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1. INTRODUCTION

1.1. Th main results. Given a Sobolev-class bounded domain 2 € R™ and forcing functions fand
g in  together with either h or h on 0€2, we establish the solvability and regularity for solutions v
to the following vector elliptic system of Hodge-type:

curlv = f in Q,

dive =g in Q,
with boundary conditions given by either

v -N=h or vxN=h on 00.
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Motivated by the analysis of the free-boundary problems which arise in inviscid fluid dynamics,
we provide a self-contained proof of the following two theorems:

Theorem 1.1. Let Q € R? be a bounded H* '-domain with k > g Given f,g € H*1(Q) with
div f = 0, suppose that

curlv = f mn Q) (2a)
divv =g m Q. (2b)
(1) If h e H*=%2(0Q) satisfies J gdx = hdS, and
Q o0
v-N=h ondQ, (3)

then, for 1 < £ <k, there exists a solution v € H(Y) to (2) with boundary condition (3) such that
[Vl ey < CQORrrwso) [IF 10y + gl 1oy + IRl are-o5(00 |-
(2) If h e H'=9%(0Q) satisfies h-N =0 on 0Q and
sz -NdS = ﬁE(N x h)-dr if ¥ € 0Q has piecewise smooth boundary,
0

and
vxN=~h ondQ, (4)
then, for 1 < £ <k, there exists a solution v € H(Y) to (2) with boundary condition (4) such that

|vll e o) < C(|5Q|Hk+0«5)[HfHH'-’fl(Q) + gl me-1(0) + HhHH’f*f’ﬁ(&Q)] :
The solution to either problem is unique if Q is convex or if ¢ = 2.
Theorem 1.2. Let Q € R™, n =2 or 3, be a bounded H<'-domain with k > B Then there exists
a generic constant C' depending on |0Q|gxros such that for all w € H*1(Q),
Jullos oy < C[Julay + lewrtul g + ldivalm + Mo Nlgoson ], ©6)
|‘UHH1‘+1(Q) < CI:HUHLQ(Q) + chrluHHk(Q) + HdiquHk(Q) + HVDQU X NHkao.s(aQ)] s (6)
where Vhqu is the tangential derivative on 052.

Remark 1.3. The inequalities (5) and (6) play a fundamental role in the regularity theory of the
Euler equations with moving interfaces; see, for example, [9] for the incompressible setting and [10]
for the compressible problem with vacuum. The use of the norm |[Voou - N| o5y rather than
|w - N grrosq) s crucial, as the regularity of the normal vector to field to 0€2 is often worse than
the reqularity of the velocity vector w.

On the other hand, if Q is at least of class H**? then the inequalities (5) and (6) can be replaced,
respectively, by

|| g ) < C[HUHL2(Q) + [eurlul gy + |[dive| geg) + |u - NHHHO«S(@Q)] (7)
|| sy < C[HUHL?(Q) + [eurlu|| griq) + |dive| geg) + Ju x NHHHO«S(@Q)] (8)

Remark 1.4. Recently, Amrouche € Seloula [5] established the inequality (7) in the LP framework
and for domains Q of class €*+1, under the additional assumption that u x N = 0 on 0Q. Similarly,
they established (8) for €**'-class domains, under the additional assumption that w-N =0 on 0.
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When € is very close to a ¥*-domain, we can obtain these inequalities for fractional-order Sobolev
spaces, as in the following

Theorem 1.5. Let Q € R®, n = 2 or 3, be a bounded H*"'-domain with s € R such that s > g ,

and let D denote a €*-domain such that the distance between 0D and 0) in the H105-norm is
less than € for 0 < e « 1. Then there exists a generic constant C' depending only on |0D|ys+os,
such that for all uw € H**1(Q),

[l o) < C|lulra) + leurlulms o) + |divalm() + %o - Nlgosoa|,  (9)
lw] e o) < C[H“HL?(Q) + [eurluf gs o) + [dive| ge ) + [Vaou x NHHS*O*”((')Q)] , (10)
where Vhou is the tangential derivative on 02.

The inequalities (9) and (10) set in fractional-order Sobolev spaces are fundamental to the analysis
of Euler-type free-boundary problems.

1.2. Outline of the paper. In Section 2, we introduce our notation as well as a number of ele-
mentary technical lemmas, whose proofs we include (for completeness) in Appendix A. Section 3 is
devoted to the analysis of the vector-valued elliptic system (28a) with mixed-type boundary condi-
tions (28b) and (28c), which is fundamental to the proof of our two main theorems; in particular,
we prove Theorem 3.5 which establishes the elliptic estimate for (28) when the coefficients are of
Sobolev-class. As a corollary to this theorem, we state in Corollary 3.7 the basic elliptic estimates
for both the Dirichlet and Neumann problems, again with Sobolev class regularity. Finally, for co-
efficients which are close to the identity, we give an improved estimate in Theorem 3.8 for solutions
to (28), which is linear in the highest derivatives of the coefficient matrix. This latter theorem is
essential for estimates in fractional-order Sobolev spaces via linear interpolation.

In Section 4, we prove Theorem 1.2, using the elliptic regularity theory developed for the elliptic
system (28). Then, in Section 5, we prove Theorem 1.1. Our proof relies on some basic geometric
identities involving the mean curvature of 0€2, together with the elliptic regularity theory established
in Section 3. Finally, in Section 6, we prove Theorem 1.5.

1.3. A brief history of prior results. In addition to the recent work of Amrouche & Seloula
[5] noted above, there have been many other methods and results to study such elliptic systems
on smooth domains. The elliptic system (2) can be viewed as a particular example of the systems
studied by Agmon, Douglis & Nirenberg [1], wherein both Schauder-type estimates and LP-estimates
can be found.

In [15], von Wahl proved that if the normal or the tangential trace of a vector field vanishes, and
for bounded or unbounded €2, the inequality |Vul| sy < C(|divul 1o o)+ |curlu| 1y o)) is equivalent
to the vanishing of the first Betti number.

Amrouche & Girault [4] derived the LP-regularity theory of the steady Stokes equation by estab-
lishing the equivalency between the Sobolev space W™ " and the direct sum of W™ " by divergence-
free vector fields and the gradients of W™*L" functions.

Schwarz [14], studied the Hodge decomposition on manifolds with boundaries and showed that
a differential k-forms can be written as the sum of an exact form, a coexact form, and a harmonic
form.

Bolik & von Wahl [6] derived € *-estimates of the gradient of a vector field whose curl, divergence,
and normal or tangential traces are prescribed. Mitrea, Mitrea & Pipher [13] studied the vector
potential theory on non-smooth domains in R? with applications to electromagnetic scattering.
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In [2], Amrouche, Bernardi, Dauge & Girault studied the vector potential associated with a
divergence-free vector field satisfying various types of boundary conditions; see also Amrouche,
Ciarlet & Ciarlet Jr. [3].

Buffa and Ciarlet Jr. [7] and [8] established the Hodge decomposition of tangential vector fields
defined on polyhedron domains, and studied the tangential trace and tangential components of
vectors belonging to the space H(curl, Q) := {u e L?(Q;R3) | curlu € L2(Q;R?)}.

In [12], Kozono and Yanagisawa proved the decomposition of a divergence-free vector-field as the
sum of the curl of a vector-field and a vector-field which is solenoidal, irrotational and has zero
normal trace.

2. NOTATION AND PRELIMINARY RESULTS

The Einstein summation convention is used throughout the paper. In particular, repeated Latin
indices are summed from 1 to n, and repeated Greek indices are summed from 1 to n — 1. For

n n—1
example, fig; = Y figi and faga = 2 faYa-
=1

=1

2.1. H°-domain. In order to make our presentation self-contained, in this section, we collect a
number of useful technical lemmas. These lemmas are well-known when the domains are smooth,
but we shall need these basic results for Sobolev class domains. The proofs will be collected in
Appendix A. For the remainder of this section, when not explicitly stated, s will denote a real
number, while 0 < k, ¢ will denote integers. We use the term domain to mean an open subset of R".

Definition 2.1. Let Q < R" be a bounded domain, and s > 241 be a real number. Q is said to be
an H?®-domain, or of class H®, if there exists a smooth bounded domain O and a map 1 such that
O — Q is an H?-diffeomorphism; that is,

(1) v : O — Q is one-to-one and onto, with differentiable inverse map =1 :Q — O, and

(2) v e H*(O) and =t € H3(Q).

By the trace theorem, |o0 € H*"%%(00) and we shall often denote the value of this norm by
|aQ|Hs—O,5.

Definition 2.2. For s > g + 1, a pair (U,0) is called a local chart of QY if U < R™ is open, and
6:R*1nB(0,1) - QU is an H*-diffeomorphism. The induced metric in the local chart (U,0)
is the (0,2)-tensor gap given by
o0 o0
Gap = 7va s’
and the induced second-fundamental form in a local chart (U, 0) is the (0,2)-tensor bag given by
020

——2 7 . (No#™Y,
0Yalyp ( )

bag =
where N is the outward-pointing unit normal to 02.

Definition 2.3. For s > g + 1, let Q < R™ be a bounded H®-domain. We let Viq denote the

tangential derivative on 0. If u : 02 — R™ is differentiable, then in local chart (U,0), Viqu is

given by

0(uob)
0Ya

(Vequ) 08 =

)
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2.2. Basic inequalities. We now state some basic inequalities, that we use throughout the paper.
Proposition 2.4. For k > g and 0 < ¢ <k, let O € R™ be a bounded smooth domain. Then for
all e € (0, i), there exists a constant C. depending on € such that for all f € H*(O) and g € H*(O),

l
2, 1D D gl 20y < Cel k(o) 9l (o) - (11)
j=1
Moreover, for some generic constant C > 0,
HfQHH@(O) < CHfHHk(O)HgHH@(O) erHk(O),ger(O). (12)

Remark 2.5. Suppose that s > D and0<r<s for some real numbers r and s. Then there exists
a generic constant Cs > 0 such that

[ fgllmrgny < Csllflms@)|glmr@ny Ve H*(RY),ge H'(R"). (13)
By the Sobolev extension argument, we also conclude that
HngHT(Q) < CstHHS(Q) HQHHT(Q) VfeH*(Q),ge H(Q) (14)

if 0 is a bounded smooth domain.

The following two corollaries are direct consequences of Proposition 2.4, and are the foundation
of the study of inequalities on H®-domains. The proof of these two corollaries can also be found in
Appendix A.

Corollary 2.6. Let O < R" be a bounded smooth domain, and v : O — Q < R™ be a H**!-
diffeomorphism for some integer k > g . Define J = det(Vy) and A = (Vy)~t. Then
1Tz 0y + Al 0y < C(IVYlmx(o)) - (15)
Corollary 2.7. Let O < R™ be a bounded smooth domain, and ¢ : O — Q < R™ be an H**1-
diffeomorphism for some integer k > g . Then for all0 < 0 <k+1,
1flme@) < CUVImeo)If o ¥lueoy Y feH(Q), (16a)
If o Yllaeoy < CUNVY| ax0)) | £ me o) Vfe HYQ). (16b)
By Corollary 2.7, if 2 is of class H**! with k > g, fe HX(Q) and g € HY(Q), then for e H(O)
and g o1 € H(O). As a consequence,
1fglley < C(fg) o ¥l ueo)
<C|fo 1ﬁHHk(o)HQ o "/’HH@(O) < CHfHHk(Q)HgHH@(Q)

for some constant C' = C(|0€2|gx+o.5). Similar arguments can be applied to show the following two
propositions, and the proof is left to the reader.

Proposition 2.8. Let Q € R® be a bounded domain of class H**! for some integer k > g . Then

for all e € (0, i), there exists constant C. depending on |0Q| grros and € such that for all f € H<(O)
and g€ H(0), 0 < £ <k,

¢
Z HDJfDé_JQHN(Q) < Cellf eyl gl mre—e o) - (17)
j=1



6 C.H. A. CHENG AND S. SHKOLLER

Moreover, for some constant generic C' depending on |0 gxro.s,
HfQHH@(Q) < CHfHHk(Q) HQHH’»’(Q) Vfe Hk(Q)ag € HK(Q) (18)
Proposition 2.9. Let Q € R" be a bounded domain of class H**' for some integer k > g, and
PO — QSR be an H -diffeomorphism. Then for all 0 < ¢ <k,
|flme) < CU0Qrsos) | f o by Y fe HY(Q), (19a)
If o Yllaeoy < CUOQ grvos)| f e VfeHYQ). (19b)

Remark 2.10. Note that Proposition 2.9 implies that the interpolation inequalities on a Sobolev
class domain are still valid if the domain is bounded and has H*T' reqularity for some integer
k > g For example,

1 1

£ ls05(2 < CUOL o) 0 Dlsr05(0) < CUOX rwvos)f © a1 0 %l o
1 1

< C10Q axroa) 172 117 ) -

The proofs of the following two lemmas are similar to the proof of Proposition 2.4, and are left
to the reader.

