + ||U||?{2(r)
(8.3) + V30 2 aqry + IF 12y + 1)-
Similarly,
HUH%(s(Q) + ||q|@12(9) < O[”Fniﬂ(ﬂ) + ||Ut||?{1(n) + HUH%12-5(F):|
+ CM)[IVoll3ys gy + Nl oy
and therefore by (8.1) and (8.3),
[0/l 2y + lallFr2() < C(M) [Ht’tll?p(m + Vo[22 () + Vo017 @)

(84) + Ve Nz ) + I1F Il o) + 1 -

For the regularized problem, because the e;-regularization ensures that the forcing
and the initial data are smooth, while the es-regularization ensures that the right-hand
side of (7.2¢) is smooth, by the standard difference quotient technique, it is also easy
to see that

(8.5) Vho € L2(0,T; H () N HX(T)) for k =1,2,3,4.

Since (7.25b) implies that v, € L2(0,7; H*(Q)), by es-regularization and (8.4) we
conclude that

(8.6) v e L*0,T; H*(Q)), q€ L*(0,T; H*(Q)).
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8.3. Estimates for v;(0) and q(0). By (8.6) and es-regularization, (v,h,q)
satisfies the strong form (7.2). Taking the “divergence” of (7.2a) and then making
use of condition (7.2b), we find that

(8.7) —aj,0’y — vag[a; Dy(v)j) jx = —a; (alaq) jx + af .
Let t = 0; by the identity af, = —ajv’,at,
Aq(0) = Vi : (Viig)T = div(F(0)) in Q

with

q(0) = v(Def iig)) N;N; — o M$2(0) + kA2G on T,
while (7.2a) gives us

v:(0) = vAip — Vq(0) + F(0) in Q.

By standard elliptic regularity result,

(8.8) [06(0)][72 (0 + a(0) 172 () < CNo(uo, F)

for some constant independent of M, ¢;, and es.

8.4. L?L2-estimates for v,. Since v, € L?(0,T; H'(2)), we can use it as a
test function in (7.29). By (7.26), we find that

vd v ; .

||nt||§2(9)+1$/ |Dﬁn|2dx—§/ (Df,n)gaftufkdx—i—m/Aon-AogpdS
Q Q T

+/Qqdf;tnf"edx+0A£%2(b)(—voﬁoﬁ7,1)~ntdS

= <F’7 Ut> — U/ M%z(*VQiL o 777, 1) - 0,dS.
r

| (DreYiawiude < CONCETEx o) + ol e
and by (8.1) and the interpolation inequality,

| aatavlda| < CONCE V010 + IV ey + 1Py +1

1
+6llolErz () + 50l Z2 ()
for some C(6). Also, the last term on the left-hand side is bounded by

(M) 986 2oy + 1] o1y

< C(M)CE)[IV80% Fa(ry + 1] + b1l .
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Combining all the estimates above,

vd d
glodioe + 5 [ 1Dapldr+ 55 [ |AwwPas

<c[nwnm + V8% 2 aqry + IF N2y + 1] + Sllolirz ) + 1l0el3 o
for some constant C' depending on M, é, and ;. Therefore, by (7.27),
t
(8.9) /0 0e]Z2(yds + VO (D) 1220y + Kll0l F2r)
< C[Ng UO, / ||V0h€2L2(F)d8:| +(5/ HUHH"’ Q)d8+(51/ HUt”Hl(Q

8.5. Energy estimates for ng near the boundary. Because of (8.5),
V2(¢(#V20) in (7.28) can be used as a test function in (7.29). It follows that

/F [Zj—j(h”) + J\?lj-f] (—=Vohon™,1)- VgodS’
< C() 1989 =y + 1] ol
< C(M, 65) [ 1+ I03ar | + Salolaey.

By (7.4), we find that
t 2 t
0y < Cle)| [ Ml lolaseyds] < Cter) [ ol
and hence
’ /F [252(0%) + 2] (~Voho 1) - VéndS’
t
<0t [ Mol |+ sallolBrcy
for some constant C' depending on M, ¢;, and &3. Since

[\/ det(go)g(()lﬁaiﬁf} ;

1 0
Aof =
det(go) ay
by the regularity on I' (and hence on go),
[ 18093efas < [ Afo- (VoS + Clolasy[ollnecr
r
< [ Ao+ (Vio)as -+ CO)lolf o) + Sl

which implies, by choosing § > 0 small enough, that

vallolZe oy < / A2y - (VE)dS + Clloll3 -
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By the identity

(9,a,V3(¢EVE0") 1)

= (q, Vaag,((EV3u") o) + 4(¢1 Yoy, Voay,(r,e VEn") +2(V0q,C12V0f_1£VgUf€e)
(8.10)  —2(¢1Vod, Vo(@C1.eVar®)) +2(a, Vo(@it1,e Vo1 Voo©))

+ (Vog, Vo(CfVodf;Vonf})),

(5.3) and (8.3) imply that

(0, @, VE(GEVE0R) o) < C(M)all aylloll 20
<C(M)C(o) [”UtH%Z(Q) +V0l1Z20) + IVVo0l|72 0y + #llollFe oy

IV aqry + IF Iy + 1] + 800
For the viscosity term,
| Do D3 Vi)
= 16Dy Vvl + 5 | [V3lakal)e), + Vilaka ol i V3e)) e
+/ {Vo(a a; )VOU + Vo(ay )Vobfe} (¥ Voo?) wdx
/D (V2u)lak¢i¢y , Vivida,
and hence by interpolation
16DVl < | Dap: Dy(VE(CEV30)da
+CONOE) [0 + 1900032y | + 810l s ey

l/zfi

Summing all the estimates, by letting 63 = , we conclude that

14 V2K
N30 M) + T1DyTR0 y + 22 ol ey

< Clllodl 20y + ol @) + IV Vo0l 220ry + 101720y + IVEH2 72
t
1Py +1] + € [ lolfraeyds + 6ol

for some constant C' depending on M, &, €;, and §. Integrating the inequality above
in time from 0 to ¢, by (7.27) we find that

t
V30 s+ | (1993000, + ol s

t
(8.11) < CNa(ug, F) + C/o {HntHQL?(Q) +1VVo0|[ 220y + ||U||%12(r)}d3

t s t
s / / [00) 2y dr + 6 / 0]12s 0y
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By using Vo ((2Vv) as a testing function in (7.29), similar computations lead to
t
Vo) + | (19900l a0, + ol e s
t
812 < CONNatun, F)+ COL) [ [IoulEaiay + wlloliee s

t S t
+0(M)/0/0 \|n(r)||§l4(r)drds+5/o 0l12s ) s

8.6. Energy estimates for wv;: LfH;-estimates. In this section, we time
differentiate (7.29) and then use v; as a test function to obtain

(oio0) + v [ [ab(Dy)i] vide + o [ [£200) (Voo 1)] -wias
Q t r t

+ K?/ |A00t|2ds - / (&iq)tnﬁedx = <Ft,Ut> - 0'/ |:M:—L2(—VO}TL o 777—, 1):|t . UtdS.
r Q r

By the chain rule,

—~

|

ét[Lh(b )}62 7" (=Vohoi,1)-v,dS

L5 (65%) + M2)(~Voh o177, 1)] - vids

\’—J\

/ O - [Vol Ly (6] (~Voh, 1)] o 7" vids

_J\

[[Lh(h”)]” (Voh, ~1)]] o7 -v,ds.

By using the H?(I')-H2(I') duality pairing with e;-regularization on © and 9, it
follows that

[ [0 + ) Tl )] - ouas|
T
< C(e)[ I3l 2y + IV3bel ey + 1 lotl ey

< Cler, 83) [ / 10122y s + [0]Zgm e + 1} T SsloeBpacry

t
< 0| [ I0lBruyds + IolBray + 1| + 8lolByscoy + SallonBrr
for some constant C' depending on M, €;, 8, and 63, where we estimate ”U”%ﬂ(r) by

interpolation.
Also by interpolation,

/ |Dﬁnt|2dx:2/ {afDﬁ(n)ﬂ n{7kdx—2/ {(a ai)v’, + (afal) v’y o] do
Q Q t Q
< 2/Q (a4 (0)1] o] e + CONC(E,6) V00

Q

(@1q)e0f oda + 6”0”%12(&2) + 51||Ut|\§11(9)~
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Note that
(Fy,01) < Ol Fell gy llodll ar ) < CODIFF )y + 01llodFq)-

Summing all the estimates above,

1d v
5%”%”%2(9) + Z”VUtHQL?(Q) + K[| Aove ]I 72 r)

t
(813) < C|:/O HUH%{4(F)d8 + ||U||?_11(Q) + 1:| + C(él)HFtH?{l(Q)/

+5”1’”%13(9) +51”‘””%%(9) Jr‘53||t’t||?ar2(1“) +/Q(a£‘1)t“f,edﬂ3

for some constant C' depending on M, &, §, and ;. As in [7] and [8], the integral
involving the pressure ¢ has the following estimate:

t t
(AA@@M&mwSQMW@&MMWFHWAHﬂ%@@

t
+ 61 / [0 /131 0y ds,
0

where

N3 (uo, F) = ||U0Hi12-5(9) + ||U0||%14-5(r) + ||FH%2(O,T;H1(Q))
+ I E 2200 @)y + IEO)[[F1 @) + 1.

