On the Motion of Vortex Sheets with Surface Tension
in Three-Dimensional Euler Equations with Vorticity

CHING-HSIAO ARTHUR CHENG

University of California, Davis

DANIEL COUTAND

University of California, Davis
AND
STEVE SHKOLLER

University of California, Davis

1 Introduction

The motion of vortex sheets with surface tension has been analyzed in the set-
ting of irrotational flows by Ambrose [1] and Ambrose and Masmoudi [2] in two
dimensions, and by Ambrose and Masmoudi [3] in three dimensions. With ir-
rotationality, the nonlinear Euler equations reduce to Poisson’s equation for the
pressure function in the bulk, and the motion of the vortex sheet is decoupled from
that of the fluid, thus allowing boundary integral methods to be employed. In a
general flow with vorticity, the full two-phase Euler equations must be analyzed;
in this instance, the motion of the two phases of fluid is coupled to the motion of the
vortex sheet, and entirely new mathematical methods must be developed to obtain
a well-posedness theory. In particular, a new class of approximation schemes must
be employed that preserve the transport-type structure of the vorticity—an issue
that, by definition, does not arise either in the irrotational theory or in the analysis
of the Euler equations on fixed domains.

In the general case with vorticity present in the fluid, the vortex sheet is a sur-
face of discontinuity propagated by the fluid, representing the material interface
between two incompressible inviscid fluids with densities p* and p~, respectively.
The tangential velocity of the fluid suffers a jump discontinuity along the material
interface, leading to the well-known Kelvin-Helmholtz or Rayleigh-Taylor insta-
bilities when surface tension is neglected. The velocity of the vortex sheet is the
normal component of the fluid velocity, whose continuity across the material in-
terface I'(¢) is enforced. In addition to incompressibility, the continuity of the
normal, rather than tangential, component of velocity across I'(¢) is a fundamen-
tal difference between vortex sheet evolution and multi-D shock wave evolution,
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wherein the velocity of the surface of discontinuity is determined by the general-
ized Rankine-Hugoniot condition. Unlike multi-D shocks, the vortex sheet prob-
lem is characteristic; nevertheless, the two problems are conceptually similar, and
we refer the reader to the book of Majda [6] for the analysis of multi-D shocks.

In the incompressible, rotational flow setting, very little analysis has been made
of the two-phase Euler equations. With surface tension present, Shatah and Zeng
[7] have obtained formal a priori estimates for smooth enough solutions, but the
question of existence of smooth solutions remains open. In this paper, following
the methodology of Coutand and Shkoller [4], we prove well-posedness for short
time for this problem.

Let Q1 and Q~ denote two open bounded subsets of R3 such that @ = QT U
Q™ denotes the total volume occupied by the two fluids, and I' = Q1+ N Q~
denotes the material interface. We assume that it is the region Q~ that intersects
Q2.

0Q 0Q
. (v

Let n denote the Lagrangian flow map satisfying

ne(x,t) =u(n(x,t),t) VxeQ,t>0,

n(x,0) = x.
Let Q7 (¢), Q7(¢), and I'(¢t) denote n(¢)(R™), n(t)(27), and n(¢)(I'), respec-
tively, and let u* and p* denote the velocity field and pressure function, respec-

tively, in Q% (¢). The incompressible Euler equations for the motion of two fluids
can be written as

(1.1a) pi(u?:—l—Vuiui)—i—Vpi =0 inQ*().
(1.1b) divu® =0 in Q% (),
(1.1¢) [pl+ = 0oH on I'(2),
(1.1d) [u-nle =0 on I'(¢),
(1.1e) u -n=20 on 0%2,
(1.1f) QT (0) = Q* on {r = 0},

(1.1g) ut(0) = ui on{r =0} x QF,
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where the material interface I'(f) moves with speed u(¢)* - n(t), p™ and p~ are
the densities of the two fluids occupying 7 (¢) and Q7 (¢), respectively, H(t) is
twice the mean curvature of I'(¢), o > 0 is the surface tension parameter, and n(z)
denotes the outward-pointing unit normal on Q2™ (¢).

THEOREM 1.1 (Main Result) Suppose that o > 0, and that T := T'(0) is of class
H* 0% is of class H?3, and u(:)': € H3(Qi). Then there exists T > 0 and a
solution (u™(t), p*(t), QE()) of (1.1) with

u® € L0, T; H3(Q*(1)),
pE e L®0.T: H>?(Q*(1)),
I'(t)e H.
The solution is unique ifugE e H*>(Q*) and T € H>.

The paper is organized as follows: In Section 2, we establish the notation to
be used throughout the paper. In Section 3 we establish low-regularity trace theo-
rems of the normal and tangential components of L? vector fields with divergence
and curl structure. In Section 4, we introduce a regularized version of the Euler
equations (1.1); the transport velocity and the domain are regularized using the
tool of horizontal convolution by layers that we introduced in [4]. Additionally,
a nonlinear parabolic regularization of the surface tension operator is made in the
Laplace-Young boundary condition (4.1d). Section 5 is devoted to the existence
of solutions to (4.1). In Section 6 we obtain estimates for the velocity, pressure,
and their time derivatives at time ¢ = 0. Section 7 provides the pressure estimates
that we need for a priori estimates. In Section 8, we establish the x-independent
estimates for the solutions of the k-problem (4.1); this allows us to pass to the limit
as the regularization parameter k — 0 and to prove existence of solutions to (1.1).
In Section 9, we provide the optimal regularity requirements on the data. Finally,
in Section 10 we prove uniqueness of solutions.

2 Notation

Let n := dim(Q) = 2 or 3. We will use the notation H%(Q1) (H*(Q7))
to denote either H*(Q7;R) (H*(Q7; R)) for a scalar function or H*(Q*1;R")
(HS(S27; R™)) for a vector-valued function, and we denote the H*(Q2%) norm by

[wls,+ = lwlgs@+) and Jwlls,- = lwlzs@-)-

The H*(I") and H*(d$2) norms are denoted by
lwls = [wllgsa@ and |wlsoe = wlaspa)-
For simplicity, we also use ||w||§ 4 and |w|? 4 to denote ||w+||§ L+ ||w_||2,_ and
lwt|? + |w™|?, respectively; that is,
2 2 -2
lwlf & = w3 5,

2 2 -2
4+t lw and |w|s’i=|w+|s+|w |5
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For s > 1.5, V3 (T) denotes the space
{we L2, T;:L*(QT) |w e L2(0,T; HS(QT) N L%, T; H~ 1> (QT)))
with associated norm
T
ol = s Tw0lgsn + [ 10O ds
t€l0,T] 0

where w can be either vector-valued or scalar-valued. The space V* (T') is defined
slightly differently, namely,

VE(T) = {w e L*0,T; L*(Q7)) |
we L*0,T; H¥(Q7)NL>®0,T; H1(Q))}
with norm
T 2
wlsery = sup To@lai@o+ [ 106 ds.
t€[0,T] 0

As in [4], the energy function is defined as

n
Ec@) = In 13054 + Y 187vl535 ;2 + 107 015 4
Jj=0
(2'1) n+1

T .
IR R + 2 [ VR0 s
Jj=0

We use the notation f* = g% + hT + k™ to mean that
ff=gt+ht and f~=g +k .

3 Trace Theorems

The normal trace theorem states that the existence of the normal trace of a
velocity field w € L?(2) relies on the regularity of divu (see, for example, [8]).
Ifdivw € H! (2)’, then w - N, the normal trace, exists in H0> (0€2) so that

3.1) lw - Nllg-os@ay < ClIwlZ g + IdivwlZ ]

for some constant C independent of w. In addition to the normal trace theorem,
we have the following:

THEOREM 3.1 Let w € L?*(R2) so that curlw € HY(Q), and let 11, 15 be a basis
of the vector field on 0R2; i.e., any vector field u can be uniquely written as u®*t,.
Then

32w talg-os@e) < ClIlwl7zq) + leulwlf gy ] =12,

for some constant C independent of w.
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PROOF: Given ¢ € H%3(9R), let ¢ € H () be defined by
Apy =0 in Q,
¢o = (N X 1o)¥ on dL2.
Then

/(w'fa)WdS :/curlw-qﬁadx—/cur](pa.wdx
and hence

[ w0 ds| = Clluwl gy + et wlin oy 1alina
o

< C[”w”iz(g) + leurl wll g1y 1V | o5 o)

which implies the desired inequality. O

Combining (3.1) and (3.2), we have the following:

(33)  lwlg-ospg) < Cllwlr2q) + Idivwlgiqy + lcurlw| g1 (qy]

for some constant C independent of w.