Lemma 2.11. Let Q € R* be a bounded H*'-domain for some integer k > g .

1. Suppose that spt(g) c=Q. Then for 0 < e < i and 1 <0 <k,

|V, f]]QHLz(Q) < Cellf | meyllgl me-— ) 5 (20)

where [V*, flg = V*(fg) — fV'g.
2. Suppose that ¢ is a smooth cut-off function such that

(a) spt(C) = U;
(b) there exists an H*T'-diffeomorphism 6 : B(0,1) — U satisfying
(i) 0:B*(0,1) = B(0,1) n {yn >0} > U NQ;
(i) 0: {yn =0} — 0Q.
Define F = ((f)o0 and G = ({g)o 0. Then for 0 <e<1/4, 1 <<k,

H[[ag, F]]GHL2(3+(07T)) < Ce HfHHk(Q) HQHH‘*(Q) ) (21)
where [0°, F]G = 0“(FG)—Fo'G and & = (0,,--- ,0y,_,) denotes the tangential gradient.

Lemma 2.12. Let Q € R" be a bounded H*T'-domain for some integer k > g Then for each

integers £ € {0,1} U (g,k], there exists a generic constant C' = C(|0Q| gw+o.5) such that

I fgll ey < C[HfHLf(Q) lg | zrey+ 1 f 1z 02) HQHLOO(Q)] Vf,ge HY(Q) n L7(Q). (22)

2.3. Poincaré-type inequalities. We will make use of the following Poincaré-type inequalities,
whose proofs are similar to the proof of the standard Poincaré inequality, and are hence left to the
reader.

Lemma 2.13. Let Q € R3 be a bounded smooth domain with outward-pointing unit normal N, and
HY Q) ={u: Q> R*|lue H'(Q),ux N =0 on 0Q},
HY Q) ={u:Q HRS‘UE H'(Q),u-N =0 on o0}
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are the collections of all vector-valued functions so that their tangential components or normal com-
ponent vanishes on the boundary, respectively. Then

|ulr2) < C|Vulr2@)  Yue HAQ), (23)
and

HUHL2(Q) < CHVUHLz(Q) Vue H,ll(Q) . (24)
2.4. Commutation with mollifiers. Our proof of elliptic regularity relies on a mollification pro-

cedure (rather than the use of difference quotients).

Definition 2.14. Let n(z) = Cexp ( for |x| < 1 and n vanishes outside the unit ball, where

1
F 1)
C is chosen so that ||| 1 wny = 1. The standard mollifier 1. is defined by
1z
Ne(z) = 6—,,77(2) .
We will make use of the following

Lemma 2.15. For f € WH®(Q) and g € L*(Q2) with compact support, there is a generic constant
C independent of € such that

D%, 116) 0y = 10T % () 1% 6l
< C|flwre@llgl L2 (25)
for all 0 < € < min {dist(0€2, spt(f)), dist(09,spt(g))}.

Since we are dealing with problems on domains with boundaries, we make use of the horizontal
convolution-by-layers operator, introduced in [9]. We define the horizontal convolution-by-layers
operator A, as follows:

Aef(xhvxn) = J\Rnfl pé(xh - yh)f(yhvxn)dyh for f('vxn) € Ll(Rn_l)v

where pe(xp) = ! (ﬂ), and p € CF(R?) is given by p(z) = Cexp (%> if || < 1 and

a1 P\, 2P —1

p(x) = 0if |z,| = 1. The constant C' is chosen so that §,, , pdz = 1. It follows that for e > 0,
0 < pe € CL(R*1) with spt(p.) = B(0,€). (Here, spt stands for support.)

It should be clear that A, smooths functions defined on R™ along all horizontal subspaces, but does

not smooth functions in the vertical x,-direction. On the other hand, we can restrict the operator A,

to act on functions f : R®~! — R as well, in which case A, becomes the usual mollification operator.

Associated to A, we need the following

Lemma 2.16. For f € WY (R%) and g € L*(R?.), there is a generic constant C' independent of e
such that

H&([[AE, fﬂg) HLQ(Ri) = H@[Ae(fg) - fAeg] HL?(R;) < CHfHWLx(]Ri)HgHLQ(Ri) (26)
for all e > 0.
2.5. The Piola Identity.

Lemma 2.17 (Piola identity). Let ¢ : Q € R™ — R" be a diffeomorphism, and [aijlnxn be the
cofactor matrix of V. Then
0
—a;; = 0. 27
axj a; ( )

The proof can be found in [11].
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3. VECTOR-VALUED ELLIPTIC EQUATIONS

Let €2 € R™ denote a bounded domain. In this section, we study a vector-valued elliptic equation

, , 0 o out :
Lu1=u17—< Jk—)z ’ in Q, 28a
(L) i (5) -1 (28)
with special types of boundary conditions, where w = (w1, - ,uy) and f = (f1, -, fa) are vector-
valued functions, and a/* is a two-tensor satisfying the positivity condition
a*¢ig = NEP VENER” (29)

for some A > 0. Since u € R", n boundary conditions are needed to solve the system uniquely.
We consider a mixed-type boundary condition given by

u-w=0 on 0Q, (28Db)
e 0
Pt (aﬂk—uNj - g> =0 on 09, (28¢)
0Ik
where w is a uniformly continuous vector field defined in a neighborhood of ¢€2 which vanishes
nowhere on 0€), Py, : R* — R" is the projection map given by

Pwl(v)zvfww= (Id - —5—

WP 30

The condition (28b) specifies the component of the vector w in the direction of w, while (with N
denoting the outward-pointing unit norm of 0(2) the condition (28c) specifies the n — 1 components

of the Neumann derivative o’ ’“Z—UN]».
Tk
Integrating by parts in z;, we find that
0 Louty G oul 0! G out -
ff —(a]k—u)sozda: = J ok CL 0P gy —J P jp'dx
Q 0T; oxy q Oz dxj Oz
. 8'1# 8@1 J : S ou” W, W; ; g-w
= | o/ —dx - [g“rajk—N-—] 1dI+J = —(p-w)dx.

L Oy O 20 dxy 7 [wl? ¥ o [wl? (oo w)

The identity above motivates the following

Definition 3.1. LetV = {ve H'(Q)|v-w =0 on 0Q}. A function w €V is called a weak solution
to (28) if

L out 0t
(u, ) r2() + J PELSA (fs@)r2) +{g,proa VeV, (31)
Q afl/']g axj

where (-, Yaq denotes the duality pairing for functions defined on 0.
With the help of the Lax-Milgram theorem it is easy to conclude the following

Theorem 3.2. Suppose that a’* € L*(Q) satisfies the ellipticity condition (29), and w is a uniformly
continuous vector field defined in a neighborhood of 0€) which vanishes nowhere on 0. Then for
all f € L?(Q) and g € H=5(09), there exists a unique weak solution to (28) in V, and the weak
solution w satisfies

[ul@) < C[IFlz@ + Igli-os o] (2)
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Remark 3.3. Let u € H?(2) NV be a weak solution to (28). Integrating by parts in z;, we find
that

PO (kU i) * U N Veids —
L(u s (05 f)cpderLQ(a N —9)elds =0 Ve,

Since ¢ -w =0 on 0§, we can only conclude (28c).
We next establish the regularity theory for functions satisfying (31).
3.1. The case that the coefficients a’* are of class %*.

Theorem 3.4. Suppose that for some k € N, Q € R® is a bounded €***-domain, a’* € €%(Q)
satisfies the ellipticity condition (29), and w is €' in a neighborhood of 0Q which vanishes nowhere
on 0Q. Then for all f € H< 1(Q) and g € H*~92(0Q), the weak solution u to (28) in fact belongs
to H**1(Q), and satisfies

| sy < C[HfHkal(Q) + HgHHk*Uﬁ((')Q)] (33)
for some constant C' depending on |a|¢x(q), |[Wllgrii) and [0Q]gwe.

Proof. The goal is to show that the function u € V satisfying the weak formulation (31) satisfies
(33). We prove by induction and divide the proof into several steps as follows:

Step 1: Suppose that u € H*(Q) for some 1 < ¢ < k — 1. Let x be a smooth function with
spt(x) = Q, and 0 < e < dist(spt(), 0€2). Define

@ = (=1)x[n-*D* (n* (xu))]
in which repeated ¢ does not mean summation over ¢ (since the range of ¢ is not 1 to n) but purely
an index. Then ¢ € V; thus ¢ can be used as a test function in (31). First we note that

(ua 90)L2(Q) = HDKWE*(XU)HQL%Q) . (34>

By the properties of convolution and the Leibniz rule, we find that

G oul 0! ik f— i i
[ 22 o [ gD ) w0, i

-2
+2 <£:1> LD[”e*((Df‘l‘Taj’“)Dr(xui),k ) 1D [k (xu').; da
r=0
—JQ Dé[m%(aﬂ“uix,k)]Dg[ne*(xui),j]d:v (35)

— | Dt [me* (ajkx,j uf,J]D“l [me*(xu')]dz .
Q

Using the commutator notation, the first term on the right-hand side of the identity above can be
rewritten as

L D[nex* (a?* D (xu') i ) | D [ne* (xu'),; |do = L D[a’ nex D't (xu®)p, | D [nex (xu'),; |dz

+ Lz [D [[775*, ajk]] DL (xu®), ]De[ne*(xui),j ]dx
= L ajle[nE%(X'u,i),k]Dl[né%(xui),j]daj + L(Dajk)lel[m*(xui),k]De[ne*(xui),j]dx

+ Lz [D [[775%, ajk]] DL (xu®) ]De [ne*(xui),j ]da: :
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thus after rearranging terms, the ellipticity condition implies that

out 0ot _ _ _
AP o)y < [ @ 5o G2 o [ (DD ok () 10 [k (vt
Q a.fk 0% Q

_ JQ [D [[775*, ajk]] Df—l(x'u,i)ﬂc ]Dé[né*(XUi)u’ ]d:E
= | | |
_ Z ( ) JQD[ne*((Df—l—Ta]k)DT(X'u,Z),k)]Df[ne*(xuz),j]dw

+ J Df [775* (ajk T )]De [ne*(xui),j ]daz + J Dt [775* (ajkx,j ufk)]DZ“ [né*(xui)]da: .
Q Q
The last five integrals on the right-hand side of the inequality above can be estimated using Holder’s
inequality and the commutation estimate (25), and we obtain that

2 L out 0! i
)‘HDEJrl(né*(Xu))HLQ(Q) S JQ ajka—xka—xj dr + CHGH‘W(Q) HUHHZ(Q) HDHl(m*(XU ))HLQ(Q) . (36)

On the other hand, it is easy to see that

wadw =- L D nex (F D nex (xu')|de < C|f | ge-1 ([ D (e (xw)) [ 12 g - (B7)
Summing (34), (36) and (37), we find that
HDe(ﬁe*(XU)Hiz(Q) + )‘HDHI (ne*(X“)) Hi?(sz)
< C[HfHH@fl(sz) + HGHW(Q) HUHH@(Q)]HDZH(ne*(XU))Hp(Q) i
thus by Young’s inequality,

HDK(%*(X“)H;(Q) + )‘HDHI(W*(X“))HQL%Q)
C by .
< 5y [Hf”%ﬂ*l(ﬂ) + Ha\lfge@ HUH%E(Q)] + B} HDHI[WE*(XW)]HH(Q)
which further implies that
C
HDHl(We*(XU))Hm(Q) < By [Hf”H“l(Q) + Ha\lcge@ HUHHE(Q)] . (38)

Since f € H*1(Q) and a € €¥(Q), the assumption that w € H*(2) implies that the right-hand side
of (38) is bounded independent of the smoothing parameter e. Therefore, we can pass e — 0 in (38)
and obtain that

C
1D )@y < 5 [ lmeson + lollgeqoy llmeco

or
C
XDl 20 < B\ [Hf“H“%Q) + (lallgem + )\)HUHH'-’(Q)] - (39)
This implies that w € H.EH(Q). In particular, since u € H'(Q) by the nature of being a weak

solution, we must have u € H2_(£); thus we can integrate the weak formulation (31) by parts and
find that

L[u—%(ajkg—;)_f].godx:o Vet (Q).