Integrating (8.13) in time from 0 to ¢ and choosing 61, 63 > 0 small enough, (7.27)
and (8.9) imply that, for all ¢ € [0, T,

t
||°t(t>||%2(n) +/0 [ant”%Z(Q) + ’i”UtH%ﬁ(r)}dS

t s t
(8.14) gONg(uo,F)JrC/O/O ||n(r)||§{4(r)drds+6/0 ||n||i,3(9)ds

for some constant C' depending on M, x, §, and &3. In (8.14), (8.8) is used to bound
[0 (0)[I72 -
8.7. ez-independent estimates. Integrating (8.3) in time from 0 to ¢, (7.27),

(8.9), and (8.12) imply that
t
[ (191 + Nl e s

t
< OO )+ [ [Ionl ey + Iolfracr s

t S t
(8.15) SC_'Ng(uO,F)—i-C_'/O/O ||n(r)||§,4(r)drds+é/0 0200y s

for some constant C' depending on M, &, and §. Integrating (8.4) in time from 0 to ¢,
making use of (8.11), (8.12), (8.14), and (8.15), and then choosing § > 0 small enough
and T even smaller, we find that

t t ps
816) [ (10l + ol |ds < CNatun. F)+ € [ [ o)lseydras
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for some constant C' depending on M, x, and €;.

Having (8.16), by choosing 62 > 0 small enough, the estimates (8.11) can be
rewritten as

t
IV30(®)122a) + / (IVV30l20,) + B0y | ds
t ps
(817) < éNg(Uo,F) +é/0 /0 ||U(7")H%I4(F)d7’d8

for some constant C' depending on M, x, and ¢;. Therefore,

X(t) < CUotX(S)dS + Ng(uo,F)],

where

t
X(t) = / 001272y s

By the Gronwall inequality,

t ps
(8.18) /0/0 [0(r)||Z4pydrds < CNs(uo, F)

for all t € [0,7T] for some constant C' depending on M, k, and ¢;. Having (8.18),
estimates (8.9), (8.14), (8.16), and (8.17) along with the standard embedding theorem
lead to

sup [[10(t) 2( + e ®llEz(ey | + 1018 + 10120 7122
0<t<T

(8.19) + lloll72 0,754 (ry) < CN3(uo, F)
for some constant C' depending on M, x, and €;.

8.8. Weak limits as ez — 0. Since the estimate (8.19) is independent of ez,
the weak limit as e — 0 of the sequence (b,b,q) exists. We will denote the weak
limit of (b,h,q) by (vk, hy,qx). By lower semicontinuity, (8.8) and thus (8.19) hold
for the weak limit (vy, hy, gx). Furthermore,

<’Umt7 @) + g/ Dﬁvm : Dﬁ(ﬂdl‘ + 0'/ é[[ﬁfl(hﬁ)(—vOiL, 1)] o ﬁ‘r} - pdS
Q r
(8.20) + ;‘<L/FA0’UN - AgpdS — (Qr@vaiQO,kg)LQ(Q)

= (Fop) =0 [ B[MB) Vo, D)o 77] - s

for all o € HY2(;T) and a.a. t € [0,T).
9. Estimates independent of x and e¢;.

9.1. Energy estimates which are independent of k. Although (8.19) does
not imply that h, € H*(T'), h is indeed in H*(T") by (7.4). Therefore, we have that
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(vi, i, Qi) satisfies

(9.1a)  vef — v[agDy(v)ilx = = (@5 qu) x + I in (0,T) x €,
(9.1b) aiv,.ifj =0 in (0,7) x Q,
(9.1¢) [vDy(ve)! — qu8!]a Ny = 0O[L5 (hy)(—Voh, 1)] on (0,T) x T,

+ 0O[M}(=Voh, 1) o 7" + kAZv,

(9.1d) hion” = [(ha)o N Ve — v, on (0,7) x T,
(9.1e) v =g on {t =0} x Q,
(9.11) h=0 on {t =0} xT.

Having (9.1c), (A.7) in Appendix A implies that h, is in H5(T') for a.a. t € [0, T
with estimate

t t
| 198m s < CCe) [ [198hulcry + ooy + e sy + 1] .
where the forcing f in (A.7) is given by

[vDy (v qn5{]d§Nz — 0O[M;j,(=Voh,1)] o

)
By the same argument, (7.18) holds with all  replaced by k. Therefore, by (8.4)
(which follows from (7.18)),

t t
/0 198 hellza ryds < Cler) / (Iosellrs ) + IV8Re 2y + 1V30n 0 | ds
(92) +C(€1)NQ(ILO,F).

With this extra regularity of h,, the energy estimate (8.19) can be made inde-
pendent of k. In section B.2 in Appendix B, we prove that

14
IOy < [ [ O[1Ealha) (Vb D] o] - V(G VRt
+C' / (1 150 + Welee ) + IBle | I8 2y s
to t t
for some constant C’ depending on M, €1, 8, and §;. By (9.2),
1% ¢ _ - .
STy < [ [ OiLalh)(~Vah )]0 77] - T30, asis
t
(9.3) + C'No(uo, F) + C' /O [vav,{uip(m n K(S)vahﬁﬂiz(p)} ds

t t
+(5/ H’UK”%{?)(Q)dS—F(Sl/ ||vm||?{1(9)ds,
0 0

where

K(s)=1+ ||77||§{3(Q) + ||]~”Lt||%12-5(r) + HBHQHS(F)
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With (9.3), (8.11) now is replaced by
t
[I1V30e ()1 200) + 198 (0) 22y | + / (1993020 + wllvelra | ds
t
< C'Na(ug, F) + C' / [osellZe@) + IV3valEn o) + K () Vihallfery | ds

t t

04) +5 [ Noulipads+ 81 [ onilfnayds
0 0

for some C’ depending on M, €1, 6, and 61, where (A.5) is applied to bound I{H’U,g”%p(r)
(this is where ||Unt||2Lz(Q) comes from). Similar computations lead to

t
©5) [IV00aOl @) + IV Ear)] + | [IV500e ) + ool s
t t
< CNa(uo, F) 4 € | [98helBaqeyds +6 [ loalin ords
0 0

for some constant C' depending on M and 6.
In Appendix C, we establish the following x- and €;-independent inequality for
the time-differentiated problem:

t t
| 19maliayds < [ [ [iEah 0o —1]077] - vnids
t
+CN(ug, F) +C /0 K(3)[IV8hel 2oy + V3R 3y | ds
t t
(64 C1?) / a5y s + (61 + CH1/2) / e lZrs ey ds + 6211V & |2t

for some constant C' depending on M, 8, 61, and 3. Therefore, (8.14) can be replaced
by the following estimate:

(9.6)

t
(ol + 198mliaey) + [ (1900038 0y + il AuvcalEary | s
t
< ONyua F) + € [ K [I98hnlar) + I98hlr s

t t
(@ O [ unlBisayds + 6+ C82) [ el ayds + 82 Tihaacry.

0 0
9.2. k-independent estimates. Just as in section 8.7, we find that

t
I [1onlsen + lawliecay s
t
00 < CONNofuo, )+ C) [ [Ioealiiey + V50l s

By choosing 6§ = 6; = 6, = 1/8 and T > 0 so that CT'/? < 1/8 in (9.6), we find that
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t
1
| (1ol + ol o s < CNauo, P) + Gl 98l
t
©8)  +00n) [ [Vl + K6 (19l + V3l Fa ) ds.
Combining the estimates (7.27), (8.9), (9.4), and (9.5) with (9.6),
[1oeli3rs @) + V30 1220y + V3 RellErz ey + loselEcay + 1V 8heellFeqry] ()
t
+/0 [”VUNHQLQ(Q) + ||VV0UHH%2(01) + HVV?JUN”%P(QQ + H’UNtH%{l(Q)}dS
t
< C'Ny(uo, F) + ' / [loeel3z(oy + K () (IV8Ral 20y + I 93RceFcry ) | ds
for some constant C’ depending on M and €;. By the Gronwall inequality and (8.4),

sup {an”?{?(a) + HUNtH%%Q) + ||V(2Jh~t||2L2(r) + ||Vgh~||2L2(r)
0<t<T

+ ||qf@||?{1(9)} @) + llosllsry + 1l 720,70 2r2(02)) < Cle1)Na(uo, F).