4 The Regularized «-Problem

Let Q' be an open subset of Q so that QT € Q' € Q. In the following
discussion, we will use M+ : H>>(QT) — H>>(RQ) to denote a fixed bounded

extension operator (from the plus region to the whole region) so that M Tv = 0 in
Q¢ forallv € H>>(Q™).

Let vt be the Lagrangian velocity in the plus region T, and let ve = M Tv™
denote the extension of v to Q.

Following definition 2.2 in [4], we define v, to be the smoothed velocity field
obtained via horizontal convolution by layers of v..

Let n, = Id + f(; Vi (s)ds be the Lagrangian coordinate (or flow map) of vy,
and define the Jacobian determinant J, = det V), the cofactor matrix a, =
Cof(Vn,). Let n, denote the outward unit normal to the smoothed surface 7, (¢, I').

The smoothed «-problem is then defined as

t
(4.12) ne =Id+/ ve(s)ds in [0, 7] x QF,
0
(4.1b) pijxviﬁ + (a,c)f(v_j - ve_j)vji + (a,c){qi =0 in [0, 7] x Q%,
@.10) (@)jvE =0 in [0, T] x QF,

(4.1d) qJr —q = —0Ag(Ne) - Ny — KA()(U+ - Ny) on [0,T] xT,
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@.1e) vt ne=v"-n, on [0,T] xT,
@4.1f) vV -n =0 on [0,T] x 012,
(4.1g) vE©O) = uZ in { =0} x QF,

where g¢ = 7,1 - k,2 is the induced metric on I'. Note that since M * extends
v continuously to the whole domain 2, nf = 7, and n = n, onT.

Remark 4.1. Since MTv = 0in Q”° forallv € H>>(Q), a, = Idand n, = N
on 0€2; therefore, the boundary condition (4.1f) can also be written as v~ - N = 0
where N denote the outward-pointing unit normal of 27~ on 9€2.

S Existence of Solutions for the Regularized «-Problem

5.1 Iteration between the Solution in 2% and 2~

Let (0F7,07,7) € V3°(T) x V43(T) x V3-5(T) /R be given, and let f denote
the horizontal convolution by layers of vt (again, see definition 2.2 in [4]). Define

Ue = MTU}, the extension of 9}, with the associated Lagrangian map 7, =

Id + fot Ue(s)ds and cofactor matrix @, = Jc(Vije)~! where J, = det(Vijc) is
the Jacobian determinant. The normal vector 71, is then defined by
1/2

i, =8 gijkﬁ;jc,ﬂ?ﬁ,z = g_l/z(dx)-i/ Nj.
The process of finding solutions to (4.1) consists of finding solutions to the
following two problems. First, in the plus region Q%, we solve

(5.1a) ptJewt + @e)lr,; =0 in[0,T]x Q7,
(5.1b) (@) wi; =0 in[0,T] x Q7,
(5.1¢) r=q—0oLgz() ne—kAg(w-n,) on[0, T]xT,

(5.1d) w(0) = uaL on {t =0} x Q,

where w = u™ o 7, r = pT o fje, 71 = Id + [ B(s)ds, and

Ay =& "0a[ VB0s5” p).
Once the solution (w, r) to (5.1) is obtained, then in the minus region 27, we solve

(52a)  p[Jevh + @5 — )] + @) g, =0 in[0.T]x Q™

(52b)  (@)jv; =0 in[0,T]x Q"
(5.2¢) v =w-iy on[0,T] x T,

(5.2d) Ve =0 on [0, T] x 0€2,
(5.2¢) v(0) = uy on {t =0} x ,

where v = u~ o, q = p~ 0 Q.
This process introduces the map ® : (vF,97,7) — (w,v,q), and the fixed
points of ® provide solutions to problem (4.1).
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5.2 Estimates for the Solution in 21

The only difference between (5.1) and the one-phase problem studied in [4] is
the presence of the term ¢ in the boundary condition (5.1c). We note that if g is
smooth, then by exactly the same argument as in [4], the solution to (5.1) will also
be smooth, depending on the regularity of the initial velocity u(')" . Therefore, for g
givenin L2(0, T; H3>(27)/R), we replace (5.1c) by

(5.3) r=qge—oLg(n) -ne—«Ag(w-n,) onl,

where g, denotes the horizontal convolution by layers of ¢g. The solution w€ and
r€ to (5.1a), (5.1b), (5.3), and (5.1d) are smooth functions satisfying

t
(5.4) [lwell§ + +/0 [r€l3 s+ + lwe 'ﬁxlg,ilds =
N(uo) + C(k, vV, q) /1,

where C(k, ", 7) denotes a constant that depends on ||l')+||VJsr_5(T), 14 1ly3.5¢7)
and «. Note that although this constant depends on p™ as well, we omit this de-

pendence in the estimate since it is a constant.
The divergence and curl estimates as in [4] can also be carried out so that

t
(5.5 feurlwé|2s , + [divws|2s, < Nwo) + Cle,5") /0 €12 5. ds

for some constant C(k, o+) independent of the smoothing parameter €. Estimates
(5.5) and (5.4) imply that

t t _ t s
1wt s ds = Vo) + C ) [ [ e R 4 ds'ds,
0 o Jo
and the Gronwall inequality implies that
t
(5.6) /O lwé)55.4 ds < Cle.ug . 5.V

By studying the elliptic problem for 7€ with the Dirichlet boundary condition (5.3),
we find that

t
(5.7) / ) 135.4 ds < Cle.ug . 97, V1.
0
Equation (5.7) implies that w¢ € L2(0, T; H?->(Q27)) and by interpolation,
(5.8) sup_ w17 4 =< lug 3.4 + Cle.ug . 55 .PVT.
tel0,T

(5.8) further implies that
(5.9) 17113+ < N(uo) + Clk.8.ug . vF.9)v1 +8]13113 .
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€12 €112
It also follows from (5.1a) that ||w} ”vi5(T) shares the same bound as ||r ||V3»5(T)’
ie.,
(5.10) |wEl135.5 (7 < N(uo) + Clee.8,ug . 55,9 V1 + 811415,
V+ (T) ’

These e-independent estimates enable us to pass to the limit € — 0 and obtain the
solution (w, r) to the problem (5.1) with the estimate

(511) ||w||]2/_5~_5(T) + ||wt”$;-2|-5(T) + ||r||$)§|-5(T) S N(u()) + CIC,S\/T_'_ 8||q||%,—’

where Cy s is the shorthand notation for C (k, 8, u(’;, T, ).

5.3 Estimates for the Solution in 2~
We will set up an iter_ative scheme in~order to obtain the existence of a solution
to problem (5.2). Let 4} = J:'(ay);. For a given w € V43(T) with v, €
V2:5(T), we solve first
(5.12a) ARl q )6 = —p~ AFop JASW
o AAL G o), i @
(5.12b) A gt = —p~[we -fie + (W — D) - iy
+ AS@™ -5 ywhyil]  on T,
(5.12¢) Alq it = p~ [0 i AS (07 — 07 yw',Al] on Q.
We substitute the solution g of (5.12) into (5.2a) and solve the transport equation
p[Tevh + @b~ =57l + @ofq; =0 inQ
v(0) =u, nQ .

Suppose that we can prove that v has the same regularity as v; then a fixed point of
the map W : w — v provides a solution to problem (5.2).

We note that in this iterative scheme A is always fixed with the estimate

(5.13) Id — A(t)lla.5,- < CETVE

2
Vi2(T)

by assuming that 7" is small enough (so that C(v)T is small), it follows from

for some constant C depending on || || but independent of x. Therefore,

elliptic regularity (see, for example, [5]) that

2 -2 2 2
lgll55,— = Clllwll3s— + lwellz5,4 + wllz5 4],

2 -2 2 2
lgllz.5— = Cllwllz.s— + llwelly 5,4+ + wllis+]-
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Combining these two estimates and (5.11), by interpolation we find that
19135507y < No) + Ces VT + 81115
+ CT[HID”\Z;i.S(T) + ”u_)t”]z;g.S(T)]-
For the regularity of v, we mimic the divergence and curl estimates as in [4]. In
Q7
(5.16) (eije ASv %), + A0 = 077) (e ASvFF) . = B (v)
: ik ) r e ijkAjV e ) s

where

(5.15)

B'(v) = e[ ALD L ASv K + AS(077 — 5, ") AL vk
OIS s —k
_ Aj [Ai(v r_ v, r)],gv’S ]
—r s~k _ gl rsie—r _ =—r\, —k
sAjU S = AT AT (0 =V, v ],

_ 14~
—Sijk[ArvK,s iV

a function of Vv, Vv, and V1, where we use the identity /Iﬁfff, s = ffj fff,s. Let ¢
be the solution to B . _ . )

& =457 = v )] e &
i.e., ¢ is the flow map of the velocity field AT (3 — ¥e), then
5.17) sl-jkfffv_ek = [curluo + / Bi(v) o Eds] ) E_l.

