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SOLVABILITY AND REGULARITY FOR AN ELLIPTIC SYSTEM

PRESCRIBING THE CURL, DIVERGENCE, AND PARTIAL TRACE OF A

VECTOR FIELD ON SOBOLEV-CLASS DOMAINS
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1. Introduction

1.1. Th main results. Given a Sobolev-class bounded domain Ω Ď R
n and forcing functions f and

g in Ω together with either h or h on BΩ, we establish the solvability and regularity for solutions v
to the following vector elliptic system of Hodge-type:

curlv “ f in Ω ,

div v “ g in Ω ,

with boundary conditions given by either

v ¨ N “ h or v ˆ N “ h on BΩ .

Date: July 31, 2014.
1991 Mathematics Subject Classification. 35J57, 58A14.

1

http://arxiv.org/abs/1408.2469v1


2 C.H. A. CHENG AND S. SHKOLLER

Motivated by the analysis of the free-boundary problems which arise in inviscid fluid dynamics,
we provide a self-contained proof of the following two theorems:

Theorem 1.1. Let Ω Ď R
3 be a bounded Hk`1-domain with k ą 3

2
. Given f , g P Hℓ´1pΩq with

div f “ 0, suppose that

curl v “ f in Ω , (2a)

div v “ g in Ω . (2b)

(1) If h P Hℓ´0.5pBΩq satisfies
ż

Ω

g dx “
ż

BΩ

h dS, and

v ¨ N “ h on BΩ , (3)

then, for 1 ď ℓ ď k, there exists a solution v P HℓpΩq to (2) with boundary condition (3) such that

}v}HℓpΩq ď Cp|BΩ|Hk`0.5 q
”
}f }Hℓ´1pΩq ` }g}Hℓ´1pΩq ` }h}Hℓ´0.5pBΩq

ı
.

(2) If h P Hℓ´0.5pBΩq satisfies h ¨ N “ 0 on BΩ and
ż

Σ

f ¨ N dS “
¿

BΣ

pN ˆ hq ¨ dr if Σ Ď BΩ has piecewise smooth boundary ,

and

v ˆ N “ h on BΩ , (4)

then, for 1 ď ℓ ď k, there exists a solution v P HℓpΩq to (2) with boundary condition (4) such that

}v}HℓpΩq ď Cp|BΩ|Hk`0.5 q
”
}f }Hℓ´1pΩq ` }g}Hℓ´1pΩq ` }h}Hℓ´0.5pBΩq

ı
.

The solution to either problem is unique if Ω is convex or if ℓ ě 2.

Theorem 1.2. Let Ω Ď R
n, n “ 2 or 3, be a bounded Hk`1-domain with k ą n

2
. Then there exists

a generic constant C depending on |BΩ|Hk`0.5 such that for all u P Hk`1pΩq,

}u}Hk`1pΩq ď C
”
}u}L2pΩq ` }curlu}HkpΩq ` }divu}HkpΩq ` }∇BΩu ¨ N}Hk´0.5pBΩq

ı
, (5)

}u}Hk`1pΩq ď C
”
}u}L2pΩq ` }curlu}HkpΩq ` }divu}HkpΩq ` }∇BΩu ˆ N}Hk´0.5pBΩq

ı
, (6)

where ∇BΩu is the tangential derivative on BΩ.
Remark 1.3. The inequalities (5) and (6) play a fundamental role in the regularity theory of the
Euler equations with moving interfaces; see, for example, [9] for the incompressible setting and [10]
for the compressible problem with vacuum. The use of the norm }∇BΩu ¨ N}Hk´0.5pBΩq rather than
}u ¨ N}Hk`0.5pBΩq is crucial, as the regularity of the normal vector to field to BΩ is often worse than
the regularity of the velocity vector u.

On the other hand, if Ω is at least of class Hk`2 then the inequalities (5) and (6) can be replaced,
respectively, by

}u}Hk`1pΩq ď C
”
}u}L2pΩq ` }curlu}HkpΩq ` }divu}HkpΩq ` }u ¨ N}Hk`0.5pBΩq

ı
(7)

}u}Hk`1pΩq ď C
”
}u}L2pΩq ` }curlu}HkpΩq ` }divu}HkpΩq ` }u ˆ N}Hk`0.5pBΩq

ı
(8)

Remark 1.4. Recently, Amrouche & Seloula [5] established the inequality (7) in the Lp framework
and for domains Ω of class C k`1, under the additional assumption that uˆN “ 0 on BΩ. Similarly,
they established (8) for C

k`1-class domains, under the additional assumption that u ¨N “ 0 on BΩ.
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When Ω is very close to a C 8-domain, we can obtain these inequalities for fractional-order Sobolev
spaces, as in the following

Theorem 1.5. Let Ω Ď R
n, n “ 2 or 3, be a bounded Hs`1-domain with s P R such that s ą n

2
,

and let D denote a C 8-domain such that the distance between BD and BΩ in the Hs`0.5-norm is
less than ǫ for 0 ă ǫ ! 1. Then there exists a generic constant C depending only on |BD|Hs`0.5 ,
such that for all u P Hs`1pΩq,

}u}Hs`1pΩq ď C
”
}u}L2pΩq ` }curlu}HspΩq ` }divu}HspΩq ` }∇BΩu ¨ N}Hs´0.5pBΩq

ı
, (9)

}u}Hs`1pΩq ď C
”
}u}L2pΩq ` }curlu}HspΩq ` }divu}HspΩq ` }∇BΩu ˆ N}Hs´0.5pBΩq

ı
, (10)

where ∇BΩu is the tangential derivative on BΩ.

The inequalities (9) and (10) set in fractional-order Sobolev spaces are fundamental to the analysis
of Euler-type free-boundary problems.

1.2. Outline of the paper. In Section 2, we introduce our notation as well as a number of ele-
mentary technical lemmas, whose proofs we include (for completeness) in Appendix A. Section 3 is
devoted to the analysis of the vector-valued elliptic system (28a) with mixed-type boundary condi-
tions (28b) and (28c), which is fundamental to the proof of our two main theorems; in particular,
we prove Theorem 3.5 which establishes the elliptic estimate for (28) when the coefficients are of
Sobolev-class. As a corollary to this theorem, we state in Corollary 3.7 the basic elliptic estimates
for both the Dirichlet and Neumann problems, again with Sobolev class regularity. Finally, for co-
efficients which are close to the identity, we give an improved estimate in Theorem 3.8 for solutions
to (28), which is linear in the highest derivatives of the coefficient matrix. This latter theorem is
essential for estimates in fractional-order Sobolev spaces via linear interpolation.

In Section 4, we prove Theorem 1.2, using the elliptic regularity theory developed for the elliptic
system (28). Then, in Section 5, we prove Theorem 1.1. Our proof relies on some basic geometric
identities involving the mean curvature of BΩ, together with the elliptic regularity theory established
in Section 3. Finally, in Section 6, we prove Theorem 1.5.

1.3. A brief history of prior results. In addition to the recent work of Amrouche & Seloula
[5] noted above, there have been many other methods and results to study such elliptic systems
on smooth domains. The elliptic system (2) can be viewed as a particular example of the systems
studied by Agmon, Douglis & Nirenberg [1], wherein both Schauder-type estimates and Lp-estimates
can be found.

In [15], von Wahl proved that if the normal or the tangential trace of a vector field vanishes, and
for bounded or unbounded Ω, the inequality }∇u}LppΩq ď C

`
}divu}LppΩq `}curlu}LppΩqq is equivalent

to the vanishing of the first Betti number.
Amrouche & Girault [4] derived the Lp-regularity theory of the steady Stokes equation by estab-

lishing the equivalency between the Sobolev space Wm,r and the direct sum of Wm,r by divergence-
free vector fields and the gradients of Wm`1,r functions.

Schwarz [14], studied the Hodge decomposition on manifolds with boundaries and showed that
a differential k-forms can be written as the sum of an exact form, a coexact form, and a harmonic
form.

Bolik & von Wahl [6] derived C α-estimates of the gradient of a vector field whose curl, divergence,
and normal or tangential traces are prescribed. Mitrea, Mitrea & Pipher [13] studied the vector
potential theory on non-smooth domains in R3 with applications to electromagnetic scattering.
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In [2], Amrouche, Bernardi, Dauge & Girault studied the vector potential associated with a
divergence-free vector field satisfying various types of boundary conditions; see also Amrouche,
Ciarlet & Ciarlet Jr. [3].

Buffa and Ciarlet Jr. [7] and [8] established the Hodge decomposition of tangential vector fields
defined on polyhedron domains, and studied the tangential trace and tangential components of
vectors belonging to the space Hpcurl,Ωq :“

 
u P L2pΩ;R3q

ˇ̌
curlu P L2pΩ;R3q

(
.

In [12], Kozono and Yanagisawa proved the decomposition of a divergence-free vector-field as the
sum of the curl of a vector-field and a vector-field which is solenoidal, irrotational and has zero
normal trace.

2. Notation and Preliminary Results

The Einstein summation convention is used throughout the paper. In particular, repeated Latin
indices are summed from 1 to n, and repeated Greek indices are summed from 1 to n ´ 1. For

example, figi “
nř

i“1

figi and fαgα “
n´1ř
i“1

fαgα.

2.1. Hs-domain. In order to make our presentation self-contained, in this section, we collect a
number of useful technical lemmas. These lemmas are well-known when the domains are smooth,
but we shall need these basic results for Sobolev class domains. The proofs will be collected in
Appendix A. For the remainder of this section, when not explicitly stated, s will denote a real
number, while 0 ď k, ℓ will denote integers. We use the term domain to mean an open subset of Rn.

Definition 2.1. Let Ω Ď R
n be a bounded domain, and s ą n

2
` 1 be a real number. Ω is said to be

an Hs-domain, or of class Hs, if there exists a smooth bounded domain O and a map ψ such that
ψ : O Ñ Ω is an Hs-diffeomorphism; that is,

(1) ψ : O Ñ Ω is one-to-one and onto, with differentiable inverse map ψ´1 : Ω Ñ O, and
(2) ψ P HspOq and ψ´1 P HspΩq.

By the trace theorem, ψ|BO P Hs´0.5pBOq and we shall often denote the value of this norm by
|BΩ|Hs´0.5 .

Definition 2.2. For s ą n

2
` 1, a pair pU , θq is called a local chart of BΩ if U Ď R

n is open, and

θ : Rn´1 XBp0, 1q Ñ BΩX U is an Hs-diffeomorphism. The induced metric in the local chart pU , θq
is the p0, 2q-tensor gαβ given by

gαβ “ Bθ
Byα

¨ Bθ
Byβ

,

and the induced second-fundamental form in a local chart pU , θq is the p0, 2q-tensor bαβ given by

bαβ “ ´ B 2θ

ByαByβ
¨ pN ˝ θ´1q ,

where N is the outward-pointing unit normal to BΩ.

Definition 2.3. For s ą n

2
` 1, let Ω Ď R

n be a bounded Hs-domain. We let ∇BΩ denote the

tangential derivative on BΩ. If u : BΩ Ñ R
n is differentiable, then in local chart pU , θq, ∇BΩu is

given by

p∇BΩuq ˝ θ “ B pu ˝ θq
Byα

,
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2.2. Basic inequalities. We now state some basic inequalities, that we use throughout the paper.

Proposition 2.4. For k ą n

2
and 0 ď ℓ ď k, let O Ď R

n be a bounded smooth domain. Then for

all ǫ P
`
0,

1

4

˘
, there exists a constant Cǫ depending on ǫ such that for all f P HkpOq and g P HℓpOq,

ℓÿ

j“1

}DjfDℓ´jg}L2pOq ď Cǫ}f}HkpOq}g}Hℓ´ǫpOq . (11)

Moreover, for some generic constant C ą 0,

}fg}HℓpOq ď C}f}HkpOq}g}HℓpOq @ f P HkpOq, g P HℓpOq . (12)

Remark 2.5. Suppose that s ą n

2
and 0 ď r ď s for some real numbers r and s. Then there exists

a generic constant Cs ą 0 such that

}fg}HrpRnq ď Cs}f}HspRnq}g}HrpRnq @ f P HspRnq, g P HrpRnq . (13)

By the Sobolev extension argument, we also conclude that

}fg}HrpΩq ď Cs}f}HspΩq}g}HrpΩq @ f P HspΩq, g P HrpΩq (14)

if Ω is a bounded smooth domain.

The following two corollaries are direct consequences of Proposition 2.4, and are the foundation
of the study of inequalities on Hs-domains. The proof of these two corollaries can also be found in
Appendix A.

Corollary 2.6. Let O Ď R
n be a bounded smooth domain, and ψ : O Ñ Ω Ď R

n be a Hk`1-

diffeomorphism for some integer k ą n

2
. Define J “ detp∇ψq and A “ p∇ψq´1. Then

}J}HkpOq ` }A}HkpOq ď C
`
}∇ψ}HkpOq

˘
. (15)

Corollary 2.7. Let O Ď R
n be a bounded smooth domain, and ψ : O Ñ Ω Ď R

n be an Hk`1-

diffeomorphism for some integer k ą n

2
. Then for all 0 ď ℓ ď k ` 1,

}f}HℓpΩq ď Cp}∇ψ}HkpOqq}f ˝ ψ}HℓpOq @ f P HℓpΩq , (16a)

}f ˝ ψ}HℓpOq ď Cp}∇ψ}HkpOqq}f}HℓpΩq @ f P HℓpΩq . (16b)

By Corollary 2.7, if Ω is of class Hk`1 with k ą n

2
, f P HkpΩq and g P HℓpΩq, then f ˝ψ P HkpOq

and g ˝ ψ P HℓpOq. As a consequence,

}fg}HℓpΩq ď C}pfgq ˝ ψ}HℓpOq

ď C}f ˝ ψ}HkpOq}g ˝ ψ}HℓpOq ď C}f}HkpΩq}g}HℓpΩq

for some constant C “ Cp|BΩ|Hk`0.5 q. Similar arguments can be applied to show the following two
propositions, and the proof is left to the reader.

Proposition 2.8. Let Ω Ď R
n be a bounded domain of class Hk`1 for some integer k ą n

2
. Then

for all ǫ P
`
0,

1

4

˘
, there exists constant Cǫ depending on |BΩ|Hk`0.5 and ǫ such that for all f P HkpOq

and g P HℓpOq, 0 ď ℓ ď k,

ℓÿ

j“1

}DjfDℓ´jg}L2pΩq ď Cǫ}f}HkpΩq}g}Hℓ´ǫpΩq . (17)
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Moreover, for some constant generic C depending on |BΩ|Hk`0.5 ,

}fg}HℓpΩq ď C}f}HkpΩq}g}HℓpΩq @ f P HkpΩq, g P HℓpΩq . (18)

Proposition 2.9. Let Ω Ď R
n be a bounded domain of class Hk`1 for some integer k ą n

2
, and

ψ : O Ñ Ω Ď R
n be an Hk`1-diffeomorphism. Then for all 0 ď ℓ ď k,

}f}HℓpΩq ď Cp|BΩ|Hk`0.5 q}f ˝ ψ}HℓpOq @ f P HℓpΩq , (19a)

}f ˝ ψ}HℓpOq ď Cp|BΩ|Hk`0.5 q}f}HℓpΩq @ f P HℓpΩq . (19b)

Remark 2.10. Note that Proposition 2.9 implies that the interpolation inequalities on a Sobolev
class domain are still valid if the domain is bounded and has Hk`1 regularity for some integer

k ą n

2
. For example,

}f}H0.5pΩq ď Cp|BΩ|Hk`0.5 q}f ˝ ψ}H0.5pOq ď Cp|BΩ}Hk`0.5q}f ˝ ψ}
1

2

L2pOq}f ˝ ψ}
1

2

H1pOq

ď Cp|BΩ|Hk`0.5 q}f}
1

2

L2pΩq}f}
1

2

H1pΩq .

The proofs of the following two lemmas are similar to the proof of Proposition 2.4, and are left
to the reader.

Lemma 2.11. Let Ω Ď R
n be a bounded Hk`1-domain for some integer k ą n

2
.

1. Suppose that sptpgqĂĂΩ. Then for 0 ă ǫ ă 1

4
and 1 ď ℓ ď k,

››J∇ℓ, fKg
››
L2pΩq

ď Cǫ}f}HkpΩq}g}Hℓ´ǫpΩq , (20)

where J∇ℓ, fKg “ ∇ℓpfgq ´ f∇ℓg.
2. Suppose that ζ is a smooth cut-off function such that

(a) sptpζq Ď U ;
(b) there exists an Hk`1-diffeomorphism θ : Bp0, 1q Ñ U satisfying

(i) θ : B`p0, 1q ” Bp0, 1q X tyn ą 0u Ñ U X Ω;
(ii) θ : tyn “ 0u Ñ BΩ.

Define F “ pζfq ˝ θ and G “ pζgq ˝ θ. Then for 0 ă ǫ ă 1{4, 1 ď ℓ ď k,
››JB ℓ, F KG

››
L2pB`p0,rqq

ď Cǫ}f}HkpΩq}g}Hℓ´ǫpΩq , (21)

where JB ℓ, F KG “ B ℓpFGq´FB ℓG and B “ pB y1
, ¨ ¨ ¨ , B yn´1

q denotes the tangential gradient.