9.3. Weak limits as kK — 0. Just as in section 8.8, the weak limit (v, , ke, , ge, )
of (v, he,qx) as kK — 0 exists in V(T) x L*(0,T; HY(T')) x L*(0,T; H*(Q)) with

estimate

OE?ET{HUEl(t)”%{?(Q) + valt(t)H%?(Q) + Hv(z)helt(t)H%z(F) + vahfl(t)”%z(r)

(9.9) + ||Qe1(t)||§{1(sz)} + [vsllBacry + 196 172 0,7502(2)) < Cle)Na(uo, F).
Equation (9.9) implies that for a.a. t € [0,T],
[0k ()] 25y < C(2)

for some C(t) independent of x, and therefore for a.a. t € [0, T,
H/ Agvy - DgpdS — 0
r

as k£ — 0. This observation with (8.20) shows that (v, ,h,,qe, ) satisfies, for a.a.
t e 0,77,

14 _ _
(’Um, (p)Lz(Q) + 5 A Dﬁvﬁ : D,—](go)dx + (T/F@ﬁjl(h,i) {—h’a 0T + o7 |dS
(9.10) — (algx, ¥'j)12() = (F, @) + 0 (OMz(=Voh o7, 1), )1

for all ¢ € HY2(Q;T). Since (9.10) also defines a linear functional on H'(Q), by the
density argument, we have that (9.10) holds for all p € H(Q). As (v, he,,qe,) are
smooth enough, we can integrate by parts and find that (v,, he,, ¢, ) satisfies (7.2)
with (7.2¢) replaced by

(9.11)

[vD5(ve )] — 8118 Ne = 0 [BI(L, (e ) + M(B)(Voh, ~1)] 07| om (0,7) x T.
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9.4. H5--regularity of h,. By (9.11), we have the following lemma.
LEMMA 9.1. For a.a. t € [0,T), he, (t) € H>5(I') with

||h51||?—[5'5(r) <C(M) ||v€1t||%—11(ﬂ) + ||Vvel||2L2(Q) + HV(Q)qufp(Ql) + ||V3hel||%2(r)

(9.12) + 1 F 30y + 1]
and hence
(9.13) ([, ||2L2(0,T;H5-5(F)) < C(M)BC(M)+TN3(UO»F)-

Proof. We write the boundary condition (9.11) as

(914) La(he,) = T2 (~Voh, 1) - {67 [WDy(ve)] — g, 615N } o777 — M(B).

By Corollary 7.1, Ly is uniformly elliptic with the elliptic constant v; which is in-
dependent of M which defines our convex subset Cp(M). Since h € H(T), M(h) €
L2(0,T; H*5(T))NL>(0,T; HY(T')), and hence by (8.19), the right-hand side of (9.14)
is bounded in H'-5(T"). The important point is that these bounds are independent of
€1. Thus, elliptic regularity of Lj proves the estimate

ey 7.5y < C(M) [IIDﬁ(vel)llfm.s(r) + e, sy +1

so that with (8.4), (9.12) is proved. 0O

9.5. Energy estimates which are independent of €;. Having estimate
(9.12), one can follow exactly the same procedure as in section 9.2 to show that
the constant C’ appearing in (9.9) is independent of €1, provided that we have an
€1-independent version of (9.4). By section B.2, we indeed have such an estimate:

v tr _ .
2T, (]nry < / / O[ 1L (he,)(~Voh. )] 0 7] - V3(C2VEu., dSds
t t
+ CNy(ug, F) + C / K(8)[Vhe, [2agyds + (6 + C12) / s 10y s

t
(8 4 OH) / e 1273y

for some constant C' depending on M, §, and 6;. Therefore, we can conclude that

(9.15)

sup [H’Uel”%ﬁ(g) + ”véltH%?(Q) + ||V(2)h€1t||2L2(F) + ||V3hel||2L?(r)
0<t<T
+ 1ge, ”%Il(ﬂ)} () + [ve, s 2y + 196, 72072 (02y) < C(M)eTADHT N (g, F).

REMARK 15. Literally speaking, we cannot use V3((¥Vive,) as a test function
in (9.10), since it is not a function in H'(Q). However, since h., € H>5(T') for
a.a. t € [0,T], (9.10) also holds for all p € H*(Q)' N H=13(T) and VE((iVive,) is a
function of this kind.

9.6. Weak limits as €; — 0. The same argument leads to the fact that weak
limits of (ve,, ey, Ge,) (denoted by (v, h, q)) as e — 0 exist and (v, h, ) satisfies (7.1).
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9.7. Uniqueness. In this section, we show that for a given (9,h) € Y7, the
solution to (7.1) is unique in Y7. Suppose (v, h1) and (ve, ha) are two solutions (in
Yr) to (7.3). Let w = w1 — ve and g = hy — ho; then w and g satisfy

t
(wy, ) + % /Q Djw : Dypdxr + O'/Fé [IN/;I </0 (h qWq — wz)ds)} ofj”

(9.16) X (—hq o p® +¢*)dS =0

for all ¢ € V,(T) with w(0) = 0, where L equals L, except L; = Ly = 0. Since w is
in V,(T'), letting w = ¢ in (9.16) leads to

(10131 + 19801320y + IVERIZ 20y + Ioel 2y + 193 Rell3ay | ()
! 2 2 2 2 2
+ [ {1908 o) + 1990012y + IV T30y + ol o
t
<o) [ K1V + I3 s

Therefore, by the Gronwall inequality and the zero initial condition (w(0) = 0),
we have that w (and hence g) is identical to zero.

10. Fixed-point argument. From previous sections, we establish a map Op
from Y7 into Yr; i.e., given (0,h) € Cp(M), there exists a unique O7 (7, h) = (v, h)
satisfying (7.1). Theorem 4.1 is then proved if this mapping O has a fixed point.
We shall make use of the Tychonoff fixed-point theorem which states as follows.

THEOREM 10.1. For a reflexive Banach space X, and C C X a closed, conver,
bounded subset, if F': C — C is weakly sequentially continuous into X, then F has
at least one fized point.

In order to apply the Tychonoff fixed-point theorem, we need to show that
O(v,h) € Cr(M), and this is the case if T is small enough. In the following dis-
cussion, we will always assume 7' is smaller than a fixed constant (for example, say
T < 1) so that the right-hand side of (9.15) can be written as C(M)N3(ug, F).

REMARK 16. The space Yr is not reflexive. We will treat Cr(M) as a convex
subset of X1 and apply the Tychonoff fized-point theorem on the space Xr.

Before proceeding with the fixed-point proof, we note that Lemma 6.3 implies
that for a short time, the constant C'(M) in (8.1) and (8.4) can be chosen to be
independent of M. To be more precise, for a.a. 0 < t < T7,

(10.1) ||QH%2(Q) <C Hvt||2L2(Q) + ||VU||2L2(Q) + |\Vgh||:i2(r) + ||FH%2(Q) + 1},
(10.2) ||”||?{3(sz) + ||‘I||%12(Q) <C Hvt”%l(ﬂ) + ||VU||§{1(Q) + HVOWH%I(QQ
+ V3031 + I F Uy + 1
and
HhH?{Sf’(F) <cC Hth%Il(Q) + ||VU||%2(Q) + ||V(2)UH12L11(QI) + HVthZLZ(r)
(10.3) + 1By + 1]

for some constant C' independent of M.
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10.1. Continuity in time of h. By the evolution equation (7.1d) and the fact
that v € V3(Ty), hy € L*(0,T1; H*5(T)). Since h € L?(0,Ty; H>®(T)), we have that
h € C°([0,Ty]; H4(T')) by the standard interpolation theorem. Although there is no
uniform rate that h converges to zero in H*(T'), we have the following lemma.

LEMMA 10.2. Let (v,h) = Og,(8,h). Then ()] r2.5(ry converges to zero as

t — 0, uniformly for all (9,h) € Cr, (M).
Proof. By the evolution equation (7.1d),

t
||h(t)||H2,5(p) < / ||h,ava — Uz”Hz.s(F)dS < C(M)Ns5(ug, F)1/2t1/2.
0

The lemma follows directly from the inequality. 0

By Lemma 10.2 and the interpolation inequality, we also have the following
lemma.

LEMMA 10.3.  [|[V3h(t)||grsr) converges to zero as t — 0, uniformly for all

h e Cp, (M) with estimate
(104 I3h(0) 1500y < CM)Ny(uo, F)e'/?

forall 0 <t <Tj.

10.2. Improved energy estimates. In order to apply the fixed-point theorem,
we have to use the fact that the forcing F is in V2(T'). We also define a new constant

N(ug, F) = ||U0||§12~5(Q) + ||FH$}2(T1) + HFH%W(O,Tl;L?(Q)) + HF(O)”%{%Q) + 1.

Note that N3(ug, F) < N(ug, F).
REMARK 17. For the linearized problem (7.1), we need only F € V(T to obtain
a unique solution (v, h) € Yr.

10.2.1. Estimates for V%v near the boundary. Note that

1d - ,
CYT, [||C1V(2)v||2L2(Q) + J/F@BAaméV(z)h,aﬁv(z)h,védS] + §||(1D,~](V(2)v)||%2(m
14

= (F,V3(GVEv) - 2

[ [Vh@anw,+ Vi@t ] ¢ Vi) e
Q

v L , e i ,
- 5/ [Vo(afaf)vovfe+V0(afa§)vov74 ((FVE)) pda
Q

3 8
12 e . -
- 5/ Dy(Viv)]ay e Vv’ da +/ qay [V3(¢FVour)] eda — 0<ka +y Jk>7
Q Q k=1 k=1

where I’s and Jj’s are defined in section B.1 (with ~replaced by 7, and no €; and €3).