’ 0
Since
t _ t
[/ K(Z(y,s), s)ds] ol (x,t) = / K((x,s —1),5)ds,
0 0

(5.17) implies
t

(5.18) el-jkfffv,_ek(x, t) = (curlug) o Z_l(x,t) + / B'(v) o E(x,s —t)ds.
0

We use (5.18) as the fundamental equality to proceed to vorticity estimates in 2.

Since ||§(t)||ﬁ.5,_ < My + CT”{)_”iiS(T) = C(v7), (5.18) implies that

t
(5.19) [|curlg, v||§.5,_ <C(") [N(uo) + /0 ||v||i_5’_ ds}.

Transforming back to the domain 7, (27), we find that

t
feur 1By, -y = €| M)+ [ 157,y |

We remark here that the restriction of obtaining higher regularity is mainly due
to the presence of VA in B(v) that comes from the transport term. Boundary
conditions (5.2c) and (5.2d) imply

flu - N”%{4(37‘)K(Q—)) = |lu- N||12‘I4(F;K(I‘)) + Jlu - N”%ﬂ(ﬁ,{(ag)) = C||w||421.5,+‘
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These two estimates and the divergence-free constraint divu = 0 lead to
T
X(T) < Clw|?as.p + CO)|TN(o) + [ X(t)dt |,
V() 0
where X(T) = [ |lu]
plies

%14.5 (e (@) dt. Therefore, the Gronwall inequality im-
! 2 2
/0 12455, -y 45 < [1 + CETIN (o) + Ces VT + 81113, —.

or, equivalently,

T
/0 Il de < [1 + CGOTINGo) + Ces VT + 8113

For T even smaller (so that C(v™)T is small), it follows from (5.2a) that

T 2
f lvell2 5 _ dr
0

T
= C/o [”U”%.s,— + ||q||§_5,_]ds

< N(o) + Ces VT + 81313 - + CTI012a57) + e 132507

Therefore,

(5.20) ||U||12;i.5(7~) + ||Ut||12;g.5(7~) + ||C]||12)3.5(T) =
NGo) + Ces VT + 81315 - + CT[10 13557y + e 3257 -

In the following sections, we will always assume that the initial input g satisfies
llg ||]2/3'5(T) < N(ug) + 1. We can choose a fixed but positive

1
< ——m——,
2(N(uo) + 1)
and let L be the collection of those elements v € L2(0, T; H*>(Q7)) so that
[ ry + 1vel2ascry < No) + 1.

For a fixed ¥ > 0, we choose 7" small enough so that

CesVT + CT[N(ug) + 1] <

N | =

Clearly the map ¥ maps from L into L. Similarly to the proof in Section 5.4,
W can be shown to be weakly continuous in L?(0, T;; H>>(Q27)). Since L is a
closed convex set in L2(0, T; H*>(Q7)), by the Tychonoff fixed-point theorem,
there is a fixed point v of the map W that provides a solution to (5.2). Uniqueness
follows from the fact that (5.2) is linear.
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Remark 5.1. 1t follows from (5.20) that
(5.21) 10105y + 105050y + 1135y < Nuao) + 1.

5.4 Weak Continuity of the Map ®

Let (17,:5, Gm) converge weakly to (0%, 7) in the space L2(0, T; H>>(Q%)) x

L*(0,T; H>>(27)/R), @0y, UpsGm) = (Wi, Vm,gm), and ®(0F,57,7) =

+ -+ nE = ;
(w, v, q). Suppose that J,,, dg,,. and 11, are constructed from v;- accordingly.

By the property of horizontal convolution by layers and the weak convergence,
we have that (75 ,at, , int,) converges to (J.:5,at, i) strongly in [L*°(0, T';
H*>(Q%))]3. Since (wp,, rm) satisfies
/ P T Wi @' dx — / (@] ¢l dx
Q+ Q+
e / 20" (Wi - i) (9 ) p dS
r
-’ / (Gm + L () - i) @)] Ny dS - Vg € H32(QF),
r
and (wy,, rm) are uniformly bounded in
L2(0.T: H™*(Q7)) x L2(0.T: H>* (1)),
it follows that there exists (w, ) so that
[ ot auiel ax - [ ra@iiel ax
Q+ Q+
b [ g i aly i) p dS
r

—o / G+ Le i) - 351@HI Njg' dS Vg € HY2(QF),
r

By the uniqueness of the solution to the linearized problem, W = w. A similar
argument shows that the solution (v, ¢s,) to problem (5.2) with all the fixed co-
efficients constructed from v,, converges weakly to (v, ¢), the solution to problem
(5.2). Therefore, the weak continuity of the map & is established.

5.5 Fixed-Point Argument

The only thing we need to check is that if there is 7 > 0 and a closed convex set

K C L*0,T; H>?(Q7)) x L?(0,T; H*>(Q7)/R) x L*>(0,T; H>*(Q7))
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so that ® maps from K into K. Let K be defined as the collection of those elements

(wE,q) € L2(0,T: H>>(Q1)) x L2(0,T; H*>(Q7))
x L?(0,T; H>*(Q7)/R)

so that

i

|w + Jlw | < N(uo) + 1,

2 2
V3i2(T) V3i2(T)
w135y + 1wy 3257y + 1403057y < NGuo) + 1.

Recall that § is fixed from the previous section. Similarly to the proof in the previ-
ous section, we choose 7' > 0 small enough so that

1
Ces VT + T(N(uog) + 1) < >

Then by estimates (5.11) and (5.21), the map ® indeed maps from K into K.
Therefore, the Tychonoff fixed-point theorem implies the existence of a fixed-point
(v,q) of .

Remark 5.2. This T is k dependent.

Remark 5.3. Once a solution to problem (4.1) is obtained, without loss of general-
ity, we may assume that the pressure and its time derivatives satisfy the Poincaré

inequality (5.22): let
qg=-—= qTdx q dx ).
€2
Q+

Since ¢ and ¢~ is uniquely determined up to the addition of a constant (constant
in space), we can replace g7 and g~ by ¢t — g (= O )andg™ —g(= Q")

(5.22) 1013+ =101 <CIVOI =CIVOI ..

5.6 Estimates of the Divergence and Curl of the Velocity Field
Divergence and Curl Estimates

In Q7F, we can apply exactly the same technique as in [4] to conclude the fol-
lowing lemma.

LEMMA 5.4 (Divergence and Curl Estimates in Q") Let L1 = curl and L, = div,
and let no := n(0) and

My = P(lug 2.540+ IT13.540 Ve llug 15430+ VKT 1430)
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denote a polynomial function of its arguments. Then for j = 1,2,

n+1
sup (Vi Lint O3 synr + Y, sup IL;3n O} 540 st
t€[0,T] k= 0ze[OT

n+1

5.23
(5.23) +Z/ IVRL O 12 5 gy de

<My +CTP( sup El(t)).
t€l0,T]

Similarly to the way of obtaining (5.19), the following lemma is valid as well.

LEMMA 5.5 (Divergence and Curl Estimates in Q7) Letn, Ly, and Ly be defined
as those in Lemma 5.4, and

My = P(|ug 12.54n0,— IT13.54n VKlug 11.5+30,— VK| T|1430)-
Then for j = 1,2,

n+2
(524) D sup LjoFvT (O3 sppp— < My + CTP( sup Ec(1)).
k=1 t€[0,T] te[0,T]

H~%5_Estimates for v 77¢ on the Boundary I' and 9 €2
By (4.1b),

L.tk
(curl vttt) = gljk[[ (alc) ]vnt V) (aKtl)J vt € (alct)] 10

— (@143 ™ = v k), ] in 2,
divoi, = (SK Aﬁ)vm ¢ (Attt)l{v, il 3(Att)j i v
—3(A)vE, in QF .

Since v, € L%(0, T; H'>(Q%)) (with k-dependent estimate), both curl vE, and
div vtitt are in L?(Q%) and hence by (3.3), ||vtitt||H_0_5(aQi) exists. For ¢ €
HY(Q),
1o, - @dx <& 8¢ — (@o)fvk, o' Ny dS
CurlVypp - p aX = €jjk [67 — (@) lvgs 9" Ne
Q- 19
—ee [ 4@ =kl Nods
R~

+ CP(Ec()ell1,~-
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Since a, = Id and v, = 0 outside ', we find that

&ijk / Af (ae)y(v " — ve_r)vt_t]}(piNs ds

0~
= 8ijk|:/ Afa/g,c[n,c “(vg — v_)]vt_t]fggoi ds + /(v_ . N)v,_t]fjgoi dS]
r o
=0,
where we use the boundary condition (4.1¢) and (4.1f) with v, = vt onT to

conclude the last equality. Therefore,

/ curlv,,, @ dx
o

< ek / 8¢ — () 0k ¢ dS + CP(Et) ol -
r

< Clt|vert|—0.5+ + P(EcO)]lell,-,
which implies
leurl vy, g1 @-y = Cltlviel-0.5.+ + P(Ec(1))]-
Similarly,
||curl Uttt I @+y < C[[|U;l;t|—0.5,j: + P(Ex(1))],
[|div U?;t ”Hl(Q:I:)/ < Clt|veee “H—O.S(ag:l:) + P(E(1))].
Therefore, by (3.3),
+ + . + +
il g—ospq+) = Cllilviz L2 + Idiv i, llgi@y + lleurl vl g1 @yl
< CT vzl g-ospa+) + CP(EcQ)).
It then follows from choosing 7" > 0 small enough that
(5.25) [Vtte]—-0.5,+ + [V l—0.500 < CP(Ec(?)).