Lemma 2.12. Let Ω Ď R
n be a bounded Hk`1-domain for some integer k ą n

2
. Then for each

integers ℓ P t0, 1u Y
`n
2
, k
‰
, there exists a generic constant C “ Cp|BΩ|Hk`0.5q such that

}fg}HℓpΩq ďC
”
}f}L8pΩq}g}HℓpΩq` }f}HℓpΩq}g}L8pΩq

ı
@f, g PHℓpΩq X L8pΩq . (22)

2.3. Poincaré-type inequalities. We will make use of the following Poincaré-type inequalities,
whose proofs are similar to the proof of the standard Poincaré inequality, and are hence left to the
reader.

Lemma 2.13. Let Ω Ď R
3 be a bounded smooth domain with outward-pointing unit normal N, and

H1
τ pΩq ”

 
u : Ω Ñ R

3
ˇ̌
u P H1pΩq , uˆ N “ 0 on BΩ

(
,

H1
npΩq ”

 
u : Ω Ñ R

3
ˇ̌
u P H1pΩq , u ¨ N “ 0 on BΩ

(
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are the collections of all vector-valued functions so that their tangential components or normal com-
ponent vanishes on the boundary, respectively. Then

}u}L2pΩq ď C}∇u}L2pΩq @ u P H1
τ pΩq , (23)

and
}u}L2pΩq ď C}∇u}L2pΩq @ u P H1

npΩq . (24)

2.4. Commutation with mollifiers. Our proof of elliptic regularity relies on a mollification pro-
cedure (rather than the use of difference quotients).

Definition 2.14. Let ηpxq “ C exp
` 1

|x|2 ´ 1

˘
for |x| ă 1 and η vanishes outside the unit ball, where

C is chosen so that }η}L1pRnq “ 1. The standard mollifier ηǫ is defined by

ηǫpxq “ 1

ǫn
η
`x
ǫ

˘
.

We will make use of the following

Lemma 2.15. For f P W 1,8pΩq and g P L2pΩq with compact support, there is a generic constant
C independent of ǫ such that

››D
`
Jηǫ˙, fKg

˘››
L2pΩq

“
››D

“
ηǫ ˙ pfgq ´ fηǫ ˙ g

‰››
L2pΩq

ď C}f}W 1,8pΩq}g}L2pΩq (25)

for all 0 ă ǫ ă min
 
dist

`
BΩ, sptpfq

˘
, dist

`
BΩ, sptpgq

˘(
.

Since we are dealing with problems on domains with boundaries, we make use of the horizontal
convolution-by-layers operator, introduced in [9]. We define the horizontal convolution-by-layers
operator Λǫ as follows:

Λǫfpxh, xnq “
ż

Rn´1

ρǫpxh ´ yhqfpyh, xnqdyh for fp¨, xnq P L1pRn´1q ,

where ρǫpxhq “ 1

ǫn´1
ρ
`xh

ǫ

˘
, and ρ P C8

0 pR2q is given by ρpxq “ C exp
´

1
|x|2´1

¯
if |x| ă 1 and

ρpxq “ 0 if |xh| ě 1. The constant C is chosen so that
ş
Rn´1 ρdx “ 1. It follows that for ǫ ą 0,

0 ď ρǫ P C8
0 pRn´1q with sptpρǫq Ă Bp0, ǫq. (Here, spt stands for support.)

It should be clear that Λǫ smooths functions defined on R
n along all horizontal subspaces, but does

not smooth functions in the vertical xn-direction. On the other hand, we can restrict the operator Λǫ

to act on functions f : Rn´1 Ñ R as well, in which case Λǫ becomes the usual mollification operator.
Associated to Λǫ, we need the following

Lemma 2.16. For f P W 1,8pRn
`q and g P L2pRn

`q, there is a generic constant C independent of ǫ
such that

››B
`
JΛǫ, fKg

˘››
L2pRn

`q
“

››B
“
Λǫpfgq ´ fΛǫg

‰››
L2pRn

`q
ď C

››f
››
W 1,8pRn

`q

››g
››
L2pRn

`q
(26)

for all ǫ ą 0.

2.5. The Piola Identity.

Lemma 2.17 (Piola identity). Let ψ : Ω Ď R
n Ñ R

n be a diffeomorphism, and raijsnˆn be the
cofactor matrix of ∇ψ. Then

B
Bxj

aji “ 0. (27)

The proof can be found in [11].
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3. Vector-Valued Elliptic Equations

Let Ω Ď R
n denote a bounded domain. In this section, we study a vector-valued elliptic equation

pLuqi “ u i ´ B
Bxj

´
ajk

Bu i

Bxk

¯
“ f i in Ω , (28a)

with special types of boundary conditions, where u “ pu1, ¨ ¨ ¨ , unq and f “ pf1, ¨ ¨ ¨ , fnq are vector-
valued functions, and ajk is a two-tensor satisfying the positivity condition

ajkξjξk ě λ|ξ|2 @ ξ, η P R
n (29)

for some λ ą 0. Since u P R
n, n boundary conditions are needed to solve the system uniquely.

We consider a mixed-type boundary condition given by

u ¨ w “ 0 on BΩ , p28bq

PwK

´
ajk

Bu
Bxk

Nj ´ g
¯

“ 0 on BΩ , p28cq

where w is a uniformly continuous vector field defined in a neighborhood of BΩ which vanishes
nowhere on BΩ, PwK : Rn Ñ R

n is the projection map given by

PwKpv q “ v ´ pv ¨ wq
|w|2 w “

`
Id ´ w b w

|w|2
˘
v . (30)

The condition (28b) specifies the component of the vector u in the direction of w, while (with N

denoting the outward-pointing unit norm of BΩ) the condition (28c) specifies the n ´ 1 components

of the Neumann derivative a
jk Bu i

Bxk

Nj .

Integrating by parts in xj , we find that

´
ż

Ω

B
Bxj

´
ajk

Bu i

Bxk

¯
ϕidx “

ż

Ω

ajk
Bu i

Bxk
Bϕi

Bxj
dx´

ż

BΩ

ajk
Bu i

Bxk
Njϕ

idx

“
ż

Ω

ajk
Bu i

Bxk
Bϕi

Bxj
dx´

ż

BΩ

”
g i` ajk

Bur

Bxk
Nj

wrwi

|w|2
ı
ϕidx`

ż

BΩ

g ¨ w
|w|2 pϕ ¨ wq dx .

The identity above motivates the following

Definition 3.1. Let V “
 
v P H1pΩq

ˇ̌
v ¨w “ 0 on BΩ

(
. A function u P V is called a weak solution

to (28) if

pu ,ϕqL2pΩq `
ż

Ω

ajk
Bu i

Bxk
Bϕi

Bxj
dx “ pf ,ϕqL2pΩq ` xg ,ϕyBΩ @ϕ P V , (31)

where x¨, ¨yBΩ denotes the duality pairing for functions defined on BΩ.

With the help of the Lax-Milgram theorem it is easy to conclude the following

Theorem 3.2. Suppose that ajk P L8pΩq satisfies the ellipticity condition (29), and w is a uniformly
continuous vector field defined in a neighborhood of BΩ which vanishes nowhere on BΩ. Then for
all f P L2pΩq and g P H´0.5pBΩq, there exists a unique weak solution to (28) in V, and the weak
solution u satisfies

}u}H1pΩq ď C
”
}f }L2pΩq ` }g}H´0.5pBΩq

ı
. (32)
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Remark 3.3. Let u P H2pΩq X V be a weak solution to (28). Integrating by parts in xj , we find
that ż

Ω

´
u i ´ B

Bxj

`
ajk

Bu i

Bxk

˘
´ f i

¯
ϕidx`

ż

BΩ

`
ajk

Bu i

Bxk
Nj ´ g

˘
ϕidS “ 0 @ϕ P V .

Since ϕ ¨ w “ 0 on BΩ, we can only conclude (28c).

We next establish the regularity theory for functions satisfying (31).

3.1. The case that the coefficients ajk are of class C
k.

Theorem 3.4. Suppose that for some k P N, Ω Ď R
n is a bounded C

k`1-domain, ajk P C
kpΩq

satisfies the ellipticity condition (29), and w is C k`1 in a neighborhood of BΩ which vanishes nowhere
on BΩ. Then for all f P Hk´1pΩq and g P Hk´0.5pBΩq, the weak solution u to (28) in fact belongs
to Hk`1pΩq, and satisfies

}u}Hk`1pΩq ď C
”
}f }Hk´1pΩq ` }g}Hk´0.5pBΩq

ı
(33)

for some constant C depending on }a}C kpΩq, }w}C k`1pΩq and |BΩ|C k`1.

Proof. The goal is to show that the function u P V satisfying the weak formulation (31) satisfies
(33). We prove by induction and divide the proof into several steps as follows:
Step 1: Suppose that u P HℓpΩq for some 1 ď ℓ ď k ´ 1. Let χ be a smooth function with
sptpχqĂĂΩ, and 0 ă ǫ ă distpsptpχq, BΩq. Define

ϕ “ p´1qℓχ
“
ηǫ˙D

2ℓ
`
ηǫ˙pχuq

˘‰

in which repeated ℓ does not mean summation over ℓ (since the range of ℓ is not 1 to n) but purely
an index. Then ϕ P V ; thus ϕ can be used as a test function in (31). First we note that

pu ,ϕqL2pΩq “
››Dℓηǫ˙pχuq

››2
L2pΩq

. (34)

By the properties of convolution and the Leibniz rule, we find that
ż

Ω

ajk
Bu i

Bxk
Bϕi

Bxj
dx “

ż

Ω

D
“
ηǫ˙

`
ajkDℓ´1pχu iq,k

˘‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx

`
ℓ´2ÿ

r“0

˜
ℓ´1

r

¸ ż

Ω

D
“
ηǫ˙

`
pDℓ´1´rajkqDrpχu iq,k

˘‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx

´
ż

Ω

Dℓ
“
ηǫ˙

`
ajku iχ,k

˘‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx (35)

´
ż

Ω

Dℓ´1
“
ηǫ˙

`
ajkχ,j u

i
,k

˘‰
Dℓ`1

“
ηǫ˙pχu iq

‰
dx .

Using the commutator notation, the first term on the right-hand side of the identity above can be
rewritten asż

Ω

D
“
ηǫ˙

`
ajkDℓ´1pχu iq,k

˘‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx “

ż

Ω

D
“
ajkηǫ˙D

ℓ´1pχu iq,k
‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx

`
ż

Ω

“
D

q
ηǫ˙, a

jk
y
Dℓ´1pχu iq,k

‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx

“
ż

Ω

ajkDℓ
“
ηǫ˙pχu iq,k

‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx`

ż

Ω

pDajkqDℓ´1
“
ηǫ˙pχu iq,k

‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx

`
ż

Ω

“
D

q
ηǫ˙, a

jk
y
Dℓ´1pχu iq,k

‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx ;
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thus after rearranging terms, the ellipticity condition implies that

λ
››Dℓ`1

`
ηǫ˙pχuq

˘››2
L2pΩq

ď
ż

Ω

ajk
Bu i

Bxk
Bϕi

Bxj
dx´

ż

Ω

pDajkqDℓ´1
“
ηǫ˙pχu iq,k

‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx

´
ż

Ω

“
D

q
ηǫ˙, a

jk
y
Dℓ´1pχu iq,k

‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx

´
ℓ´2ÿ

r“0

˜
ℓ´1

r

¸ ż

Ω

D
“
ηǫ˙

`
pDℓ´1´rajkqDrpχu iq,k

˘‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx

`
ż

Ω

Dℓ
“
ηǫ˙

`
ajku iχ,k

˘‰
Dℓ

“
ηǫ˙pχu iq,j

‰
dx`

ż

Ω

Dℓ´1
“
ηǫ˙

`
ajkχ,j u

i
,k

˘‰
Dℓ`1

“
ηǫ˙pχu iq

‰
dx .

The last five integrals on the right-hand side of the inequality above can be estimated using Hölder’s
inequality and the commutation estimate (25), and we obtain that

λ
››Dℓ`1

`
ηǫ˙pχuq

˘››2
L2pΩq

ď
ż

Ω

ajk
Bu i

Bxk
Bϕi

Bxj
dx` C}a}

C ℓpΩq}u}HℓpΩq

››Dℓ`1
`
ηǫ˙pχu iq

˘››
L2pΩq

. (36)

On the other hand, it is easy to see that
ż

Ω

f ¨ϕ dx “ ´
ż

Ω

Dℓ´1
“
ηǫ˙pχf iq

‰
Dℓ`1

“
ηǫ˙pχu iq

‰
dx ď C}f }Hℓ´1pΩq

››Dℓ`1
`
ηǫ˙pχuq

˘››
L2pΩq

. (37)

Summing (34), (36) and (37), we find that
››Dℓpηǫ˙pχuq

››2
L2pΩq

` λ
››Dℓ`1

`
ηǫ˙pχuq

˘››2
L2pΩq

ď C
”
}f }Hℓ´1pΩq ` }a}

C ℓpΩq}u}HℓpΩq

ı››Dℓ`1
`
ηǫ˙pχuq

˘››
L2pΩq

;

thus by Young’s inequality,
››Dℓpηǫ˙pχuq

››2
L2pΩq

` λ
››Dℓ`1

`
ηǫ˙pχuq

˘››2
L2pΩq

ď C

λ

”
}f }2Hℓ´1pΩq ` }a}2

C ℓpΩq
}u}2HℓpΩq

ı
` λ

2

››Dℓ`1
“
ηǫ˙pχu iq

‰››
L2pΩq

which further implies that

››Dℓ`1
`
ηǫ˙pχuq

˘››
L2pΩq

ď C

λ

”
}f }Hℓ´1pΩq ` }a}

C ℓpΩq}u}HℓpΩq

ı
. (38)

Since f P Hk´1pΩq and a P C
kpΩq, the assumption that u P HℓpΩq implies that the right-hand side

of (38) is bounded independent of the smoothing parameter ǫ. Therefore, we can pass ǫ Ñ 0 in (38)
and obtain that

}Dℓ`1pχuq}L2pΩq ď C

λ

”
}f }Hℓ´1pΩq ` }a}

C ℓpΩq}u}HℓpΩq

ı

or

}χDℓ`1u}L2pΩq ď C

λ

”
}f }Hℓ´1pΩq `

`
}a}

C ℓpΩq ` λq}u}HℓpΩq

ı
. (39)

This implies that u P Hℓ`1
loc pΩq. In particular, since u P H1pΩq by the nature of being a weak

solution, we must have u P H2
locpΩq; thus we can integrate the weak formulation (31) by parts and

find that ż

Ω

”
u ´ B

Bxj

´
ajk

Bu
Bxk

¯
´ f

ı
¨ ϕ dx “ 0 @ϕ P C

8
0 pΩq .

The above identity implies that

u i ´ B
Bxj

´
ajk

Bu i

Bxk

¯
“ f i a.e. in Ω. (40)
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Step 2: Assume that u P HℓpΩq for some 1 ď ℓ ď k ´ 1. Let tUmuKm“1 denote an open cover of Ω
which intersects the boundary BΩ, and let tθmuKm“1 denote a collection of charts such that

(1) θm : Bp0, rmq Ñ Um is a C 8-diffeomorphism,
(2) detpDθmq “ 1,
(3) θm : Bp0, rmq X txn “ 0u Ñ Um X BΩ,
(4) θm : B`

m ” Bp0, rmq X tyn ą 0u Ñ Um X Ω.
(5) }∇θm ´ Id}L8pBp0,rmqq ! 1.

Let 0 ď ζm ď 1 in C 8
0 pUmq denote a partition of unity subordinate to the open covering Um; that

is,

Kÿ

m“0

ζm “ 1 and sptpζmq Ď Um @m.

Define a vector-valued function ϕ by

ϕi “ p´1qℓ
“rζm rwi

mΛǫB 2ℓΛǫprζmrum ¨ rwmq
‰

˝ θ´1
m “ p´1qℓ

“rζm rwi
mΛǫB 2ℓΛǫprζmruj

m rwj
mq

‰
˝ θ´1

m ,

where rζm “ ζm ˝ θm, rwm “ w ˝ θm, Λǫ is the horizontal convolution operator, rum “ u ˝ θm, and
B denotes the tangential gradient; that is, B “ pB y1

, ¨ ¨ ¨ , B yn´1
q. Since ϕ ¨ w “ 0 on BΩ, ϕ P V and

can be used as a test function. The use of ϕ as a test function in (31) implies that

pu ,ϕqL2pΩq `
ż

Ω

ajk
Bu i

Bxk
Bϕi

Bxj
dx ď C

”
}f }HℓpΩq ` }g}Hℓ´0.5pBΩq

ı››B ℓΛǫprζmrum ¨ rwmq
››
H1pB`

mq
,

where B`
m “ Bp0, rmq X tyn ą 0u. Similar to (34), it should be clear that

pu ,ϕqL2pΩq “
››B ℓΛǫprζmrum ¨ rwmq

››2
L2pB`

mq
,

so now we proceed to the second term on the left-hand side.
Let A “ p∇θmq´1 and brs “ pajk ˝ θmqAs

kA
r
j . We claim that brs satisfies the ellipticity condition.