As in [7] and [8], we study the time integral of the right-hand side of the identity
above in order to prove the validity of the requirement of applying the Tychonoff
fixed-point theorem. By interpolation and (9.9),

| [ [waatae, + w@taius] (¢:vioh) adeds
0Ja ' '

t
< C/ laall g2 o)l Vol Lo () || 53 (02)ds
0
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< OONCO) [ Wl o1 + 8101y
< COM)C()N (up, F)/2 / ]l s + SC(M)N (g, F)
< C(M)N(ug, F) [C(é)t3/4 + 5} .
Similarly,

[ [wofatat v, + Voatal) Vout] 9300 snds

t
+/ / D;(V3v)lar¢i¢i , Vivideds < C(M)N (ug, F) [t1/2 + C(6)t + 5].
0 JQ

For the pressure term, by interpolation and (8.10),

/ / qaL [V (ViR pdrds
< (M) / [lall (@) + lallw.sgoy + s |0l sy ds
t
< CNC) [ lalfnds+ 8 [0l + i)
< O(M)N(ug, F) [C(é)tm + 5]

By the estimates already established in Appendix B, with the help of (6.6), it is also
easy to see that

/ <ZIk+ZJk> ds < C(M)N (uy, )[t1/4+t1/2+0(5)t2/3+5}

Finally, for the forcing term, by the extra regularity we assume on F,

t
/ (F,V3(C2V20))ds < / 1 F a2 ol 2y ds < N (uo, F) / 012120y ds
0

SN(U(), )+C( ) (UO,F)t.

Therefore,
t
(V30320 + 0 Ex(VER)| +v / | Da(V30) 32 0 ds
< Jluoll}2(q) + CN (uo, F) + C(M)N(ug, F) [0(5)(753/4 + Pt 1)+ 6.
By Corollary 7.1,

t
V3002 0y + IV | + [ 193010, s

(10.5) < ON(ug, F) + C(M)N (ug, F) [C(é)@(t) n 5] as t— 0,
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where C' depends on v, o, v1, and the geometry of T'.

By similar computations, we can also conclude (the (7.27), (8.9), and (9.5) vari-
ants) that

[Ilv(ﬂ\lizm) + V30 By / 01 oy s

[nvov(t)n%ml) + ||vah<t>|%z<p)} + / ||vov|\%pml>ds

(10.7) < ON(uo, F) + C(M)N(ug, F)O(t)  as t—0;
t
Vo) 0 + / loel12 s
(10.8) < ON(ug, F) + C(M)N(ug, F)O(t)  as t—0,

where C' depends on v, o, v1, and the geometry of T.

10.2.2. LfHalz—estimate for v;. For the time-differentiated problem, we are not
able to use estimates such as those in sections 8.6 and 10.2.1, since no €;-regularization
is present; nevertheless, we can obtain estimates at the €;-regularization level and then
pass €1 to the limit once the estimate is found to be e;-independent. We have that

1d v o
§£||Ut||%2(n) + §||Dﬁvt||%2(ﬂ) + 5@ / OA P hy 0 shy vsdS

= (Fi,v) — u/ [(afaﬁ)tv + (a; a@)tv 4 vy pdx —|—/ qtdktv’gdx
Q Q
1 _
+ = | (BAP7),hy aphysdS — / det(go)(A*?®)ih 0p|  h4:dS
5 [ ©A )b b m[\/ o)A )b ag]
) / 0., APV, (shit sdS — / 0,5 APy \5hisdS
T r

— / é[LTﬁﬂyB,aﬂ’y}thttdS — / é(Lg)thttdS—F K+ K3+ K4+ K5 + K,
r r

where K;’s are defined in Appendix C (without e3).
As in the previous section, the time integral of the right-hand side of the identity
above is studied. It is easy to see that

t
/ |:<Ft,’l)t> — l/(((_lk(_l,e)t’l) —+ ( a; j)tU Z)vt k =+ K1 + K5 + K6 ds
0
< C(M)N(ug, F) [t1/4 F V2 L O6) (2 1) + 5],

and by Appendix C, particularly Remark 22,

//{ (AP, by wphi s — det(go)[ det(go)(A*8),h a,a} i

- 2(:)’,\/141045’)’6}“’0[,6}1”’5 - @’AngaB’yﬁht’aﬁhtt} dSds

< C(M)N (ug, F)t'/2.
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Special treatment is needed for the rest of the terms, and we break this procedure

into several steps.
Step 1. Let By = fotfﬂ (qay,)evf dads. By the “divergence-free” condition (7.2b),

t t
By ://éf;tqvfédxdsf//ditqtvkédxds.
0.JQ ' 0JQ '

By interpolation and (8.1),

&itqv,ﬁedxds
t

< O(M)C((S)/O ||Q||2L2(Q)ds + 6[”‘]”%2(0,T;H1(Q)) + H’UtHZL?(O,T;Hl(Q))}

< C(M)N (ug, F) {cw + 5] .

For the second integral, we have the following identity:
[ [ abeahaoas = [ @ahoae - [ o000 o

// aktv( )iqdads.

By the identity af, = —ajv’;a’,

t
< / /ﬂ ‘ [dittvfg + aitv,ﬁé] q‘da:ds
0

t
<) / (1 -+ 50l 2 ) |Vl o ey lall sy s

(&ﬁtvfe)tquds
Q

Therefore,

aktv 7)tqdzds

t
C(M)C(8)N (uo, F / gl oy lal 75 ds + 6 / (1+ [[8ull1 )ds
< C(M)N (uo,F>2[c< )(e+t7") + 0],

wherea:%ifn:3anda:%ifn—2

The second integral equals [, Vug : (Vug)” q(0)dx, which is bounded by CN (up, F).
It remains to estimate the first integral. By adding and subtracting fQ akt O)qv’edx,
we find, by a;(0) € H*(Q), that

[ hartias| < [ [(at, = ahuopa o]+ | [af 0otz

< Cllag(t) — as(0)|| s llall 2 ) [ Vol L0
+ C(81) IVl 72y + 61llalZ2 0 -
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Noting that
2

t t 2
190]22 0 = Hwo+ [ouas| < [wnmm - wtm(mds}
0 0

L3(Q)

< 2 luoll3ys ) + C(M)N (o, Pt
(9.9), (6.5¢), and (10.1) imply that

[ dhuank(0ds| < CONN o, I 4+ C60)N (o )
Q

+ 01 {H’UtHQL?(Q) + ||V3h||2L2(r)}-
Summing all the estimates above, we find that
B < C(81)N (o, F) + COM)N (o, F)2[C(6)(¢ +£5) + 3]
o+ 6 loel3a oy + V8RN -

REMARK 18. It may be tempting to use an interpolation inequality to show
that ¢ € C([0,T]; X) for some Banach space X by analyzing q: via Laplace’s equa-
tion. The problem, however, is that the boundary condition for q; has low reqularity
L2(0,T; H=15(T")) (by the fact that hy € L*(0,T; H*>5(T'))), and thus standard elliptic
estimates do not provide the desired conclusion that ¢ € L*(0,T; H*(Q)') (and hence
by interpolation, g € C([0,T]; H**(2))). However, suppose that q; € L*(0,T; H*(Q)");
then we can estimate fng &f;tqtvf%dxds by the following method:

¢
‘/ / as,q"deds
0 Ja ’

Step 2. Let By = f(ffr (:)[[L?’Gvﬁ,am]thtt + (L2)ihy]dSds. Tt is easy to see that
¢
/ /é(Lg)thttdst
oJr

For parts involving Lq, we have

t t
/ / O L5 Doy | hudSds = / / 6[L57] hapyhudSds (= BY)
0Jr t oJr t

t
+ / / OL hy wpyhiedSds (= B2).
0oJT

t
< [ a2l ol o ds
0

< C(M)N(uo, F) [t + t5/8]

t
<) [ [Ivllzm + lollzacds

< C(M)N(ug, F)'2(t + /1),

By interpolation,
t
Bl| < c(ar) / 161 (09 ll sy e ey dSds

t
<) [ [Ivll= + ol o s

< C(M)N(ug, F)Y/ /2,
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while by (6.6) and Corollary 6.5,
t
B3| < /O 1011 zres oy e | zrs oy 1L L -5 oy e | pro-s oy ds

t
< CODILT oty [ Villrsscey[Iollmcay + ol o s
< C(M)N (ug, F)t/*.
Therefore,
| Ba| < C(M)N(ug, F)(t + t/* + /%)

Step 3. Let By = fo Ksds = fo [ 01 (o7 T) - (Voht)]dSds. The Ly and
L5 part of B3 is bounded by

t
M) / 161130y 1.5 (0l oy el o 1 o Ly s
and hence

t
/ 0 [L?5757a57 + L2} [(w0777) - (Vohe)]dSds| < C(M)N (uo, F)t'/*.
0

By the integration by parts formula, the highest order part of B3 can be expressed as

/ / (Dofj~ det(go)(Aamé) h7a5} ’yévohtdes (= B3)

v/det(go)

+ / / O(v 07 ") AP hy sV ohi 4sdSds (= B3)
—|—2// (Toq™ ") flaﬂ'y‘shuagvohtﬁdes (= Bg)

/ / O 07 )] 16 A hy o5VohidSds (= B3).
It is easy to see that
t
|B;| < C(M)/O 190 0 ™" | grvs oyl el 22 (o) 1Bl 24 (0 1ot Nl 72 0y S
< C(M)N(ug, F)t
and
¢ = —
B3| < O(M)/o 100 0 ™" [lwr.ay | All Lo () | e[| 72 0y | ot || 2.2 0y S
< C(M)N (ug, F)t'/2.