6 Estimates for Velocity, Pressure, and Their Time Derivatives
at Timet =0

In this section, we estimate the time derivatives of the velocity and pressure at
the initial time ¢t = 0. We use wg, k = 1,2,3, and g4, £ = 0,1, 2, to denote
8'; v(0) and afq(O). Let ¢, be defined by

(6.1a) [T al (T aFpe) il j =0 inQ*,
(6.1b) o = —0Lg(ne) - ne —kAo(v-ng) onT,
(6.1¢) O =0 on 0€2,

and let the quantities ¢, @1, and @, be defined by ¢, (0), @«:(0), and @, (0),
respectively.
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Let q;r and ¢, denote the initial pressure ¢(0) in QT and Q~, respectively;
then q(‘)" and g satisfy

1 .
(6.2a) —p—+A(qo+ —p0)=f" in QF,
1
(6.2b) —p—_Aqa = f- inQ~,
1 dgt
(6.2¢) —+aq—]\‘; = —wf-N on 9Q+,
p
1 dqy _ _ _
(62d) p—_m = (—wl + V(ve—(o)_ug)uo) -N ondQ2 s

where f* = (Vu(:)t)T : Vu(:)t, and N denotes the unit normal of I" from 7 into
QT, or the outward unit normal of 9S2.

Remark 6.1. The right-hand side of (6.2b) is in fact /'~ — (v. (0) —uy) - Vdivug,
while the last term is O by the divergence-free constraint of the initial data.

Forallyy € HY(QT)N HY(Q7) sothat ¥ = ¥~ on I', we have

1 1
= [ Vs~ o0 vwax+ - [ vay-vyax
Q+ Q-

(63) = / f+w dx + / f_w dx — /(wl_ -N _vve—(O)—uo_l'{O_)w ds
Qt Q-

Q

— f(w;f —w] + Vo) - Ny dS.
r
Since [v - 1]+ = 0and vt -1, = 0 on 3<2, it follows that
wfr -N + u(J{ N (0) =wy - N 4+ug -ne(0) onT,
w; N =0 on 9%,
and hence (6.3) implies

1 1 _
F/ngr'vwdx‘i‘p—_/v(% —¢o) -V dx
Qt Q-

=/f+1/fdx+/f_de

(6.4) e+ @

4 / [F — ug) - ner(0) + Voo - N1y dS
r

+/Vve(0)_uau0_-NW ds.
Q2
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Let Qg = q(;r — @ in QT and Q¢ = qy in 7. Since QJ = Q,onT,
we can use Q¢ (and its difference quotients) as a test function in (6.4). Since

ner(0) = —ggﬂ (Uok,p - N)Idy and [[ve(0)||x,— < Clluollx,+. by the standard
difference quotient technique, for s > 1.5forn =2ors > 1.75 forn = 3,

lgg 117+ + llag — woll3

<CIfIE5«
+ Clug - iier (0) — ug - 1 (0) + Vo 0)—uz g - N + Voo - NI3_; 5

= CP(||u0||§,i) + C(IT 13415 + «luo - N34y 5)-

By the elliptic estimate for ¢ in (6.1) together with (4.1b), we find that for
s>25ifn=2o0rs >2.75ifn = 3,

(6.5) ||w1|| 1,+ + ||QO||S + = CP(””O” |F|s+1 55 ||f”g|| +2, +)

For j = 1,2, the quantities qft and q2i satisfy

1
—iA(qj —goj)— hi—l-k +¢+ in QF,
1 0q;° JH+1 + o \To,+
EOIN —(0; " v)(0) - N + j(Vg;_y) VugN
+2(j = DVqy (Vug, Vug, — Vwi)N + B;  on Q™
where
+ TN ¢ j +
hl 2u0kzw1 o + 2”01{ i%ox ruOlZ Wiy, lu0€ + vqO - Auge + Mi)lc,jqo,ij’
+ ¢ +i +i
h2 3uO/czw2 J + 6uO/< ZMOK rwl 2 3wl/c lwl é

+ 6[Vu0KVu0KVu0K] : Vuo
— 4(VuEVwie) 1 (Vo) = 2(VuE Vuoe) : (Vwie)" + (Vwae) " @ Vuid
+ div[2(Vwie) ' VaF + 2(woKwoK)TVq3E — (Vw1 Vai].
ky = [~k e ()™ —ugugh + vy (0) —wi”ug’;
+ (07 (0) —ug)wi’]
k2 = [Quge jue o — Wi, ) (07 (0) = uof)u + (Vg1 (0) — w3 Yugh;
+ (07 (0) — ugywyl; = 2uf, ;(vg (0) —wiHwih
= 2uf, (077 (0) = ug Ywih + 2005,0) — wiHwi’ ],
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and

$1 = =2V, : V2o — Vo - Auigy.

2 = —4(Vuox Vitoe) : V20 + 2Vwie : Vg — div(Viox Vioe) - Voo
4+ Awq - Voo + 2Auge - Vo1 + 4Vugy : Vz(pl
+2V[(Vuor) ' Ver] : Virgy,

Bi = (v. (0) — MO_)TVMOK(VMO_)TN — (v,;(0) — wl_)TVuaN
— (07 (0) —ug)'Vwr N,

B, = [VuO_(ZVu()KVuOK — Vwi) (v, (0) —ug) + Vuy (v,,,(0) —wy)

+ Vw, (v (0) —ug) = 2(Vug Viror) (Vg (0) —wy)
—2Vw] Vuoe(vg (0) —ugy) —2Vwy (v, (0) — wl_)]N,
where uoe, Wik, and wo are M Tug , MTwi  and MTw | respectively. Anal-
ogously to the estimate of qgc, since on I,
Q;r—‘/’j :qj_ forj =1,2,
[v7(0) = v5 ()] - N' = =2[w1] - 7ier (0) — [neo] - e (0),
[v75:(0) = v, (0)] - N = =3[wa]x - 71 (0) — 3[w1]k - 7ierr (0)
— [uol+ - fir1£(0),
and on 9€2,
v;;(0)-N =v,,0)-N =0,
we find that for s > 2,
lwall?_s « + lg1ll—y « <
CP(lluoll} o IT124 15 Ivkug 1220 1+ IVkw 1741 4)
and for s > 3,
||w3||§—3,i + ||‘12||§—2,i = CP(||u0||?’i, |F|?+1.5 + Kluo - N|?+1.5
+rlw)  NiZios +xlwy - N[E_gs),
where we also use the boundedness of the extension operator M so that

1% ve (0) 15— < Cllwf |12,

7 Pressure Estimates

The estimates for the pressure and its time derivatives are exactly the same
as (12.1) in [4]. In [4], the L?-estimate for the pressure is found by studying a
Dirichlet problem, but in the two-phase problem with fixed outer boundary, the
L?-estimate is not necessary because of the Poincaré inequality. Therefore,

(7.1) lg@)13.5,4 + g @354 + g T 2 < CP(Ee(0))
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for some constant C independent of k.

Remark 7.1. The estimates for ¢—, g; , and q;; require the control of [|[v™ 3.5,
lv; ll2.5,— [lv;;1l1.5,—. and [|v;;,[lo,—, respectively. This is the only reason we need

to include the estimates for 3] v~ in our definition of energy (2.1). Note that we do
not need |7~ ||4.5,— in order to control 37 ¢~

8 «-Independent Estimates

We also make use of the following inequality, which follows from Morrey’s
inequality (see (2.6) in [4]). For U € W12 (T'),

(8.1 |Ue(x) = U(x)| < Ck™V2|VU|,.

Test (4.1) against a function ¢ € H32(QT) N H32(Q™) withg~™ - N = 0
on 012,

(8.2) / pTTevf ol dx + / P [Ty + (@) (7 = v ity dx
Q-+ Q-

+ / (ae)] g™ dx + / (a)]q 9~ dx =0.
Q+ Q-
Similar to the estimates in [4], the k-independent estimates consist of studying the
three time-differentiated problems, three tangential-space-differentiated problems,
and the intermediate problems with mixed time and tangential-space derivatives.
Most of the estimates are the same as those in [4], and in the following sections we
only list those terms that require further study.