The above identity implies that

, 0 o out ,
i ik _ fl :
U 7z; (a —89%) f' a.e in Q. (40)
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Step 2: Assume that u € HY(Q) for some 1 < £ < k — 1. Let {U,}X_, denote an open cover of
which intersects the boundary 0, and let {6,,}£_, denote a collection of charts such that

1) 6., : B(0, rm) — Uy, 18 a €*-diffeomorphism,
2) det(D9 ) =

3) O, : (O,rm) N A{xy, =0} > Uy N 0Q,

4) 0., : B, = B(0,7) 0 {yn > 0} = Uy, 0 Q.
5) [V —1d| e (B(0,rm)) < 1.

Let 0 < Gy, < 1 in 65°(U,y,) denote a partition of unity subordinate to the open covering U,,; that

K
Dl Gn=1 and spt(Gm) SUm Ym.

m=0

Define a vector-valued function ¢ by
@' = (1) [Cn W A0 A (G - W) | 00,1 = (= 1) [ Wi A0 A (G W), W) 0 6,1
where Zm = (m © O, Wy, = wo b, A is the horizontal convolution operator, %, = u o 6,,, and

0 denotes the tangential gradient; that is, ¢ = (0y,, -+, 0y, ,). Since ¢ -w =0 on 09, ¢ €V and
can be used as a test function. The use of ¢ as a test function in (31) implies that

du' 0 ~
(w@m@+Lw%Za¢d C[Ifsre) + gl mre-o5 00 | [0 A Contn * F0m) 1 5

where B = B(0,7,,) N {y, > 0}. Similar to (34), it should be clear that
Vi Y o~ ~ 2
(u, So)Lz(Q) = Ha Aé(cmum ' Wm)HLQ(BIl) s
so now we proceed to the second term on the left-hand side.

Let A = (V6,,)"" and b™* = (a?* 00,,) A} A7. We claim that b"™* satisfies the ellipticity condition.
In fact, since [|VOn, —1d|| ;o (ps) « 1, we find that

) A
b6 Es = (7% 0 0,,) AL ATE S = MATEP > §|§|2- (41)
Making change of variable formula z = 6,,(y) and then integrating by parts, we obtain that
J jkau 830 dr :J\ brsaum 580 dy
Q oxy, Ox] B 0Yr 0Ys

= N aéAe (brsgmﬁm,s . VNVm)aéAe (Emﬁm . V’\(’m)w dy
B

= J N (D50 (Con i - Win)ys) O A (G - Win) o dy (42)

6—2
-1 ks Ak~ o~ > o~ o~
+) ( B )LﬁAe(af R (Gl Wom)6) 0 A (G - W) dly

—J DN (B, (G )10) 0 A (Co s - W) iy
B,
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For the first term on the right-hand side of (42), as in Step 1 we use the commutator notation, and
find that

0Ae (brsaé_l(gmﬁm . ‘TVm)aS)aéAE(Zmﬁm ! Wm)”” dy

+
B,

- L+ [ A0 Gt W) 10N G - Frm)r ly

" Jm (O[A ™10 (G - Win)ss )N (G Bl W)y
_ fw b5 0 A (Conon - W )5 0 A (Con i - W) dly

+ JB+ (O™ ) AP ™ (Con - W) s 0 Ae(Con U - Wi )1 dy

+ f (OTA 0710 (G - W) ss) O A (G - Wi ) dy ;
B+

m

thus (41) and the commutation estimate (26) suggest that

N (D750 (Gl - Wi )s) O A (Gl - W)y dy

B,
A Mol a2 Y on o~
> 210 A G- ) 32 51y = Cllulizecon | [0 Aot F0)] s ) + Il
For the remaining terms on the right-hand side of (42), we apply Holder’s inequality and find that
=20, N N
> ( . ) OO FY R (G B - W) 1) @ A (o B - W) dly
k=0 B,

— | AL, (G W )s) O A Con T - W) dy (43)
B

< CHUHHZ(Q)[HaeAev(gmam'VNVm)HL2(B;L) + HUHHZ(Q)] )

where C' depends on [|la]4(q), [|W|eet1(q) and [0Q]ge+1(q). As a consequence, by Young’s inequality
we conclude that

oA )+ MOAT G )
< Cé[”“”%{e(n) + 1 F 1) + Hﬂ%ﬂﬂﬁ(an)] + 5H5€Aev(zmﬁm'VNVm)Hiz(B;L)

which, by choosing § > 0 small enough, further suggests that

HagAe(Cmam VNVm)HHl(B:;L) < CI:HfHH[*I(Q) + HgHH[*O‘E’(aﬂ) + HU’HH@(Q)]

for some constant C' = C(||a]«e(qy, [W]get1(q), [0Q|ger).
Since the estimate above is independent of the smoothing parameter e, by passing ¢ — 0 we
conclude that

Hgmaz(ﬁm'v’t’m)HHl(B;b) < C[HUHH@(Q) + 1 F e + HgHH‘*Lf’(aQ)]
or by the smoothness of w and 6,,,

|G W, - aeﬁmHHl(B;L) < C[Hf“H’»’*l(sz) + gl ze-o50) + HUHH/»’(Q)] . (44)
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Step 3: Estimate (44) only provides a control on the vector Zmafvam in the direction of w. Now
we proceed to the estimates of the component of (,,,@“Vi,, perpendicular to w. Define

)

o = U [CA PN Gns) = G AP A Goin)) ] 00,

= (1[G AGity) — G Aol | 1

Wi |2

We note that ¢ is the projection of the vector ZmAe(?MAE(Em U,,) onto the affine space with normal
w, and so ¢ € V and can be used as a test function. Using ¢ as a test function in (31), a similar
computation suggests that

~ A c &
12 A5 + 10 AT )25
< Cs[ 1 Bro-s(ay + 191301500y + Nlrecay | + 310 AT Coniion) 325

_1\¢+1 rs~l 20 x~ VNV“Zn"szn
+(-1) Lﬁb | Card A Cnd,) o ]md

Yooy 2
Cé[“f“%ﬂ*l(ﬂ) + HQH%FLS(aQ) + HU’H%{@(Q)] + 25!‘6€A6V(Cmum)HL2(Bm

b o~ L
" (*”MJ T W B (A0 A (G ) W5, dy

B, W
OJI:HfHHE I(Q + HgHHE 1. ) 5(2) + H'UIHHE(Q :I + 36“0 A V HL2 B+)
b’l"S Y NJ
- fy o 7 Gt ) (A0 A ), .

Applying estimate (44) and Young’s inequality,

prs P N P ~ .
- JBL W 0" (Cmlim,s - Wm)(Aea AE(CmuZn,r))an dy
0F & ~ Ly o
< CH@ (mem : vum)HLz(Q) Ha Ae(Cmvum)HL2(Q)
T
< C(;[Hfufﬂ,l(m + ngfﬂflﬁ(an) + HUH%I’-’(Q)] + 5“56A5(Cmvum)HL2(Q) ;
thus by choosing § > 0 small enough, we conclude that
[ofAc (Cmum)HHl(B+ < C[H“H?{’Z(Q) + Hf”%ﬂfl(n) + HQH%I’Z*U?(&Q)] :
Again, due to the e-independence of the right-hand side, we conclude that
&m0 Bl i 5y < C[Ilreceny + 1F Lire=r) + gl sgo0 | (45)

for some constant C' = C([a]«e(qy, [Weer1(q), [0Q]gerr).
Step 4: Multiplying (40) by (,, and then composing with 6,,, by the Piola identity (27) we obtain
that

5m’l’\j'm - Em (brsﬁm,s)ﬂ‘ = Zm(f o em) a.e. in B::L .
Letting 07177V act on the equation above, we find that
Gnb™ 0 I Ry s = Fo ) ace. in By (46)
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for some F(, ;) € L*(Q) satisfying

IF )z < C|Iflnes@ + lulie |

where the constant C' depends on [al|l4e(q). By the ellipticity of L, 6" > 0; thus (46) further implies
that
N o 1 - L
Cmaf—l—JVJ'u,mﬂnn = bn_n I:F(g)j) — Cm Z staf lvjum,rs] .
(r,s)#(n,n)
As a consequence, with j = 0 (45) suggests that
HCmalilﬁm,nnuLz(B;b) < C[HUHH@(Q) + 1 f e (@) + HQHH‘*M’(QQ)]

which, combined with (45), provides the estimate

8@ V2 in] a rr) < O lwlrecoy + 1F L@y + g leraomy | -

Repeating this process for j = 1,--- , £, we conclude that
IEn Vil 255 < O Iy + 1F a1y + 191500 | (47)
and the combination of (39) and (47), as well as the induction process, proves the theorem. o

3.2. The case that the coefficients a’* are of Sobolev class. We are now in the position of
studying the regularity of solution u to (28) when the coefficient a’* and the domain 2 is of Sobolev
class. We first prove the following rather technical

Theorem 3.5. Let Q2 € R™ be a bounded smooth domain. Suppose that for some integer k > g and
1 <<k, a’* e HY(Q) satisfies the ellipticity condition

a* &g = NEP VEEeR™,

and w € H™>6H1(Q) (or w e H™= 30431 (0Q)) such that w vanishes nowhere on 0. Then
for all f € H'=Y(Q) and g € H*°(0Q), the weak solution u to (28) belongs to H**1(Q), and
satisfies

[ulesoy < C|Iflmeroy + Igllme-os00) + Pllale) (Il + lgla-os@a)|  (48)
for some constant C = C(|W| gmexpee+1)(0)) and some polynomial P.
Proof. Let E : H*"1(Q) — H**1(R™) be an extension operator, and define a, = n.*(Ea), f. =
ne* (Ef), we = nex(Ew), and g be a smooth regularization of g defined by

K
ge = Z @[AE(( Cmg)oom)]oo;bla
m=1

where {(,}E_, is a collection of smooth cut-off functions, and {#,,}%_; is smooth coordinate charts
subordinate to spt({,,), as in the proof of Theorem 3.4. Since a/* satisfies the ellipticity condition
a?*€;&, = N€)? for some A > 0,

and H*(Q2)— C(Q) (which implies that a™ € C(£2)), we find that for all € « 1,

@) > SN VEeRNzeQ. (19)
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Moreover, by the properties of convolution, as ¢ — 0, we have

al® — aI* in HY(Q), (50a)
S in  HRRGL Q) (50b)
f.—f in HY(Q), (50c)
g.— g in H"%5(0Q). (50d)
As a consequence, Theorem 3.2 suggests that there exists a unique weak solution u° to
0 S 0us

e_ Y ([ 0k ) _ :
u 3z, (a6 axk) I in Q, (51a)
u®-we. =0 on 09, (51Db)
Pyt (aik Cu N; — gE) =0 on 09, (51c)

N al'k

and Theorem 3.4 further suggests that u® € H*(Q) for all s > 0 which ensures that u° is a classical
solution to (51). We would like to establish an e-independent upper bound for ||| ge+1(q)-
Step 1: Similar to Step 2 in the proof of Theorem 3.4, define

¢ = (=1 [Cn %3, 0% (G - Fm)] 0 07"
in which %,, = u® 0 #,, and W,, = w, 0 f,,. The use of ¢ as a test function implies that

. . 3uai 3Q0i ~ N
(us, @) r200) + L aﬁkma—%diﬂ < C[HfHH@fl(sz) + HgHH@*Of’(E)Q)]Haé(gmum : Wm)HHl(B:;L) - (52)

As in the proof of Theorem 3.4, we have
€ T~ ~ 2
(’U, ) SD)LZ(Q) = HalAé(C’m’u’m ’ Wm)HLQ(B;;) :

Now we focus on the second term of the left-hand side of (52). Integrating by parts in y,, letting
br* = (ai* 0 0,,) A} A7 we obtain that

0 aia 7 . - ) -
[ St e (0 [, [0 G )
Q j B, ’

- j OB Coniom W) 2 10 Conin - W),y (53)
B,
- f A (o)1 10 G - W) dly
B,

| G 10 o )]

For the first term on the right-hand side of (53), we make use of ellipticity and Young’s inequality
to obtain that

f af[b:s@mﬁm 'wm)vs]ae(gmﬁm 'V~Vm)ur dy
B
- J bzsaé(Zmﬁm ’ ‘TVm)as aK(Em"jm ’ VNVm)vr dy
B
* J + [[[367 b?]] (5mﬁm : VNVm)us ]al(fmﬁm : VNVm)ar dy
B,

A ~ o A ¥ o A
> (5 = 0"V Gt - W) gy = Co 1%, 0V Conon - Fom)| 2,
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hence, Lemma 2.11 and (21) (with e = é) imply that
[T Gt 9002 10" i vy
By,

A oo ~
= (g - 5) Haev(Cmum 'Wm)Hi2(Q C&HGHHk(Q HU HHe+ (Q)

On the other hand, by (18), we find that
| D G 10 G - W)
By

+ af 1[st ; (me )ur]aEJrl(gmﬁm'VNVm) dy
B+

< Csllalfpe iy lu e ) + 8]0V (Gnlr, W, ||Lz<3+)
As a consequence, by choosing ¢ > 0 small enough we conclude that
[0°Cnom - Fm)| 2y + 1079 (G - W) | 2
< O|If -0 + Iglme-os ooy + lal oyl ul e g |-
Step 2: Similar to Step 3 in the proof of Theorem 3.4, the use of
T [ S R (A (T ) P
as a test function implies that

o2 A o2
HaZ(Cm“m)HLz(B;) + (g — ) Haev(gm“m)Hp(B;)

C| 17 -1 0y + glre-0s o0y | + Csllaliecop 10177

Fos o o ws o
+ (—1)€ JB N—(Cmum : Wm)a%(Cmufn) dy

i W [?