In fact, since }∇θm ´ Id}L8pB`
mq ! 1, we find that

brsξrξs “ pajk ˝ θmqAs
kA

r
jξrξs ě λ|ATξ|2 ě λ

2
|ξ|2 . (41)

Making change of variable formula x “ θmpyq and then integrating by parts, we obtain that

ż

Ω

ajk
Bu i

Bxk
Bϕi

Bxj
dx “

ż

B
`
m

brs
B ru i

m

Byr
Bϕi

Bys
dy

“
ż

B
`
m

B ℓΛǫ

`
brsrζmrum,s ¨ rwm

˘
B ℓΛǫprζmrum ¨ rwmq,r dy

“
ż

B
`
m

BΛǫ

`
brsB ℓ´1prζmrum ¨ rwmq,s

˘
B ℓΛǫprζmrum ¨ rwmq,r dy (42)

`
ℓ´2ÿ

k“0

˜
ℓ´1

k

¸ż

B
`
m

BΛǫ

`
B ℓ´1´kbrsBkprζmrum ¨ rwmq,s

˘
B ℓΛǫprζmrum ¨ rwmq,r dy

´
ż

B
`
m

B ℓΛǫ

`
brsru i

mprζm rwi
mq,s

˘
B ℓΛǫprζmrum ¨ rwmq,r dy .
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For the first term on the right-hand side of (42), as in Step 1 we use the commutator notation, and
find that ż

B
`
m

BΛǫ

`
brsB ℓ´1prζmrum ¨ rwmq,s

˘
B ℓΛǫprζmrum ¨ rwmq,r dy

“
ż

B
`
m

B
“
brsΛǫB ℓ´1prζmrum ¨ rwmq,s

‰
B ℓΛǫprζmrum ¨ rwmq,r dy

`
ż

B
`
m

`
B JΛǫ, b

rsKB ℓ´1prζmrum ¨ rwmq,s
˘
B ℓΛǫprζmrum ¨ rwmq,r dy

“
ż

B
`
m

brsB ℓΛǫprζmrum ¨ rwmq,s B ℓΛǫprζmrum ¨ rwmq,r dy

`
ż

B
`
m

pB brsqΛǫB ℓ´1prζmrum ¨ rwmq,s B ℓΛǫprζmrum ¨ rwmq,r dy

`
ż

B
`
m

`
B JΛǫ, b

rsKB ℓ´1prζmrum ¨ rwmq,s
˘
B ℓΛǫprζmrum ¨ rwmq,r dy ;

thus (41) and the commutation estimate (26) suggest that
ż

B
`
m

BΛǫ

`
brsB ℓ´1prζmrum ¨ rwmq,s

˘
B ℓΛǫprζmrum ¨ rwmq,r dy

ě λ

2

››B ℓΛǫ∇prζmrum ¨ rwmq
››2
L2pB`

mq
´ C}u}HℓpΩq

”››B ℓΛǫprζmrum ¨ rwmq
››
H1pB`

mq
` }u}HℓpΩq

ı
.

For the remaining terms on the right-hand side of (42), we apply Hölder’s inequality and find that

ℓ´2ÿ

k“0

˜
ℓ´1

k

¸ ż

B
`
m

BΛǫ

`
B ℓ´1´kbrsB kprζmrum ¨ rwmq,s

˘
B ℓΛǫprζmrum ¨ rwmq,r dy

´
ż

B
`
m

B ℓΛǫ

`
brsru i

mprζm rwi
mq,s

˘
B ℓΛǫprζmrum ¨ rwmq,r dy (43)

ď C}u}HℓpΩq

”››B ℓΛǫ∇prζmrum ¨ rwmq
››
L2pB`

mq
` }u}HℓpΩq

ı
,

where C depends on }a}C ℓpΩq, }w}C ℓ`1pΩq and |BΩ|C ℓ`1pΩq. As a consequence, by Young’s inequality
we conclude that

››B ℓΛǫprζmrum ¨ rwmq
››2
L2pB`

mq
` λ

››B ℓΛǫ∇prζmrum ¨ rwmq
››2
L2pB`

mq

ď Cδ

”
}u}2HℓpΩq ` }f }2Hℓ´1pΩq ` }g}2Hℓ´1.5pBΩq

ı
` δ

››B ℓΛǫ∇prζmrum ¨ rwmq
››2
L2pB`

mq

which, by choosing δ ą 0 small enough, further suggests that
››B ℓΛǫprζmrum ¨ rwmq

››
H1pB`

mq
ď C

”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` }u}HℓpΩq

ı

for some constant C “ Cp}a}C ℓpΩq, }w}C ℓ`1pΩq, |BΩ|C ℓ`1q.
Since the estimate above is independent of the smoothing parameter ǫ, by passing ǫ Ñ 0 we

conclude that
››rζmB ℓprum ¨ rwmq

››
H1pB`

mq
ď C

”
}u}HℓpΩq ` }f }Hℓ´1pΩq ` }g}Hℓ´1.5pBΩq

ı

or by the smoothness of w and θm,
››rζm rwm ¨ B ℓrum

››
H1pB`

mq
ď C

”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` }u}HℓpΩq

ı
. (44)
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Step 3: Estimate (44) only provides a control on the vector rζmB ℓ
∇rum in the direction of w. Now

we proceed to the estimates of the component of rζmB ℓ
∇rum perpendicular to w. Define

ϕi “ p´1qℓ
”
rζmΛǫB 2ℓΛǫprζmru i

mq ´
`rζm rwm ¨ ΛǫB 2ℓΛǫprζmrumq

˘ rwi
m

|rwm|2
ı

˝ θ´1
m

“ p´1qℓ
”
rζmΛǫB 2ℓΛǫprζmru i

mq ´
`rζmΛǫB 2ℓΛǫprζmruj

mq
˘ rwj

m rwi
m

|rwm|2
ı

˝ θ´1
m .

We note that ϕ is the projection of the vector rζmΛǫB 2ℓΛǫprζmrumq onto the affine space with normal
w, and so ϕ P V and can be used as a test function. Using ϕ as a test function in (31), a similar
computation suggests that

››B ℓΛǫprζmrumq
››2
L2pB`

mq
` λ

4

››B ℓΛǫ∇prζmrumq
››2
L2pB`

mq

ď Cδ

”
}f }2Hℓ´1pΩq ` }g}2Hℓ´1.5pBΩq ` }u}2HℓpΩq

ı
` δ

››B ℓΛǫ∇prζmrumq
››2
L2pB`

mq

` p´1qℓ`1

ż

B
`
m

brsru i
m,s

”`rζmΛǫB 2ℓΛǫprζmruj
mq

˘ rwj
m rwi

m

|rw|2
ı
,r
dy

ď Cδ

”
}f }2Hℓ´1pΩq ` }g}2Hℓ´1.5pBΩq ` }u}2HℓpΩq

ı
` 2δ

››B ℓΛǫ∇prζmrumq
››2
L2pB`

mq

` p´1qℓ`1

ż

B
`
m

brs

|rw|2
rζm rwm ¨ rum,s

`
ΛǫB 2ℓΛǫprζmruj

m,rq
˘
rwj
m dy

ď Cδ

”
}f }2Hℓ´1pΩq ` }g}2Hℓ´1.5pBΩq ` }u}2HℓpΩq

ı
` 3δ

››B ℓΛǫ∇prζrumq
››2
L2pB`

mq

´
ż

B
`
m

brs

|rw|2 B ℓprζmrum,s ¨ rwmq
`
ΛǫB ℓΛǫprζmruj

m,rq
˘
rwj
m dy .

Applying estimate (44) and Young’s inequality,

´
ż

B
`
m

brs

|rw|2 B ℓprζmrum,s ¨ rwmq
`
ΛǫB ℓΛǫprζmru j

m,rq
˘
rwj
m dy

ď C
››B ℓprζm rwm ¨ ∇rumq

››
L2pΩq

››B ℓΛǫprζm∇rumq
››
L2pΩq

ď Cδ

”
}f }2Hℓ´1pΩq ` }g}2Hℓ´1.5pBΩq ` }u}2HℓpΩq

ı
` δ

››B ℓΛǫprζm∇rumq
››2
L2pΩq

;

thus by choosing δ ą 0 small enough, we conclude that

}B ℓΛǫprζmrumq}2
H1pB`

mq
ď C

”
}u}2HℓpΩq ` }f }2Hℓ´1pΩq ` }g}2Hℓ´1.5pBΩq

ı
.

Again, due to the ǫ-independence of the right-hand side, we conclude that

}rζmB ℓrum}H1pB`
mq ď C

”
}u}HℓpΩq ` }f }Hℓ´1pΩq ` }g}Hℓ´1.5pBΩq

ı
(45)

for some constant C “ Cp}a}C ℓpΩq, }w}C ℓ`1pΩq, |BΩ|C ℓ`1q.
Step 4: Multiplying (40) by ζm and then composing with θm, by the Piola identity (27) we obtain
that

rζmrum ´ rζm
`
brsrum,s

˘
,r “ rζmpf ˝ θmq a.e. in B`

m .

Letting B ℓ´1´j
∇j act on the equation above, we find that

rζmbrsB ℓ´1´j
∇

j rum,rs “ F pℓ,jq a.e. in B`
m (46)
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for some F pℓ,jq P L2pΩq satisfying

}F pℓ,jq}L2pΩq ď C
”
}f }Hℓ´1pΩq ` }u}HℓpΩq

ı
,

where the constant C depends on }a}C ℓpΩq. By the ellipticity of L, bnn ą 0; thus (46) further implies
that

rζmB ℓ´1´j
∇

j rum,nn “ 1

bnn

”
F pℓ,jq ´ rζm

ÿ

pr,sq‰pn,nq

brsB ℓ´1
∇

j rum,rs

ı
.

As a consequence, with j “ 0 (45) suggests that

››rζmB ℓ´1rum,nn

››
L2pB`

mq
ď C

”
}u}HℓpΩq ` }f }Hℓ´1pΩq ` }g}Hℓ´1.5pBΩq

ı

which, combined with (45), provides the estimate

››rζmB ℓ´1
∇

2rum

››
L2pB`

mq
ď C

”
}u}HℓpΩq ` }f }Hℓ´1pΩq ` }g}Hℓ´1.5pBΩq

ı
.

Repeating this process for j “ 1, ¨ ¨ ¨ , ℓ, we conclude that

}rζm∇ℓ`1rum}
L2pB`

mq ď C
”
}u}HℓpΩq ` }f }Hℓ´1pΩq ` }g}Hℓ´1.5pBΩq

ı
, (47)

and the combination of (39) and (47), as well as the induction process, proves the theorem. ˝

3.2. The case that the coefficients ajk are of Sobolev class. We are now in the position of
studying the regularity of solution u to (28) when the coefficient ajk and the domain Ω is of Sobolev
class. We first prove the following rather technical

Theorem 3.5. Let Ω Ď R
n be a bounded smooth domain. Suppose that for some integer k ą n

2
and

1 ď ℓ ď k , ajk P HkpΩq satisfies the ellipticity condition

ajkξjξk ě λ|ξ|2 @ ξ P R
n ,

and w P Hmaxtk,ℓ`1upΩq por w P Hmaxtk´ 1

2
,ℓ` 1

2
upBΩqq such that w vanishes nowhere on BΩ. Then

for all f P Hℓ´1pΩq and g P Hℓ´0.5pBΩq, the weak solution u to (28) belongs to Hℓ`1pΩq, and
satisfies

}u}Hℓ`1pΩq ď C
”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` P

`
}a}HkpΩq

˘´
}f }L2pΩq ` }g}H´0.5pBΩq

¯ı
(48)

for some constant C “ C
`
}w}Hmaxtk,ℓ`1upΩq

˘
and some polynomial P.

Proof. Let E : Hk`1pΩq Ñ Hk`1pRnq be an extension operator, and define aǫ “ ηǫ˙pEaq, fǫ “
ηǫ˙pEf q, wǫ “ ηǫ˙pEwq, and gǫ be a smooth regularization of g defined by

g ǫ “
Kÿ

m“1

a
ζm

“
Λǫ

`
p
a
ζm gq ˝ θm

˘‰
˝ θ´1

m ,

where tζmuKm“1 is a collection of smooth cut-off functions, and tθmuKm“1 is smooth coordinate charts
subordinate to sptpζmq, as in the proof of Theorem 3.4. Since ajk satisfies the ellipticity condition

ajkξjξk ě λ|ξ|2 for some λ ą 0,

and HkpΩq ãÑCpΩq (which implies that aij P CpΩq), we find that for all ε ! 1,

ajkǫ pxqξjξk ě λ

2
|ξ|2 @ ξ P R

n, x P Ω . (49)
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Moreover, by the properties of convolution, as ε Ñ 0, we have

ajkǫ Ñ ajk in HkpΩq , (50a)

wǫ Ñ w in Hmaxtk,ℓ`1upΩq , (50b)

fǫ Ñ f in Hℓ´1pΩq , (50c)

g ǫ Ñ g in Hℓ´0.5pBΩq . (50d)

As a consequence, Theorem 3.2 suggests that there exists a unique weak solution u ǫ to

uǫ ´ B
Bxj

´
ajkǫ

Buǫ

Bxk

¯
“ fǫ in Ω , (51a)

uǫ ¨ wǫ “ 0 on BΩ , (51b)

PwK
ǫ

´
ajkǫ

Buǫ

Bxk
Nj ´ g ǫ

¯
“ 0 on BΩ , (51c)

and Theorem 3.4 further suggests that uǫ P HspΩq for all s ą 0 which ensures that u ǫ is a classical
solution to (51). We would like to establish an ε-independent upper bound for }uǫ}Hℓ`1pΩq.
Step 1: Similar to Step 2 in the proof of Theorem 3.4, define

ϕi “ p´1qℓ
“rζm rwi

mB 2ℓprζmrum ¨ rwmq
‰

˝ θ´1
m ,

in which rum “ u ǫ ˝ θm and rwm “ wǫ ˝ θm. The use of ϕ as a test function implies that

pu ǫ,ϕqL2pΩq `
ż

Ω

ajkǫ
Buεi

Bxk
Bϕi

Bxj
dx ď C

”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq

ı››B ℓprζmrum ¨ rwmq
››
H1pB`

mq
. (52)

As in the proof of Theorem 3.4, we have

pu ǫ,ϕqL2pΩq “
››B ℓΛǫprζmrum ¨ rwmq

››2
L2pB`

mq
.

Now we focus on the second term of the left-hand side of (52). Integrating by parts in yα, letting
brsǫ “ pajkǫ ˝ θmqAs

kA
r
j we obtain that

ż

Ω

ajkǫ
Buεi

Bxk
Bϕi

Bxj
dx “ p´1qℓ

ż

B
`
m

brsǫ ru i
m,s

“rζm rwi
mB 2ℓprζmrum ¨ rwmq

‰
,r dy

“
ż

B
`
m

B ℓ
“
brsǫ prζmrum ¨ rwmq,s

‰
B ℓprζmrum ¨ rwmq,r dy (53)

´
ż

B
`
m

B ℓ
“
brsǫ ru i

mprζm rwi
mq,s

‰
B ℓprζmrum ¨ rwmq,r dy

´
ż

B
`
m

B ℓ´1
“
brsǫ v

i
m,sprζm rwi

mq,r
‰
B ℓ`1prζmrum ¨ rwmq

‰
dy .

For the first term on the right-hand side of (53), we make use of ellipticity and Young’s inequality
to obtain thatż

B
`
m

B ℓ
“
brsǫ prζmrum ¨ rwmq,s

‰
B ℓprζmrum ¨ rwmq,r dy

“
ż

B
`
m

brsǫ B ℓprζmrum ¨ rwmq,s B ℓprζmrum ¨ rwmq,r dy

`
ż

B
`
m

“
JB ℓ, brsǫ Kprζmrum ¨ rwmq,s

‰
B ℓprζmrum ¨ rwmq,r dy

ě
`λ
8

´ δ
˘››B ℓ

∇prζmrum ¨ rwmq
››2
L2pΩq

´ Cδ

››JB ℓ, bǫK∇prζmrum ¨ rwmq
››2
L2pB`

mq
;
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hence, Lemma 2.11 and (21) (with ǫ “ 1

8
) imply that

ż

B
`
m

B ℓ
“
brsǫ prζmrum ¨ rwmq,s

‰
B ℓprζmrum ¨ rwmq,r dy

ě
`λ
8

´ δ
˘››B ℓ

∇prζmrum ¨ rwmq
››2
L2pΩq

´ Cδ}a}2HkpΩq}uǫ}2
H

ℓ` 7

8 pΩq
.

On the other hand, by (18), we find that
ż

B
`
m

B ℓ
“
brsǫ ru i

mprζm rwi
mq,s

‰
B ℓprζmrum ¨ rwmq,r dy

`
ż

B
`
m

B ℓ´1
“
brsǫ v

i
m,sprζm rwi

mq,r
‰
B ℓ`1prζmrum ¨ rwmq dy

ď Cδ}a}2HkpΩq}uǫ}2HℓpΩq ` δ
››B ℓ

∇prζmru i
m rwi

mq
››2
L2pB`

mq
.

As a consequence, by choosing δ ą 0 small enough we conclude that
››B ℓprζmrum ¨ rwmq

››
L2pB`

mq
`
››B ℓ

∇prζmrum ¨ rwmq
››
L2pB`

mq

ď C
”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` }a}HkpΩq}uǫ}

H
ℓ` 7

8 pΩq

ı
.