Before proceeding, we remark that the energy estimates in [4] can be refined
a bit further. For example, the energy estimate for the third time-differentiated
k-problem ((12.6) in [4]) can be refined as

T
sup [veeel2 + Jore - mel2] + / VKD - ne2 di
t€[0,T] 0

<Mo@B)+6 sup Ec(t) + CTP( sup E(t))
ref0,T] tel0,T]

T
Ol + ols + bills + [ IvRvulsar],
where the difference is that we do not have

C sup [P(lvell3s) + P(lvl3s + P(Inl35)]
t€l0,T]

+CP (” \/Evtt ||12d2(0,T;H2-5(Q)))
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on the right-hand side of the inequality. To explain this refined estimate, we study
the following term:

T
sup [P0 0n)l=(0) [ 1R - mely |V dr
t€[0,T] 0

Since P (v, dn,); € L™(0, T; L'(I")), by the fundamental theorem of calculus,

sup |P(v,0n)|peory < Mo+ CTP( sup Ei(t))
tel0,T] t€[0,T]

and hence

T
sup |P<v,anx)|Loo/ VK830 - nely | /K82 uela di <
t€[0,T] 0

T
§ sup Ec(t)+CTP( sup Ec(t)) +C() / Iav |2 dr.
t€[0,T] t€[0,T] 0

instead of having || v/kv;s ”22(0,T;H2-5(Q)) in the bound shown in [4]. Therefore,
the energy estimates we cite from [4] will have only one polynomial type of term
in the bound: CTP(sup;cfo, 1] Ex(2))-

In this section, we will make use of the following equality, which follows
from (4.1e)

Ny + (U;t - vt_n) = Nerre - (V7 — v+) — 3nese - (v;i- —v;)

(8.3) g
— 3Nyt - (v;; — V).

8.1 Estimates for the Third Time-Differentiated «-Problem

We take three time derivatives of (8.2) and test in space-time with vy, to find
that

T
sien signi sign i J sign sign i
E / /Pag (Jev: ™ Dttt Vegy +[(aK)jq,j lerevss; dxdt
: 0
sign==% Qsign

T
+ [ [ p_[(a,c)j-‘(v_J — ve_J)vjcl]mvt_t’, dxdt =0.
0 o
The terms needing additional analysis are

T . . . .
7= [ [ ook — o ol dxd.
0
J

T ) _ T , ,
L= [ [Waolahaoiiaxar+ [ [1@ofaglui dxdi
0 0
o+ @
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The worst term of Z; occurs when all the time derivatives hit v g, while the other
combinations are bounded by CP(E,). Therefore,

I < fo / p (@) W™ = v vk dx dt + CTP(E,)
o
1T o
= 5/ / p~ (@) W™ — v )il dx dt + CTP(Ey)
0
G-

1T -
=T [ @k Nl as dn+ TPz,
0
iR~

The boundary of 27~ consists of I" and dQ2. On 9%, a, = Id and v, = 0. There-
fore, by (4.11),

[ o @)k (07 — v )Nyl |2 dS = [ (0™ - N)lvese P dS
1 IR
=0.

OnT,sincev, = vt and n,’c = gr 1 2(a,c)j.C Nj, boundary condition (4.1e) implies
that

/ @)k (T — v ) Nilogue 2 dS = / JEer [ e i 2 dS

r r
=0.
Therefore,
(8.4) I < CTP(Ey).

The worst term of Z, occurs when all the time derivatives hit ¢. Therefore,

T
I, < / / (@)l af, vl dxdi + / / (@) a7z, ;v dx dt + CTP(Ey)
0

- ['] / a0l N as = [ o] v dx i

sign==% Qsign

+ CTP(Ee)

=1Ir1 +1os + CTP(Ey).
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For 751, it follows that

T
To1 :/0 /Vgxni[qﬁlvﬁé—qﬁtvﬁ’r]ds dt
I
T
T

+/\/§(q+_q_)ttt(v;';t'n;c)dS}dl.
T

By (8.3) and substituting —o'L g (1) - e — kAo (v - nye)ni for (¢ — g ™), we apply
the estimates as in [4] to obtain

T
I < —[ / \/glcq{_tt[(v+ — V7)) Agrer + 3 - (U — vi)ldsde (= Ix,)
0
r

T
3 / / V&G (0F = 07) e dS dt (= Ini,)
0
r

+8 sup Ei(t) + Mo(§) + CTP( sup E(t))
t€[0,T] t€[0,T1]

+ COIv 1354 + vt 1354 + Inelds. o ]-

Integrating by parts in time, since [./gx (v,Jr — ;) - ngrr)]e € L0, T; LA(T)),
using the same techniques as in [4], we find that

T rr _ _
% z/(; /qtt[VgK(vj__vt)'nKtt]t dsdt
r

t=T

t=0

—/qz_zvgx(vfr—vt_)'"xtt ds
T

<& sup Ei(t)+ Mo(§) + CTP( sup E(2)).
t€[0,T] t€[0,T]

Let the first and the second term of 751, be denoted by 121a1 and 121a2, re-
spectively. Integrating by parts in time,

T
- /0 / aii (B - 0F = ving) + (YEeneo): - 0 — vi)]dS di

r

o1,
3

t=T

—/\/gxq;nm-(v??—v?,)dS :
=
r

0
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By (5.25), [/Zxntxr - (v — vj;)]r € L2(0, T; H=%5(T")). Since ¢;; € L0, T;
HO3(T")), it follows that

t=T

/ &k Nkt (U;i; - vt_,)dS =
t=
T

0

8 sup Ei(t) + Mo(8) + CTP( sup E(t)).
t€[0,T] t€[0,T]

Again by (5.25), we can estimate the first integral of 71, and obtain

(8.5) I21,, =8 sup Ee(t) + Mo(8) + CTP( sup Ec(2)).
t€[0,T] 1€[0,T]

For 751, , integrating by parts in time again,

T
1214, = /0 /‘]t_t[\/a(w_ —v7)- 8?”x + [«/g_/c(v+ - U_)]tnxnt]ds dt
r

t=T

t=0

_/vgxqt_z(v+_v_)'”xtzt ds
T

The second term of 751, can be bounded by C TP (sup,¢[o,7] Ex (¢)) since the in-
tegrand is in L2 (0, T; LY(T")). Since nyrer ~ F1(00)00sr + F2(0n,, 00, ) 0vks,
by the fact that [/gx (v — v7)(F1 + F2(07«, 0vc)dver)]s € L0, T; L*(T))
and H°>(I")-H~%3(T") duality pairing,

t=T
/ vg/cqt_t(v+ — V") Ny dS
T

t=0
< Mo+ [Mo+ CTP( sup Ec()]lq;,(T)lo.5[|0victe(T)| 0.5 + 1]
t€[0,T]

< Mo + Mollq; (D)ll1,~[llvicee (T) 1,4 + 1] + CTP( sup  Ex(t))
t€l0,T]

< Mo(8) +3 sup Ei(t)+ CTP( sup Ec(2)),
t€l0,T] t€l[0,T]
where [|vers(T)|l0,+ < Mo + CTP(sup,epo,7] Ex (7)) and Young’s inequality are
used to obtain the last inequality.
It remains to estimate the first term of ZZlal in order to complete the estimate
of 7»1. We write the first term as

T
—/O /(613 —qi)VE Wt —v7) -9t dSdt (= T3)
T

T
+ / /q?t\/gx(v* —v7)-0tn, dS dt (= 1a).
0
r
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ap
By ner = —gi" (Ui, - nlc)’?lc,ﬂa

T
Iy = _/ /4?2 Vet —v7) i p g (virrra - no)dS di
0
r

T
+/ /qu(anlc, Vi, Myt ) (OVksr - e + 1)dS dt
0
r

where the second integral is bounded by CTP(sup;c[o, 1] Ex(¢)). For the first
term,

T
/ / 0t a0t =) -1 2% Vrrra - n)dS di =
0
r

T
/ /q;?vgx(er A E n,{,ﬂg,‘fﬁ [(Vicres 'n/c),a — (Vietre 'nlc,a)]dS dt.
0
r

It follows from H%>(I")-H ~%>(T") duality pairing and (5.25) that the term with
(Vktt - Ni,o) is also bounded by C TP (sup;¢po, 1] Ex (7))-

Let £ be a nonnegative cutoff function so that suppé C J; suppe; and £ = 1
on I'. Integrating by parts in space, since dI" = ¢, by the divergence theorem,