For B2, by the integration by parts formula,

/ / O 071 ") AV [y agh 0| dSds

[\/det 90)O(von~ AO‘M‘S} ht,agheysdSds,

//m
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and hence

t
B3| < / (168 sry 194l oy + 1O o2 oy |5 Allwrsry
X [[hellwz.a oy 1hell 2 (ryds

t
< COUIN (o, F)'? [ ol wsods
0

< C(M)N (ug, F)t*/2.
For Bj, noting that

O s = det(Voil") s1/det(Gy) o 7 + det(Voi") 41/ det(Gy) o s

+ det(Von") s/ det(Gy,) o 1™ + det(Voi]" )/ det(GR) o i1 s

and || Vo det(Vo") || go.sry < C(M)t'/2, we find that

t
B3] < €M) [ [F0detSo") ol V3alaosiey [Vl ds
0
t
+ M) [ 14et(Tor) e oy 90 [ I V3l 0y [ Vs

t
< C(M)N (ug, F)t'/2 + C(M)N(uo,F)3/4/0 [BFEE

< C(M)N(ug, F)(t/? + ¢3/%).
Combining all the estimates, we find that

| Bs| < C(M)N (ug, F)(t + /2 4+ £3/4).

Step 4. Let By = fot Kyds = fng O[L;(h)]t[(Voh, —1);- (vo~T)]dSds. Integrat-
ing by parts,

//Lh @tvo ;=1 (voi T) +O(Voh,—1)¢ - (voij )

hy—1)s - (vo i )}des+/F®L (W)[(Voh, —1) - (v o 7~7)]dS.

For the first integral, (6.8) implies that

/@L —1)¢- (wo i~ 7)]dS

<Ol Loy | L7, (B )”L?(F)HVO]Nlt”L‘*(F)”U o " |lLar)
< CO(M)N (ug, F) || he || s oy
< C(M)N (ug, F)t'/8.
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It is also easy to see that

Ly (h) [ét(voﬁ, 1) (0o i ™) +O(Voh, —1); - (vo ﬁ’T)t}des

t
<0 [ [Iolemiry + ooy 1EA ) 2| Dol o

t
< CONN(un, ) [ (ol + ol o s
0

< C(M)N (ug, F)t*/2.

For the remaining terms, the H%(T")-H ~%-5(T") duality pairing leads to

/ @L _1)tt vdSds

S/O 1Ol 7150l L, () | 705 0y 10 | 215 1) | e | 0.5 (0 s,
By interpolation,
IER (W) o5ry < COD [R5 s IR 3oy + 1],
and hence

@L —1)g - (voq~ ")dSds

C(M)N (o, F / el ey [I8RI2y + 1] ds
< COM)C()N (uo, F) / (198l 2(r) +1]ds + 5C(M)N (uo, F)
< C(M)N (uo, ) [ C(8)("/2 +1) + .
All the inequalities above give us

[Ba| < C(M)N (uo, F) |C(6)(E/2 + 1) + /5 + 5.

Summing all the estimates above, we find that

t
ol + [ 4% huaahinsaS| () +v [ IDgulaqoyds
N 0
< 0Oy + [ 165 hias(0)PdS + (C -+ C(62))Nun, F)
T
+ C(M)N (ug, F) [C(é)(t N 5}

+ 81 [lenll 3 + V8RN
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and by Corollary 7.1,

t
(1) 2oy + 1930 )] + [ ol oy

(10.9) < (C + C(61))N (uo, F) + C(M)N (ug, F) [0(5)0@) + 5}
+ 61|z oy + V8RN

where C' depends on v, o, v1, and the geometry of I'. Since this estimate is independent

of €1, we pass €1 to zero and conclude that the solution (v,h) to (7.1) also satisfies
(10.9).

10.3. Mapping from Cr(M) into Cr(M). In this section, we are going to

choose M so that ©(0,h) € Cp(M) if (0,h) € Cp(M).

Summing (10.5), (10.6), (10.7), (10.8), and (10.9), by (6.5) we find that
[Ilv(t)l\%z(m +IVor(®)l720y) + IVEv(B) 12200,y + l0e(®)Z2(q)
HIVERONZ 0y + IVER O F2ry + IVoRBI 2y + ||v(2)ht(t)||%2(r‘):|

t
- / (1018373 ) + V00l @) + V30l ) + Notlrs oy | ds
< (C+ C(8)N (ug, F) + C(M)N (o, F) [C(5)0(t) + 6]
+ 61 |[0el 320 + V8B 2y
where C' depends on v, o, v1, and the geometry of I'. Choosing §; = %,
[”U(’f)H%z(Q) +IVor()[1220y) + V501720, + ll0:(0)1 720
HIVEROZ2 0y + IVoh ) Zar) + VoA Iz + ”vght(t)”%%l")}
¢
+ [ (100 + 19000 + 1930l s + el o s
< C1N(uo, F) + C(M)N (o, F)? [C(8)O(t) + 8],

where C; depends on v, o, p, and the geometry of I'. Similar to section 8.7, for
aa. 0<t<T,

[Hv(t)”?q?(ﬂ) + o172 () + Ve Fr2ry + HV(Q)ht(t)H%?(r)]
t
(10.10) +/0 [”U”%ﬁ(ﬂ) + lloell3n ) + HCIH%[z(Q)}dS
< CoN(ug, F) + C(M)N (ug, F)? [C(6)O(t) + 4]

for some constant Cy depending on Cf.
By (6.6), (6.8), and (7.1d),

t t
W sqeys < [ [ 1| oy

(10.11) < C(M)N (ug, F)t*/*
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and
t t _ ~
[ Ml < OO0 [ [t By sy + 1Bl ey e o s
0 0
(10.12) < C(M)N (g, F) [11/4 + £1/2].

Also, by (10.3) and (10.10),

t t
[ WelBrssys < € [ [l oy + 1908y + 1930 By + 98
+ |0 + 1] ds
(10.13) < C3N (up, F) + C(M)N (ug, F)? [C(é)(’)(t) + 5}

for some constant C3 depending on Cs.
Combining (10.10), (10.11), (10.12), and (10.13), we have the following inequality:

[||U(t)||?{2(9) + o7 2() + 1RO Fary + ||ht(t)\|%r2(r)}
t
+ / (1011373 g + Nl gy + WAl oy + el ey + Wheelrn sy | ds
< (C2+ Cy)N (o, F) + C(M)N (uo, F2[C(8)O(t) + ).

Let M = 2(Cy+C3)N (ug, F)+1 (and hence corresponding Tp and 7" in Lemma 6.3
and Corollary 7.1 are fixed). Choose § > 0 small enough (but fixed) so that

C(M)N (ug, F)?8 <

==

and then choose T > 0 small enough so that

C(M)N (ug, F)?C(6)T <

o~ =

Then for a.a. 0 <t < T,
(o372 + 02y + 1RO 7o) + e (®) 2 |
t
+ / (1011373 gy + Nty + WhelFrescry + oallpoery | s

1
< CoN(ug, F) + ok

and therefore

sup [Ilv(t)l\?qz(m + [[oa ()22 0y + 1B [ Fra () + IIht(t)H?qz(r)]
0<t<T

(10.14) + 013y + P13y < 2C2N(uo, F) +1,
or in other words,

(v, I3y < 2C2N(uo, F) + 1.

REMARK 19. Equation (10.14) implies that for (0,h) € Cp(M) (with M and
T chosen as above), the corresponding solution to the linear problem (7.1) (v,h) =
Or(v,h) is also in Cp(M).
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10.4. Weak continuity of the mapping Or.

LEMMA 10.4. The mapping Or is weakly sequentially continuous from Cr(M)
into Cp(M) (endowed with the norm of Xr ).

Proof. Let (vy, hy)pen be a given sequence of elements of Cp (M) weakly conver-
gent (in Yr) toward a given element (v,h) € Cp(M) (where Cr(M) is sequentially
weakly closed as a closed convex set) and let (vy(p), ho(p))pen be any subsequence of
this sequence.

Since V3(T') is compactly embedded into L%(0, T'; H*(12)), we deduce the following
strong convergence results in L2(0,7T; L?(2)) as p — oo:

(10.15a) (aZ)p(aLf)p — aiaf and (QZ)p(ai)p — aiai,
(10.15b) [(a)p(af)p) s — (apag); and  [(@))p(ak)p]y — (a7ak) s,
10.15¢ af), — ay.