(54)

Step 2: Similar to Step 3 in the proof of Theorem 3.4, the use of

ϕi “
”
rζmB 2ℓprζmru i

mq ´
`rζm rwm ¨ B 2ℓprζmrumq

˘ rwi
m

|rwm|2
ı

˝ θ´1
m

as a test function implies that

››B ℓprζmrumq
››2
L2pB`

mq
`
`λ
8

´ δ
˘››B ℓ

∇prζmrumq
››2
L2pB`

mq

ď C
”
}f }2Hℓ´1pΩq ` }g}2Hℓ´0.5pBΩq

ı
` Cδ}a}2HkpOq}uǫ}2

H
ℓ` 7

8 pΩq

` p´1qℓ
ż

B
`
m

rwj
m

|rwm|2 prζmrum ¨ rwmqB 2ℓprζmruj
mq dy

` p´1qℓ`1

ż

B
`
m

brsǫ ru i
m,s

”
rζmB 2ℓprζmru j

mq rw
j
m rwi

m

|rwm|2
ı
,r dy.

Integrating by parts in yα, by Lemma 2.11 and (54) we find that

p´1qℓ
ż

B
`
m

rwj
m

|rwm|2 prζmrum ¨ rwmqB 2ℓprζmruj
mq dy ď Cδ}B ℓprζmrum ¨ rwmq

››2
L2pB`

mq
` δ}B ℓprζmrumq}2

L2pB`
mq

ď Cδ

”
}f }2Hℓ´1pΩq ` }g}2Hℓ´0.5pBΩq ` }a}2HkpΩq}uǫ}2

H
ℓ` 7

8 pΩq

ı
` δ}B ℓprζmrumq}2

L2pB`
mq

for some constant Cδ depending on }w}Hmaxtk,ℓ`1upΩq, and

p´1qℓ`1

ż

B
`
m

brsǫ ru i
m,s

”
rζmB 2ℓprζmru j

mq rw
j
m rwi

m

|rwm|2
ı
,r dy

ď C
”››B ℓpbǫ∇rumq

››
L2pB`

mq
`
››bǫB ℓ

∇prζmrum ¨ rwmq
››
L2pB`

mq

`
››JB ℓ, bǫK∇prζmrum ¨ rwmq

››
L2pB`

m

ı››B ℓ
∇prζmrumq

››
L2pΩq

ď Cδ}a}2HkpΩq}uǫ}2
H

ℓ` 7

8 pΩq
` δ

››B ℓ
∇prζmrumq

››2
L2pΩq
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in which the constant Cδ also depends on }w}Hmaxtk,ℓ`1upΩq. Therefore, choosing δ ą 0 small enough,
we conclude that

››rζmB ℓru i
m

››
L2pB`

mq
`
››rζmB ℓ

∇ru i
m

››
L2pB`

mq

ď C
”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` }a}HkpΩq}uǫ}

H
ℓ` 7

8 pΩq

ı (55)

for some constant C “ C
`
}w}Hmaxtk,ℓ`1upΩq

˘
.

Step 3: In this step, we follow the procedure of Step 4 in the proof of Theorem 3.4. Since

uǫ ´ B
Bxj

´
ajkǫ

Buǫ

Bxk

¯
“ fǫ in Ω ,

by the Piola identity (27) we find that

rζm
`
brsǫ rum,s

˘
,r “ rζm

`
rum ´ pfǫ ˝ θmq

˘
in B`

m

which, after rearranging terms, implies that

rζmbnnǫ rum,nn “ rζm
”
rum ´ pfǫ ˝ θmq ´ bnnε,nrum,n ´

ÿ

pr,sq‰pn,nq

brsε,rrum,s

´
ÿ

pr,sq‰pn,nq

brsǫ rum,sr

ı
in B`

m .
(56)

First, it is easy to see that

››B ℓ´1´j
∇jprζmrumq

››
L2pB`

mq
`
››B ℓ´1´j

∇j
“rζmpfǫ ˝ θmq

‰››
L2pB`

mq
ď C

”
}u}Hℓ´1pΩq ` }f }Hℓ´1pΩq

ı
.

Moreover, since ℓ` 1 ď k, by Proposition 2.4 (with ǫ “ 1

8
) we find that

››B ℓ´1´j
∇jprζmbnn,n rum,nq

››
L2pB`

mq
`

ÿ

pr,sq‰pn,nq

››B ℓ´1´j
∇jbrsε,rrum,s

››
L2pB`

mq

ď C

ℓ´1ÿ

r“0

}Dℓ´raDr`1uǫ}L2pΩq

ď C

ℓÿ

r“1

}Dℓ`1´raDruǫ}L2pΩq ď Cǫ}a}HkpΩq}u}
H

ℓ` 7

8 pΩq
.

Finally, by Lemma 2.11 (with ǫ “ 1

8
again),

››JB ℓ´1´j
∇

j , rζmbnnǫ Krum,nn

››
L2pB`

mq
`

ÿ

pr,sq‰pn,nq

››JB ℓ´1´j
∇

j , rζmbrsǫ Krum,rs

››
L2pB`

mq

ď Cǫ}a}HkpΩq}uǫ}
H

ℓ` 7

8 pΩq
.

Therefore, letting B ℓ´1´j
∇j act on (56), we obtain that

rζmbnnǫ B ℓ´1´j
∇j rum,nn “ Gpℓ,jq ´

ÿ

pr,sq‰pn,nq

rζmbrsǫ B ℓ´1´j
∇j rum,rs (57)

for some Gpℓ,jq satisfying

}Gpℓ,jq}L2pB`
mq ď C

”
}u}Hℓ´1pΩq ` }f }Hℓ´1pΩq ` }a}HkpΩq}uǫ}

H
ℓ` 7

8 pΩq

ı
.
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Now we argue by induction on j. By the ellipticity condition (49), we find that bnnǫ ě λ

4
. As a

consequence, with j “ 0, (55) and (57) suggest that
››rζmB ℓ´1rum,nn

››
L2pB`

mq
ď }Gpℓ,jq}

L2pB`
mq `

ÿ

pr,sq‰pn,nq

}brsǫ }
L8pB`

mq

››rζmB ℓ´1rum,rs

››
L2pB`

mq

ď C
”
}u}Hℓ´1pΩq ` }f }Hℓ´1pΩq ` }g}Hℓ´1.5pBΩq ` }a}HkpΩq}uǫ}

H
ℓ` 7

8 pΩq

ı

which, combined with (55), provides the estimate

››rζmB ℓ´1
∇2rum

››
L2pB`

mq
ď C

”
}u}Hℓ´1pΩq ` }f }Hℓ´1pΩq ` }g}Hℓ´1.5pBΩq ` }a}HkpΩq}uǫ}

H
ℓ` 7

8 pΩq

ı
.

Repeating this process for j “ 1, ¨ ¨ ¨ , ℓ, we conclude that
››rζm∇ℓru i

m

››
L2pB`

mq
`
››rζm∇ℓ`1ru i

m

››
L2pB`

mq

ď C
”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` }a}HkpΩq}uǫ}

H
ℓ` 7

8 pΩq

ı (58)

for some constant C “ C
`
}w}Hmaxtk,ℓ`1upΩq

˘
.

Step 4: Let χ ě 0 be a smooth cut-off function so that sptpχqĂĂΩ. Then the same computation
as in the previous steps also implies that

}χ∇ℓu ǫ}L2pΩq` }χ∇ℓ`1uǫ}L2pΩq ď C
”
}f }Hℓ´1pΩq` }a}HkpΩq}uǫ}

H
ℓ` 7

8 pΩq

ı
. (59)

The combination of (58) and (59) then suggests that

}uǫ}Hℓ`1pΩq ď C
”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` }a}HkpΩq}uǫ}

H
ℓ` 7

8 pΩq

ı
(60)

for some constant C “ C
`
}w}Hmaxtk,ℓ`1upΩq

˘
. By interpolation,

}uǫ}
H

ℓ` 7

8 pΩq
ď C}uǫ}1´ 1

8ℓ

Hℓ`1pΩq
}uǫ}

1

8ℓ

H1pΩq ;

thus Young’s inequality suggests that

}uǫ}Hℓ`1pΩq ď Cδ

”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` P

`
}a}HkpΩq

˘
}uǫ}H1pΩq

ı
` δ}uǫ}Hℓ`1pΩq

for some polynomial P . Finally, the inequality (33) is established by choosing δ ą 0 small enough
and then letting ε Ñ 0, and using the H1-estimate (32). ˝

Corollary 3.6. Let Ω Ď R
n be a bounded Hk`1-domain for some integer k ą n

2
. Suppose that

ajk P HkpΩq satisfies the ellipticity condition

ajkξjξk ě λ|ξ|2 @ ξ P R
n ,

and for some 1 ď ℓ ď k, w P Hmaxtk,ℓ`1upΩq por w P Hmaxtk´ 1

2
,ℓ` 1

2
upBΩqq such that w vanishes

nowhere on BΩ. Then for all f P Hℓ´1pΩq and g P Hℓ´0.5pBΩq, the weak solution u to (28) belongs
to Hℓ`1pΩq, and satisfies

}u}Hℓ`1pΩq ď C
”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` P

`
}a}HkpΩq

˘´
}f }L2pΩq ` }g}H´0.5pBΩq

¯ı
(61)

for some constant C “ C
`
}w}Hmaxtk,ℓ`1upΩq, |BΩ|Hk`0.5

˘
and some polynomial P.
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Proof. Let ψ : O Ñ Ω be an Hk`1-diffeomorphism. Making a change of variable x “ ψpyq, with A
denoting p∇ψq´1 we can rewrite (28) as

su ´ B
Byr

´
sajkAr

jA
s
k

B su
Bys

¯
“ sf ` sajkAs

k

BAr
j

Byr
B su
Bys

in O ,

su ¨ sw “ 0 on BO ,

P swK

´
sajkAr

jA
s
k

B su
Bys

sNr ´ sg
¯

“ 0 on BO ,

where we use the bar notation to denote the variable defined on O through the composition with ψ;
that is,

sa “ a ˝ ψ , su “ u ˝ ψ , sw “ w ˝ ψ , sf “ f ˝ ψ , sg “ g ˝ ψ ,

and sN is the outward-pointing unit normal to O. By Proposition 2.4, Corollary 2.6, and Proposition
2.9, we find that

}sajkAs
kA

r
j}HkpOq ď Cp|BΩ|Hk`0.5 q}a}HkpΩq ,

}sw}Hmaxtk,ℓ`1upΩq ď Cp|BΩ|Hk`0.5 q}w}Hmaxtk,ℓ`1upΩq ,

}sf }Hℓ´1pOq ` }sg}Hℓ´0.5pBOq ď Cp|BΩ|Hk`0.5 q
”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq

ı
;

thus Theorem 3.5 implies that

}su}Hℓ`1pOq ď C
”
}sf }Hℓ´1pOq ` }sg}Hℓ´0.5pBOq ` P

`
}AsaAT}HkpOq

˘´
}sf }L2pOq ` }sg}H´0.5pBOq

¯ı

ď C
”
}f }Hℓ´1pOq ` }g}Hℓ´0.5pBΩq ` P

`
}a}HkpΩq, |BΩ|Hk`0.5

˘´
}f }L2pΩq ` }g}H´0.5pBΩq

¯ı

for some constant C “ C
`
}w}Hmaxtk,ℓ`1upΩq, |BΩ|Hk`0.5

˘
. Estimate (61) then follows from Proposition

2.9. ˝

Corollary 3.7. Let Ω Ď R
n be a bounded Hk`1-domain for some integer k ą n

2
, and ajk P HkpΩq

satisfies the ellipticity condition

ajkξjξk ě λ|ξ|2 @ ξ P R
n .

Let ℓ be an integer such that 1 ď ℓ ď k. Then

1. For any f P Hℓ´1pΩq, the weak solution u P H1
0 pΩq to the Dirichlet problem

´ B
Bxj

´
ajk

Bu
Bxk

¯
“ f in Ω ,

u “ 0 on BΩ ,

belongs to Hℓ`1pΩq, and satisfies

}u}Hℓ`1pΩq ď C}f}Hℓ´1pΩq (62)

for some constant C “ C
`
}a}HkpΩq, |BΩ|Hk`0.5

˘
.

2. For any f P Hℓ´1pΩq and g P Hℓ´0.5pBΩq, the weak solution v P H1pΩq to the Neumann
problem

v ´ B
Bxj

´
ajk

Bv
Bxk

¯
“ f in Ω ,

ajk
Bu
Bxk

Nj “ g on BΩ ,
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belongs to Hℓ`1pΩq, and satisfies

}v}Hℓ`1pΩq ď C
”
}f}Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq

ı
(63)

for some constant C “ C
`
}a}HkpΩq, |BΩ|Hk`0.5

˘
.

Proof. It suffices to prove the case that u and v are both scalar functions.

(1) Let w “ p1, 0, ¨ ¨ ¨ , 0q, and u be the solution to

u ´ B
Bxj

´
ajk

Bu
Bxk

¯
“ pf ` u, 0, ¨ ¨ ¨ , 0q in Ω , (64)

u ¨ w “ 0 on BΩ , (65)

PwK

´
ajk

Bu
Bxk

Nj

¯
“ 0 on BΩ . (66)

Then u “ pu, 0, ¨ ¨ ¨ , 0q and (61) implies that

}u}Hℓ`1pΩq ď C}f ` u}Hℓ´1pΩq ď C
”
}f}Hℓ´1pΩq ` }u}Hℓ´1pΩq

ı

for some constant C “ C
`
}a}HkpΩq, |BΩ|Hk`0.5

˘
. By interpolation and Young’s inequality,

}u}Hℓ`1pΩq ď C}f}Hℓ´1pΩq ` Cδ}u}H1pΩq ` δ}u}Hℓ`1pΩq ;

thus (62) follows from choosing δ ą 0 small enough and the estimate for the weak solution.
(2) Let w “ p0, 1, 0, ¨ ¨ ¨ , 0q, and v be the solution to

v ´ B
Bxj

´
ajk

Bv
Bxk

¯
“ p0, f, 0, ¨ ¨ ¨ , 0q in Ω , (67)

v ¨ w “ 0 on BΩ , (68)

PwK

´
ajk

Bv
Bxk

Nj

¯
“ p0, g, 0, ¨ ¨ ¨ , 0q on BΩ . (69)

Then v “ p0, v, 0, ¨ ¨ ¨ , 0q and so (63) follows from (61). ˝

In general, elliptic estimates with Sobolev class coefficients ajk have a nonlinear dependence on
the Sobolev norm of ajk. There are, however, situations when the estimate becomes linear with
respect to the Sobolev norm of ajk.

Theorem 3.8. Suppose that the assumptions of Theorem 3.5 are satisfied with ℓ “ k, and that
furthermore

}a´ Id}L8pΩq ď ǫ ! 1 .

Then the solution u P Hk`1pΩq to (28) satisfies

}u}Hk`1pΩq ď C
”
}f }Hk´1pΩq ` }g}Hk´0.5pBΩq `

`
1 ` }a}HkpΩq

˘
}∇u}L8pΩq

ı
(70)

for some constant C “ C
`
}w}Hk`1pΩq

˘
. pRecall that w is an Hk`1pΩq vector field defined in a

neighborhood of BΩ which vanishes nowhere on BΩ.q

Remark 3.9. As we noted, inequality (70) is linear with respect to the highest-order norms. This
permits the use of linear interpolation to extend this inequality of fractional-order Sobolev spaces.
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Proof. By Theorem 3.5 we know that u P Hk`1pΩq so equation (28) holds in the pointwise sense.
We rewrite (28) as

u ´ ∆u “ f ” B
Bxj

´`
ajk ´ δjk

˘ Bu
Bxk

¯
` f in Ω ,

u ¨ N “ 0 on BΩ ,

PwK

´ Bu
BN

¯
“ g ” PwK

´`
δjk ´ ajk

˘ Bu
Bxk

Nj ` g
¯

on BΩ .

We then conclude from Theorem 3.5 that

}u}Hk`1pΩq ď C
”
}f}Hk´1pΩq ` }g}Hk´0.5pBΩq

ı

ď C
”
}f }Hk´1pΩq ` }g}Hk´0.5pBΩq `

›› B
Bxj

´`
δ
jk ´ a

jk
˘ Bu

Bxk

¯››
Hk´1pΩq

`
››PwK

´`
δ
jk ´ a

jk
˘ Bu

Bxk

Nj

¯››
Hk´0.5pBΩq

ı

for some constant C “ C
`
}w}Hk`1pΩq

˘
. By Lemma 2.12,

›› B
Bxj

´`
δ
jk ´ a

jk
˘ Bu

Bxk

¯››
Hk´1pΩq

ď
››`δjk ´ a

jk
˘ Bu

Bxk

››
HkpΩq

ď C
”
}δ ´ a}L8pΩq}∇u}HkpΩq ` }δ ´ a}HkpΩq}∇u}L8pΩq

ı

ď Cǫ}u}Hk`1pΩq ` C
`
1 ` }a}HkpΩq

˘
}∇u}L8pΩq .