T
/ /‘I?;Vgx(v+_U_)'nx,ﬂggﬂ(vkttt ‘M) o dS dt
0 r
T
_ / / [E/Ze 0 = v7) - 1 p 2% 0t (erse -m)dS di (= Tan)
0 r
T . .
- f / 4 QT —v7)  ne p 8Pl 1 @) N, dS d
r

T . )
(8.6) =T4 — /0 f (@] [Eafy o 0T —w) -0 pgeP i), dx dt,
Q+

where w is an H?->-extension of v~ to Q7. By (5.25), Z41 can be bounded by
CTP(sup;efo,r] Ex(2)) as well. For the rest of the terms, there are two worst

cases: when the derivative d; hits qf;,a or v.,,,. For the latter case, by inequal-
ity (8.1),

11 (ax {Ullcttt,j - [E(a/c){ v;tt,j]IC”O,-I- < Cxllallz + llveeelln,+-

This inequality together with the “divergence-free” constraint implies

1§ @) Viger, jllo+ < Crcllaels,+ [verell,+ + CP(E()),
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and therefore by Young’s inequality,

T . ;
/(; / 5(Cl/<),!q;’;,a(v+ —w)- Ux,ﬂggﬂ v/lcttt,j dxdt <
Q+

8 sup Ei(t)+ C@O)TP( sup E(2)).
t€l0,T] t€l0,71]

For the former case, we make use of equation (4.1a) to substitute (a,c)f.‘ q x for
v}. Therefore, in this case the worst term is

T .
/0 [ goul@faf; )" = w)- P laokal; e dx di =
Q+

T
f / 00 01 Qi F® dix d,
OQ+

Let O; = (a,c){qttj and F¥ = £(vT —w) - nk,ﬁg,‘?ﬂ. By the definition of
horizontal convolution by layers, we find that

T
/ /aaQiQiKF“dxdz _
OQ+

T
; fo / (00000 p %4 p *4 (0: BN F*(B)dy dr.

[0,1]3

Since (34 0)(9) = ©%9,(Q:(9)),

T
/0 / (820 (B)1p *n p *n (01 (BN F¥(B)dx di =

[0,1]3

1 T T

s [ wlesn@ienrreen©zavar [ rar
[0,1]3

where R = o, [F*(6¢)(©¢)ady Qi (60)] — F*(0)(Og)ep x1, [y Qi (8¢)] and by
inequality (8.1), since

VOi ~ Fi1(0n)veer + F2(0nk, 0v, 0ve) Vg + F3(0n, 00) Vg,

we have

T T
/0 |R|dt < CK/O IE(@)O¢llwr.00 (0,113 [10(Qi (O) | L2(j0,113) 42

< Mo(§)+6 sup E((t)+CTP( sup E(2)).
tef0,T] tef0,T]
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Integrating by parts in space,

T
/ [ 3y 1p *n (01 (002 F (0O, dy di < CTP( sup Ec(1)).
0 0173 t€[0,T]

Combining all the estimates above, we find that

8.7) TZa < Mo(§)+ 6 sup Ei(t) + CO)TP( sup E(2)).
t€[0,T1] t€f0,T]

Now we turn our attention to Z», before estimating Z3. By the “divergence-
free” constraint (4.1b),

/Izzdl > / /qttt (alcttt)] sent +3(alctt)] SIgm

sign= + Qsign

+ 3(an)] v Jdx dr.

As shown in [4], it follows from integrating by parts in time that

T
jo+i +
/(; /(axtt),! vt,]l'qtn dxds <

8 sup Ei(t)+ Mo(8) + CTP( sup E(t)).
tef0,T] t€l0,71]

For the first and the third terms, we follow [4] and obtain

Z / /‘Im [(a:cttz)J sen! +3(a:<z)j :ltg_r}i]dxa’f

sign==% Qsign

=y f [ TN @ @) [0, 0" + 308, 0 gl dx de (= Ta,)

Slgl’l + Q&lgn

= / [ @ @ o 30 1 A de (= Toa,)
sign==+ Quign

+38 sup Ei(t) + Mo(8) + CTP( sup Ei(t))
t€[0,T] tef0,7]

+C(5)|:||U ||25++||U+||35++||77e||45++/0 Vi ||25+ i|

Using the “divergence-free” constraint again yields

I22a = _3 Z / \7 (aK)s Kr (aKtl)/ “gnl + Z(aKl)l/ ilinl]q:itgln d)C d[
(89) sign==+ Q“én

<& sup Ei(t) + Mo(8) + CTP( sup Ei(t)),
t€[0,T] t€[0,T]

where we apply estimates similar to (8.8), again from [4].
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Integrating by parts in time (and space if there is vyss¢ Or vs2), since a, = Id
on 02 and v, = 0 outside Q' (or near 9€2), we find that

T . )
I, < /0 /j,:l(ax);(ak)ij [v:lctttv;sqt; - U:lctttv,tsqtt]Nj dsdt (= I22;,1)
r
T . . .
=3 [ [ g ool ok vital - vk eIy dS di (= Taa,,)
0
r

+68 sup Eelt) + Mo(8) + CTP( sup Ee(1)),
t€0,T] t€l0,T]

where similar estimates for the lower-order terms are obtained as those in [4]. It
follows from (5.25) and (8.3) that

T
B10 Loy, = [ Ioeanl-0sP(E()dr < CTP( sup Eclo).
0 t€[0,T]

T
Iszz = —3[) /«/ ngk_l(a,c); [(v;’;t —v5,,) NGy
r
+(@T =g ), no)]ds di

(8.11) <68 sup Ei(t)+ Mo(8) + CTP( sup E(t)),
tef0,T] t€l0,71]

where we use the boundary condition (4.1c) in the second term and apply the same
estimates as in [4].

For 73, we use the boundary condition (4.1d) in Z5 and obtain

T
h= ‘/ / [0Ag(e) - e + kAo - )] es /8T —v7) - 0fn,c dS dt
o 7
= 131 + 132.

The worst term of Z3 is when the time derivatives hit the highest-order term. Since
T , .
Jo [||\/Ev;;t||%5+ + ||\/Ev;';||%_5’+]dt < E,(T), by Young’s inequality

I3 < CTP( sup Ec(1))
t€l0,T]

(8.12) T
+ /O (81 V/Kv 254 + CONNivE I3 5.4 ]dr.
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Integrating by parts in time,

T
131 = / /U[Ag(ne) ‘nileee /G —07) - BnedSdr (= Ts,)
0
r

t=T
—/O[Ag(ne) )it /8T —v7) - 3n, dS (=T31,).
t=0
T

For Z31,,, it follows from integration by parts (in space) that

T
Ty, <— /0 / 0878 (0 ) e /B —07) - e 8% (Verras - 1c)dS dt
r

+ CTP( sup Ei(t)).
t€[0,T]

By the definition of v, the inequality above implies that

T
Ta1a = ‘/ / a3y (p *1, ) - ] FOY3[35(p %1, v5) - i) o dS dt
0
r

+ CTP( sup E()),
t€[0,T]

where F2V8 = /g,cg,‘fﬂg”‘S (vt —v7) -y g Since F*78 is symmetric in y and 8,
it follows from integration by parts that

1 T
131, = —/ /o(ayv;; ) FO5(95vif - ne)dS dt + CTP( sup Ec(t))
2 Jo J t€[0,T]

and hence

(8.13) T31, < CTP( sup E.(1)).
t€[0,T]

Integrating by parts in space, the worst term of 731, is

—/aF“V‘S(ayvf Ny ) (05 Vkrr “ i), dS.
r

Since F*?% € L2(0, T; L>(I")), integrating by parts in space, we find that

(8.14) T35, <8 sup Ec(t) + CO)llvf 1354 + CTP( sup Ec(r)).
t€l0,T] t€l0,T]
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Combining all the estimates above,

T
2 2 2
sup [||vm||0,i+|v,+,-n|1]+/ ik, - nl? di
t€l0,T] 0

< Mo(§)+6 sup Ei(t) + C(E)TP( sup E,(t))
(8.15) t€[0,T] t€[0,T]

+ c<5>[||vt+||%.5,+ ot R+ Inels s

T
+ /0 Vv i35+ dt]

We also need controls for |v;; - n|;. It follows from inequality (8.1) and the
fundamental theorem of calculus that

lw - (n —ne)|1 < Cx[Mo + CTP( s[up ]Ex(r))nwll 1" a.s.
tel[0,T

Therefore, by (4.1e) and the fundamental theorem of calculus,

[V nli = vz - nieli + v - (0 — i)y
<1 — vy meln + v nel + g - (0 —n)ly
< 20 = v;) e + T = 07) ey + v nhy
+ [ver - (n = n)|1,+
< Mop(8) +8 sup Ei(t)+ CTP( sup Ei(t)) + v -nl;.
te[0,T1] 1€[0,T]