Z+1 ’I"S""L 2/ ~7j ‘X’an:n]
J b Cma ( mU m) |V’t’m|2 " dy
Integrating by parts in y,, by Lemma 2.11 and (54) we find that

wi, N > a2 >
(_1)€JB —(Cmum Wm)aze(gm ]) y<C5Hae(<mum'wm)”[‘2(3$)+5Hae(<mum)”2Lz(B;l)

5 W [?

< s {1 =0y + l9lar-osgoy + lallpeconue g g |

for some constant Cs depending on W/ gmaxix.e+1) (), and

’I"S"’Z ~ ‘X’an:n
(71)12+1JB+ b [Cmt?%( i) - ],r dy

O[Hag(bev"jm)HL2(3;) + Hbeagv(gmﬁm : ‘TVm)HL2(B:,§)
+ 1106V o o) | 2 5 |10V o) | 2

€ T o~ 2
< CtsHaH%Ik(Q)HU quﬁg + 5Haev(cmu7”)HL2(Q)

(@)



REGULARITY THEORY FOR ELLIPTIC EQUATIONS OF HODGE-TYPE 17

in which the constant Cs also depends on |W|| gmaxtx,e+1) (). Therefore, choosing § > 0 small enough,
we conclude that

[0 Bl oy + (60 Vi | 2,

(55)
< O I lme-1c@) + Iglme-vsoay + lallmeo w7 g |
for some constant C' = C([|[W| gmaxt.e+13 (0 ) -
Step 3: In this step, we follow the procedure of Step 4 in the proof of Theorem 3.4. Since
0 L ouc
e Y jk_) _ . QO
“ 0w, (aé oxy, fo in €2,
by the Piola identity (27) we find that
G (0 m,s) v = G (U = (fe 00m)) in By,
which, after rearranging terms, implies that
5mb?nam,nn = 5m I:'Tl'm - (fe o em) - b??ﬂﬁm,n - Z bg?rﬁm,s
(r,s)#(n,n) (56)
> b:sfum,sr] in B
(r,s)#(n,n)

First, it is easy to see that
Haeilijvj(Cmﬁm)HL%B;g) + Ha£717jvj [Cm(fe o em)]HLz(B;L) < C[HUHHZ*1(52) + |‘fHHe*1(SZ)] .
Moreover, since £ + 1 < k, by Proposition 2.4 (with ¢ = %) we find that

oI Gty + D 10TV s

(r,s)#(n,n)

)| P l22(s2)

£—1
<C HDé—raDr-HueHLz(Q)
r=0
L
<C ), D aD u 2 () < Cellal sy ul

HYE ()
r=1

Finally, by Lemma 2.11 (with ¢ = é again),
[ 9 Gt Tt 2y + 25 M0 V7 b Tt 2,
(r,8)#(n,n)
< Cella] gy HUeHHug(Q) :
Therefore, letting 0~ 7/ V7 act on (56), we obtain that
Cnbl"0 T IV R = Gy = D5 b0 T IVl (57)
(r,5)#(n,n)

for some Gy ;) satisfying

1G i) lsss) < C|lulaes i) + IF s + lalmoy w0z g |-
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>

Now we argue by induction on j. By the ellipticity condition (49), we find that b2 > As a

consequence, with j = 0, (55) and (57) suggest that

[Gn0 ™ i mnl 2y < NGep iy + 20 0oy [Gnd ™ tom sl o s,
(r,s)#(n,n)

< C[HUHH@ﬂ(Q) + | Fllae-10) + 1gllae-1500) + lal g HueﬂHug(m]

which, combined with (55), provides the estimate

HCmaé_lvzﬁmHLz(Bm < O[HUHHH(Q) + e + 1glme-15060) + llal me@) HU€HHH§(Q)] :

Repeating this process for j = 1,--- £, we conclude that

|GV i, + Jen Y i 2

HL2(B;,Q) (58)
< C[Hf“H‘*(Q) +lglme-os@0) + lalm @) HUEHHHg(Q)]

for some constant C' = C([|W| gamaxt.e+1) () )-
Step 4: Let x = 0 be a smooth cut-off function so that spt(y)c={2. Then the same computation
as in the previous steps also implies that

XV 0 L2y + XV ] L2(0) < C[HfHHH(Q)JF lal mx(a) HUEHHug(Q)] : (59)
The combination of (58) and (59) then suggests that
e ) < O[Hf”H“WQ) + gl ze-o500) + af me) HU’EHH€+%(Q)] (60)
for some constant C' = C(HWHme{k,HU(Q)). By interpolation,
] < Ol oy w1 o o
H* @) aern @) (@)
thus Young’s inequality suggests that
ey < Cs | 1 L@y + g leoaay + P (lalme) 1wl @ | + sl mess

for some polynomial P. Finally, the inequality (33) is established by choosing 6 > 0 small enough
and then letting ¢ — 0, and using the H!-estimate (32). o

Corollary 3.6. Let Q € R" be a bounded H*"'-domain for some integer k > g Suppose that
a’F € H*(Q) satisfies the ellipticity condition
a?* €6, = NEP VEER,

and for some 1 < £ <k, w € H>&H1(Q) (or w € HPxk—30+3}(0Q)) such that w vanishes
nowhere on 0€2. Then for all f € H*"1(Q) and g € H*=92(0Q0), the weak solution u to (28) belongs
to H*TY(Q), and satisfies

[ulesoy < C|If leray + Iglme-os00) + Pllale) (I Iz + lgla-os@a)| (61

Jfor some constant C = C([|W| gumaxte.e+1) (0, 10Q gra+os) and some polynomial P.
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Proof. Let ¢ : O — Q be an H**!-diffeomorphism. Making a change of variable x = ¢ (y), with A
denoting (V)™ we can rewrite (28) as

0 ou - J0A” Ou
o —jk AT AS _ jkAs _J .
u 0 (a Al e f+a"A 3. 30, in O,
u-w=>0 on 00,
4 O —
L (@FATAS "N, —g) =
PWJ_(G Al k@ySNT g) 0 on 00,

where we use the bar notation to denote the variable defined on O through the composition with ;
that is,

a=aot, w=wuoy, w=woy, f=foy, g=gou,

and N is the outward-pointing unit normal to O. By Proposition 2.4, Corollary 2.6, and Proposition
2.9, we find that

HajkAZA; e (0)

‘|W|‘Hmax{k,@+1}(9

(109 grros)]al gxq)

<C
< C('aﬂlHk+0.5)"Wl‘Hmax{k,@+1}(Q) ,
1751010y + 18l =000y < CUORrs05)| 1 e-sioy + gl are-os00y |

thus Theorem 3.5 implies that
[@le1(0) < C|IF le-1(0) + 18l e-0500) + P(IAGAT (0 (IF] 200y + 1311105 00) ) |

C[If =10y + Il 300) + Plal ey, 100 ) (If Iaoy + 190200 |

for some constant C' = O(HWHHmax{k,lJrl}(Q), |0Q gr+o.s). Estimate (61) then follows from Proposition
2.9. o

Corollary 3.7. Let Q € R™ be a bounded H*"'-domain for some integer k > g, and a’* € H*(Q)
satisfies the ellipticity condition
a*€i& = NEP VEeR™.
Let £ be an integer such that 1 < £ < k. Then
1. For any f € H*~1(Q), the weak solution u € H}(Q) to the Dirichlet problem

%j(aﬂf%) —f i Q,

u=0 on 09,
belongs to H**1(Q), and satisfies
|ul e+ @) < Clfllme-1(0) (62)

Jor some constant C = C(|a| gre(qy, |02 i)
2. For any f € H=Y(Q) and g € H*=°5(0Q), the weak solution v € H'(Q) to the Neumann
problem

v—aixj(ajk%>=f m

alk — du N on 08,
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belongs to H**1(Q), and satisfies
ol < C[If sy + lglmeos (00 | (63)

Jor some constant C = C(|a] gr(qy, [0 grros ).

Proof. Tt suffices to prove the case that v and v are both scalar functions.

(1) Let w = (1,0,---,0), and u be the solution to

0 L ou
() = i
U 3z, (a 03:k) (f +u,0,---,0) in Q, (64)
u-w=0 on 012, (65)
20U
jk ) —
Py. (a o NJ) 0 on 9. (66)

Then w = (u,0,---,0) and (61) implies that
Jl sy < CIf + ulesay < C[Ife-roy + lulmesio
for some constant C' = C(HaHHk(Q), |09 gi+0.5). By interpolation and Young’s inequality,

|ull gresr @y < Clfllae-1) + Csllul gy + dlul ey ;

thus (62) follows from choosing § > 0 small enough and the estimate for the weak solution.
(2) Let w = (0,1,0,---,0), and v be the solution to

0 1 0V
L (gF ) = in Q
v g (@) =0 f0 0 e, (67)
v-w=0 on 09, (68)
e 0V
Py. (aﬂk%Nj) = (0,9,0,---,0) on 0Q. (69)
Then v = (0,v,0,---,0) and so (63) follows from (61). o

In general, elliptic estimates with Sobolev class coefficients a’* have a nonlinear dependence on
the Sobolev norm of a?*. There are, however, situations when the estimate becomes linear with
respect to the Sobolev norm of a/*.

Theorem 3.8. Suppose that the assumptions of Theorem 3.5 are satisfied with ¢ = k, and that
furthermore

Ha — IdHLx(Q) <eK 1.

Then the solution u € H*1(Q) to (28) satisfies
| ey < O[Hf”H“*(Q) + gl me—o500) + (1 + HaHHk(Q))HVUHLw(Q)] (70)

for some constant C = C(||w|sme1(ey). (Recall that w is an H*™(Q) vector field defined in a
neighborhood of 0 which vanishes nowhere on 0.)

Remark 3.9. As we noted, inequality (70) is linear with respect to the highest-order norms. This
permits the use of linear interpolation to extend this inequality of fractional-order Sobolev spaces.
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Proof. By Theorem 3.5 we know that u € H**1(2) so equation (28) holds in the pointwise sense.
We rewrite (28) as
0 ou .
quu=fza—xj<( 5Jk)6:6k)+f in ),
u-N=0 on 019,
P L<a—u)=gzP L<(5jkfajk)a—uN-+g) on 0€).
w 0N w al'k J

We then conclude from Theorem 3.5 that

[l s oy < CIEl s oy + Il oo

0 . .
ClUf sy + glamoso + |35 (7" = )52 ) e

0
)N s o)

for some constant C' = C'(|w/|| g+1(q)). By Lemma 2.12,

(G

<[ —a’) axk HHk(Q

g (" e 92 s oy
C[16 = all @) [V ul oy + 16 = @l |Vl (o

< CEHUHHkJrl(Q) + C(l + HaHHk(Q))HVUHLOC(Q) .