Similarly, by the trace estimate (and the fact that k ´ 0.5 ą n ´ 1

2
, where n ´ 1 is the dimension of

BΩ),
››PwK

´`
δ
jk ´ a

jk
˘ Bu

Bxk

Nj

¯››
Hk´0.5pBΩq

ď C
››`δjk ´ ajk

˘ Bu
Bxk

Nj

››
Hk´0.5pBΩq

ď C
”
}δ ´ a}L8pΩq}∇u}Hk´0.5pBΩq ` }δ ´ a}Hk´0.5pBΩq}∇u}L8pBΩq

ď Cǫ}u}Hk`1pΩq ` C
`
1 ` }a}HkpΩq

˘
}∇u}L8pBΩq

for some constant C “ C
`
}w}Hk`1pΩq

˘
. Moreover, the embedding H

n

2
`δpΩq ãÑC

0,αpΩq for some
α ą 0 suggests that ∇u is uniformly Hölder; thus }∇u}L8pBΩq ď }∇u}L8pΩq. (70) then follows from
the assumption that ǫ ! 1. ˝

In the same way that we proved Theorem 3.5, we can prove the following complimentary result:

Theorem 3.10. Let Ω Ď R
n be a bounded Hk`1-domain for some integer k ą n

2
. Suppose that

ajk P HkpΩq satisfies the ellipticity condition

ajkξjξk ě λ|ξ|2 @ ξ P R
n ,

and for some 1 ď ℓ ď k, w P Hmaxtk,ℓ`1upΩq por w P Hmaxtk´ 1

2
,ℓ` 1

2
upBΩqq such that w vanishes

nowhere on BΩ. Then for all f P Hℓ´1pΩq and g P Hℓ´0.5pBΩq, there exists a solution u to

u i ´ B
Bxj

´
ajk

Bu i

Bxk

¯
“ f i in Ω , (71a)

u ˆ w “ 0 on BΩ , (71b)

ajk
Bu i

Bxk
Njw

i “ g on BΩ , (71c)
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and satisfies

}u}Hℓ`1pΩq ď C
”
}f }Hℓ´1pΩq ` }g}Hℓ´0.5pBΩq ` P

`
}a}HkpΩq

˘´
}f }L2pΩq ` }g}H´0.5pBΩq

¯ı
(72)

for some constant C “ C
`
}w}Hmaxtk,ℓ`1upΩq, |BΩ|Hk`0.5

˘
and some polynomial P.

4. The Proof of Theorem 1.2

In this section, we prove our main regularity result given by Theorem 1.2. We first establish need
the following

Lemma 4.1. Let Ω Ď R
3 be a bounded Hk`1-domain with outward-pointing normal N, and pU , ϕq

be a chart with θ ” ϕ´1. Define the metric gαβ “ θ,α ¨ θ,β induced by the chart, and rgαβs be the
inverse matrix of rgαβs. Then for every vector field w : Ω Ñ R

3,

PNK

´Bw
BN

¯
˝ θ “ pcurlw ˆ Nq ˝ θ ` gαβθ,α

“
pw ¨ Nq ˝ θ

‰
,β ´gαβgγδ

“
pw ˝ θq ¨ θ,δ

‰
bγβ θ,α , (73)

where bγδ “ ´θ,γδ ¨ pN ˝ θq denotes the second fundamental form.

Proof. Define
Θpyq “ θpy1, y2, 0q ` y3pN ˝ θqpy1, y2, 0q ,

and Gij “ Θ,i ¨Θ,j with inverse Gij . Let rN ” pN ˝ θq
ˇ̌
y3“0

, and rf ” f ˝ Θ if f ‰ N. Since Θ,1,

Θ,2 K rN, for every vector v P R
3, rv can be expressed as the linear combination of Θ,1, Θ,2 and rN.

In particular, we have

rv i “ prv ¨ rNqrNi ` pGαβΘj ,β rv jqΘi,α ” rv3
rNi ` rvαΘ

i,α

and
f ,k ˝Θ “ rf ,3 rN3 ` G

αβrf ,β Θk,α .

To see (73), we first note that

Bw i

BN ˝ θ“
“
rw3

rNi` rwαΘ
i,α

‰
,3

ˇ̌
ˇ
y3“0

“
“
rw3,3

rNi` rwα,3Θ
i,α`rwα

rNi,α
‰ˇ̌
ˇ
y3“0

; (74)

thus, since rN ¨ Θ,α “ rN ¨ rN,α “ 0,

PNK

´Bw
BN

¯
˝ θ

“
“
rw3,3

rNi ` rwα,3Θ
i,α `rwα

rNi,α
‰ˇ̌
ˇ
y3“0

´
“
rw3,3

rNk ` rwα,3Θ
k,α `rwα

rNk,α
‰ˇ̌
ˇ
y3“0

rNk rNi

“ rwα,3θ
i,α `rwα

rNi,α . (75)

Moreover, by the identity

pcurlw ˆ Nqi “ εijkεjrsw
s,r N

k “ pδisδkr ´ δirδksqws,r N
k “ pw i,k ´wk,i qNk ,

we find that

pcurlw ˆNqi ˝θ “
“
prw i

,3 rNk ` Gαβ rw i
,βΘ

k,α´rwk
,3 rNi ´ Gαβ rwk

,βΘ
i,αqrNk

‰ˇ̌
ˇ
y3“0

“
“
rw i
,3 ´ rNi rwk

,3 rNk ´ gαβΘi,α rwk
,β rNk

‰ˇ̌
ˇ
y3“0

“
“
prw3

rNi ` rwαΘ
i,α q,3 ´ rNiprw3

rNk ` rwαΘ
k,α q,3 rNk

´ G
αβΘi,α prw3

rNk ` rwγΘ
k,γ q,β rNk

‰ˇ̌
ˇ
y3“0

“ rwα
rNi,α `rwα,3θ

i,α ´gαβθi,α prw3,β ´ rwγbγβq . (76)
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Combining (75) and (76), we conclude the desired identity. ˝

With Lemma 4.1, we can now prove Theorem 1.2 with n “ 3; note that the case n “ 2 follows
from the more general case by considering vectors of the type u “ pu1px1, x2q,u2px1, x2q, 0q.

Proof of Theorem 1.2. Let u P Hk`1pΩq, and curlu “ f , divu “ g, ∇BΩu ¨N “ h. By the well-known
identity

´ ∆u “ curlcurlu ´ ∇divu in Ω , (77)

we find that if χ is a smooth cut-off function with sptpχqĂĂΩ, then χu satisfies

´∆pχuq “ ´u∆χ´ 2∇χ ¨ ∇u ` χpcurl f ´ ∇gq in O ,

χu “ 0 on BO ,

for some smooth domain OĂĂΩ (choose O to be some smooth domain so that sptpχqĂĂOĂĂΩ).
Standard interior elliptic estimates then show that

}χu}Hk`1pOq ď C
”
}u}HkpOq ` }f }HkpΩq ` }g}HkpΩq

ı
. (78)

Now we proceed to the estimates near the boundary. Let tζmuKm“1 and tθmuKm“1 be a partition of
unity (subordinate to Um) and charts satisfying

(1) θm : Bp0, rmq Ñ Um belongs to Hk`1pBp0, rmqq;
(2) θm : B`p0, rmq Ñ Ω X Um;
(3) θm : Bp0, rmq X ty3 “ 0u Ñ BΩ X Um,

and gm and bm denote the induced metric tensor and second fundamental form, respectively. Then

´∆pζmuq “ ζmpcurl f ´∇gq ´ u∆ζm ´ 2∇ζm ¨∇u in Um ,

pζm∇BΩuq ¨ N“ ζmh on Um .

We define rum “ u˝θm, rζm “ ζm˝θm, rN “ N˝θm, and A “ p∇θmq´1, J “ detp∇θmq, gm “ detpgmq.
Taking the composition of the equations above with map θm, by the Piola identity (27), we find that

´
“
JA

j
ℓA

k
ℓ prζmrumq,k

‰
,j “ J

”
ζmpcurl f ´ ∇gq ´ u∆ζm ´ 2∇ζm ¨ ∇u

ı
˝ θm in U , (79a)

prζmru i
mq,σ rNi “ rζm,σ ru i

m
rNi `ξmph ˝ θmq on BU , (79b)

for some smooth domain U satisfying that sptprζmq Ď U and sptpξmq X BU Ď ty3 “ 0u.
The function prζmrumq,σ, where σ “ 1, ¨ ¨ ¨ , n ´ 1, will be the fundamental (dependent) variable

that we are going to estimate; however, in order to apply Theorem 3.5 we need to transform the
boundary condition (79b) to a homogeneous one. This is done by introducing the function φσ which
is the solution to the elliptic equation

φσ ´ pJAj
ℓA

k
ℓφσ,k q,j “ 0 in U ,

φσ,k A
k
ℓJA

j
ℓnj “ rζm,σ ru i

mJA
j
ℓnj ` ?

gm rζmph ˝ θmq on BU ,

in which n is the outward-pointing unit normal to BU, and then defining w i
σ “ prζmru i

mq,σ ´Ar
iφσ,r

as the new dependent variable of interest. Since
?
gm rN “ JATn on Bp0, rmq X ty3 “ 0u,

wσ ¨ rN “ prζmrumq,σ ¨ rN ´ φσ,k A
k
ℓ JA

j
ℓnj?

gm
“ 0 on BU ;

thus wσ satisfies a homogeneous boundary condition.
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Differentiating (79a) with respect to yσ, with a
jk denoting JAj

ℓA
k
ℓ we find that wσ satisfies

wσ ´ B
Byj

´
ajk

Bwσ

Byk

¯
“ Fσ in U , (80a)

wσ ¨ rN “ 0 on BU , (80b)

where Fσ is given by

F i
σ “

”
J
`
ζmpcurl f ´ ∇gq ´ u∆ζm ´ 2∇ζm ¨ ∇u

˘
˝ θm

ıi
,σ

` w i
σ `

“
pJAj

ℓA
k
ℓ q,σ prζmru i

mq,k
‰
,j `

“
JA

j
ℓA

k
ℓ pAr

iφσ,r q,k
‰
,j

Moreover, by Lemma 4.1,

”
PNK

´B pwσ ˝ θ´1
m q

BN
¯ı

˝ θm “
“
curlpwσ ˝ θ´1

m q ˆ N
‰

˝ θm ` gαβm θm,σ pwσ ¨ rNq,β
´ gαβm gγδm pwσ ¨ θ,δ qbγβ θ,σ ;

thus using (80b) in the second term of the right-hand side, we obtain that

PĂNK

´
ajk

Bwσ

Bxk
nj

¯
“ ?

gm
“
curlpwσ ˝ θ´1

m q ˆN
‰

˝ θm ´ ?
gm gαβm gγδm pwσ ¨ θ,δ qbγβ θ,σ on BU . (81)

Since
“
curlpwσ ˝ θ´1

m q ˆ N
‰i ˝ θm “ εijkεjrsA

ℓ
rw

s
σ,ℓ

rNk

“ Aℓ
k

“
prζmru i

mq,σ´Ar
iφσ,r

‰
,ℓ rNk ´Aℓ

i

“
prζmruk

mq,σ´Ar
kφσ,r

‰
,ℓ rNk

“ Aℓ
kprζmru i

mq,αℓ rNk ´Aℓ
ipξmruk

mq,αℓ rNk ´Aℓ
kpAr

iφσ,r q,ℓ rNk `Aℓ
ipAr

kφσ,r q,ℓ rNk

and
“rζm

`
curlu ˆ N

˘
˝ θm

‰
,σ “ εijkεjrs

`rζmAℓ
rrus

m,ℓ
rNk

˘
,σ

“
“
Aℓ

kprζmru i
mq,ℓ rNk ´Aℓ

iprζmruk
mq,ℓ rNk

‰
,σ ´

“
Aℓ

kξm,ℓ ru i
m
rNk ´Aℓ

iξm,ℓ ruk
m
rNk

‰
,σ

“ Aℓ
kprζmru i

mq,αℓ rNk ´Aℓ
ipξmruk

mq,αℓ rNk ´ pAℓ
k
rNkq,σ pξmru i

mq,ℓ
´ pAℓ

i
rNkq,σ prζmru i

mq,ℓ´
“
Aℓ

kξm,ℓ
rζm,ℓ ru i

m
rNk ´Aℓ

i
rζm,ℓ ruk

m
rNk

‰
,σ ,

we find that
“
curlpwσ ˝ θ´1

m q ˆ N
‰i ˝ θm ´

“rζm
`
curlu ˆ N

˘
˝ θm

‰
,σ

“ ´Aℓ
kpAr

iφσ,r q,ℓ rNk `Aℓ
ipAr

kφσ,r q,ℓ rNk ` pAℓ
k
rNkq,σ prζmru i

mq,ℓ
` pAℓ

i
rNkq,σ prζmru i

mq,ℓ `pAℓ
kξm,ℓ

rζm,ℓ ru i
m
rNkq,σ `pAℓ

i
rζm,ℓ ruk

m
rNkq,σ ;

thus (81) implies that

PĂNK

´
ajk

Bwσ

Bxk
nj

¯
“ ?

gm Gσ on BU , p80cq

where Gσ is given by

Gσ “
“rζmpf ˆ Nq ˝ θm

‰
,σ ´Aℓ

kpAr
iφσ,r q,ℓ rNk `Aℓ

ipAr
kφσ,r q,ℓ rNk

` pAℓ
k
rNkq,σ prζmru i

mq,ℓ `pAℓ
i
rNkq,σ prζmru i

mq,ℓ `pAℓ
k
rζm,ℓ ru i

m
rNkq,σ

` pAℓ
i
rζm,ℓ ruk

m
rNkq,σ ´gαβm gγδm

“
pξmru i

mq,σ θim,δ ´Ar
iφσ,r θ

i
m,δ

‰
bγβ θ,σ .
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As a consequence, wσ is the solution to equation (80), and Theorem 3.5 (with ℓ “ k´ 1 and w “ n)

then implies that prζmrumq,σ satisfies

}wσ}HkpUq ď C
”
}Fσ}Hk´2pUq ` }Gσ}Hk´1.5pBUq

ı
(82)

for some constant C “ C
`
}a}HkpBp0,rmqq, }A}HkpBp0,rmqq, } rN}Hk´0.5pBUq

˘
.

We focus on the estimate of Fσ first. By Corollary 2.6,

}J}HkpBp0,rmqq ` }A}HkpBp0,rmqq ` }gm}Hk´0.5pBUq ď Cp|BΩ|Hk`0.5q ; (83)

thus Corollary 3.7 suggests that

}φσ}Hk`1pUq ď Cp}a}HkpUq, |BΩ|Hk`0.5q
››rζm,σ ruj

mJA
ℓ
jnℓ ` ?

gm rζmph ˝ θmq
››
Hk´0.5pBUq

ď Cp|BΩ|Hk`0.5 q
”
}u}HkpΩq ` }h}Hk´0.5pBΩq

ı
. (84)

Moreover, by Corollary 2.7, we also have that

}a}HkpUq ` } rN}Hk´0.5pBUq ď Cp|BΩ|Hk`0.5q . (85)

As a consequence,

}Fσ}Hk´2pUq ďCp|BΩ|Hk`0.5q
”
}f }HkpΩq `}g}HkpΩq `}h}Hk´0.5pBΩq ` }u}HkpΩq

ı
. (86)

As for the estimate of Gσ, the highest order terms are pAℓ
k
rNkq,σ prζmru i

mq,ℓ, pAℓ
i
rNkq,σ prζmru i

mq,ℓ
and gαβm gγδm pξmru i

mq,σ θim,δ bγβ θ,σ, and we apply (14) to obtain, for example, that
››pAℓ

k
rNkq,σ prζmru i

mq,ℓ }Hk´1.5pBUq ď C
››pAℓ

k
rNkq,σ prζmru i

mq,ℓ
››
Hk´1pUq

ď C}B pA rNq}Hk´1pUq}∇prζmrumq}HspUq ď Cp|B |Ω|2.5q}u}Hs`1pΩq ,

where s “ max
 
k ´ 1,

k

2
` n

4

(
is chosen so that (14) can be applied (since s ą n

2
). Therefore,

}Gσ}Hk´1.5pBUq ď Cp|BΩ|Hk`0.5 q
”
}f }Hk´1pΩq ` }h}Hk´0.5pBΩq ` }u}Hs`1pΩq

ı
. (87)

Combining estimates (82), (83), (84), (85), (86) and (87), we find that

}prζmrumq,σ }HkpUq ď }wσ}HkpUq ` }AT∇φσ}HkpUq

ď Cp|BΩ|Hk`0.5 q
”
}f }HkpΩq ` }g}HkpΩq ` }h}Hk´0.5pBΩq ` }u}Hs`1pΩq

ı
. (88)

Finally, following the same procedure of Step 4 in the proof of Theorem 3.4 (that is, using (79a)

to obtain an expression of rζmB k`1´j
∇j rum,33) and then arguing by induction on j, we find that

}rζmrum}Hk`1pUq ď Cp|BΩ|Hk`0.5q
”
}f }HkpΩq ` }g}HkpΩq ` }h}Hk´0.5pBΩq ` }u}Hs`1pΩq

ı
.

The estimate above and estimate (78) provide us with

}u}Hk`1pUq ďCp|BΩ|Hk`0.5 q
”
}f }HkpΩq ` }g}HkpΩq ` }h}Hk´0.5pBΩq ` }u}Hs`1pΩq

ı
.