Having this additional inequality, we find that
T
sup [lvucl o+ low -t 1+ [ Vo nil s
t€[0,T] 0

< Mo(8)+68 sup Ec(t) +C@OTP( sup Ei(t))
(8.16) t€[0,T] t€[0,T]

+ c<8>[||vf||§.s,+ L

T
+ /0 IVEv2s.s dt]
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8.2 Estimates for the Second Time-Differentiated «-Problem

Similar to (12.33) in [4], letting £39? act on (4.1b) and testing against £dvy;,
we find that for §; > 0,

T
sup |92y - nIOi—i—[ |ﬁ32u,+,-nk|§,i dt
t€l0,T] 0

(8.17) < Mp(1) +61 sup E(t) + C(61)TP( sup Ek(1))
t€f0,T] t€l0,T]

+C(81>/ N

8.3 Estimates for the Time-Differentiated «-Problem
Let £3%9; act on (4.1b); testing against £3d%v;, we find that for §, > 0,

T
sup |33v-n|g,i+/ |\/E83v,+~n,<|(2),idt
t€l0,T] 0

(8.18) < Mo(82) + 382 sup Ex(t) + C(62)TP( sup E(1))
t€f0,T] t€l0,T]

T
+C(5) / N
0

8.4 The Third Tangential-Space-Differentiated «-Problem
Similar to (12.37) in [4], the study of the boundary condition (4.1d) leads to the
following important elliptic estimate:

8.19)  sup [VknT(O)ZL <Mo+C sup Ec(t)+CTP( sup Ec(1)).
t€[0,T] t€l0,T] t€l0,T]

Let £93 act on (4.1); testing against £03v, by (8.19), we find that for §3 > 0,

T
(820) sup |3*pT -n|% L+ f |Vid*nt ~n,<|g Ldt <
t€[0,T] ’ 0 ’

Mo(63) + 63 sup Ei(t) + C(83)TP( sup Ei(1)).
tef0,T] t€[0,7]
8.5 A Polynomial-Type Inequality for the Energy
and the Existence of Solutions
Combining the div-curl estimates (5.23)—(5.24) and the energy estimates (8.16),
(8.17), (8.18), and (8.20), we find that
E(t) < Mo(8,81,82,83) + (8 + 61C(8) + 82C(81) + 63C(82)) sup E(r)
t€[0,T]

+C(5a81582783)T7D( Sup EIC(t))
t€l0,T]
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Choose § > 0 and §; > 0 small enough so that § + 61 C(§) +62C(81) +3C(82) <
%; then the inequality above implies

(8.21) sup Ex(t) < Mo+ CTP( sup Ei(t)).
t€[0,T] t€f0,T]

Therefore, there exists 77 > 0 independent of « so that

(8.22) sup  E.(1) < 2Mo.
t€[0,7Tq]

This k-independent estimate guarantees the existence of a solution to problem (1.1)
by passing k — 0.

8.6 Removing the Additional Regularity Assumptions
on the Initial Data

In the previous sections, we in fact assume that v is smooth enough so that we
can directly differentiate the Euler equation (4.1b) and test with suitable test func-
tions. This requires higher regularity of the initial data, namely, ug: € H105(Q*)
and ' € H”. As in [4], this can be achieved by mollifying the interface by the
horizontal convolution by layers and mollifying the initial velocity by the usual
Fredrich’s mollifiers.

8.7 A Posteriori Elliptic Estimates
As in [4], by exactly the same proof, we find that for 7" sufficiently small,

(8.23) sup [[T'(@)ls.5 + |vlla.s,+ + [[vells,+] = Mo,
t€[0,T]

where M is some polynomial of My.

9 Optimal Regularity for the Initial Data

In the previous discussion, the existence of the solution requires the initial

data uf € H*5(Q*). We show that this requirement can be loosened to uy €

H3(Q%) and T' € H* in this section, by using the fact that we already have a
solution to the problem.

In this section, we study the problem in the Eulerian framework. To start the
argument, we define the energy function £(¢) first. Let £(¢) be defined by

ED) = [TOR + 1w 0ty + 14 sy + 147 1215t
-2 2 -2
+ [lu; ||H1~5(Q—(t)) + ”u;‘;”L2(Q+(t)) + ”utt”L2(Q—(t))'
Then for the pressure function p*, we have the following estimate:

P M @+ oy + 127 1 @y < CPED).
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The estimates for curl u™ are essentially identical, and the estimates for div u®

are trivial because of the divergence-free constraint (1.1b). Therefore,

S[up | [llcurl u+||12v.12.5(g2+(t)) + [|curl u_||12v.12.5(97(t)) + ”Cur]u?_”§.11(9+(t))
tefo,T

+ |curl ut_”iyl(g—(,))”divu—i_||§.12<5(Q+(t)) + || div u_||12v.12.5(9—(t))

(CAY _ S
+ ”dlvuj_”i]l(g—&-(t)) + ”leMl ”fql(g—(ﬂ)]

< My(6)+ 8 sup E(t)+ CTP( sup E(t))
t€f0,T] t€[0,T]

where Mo(8) = Mo(IT[3. lug (13 4+ llug 13— §).

Remark 9.1. The reason for not analyzing the problem in the ALE formulation is
that in the minus region, the transported velocity a' (v~ — v. ) is only as regular
as VT, which is less regular than the velocity v®. This prevents us from obtain-
ing the estimates for curl v¥ in H%5(Q%). With the Eulerian formulation, the
transport velocity u™ is H3(Q*(¢)), and the analysis goes through.

Note well that 5 is more regular than u (or v) only in the x-problem, wherein
the estimate of the boundary integrals with artificial viscosity « requires that 7, be
as regular as /kv. Therefore, by the identities

d
G romar= [ Gievenona
QE(@) Q+(@)
and
[ ronds, = [ raen.nvzas..
ING) r
we can show, as shown in the previous sections, that
o) [t 122+ ) + e N2y + 1070 - 1G4 + 19ve - n1G ]
tel[0,T

<Mo(8)+6 sup E@)+ CTP( sup &(1)),
t€[0,T] t€l0,T]

9.2)

where the interior estimates are for the Eulerian velocity u® while the boundary
estimates are for the ALE velocity v*.

In addition to |I'(¢)|2, it suffices to establish bounds for |32u® - m|
and |Ju 'mli2(r(t))’

remark here that we use different notation to distinguish the normal on I'" and the

2
HO->(I'(2))
where m denotes the unit outward normal of Q7 (¢). We

normal on I'(¢). In general, n = m o 1.

The bounds for |du - m |i2 T®) follows from the energy estimate (9.2). Since
ufcjm’ = [a}‘vﬂni — af(vimafnv}:i),kni] on~! on I'(r),
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multiplying 74 = (7% /|n.«]) © 7! on both sides by ||§ — al|2.+ ~ O(t), we find
that

|0t - mlL2ray) < ClIBevy - nlo + 19 = 07 )0’ o]

(9.3) + CTP( sup &£(1))
t€[0,T]
<Mo(8)+6 sup E@)+ CTP( sup &(1)).
t€[0,T] t€l0,T]

For the bound of |92u* 'm|%-105(1"(t))’ we first estimate [92v+ '”|%.5~ Similarly

to the a posteriori estimate in [4], by studying the boundary condition
dl(pT —pT)onT-n] =
—[Vee vy + (e g — g ey pnl vl ],
where 7 and g are formed from v, we find that
920 1|5 < Mo(8) + 8[v™13 + C[P(TI3 5. E@)In™ = 1dI3 + | — p7 [3).
[920F - n|F < Mo(8) + 8™ 13 + C[P(TI3 5. E)In™ —1dI3 + | — pi 31,
and hence by interpolation,

sup |0%vT -n|%s < Mo(8) +8 sup E(t) + CTP( sup E(1))
t€l0,T] t€l0,T] t€[0,T]

+ C[”p;l-”%]l(g-i-(t)) + ”pt_Hél(Q—(t))]'
By the elliptic problem
ApE = 2VuE . (VuE)T in QF (1),

Ipi

o = (u?; + Vu?:u:t + Vuiu;t) -n onI(?),

we find that

1P 13 @y = CLIVEE (VST 505 020)

+
+ ”utt + Vutu + Vuut”iz(gi(t))]
(9.4) < Mo(@0)+36 sup E()+CTP( sup &(2)),
te[0,T] t€[0,T]
where we use (9.2) to estimate ||u7; ||i2 @) and Young’s inequality for the other

terms. Therefore,

sup |0%vT -n|55 <My(5)+6 sup E(t)+ CTP( sup E(2)).
t€l0,T] t€l0,T] t€[0,T]
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By a similar argument of obtaining (9.3), we find that

2.+ 2
9.5) tes[l(l)pT]|8 u 'm|H0.5(Q+(t)) =
Mo(8) +8 sup &(t) + CTP( sup £(r)).
tE[O,T] tE[O,T]

The estimate of |0%u~ - m| follows from the boundary condition (1.1d),

2
_ _ O HOS(T @)
as discussed in the previous sections.