Similarly, by the trace estimate (
o9),

ou

ou
M J'HkaOﬁ(asz)

EEN j)HHk*Uf’(E)Q) <C| (67 —a’*)

[Pus (67 = ™)

C[H5 - GHLOC(Q) HVUHH“*QE’(&Q) + [0 — aHHk*O-f’(aQ) HVUHDC((?Q)
< Cellu] grsero) + C(1 + al groy)) [Vl L0

for some constant C = C(||w|gi+1(q)). Moreover, the embedding H279(€2)— ¢ (Q2) for some
« > 0 suggests that Vu is uniformly Hélder; thus |[Vau| -0y < [Vl o). (70) then follows from
the assumption that € « 1. o

In the same way that we proved Theorem 3.5, we can prove the following complimentary result:
Theorem 3.10. Let Q < R® be a bounded H*T'-domain for some integer k > g Suppose that
a’k € H*(Q) satisfies the ellipticity condition

ateiE > AP vEER?,

and for some 1 < £ <k, w € H>H1(Q) (or w € HPxk—30+3}(0Q)) such that w vanishes
nowhere on 0. Then for all f € H*"1(Q) and g € H*=°5(0Q), there exists a solution u to

; 0 ou’ ;
i 7 ik _ fl .
U 3z, ( Oxk) f in 2, (71a)
uxw=0 on 09, (71b)
a’® Cu j on 09, (71c)

T



22 C.H. A. CHENG AND S. SHKOLLER

and satisfies
ey < C|IFlnesy + Iglmeosoay + P(lalm@) (If |2 + lgla-osen) | (72)
Jfor some constant C = C(|W| gmext.e+1) (0, 10Q ga+os) and some polynomial P.

4. THE PROOF OF THEOREM 1.2

In this section, we prove our main regularity result given by Theorem 1.2. We first establish need
the following

Lemma 4.1. Let Q € R? be a bounded H<*'-domain with outward-pointing normal N, and (U, ¢)
be a chart with 0 = ¢~'. Define the metric gos = 0,0 0,5 induced by the chart, and [9°?] be the
inverse matrixz of [gas]. Then for every vector field w : Q — R3,

Pnit (g—;) 00 = (curlw x N) 0 0 + g*0, [(w - N) 0 0],5 —g** g [(w 0 0) - 0,5 |bys O, (73)

where bys = —0 45 - (N 0 0) denotes the second fundamental form.

Proof. Define

O(y) = 0(y1,y2,0) + y3(N 0 0)(y1,2,0),
and G;; = 0,;-0,; with inverse G¥. Let N = (No 9)|U3=0’ and f = fo© if f # N. Since 0,1,
O, L N, for every vector v € R3, ¥ can be expressed as the linear combination of ©,1, ©,5 and N.
In particular, we have

¥ = (¥-N)N' + (G°°07 5 97)0",, = 53N’ + 5,07,
and
Fro®=FsN°+G¥F 50k, .
To see (73), we first note that

ow’

~ .

o= [17)31'(11+ ﬁa@i,a],g = ['FII)Z)’.SIQIZ-+ 777& 3®i7a+ﬂ)aNl;a] 5 (74)
0N y3=0 i ’ y3=0
thus, since N - 0,4 = N- N‘,a =0,
0
o (28)
= [1’17373Ni + 177a73®i,a +17)aﬁi,a] — [1773731’(1]C + 177a73®k,a +1’17aﬁk,a] ﬁkf\jl
y3=0 y3=0
= Ba b0+ N, . (75)

Moreover, by the identity
(curl'w X N)l = aijkajrsws,r Nk = (5i55kr — 5ir5ks)wsar Nk = ('wi,k 7’wk,i )Nk s
we find that
(curlw x N)' ol = [(@' s NF + G*P%' ;0% , —w" ;N — G2 w* 07, )NF]

y3=0
~i Sk Rk Do~k Sk
= [’LU »3 —N'w »3 N* — ga,@®7,7a w B N ]

y3=0
= [(&3ﬁl + @agiua )73 _N'l(ﬁ}3ﬁk + 'a}oz@kaoz )73 ﬁk

— g%, (W3N* + ©,0",,),s N¥]

y3=0
= Wo N + 0300 —g°00 o (W35 — Wybyg) . (76)
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Combining (75) and (76), we conclude the desired identity. o

With Lemma 4.1, we can now prove Theorem 1.2 with n = 3; note that the case n = 2 follows
from the more general case by considering vectors of the type w = (u!(z1,22), u?(z1,22),0).

Proof of Theorem 1.2. Let u e H**(Q), and curlu = f, divu = g, Viou-N = h. By the well-known
identity
— Aw = curlcurlu — Vdivu in Q, (77)
we find that if y is a smooth cut-off function with spt(x)c=€, then yu satisfies
—A(xu) = —ulAx — 2Vyx - Vu + x(curl f — Vg) in O,
xu =0 on 00,

for some smooth domain Oc=$2 (choose O to be some smooth domain so that spt(y)ccOc=Q).
Standard interior elliptic estimates then show that

el s o) < C[lulmecoy + IF Loy + gl | (78)
Now we proceed to the estimates near the boundary. Let {(,}2_; and {6,,}X_, be a partition of

unity (subordinate to U,,) and charts satisfying

(1) O : B(0,7,) — Up, belongs to H*1(B(0,7,,));
(2) O : B1(0,70,) = QN Up;
(3) Om : B(0,7m) N {ys = 0} — 0Q N U,

and g,, and b,, denote the induced metric tensor and second fundamental form, respectively. Then
—A((nu) = (p(curtl f —Vg) — uAG, — 2V -Vu in Up,
(CmVoou) - N = (nh on U, .

We define @y, = wobn, Gn = Cmobm, N = Nob,,, and A = (V6,,)", J = det(VO), gm = det(gm).
Taking the composition of the equations above with map 0,,, by the Piola identity (27), we find that

[T ALAE i) ], = J[Cm(curlf —Vg) — Ul — 2V - Vu] 06, in U, (79a)
Gttt ),o N = G i, NF 4 & (R0 0,,) on oU, (79Db)

for some smooth domain U satisfying that spt((y,) € U and spt(&,) n U S {ys = 0}.

The function (5mﬁm),a, where o = 1,--- ,n — 1, will be the fundamental (dependent) variable
that we are going to estimate; however, in order to apply Theorem 3.5 we need to transform the
boundary condition (79b) to a homogeneous one. This is done by introducing the function ¢, which
is the solution to the elliptic equation

b — (JAA[ Pk ), = O in U,
Gok ASTAING = Conro il JAI; + /G C(h00,)  on U,

in which n is the outward-pointing unit normal to dU, and then defining wf, = (Emﬁfn),g —Al Do,
as the new dependent variable of interest. Since /g, N = JATn on B(0,7,,) n {y3 = 0},

= < pou A TAIn,
Wy N = (Contim)ro N — Pork AgJ A4y
V8m

thus w, satisfies a homogeneous boundary condition.

=0 on 0U;
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Differentiating (79a) with respect to y,, with a/* denoting JA@A? we find that w, satisfies

0 oW
_ (k) = i
w, 3y (a E ) F, in U, (80a)
wy -N=0 on JU, (80b)

where F, is given by

%

Fi = [J(gm(curl F—Vg) = Al — 2V - Vi) 9m] "
+wh + [(JAJAS) o (G ) ok |y +[TAJAF (AT o )k |15

Moreover, by Lemma 4.1,

0(wy 00,4 _ = b N
|Pres (S5 ) | 2 0 = [eurl(wy 0 671) x N 0 61+ 957, (w5 - N) 5
- ggmﬂg;yné(wd : 976 )b'yﬁ 970 ;

thus using (80b) in the second term of the right-hand side, we obtain that

Px. (aj’“ g’;’; nj) = V&m [curl(w, 0 0,1) x N 06y, — \/gm 922970 (wo - 0,5 )b, 0, on dU. (81)
Since
[curl(w,7 061) x N]i 00, = sijksijfwi,g NF
= AL[(Cni,) o —AL o |0 NF = AL (G i) o A b |0 NF
= AL (G iy, ) e NF = AL (Emiy,) ot NF = AL (A7 b )oe N* + AL (AL by, )0 NF
and
[Zm (curlu x N) 00 ].0 = ik jrs (ZmAfﬁfn,g Nk),g
= [AL (G, ) e NP — AL(Gn i) e N0 [ AL o0 U, N* — Al 0, N
= A4 (Cntig, ) NP = Af (6 ) s NF = (ALNP) o (€ ).
— (AINF) 5 (G ﬁin),e*[Aifm,e Comot Ui NF — ALC ’Efnﬁk] o s
we find that

[curl(w, o 0,1 x N]i 06, — [Zm (curlu x N) 00, .0
= _A;;(A;d)o.”‘ ),g ﬁk + Af( 2¢0’7T ),g ﬁk + (Aiﬁk)va (Zmajn)v@
+ (AIN®). Gy, ) st +(Afmot Groe Ty NF) g + (AL G e W, N¥) 5 5

thus (81) implies that
ow,

~ Jk ) =
PNL<a axknj) Vem Gy on 0U, (80c¢)

where G, is given by
Go = [Cn(f x N) 0 Opn].o —AL(AT bor ) NF + AL (Af o )0 N
+ (ALNF) 5 Gy, ) e+ (ASNF) o (G, )t +(Af ot Uy, NF)
+ (ALt U, NF) o =902 g7 [ (EmAin,) o a6 — Af P sr Oy [y 0, -
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As a consequence, w,, is the solution to equation (80), and Theorem 3.5 (with £ =k —1 and w = n)
then implies that (Cpn@m),o satisfies

[woll i) < C[1Follmesv) + | Gollmrsou)] (82)

for some constant C' = C'([a] g (0,rm))» | Al #(B0,mm)) , IN| griezo.s ou)-
We focus on the estimate of F', first. By Corollary 2 6,

11 < (B0,rm)) + 1Al N (BO,rm)) + I8m | me-0500) < C(10Q gricos) 5 (83)
thus Corollary 3.7 suggests that

quG”Hk“(U (HOJHHk (U)» |0Q grrvos) HCm,a’Tﬂ JAenl+\/gm Cm(ho )HHk*Uf’(BU)
C(109 grso )| |l ey + Il a0 a0y |- (84)
Moreover, by Corollary 2.7, we also have that
lal ) + INJ o5 av) < C(109Q pricsos) . (85)
As a consequence,
|1F o[ o2 vy < C(|aQ|Hk+U~5)[Hf“Hk(Q) + 19l ) + [l o5 00) + HUHHk(Q)]- (86)

As for the estimate of G, the highest order terms are (Aﬁﬁk),g (Zmﬁfn),g, (Afﬁk),g (Zmﬁfn),g
and g2 g)3 (EmTy,)so 016 by 0,6, and we apply (14) to obtain, for example, that

[CARN) o (Gt 500y < O (AN 0 (Gt | i o
< CLO(AN) | i1 () |V (G112 (0) < OO 1Q25) [l pro+1e

where s = max {k — 1, k + 2} is chosen so that (14) can be applied (since s > g) Therefore,

|Gl aou) < CUOD mesos)[IF Linsqy + Il ipev oy + [l ey |- (87)
Combining estimates (82), (83), (84), (85), (86) and (87), we find that
@)oo [(0) < w20y + [ATF b 0
C(10 s ) |IF Lipeqey + Il iy + Ihlm-osoy + [ulmerioy |- (88)

Finally, following the same procedure of Step 4 in the proof of Theorem 3.4 (that is, using (79a)
to obtain an expression of (017 V7 Uy,33) and then arguing by induction on j, we find that

o T 1417y < C(laQ|Hk+°~5)[HfHHk(Q) + gl ey + 7l me-os0) + HUHHS“(Q)]-
The estimate above and estimate (78) provide us with
| e vy < C(|aQ|Hk+045)[HfHHk(Q) + gl &) + 17 o500y + HUHHSH(Q)]-
Since 0 < s + 1 < k + 1, by interpolation and Young’s inequality,
|| s ) < Csllullp2q) + 6f wl g o) Vo>0,
so by choosing § > 0 small enough we conclude (5). o

By studying the vector-valued elliptic equation (28), with the help of Theorem 3.10 we can also
conclude (6).
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Remark 4.2. Suppose that Q is a bounded H**?-domain for some k >
Via(u - N) — u - Voo N, by interpolation we find that

Since Viou - N =

[Voau - N gi-os00) < [u - N|gerosaq) + [u - VooN|gr-o0s2q)

<|
<Jlw - N grros o) + C(10Q gress) | wf mxq)
<|

\u . NHHkJrO,S((‘)Q) +O(|aQ|Hk+1,5,5)H’U,HL2(Q) +5HuHHk+1(Q).