1 /P 2

Now let (wp, gp) = O (vp, hy) and let g, be the associated pressure so that (g, )pen is in

a bounded set of V2(T'). Since X7 is a reflexive Hilbert space, let (Wo(p)> Go(p)> Do (p)) peN

be a subsequence weakly converging in Xr x V?(T) toward an element (w,g,q) €

X7 x V3(T). Since C(M) is weakly closed in X7, we also have (w, g) € Cp(M).
For each ¢ € L?(0,T; H*(9)), we deduce from (7.3) (and Remark 6) that

T
/0 [(wt,qs)p(m +£ /Q Dyw: Dydde + o /F Ln(9)(g.0a — 6,)dS

T
jai _
+/Qqai¢ddx]dt /0 (F, ¢)dt,

which with the fact that, from (10.15), for all ¢ € [0,T], w € V,, provides that (w, g)
is a solution of (2.16) in Cr (M), i.e., (w,g) = O (v, h).

Therefore, we deduce that the whole sequence (Or(vy,, hy))nen weakly converges
in Cp(M) toward O (v, h), which concludes the lemma. |

10.5. Uniqueness. For the uniqueness result, we assume that ug, F', and I" are
smooth enough (e.g., ug € H>3(Q), F € VX(T), I' is a H3® surface) so that uy and
the associated uj,qo satisfy compatibility condition (4.4). Therefore, the solution
(v, h,q) is such that v € V(T), ¢ € L*(0,T; H*(2)) and h € L>(0,T; H'(T')) N
L2(0,T; H35(T)), hy € L>(0,T; H>(T')) N L2(0,T; H55(T')), hyy € L°(0,T; H*(T)) N
L?(0,T; H*5(T')). This implies a € L>(0,T; H5(f2)), and hence by studying the
elliptic equation

(ajataee).e = [Vaf(a’;a;;vfj)ﬂ +ajul + afF,th — [(afal)ea.r) e in Q

g = Jh_2 [(O‘Lh(h)Ni — uD,,(v)fa?NO — (agNj)tq ang on T,
t

we find that ¢; € L*(0,T; H?(2)), and this implies vy € L%(0,T; H'(2)). By the
interpolation theorem, we also conclude that v, € C°([0, T]; H2*(9)).
Suppose (v, h, q) and (7, h, §) are two sets of solutions of (1.1). Then

(10.16a) (v —10)¢ — v[af Dy(v — )j] &k = —al(q — §) » + 6F,
(10.16b) al(v— )" = éa,
(10.16¢) [u[an —0)]i — (¢ - @65] a;N; = 00 [Lh(h — h)(=Voh,1)| 07"

+ 6Ly + 6Lo + 6L3,
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(10.16d) (h— ?l)t on” =[haon (Ve — Vo) — (Vs — 0y)
+ 6h1 + 6hg + 6hs3,

(10.16¢) (v —5)(0) =0,

(10.16f) (h — Rh)(0) =0,

where

(10.17a) §F = fon— foi+vl(afa) —afa))v’], + v(afa] — afal)v’) ,

— (af = af)d,
(10.17b) Sa = (al — &),
(10.17¢) 6L, = 0O [Lh(h)(voh — Voh, 0)} on” — v(dkal — akad)ih, N,
— v(aja) — aga;) v N; + (a] — al)gN;

(10.174d) 8Ly = O[L; (h) o™} (Vohon™ — Voh o, 0)
+ [OLu(h) o n” = OLw(R) 07| (Toh o 77, 1),

(1017) 6Ly = [[La(h) = Ly())(Voh, —1)] o 77,
(10.17f) Shi = (haon” — ho 0" )ia,

(10.17g)  6hy = [(h,a ~ha)o ﬂ T,

(10.17h) 6hs = —(hyon™ —hyoqj").

We will also use §L and 6h to denote 22:1 Ly, and 22:1 bhy, respectively.
Similar to (11.3) in [8], we also have the following estimates.
LEMMA 10.5. For f € H?(Q) and g € H5(T),

t 1/2
(10.18) ||fon—foﬁ||Lz<m<Cx/%||f||Hz<m[ / |v—@||§p<mds} ,

¢ 1/2
(10.19) lgon™ —goi|lrz2wy < CVE|gllm s [/O [[v— 6||?{1(Q)d81|

for some constant C.
REMARK 20. Assuming the regularity of h, he, and hy given in the beginning of
this section, we have

t 1/2
(1020) ||6L2||H2(I‘) + H(Shl + 6h3||H2-5(F) S O\/IE |:/ ||1} — ’L~J||§{3(Q)d8:|
0
and
(10.21) [(6L2)t|lL2(ry + [[(6h1 + 6h3) el mr(r)

<C

t 1/2
||U_@|H1(Q)+\/¥</O |U—17||§12(Q)d5) 1

and
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[V5(6h3)ell L2y < C|llv =0l + lv —0llgs(o)

~ t 1/2

By using (10.18) to estimate ||6F||12(q), we find that
IV = 5)(0) 220 + / (0 = 8)e)22(0yds
t t
<o) / [0 = 013y + 10 = Rl | s+ (OO +0) [ 1o =l

(10.23) +6/ (v = 0)¢ll7r 0 + llg — q||§,1(9)]ds.

For the L? H32-estimate for v — ¥ and the L7 H !-estimate for (v — ©);, we have

1d ~ v -
57 16 VE W = )20y + 20Bn(V(h = B)| + Z16 DV = D)llFaq)

< C[I8F s oy + 10 = D)eli3acay + IV 0 = DEaqay + 19 Vo(0 = 8)Fa(a)
V40 = W3] + 8110 — #l3s 0 + Ds + Dz + Dy

and

~ v ~
5 5510 = )il + 20B4 (0~ B0)] + TNV = Dl
< C[(IV3(h = B)[Zary + V3 (h = il Faey) + 1Fu s ey | + 8llo = Blaco
+ By + Es + B3,

where
Dy = / V(g — §)V3sadr,  Dy:= /F ) [[Lh(h —R)]o nf] (Vish)ds,
Dy = /FéL V(v — 5)dS
and
B = /Q (g — Qu(ba)de, By = /F (OLa(h— )] o] (sh).as,
By /F (8L); - (v — ),dS.
By using (10.20) to estimate D; and (10.21), (10.22) to estimate E;, we obtain
[”Vo v —19) ||L2 @) T HV4(h h)( )||L2(F / vao v = U)”Lz Ql
< 00) [ 160~ D1l + V(v = )3y + IV~ D s

t t
(10.24) +(C(6)t* + 5)/0 lv = Blls 0y ds + 5/0 lg — @l 72y ds
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and
160 = D03y + 17300~ W] + [ 1900 = 2l
< 06) [ [Io =13 + 1980 = =)+ 1+ Tl
(10.25) < 1V3(h = BellFaqr | ds

t
+(CE)(t+17) + 5)/0 lv = Bl (g ds + 8l — dll 720y

t
+8 [ (10 = 91l + g = ey s

Summing (10.23), (10.24), and (10.25), we find that

(10.26) V(1) + /0 ds < C(6 / k(s)Y (s)ds + (C(8) (2 + 1) + 6) /Ot Z(s)ds,
where
k(t) = 14 [ (8) 3550y
Y(t) = {Hv —0()|1F @) + IVE (0 = 0) (D) 72(00) + 10 = 8)e(D)]|72(0)
o+ Ia = Rlgaqey + 1B = Yol |
Z(t) = l(v = 0)e (O3 0y + IVVE (0 = D)) 72(0,)-
By letting § = 1/4 and choosing T}, < T so that C(8)(T2 +T,) < 1/4,

(10.27) Y(t) Jr/t Z(s)ds < C/tk s)Y (s)ds
0 0

for all 0 < ¢ < Tj,. Since Y (0) = 0, the uniqueness of the solution follows from that
Y()=0foral 0<t<T,.

11. The analysis of the membrane traction. The analysis of the membrane
traction consists of four parts: (1) the modified linearized (and regularized) problem;
(2) the s-independent estimates; (3) the fixed-point argument; and (4) the uniqueness
of the solution.

11.1. The modified linearized and regularized problem. Recall that the
membrane traction is

e = | TP"(J) + 2P ()] T 59" 0 + [TP(I) + ()| Hn
For given @ = p,, = (and hence 7, g, etc.), we define (for fixed but small € > 0)
L= 377 @00« ()] [777) 4 2P )] 300 + [7P(9) + P .
For the linearized problem, we change the boundary condition (7.1¢) to
(11.1)  [wDs(v)! — q8/)alN, = (L) + 06 [E;l(h)(—vofz, 1)} oii” on (0,T)xT

+ aé[w(ﬁ)(—voﬁ, o ﬁT}
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where we recall that © = det(Voi")/det(G;) o77. Note that here we treat the
membrane traction as a given forcing on the boundary. The regularized problem
consists of adding the artificial viscosity, as introduced in (7.2c¢), in (11.1). Note that
here we also mollify J 5 and use the equality (p. * f) 5 = pes * f-

Since L is given as a forcing, all the estimates are essentially the same as those in
the previous sections. Therefore, we have a unique solution (v, hx) to the regularized
problem (with €;-, e-, and k-dependent estimates).