Since 0 ă s` 1 ă k ` 1, by interpolation and Young’s inequality,

}u}HspΩq ď Cδ}u}L2pΩq ` δ}u}Hk`1pΩq @ δ ą 0 ,

so by choosing δ ą 0 small enough we conclude (5). ˝

By studying the vector-valued elliptic equation (28), with the help of Theorem 3.10 we can also
conclude (6).
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Remark 4.2. Suppose that Ω is a bounded Hk`2-domain for some k ą n

2
. Since ∇BΩu ¨ N “

∇BΩpu ¨ Nq ´ u ¨ ∇BΩN, by interpolation we find that

}∇BΩu ¨ N}Hk´0.5pBΩq ď }u ¨ N}Hk`0.5pBΩq ` }u ¨ ∇BΩN}Hk´0.5pBΩq

ď }u ¨ N}Hk`0.5pBΩq `Cp|BΩ|Hk`1.5q}u}HkpΩq

ď }u ¨ N}Hk`0.5pBΩq `Cp|BΩ|Hk`1.5 , δq}u}L2pΩq `δ}u}Hk`1pΩq.

Hence, by choosing δ ą 0 small enough we conclude that there exists a generic constant C “
Cp|BΩ|Hk`1.5q such that

}u}Hk`1pΩq ď C
”
}u}L2pΩq ` }curlu}HkpΩq ` }divu}HkpΩq ` }u ¨ N}Hk`0.5pBΩq

ı
.

Similarly, we also have that

}u}Hk`1pΩq ď C
”
}u}L2pΩq ` }curlu}HkpΩq ` }divu}HkpΩq ` }u ˆ N}Hk`0.5pBΩq

ı

for some constant C “ Cp|BΩ|Hk`1.5q.

5. The Proof of Theorem 1.1

We begin with the following problem: find v such that

curlv “ f in Ω , (89a)

divv “ g in Ω , (89b)

v ¨ N “ h on BΩ . (89c)

From the divergence theorem and the fact that div curl “ 0 , we assume that

divf “ 0 and

ż

Ω

g dx “
ż

BΩ

h dS . (90)

Since g and h satisfies the solvability condition (90), there exists a solution φ to the Poisson
equation with Neumann boundary conditions:

∆φ “ g in Ω , (91a)

Bφ
BN “ h on BΩ . (91b)

Let u “ v ´ ∇φ. Then u satisfies

curlu “ f in Ω , (92a)

divu “ 0 in Ω , (92b)

u ¨ N “ 0 on BΩ . (92c)

Hence, if (92) is solvable, then there exists a solution to (89).

5.1. Uniqueness of the solution. We show that under reasonable conditions, the solution to (89)
is unique. We first assume that Ω is a bounded convex domain. If ϕ P C

2pΩq X C
1pΩq, then for all
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u P H1pΩq,
ż

Ω

curlu ¨ curlϕ dx “
ż

Ω

u ¨ curlcurlϕ dx`
ż

BΩ

pN ˆ uq ¨ curlϕ dS

“
ż

Ω

u ¨ p´∆ϕ` ∇divϕq dx`
ż

BΩ

pN ˆ uq ¨ curlϕ dS

“
ż

Ω

u ¨ p´∆ϕ` ∇divϕq dx`
ż

BΩ

” Bϕ
BN ¨ u ´ ukNjϕ

j ,k

ı
dS

“
ż

Ω

p∇u :∇ϕ´ divudivϕq dx`
ż

BΩ

”
pu ¨ Nqdivϕ´ ukNjϕ

j ,k

ı
dS .

Using the notation introduced in the proof of Lemma 4.1, in any local chart pU , θq we have on BΩ,
pukNjϕ

j ,k q ˝ θ “ ruk rNj
`
rϕj ,n rNk ` gαβ rϕj ,α θ

k,β
˘

“ pru ¨ rNqp rϕj ,n rNjq ` gαβpru ¨ θ,β qp rϕ ¨ rNq,α ´gαβpru ¨ θ,β q rN,α ¨ rϕ
“ pru ¨ rNqp rϕj ,n rNjq ` gαβpru ¨ θ,β qp rϕ ¨ rNq,α ´gαβgγδbαγpru ¨ θ,β qp rϕ ¨ θ,δ q ,

so that using (96),
ż

Ω

curlu ¨ curlϕ dx “
ż

Ω

p∇u : ∇ϕ´ divudivϕq dx

`
ż

BΩ

pu ¨ Nq
”
divBΩϕ` 2Hpϕ ¨ Nq

ı
dS (93)

`
Kÿ

m“1

ż

BΩXUm

ζm
“
gαβm gγδm bmαγ

`
pu ˝ θmq ¨ θ,β q

˘`
pϕ ˝ θmq ¨ θ,δ q

‰
˝ θ´1

m dS

´
Kÿ

m“1

ż

BΩXUm

ζm
“
gαβm

`
pu ˝ θmq ¨ θ,β

˘`
pϕ ¨ Nq ˝ θm

˘
,α

‰
˝ θ´1

m dS .

Therefore, if v1, v2 P H1pΩq are two solutions to (89), then v “ v1 ´ v2 satisfies

}curlv}2L2pΩq

“ }∇v}2L2pΩq `
Kÿ

m“1

ż

BΩXUm

ζm
“
gαβm gγδm bmαγ

`
pu ˝ θmq ¨ θ,β q

˘`
pϕ ˝ θmq ¨ θ,δ q

‰
˝ θ´1

m dS .

Since Ω is convex, gαβm gγδm bmαγ is non-negative definite for all m; thus the Poincaré inequality (23)
shows that for some constant c ą 0,

c}v}2H1pΩq ď }∇v}2L2pΩq ď }curlv}2L2pΩq “ 0

which implies that v “ 0. In other words, the H1-solution to (89) must be unique if Ω is bounded
and convex.

Now suppose that Ω is a general bounded domain, and there are two solutions v1 and v2 in
H1`ǫpΩq for some ǫ ą 0. Then v “ v1 ´ v2 satisfies curlv “ 0 in Ω. Since v P H1`ǫpΩq, v has a
trace on any one-dimensional (smooth) curve. By the Stokes theorem, for all Σ Ď Ω with piecewise
C 1-boundary BΣ, ż

BΣ

v ¨ dr “
ż

Σ

curlv ¨ N dS “ 0 ,

so φpxq “
ż

Cp

v ¨ dr, where Cp is a smooth curve connecting x and some fixed point p in Ω, is a

well-defined scalar function. Moreover, ∇φ “ v . In other words, if Ω is connected, an H1`ǫ-solution
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v to curlv “ 0 must be the gradient of a scalar potential for some potential function φ. Since v also
satisfies divv “ 0 in Ω and v ¨ N “ 0 on BΩ, φ must be a constant which implies that v “ 0. As a
consequence, the H1`ǫ-solution to (89) must be unique (in each connected component of Ω).

5.2. Existence of solutions. We solve (92) by finding a solution u of the form u “ curlw for a
divergence-free vector field w . Indeed, ff such w exists, then using (77), w satisfies

´∆w “ f in Ω , (94a)

divw “ 0 in Ω , (94b)

curlw ¨ N “ 0 on BΩ . (94c)

We note that if w is smooth, the divergence-free condition (94b) can indeed be treated as a boundary
condition

divw “ 0 on BΩ . (94b’)

In fact, taking the divergence of (94a) we find that

∆divw “ divf “ 0 in Ω ,

where we use the solvability condition (90) to establish the last equality; thus if w satisfies (94a,b’),
w automatically has zero divergence. In other words, we may instead assume that w satisfies
(94a,b’,c). Our goal next is to find some suitable boundary condition to replace (94b’,c).

Suppose that Ω is a bounded C 2-domain of R3 (whose C 2-regularity will eventually be relaxed).
Following the notation introduced in the proof of Lemma 4.1, we find that

divw
ˇ̌
BΩ

˝ θ “
“ rNkprw3

rNk ` rwαΘ
k,α q,3 `GαβΘk,α prw3

rNk ` rwγΘ
k,γq,β

‰ˇ̌
ˇ
y3“0

“ rw3,3 ` gαβθk,α prwγ ,β θ
k,γ `rwγθ

k,βγ ` rNk,β rw3 ` rNk rw3,β q
“ rw3,3 ` rwγ,γ ` Γβ

βγ rwγ ` 2Hrw3 ,

where Γγ
αβ is the Christoffel symbol defined by

Γγ
αβ “ 1

2
gδδpgαδ,β ` gβδ,α ´ gαβ,δq “ gγδθ,αβ ¨ θ,δ ,

and H “ 1

2
gαβbαβ is the mean curvature of BΩ. Let divBΩ denote the divergence operator on BΩ

given by

pdivBΩv q ˝ θ “ rvγ,γ ` Γβ
βγrvγ @ v P TpBΩq (or equivalently, rv i “ rvγθ

i,γ) .

Then

divw “
“
rw3,3 `divBΩpPĂNK rwq ` 2rHrw3

‰
˝ θ´1 on BΩ ,

where we recall that PNK denotes the projection of a vector onto the tangent plane of BΩ. With the
help of (74), for all local charts pU , θq,

”Bw
BN ¨ N

ı
˝ θ “

“
rw3,3 rNi ` rwα,3θ

i,α `rwαg
αβ rNi,β

‰ rNi “ rw3,3 ; (95)

thus

divw “ Bw
BN ¨ N ` 2Hpw ¨ Nq ` divBΩpPNKwq on BΩ . (96)
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On the other hand, if N “ 1?
g

pθ,1 ˆθ,2 q, using the permutation symbol we find that

pcurlw ¨ Nq ˝ θ “ εijkpwk,j N
iq ˝ θ “ εijk

“ rNj rwk
,3 ` gαβθj ,α rwk

,β
‰ rNi

“ εijkθ
j ,α rNigαβ rwk

,β “ p rN ˆ θ,α q ¨ gαβ rw ,β
“ ?

gpδ ´ αqgαβgγδθk,γ rwk
,β ,

where we have used that N ˆ θ,α “ ?
gpδ ´ αqgγδθ,γ to establish the last equality. Writing the sum

explicitly, we find that

pcurlw ¨ Nq ˝ θ “ ?
gpg11g22 ´ g12g12qpθ,2 ¨rw ,1 ´θ,1 ¨rw ,2 q

“ 1?
g

pθ,2 ¨rw ,1 ´θ,1 ¨rw ,2 q .

Since rw “ rw3
rN ` PĂNK rw ,

?
gpcurlw ¨ Nq ˝ θ “ θ,2 ¨pPĂNK rw ` rw3Nq,1 ´θ,1 ¨pPĂNK rw ` rw3

rNq,2
“ rwα,1g2α ` rwαΓ

β
1αgβ2 ´ rwα,2g1α ´ rwαΓ

β
2αgβ1

“ θ,2 ¨∇θ,1pPĂNK rwq ´ θ,1 ¨∇θ,2pPĂNK rwq , (97)

where for two tangent vector field X “ Xαθ,α and Y “ Y βθ,β on a two-dimensional manifold, ∇XY

is the covariant derivative of Y in the direction X given by

∇XY “ XβpY α,β `Y γΓα
γβq θ,α .

5.2.1. The case that Ω “ Bp0, Rq. Now we assume that Ω “ Bp0, Rq for some R ą 0. Having
obtained (96) and (97), in order to achieve (94b’,c) it is natural to consider the case PNKw “ 0. In
other words, we consider the following elliptic problem (with a non-standard boundary condition)

´∆w “ f in Ω , (98a)

PNKw “ 0 on BΩ , (98b)

Bw
BN ¨ N ` 2Hpw ¨ Nq “ 0 on BΩ , (98c)

where we remark that H “ R´1 is a positive constant. We also note that (94b’) and (94c) are direct
consequence of (98b,c), and (95) suggests that (98c) is in fact a Robin boundary condition for rw3.
The goal is to find a solution to (98) in the Hilbert space

H1
τ pΩq ”

 
w P H1pΩq

ˇ̌
PNKw “ 0

(
“

 
w P H1pΩq

ˇ̌
w ˆ N “ 0

(
.

In order to solve (98), we find the weak formulation first, and this amounts to computing
ż

B Ω

Bw
BN ¨

ϕ dS. Nevertheless, if ϕ P H1
τ pΩq, then ϕ “ pϕ ¨ NqN; thus, if w satisfies (98c), for all ϕ P H1

τ pΩq
we have

´
ż

BΩ

Bw
BN ¨ ϕ dS “ ´

ż

BΩ

”Bw
BN ¨ N

ı
pϕ ¨ Nq dS “ 2

ż

BΩ

Hpw ¨ Nqpϕ ¨ Nq dS .

The identity above implies the following

Definition 5.1. A vector-valued function w P H1
τ pΩq is said to be a weak solution to (98) if

ż

Ω

∇w :∇ϕ dx`2

ż

BΩ

Hpw ¨Nqpϕ ¨Nq dS “ pf ,ϕqL2pΩq @ϕ PH1
τ pΩq , (99)

where ∇w : ∇ϕ “ w i,j ϕ
i,j.
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Since H ą 0, the left-hand side of (99) obviously defines a bounded, coercive bilinear form on
H1

τ pΩq ˆ H1
τ pΩq. In fact, using Poincaré’s inequality (23) we find that for some generic constant

c ą 0,
ż

Ω

∇w : ∇wdx` 2

ż

BΩ

Hpw ¨ Nqpw ¨ Nq dS ě c}w}2H1pΩq w P H1
τ pΩq ;

hence by the Lax-Milgram theorem, there exists a unique w P H1
τ pΩq satisfying the weak formulation

(99) and the basic energy estimate

}w}H1pΩq ď C}f }L2pΩq . (100)

Before proceeding, we establish the corresponding regularity theory for equation (98).

Lemma 5.2. Let Ω “ Bp0, Rq Ď R
3 for some R ą 0. Then for all f P Hℓ´1pΩq for some ℓ ě 1, the

weak solution w to (98) in fact belongs to Hℓ`1pΩq, and satisfies

}w}Hℓ`1pΩq ď C}f }Hℓ´1pΩq . (101)

Proof. As the proof of Theorem 3.4 we prove this lemma by induction. The weak solution w indeed
belongs to H1pΩq satisfies (100). Assume that w P HjpΩq for some j ď ℓ. If χ is a smooth cut-off
function so that sptpχqĂĂΩ, the same computation as in the proof of Theorem 3.4 (with ajk “ δjk)
suggests that

}χDj`1w}L2pΩq ď C
”
}f }Hj´1pΩq ` }w}HjpΩq

ı
, (102)

where the constant C depends on the distance between the support of χ and BΩ.
Now we focus on the estimate of w near BΩ. Let tζm,Um, θmuKm“1 be defined as in the proof of

Theorem 1.2, and gαβ “ θm,α ¨ θm,β . Define

ϕ1 “ p´1qjζmN
“
ΛǫB 2jΛǫprζm rwm ¨ rNq

‰
˝ θ´1

m ,

where rζm “ ζm ˝ θm, rwm “ w ˝ θ and rN “ N ˝ θ. Since PNKϕ1 “ 0, ϕ1 can be used as a test
function in (99). Similar to the computations in Step 2 in the proof of Theorem 3.4, we find that

ż

Ω

∇w :∇ϕ1 dxě 1

2

››∇B jΛǫprζm rwm¨ rNq
››2
L2pB`

mq
´C}u}HjpΩq

”››B jΛǫprζm rwm¨ rNq
››
H1pB`

mq
` }u}HjpΩq

ı

ě 1

2

››∇B jΛǫprζm rwm¨ rNq
››2
L2pB`

mq
´Cδ}w}2HjpΩq ´δ

››B jΛǫprζm rwm¨ rNq
››
H1pB`

mq
, (103)

Now we focus on the term
ż

BΩ

Hpw ¨ Nqpϕ1 ¨ Nq dS. Making a change of variable and integrating

by parts, we find that

ż

BΩ

Hpw ¨ Nqpϕ1 ¨ Nq dS “
ż

ty3“0u

B jΛǫ

“?
gHprζm rwm ¨ rNq

‰
B j
`
Λǫprζm rwm ¨ rNq

˘
dS

“
ż

ty3“0u

BΛǫ

“?
gHB j´1prζm rwm ¨ rNq

‰
B j
`
Λǫprζm rwm ¨ rNq

˘
dS

`
j´1ÿ

k“1

´j´1

k

ż̄

ty3“0u

BΛǫ

“
Bkp?gHqB j´1´kprζm rwm¨ rNq

‰
B j
`
Λǫprζm rwm¨ rNq

˘
dS .
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Using our commutator notation,ż

BΩ

Hpw ¨ Nqpϕ1 ¨ Nq dS “
ż

ty3“0u

?
gH

ˇ̌
B jΛǫprζm rwm ¨ rNq

ˇ̌2
dS

`
ż

ty3“0u

“
B p?

gHqB j´1Λǫprζm rwm ¨ rN
˘‰

B j
`
Λǫprζm rwm ¨ rNq

˘
dS

`
ż

ty3“0u

B
“q
Λǫ,

?
gH

y
B j´1prζm rwm ¨ rNq

‰
B jΛǫprζm rwm ¨ rNq dS (104)

`
j´1ÿ

k“1

´j´1

k

¯ż

ty3“0u

Λǫ

“
B kp?gHqB j´kprζm rwm ¨ rNq

‰
B j
`
Λǫprζm rwm ¨ rNq

˘
dS

`
j´1ÿ

k“1

´j´1

k

¯ż

ty3“0u

Λǫ

“
B k`1p?gHqB j´1´kprζm rwm ¨ rNq

‰
B j
`
Λǫprζm rwm ¨ rNq

˘
dS .