Hence, by choosing § > 0 small enough we conclude that there exists a generic constant C =
C(|0Q| gr+15) such that

Hx+1(Q) S L2(Q) ur HX(Q) iv HX(Q) . HX+0:5(0Q) |
|l <C|u| + [curlul + [[dival| + [u - N
Similarly, we also have that

[l oy < C| Il o) + leurtul ) + Idival o) + |u x Nlmosoa |

for some constant C' = C(|0Q gr+1.5).

5. THE PROOF OF THEOREM 1.1

We begin with the following problem: find v such that

curlv = f in Q, (89a)
divv =g in Q, (89Db)
v-N=h on 0. (89¢)

From the divergence theorem and the fact that div curl = 0 , we assume that

divf =0 and J gdz =f hdS. (90)
Q oQ

Since g and h satisfies the solvability condition (90), there exists a solution ¢ to the Poisson
equation with Neumann boundary conditions:

Ap=g in Q, (91a)
0¢
Let u = v — V¢. Then u satisfies
curlu = f in Q, (92a)
dive =0 in Q, (92b)
u-N=0 on 0. (92¢)

Hence, if (92) is solvable, then there exists a solution to (89).

5.1. Uniqueness of the solution. We show that under reasonable conditions, the solution to (89)
is unique. We first assume that ) is a bounded convex domain. If ¢ € €%(Q2) N €*(Q2), then for all
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ue HY(Q),

J curlu - curlep dz = J u - curlcurly dz + J (N x u) - curlp dS
Q Q o0

J u - (—Ap + Vdive) dz + J (N x u) - curlpdS
Q o0

[8g0 u — ’U,kNJQD ,k]dS

—A dive) d
Jﬂu @ + Vdivep) erJ N

0Q

= J (Vu: Ve — divudive) dz + J
Q °

Using the notation introduced in the proof of Lemma 4.1, in any local chart (U, 6) we have on 02,
(uPNj@? 1) 08 = @" NI (@7, NF 4+ g2 37, 6% )
= (@ N)(@' o NP) + " (@ 0,5)(@ - N)oo =g (@ 0,6 )N
= (@ N)(@ o NI) 4 g° (@ 0,5)( - N)a =997 bar (U - 6,5 )(<P 0.5),

) [(u - N)dive — u*N;p7 ]ds.

so that using (96),

f curly - curlp dr = J (Vu : Vo — divudive) dz
Q Q
_l’_

J (U-N)[diVaQ<p+2H(<p-N)]d5 (93)
oQ
K
Jr;lLQmumc [gm gm bmm((UOH ) 9,[5 ))((goo@m) 0,5 )] 00m ds
S B
;1Lﬂmum< [ (w0 01) - 0,5 ) (¢ - N) 060) 0 | 06,15

Therefore, if v1, v € H'(2) are two solutions to (89), then v = v — vy satisfies
HCUFIUH%2 Q)
= |Vo|Z2q) + Z LQ . 988 9100 man (w0 0,) - 0,5)) (9 0 0,n) - 0,5)] 0 0;,1dS .
NUm

Since 2 is convex, g2 g)%b,a~ is non-negative definite for all m; thus the Poincaré inequality (23)
shows that for some constant ¢ > 0,

CH”HHI Q) = HVUHL2(Q HCHFM’H%%Q) =0

which implies that v = 0. In other words, the H!-solution to (89) must be unique if Q is bounded
and convex.

Now suppose that €2 is a general bounded domain, and there are two solutions v; and vy in
H'*¢(Q) for some ¢ > 0. Then v = v — vy satisfies curlv = 0 in Q. Since v € H'*¢(Q), v has a
trace on any one-dimensional (smooth) curve. By the Stokes theorem, for all ¥ € Q with piecewise

%1-boundary 0%,
J v-dr=qur1v-NdS=O,
o b

so ¢(x) = J v - dr, where (), is a smooth curve connecting = and some fixed point p in Q, is a
Cp

well-defined scalar function. Moreover, V¢ = v. In other words, if  is connected, an H'*¢-solution
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v to curlv = 0 must be the gradient of a scalar potential for some potential function ¢. Since v also
satisfies dive = 0 in 2 and v - N = 0 on €2, ¢ must be a constant which implies that v = 0. As a
consequence, the H!*¢solution to (89) must be unique (in each connected component of ).

5.2. Existence of solutions. We solve (92) by finding a solution w of the form u = curlw for a
divergence-free vector field w. Indeed, ff such w exists, then using (77), w satisfies

—Aw =f in Q, (94a)
divw =0 in Q, (94b)
curlw - N =0 on 0€. (94c)

We note that if w is smooth, the divergence-free condition (94b) can indeed be treated as a boundary
condition

divw =0 on Q. (94b”)
In fact, taking the divergence of (94a) we find that

Adivw = divf =0 in Q,

where we use the solvability condition (90) to establish the last equality; thus if w satisfies (94a,b’),
w automatically has zero divergence. In other words, we may instead assume that w satisfies
(94a,b’,c). Our goal next is to find some suitable boundary condition to replace (94b’,c).

Suppose that 2 is a bounded %2-domain of R3 (whose %2-regularity will eventually be relaxed).
Following the notation introduced in the proof of Lemma 4.1, we find that

dive|,, 0 0 = [NF (@3N + @,0% 4 )3 +G°POF,, (@sN* + fuwcakw),ﬂ]‘ i
Ys=

= 1’17373 + g"‘ﬂe’“,a ('ljlry,ﬂ 91@77 +17179’“,[3V +Nk,lg 17)3 + Nkﬁl3,3 )
= W33 + Wy + 1“’5717;7 + 2Hws

where I') ; is the Christoffel symbol defined by

(gas.s + 9ss.a — Gap.s) = 9" 0,05 0.5

«

1
v
and H = % g*P bas is the mean curvature of 02. Let divgon denote the divergence operator on 02
given by
(divoqv) o8 =Dy, + T ¥, VveT(0Q) (or equivalently, ¥’ = v,6%,,).
Then
divw = [1’173,3 +diVaQ(P’N*J_177) + 2ﬁ1713] 0f! on 09,

where we recall that P denotes the projection of a vector onto the tangent plane of 0. With the
help of (74), for all local charts (U, 6),
Jw ~ G~ i ~ QBN LN
[Sx N 00 = [3,s N 4 b 60 o +ag™ N5 [N = iy 5 (95)
thus

divw = g—; ‘N + 2H(w - N) + divoo(PNnrw) on df). (96)
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On the other hand, if N = %(9,1 x 0,9 ), using the permutation symbol we find that

(curlw - N) o f = Eijk(wk,j N)of = Eijk [ﬁjﬂ){% + g*Pe7 ﬂJk,g ]Nl

= et o NigP " 5= (N x 0,,) - ¢°P 0,5

= V8 — g™y, B
where we have used that N x 6,, = \/g(6 — )g?%0,, to establish the last equality. Writing the sum
explicitly, we find that

(curlw - N) 0 0 = \/g(g"' ¢** — ¢"29*) (0,2 W, —0,1 -W,2)
- %(9,2 WDy~ r2).
Since w = 1773& + Py, w,
Ve(curlw - N) 0§ = 0,5 -(Px @ + W3N),1 —0,1-(Pr. @ + W3N)

= 'a}oz,nga + fbarlfag,@2 - 17}&,291(1 - fbargagﬂl
=02V, (Pr.w) —0,1-Vo,(Pr.w), (97)

where for two tangent vector field X = X®6,, and Y = Y50, g on a two-dimensional manifold, VxY
is the covariant derivative of Y in the direction X given by

VxY = XP(Y 5 +YTp) 0.0
5.2.1. The case that Q@ = B(0,R). Now we assume that Q@ = B(0,R) for some R > 0. Having

obtained (96) and (97), in order to achieve (94b’,c) it is natural to consider the case Pnrw = 0. In
other words, we consider the following elliptic problem (with a non-standard boundary condition)

—Aw=f in Q, (98a)
Pnyrw =0 on 09, (98Db)
Jw
ﬁ-N+2H(w-N)—O on 09, (98¢)

where we remark that H = R™! is a positive constant. We also note that (94b’) and (94c) are direct
consequence of (98b,c), and (95) suggests that (98c¢) is in fact a Robin boundary condition for ws;.
The goal is to find a solution to (98) in the Hilbert space

HI(Q)={we H'(Q)|Pnrw =0} = {we H(Q)|wx N =0}.

In order to solve (98), we find the weak formulation first, and this amounts to computing J 2_11\01 .
oQ

@ dS. Nevertheless, if ¢ € H1(Q2), then ¢ = (¢ - N)N; thus, if w satisfies (98¢), for all p € H1()
we have

Jw
- —_— dSz—J — N - N dSzQJ H(w - N -N)dS.
LQ A s Nen Hw-N)(e-N)

The identity above implies the following

Definition 5.1. A vector-valued function w € H1(Q) is said to be a weak solution to (98) if

| v vedis2 L Hw-N)(p N)dS = (F @iy Voo HEE). (99)

where Vw : Vo = w' jpt,;.
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Since H > 0, the left-hand side of (99) obviously defines a bounded, coercive bilinear form on
H(Q) x HX(Q). In fact, using Poincaré’s inequality (23) we find that for some generic constant
c> 0,

Vw : Vwdz + 2f H(w -N)(w -N)dS > cHwaql(Q) we HHQ);

Q o0Q

hence by the Lax-Milgram theorem, there exists a unique w € H () satisfying the weak formulation
(99) and the basic energy estimate

lwllm ) < Clflzq) - (100)
Before proceeding, we establish the corresponding regularity theory for equation (98).

Lemma 5.2. Let Q = B(0, R) € R3 for some R > 0. Then for all f € H*"1(Q) for some ¢ > 1, the
weak solution w to (98) in fact belongs to H**1(Q), and satisfies

|wll ety < C|Fllme-1(0) - (101)

Proof. As the proof of Theorem 3.4 we prove this lemma by induction. The weak solution w indeed
belongs to H'(Q) satisfies (100). Assume that w € H7(Q) for some j < ¢. If x is a smooth cut-off
function so that spt(y) o= (2, the same computation as in the proof of Theorem 3.4 (with a/¥ = §7)
suggests that

XD wl a0y < C[1F limsoy + lwlaiey | (102)

where the constant C depends on the distance between the support of x and 0.
Now we focus on the estimate of w near 0€. Let {(m,Um, 0m}2_; be defined as in the proof of
Theorem 1.2, and gog = Om,a - Om,5. Define

@1 = (1) (uN[AY A G- N)] 06,1

where Zm = (m ©0m, Wy = wof and N = Nod. Since Pniw1 = 0, 1 can be used as a test
function in (99). Similar to the computations in Step 2 in the proof of Theorem 3.4, we find that

1 o~ o~ o~ o~
Lvu; V1 do > 5HvaﬂAe(g,,m;m- N)\|i2(Bm—C\|U\|H7‘(Q) [HajAe(mem- N)| g1 gty T \|u\|H]-(Q)]

1 L .
= §Hva]A6(<mwm' N)Hiz(B;L) _C5HwH%IJ'(Q) _6H6]A6(mem' N)HHl(B;)u (103)

Now we focus on the term H(w -N)(¢1 - N)dS. Making a change of variable and integrating
o0
by parts, we find that

~

LQH(w-N)(cpl-N)dS= { }aJ’AE[\/@H(Emﬁ:m-N)]aﬂ‘(Ae(Zma}m-N)) ds
y3=0

:J O [yEHIT G - N 07 (Ae(Co - N)) dS
{ys=0}

y3=0}

) (j?)f{ oA VB G NJO (MG N)) dS
k=1
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Using our commutator notation,

J H(w - N)(¢1 - N)dS = \/gH|ajAe(Zmﬂ;m-1<T)|2dS
o {ys=0}

~

+L 70}[6(\/@H)aj’1A6(5mﬁ;m-ﬁ)]aj(Ae(gmﬁ;m-N)) ds

+f{ 0}6[[[/&5,\/gH]]aj_l(Emﬁzm-ﬁ)]&jAE(Zmﬂ;m-ﬁ)dS (104)
Yyz=

+ 2 (J;l)J{ Ae[ak(\/EH)aj*k(Emﬁ:m-ﬁ)]&j(AE(Emﬁ;m-ﬁ)) ds
k=1

y3=0}
j—1 ‘ R . | N N
+ ];1 (‘ykl)‘[{y3_0}A€[ak+l(\/§H)aJ1k(<m/a}m.N)]8J (Ae(Cm/me)) ds .