11.2. The k-independent estimates. The introduction of the artificial vis-
cosity is to provide enough regularity for the solution to the linearized problem. As
in Appendix A, the k-independent estimates are obtained by studying the normal
component of (A.1). Note that with the help of the mollification operation in (11.1),
the corresponding f in (A.1) is also a function in L?(0,T; H'-3(T)). Therefore, (A.7)
is still valid. This k-independent estimate will enable us to take the limit as k — 0
and obtain the solution (ve,, he, ). Essentially the same proof as in section 9.4 shows
that (9.12) still holds, and hence taking the limit as e; — 0, the weak limit (v, h)
solves the linearized problem (7.1), and all the estimates in the previous sections hold
with C(M) replaced by C(M,e).

REMARK 21. The estimate for (ve,h.) still depends on €, where the extra e-
reqularization is used in the L? H32-estimates, which requires estimating the following
boundary integral:

/F%j_l [(8606) - (ggoﬂ {jP”(j) + 2P/ ()| %97 0 ViudsS.

Moreover, even though the estimate for he, depends only on the normal component
of Ly, in the linearized problem, there are still contributions to the normal direction
made by gaﬂﬁ,a.

11.3. The fixed-point argument. Similar fixed-point arguments as in sec-
tion 10 guarantee the existence of a fixed point (which is still denoted by (ve, he)) in
the space Xr.; that is, there is a fixed point (v, h.) € V3(T.) x H(T.). This fixed
point satisfies the boundary condition

(112) Dy, (v} — abll(a)§Ne = (Le)' + 0O [ L, (h) (~Vohe, )] o m.”
+ 00O, {[M(he)(—vohe, 1)] o 7767}

on (0,7) x I, where

1 € U / « !/
Ly, =57 {pe + (gﬂ TP (T0) + 2P (T)| 98 eia + [ TP () + PT) | Hene.
9o 38

)

By studying the tangential component of (11.2), we find that for v = 1,2,

(113) 7! [pe " (jo)] [2P(2) +2P'(30)] = 2Dy (00)] — e8] (@) Nen,

Take T, even smaller so that

w

3
27
Nell sy < 192 + 1.

1
3 < [Ocllz15(ry < 2
|vell 20,7515 (9)) < ol Fra ) + 1, |

< lacllzz) <

N | =
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With these bounds, (11.3) together with the assumptions that P is strictly convex
and P attains its minimum at J = 1 (that assure that the second bracket of the
left-hand side of (11.3) is bounded away from zero) implies that

(11.4) Hvo l:pe % (9)] H < C(ug, Q).
g0 H15(T)

Since (11.4) is independent of the ¢, we find that

(11.5) gell 250y < C(uo, g0, 2).

Having (11.5), we no longer need e-regularization to estimate the boundary integral
in Remark 21 and the study of (A.1), and hence all the estimates in the previous
sections are still valid with C(M) replaced by C(ug, go,€2). These e-independent
estimates allow us to construct a solution (ve, h.) in X(T') (where T is independent
of €) with the same estimates. The solution of the original problem (1.1) is then the
limit of (v, he) as e — 0.

11.4. The uniqueness of the solution. The uniqueness of the solution follows
from the elliptic estimate

lg = 31250y < Cllo = 3oy + e = el oy

which follows from the equation

(g - §)ﬁg(n) + ( g ) [0 - )] = Flwa) - F.)",

90 9
where

Q) = T [TP(I) +2P(T)] and F(v,0) = 2Dy (v)] - a8]]a{ N,

Appendix A. Elliptic regularity. We establish a k-independent elliptic esti-
mate for solutions of

(A1) @(go) [(Vaet(go) A 0hs o5

det (7VOE7 1)] o ﬁT + HA%”K = fa

6

where h,, and v, satisfy (7.4) with h, € H*(T'), v, € H*T), and f € H'"5(T"). Letting
w=wv, 07 7, (A.1) is equivalent to

) . _
(A.2) ——— [\/det(g0) A" N 5| (~Voh,1) + kAW = [ o7,

v det(go) 76

which implies that

e) - -
apyé “2A2 . (=
) e [\/det(gO)A hnvaﬁ]ymeh A2w - (—Voh,1)

=J.2fon - (=Voh,1).

Recall that w - (—=Voh, 1) = hy,.
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Let Dy, denote the difference quotients (with respect to the surface coordinate
system). Taking the inner product of (A.3) with D_;,D,Vh,, by Corollary 7.1 we
find that

t t
o [ 1Dkl < Cle) [ [Innlicey + 11y + ol | .

Since the right-hand side is independent of difference parameter h, it follows that
h, € H?(T) (as it is already a H*-function) with the estimate

t t
(84) [ IV3helaqeyds < Cler) [ [l + ey + wllolFge s

Next, we obtain a x-independent estimate of /i||wH§I4(F). By taking the inner
product of (A.2) with V3w and V§w, we find that

t
1932y + 5 / leolrs oy s

(A.5) < Ca) / i

ViRl ey + 172y + lwlres oy | ds

and
(A.6)

t
IV 8k (8) 20t + & / el 2a s

t t
< Clers80) [ [IV8helaqe) + 11 oce) + o s + &1 [ 1V3halaqeyas.

where we use (A.5) to estimate Hfg |w|| g3 (ryds. Equation (A.6) provides a k-inde-
pendent estimate for n||w\|%[4(r); hence by choosing §; > 0 small enough, (A.4) implies
that for all ¢ € [0, 77,

t t
A1) [ Il ryds < [ [I98h s + ey + ey s

for some constant C’ depending on ;.
Appendix B. Inequalities in the estimates for Vg'v near the boundary.

B.1. k-independent estimates. Since (; =1 on I' and

(=Vohon™,1) - Vove = Vg((=Voh o, 1) -v.) — Va(=Vohon™, 1) - vy
—4V3(=Vohoq™, 1) - Vv, — 6V2(~=Vohon™,1) - Vav,
—4Vo(=Vohoq™,1) - Viu,,

we find that
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_—
[©]

Ly(he) o 77| ((=Voh o 77, 1) - VE((V3vs))dS
= ) {L,;(h,@) o r‘f] [vg(—voﬁ o, 1) - vs +4V3(=Vohoq™, 1) - Vou,
F6VE(—Vohoi, 1) - V%UH}dS (= 1)
_4/@)[%@ o | (Vo(~Voho™.1) - Viv)ds (=)
2 =T 2 —T —
/ \/w O[ et gO ( h,a,ﬁfy + L2> on :|V0(hlit on )dS (* -[3)
2V,0 _
ha + Lo ) o Vi(heson™)dS =]
m[ 90) (L3 by + La) 07| V3w 077)dS (= 1)
+ / (vgé) [(L‘; My + L2) o ﬂ V2(hey077)dS (= Is)
/ \/7 (v/det(go) Aaﬁ’y hy aﬁ ~6 01 }vo(hnt on")dsS.

det

The last term of the identity above, by a change of coordinates, can be written as

0 _ B -~
/\/W (v/det(g0) A" hic a5) 45 © 7 }Vé(hm of")dS
0

/ det(g0) AP by o) 46 Vi dS + Ry
\/det go
\/WVO[ (V/Aet(g0) ANy o5) 5 0 77| Vi (g 07N (= 1)
O

of . _
m[MA “Yh,@aﬁ 5on}V0(thon)d5 (= J5)

1d

= -— | BA*P"V3h, 0sVihe 4sdS + RY,
2dt Jr ) :

where B = b' @ b' @ b* ® b* with b = V7", and
Ri(t) = / bt @bt @ (Vobt) @ (Vob!) Vo (v/det(go) A P hyy o5) 45 VohedS (= J3)
I
+ /F V@b @b @ (Vob")Vo(y/det(g0) APk o) 45 VERdS (= Ju)

+/bt®bt®bt®(Vobt)Vg(\/det(go)Aw”éh,ﬁ’aﬁ)ﬁgvohmds (= J5)
I

and
RAO) = Ra(®) + 1(0)+ Jot) = 5 [ (BA) 305 V0 (= T
+ 2/ \/dfzigovo(\/det(go)fxaﬂvé)vohﬁ,aﬁvghﬁwds (= Jr)
/ WVO \/MA(MMS I oc,GVO rt,ysdS (= Js)
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+2 [ B VR Atg0) A ) Vi oS (= )
v/ det (90)
/ V3 (y/det(go) AP hy; 03)VEhiedS (= Jio).
\/ det (g0)

It follows that
11| < Cler)(1+ [|Vohell 2 IVove a0y,
3] + [La] + |I5] < C(M)(1+ ||ﬁ||H5(F))||V(2)’UI‘CHH1(91)
and hence that
|| + 13| + [La] + |I5] < Cler) [”Véhx”zm(r) + ||}~L||%15(r) + 1| + 8]loxllFrs -
It follows that
| Jo| + [Js| + [J5] + | J10] < Cle)IVohall L2l Vohmell L2y,
| Te| < COM) (18]l mr30) + el zr25 () I Vo Rl 72 1y

We need only obtain k-independent estimates for the terms Iy, Jy, Jy, J7, Jg, and Jy.
By the H=%5(T)-H%?(T) duality pairing,

[Io] < COD ||Vl 2oy + 1 vl r):
Therefore, by interpolation and Young’s inequality,
(B.1) 12| < C|laldraqry + 1] + 801 V3R ey + 8110wl

for some C depending on M, §, and 6;.
For Ji, Jy, and Jgy, we find that

il 1l + 1o < Clen)llnll sy ol 2o ry
< C'|I98hw ey + 1] + 0198y + Ollvels oy

for some constant C’ depending on M, €1, 6, and 6;.
For J; and Jg, by the H~1%(T")-H?(T) duality pairing,

| J2] + [Js| < CODIIB s ey 1ol 2.5 oy L 1ra.s (0 1wl [ 125 ).
Similarly to the estimate in (B.1), we find that

7]+ 1Js] < OO [onl3ga ey + 1] + 61198 hallrs oy + Sllonllfs .