It then follows from (9.1), (9.2), (9.3), and (9.5) that
(9.6)  sup [E(t) —|T()|3] < Mo(8) +8 sup E(t)+CTP( sup E(1)).

t€l0,T] t€[0,T] t€l0,T]
. . . . . . 4112 . .
With this estimate in mind, we can estimate || p™|| 2@ty I the same fashion
that we obtained (9.4); we find that || p* |2 satisfies the same inequality.

HZ-S(Q:‘:(I))
Let & be the height function of I'(¢) over I'. By exactly the same argument as

in [4],

sup ()54 < Mo(§) +8 sup E(t)+ CTP( sup E(1))

t€l0,T] t€l0,T] t€l0,T]
and hence
9.7) sup |F(t)|% <Mo(5)+6 sup E()+ CTP( sup E(1)).
t€l0,T] t€[0,T] t€l0,T]

Combining (9.6) and (9.7), by choosing § > 0 small enough, we obtain the
same polynomial-type inequality as (8.21), and therefore there exists a T > 0 so
that

sup E(t) < 2My.
t€l0,T]
This proves the claim of the optimal regularity of the initial data to obtain the
solution to (1.1).

Remark 9.2. The argument in this section can also be used to prove the existence
theorem for the one-phase problem studied in [4] provided the same regularity of
the initial velocity u and the initial interface I" are given.

10 Uniqueness of Solutions

Suppose that (v!,¢') and (v2,¢?) are both solutions to (4.1) (with k = 0,
J = 1) with initial data ug: € HO(Q*)and T € H7. Let n! and n? be defined as

in Section 4 (with associated cofactor matrices a! and a?), and set

4 3
E) = ITONF+ Y 1950/ 12y spe + 2 10567 OI25_y 5.
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By the existence theorem, both £;(¢) and &£,(¢) are bounded by a constant Mg
depending on the data ug and I" on a time interval 0 < ¢ < T for 7" small enough.

Letw = v! —v2, w, = MTw™ with associate flow map ¢, = fot M*Twtds,
and r = ¢! — ¢?. The goal in this section is to show that w = 0 by showing that
the energy function

E@) = [v@)l3+ + vl 5 + + e OIIF &

is actually O for a short time.

10.1 Divergence and Curl Estimates
In QF, v!*+ and v27 satisty

.
ptv 7 +abgy =0 for(v.q) = @'.q" or (v.q) = (2.7

Let g;jra Jr V, act on both sides of the equality above and form the difference of the
two equations; after integrating in time from O to ¢, we find that

pTcurlwt (1) = &k /Ot [(a' - az)ﬁ(vzl)jzj + (@) - 81€]w:,r£j]ds
= eyl @h @) - 8w (1)
ro [ [ =@y - GuadouyJds
Therefore, by [|a?() — 8(t)|l3.54+4 < CT,

sup [leurlw ()34 <CT sup Jwt@®)[3,.
t€[0,T] t€[0,T]

where C depends on My only. By the “divergence-free” constraint a lj v

= 0, we
similarly have

sup [divw* ()34 <CT sup [lwF @3+
tel0,T] t€0,T]

For the divergence and curl estimates in 7, let o' and ©2? denote the La-
grangian velocity in 27, that is,
/=87 =u/ oii/ inQ,
where 1/ is the Eulerian velocity in 7. The same argument as above shows that
(10.)  sup [fleurd B(@)[13 - + [divib ()3, < CT sup [[b(0)]3 .
t€[0,T] t€l0,7T]

1

where @ = ©! — §2. We now convert (10.1) to the inequality with w replacing .
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Let¢/ = (/) Yo (pl) Y and b/ = V¢/ for j = 1,2. Then

n .
et w(®) 3, = 3 Jeie[d' 0t =52 0 21 |5

i=1

n
_ - =1 32\ =272
- 1 5 . —

Y leil@Hrol — 0% 1|,

=1

ln | | | ]
=3 leel®! =2 + @2 = 87" — 02 + w1 -

i=1
< CTt s[l(l)pT] [w*I3 4 + lo@)35,_].

€10,

where we use || (61 =b2)(1)[3 _ = CT sup,ego rylllw* |3 1 + ]3] by studying
the time derivative of b1 — b2. A similar argument shows that

ldivw|?_ < CT sup [lwTl3, + @3 _].
t€[0,T]

lol3- < CT sup [Jw™ll3 4 + [®]5_].
t€[0,T]

Thus for T > 0 small enough, we find that

sup [lleurlw(@®)[3 _ + [divw(®)I3_] < CT sup [lw(®)|3_.
IE[O,T] [G[O,T]

The estimates for the divergence and curl of w; are similar, so we omit them here.
In summary,

sup [fleurl w(D)[|3 4 + Idivw(®)|3 +
t€[0,T]

(10.2) + lleurlwe (O[5 5 + + 1divw: ()55 +]
<CT sup E(1t).
t€l[0,T]
Remark 10.1. We cannot obtain estimate (10.2) by studying the equations for v™
(with the transport velocity) directly, since it also requires the study of ¢ as we
did in the estimates of the «-problem. This requires u (? € H3(Q%) at least.
10.2 Boundary Estimates

First we note that (w, r) satisfies

(10.3a) piwtﬂ + (al)f(vl_ — vg_)j w’zi
+@hlrt = F* in [0, 7] x Q*,
(10.3b) (al){ w’jji = (a? - al)lj v’zjﬂ in[0, 7] x Q%,

(10.3¢) ot —r )y = —(legl"ﬂé‘e’aﬂ +B on[0,T]xT,
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(10.3d) wtny=w" -ny+b on[0,T] x T,
(10.3e) w -np =0 on [0, T] x 02,
(10.3) wE0) =0 in{r =0} x Q%
where

FE =@ - a")i > =) — @)™ —w; )y
+(a® —a")jg7",
B =—0Ag1_o2(n3) + (q*" = ¢*7)(n2 —n),

b= —v¥) (noy—ny).

The main difference between (10.3) and the uniqueness argument for the one-
phase problem (see section 15 in [4]) is for the additional term b. In order to obtain
an estimate similar to (8.21) (except that in the uniqueness proof, we only study
the second time-differentiated problem), we need to estimate the integral

T
/ /r;(wﬁ —w;,)-n1dS dt.
0
r

By (10.3e),
(i —w;)n=by—2w —w;) ny— W —w)ny,.
The only term we need to worry about is the integral with integrand
ra (T =) (2 =)

The worst term of this integral is (after integration by parts in time)

T
_/0 /r;[gl"‘ﬂ(vtl,i g — g (0Zh )2 41dS di
r

t=T

= —/rt_[glaﬁ (v}; '”1)77;”3 — gzaﬂ(vtzjx_ -nz)ng’ﬂ]dS
t=0

r
T
+[) /rt_[gltxﬂ (v}; .nl)n;’ﬂ _ gzaﬂ(vlz,g; .nz)ng,ﬂ]t ds dt.
r

We add and subtract terms to form the integrand in terms of w, né —n2,n1—ny, or
g! — g2. By Young’s inequality, the first term (time boundary term) is bounded by
(8 + C(8)T) sup;epo, 77 E (1), where C(8) depends on § and M. For the second
term (time interior term), the worse term occurs when time differentiating dv;. For
this worst case, we can transform the surface integral to an interior integral using



VORTEX SHEETS WITH SURFACE TENSION AND FLUID VORTICITY 1751

the divergence theorem as we did in (8.6). It follows that

T
/0 /rf[gl""g(v}j; nns g — &P Wi - nan? 4], dS dt
r

<@+ C@B)T) sup E(t).
t€l0,T]

The estimates with the addition of the forcing F', the right-hand side of (10.3c),
and B are already done in [4]. It suffices to show that |0%w - 111]o.s has the same
bound; however, since

|B:i[§s <CT sup E(t)+ Clwlis <@+ C@OT) sup E(1),
t€f0,T] t€l0,T]

by studying the first time derivative of (10.3c), similar to the a posteriori estimate,
we find that

sup [Pw-ni[§s < 5+ C@ET) sup E().
tef0,T] t€l0,7T]

Therefore, with (10.2) we conclude that E(¢) satisfies

sup E(t) <(§+ C(5)T) sup E(2),
t€0,T1] t€f0,T]

which implies for 7 small enough, E(¢) = 0 and hence w = 0. In other words,
we establish the uniqueness of the solution to the problem.
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