The commutator estimate (26) and interpolation, as well as Young’s inequality, suggest that
J o[ [Aes vEH] 0T (Con W - N) |07 Ac (G W - N) dS
{ys=0}

> _C‘|aj71Aﬁ(5m‘N”m'm“L?({yszo})HajAf@mﬁ’m'ﬁ)Hm({ygzo})

Y o~ 2
2 _C(;H/LUH%_I] (Q) - 5HaJA€(mem . N)|‘H1(B(O,T7n)) .
Using Holder’s inequality to estimate the other terms we obtain that
J H(w - N)(p; - N)dS > f VEH|OTA (G -N)|*dS
oQ {ys=0} (105)
Y o~ 2
= Csllwlfs @) = 0107 AclGn @i N) s 0,
Moreover, it is easy to see that

J;)f prdr < CHfHHj(Q) HajHAﬁ(gmﬁ’m'ﬁ)HL%B(O,rm))

j >N 2
< C5H.ﬂ|%2(9) + 5Ha]+1AE(<mwm 'N)HLz(B(O,rm)) . (106)
Combining (103), (105) and (106),

HvaJ‘AE(mem-N)H;mﬁ{ 0}\/§H]0jAE(Zmﬂ;m-N)\2dS
Ys=

(107)
< s | 1F ey + 1wl ey | + 0107 A G - N
S L2(Q) Hi(Q) e\om Wm HY(B(0,rm))"
Using Poincaré’s inequality, there exists a constant ¢ > 0 such that
i~ I R N Y o~ 2
c[07Ae(Cn®m N) 71 () < [V AelCn@im - N)| o) + VEH|07Ae((ntorm - N)|7dS,

{ys=0}
so by choosing § > 0 small enough we find that
09 MG N | s 52y < C|1F Iy + [0]s oy |

Since the right-hand side of the estimate above is independent of €, we can pass € to the limit and
obtain that . N
09 G M) s sy < C[If 220 + [0larscey |- (108)

The estimate above provides the regularity of w in the normal direction.
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To see the regularity of the tangential component of w, an alternative test function has to be
employed. Define

@2 = (—1)7 (N % [A0H A (Gnibm x N)] 06,1
We note that since w x N = 0 on 02, 2 = 0 on 0€2 so 2 may be used as a test function. Since
u- (v xw)=(uxv) w, with J and A denoting det(V#6,,) and (V,,)~! respectively, using b" to
denote JA} A; we find that

f Vw : Vs da = (4)]’] B s [CnN X A A (Gt x N)|',, dy
9 B

~

— (-1) JB}”(E,”W *RY A0 A (G x N, dy

+ (*1)j J bTSﬂ):ms [(Emﬁ)vr XAeaszé(zmﬂ’m X N)]Zdy
B
= | AV G x N ] A G i x Ny
B,
7[ ajAé [bTS((Zmas 7777m Xﬁ)i+(zmﬂ}am Xﬁvs)i)]ajAé (Em’l’I)m X N)iﬂ“ dy
B,

+ f DIND"[W?,,5 % (CnN) 1 |07 Ae(Cron x N)idy .
B+

m

Similar to the procedure of deriving (42), by Leibniz’s rule,

DTN (G x N) g 07N (G0 x N, dy

B
_ J B30T A (Con W x Ny 09 A, (G x NV dy
B,
+ OV 0TI (G x N)' g 07 NG x N, dy
B,

*J O AJ T G x N 09N (G x N)',, dy
B,
-z
J - i—1—kirsak/ > -~ ] . ~ ~
+];O( . ) " O[T R 0F (G x N) g |07 A (G x N, dy .

Since {6,,}M_, is chosen so that A ~ Id, b"® is positive-definitive. As a consequence, by the
commutator estimate (26) and Young’s inequality,

1 . ~ ~
J Vw : Vo dr > 5 ‘|3JVA6(mem X N)Hi2(37§)
Q

— O VA W x N 07V A(Cn @ x N

)HL2(B:,§ )HL2(B:,§)
1, .. ~ -
= Z HaJVAE(mem X N)Hiz(B:,Q) 70““’”?{“(2)
On the other hand,
Jﬂf C P2 dx < CHfl‘Hf*1(£2) |‘aj+1Ae(Em17]m X ﬁ)“L2(3(07Tm))

; P 2
< Ots”.f“%,?(ﬂ) + 5H8J+1Ae(<mwm X N)HL2(B(O,rm)) ;
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thus using 2 as a test function in (99) and choosing § > 0 small enough, by the fact that J H(w -
20
N)(¢2 - N)dS = 0 we conclude that

109 Ao % R s sy < C[IF () + s oo | (109)
Since the right-hand side is e-independent, we can pass € to the limit and obtain that
167 oo N 1 5 < C[If N2y + 10y |- (110)

The estimate above provides the regularity of w in the tangential direction.
Since every vector u can be expressed as u = N X (u x N) + (u - N)N, the combination of (108)
and (110) then shows that

G0 @n s 55y < C[IF 12200 + N0 ls )|

Finally, we follow Step 4 of Theorem 3.4 or Step 3 of Theorem 3.5 to conclude that

6 @on s ) < C|IF Iz + 1wl oy (111)
Estimate (101) is concluded from combining the H'-estimate (100), the interior estimate (102) and
the boundary estimate (111). o

5.2.2. The case that Q) is a general H**1-domain. If 2 is a general HX*!-domain, the mean curvature
H can be negative on some portion of 0€, leading to a problematic Robin boundary condition (with
the wrong sign) (98c). To overcome this difficulty, we instead consider a similar problem defined on
a ball containing 2.

Let B(0,R) be an open ball so that Qc= B(0, R), and F be a divergence-free vector field on
B(0, R) so that F = f in Q; that is, F is a divergence-free extension of f. If f € L2(2), such an F
(in B(0, R)\Q) can be obtained by first solving the elliptic equation

Ap=0 in B(0,R)\Q, (112a)
op
oo
ﬁ =0 on 8(2, (112C)

and setting F = V¢ on B(0, R)\Q2. We note that F € L?(B(0, R)) even if f € H*~1(Q); thus F
must be less regular than f due to the lack of continuity of the derivatives of F' across 0.
Now consider

“Aw=F in B(0,R), (113a)
Pniw =0 on ¢B(0,R), (113Db)
Z—§~N+2H(w-N) -0 on 0B(0,R). (113c)

By Lemma 5.2, there exists a strong solution w € H?(B(0, R)) to (113) (so that (113) also holds in
the pointwise sense).
Now we show that w has zero divergence. Let d = divw € H'(B(0,R)). We claim that d is a
weak solution to
Ad=0 in B(O,R), (114a)
d=0 on 0B(0,R); (114b)



34 C.H. A. CHENG AND S. SHKOLLER
that is, d € H} (B(0, R)) and d satisfies
J Vd-Vodr =0 VYeoe Hj(B(,R)). (115)
B(0,R)

The boundary condition d = 0 on d B(0, R) is obvious because of (96) and (113b,c). To see (115),
we note that it suffices to show Ad = 0 in the sense of distribution since D(B(0, R)) is dense in
H}(B(0,R)). Let p € D(B(0, R)), and define 9 = V. Then v € D(B(0, R)), and

ff Aw%,bd:zrzf F~1/de=f F -Nyodrx+ | f-Vedr
B(0,R) B(0,R) B(0,R)\Q Q

_ 99 _
_Lﬂ(f~NfaN)<pdS—O.

On the other hand, since w € H?(B(0, R)), we have d € H*(B(0, R)) and

ff Aw~1,bdx=f V'wszdxzj wi;j<ﬂaijd:17
B(0,R) B(0,R) B(0,R)

=7J d,j<p,jd:17=ff Vd-Vydzx,
B(0,R) B(0,R)

thus we conclude (115). Therefore, d is the weak solution to (114) and so d must vanish in € which
implies that divw = 0 in Q. Finally, since w € H?(2), applying (77) we find that v = curlw € H'(Q)
satisfies curlv = f in .

So far we have shown that there exists v € H'(B(0, R)) satisfying

curlv = F in B(0,R),
dive =0 in B(0,R),
v-N=0 on ¢B(0,R),

which in particular suggests that curlv = f in €. It is not clear that if v possesses better regularity
since v is constructed using a non-smooth forcing F. Let p be the H™3.¢+1}_solution to the elliptic
equation

Ap=20 in Q,

op
w—*'[)'N on 09,

and define u = v + Vp, then u is a solution to (92). We note that u € H'(Q2) and satisfies
@) < [vllma @ + VPl o) < C(10Qgrros)|w] m2(q)

< O(|109Q] grevos) | F | L2 () - (116)

In the following lemma, we show that the singularity of v in fact “cancels-out” the singularity of Vp
so that u possesses H'-regularity if f € H*~(Q) for some ¢ > 2.

Lemma 5.3. Let Q € R? be a bounded H*'-domain for some k > % . Then for all f € H*~1()
for some 1 < £ <Xk, there exists a solution u € H'() to (92) satisfying

|l sze() < CUIR grros) [ f | e-1(0) - (117)

Moreover, the solution is unique if £ is convex or £ = 2.
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Proof. We again show that u € H*(€2) by induction. We have shown the validity of the lemma for the
case that £ = 1. Now suppose that £ > 2 and u € H7(2) for some j < /—1. Since u = curlw € H'(Q)
satisfies (92b,c), using (93) we find that u satisfies

J curlu~curlgod:z:=f Vu:chdfo h-pdS YpeHN(Q),
Q Q 00
where in local chart (U,6) h is given by h o = —g*?g7°[(u 0 6) - 0,5 |bay 0,5. On the other hand,

f-curlpdr = J aijkfigok,j dr = fJ Eijkfi,j prdr + J EijkfiNjSOde
Q Q Q o0

=qur1f-cpdx+f (f xN)-pdS Ve HY(Q).
Q o0

Using (92a), we find that u satisfies
JVU:V(pdszcurlprderJ (f xN+h) pdS Ype HN(Q);
Q Q o0

thus u is a weak solution to

—Au = curlf in Q, (118a)
u-N=0 on 09, (118b)
PNL(S—;—fXN—h> =0 on 09, (118c)

Let us first assume that k > 3. Then k — 1.5 > 1 = ; Moreover, j — 0.5 < k — 1.5; thus
Proposition 2.4 suggests that

[Rlgi-05a0) < CUOQ Hiros) [0 -1 (gys—op vl mi-0500) < C(|0Q grvos)[w]ms) - (119)

Therefore, by Corollary 3.6 (with a’* = 6% and w = N) we conclude that
Julizros (@) < C(0Q o) lewrl F sy + IF x N+ hlai-os (00|
< C(10R g0 )| I 115 () + |15 (o) |

which implies u € H/*1(Q). Estimate (117) then is concluded from estimate (116), interpolation
and Young’s inequality.

The case that k = 2 (and ¢ = 2) is a bit tricky. In this case (119) cannot be applied since b, w both
belong to H%?(8€2) while H%(02) is not a multiplicative algebra. To see why w indeed belongs to
H?(Q) if f € H(2), let u€ to be the solution to

A — Au® = curlf + \u in ), (120a)
u*-N=0 on 09, (120b)
ou*
Pne (6_N —fxN- h€> =0 on 09, (120c¢)

where w on the right-hand side of (120a) is the solution to (92), h. is a smooth version of h given
by

h.=— Z Cm [Q%ngfs((uf o Hm) 'em,ﬁ)(Aebma’y) 9m76] o 9;11
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in which A, is the horizontal convolution defined in Section 2.4, and A » 1 is a big constant so that
the bilinear form

B(u®,¢) = Mu, @)r2) + (VU V) r200) + LQ he - pdS
is coercive on H}(2) x H(Q). Since Acb,, is smooth, we find that h. € H%?(0Q) satisfying
|Re]l 0.5 00) < C(|aQ|H2«5)[Hay@mH%L%(B(omm)m{m:o})HAebmHHL%(B(o,rm)m{yFO})Huel\HO»S(aQ)]

< Colulmioy < Cef I Iz + Mulzz@ | < Clf )

where the dependence on € in the constant C. is due to the horizontal convolution A.. As a sequence,
u® € H%(Q), and this fact further suggests that h. satisfies

|| o5 o) < O(|5Q|H2-5)[HayemH%L%(B(o,rm)m{ygzo})HbmHHO»S(B(o,rm)n{yg:o})\|U€\|H1-25(asz)]
< CU0Q o) uarnms ) < COR o) g0 ey -
By Young’s inequality, we find that that u© satisfies
20y < CUOQN | lewlf lraqy + 1F x N + helos oo |
< C(10Q]g25,0) | f | o) + 0w m2(q) -

Choosing 6§ > 0 small enough, we conclude that «¢ has a uniform H? upper bound and possesses an
H*' convergent subsequence © with limit ». This limit v must be u since u is also a weak solution
to (120) and the strong solution to (120) is unique (by the Lax-Milgram theorem). Moreover, u
satisfies (117) (for £ = 2). o

Lemma 5.3 together with the elliptic estimate

IVl g+ ) < Cllgl i) + 1l mi-os@a)]
for the solution ¢ to (91) then concludes the first part of Theorem 1.1.