The commutator estimate (26) and interpolation, as well as Young’s inequality, suggest that
ż

ty3“0u

B
“q
Λǫ,

?
gH

y
B j´1prζm rwm ¨ rNq

‰
B jΛǫprζm rwm ¨ rNq dS

ě ´C
››B j´1Λǫprζm rwm ¨ rNq

››
L2pty3“0uq

››B jΛǫprζm rwm ¨ rNq
››
L2pty3“0uq

ě ´Cδ}w}2HjpΩq ´ δ
››B jΛǫprζm rwm ¨ rNq

››2
H1pBp0,rmqq

.

Using Hölder’s inequality to estimate the other terms we obtain thatż

BΩ

Hpw ¨ Nqpϕ1 ¨ Nq dS ě
ż

ty3“0u

?
gH

ˇ̌
B jΛǫprζm rwm ¨ rNq

ˇ̌2
dS

´ Cδ}w}2HjpΩq ´ δ
››B jΛǫprζm rwm ¨ rNq

››2
H1pBp0,rmqq

.

(105)

Moreover, it is easy to see thatż

Ω

f ¨ϕ1 dx ď C}f }HjpΩq

››B j`1Λǫprζm rwm ¨ rNq
››
L2pBp0,rmqq

ď Cδ}f }2L2pΩq ` δ
››B j`1Λǫprζm rwm ¨ rNq

››2
L2pBp0,rmqq

. (106)

Combining (103), (105) and (106),

››∇B jΛǫprζm rwm ¨ rNq
››2
L2pB`

mq
`
ż

ty3“0u

?
gH

ˇ̌
B jΛǫprζm rwm ¨ rNq

ˇ̌2
dS

ďCδ

”
}f }2L2pΩq ` }w}2HjpΩq

ı
`δ

››B jΛǫprζm rwm ¨ rNq
››2
H1pBp0,rmqq

.

(107)

Using Poincaré’s inequality, there exists a constant c ą 0 such that

c}B jΛǫprζm rwm ¨ rNq}2H1pΩq ď
››∇B jΛǫprζm rwm ¨ rNq

››2
L2pB`

mq
`
ż

ty3“0u

?
gH

ˇ̌
B jΛǫprζm rwm ¨ rNq

ˇ̌2
dS ,

so by choosing δ ą 0 small enough we find that
››B jΛǫprζm rwm ¨ rNq

››
H1pB`

mq
ď C

”
}f }L2pΩq ` }w}HjpΩq

ı
.

Since the right-hand side of the estimate above is independent of ǫ, we can pass ǫ to the limit and
obtain that ››B jprζm rwm ¨ rNq

››
H1pB`

mq
ď C

”
}f }L2pΩq ` }w}HjpΩq

ı
. (108)

The estimate above provides the regularity of w in the normal direction.
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To see the regularity of the tangential component of w , an alternative test function has to be
employed. Define

ϕ2 “ p´1qjζmN ˆ
“
ΛǫB 2jΛǫprζm rwm ˆ rNq

‰
˝ θ´1

m .

We note that since w ˆ N “ 0 on BΩ, ϕ2 “ 0 on BΩ so ϕ2 may be used as a test function. Since
u ¨ pv ˆwq “ pu ˆ vq ¨ w , with J and A denoting detp∇θmq and p∇θmq´1 respectively, using brs to
denote JAr

kA
s
k we find that

ż

Ω

∇w : ∇ϕ2 dx “ p´1qj
ż

B
`
m

brs rw i
m,s

“rζm rNˆΛǫB 2jΛǫprζm rwm ˆ rNq
‰i
,r dy

“ p´1qj
ż

B
`
m

brsprζm rw i
m,sˆrNqiΛǫB 2jΛǫprζm rwm ˆ rNqi,r dy

` p´1qj
ż

B
`
m

brs rw i
m,s

“
prζm rNq,rˆΛǫB 2jΛǫprζm rwm ˆ rNq

‰i
dy

“
ż

B
`
m

B jΛǫ

“
brsprζm rwm ˆ rNqi,s

‰
B jΛǫprζm rwm ˆ rNqi,r dy

´
ż

B
`
m

B jΛǫ

“
brs

`
prζm,s rw ,mˆrNqi`prζm rw ,mˆrN,sqi

‰̆
B jΛǫprζm rwm ˆ rNqi,r dy

`
ż

B
`
m

B jΛǫb
rs
“
rw i

m,s ˆprζm rNq,r
‰
B jΛǫprζm rwm ˆ rNqidy .

Similar to the procedure of deriving (42), by Leibniz’s rule,
ż

B
`
m

B jΛǫb
rsprζm rwm ˆ rNqi,s B jΛǫprζm rwm ˆ rNqi,r dy

“
ż

B
`
m

brsB jΛǫprζm rwm ˆ rNqi,s B jΛǫprζm rwm ˆ rNqi,r dy

`
ż

B
`
m

BbrsB j´1Λǫprζm rwm ˆ rNqi,s B jΛǫprζm rwm ˆ rNqi,r dy

`
ż

B
`
m

B
q
brs,Λǫ

y
B j´1prζm rwm ˆ rNqi,s B jΛǫprζm rwm ˆ rNqi,r dy

`
j´2ÿ

k“0

´j ´ 1

k

¯ ż

B
`
m

BΛǫ

“
B j´1´kbrsB kprζm rwm ˆ rNqi,s

‰
B jΛǫprζm rwm ˆ rNqi,r dy .

Since tθmuMm“1 is chosen so that A « Id, brs is positive-definitive. As a consequence, by the
commutator estimate (26) and Young’s inequality,

ż

Ω

∇w : ∇ϕ2 dx ě 1

2

››B j
∇Λǫprζm rwm ˆ rNq

››2
L2pB`

mq

´ C
››B j´1

∇Λǫprζm rwm ˆ rNq
››
L2pB`

mq

››B j
∇Λǫprζm rwm ˆ rNq

››
L2pB`

mq

ě 1

4

››B j
∇Λǫprζm rwm ˆ rNq

››2
L2pB`

mq
´C}w}2HjpΩq.

On the other hand,
ż

Ω

f ¨ ϕ2 dx ď C}f }Hj´1pΩq

››B j`1Λǫprζm rwm ˆ rNq
››
L2pBp0,rmqq

ď Cδ}f }2L2pΩq ` δ
››B j`1Λǫprζm rwm ˆ rNq

››2
L2pBp0,rmqq

;
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thus using ϕ2 as a test function in (99) and choosing δ ą 0 small enough, by the fact that
ż

B Ω

Hpw ¨
Nqpϕ2 ¨ Nq dS “ 0 we conclude that

››B jΛǫprζm rwm ˆ rNq
››
H1pB`

mq
ď C

”
}f }L2pΩq ` }w}HjpΩq

ı
. (109)

Since the right-hand side is ǫ-independent, we can pass ǫ to the limit and obtain that
››B jprζm rwm ˆ rNq

››
H1pB`

mq
ď C

”
}f }L2pΩq ` }w}HjpΩq

ı
. (110)

The estimate above provides the regularity of w in the tangential direction.

Since every vector u can be expressed as u “ rN ˆ pu ˆ rNq ` pu ¨ rNq rN, the combination of (108)
and (110) then shows that

››rζmB j rwm

››
H1pB`

mq
ď C

”
}f }L2pΩq ` }w}HjpΩq

ı
.

Finally, we follow Step 4 of Theorem 3.4 or Step 3 of Theorem 3.5 to conclude that
››rζm∇j rwm

››
H1pB`

mq
ď C

”
}f }L2pΩq ` }w}HjpΩq

ı
. (111)

Estimate (101) is concluded from combining the H1-estimate (100), the interior estimate (102) and
the boundary estimate (111). ˝

5.2.2. The case that Ω is a general Hk`1-domain. If Ω is a generalHk`1-domain, the mean curvature
H can be negative on some portion of BΩ, leading to a problematic Robin boundary condition (with
the wrong sign) (98c). To overcome this difficulty, we instead consider a similar problem defined on
a ball containing Ω.

Let Bp0, Rq be an open ball so that ΩĂĂBp0, Rq, and F be a divergence-free vector field on
Bp0, Rq so that F “ f in Ω; that is, F is a divergence-free extension of f . If f P L2pΩq, such an F

(in Bp0, RqzΩ) can be obtained by first solving the elliptic equation

∆φ “ 0 in Bp0, RqzΩ , (112a)

Bφ
BN “ f ¨ N on BΩ , (112b)

Bφ
BN “ 0 on BΩ , (112c)

and setting F “ ∇φ on Bp0, RqzΩ. We note that F P L2pBp0, Rqq even if f P Hℓ´1pΩq; thus F

must be less regular than f due to the lack of continuity of the derivatives of F across BΩ.
Now consider

´∆w “ F in Bp0, Rq , (113a)

PNKw “ 0 on BBp0, Rq , (113b)

Bw
BN ¨ N ` 2Hpw ¨ Nq “ 0 on BBp0, Rq . (113c)

By Lemma 5.2, there exists a strong solution w P H2pBp0, Rqq to (113) (so that (113) also holds in
the pointwise sense).

Now we show that w has zero divergence. Let d “ divw P H1pBp0, Rqq. We claim that d is a
weak solution to

∆d “ 0 in Bp0, Rq , (114a)

d “ 0 on BBp0, Rq ; (114b)
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that is, d P H1
0 pBp0, Rqq and d satisfies

ż

Bp0,Rq

∇d ¨ ∇ϕdx “ 0 @ ϕ P H1
0 pBp0, Rqq . (115)

The boundary condition d “ 0 on BBp0, Rq is obvious because of (96) and (113b,c). To see (115),
we note that it suffices to show ∆d “ 0 in the sense of distribution since DpBp0, Rqq is dense in
H1

0 pBp0, Rqq. Let ϕ P DpBp0, Rqq, and define ψ “ ∇ϕ. Then ψ P DpBp0, Rqq, and

´
ż

Bp0,Rq

∆w ¨ ψ dx “
ż

Bp0,Rq

F ¨ψ dx “
ż

Bp0,RqzΩ

F ¨ ∇ϕdx`
ż

Ω

f ¨ ∇ϕdx

“
ż

BΩ

pf ¨ N ´ Bφ
BNqϕdS “ 0 .

On the other hand, since w P H2pBp0, Rqq, we have d P H1pBp0, Rqq and

´
ż

Bp0,Rq

∆w ¨ ψ dx “
ż

Bp0,Rq

∇w : ∇ψ dx “
ż

Bp0,Rq

w i,j ϕ,ij dx

“ ´
ż

Bp0,Rq

d,j ϕ,j dx “ ´
ż

Bp0,Rq

∇d ¨ ∇ϕdx ;

thus we conclude (115). Therefore, d is the weak solution to (114) and so d must vanish in Ω which
implies that divw “ 0 in Ω. Finally, since w P H2pΩq, applying (77) we find that v “ curlw P H1pΩq
satisfies curlv “ f in Ω.

So far we have shown that there exists v P H1pBp0, Rqq satisfying

curlv “ F in Bp0, Rq ,
divv “ 0 in Bp0, Rq ,
v ¨ N “ 0 on BBp0, Rq ,

which in particular suggests that curlv “ f in Ω. It is not clear that if v possesses better regularity
since v is constructed using a non-smooth forcing F . Let p be the Hmint3,ℓ`1u-solution to the elliptic
equation

∆p “ 0 in Ω ,

Bp
BN “ ´v ¨ N on BΩ ,

and define u “ v ` ∇p, then u is a solution to (92). We note that u P H1pΩq and satisfies

}u}H1pΩq ď }v}H1pΩq ` }∇p}H1pΩq ď Cp|BΩ|Hk`0.5 q}w}H2pΩq

ď Cp|BΩ|Hk`0.5 q}f }L2pΩq . (116)

In the following lemma, we show that the singularity of v in fact “cancels-out” the singularity of ∇p
so that u possesses Hℓ-regularity if f P Hℓ´1pΩq for some ℓ ě 2.

Lemma 5.3. Let Ω Ď R
3 be a bounded Hk`1-domain for some k ą 3

2
. Then for all f P Hℓ´1pΩq

for some 1 ď ℓ ď k, there exists a solution u P HℓpΩq to (92) satisfying

}u}HℓpΩq ď Cp|BΩ|Hk`0.5 q}f }Hℓ´1pΩq . (117)

Moreover, the solution is unique if Ω is convex or ℓ ě 2.
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Proof. We again show that u P HℓpΩq by induction. We have shown the validity of the lemma for the
case that ℓ “ 1. Now suppose that ℓ ě 2 and u P HjpΩq for some j ď ℓ´1. Since u “ curlw P H1pΩq
satisfies (92b,c), using (93) we find that u satisfies

ż

Ω

curlu ¨ curlϕ dx “
ż

Ω

∇u : ∇ϕ dx´
ż

BΩ

h ¨ϕ dS @ϕ P H1
npΩq ,

where in local chart pU , θq h is given by h ˝ θ “ ´gαβgγδ
“
pu ˝ θq ¨ θ,β

‰
bαγ θ,δ. On the other hand,

ż

Ω

f ¨ curlϕ dx “
ż

Ω

εijkf
iϕk,j dx “ ´

ż

Ω

εijkf
i,j ϕ

kdx`
ż

BΩ

εijkf
iNjϕ

kdS

“
ż

Ω

curlf ¨ ϕ dx`
ż

BΩ

pf ˆ Nq ¨ ϕ dS @ϕ P H1pΩq.

Using (92a), we find that u satisfies
ż

Ω

∇u : ∇ϕ dx “
ż

Ω

curlf ¨ϕ dx`
ż

BΩ

pf ˆ N ` hq ¨ ϕ dS @ϕ P H1
npΩq ;

thus u is a weak solution to

´∆u “ curl f in Ω , (118a)

u ¨ N “ 0 on BΩ , (118b)

PNK

´ Bu
BN ´ f ˆ N ´ h

¯
“ 0 on BΩ , (118c)

Let us first assume that k ě 3. Then k ´ 1.5 ą 1 “ 2

2
. Moreover, j ´ 0.5 ď k ´ 1.5 ; thus

Proposition 2.4 suggests that

}h}Hj´0.5pBΩq ď Cp|BΩ|Hk`0.5q}b}Hk´1.5pty3“0uq}u}Hj´0.5pBΩq ď Cp|BΩ|Hk`0.5 q}u}HjpΩq . (119)

Therefore, by Corollary 3.6 (with ajk “ δjk and w “ N) we conclude that

}u}Hj`1pΩq ď Cp|BΩ|Hk`0.5q
”
}curl f }Hj´1pΩq ` }f ˆ N ` h}Hj´0.5pBΩq

ı

ď Cp|BΩ|Hk`0.5q
”
}f }HjpΩq ` }u}HjpΩq

ı

which implies u P Hj`1pΩq. Estimate (117) then is concluded from estimate (116), interpolation
and Young’s inequality.

The case that k “ 2 (and ℓ “ 2) is a bit tricky. In this case (119) cannot be applied since b,u both
belong to H0.5pBΩq while H0.5pBΩq is not a multiplicative algebra. To see why u indeed belongs to
H2pΩq if f P H1pΩq, let uǫ to be the solution to

λu ǫ ´ ∆uǫ “ curl f ` λu in Ω , (120a)

u ǫ ¨ N “ 0 on BΩ , (120b)

PNK

´Buǫ

BN ´ f ˆ N ´ hǫ

¯
“ 0 on BΩ , (120c)

where u on the right-hand side of (120a) is the solution to (92), hǫ is a smooth version of h given
by

hǫ “ ´
Kÿ

m“1

ζm

”
gαβm gγδm

`
pu ǫ ˝ θmq ¨ θm,β

˘
pΛǫbmαγq θm,δ

ı
˝ θ´1

m
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in which Λǫ is the horizontal convolution defined in Section 2.4, and λ " 1 is a big constant so that
the bilinear form

Bpuǫ,ϕq “ λpu ǫ,ϕqL2pΩq ` p∇u ǫ,∇ϕqL2pΩq `
ż

BΩ

hε ¨ϕ dS

is coercive on H1
npΩq ˆH1

npΩq. Since Λǫbm is smooth, we find that hǫ P H0.5pBΩq satisfying

}hǫ}H0.5pBΩq ď Cp|BΩ|H2.5 q
”
}B yθm}6H1.25pBp0,rmqXty3“0uq}Λǫbm}H1.25pBp0,rmqXty3“0uq}uǫ}H0.5pBΩq

ı

ď Cǫ}uǫ}H1pΩq ď Cǫ

”
}f }L2pΩq ` λ}u}L2pΩq

ı
ď Cǫ}f }L2pΩq ,

where the dependence on ǫ in the constant Cǫ is due to the horizontal convolution Λǫ. As a sequence,
uǫ P H2pΩq, and this fact further suggests that hǫ satisfies

}hǫ}H0.5pBΩq ď Cp|BΩ|H2.5 q
”
}B yθm}6H1.25pBp0,rmqXty3“0uq}bm}H0.5pBp0,rmqXty3“0uq}uǫ}H1.25pBΩq

ı

ď Cp|BΩ|H2.5 q}u ǫ}H1.75pΩq ď Cp|BΩ|H2.5 q}uǫ}
1

4

H1pΩq}uǫ}
3

4

H2pΩq .