Summing all the estimates and then integrating in time from 0 to ¢, by Corollary 7.1
and the fact that B is close to 1 in the uniform norm for 7" small,

1%
219 Olry < [ [ O[3 (-Voh o] - V3GV )asis
4 2 K 7112
c'/o K(s)||V0hK|\L2(F)ds+C’/O (17031 + 1] ds

t t
+8 [ oalBiooyds + 0 [ 1980 Brscryds

0 0
for some constant C’ depending on M, €1, 8, and 61, where

K(s) = 1+ 100300y + llFgs ey + IBellFgasry-
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B.2. €;-independent estimates. We next obtain ¢;-independent estimates for

the first two terms of I, as well as those for I, Jy, Jo, J3, Jy4, J5, Jo, and Jyp with
hy, replaced by h.,. Let

o= /é[L( o] [VE(-Vohonm.1) v, |ds,
r
2= / [ ﬁf] [Vg(fvoﬁoﬁT,l)ovovél}dS.
By the H=15(I")-H'-5(T") duality pairing,

11|+ 1] < CM)ILg (he) s oy l[ve | 250y [|(Voh) 0 77 | 25y -
Therefore, by (6.6) and (9.12),

(B2) ||+ 1| < CODE [ he, Bgesry + 1] Ive, 3
<ct? [ver () + IVohe 1220y + 1F I o) + 1} + (6 + Ct?)lve, 1% 0

for some constant C' depending on M and 6.
For .J;, we use an L*-L* L2-type of Hélder inequality and conclude that

1] < COM)E 2|l hey |55 0y lloey [l 250y
while for the other J terms, we use the H%5(I')-H ~%-5(T") duality pairing to obtain
[Jal + s | + [ al + 5] + [ o] + [Jiol < CONE 2 eyl zoaey v llm20(ry

and hence all the J terms are bounded by the same right-hand side of the inequality
n (B.2). Therefore,

1%
2Ol < [ [ O[1Eae)Vah 0] 0] - TRV s
t
+cmwmm+cAz«mw%amm@+w+CW%AH%mmmw

t
(8 + O / e 12y s

for some constant C' depending on M, 6, and 6.

Appendix C. LfH;-estimates for v;. By the chain rule and integrating by
parts,

[ [BlLath) (- Voh, Dlor] - vuadS = [ 8 [Li(he)] o (~Tah o7, 1) - v
T r

+ [ O - [DolLi(h(=Toh )] 07 -v.idS (= )

+ [ O[[Lahl(Voh,~1)] o7 -v1dS (= o).
The first term is bounded by

CODall (@ I8kl 2ey + 1] lowel2cr)
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After integrating by parts, the most difficult term to estimate in K consists of the
integral

[V/Aet(g0) A oy 5] 16(Voh, —1)] © 7 Vv,

I |

Integrating from 0 to ¢ and integrating by parts in time, we find that

VAet(g0) At 5] 45(Vohs =1)] 0 77 VovwidSds

t _
v

/0 /1‘ v/det(go) [[

[\/det(go) A% by 03)t.v6(Voh, —1)] o VovedSds + R3,

- [ ] |

where R3 is bounded by
t
c / [+ 15301 s |1V 8Pl s + 62| VP

t t
48 [ oalBinayds + 6+ €872) [ fonalBis ayds
0 0
for some constant C' depending on M, §, and d5. Next, using that
[(=Voh,1) 0] - Voue = b"(Vohy) 0 7 + b (Vgh o 7,0) - v,

and integrating by parts, we find that the integral on the right-hand side is identical
to

Yo {\/det(go)(:)@btﬁaﬁ'yé} Mt gl s dSds + Ra,

1 /f / 1

2 Jo Jr /det(go)
where

t t
Ral < CONCE) [ 198 laqryds +5 [ oslfrngoyds.
By interpolation, the integral part is bounded by
t t t
0[NP+ [ 198 eyt 4 [ lonlBrsds + Ct [ el

for some constant C' depending on M and §. Therefore, K satisfies

(C.1)

t
/ KldS
0

t t
(54 o) / w23 0y ds + (6 + C11/2) / e 2 oy ds
0 0

t
< C/O [K(s)(HVéhm”%z(p) + ||v3hntlliz(r)) +1}d5+52||v3h5|\%2(m

for some constant C' depending on M, 6, and ds.
For K5, by time differentiating the evolution equation, we find that

(_VOB 0N, ey = hggp o +07 - (Vohey) ofm — 07 - (V(QJB 0n",0) vy
- (VOBt o ,’7]7'70) * Uk,
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and hence (after a change of coordinates)
Ky = /F (L7 () thieedS + /F [Li(h)]e[(07 0 777) - (Vohyy)]dS (= K3)
= [ (TR, 0)- (oS (= Ko
— [ 057 (TR 0) w0 TS (= K)
+ [ LA (Tahe,0) - (g7 7S (= Ko,

For the first term, we have

1d

/F [Li(hi)]ihsnedS = 5= /F APVt it 4sdS

[V/Aet(g0)(A°)] b ashendS (= K7)+ Rs,

/ \/det (90) 6

where Rj5 is bounded by

(C.2)

C 1+ ez sy | [+ IV heelEery) + 8 Ielirz oy + V30l o)

+ 61 llvwellFrq)
for some constant C' depending on M, 6, and 61. Also, by the inequality ||2xs || z4(r) <
C(M)[lvellg2 ) + lvnellar ]

|K7| < C|l[\/det(go) (A*7)y] ysll 05 (r) P aghris

det(go)
< C(M)C(s, 51)Hht||?{2-5(r)HVghnH%%r) + 5||”n||§12(9) + 51||Um||%{1(9)~

HO-5(T")

REMARK 22. The bound for K can be refined even further as
|K7| < CMCO) el 35 (oI Vbl 315y + 6llvslFs ey + SllvnellFrr i

it is this inequality that will be used in the proof of the fixed-point argument.
It remains to estimate K5 to Kg. By proper use of Holder’s inequality,

| Kol + K| + Kol < |1+ lhelfsry) |1+ I 98halFcry
+ (6 + Ctl/z)”UHHHS(Q) + 8lonell 7 o

for some constant C' depending on M and 6. For K, most of the terms can be
estimated in the same fashion, except the term

1 1 —
———[/det(90) A" hot 03| [(Vohi s, 0) - (v 077 7)]dS,
/r det(goﬂ (90) 1 [(Vohe 6, 0) - (v 0777
which is identical to

[\/det 90) AP, aﬁ} [(Vohrs,0) - (v, on_T)]} dS (= Ks) + Re,

t

e
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where
[Rs| < CllAln 5oy [lonll 3@y + V3 ReelEar) | + 8llvnlaay + Sxllonellfrs o

for some constant C' depending on M, ¢, and ;. Time integrating Kg and using the
interpolation inequality together with Young’s inequality, we find that

/Ot Ks(s)ds

t
(C.3) SC(M)C(51752)N3(UOaF)+52||V(2)hmlli2(r>+51/0 [vell 7 (s

< OO0 [luollr 5y + VAt lL2( ol o |

where

Ny(ug, F) = |luol| 3250y + luollFrasry + 1FI 72 0,78 0

N Fl 220, ) + IFO)[ 7 0 + 1,

and we use [[v,]|3 ) < clfy [0t 131 () ds + [luollF1 )] to obtain (C.3), and hence

6
SOIK] < C 1+ [lsqry + el sy |1+ o320y + VBBl
=3

(C.4) +(6+ C’tl/Q)Hv,@H?{g(Q) + 1|71 () + Ks

with Ky satisfying inequality (C.3). Finally, combining all the estimates,

(©5)
t t
| 19halayds < [ [ (123 Poh =] 077] - 00idS + OV, F)
t
+C [ ) [l + IV8halEary + 198hl e s
t t
+(5+Ct1/2)/0 anlliﬁ(mdsﬂ%él+Ct1/2)/0 [Vt 11 0y ds + 621 Vohul 22 ry

for some constant C' depending on M, 6, 61, and 65.
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