5.3. Solutions with prescribed tangential trace. Having considered the boundary condition
v - N = h, we now establish the existence and uniqueness of the following problem:

curlv = f in Q, (121a)
dive = ¢ in Q, (121Db)
vXxN=h on 01, (121c¢)

in which (121c) prescribes the tangential trace of v. We impose the following conditions on the
forcing functions f and h:

divf=0in Q@ and hA-N=0 on 09Q. (122a)

For (121) to have a solution, one additional solvability condition has to be imposed. Let u be a
solution to (92). Then w = v — w satisfies

curlw =0 in Q, (123a)
divw =g in Q, (123b)
wxN=h—uxN on 0. (123c)

Taking the cross product of N with (123c), we find that
w—(w-N)N=Nxh—[u—(u-N)N] on 0€).
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If C is a closed curve on 02 enclosing a surface ¥ € 02 so that C' = 0¥ with a parameterization r,
then the Stokes theorem implies that

0= Lcurlw-NdS = 3€Cw-dr = Jﬁc[w — (w-N)NJ-dr = ﬂ(N x h —u)-dr

=j€C(N X h)-drffzcurlu-NdSziV(N X h)-drffzj“NdS.

Therefore, if 3 is a subset of 002 with a piecewise smooth boundary,

Jf-NdS=§ (N x h) - dr. (122Db)
b ox
(122a) and (122b) constitute the solvability conditions for equation (121).

5.3.1. Uniqueness of solutions. We first assume that 2 is convex. Using (93), we find that if v1, vs €
H(Q) are two solutions to (121), then v = v; — vy satisfies

0=[Voli:q + 2J H|v - N|?dS;
oQ

thus if H > 0, v = 0 by the Poincaré inequality (23). Therefore, the H'-solution to (121) must be
unique if € is bounded and convex.

Now suppose that 2 is a general domain. Similar to Section 5.1, when looking for solutions in
H'*¢(Q) for some e > 0, the difference of two solutions must be the gradient of an H?*¢-scalar
potential ¢, and ¢ has to satisfy

Ap=0 in Q, (124a)
VéxN=0 on 0Q. (124b)

Note that (124b) implies that the derivative of ¢ in all tangential direction on 02 is zero. It follows
that ¢ is constant on 0{2. Consequently, ¢ is constant in €2 which implies the uniqueness of the
solution to (121) in the space H*¢(Q).

5.3.2. Existence of solutions. In order to establish existence of solutions to (123), we look for a
solution w of the form w = Vp. We first assume that 02 is path connected. By the Stokes theorem,
the solvability condition (122b) shows that the function b given by

b(x)zjﬁc (Nxh—u)-dr YazedQ, (125)

where C, is a smooth curve connecting a fixed point zog € 02 and x € 0, is independent of the
curve C,, and so is a well-defined function.
Since b is defined on 0€2, b can be differentiated in all tangential directions. Moreover,

Vb-T=(Nxh—u)-T on 0%
for all tangent vectors T. Therefore, using (122a) we find that
VoxN=(Nxh—u)xN=h—-—uxN on 0Q. (126)

We remark that only the directional derivative of b in the tangential direction is necessary in order
to compute Vb x N. Moreover, because of (126), b e H*~95(0Q) and b satisfies

[blle-0:500) < CUOLLsos) | IRl e-vs 00y + [ullme-os(an |

< C(10QLpsos) I L) + Bl =030 |-
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Let p be the solution of the elliptic equation
Ap =g in Q, (127a)
p=>o on 0. (127b)
We note that by Corollary 3.7, p e H**1(0) satisfies the estimate

[Pl () < C(2Qmsos) | lglmeroy + Bl |

< C(10Ql o) [ If L) + Il @) + Bl ae-os(00 |-
Moreover, since p = b on 092, V(p — b) x N = 0; hence,
VpxN=VbxN=h—-uxN on 0f). (128)

As a consequence, (127a) and (128) show that w = Vp satisfies (123).

Now suppose that 02 is not path connected. In this case we can define b on each connected
component, and then solve (127) using such a b. We have, thus, proved the second part of Theorem
1.1.

6. THE PROOF OF THEOREM 1.5

Now we proceed to the proof of Theorem 1.5. We only prove (9) since the proof of (10) is similar.
By assumption 02 is in a small tubular neighborhood of the normal bundle over 0D; hence, there
is height function h(x,t) such that each point on 0 is given by x + h(z)n(z), z € D, where n is
the outward-pointing unit normal to dD. Let ¢ : D — R? solve

Ay =0 in D,
Yv=e+hn on 0D,

where e is the identity map. Then v : 0D — 02, and standard elliptic estimates show that for some
constant C' = C(|0D|yx+05),

[V — IdHHk('D) < CHI’LHHk#»DAS(a'D) <Cex1 (129)

which further suggests that ¢ : D — Q is an H**!-diffeomorphism since | gxr05(op) < € « 1. We
note that according to the proofs of Corollary 2.6 and Corollary 2.8, there exists generic constants
¢1 and €} independent of |0Q| g1+ such that if j < &k + 1,

c1(l= &) flus < |fotluimy < Cr(l+ )| flui Ve H(Q). (130)
As a consequence, letting A = (V)™ we obtain that
[ (curlu) o ¢ gy = [eijuAf(w" 0 ) |apy = leijn (AT = 67)(u® 0 9) +esju(w” 0 9), |y
= [eurl(u o ¥)| gi(py — ClA = 1d| ey | w © Y s ()
where the constant C' = C(|0D|gxr0.5). Therefore,

leurl(w 0 )| (py < ||(curlu) o P gi(p) + Cellu o Y[ s (p)
< chrluHHk(Q) + (Cl + C)EH'U/HHkJrl(Q) . (131&)
Similarly,
|div(w o ¥) | gepy < Crl[dive| ey + (C1 + O)eluf me(q) - (131b)
T
Let n be the outward-pointing unit normal to 0 D. Then by the identity N o ¢ = ﬁ, we find
that

I(N'o9) = nfgeos@p) < C2(|0D]gi+os)e.
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Therefore, in addition to estimate (131a,b), we also have
IVop(u o) - nfm—osop)y < [Vop(uov)  (No)|geos@py + Caellu| grerian
< Cl(l + E)HV(‘)Q’U, . NHkaoﬁ(gQ) + CQGH’U,HHk+1(Q)
< C1|Vaqu - NHkao,za((-)Q) +(Cy + OQ)EHUHHk+1(Q) .
Finally, by Theorem 1.2, there exists a generic constant C = C3(|0D|gxr+o.5) such that
H’l)HHk+1(D) < 03 [H’UHLQ(D) + chrl'vHHk(D) + HdiV’vHHk(D) + HV@D’U . nHkao.s(aD)] Vove Hk+1(D) .

Letting v = u 01, using (130) and (131) we find that

a(l = e)ul gesrq) < C3C1 [HUHL2(Q) + [leurluf gy + [ dive| g o) + [Voou - NHkao,za((-)Q)]
+CS(Cl+C2+C)€HUHH1<+1(Q) VUEHk+1(Q).
Since € « 1, the last term on the right-hand side can be absorbed by the left-hand side, yielding a
linear inequality. The conclusion of Theorem 1.5 then follows by linear interpolation.
APPENDIX A. PROOFS OF THE INEQUALITIES IN SECTION 2.2

Proof of Proposition 2.4. We estimate D7 fD* g for j = 1,--- ,£ — 1 as follows:
(1) If1<j< g, by the Sobolev inequalities

HwHL] < (O)< CE‘|wHH%7j+€(O) (if 0<e< 1)7
HwHLnj@%) (O)< Clwl -0 »
we find that
D9 D g2y < 1D 1552 ) 100l g o < Celdl yioe o9l con-

(2) If j = ¢, by the Sobolev inequality
full ooy < Celtwl e
we find that

|D7 £ D' gl 120y < Cel fllareo) 9l 3+ o) -

(3) If g < j < £ (this happens only when g < ¢ < k), we consider the following two sub-cases:

(a) The case £ < n: Similar to the previous case, by the Sobolev inequalities

HU’HL%(O)< Cllw| gre-i 0y and HwHL,Z%j(O)< CHwHHg,gH(O),
we obtain that
D9 1D glz2(0) < IDA1, gy o 10512, ) < ClS Lol o)

(b) The casen < ¢ <k: If j >k — g , by the Sobolev inequalities

[0l sty o< Clolires(0) and ol o ) < Clul g vos oy

we obtain that

D7 D gliion < IDF1, s o 1D 8l s ) < Uizl g ve o
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Now suppose that g <j<k-— g . Note that if 0 < e < %,
0] 13+« 0) < Cellwlwsn oy < Celwl v
[l g3 -+re(0y < Clwlizes 0y < Cllwlsre—s(o
Therefore, by interpolation we obtain that
|D? fD* g 120y < | flwse(0) |9 -5 (0)

1
< Cllf 2. o | 501

la]

TR 1)
for some «; € (0, 1); thus Young’s inequality implies that
|D7 D glr2(0) < Ce|If | g+ oyl o< (0) + 1 10yl 9l 3 -xve0) | -
( (0)

Summing over all the possible ¢, we conclude that for 0 < e < l,

CEHf”H%+6(O)HgHH‘e*G(O) lf[ <

[l R=]

14
DD D g| 20y < '
=1 Ce[\|f|\H%+e(o)HgHHffe(O) + [ fllm o) \|9HH%+E(O)] otherwise.

Estimate (11) is then concluded by the fact that for all € € (O, i),
g—i-eék and g—l—eéf—e if(inaddition)€>g.
Finally, we conclude estimate (12) by an additional estimate

HfDEQHIﬂ(o) < | flzeoylglae oy < Clflaxoylglaeoy - o
Proof of Corollary 2.6. By the definition of determinant and (12), it is easy to see that
1m0y < ClIVY |0y

By Sobolev embedding H%(0) < ¢°%(0), we find that J is uniformly continuous on O. Since J # 0
in O (by the virtue of that ¢ being a diffeomorphism), |.J| z=(0) = § > 0 for some § (depending on
J). Using the cofactor formula of the inverse of matrices, we find that

1 C e
[AllL2c0y < EHJAHU(O) < gHVT/JHHk%O) IV 20y - (132)

Therefore, by interpolation and Young’s inequality, with the help of (11) we find that

k
Z ( ) |D? JD*T A 2(0)

1
HDkAHL2(o)<g“JDkAHm(o) —HD (JA)| L2 0y +

o,|>—~

< CéHV@bHHk (0) +Cs || |z 0y |1 Az < (0

<Cs|Velinio) +Csll I a0 HAHHk(O HAHLz(O
<Cs.6, (VY] 1 (0)) + 0111 A] (0 -

Combining the estimate above with (132), by choosing §; > 0 small enough we conclude (15). o

Proof of Corollary 2.7. We prove (16) by induction. Define J = det(V#) and A = (Vi)~t. With
the help of (15), the case that £ = 0 is concluded by

1172 ) = L [(f o)W T (y) dy < CIVY ] (0))If 0¥ ]F2(0) (133)
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and
1 1
2 _ 2 2
ILf O‘/’HL?(O) = JQ |f(2)] W dr < ngHLz(Q) ) (134)
where § > 0 is a lower bound for |J||z= o). Suppose that (16) holds for £ = j. Then for £ = j + 1,
by (12) and (15) we obtain that
HDj+1fHL2(Q) <D flai) < CUVY|ax0) (D) o ¥l mi o)

< C(IVY] rx0) |ATD(f 0 )l 3 (0)

< C(IVY] e o)) | Al zx 0y [ D(f 0 )| 15 0y

< C([VYl o) f o ¥l ivr o)

and
‘|Dj+1(f © 1/))HLQ(O) = HDJ [(Df) © 1/}D1/}] HLz(O) < H(Df) © ded}HHJ(O)
< C|VY| o) (D f) ] 1 0)
< CIVY| o) DS i) < CIVE| o) 1 fl i)
which, together with the (133) and (134), concludes the case that £ = j + 1. o
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