By Young’s inequality, we find that that uǫ satisfies

}uǫ}H2pΩq ď Cp|BΩ|q
”
}curlf }L2pΩq ` }f ˆ N ` hǫ}H0.5pBΩq

ı

ď Cp|BΩ|H2.5 , δq}f }H1pΩq ` δ}uǫ}H2pΩq .

Choosing δ ą 0 small enough, we conclude that uǫ has a uniform H2 upper bound and possesses an
H1 convergent subsequence u ǫj with limit v . This limit v must be u since u is also a weak solution
to (120) and the strong solution to (120) is unique (by the Lax-Milgram theorem). Moreover, u
satisfies (117) (for ℓ “ 2). ˝

Lemma 5.3 together with the elliptic estimate

}∇φ}Hj`1pΩq ď C
“
}g}HjpΩq ` }h}Hj´0.5pBΩq

‰

for the solution φ to (91) then concludes the first part of Theorem 1.1.

5.3. Solutions with prescribed tangential trace. Having considered the boundary condition
v ¨ N “ h, we now establish the existence and uniqueness of the following problem:

curlv “ f in Ω , (121a)

divv “ g in Ω , (121b)

v ˆ N “ h on BΩ , (121c)

in which (121c) prescribes the tangential trace of v . We impose the following conditions on the
forcing functions f and h :

divf “ 0 in Ω and h ¨ N “ 0 on BΩ . (122a)

For (121) to have a solution, one additional solvability condition has to be imposed. Let u be a
solution to (92). Then w “ v ´ u satisfies

curlw “ 0 in Ω , (123a)

divw “ g in Ω , (123b)

w ˆ N “ h ´ u ˆ N on BΩ . (123c)

Taking the cross product of N with (123c), we find that

w ´ pw ¨ NqN “ N ˆ h ´
“
u ´ pu ¨ NqN

‰
on BΩ .
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If C is a closed curve on BΩ enclosing a surface Σ Ď BΩ so that C “ BΣ with a parameterization r,
then the Stokes theorem implies that

0 “
ż

Σ

curlw ¨N dS “
¿

C

w ¨dr “
¿

C

rw ´ pw ¨NqNs ¨dr “
¿

C

pN ˆ h ´ uq ¨dr

“
¿

C

pN ˆ hq ¨dr ´
ż

Σ

curlu ¨ N dS “
¿

C

pN ˆ hq ¨dr ´
ż

Σ

f ¨ N dS ..

Therefore, if Σ is a subset of BΩ with a piecewise smooth boundary,
ż

Σ

f ¨ N dS “
¿

BΣ

pN ˆ hq ¨ dr. p122bq

(122a) and (122b) constitute the solvability conditions for equation (121).

5.3.1. Uniqueness of solutions. We first assume that Ω is convex. Using (93), we find that if v1, v2 P
H1pΩq are two solutions to (121), then v “ v1 ´ v2 satisfies

0 “ }∇v}2L2pΩq ` 2

ż

BΩ

H|v ¨ N|2dS ;

thus if H ě 0, v “ 0 by the Poincaré inequality (23). Therefore, the H1-solution to (121) must be
unique if Ω is bounded and convex.

Now suppose that Ω is a general domain. Similar to Section 5.1, when looking for solutions in
H1`ǫpΩq for some ǫ ą 0, the difference of two solutions must be the gradient of an H2`ǫ-scalar
potential φ, and φ has to satisfy

∆φ “ 0 in Ω , (124a)

∇φˆ N “ 0 on BΩ . (124b)

Note that (124b) implies that the derivative of φ in all tangential direction on BΩ is zero. It follows
that φ is constant on BΩ. Consequently, φ is constant in Ω which implies the uniqueness of the
solution to (121) in the space H1`ǫpΩq.

5.3.2. Existence of solutions. In order to establish existence of solutions to (123), we look for a
solution w of the form w “ ∇p. We first assume that BΩ is path connected. By the Stokes theorem,
the solvability condition (122b) shows that the function b given by

bpxq “
¿

Cx

pN ˆ h ´ uq ¨ dr @ x P BΩ , (125)

where Cx is a smooth curve connecting a fixed point x0 P BΩ and x P BΩ, is independent of the
curve Cx, and so is a well-defined function.

Since b is defined on BΩ, b can be differentiated in all tangential directions. Moreover,

∇b ¨ T “ pN ˆ h ´ uq ¨ T on BΩ
for all tangent vectors T. Therefore, using (122a) we find that

∇bˆ N “ pN ˆ h ´ uq ˆ N “ h ´ u ˆ N on BΩ . (126)

We remark that only the directional derivative of b in the tangential direction is necessary in order
to compute ∇bˆ N. Moreover, because of (126), b P Hℓ´0.5pBΩq and b satisfies

}b}Hℓ´0.5pBΩq ď Cp|BΩ|Hk`0.5q
”
}h}Hℓ´0.5pBΩq ` }u}Hℓ´0.5pBΩq

ı

ď Cp|BΩ|Hk`0.5q
”
}f }Hℓ´1pΩq ` }h}Hℓ´0.5pBΩq

ı
.
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Let p be the solution of the elliptic equation

∆p “ g in Ω , (127a)

p “ b on BΩ . (127b)

We note that by Corollary 3.7, p P Hℓ`1pΩq satisfies the estimate

}p}Hℓ`1pΩq ď Cp|BΩ|Hk`0.5q
”
}g}Hℓ´1pΩq ` }b}Hℓ´0.5pBΩq

ı

ď Cp|BΩ|Hk`0.5q
”
}f }Hℓ´1pΩq ` }g}Hℓ´1pΩq ` }h}Hℓ´0.5pBΩq

ı
.

Moreover, since p “ b on BΩ, ∇pp ´ bq ˆ N “ 0; hence,

∇pˆ N “ ∇b ˆ N “ h ´ u ˆ N on BΩ . (128)

As a consequence, (127a) and (128) show that w “ ∇p satisfies (123).
Now suppose that BΩ is not path connected. In this case we can define b on each connected

component, and then solve (127) using such a b. We have, thus, proved the second part of Theorem
1.1.

6. The Proof of Theorem 1.5

Now we proceed to the proof of Theorem 1.5. We only prove (9) since the proof of (10) is similar.
By assumption BΩ is in a small tubular neighborhood of the normal bundle over BD; hence, there
is height function hpx, tq such that each point on BΩ is given by x` hpxqnpxq, x P BD, where n is
the outward-pointing unit normal to BD. Let ψ : D Ñ R

2 solve

∆ψ “ 0 in D ,

ψ “ e` hn on BD ,

where e is the identity map. Then ψ : BD Ñ BΩ, and standard elliptic estimates show that for some
constant C “ Cp|BD|Hk`0.5 q,

}∇ψ ´ Id}HkpDq ď C}h}Hk`0.5pBDq ď Cǫ ! 1 (129)

which further suggests that ψ : D Ñ Ω is an Hk`1-diffeomorphism since }d}Hk`0.5pBDq ă ǫ ! 1. We
note that according to the proofs of Corollary 2.6 and Corollary 2.8, there exists generic constants
c1 and C1 independent of |BΩ|Hk`0.5 such that if j ď k ` 1,

c1p1 ´ ǫq}f}HjpΩq ď }f ˝ ψ}HjpDq ď C1p1 ` ǫq}f}HjpΩq @ f P HjpΩq . (130)

As a consequence, letting A “ p∇ψq´1 we obtain that

}pcurluq ˝ ψ}HkpDq “ }εijkAr
jpuk ˝ ψq,r }HkpDq “ }εijkpAr

j ´ δrj qpuk ˝ ψq,r `εijkpuk ˝ ψq,j }HkpDq

ě }curlpu ˝ ψq}HkpDq ´ C}A´ Id}HkpDq}u ˝ ψ}Hk`1pDq ,

where the constant C “ Cp|BD|Hk`0.5 q. Therefore,
}curlpu ˝ ψq}HkpDq ď }pcurluq ˝ ψ}HkpDq ` Cǫ}u ˝ ψ}Hk`1pDq

ď C1}curlu}HkpΩq ` pC1 ` Cqǫ}u}Hk`1pΩq . (131a)

Similarly,

}divpu ˝ ψq}HkpDq ď C1}divu}HkpΩq ` pC1 ` Cqǫ}u}Hk`1pΩq . p131bq

Let n be the outward-pointing unit normal to BD. Then by the identity N ˝ ψ “ ATn

|ATn | , we find

that

}pN ˝ ψq ´ n}Hk´0.5pBDq ď C2p|BD|Hk`0.5qǫ .
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Therefore, in addition to estimate (131a,b), we also have

}∇BDpu ˝ ψq ¨ n}Hk´0.5pBDq ď }∇BDpu ˝ ψq ¨ pN ˝ ψq}Hk´0.5pBDq ` C2ǫ}u}Hk`1pBΩq

ď C1p1 ` ǫq}∇BΩu ¨ N}Hk´0.5pBΩq ` C2ǫ}u}Hk`1pΩq

ď C1}∇BΩu ¨ N}Hk´0.5pBΩq ` pC1 ` C2qǫ}u}Hk`1pΩq .

Finally, by Theorem 1.2, there exists a generic constant C3 “ C3p|BD|Hk`0.5q such that

}v}Hk`1pDq ďC3

”
}v}L2pDq ` }curlv}HkpDq ` }divv}HkpDq ` }∇BDv ¨ n}Hk´0.5pBDq

ı
@ v P Hk`1pDq .

Letting v “ u ˝ ψ, using (130) and (131) we find that

c1p1 ´ ǫq}u}Hk`1pΩq ď C3C1

”
}u}L2pΩq ` }curlu}HkpΩq ` }divu}HkpΩq ` }∇BΩu ¨ N}Hk´0.5pBΩq

ı

` C3pC1 ` C2 ` Cqǫ}u}Hk`1pΩq @ u P Hk`1pΩq .
Since ǫ ! 1, the last term on the right-hand side can be absorbed by the left-hand side, yielding a
linear inequality. The conclusion of Theorem 1.5 then follows by linear interpolation.

Appendix A. Proofs of the inequalities in Section 2.2

Proof of Proposition 2.4. We estimate DjfDℓ´jg for j “ 1, ¨ ¨ ¨ , ℓ´ 1 as follows:

(1) If 1 ď j ď n

2
, by the Sobolev inequalities

}w}
L

n

j´ǫ pOq
ď Cǫ}w}

H
n

2
´j`ǫpOq

(if 0 ă ǫ ă 1) ,

}w}
L

2n

n´2pj´ǫq pOq
ď C}w}Hj´ǫpOq ,

we find that

}DjfDℓ´jg}L2pOq ď }Djf}
L

n

j´ǫ pOq
}Dℓ´jg}

L
2n

n´2pj´ǫq pOq
ď Cǫ}f}

H
n

2
`ǫpOq

}g}Hℓ´ǫpOq .

(2) If j “ ℓ, by the Sobolev inequality

}w}L8pOqď Cǫ}w}
H

n

2
`ǫpOq

,

we find that

}DjfDℓ´jg}L2pOq ď Cǫ}f}HℓpOq}g}
H

n

2
`ǫpOq

.

(3) If
n

2
ă j ă ℓ (this happens only when

n

2
ă ℓ ď k), we consider the following two sub-cases:

(a) The case ℓ ď n : Similar to the previous case, by the Sobolev inequalities

}w}
L

2n

n´2pℓ´jq pOq
ď C}w}Hℓ´jpOq and }w}

L
n

ℓ´j pOq
ď C}w}

H
n

2
´ℓ`jpOq

,

we obtain that

}DjfDℓ´jg}L2pOq ď }Djf}
L

2n

n´2pℓ´jq pOq
}Dℓ´jg}

L
n

ℓ´j pOq
ď C}f}HℓpOq}g}

H
n

2 pOq
.

(b) The case n ă ℓ ď k : If j ą k ´ n

2
, by the Sobolev inequalities

}w}
L

2n

n´2pk´jq pOq
ď C}w}Hk´jpOq and }w}

L
n

k´j pOq
ď C}w}

H
n

2
´k`jpOq

,

we obtain that

}DjfDℓ´jg}L2pOq ď }Djf}
L

2n

n´2pk´jq pOq
}Dℓ´jg}

L
n

k´j pOq
ď C}f}HkpOq}g}

H
n

2
´k`ℓpOq

.
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Now suppose that
n

2
ă j ď k ´ n

2
. Note that if 0 ă ǫ ă 1

2
,

}w}
H

n

2
`ǫpOq

ď Cǫ}w}W j,8pOq ď Cǫ}w}HkpOq ,

}w}
H

n

2
´k`ℓpOq

ď C}w}Hℓ´jpOq ď C}w}Hℓ´ǫpOq .

Therefore, by interpolation we obtain that

}DjfDℓ´jg}L2pOq ď }f}W j,8pOq}g}Hℓ´jpOq

ď Cǫ}f}1´αj

H
n

2
`ǫpOq

}f}αj

HkpOq
}g}αj

H
n

2
´k`ℓpOq

}g}1´αj

Hℓ´ǫpOq

for some αj P p0, 1q; thus Young’s inequality implies that

}DjfDℓ´jg}L2pOq ď Cǫ

”
}f}

H
n

2
`ǫpOq

}g}Hℓ´ǫpOq ` }f}HkpOq}g}
H

n

2
´k`ℓpOq

ı
.

Summing over all the possible ℓ, we conclude that for 0 ă ǫ ă 1

2
,

ℓÿ

j“1

}DjfDℓ´jg}L2pOq ď

$
&
%

Cǫ}f}
H

n

2
`ǫpOq

}g}Hℓ´ǫpOq if ℓ ď n

2
,

Cǫ

”
}f}

H
n

2
`ǫpOq

}g}Hℓ´ǫpOq ` }f}HkpOq}g}
H

n

2
`ǫpOq

ı
otherwise .

Estimate (11) is then concluded by the fact that for all ǫ P
`
0,

1

4

˘
,

n

2
` ǫ ď k and

n

2
` ǫ ď ℓ´ ǫ if (in addition) ℓ ą n

2
.

Finally, we conclude estimate (12) by an additional estimate

}fDℓg}L2pOq ď }f}L8pOq}g}HℓpOq ď C}f}HkpOq}g}HℓpOq . ˝

Proof of Corollary 2.6. By the definition of determinant and (12), it is easy to see that

}J}HkpOq ď C}∇ψ}nHkpOq .

By Sobolev embedding HkpOq Ď C 0,αpOq, we find that J is uniformly continuous on O. Since J ‰ 0
in O (by the virtue of that ψ being a diffeomorphism), }J}L8pOq ě δ ą 0 for some δ (depending on
J). Using the cofactor formula of the inverse of matrices, we find that

}A}L2pOq ď 1

δ
}JA}L2pOq ď C

δ
}∇ψ}n´2

HkpOq
}∇ψ}L2pOq . (132)

Therefore, by interpolation and Young’s inequality, with the help of (11) we find that

}DkA}L2pOq ď 1

δ
}JDkA}L2pOq ď 1

δ
}DkpJAq}L2pOq ` 1

δ

kÿ

j“1

˜
k

j

¸
}DjJDk´jA}L2pOq

ďCδ}∇ψ}n´1
HkpOq

`Cδ}J}HkpOq}A}Hk´ǫpOq

ďCδ}∇ψ}n´1
HkpOq

`Cδ}J}HkpOq}A}1´ k

ǫ

HkpOq
}A}

k

ǫ

L2pOq

ďCδ,δ1

`
}∇ψ}HkpOq

˘
`δ1}A}HkpOq .

Combining the estimate above with (132), by choosing δ1 ą 0 small enough we conclude (15). ˝

Proof of Corollary 2.7. We prove (16) by induction. Define J “ detp∇ψq and A “ p∇ψq´1. With
the help of (15), the case that ℓ “ 0 is concluded by

}f}2L2pΩq “
ż

O

|pf ˝ ψqpyq|2Jpyq dy ď Cp}∇ψ}HkpOqq}f ˝ ψ}2L2pOq (133)
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and

}f ˝ ψ}2L2pOq “
ż

Ω

|fpxq|2 1

pJ ˝ ψ´1qpxq dx ď 1

δ
}f}2L2pΩq , (134)

where δ ą 0 is a lower bound for }J}L8pOq. Suppose that (16) holds for ℓ “ j. Then for ℓ “ j ` 1,
by (12) and (15) we obtain that

}Dj`1f}L2pΩq ď }Df}HjpΩq ď Cp}∇ψ}HkpOqq}pDfq ˝ ψ}HjpOq

ď Cp}∇ψ}HkpOqq
››ATDpf ˝ ψq}HjpOq

ď Cp}∇ψ}HkpOqq}A}HkpOq}Dpf ˝ ψq}HjpOq

ď Cp}∇ψ}HkpOqq}f ˝ ψ}Hj`1pOq

and

}Dj`1pf ˝ ψq}L2pOq “
››Dj

“
pDfq ˝ ψDψ

‰››
L2pOq

ď
››pDfq ˝ ψDψ

››
HjpOq

ď C}∇ψ}HkpOq}pDfq ˝ ψ}HjpOq

ď C}∇ψ}HkpOq}Df}HjpΩq ď C}∇ψ}HkpOq}f}Hj`1pΩq ,

which, together with the (133) and (134), concludes the case that ℓ “ j ` 1. ˝
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